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ABSTRACT

STOCK MARKET PREDICTION USING INVESTOR SENTIMENT

by
Sarvesh Shukla

Stock market prediction has attracted not only business but academia as well.

It is a research topic, to which many computational methods have been proposed,

but desirable and reliable performance is yet to be attained. This study proposes a

new method for stock market prediction, which adopts the Gated Recurrent Unit a

deep neural network and incorporates investor sentiment to improve its forecasting

performance. By extracting investor sentiment from news headlines using VADER

sentiment, this paper makes it possible to analyze the irrational component of stock

price. Our empirical study on DJIA index proves that our prediction method provides

6% better prediction compared to baseline models. Furthermore, our empirical study

helps to better understand investor sentiment and stock behaviors. Finally, this

work shows the potential of deep learning in forecasting a financial time series in the

presence of strong noises.
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CHAPTER 1

INTRODUCTION

In recent years, a whole industry has been formed around financial market sentiment

detection [11]. More people have begun to carry out scientific and detailed research

attempting to define how the stock market operates and extract features from all

aspects for successful prediction of how market changes. In the beginning, research

on stock market prediction was based on Efficient Market Hypothesis [10] and random

walk theory. In Efficient Market Hypothesis, new information (i.e. news) has a major

impact on stock prices than past stock market prices. Stock market will follow random

walk pattern since news are not predictable. However, many researchers disagree with

EMH [26]. Some studies are trying to measure the different effciency levels for mature

and emerging markets, while other studies are trying to build effective prediction

models for stock markets.

The effort begins with the work on fundamental analysis and technical analysis.

Fundamental analysis evaluates the stock price based on its intrinsic value, i.e.,

fair value, while technical analysis only relies on the basis of charts and trends.

The technical indicators from experience can be further used as handcrafted input

features for machine learning and deep learning models. Afterwards, linear models are

introduced as the solutions for stock market prediction, which include autoregressive

integrated moving average (ARIMA)[19] and generalized autoregressive conditional

heteroskedasticity (GARCH) [5]. With the development of machine learning models,

they are also applied for stock market prediction, e.g., logistic regression and support

vector machine [1].

In the past few years, both the basic tools for deep learning and the new

prediction models are undergoing a rapid development. With the continuous improved
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programming packages, it becomes easier to implement and test a novel deep learning

model. With the collection of online news or twitter data provides new sources of

predicting stock market. The study for stock market prediction is not limited to the

academia. Attracted by the potential profit by stock trading powered by the latest

deep learning models, asset management companies and investment banks are also

increasing their research grant for artificial intelligence which is represented by deep

learning models nowadays.

Forecasting financial time series, which is highly volatile, like stock market is a

challenging task specially when there is a strong noise. We need a good non-linear

function, like Artificial Neural networks, which also have non-linear dependence

on inputs[17]. Applying machine learning methods using time series has been

implemented in past and recurrent neural network is the most popular method for

this task. Work done on recurrent neural networks to predict stock market like [21]

[4] which include public mood data and Dow Jones Industrial Average to predict up

and down direction in stock market, where [14] reported volatility forecasting model.

Our focus in this study would be the latest emerging deep learning, which is

represented by various structures of deep neural networks. With a strong ability of

dealing with learning the nonlinear relationship between input features and prediction

target, deep learning models have shown a better performance than both linear and

machine learning models on the tasks that include stock market prediction.

Forecasting highly volatile stock returns could be challenging especially in the

presence of strong noise. Thus, we choose duration of study to be from 2008, when

was the beginning of recession to 2016, when showed recovery. This time frame is

selected because it considers both ups and downs in stock market values, further the

implementation of deep learning algorithms with investor sentiments is to learn the

complexity and show the effect of investor sentiment as a feature on predicting stock

market values. Our contribution in this study are listed as follows
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• We collected news headlines to calculate sentiment scores and using these scores

to create investor sentiments.

• We are using investor sentiment as a feature which tells us how an investor is

expressing sentiment on news, while most study before applied public mood and

tweets to define sentiment ignoring the sentiment of investor..

• We applied deep learning models, LSTM and GRU to solve the complexity of

prediction of stock market.

The rest of the study is organized as follows: Section 2 presents related work;

Section 3 gives technical background required for this study; Section 4 describes our

prediction framework ,the preparation of dataset and evaluation of baseline models

and GRU and Section 6 discusses future work and conclusion.

3



CHAPTER 2

RELATED WORK

Predicting the stock market using an econometric model is one of the many areas

of research. To evaluate conditional volatility and expected return [9] generalized

autoregressive conditional heteroscedasticity (GARCH) and investor sentiment for

testing noise trader risk was used by Lee et al [23]. Principal component analysis was

used by Baker and Wurgler for construction of investor sentiment index and predicting

that for securities whose valuations were highly subjective and difficult to arbitrage

had a larger effect on securities [3]. Brown and Cliff [6] investigated relation between

investor sentiment to near-term stock market returns and found that sentiment levels

and changes were strongly correlated with market returns, the result showed having

a little predictive power for near term stock returns.

Different technical approaches to market trend prediction have been proposed

in the research literature, ranging from AutoRegressive Integrated Moving Average

(ARIMA) [29, 37] to ensemble methods [30]. Huang et al.[38] in their work

demonstrated the superiority of Support Vector Machines (SVM) in forecasting

weekly movement directions of the NIKKEI 225 index, and Lin et al. [41] managed

to achieve 70% accuracy by combining decision trees and neural networks. Recent

advances in deep learning have brought a new wave of methods [20, 13] to this field.

In particular, the Long-Short Term Memory (LSTM) recurrent neural network has

been shown to be very effective.

Recent theoretical studies in behavioral finance revealed that emotion does effect

decisions made for investment [9, 34]. Hence, to assume public mood and sentiment

can drive stock market values. Li [24] and Schumaker et al. [32] findings confirmed

that news articles and financial reports affect stock market values.
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Therefore, to study how stock market is influenced by investor sentiment, we

need to know public mood in early stage, which is reliable and scalable for stock

market prediction. In past years, progress in sentiment analysis techniques which can

extract indicators of public mood from blogs and forum text has been significant.

Tetlock et al. [35] and Chen et al. [7] finds that views, negative in particular, from

social media and news forecast impacts on firm’s earning and stock returns. Antweiler

and Frank [39], used Yahoo Finance and RagingBull.com downloaded text messages

on large firms in 2000 and confirmed that investor sentiment from Internet posting

messages is powerful in predicting volatility and trading volume.

Using natural language processing and capturing media influence on stocks to

bridge some connection is another area of research. Early work is done by [21, 4]

to predict stock market value using public mood data to classify if the value will

move upwards or downwards. News with proper nouns was most effective compared

to other textual representative as experiment by Schumaker and Chen[32]. Google

Domestic trends as indicators of public mood and S& P 500 volatilities as inputs to

Long Short-Term Memory outperforming other neural network models by 31 % by

Xiong et al [43].

Li & Ma [25] gave a survey on the application of artificial neural networks

in forecasting financial market prices, including the forecast of stock prices, option

pricing, exchange rates, banking and financial crisis. Nikfarjam et al. [27] surveyed

some primary studies which implement text mining techniques to extract qualitative

information about companies and use this information to predict the future behavior

of stock prices based on how good or bad the news evaluated these companies.

Verner [36] provided a systematic overview of neural network applications in

business between 1994 and 2015 and revealed that most of the research aimed at

financial distress and bankruptcy problems, stock price forecasting, and decision

support, with special attention to classification tasks. More recently, Xing et al.(2018)
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[42] reviewed the application of cutting-edge NLP techniques for financial forecasting,

which would be concerned when text including the financial news or twitters is used

as input for stock market prediction.

Rundo et al. [31] covered a wider topic in the machine learning techniques,

which include deep learning, and the field of quantitative finance from HFT trading

systems to financial portfolio allocation and optimization systems. Nti et al. [28]

focused on the fundamental and technical analysis, and found that support vector

machine and artificial neural network are the most used machine learning techniques

for stock market prediction. Sezer et al. [33], focused on deep learning for financial

time series forecasting and a much longer time period (from 2005 to 2019 exactly),

we focus on the recent progress in the past three years (2017-2019) and a narrower

scope of stock price and market index prediction.

Numerous studies have been carried out to understand the intricate relationship

between sentiment and price on the financial market by Wang et al. [12]. In most

research based on deep learning are only using stock history data and market trading

indicators as input variables. In this work, we integrate related market data and

investor sentiment into a deep learning model to forecast future stock price.

In our work, different types of recurrent neural networks (RNN) [40] were used

like long short-term memory (LSTM) [16], Gated recurrent unit (GRU) [8]. Different

network has different mechanism like LSTM has dynamic gating mechanism, GRU

is like LSTM but lacks output gate and shown to perform better on smaller and less

frequent datasets.
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CHAPTER 3

TECHNICAL BACKGROUND

3.1 VADER Sentiment Analysis

VADER (Valence Aware Dictionary and sentiment Reasoner) is a lexicon and

rule-based sentiment analysis tool that is specifically attuned to sentiments expressed

in social media [18]. The VADER sentiment lexicon is sensitive to both the polarity

and the intensity of sentiments expressed in social media contexts and is also generally

applicable to sentiment analysis in other domains. Over 9,000 token features were

rated on a scale from (–4) Extremely Negative to (4) Extremely Positive, with

allowance for (0) Neutral (or Neither, N/A). We kept every lexical feature that

had a non-zero mean rating, and whose standard deviation was less than 2.5 as

determined by the aggregate of those ten independent raters. This left us with

just over 7,500 lexical features with validated valence scores that indicated both the

sentiment polarity (positive/negative), and the sentiment intensity on a scale from

–4 to +4. For example, the word “okay” has a positive valence of 0.9, “good” is 1.9,

and “great” is 3.1, whereas “horrible” is –2.5, the frowning emoticon :( is –2.2, and

“sucks” and it’s slang derivative “sux” are both –1.5. VADER performs as good as

individual human raters at matching ground truth. Further inspecting the F1 scores

(classification accuracy), we see that VADER (0.96) outperforms individual human

raters (0.84) at correctly labelling the sentiment of tweets into positive, neutral, or

negative classes.

3.2 Investor Sentiment

After calculating the sentiment scores of each news headline, we are constructing

investor sentiment using Antweiler and Frank [39], we measure investor sentiment

based on explicitly revealed sentiment. Explicit expressions of a sentiment are
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subjective utterances of a positive or negative opinion about a certain topic or object.

First revealed sentiment measure is defined as

Bt = (Mpos
t −Mneg

t )/(Mpos
t +Mneg

t ) (3.1)

where, Mpos
t =

∑
(iεD(t))wix

pos
i denotes the weighted sum of post of type positive

in the time interval D(t) where wi the weight of the post i.e. the sentiment score of

a news headline and xposi is an indicator variable that is 1 when post is positive and

0 otherwise, same is for Mneg
t .

To calculate Mpos
t for one day’s new headlines, first we will classify the indicator

variable xi, as 1 for positive and 0 for negative, where positive sentiment score

is greater than negative sentient score. Then we calculate wi summing up all the

sentiment scores where indicator variable is 1 for Mpos
t . Similarly we calculate Mneg

t

using indicator variable as 0.

The second revealed sentiment measures number of traders expressing a

particular sentiment.

B∗
t = ln[(1 +Mpos

t )/(1 +Mneg
t ) (3.2)

There are two types of investor sentiment, while sentiment 1 expresses how an

investor will explicitly reveals his sentiment towards a news headlines. Sentiment

2, expresses how many investors are revealing the same sentiment towards a news

headline.

3.3 Long Short-Term Memory

This is a popular Recurrent Neural Network architecture, which was introduced by

Sepp Hochreiter and Juergen Schmidhuber [16] as a solution to vanishing gradient

problem. They work to address the problem of long-term dependencies. That is,

if the previous state that is influencing the current prediction is not in the recent

8



past, the RNN model may not be able to accurately predict the current state. As

an example, let’s say we wanted to predict the italicized words in following,“Alice

is allergic to nuts. She can’t eat peanut butter.” The context of a nut allergy can

help us anticipate that the food that cannot be eaten contains nuts. However, if that

context was a few sentences prior, then it would make it difficult, or even impossible,

for the RNN to connect the information. To remedy this, LSTMs have “cells” in the

hidden layers of the neural network, which have three gates–an input gate, an output

gate, and a forget gate. These gates control the flow of information which is needed

to predict the output in the network. For example, if gender pronouns, such as “she”,

was repeated multiple times in prior sentences, you may exclude that from the cell

state.

Long short-term memory has dynamic gating mechanism and solves the long-

term dependency and vanishing gradient problem of recurrent neural network. Here,

Ii, which we interpret as the information flow of market sensitivity. Ii has a memory

of past time information [16] and learns to forget through equation,

Ii = fi � Ii−1 + ci � Ii (3.3)

Here, fi is the fraction of past-time information passed over to the present, Ii

measures the information flowing in at the current time and ci is the weight of how

important this current information is, Equation (5) answers the fundamental question

of memory in time series forecasting which is equivalent to evaluating autocorrelation

and partial autocorrelation functions to determine the p and q maximum lags in

autoregressive moving average model(ARMA(p,q)) [22].

LSTM’s are very powerful in sequence prediction problems because they’re able

to store past information. This is important in our case because the previous price of

a stock is crucial in predicting its future price. The main advantage of an LSTM is its

9



Figure 3.1 Long short term memory (LSTM) cell with inside mechanism and
equation to calculate each cell state.

Source: Xiong, Ruoxuan, Eric P. Nichols, and Yuan Shen. ”Deep Learning Stock

Volatility with Google Domestic Trends.” arXiv preprint arXiv:1512.04916 (2015).

ability to learn context-specific temporal dependence. Each LSTM unit remembers

information for either a long or a short period of time without explicitly using an

activation function within the recurrent components. For stock market prediction,

this is very important as very considering t-5 days of data to predict t, so if the model

is able to remember information for the previous 5 days to predict the next day, hence

it is very much efficient for prediction of stock prices.

3.4 Gated Recurrent Unit

The Gated Recurrent Unit (GRU) cell contains only two gates: The Update gate

and the Reset gate. These gates are essentially vectors containing values between 0

and 1 which will be multiplied with input data and hidden state. 0 value indicates

that vector corresponding the data is unimportant while a value 1, in the gate vector

means that corresponding data is important and will be used.

Reset gate is derived and calculated using both the hidden state from the

previous timestep and the input data at the current time step. This is achieved

10



Figure 3.2 Gated recurrent unit cell mechanism is shown here, illustrating update
and reset gate and how information flows in a cell.

Source: https://blog.floydhub.com/gru-with-pytorch/

by multiplying the previous hidden state by a trainable weight and an element-wise

multiplication with reset vector. Only the important information will be decided and

kept being used with new inputs. Current input will also be multiplied by a trainable

weight before being summed with product of reset vector.

r = tanh(gatereset � (Wh1 · ht−1) +Wx · xt (3.4)

Update Gate is computed using the previous hidden state and current input

data. Weights are multiplied with input and hidden states are unique meaning final

vectors to each state are different.

gateupdate = σ(Winputupdate) · xt +Whiddenupdate
· ht−1) (3.5)

Then performing element-wise inverse version of the same update vector (1 –

update gate) and doing an element-wise multiplication with our output from the reset

gate, r. The result from these operations will be summed with our output from the

11



update gate in the previous step, u. The new updated hidden state will be our output

for that time step,

ht = r � (1 − gateupdate) + u (3.6)

12



CHAPTER 4

OUR PREDICTION

4.1 Deep Neural Network Architecture

Our Prediction framework is illustrated in Figure 4.1. In our prediction framework,

we started with collecting new headlines from Reddit for the duration of 11th August,

2008 to 21st July 2016. For each day, we collected top 25 news headlines. This

duration for predicting stock market values is selected because of the recession in

2008 and how the market recovers from the recession is all within this time frame.

Figure 4.1 Our prediction framework indicating flow diagram of how features were
created and applied to GRU for predicting values.

Then, we applied vader sentiment for each news headline and calculating

positive, negative scores for each news headlines. Using these sentiment scores,

we calculated two types of investor sentiment sentiment 1 and sentiment 2. We

extracted stock market data of Dow Jones Industrial Average from yahoo finance for

the duration as same as news headlines. Using both investor sentiments as features,

sentiment 1 and sentiment 2 individually, along with stock market values we trained

13



the model using Long short-term memory (LSTM) and Gated Recurrent Unit(GRU)

for predicting stock market values.

4.2 Dataset Preparation

The process of calculating investor sentiments and extracting Dow Jones Industrial

Average (DJIA) stock market values is as follows:

• Top 25 news headlines from 11th August 2008 to 21 June 2016 containing 2872

days was collected from Reddit.

• For each headline, Vader sentiment was applied, and positive, negative, and

neutral scores was calculated.

• Now there are averaged and non-averaged sentiment values with two types of

investor sentiment.

• In averaged sentiment, news sentiment scores from weekends and holidays

along with working days were taken into consideration. The news sentiment

of weekends and holidays were averaged to the next opening day of the market.

• In the non-averaged news sentiment, only the news sentiment of market opening

days were considered as non-average sentiment

• Stock market values of Dow Jones Industrial Average was extracted from yahoo

finance historical data API “yfinance”.

• Features from stock market values are Open, Low, High, Close, Adj Close and

Volume. Investor sentiments were merged into stock market data as a feature.

• For each investor sentiment, there are five types of dataset, one of which is

without sentiment using only stock market values.
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• Averaged investor sentiment 1 is calculated using equation 1 with stock market

values.

• Averaged investor sentiment 2 is calculated using equation 2 with stock market

values.

• Non-averaged investor sentiment 1 is calculated using equation 1 with stock

market values.

• Non-averaged investor sentiment 2 is calculated using equation 2 with stock

market values.

• We apply Min-Max Scaler on three types of dataset as a data preprocessing

step in the range of [0,1] for scaling features.

• Time series for training is 5 days. First 5 days data will be taken to predict

next day value.

Finally, Dataset containing stock market values with two types of investor

sentiment is generated. Dataset contains:

• In total: 1980 days of stock market values.

• 1980 investor sentiment of two different types using eq(3.1) and eq(3.2).

• Features: Open, Low, High, Close, Adj Close, Volume and Investor Sentiment.

4.3 Baseline Assumption

To test the effectiveness of our model, we implemented the following models as

baseline. The models are Exponential moving average (EMA) [15], Autoregressive

Moving Average (ARIMA) [2] and Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) [5] which are widely used as baseline for other work.
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4.3.1 Exponential Moving Average

The exponential moving average is a technical chart indicator that tracks the price

of stock over time. It is a weighted moving average, which gives more weighting to

recent price data. It is calculated as,

EMA = Price(t) ∗ k + EMA(y), (4.1)

where t = today, y = yesterday, N = number of days and k = 2/(N + 1). The

weighting for most recent price is greater for a shorter period of EMA than longer

period. Following is performance for EMA,

• EMA 2: MAE = 135.82, RMSE = 181.58, MAPE = 0.79

• EMA 3: MAE = 146.06, RMSE = 195.78, MAPE = 0.85

• EMA 5: MAE = 166.69, RMSE = 224.48, MAPE = 0.98

4.3.2 Auto Regressive Integrated Moving Average

ARIMA is a class of models that explains a given time series based on its past value,

its own lags and lagged forecast errors, so that equation can be used to forecast future

values. ARIMA(p,d,q) model, where

• p is the number of autoregressive terms

• d is the number of differences needed for stationary

• q is the number of lagged forecast errors in the prediction equation

(yt) = µ+ φ1yt−1 + ...+ φpyt−p − θ1et−1 − ...− θqet−p (4.2)
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Figure 4.2 Arima auto-correlation. Auto-correlation measures linear relationship
between lagged value of time series.
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Figure 4.3 Arima partial auto-correlation. Partial autocorrelation function (PACF)
gives the partial correlation of a stationary time series with its own lagged values,
regressed the values of the time series at all shorter lags.

For ARIMA(p,d,q), where p = 1, d = 0 and q = 2. ARIMA predicted,

• Mean Absolute Error: 626.68

• Root Mean Square Error: 761.51
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Figure 4.4 Arima prediction vs Real stock Price for testing period of 250 days.

4.3.3 Generalized AutoRegressive Conditional Heteroskedasticity

Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) is a statistical

modeling technique used to help predict the volatility of returns in financial assets.

It is suitable for time series data where variance of the error term is serially

autocorrelated. GARCH(p,q) is described as follows,

• p: number of lag variance to include in the GARCH model.

• q: number of lag residual errors to include in the GARCH model.

For GARCH (2,0), model results are shown in Figure 4.5,
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Figure 4.5 Result Garch. The following result is achieved with p = 1 and q=1.
Result shows AIC and BIC absolute values to be minimum and p-value <= 0.5.

Figure 4.6 Volatility Prediction Garch. It shows the fluctuations in true returns
as spike in volatility by the GARCH model.
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4.3.4 LSTM

Long Short-Term Memory (LSTM) was trained with only stock market values. In

first, there are only 6 features, Open, High, Low, Close, Adj Close and Volume.

Figure 4.7 Model 1 (without sentiment): LSTM Architecture.

Figure 4.7 is the architecture of LSTM Model containing 529,406 parameters having

2 LSTM layers of 300 units and 100 units.
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Figure 4.8 Model 1 (without sentiment): Training vs Validation loss.

Figure 4.8 illustrates the plot indicating the loss while training Model 1.
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Plot for prediction of true values vs predicted values,

Figure 4.9 Model 1 (without sentiment): Real vs Predicted Close Price.

Figure 4.9 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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4.3.5 GRU

Gated recurrent unit was trained with stock market values without investor sentiments.

Training model architecture for GRU without investor sentiment is shown below,

Figure 4.10 Model 2 (without investor sentiment): Architecture.

Figure 4.10 is the architecture of GRU Model without investor sentiment having

399,407 parameters having 2 GRU layers of 300 units and 100 units.
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Figure 4.11 Model 2 (without investor sentiment): Training vs Validation loss.

Figure 4.11 illustrated the plot indicating the loss while training Model 2.
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Plot for prediction of true values vs predicted values,

Figure 4.12 Model 2 (without investor sentiment): Real vs Predicted Close Price.

Figure 4.12 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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4.4 Our Model

4.4.1 LSTM + Investor Sentiment

For stock market with averaged investor sentiment eq (1), we have used 7 features,

Open, High, Low, Close, Adj Close, Volume and investor sentiment calculated from

eq (1). Training model 1 Architecture is,

Figure 4.13 Model 3 (with averaged investor sentiment 1): LSTM Architecture.

Figure 4.13 is the architecture of LSTM Model with averaged sentiment 1 having

530,707 parameters having 2 LSTM layers of 300 units and 100 units.
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Figure 4.14 Model 3 (with averaged investor sentiment 1): Training vs Validation
loss.

Figure 4.14 illustrated the plot indicating the loss while training Model 3.
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Plot for prediction of true values vs predicted values,

Figure 4.15 Model 3 (with averaged investor sentiment 1): Real vs Predicted
Close Price..

Figure 4.15 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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For stock market with averaged sentiment eq (2), we have used 7 features, 6

from stock market values and investor sentiment calculated from eq (2). Training

model Architecture is,

Figure 4.16 Model 4 (with averaged investor sentiment 2): LSTM Architecture.

Figure 4.16 is the architecture of LSTM Model with averaged sentiment 2 having

530,707 parameters having 2 LSTM layers of 300 units and 100 units.

30



Figure 4.17 Model 4 (with averaged investor sentiment 2): Training vs Validation
loss.

Figure 4.17 illustrates the plot indicating the loss while training Model 4.
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Plot for prediction of true values vs predicted values,

Figure 4.18 Model 4 (with averaged investor Sentiment 2): Real vs Predicted
Close Price..

Figure 4.18 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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For stock market with non-averaged sentiment eq (1), we have used 7 features,

6 from stock market values and investor sentiment calculated from eq (2). Training

model Architecture is,

Figure 4.19 Model 5 (with non-average sentiment 1): Architecture.

This is the architecture of LSTM Model with non-averaged sentiment 1 having 530,707

parameters having 2 LSTM layers of 300 units and 100 units.
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Figure 4.20 Model 5 (with non-average sentimment 1): Training vs Validation loss.

Figure 4.20 illustrates the plot indicating the loss while training Model 5.
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Plot for prediction of true values vs predicted values,

Figure 4.21 Model 5 (with non-average sentiment 1): Real vs Predicted Close
Price..

Figure 4.21 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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For stock market with non-averaged sentiment eq (2), we have used 7 features,

6 from stock market values and investor sentiment calculated from eq (2). Training

model Architecture is,

Figure 4.22 Model 6 (with non-average sentiment 2): LSTM Architecture.

Figure 4.22 is the architecture of LSTM Model with non-averaged sentiment 2 having

530,707 parameters having 2 LSTM layers of 300 units and 100 units.
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Figure 4.23 Model 6 (with non-average sentiment 2): Training vs Validation loss.

Figure 4.23 illustrates the plot indicating the loss while training Model 6.
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Plot for prediction of true values vs predicted values,

Figure 4.24 Model 6 (with non-average sentiment 2): Real vs Predicted Close
Price..

Figure 4.24 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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4.4.2 GRU + Investor Sentiment

Gated recurrent unit was trained with stock market values with investor sentiments.

Training model architecture for GRU with averaged investor sentiment 1 is shown

below,

Figure 4.25 Model 7 (with averaged investor sentiment 1): Architecture.

Figure 4.25 is the architecture of GRU Model with Averaged investor sentiment 1

having 399,407 parameters having 2 GRU layers of 300 units and 100 units.
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Figure 4.26 Model 7 (with averaged investor sentiment 1): Training vs Validation
loss.

Figure 4.26 illustrates the plot indicating the loss while training Model 7.
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Plot for prediction of true values vs predicted values,

Figure 4.27 Model 7 (with averaged investor sentiment 1): Real vs Predicted
Close Price.

Figure 4.27 illustrated the plot indicating the loss while training Model 7.
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For stock market with averaged investor sentiment eq (2), we have used 7

features, 6 from stock market values and investor sentiment calculated from eq (2).

Training model Architecture is,

Figure 4.28 Model 8 (with averaged investor sentiment 2): GRU Architecture.

Figure 4.28 is the architecture of GRU Model with Averaged investor sentiment 2

having 399,407 parameters having 2 GRU layers of 300 units and 100 units.
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Figure 4.29 Model 8 (with averaged investor sentiment 2): Training vs Validation
loss.

Figure 4.29 illustrates the plot indicating the loss while training Model 8.
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Plot for prediction of true values vs predicted values,

Figure 4.30 Model 8 (with averaged investor sentiment 2): Real vs Predicted
Close Price.

Figure 4.30 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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For stock market with non-averaged investor sentiment eq (1), we have used 7

features, 6 from stock market values and investor sentiment calculated from eq (2).

Training model Architecture is,

Figure 4.31 Model 9 (with non-averaged investor sentiment 1): GRU Architecture.

Figure 4.31 is the architecture of GRU Model with non-averaged investor sentiment

1 having 399,407 parameters having 2 GRU layers of 300 units and 100 units.
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Figure 4.32 Model 9 (with non-averaged investor sentiment 1): Training vs
Validation loss.

Figure 4.32 illustrates the plot indicating the loss while training Model 9.
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Plot for prediction of true values vs predicted values,

Figure 4.33 Model 9 (with non-averaged investor sentiment 1): Real vs Predicted
Close Price.

Figure 4.33 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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For stock market with non-averaged investor sentiment eq (2), we have used 7

features, 6 from stock market values and investor sentiment calculated from eq (2).

Training model Architecture is,

Figure 4.34 Model 10 (with non-averaged investor sentiment 2: GRU Architecture.

Figure 4.34 is the architecture of GRU Model with non-averaged investor sentiment

2 having 399,407 parameters having 2 GRU layers of 300 units and 100 units.
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Figure 4.35 Model 10 (with non-averaged investor sentiment): Training vs
Validation loss.

Figure 4.35 illustrates the plot indicating the loss while training Model 10.
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Plot for prediction of true values vs predicted values,

Figure 4.36 Model 10 (with non-averaged investor sentiment 2): Real vs Predicted
Close Price.

Figure 4.36 illustrated the performance of the model as predicted close price and

comparing it with real close price.
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4.4.3 Overall Comparison

Performance of the trained models will be measured by mean absolute error, root

mean squared error and mean absolute percentage error. Table 4.1 shows the error

calculated by these metrics for evaluation of model’s performance.

Figure 4.37 Performance: Real vs Predicted models

This plot indicates the performance of the various baseline and Deep Learning Models for

comparison of there performance against real stock price.
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Table 4.1 Performance of Deep Learning and Baseline Models

Model MAE RMSE MAPE

(i) Moving Average(1) 128.62 170.93 4.174

(ii) Exponential M.A. 2 135.82 181.58 0.79

(iii) Exponential M.A. 3 146.06 195.78 0.85

(iv) Exponential M.A. 5 166.697 224.4842 0.98

(v) GARCH 8853.688 8857.941 51.35

(vi) ARIMA 626.68 761.511 3.698

(v) LSTM without Sentiment 169.85 223.37 0.999

(vi) LSTM Averaged Sentiment 1 130.429 171.906 0.768

(vii) LSTM Averaged Sentiment 2 131.567 176.223 0.768

(viii) LSTM Non-Averaged
Sentiment 1

130.590 172.098 0.769

(ix) LSTM Non-Averaged
Sentiment 2

130.27 173.132 0.768

(x) GRU without Sentiment 148.62 193.87 0.874

(xi) GRU Averaged Sentiment 1 131.11 172.36 0.759

(xii) GRU Averaged Sentiment 2 127.833 170.696 0.7573

(xiii) GRU Non-Averaged Sentiment
1

129.731 174.645 0.765

(xiv) GRU Non-Averaged Sentiment
2

128.240 170.88 0.755

This table shows Mean Absolute Error, Root Mean Squared Error(RMSE) and Mean
Absolute Percentage Error (MAPE(percent number)) of all the models trained in this study
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Table 4.1 compares the performance of different baseline models as well as

deep learning models, like LSTM and GRU with Real stock price. Comparing with

baseline models, GRU performed 6% better in RMSE than E.M.A.(2). Performance

for ARIMA is not good because of the long term dependency problem. As a result,

it’s prediction is a slope moving downwards. Performance for GRU with averaged

investor sentiment 2 is better than various baselines and LSTM models. Averaged

investor sentiment 2, which is averaged investor sentiment score for holidays and

weekends does have an impact in predicting stock market. Sentiment 2, which refers

to a particular sentiment expressed by number of traders, contributes to the prediction

accuracy more than Sentiment 1 in both GRU and LSTM. Since GRU is less complex

and it doesn’t need memory unit, the model of GRU together with sentiment features

outperforms that of LSTM.
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CHAPTER 5

CONCLUSION

This thesis has been an interdisciplinary effort which explores stock market prediction.

We started by giving an overview of stock market and exploring the most pertinent

works in the field as of early 2020, which is important to note because of the pace

at which this very new domain is expanding. It then touches upon various models

and different sentiment that were the foundations of the novel work that was done

here. In this study, we are exploring various recurrent neural networks to be used for

training with Dow jones industrial average (DJIA) index. Here, we calculated investor

sentiment from top 25 news headlines for each day and applied Vader sentiment to

calculate positive, negative, and neutral scores. For calculating sentiment for each day,

scores from each headline were averaged and then used to calculate investor sentiment

for that given day. In averaged sentiment dataset, sentiment score for holidays and

weekends were averaged to the next opening day. In non-averaged dataset, sentiment

for weekends and holidays were ignored. So, the reason for averaging the sentiment

values to next open day is the know the sentiment of investor before market opens

after a weekend or holiday. Before applying the values for training, the dataset scaled

using min-max scaler.

Recurrent neural networks which are considered most suitable for predicting

time series forecasting data, were used for prediction of stock market. Different

baseline models like EMA, arima. garch and LSTM were performed to set a baseline

for prediction of recurrent neural networks. Gated Recurrent unit with averaged

sentiment 2 performed 6% better than Exponential Moving Average in RMSE. In

future work, a technical indicator which is more inclined to than investor sentiment

can help us predict the stock market even closer, also with help of better recurrent

neural networks the prediction to stock market can become as close to real values.
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