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ABSTRACT 

SHORT TERM TEMPERATURE FORECASTING USING LSTMS, AND CNN 
 

by 
Darshan Shah 

Weather forecasting is a vital application in present times. We can use the predictions to 

minimize the weather related loss. Use of machine learning and deep learning algorithms 

for forecasting, can eliminate or reduce the necessity of big data and high computation 

dependent process of parameterization. Long Short-Term Memory (LSTM) is a widely 

used deep learning architecture for time series forecasting. In this paper, we aim to 

predict one day ahead average temperature using a 2-layer neural network consisting of 

one layer of LSTM and one layer of 1D convolution. The input is pre-processed using a 

smoothing technique and output is raw (un-smooth) next day average temperature. The 

smoothing technique improves the performance of LSTM substantially and meanwhile 

1D convolution helps unsmooth the output of LSTM to obtain the raw answers. All the 

models are for particular locations only. The study shows significant improvement in the 

forecasting with use of smoothing technique. Our method outperforms other model in 

terms of MSE and MAE. 
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CHAPTER 1 

INTRODUCTION 

 

Climate change is a crucial challenge in the recent era. It affects many factors of the 

environmental ecosystems such as, soil erosion [20], bio-diversity, and changes in sea-water 

level [19]. Weather forecasting mitigates the economic crisis and promotes better public health 

[21] to maintain the quality of life. Safety and well-being of human is highly impactable by 

weather changes. It is also useful in the agricultural domain as it is an essential part of planning 

the farming operations. Farmers can make optimal decisions for crops using prediction of 

weather [22] whether to undertake or withhold the sowing operation. The consequences of 

unseasonal changes in weather and their potential negative effects on host plants and pests are 

very well known. Unseasonably high temperatures may lead to lower plant productivity and 

more pests on farm. Industries such as energy consumption and food security can also benefit 

from weather forecasting. 

  As the key problem of weather forecasting, air temperature prediction has manifold 

benefits for the environment, industry and agriculture. The impact of temperature on morbidity 

and mortality can be assessed at both the seasonal and daily level. Extreme temperature changes 

Due to harsh environment, arises the lack of access to safe water and food, it can also cause 

Heat-aggravated and respiratory illness. Prediction of the energy consumption, soil surface 

temperature and solar-radiation is related to ambient air temperature forecasting. Air temperature 

forecasting is useful in understanding the probability of storm, wildfires, drought and flood 

occurrence in an area.  
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  Temperature prediction is an infamously sophisticated and resource consuming task. 

Temperature changes are caused by many factors. Parameterization [2] of those features is a 

difficult task to achieve due to their dynamic nature. Recent development in the field of artificial 

intelligence can help provide less computationally expensive solutions. We can approximate the 

forecasts using several black box methods without a need of extensive mathematical calculations 

by analyzing historical temperature data. Deep learning algorithms have been widely used for 

complicated data. Pattern analysis and recognition of temperature data can be simplified with use 

of deep learning algorithms. Air temperature data is classified as part of time series statistics up. 

Hence, use of Recurrent Neural Network (RNN) algorithms to estimate the future value of 

temperature seems a plausible solution. 
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CHAPTER 2 

RELATED WORK 

 

In our experiment, we came across various machine and deep learning methodologies. An early 

paper of this domain by B. Ustaoglu [9], tests three different kind of ANN based methods: (1) 

feed-forward back propagation (FFBP), (2) radial basis function (RBF) and, (3) generalized 

regression neural network (GRNN). It compares the answers with traditionally used multiple 

linear regression (MLR), they obtained notable improvements over MLR outputs. A paper 

written in 2015 by Z. Karevan [10] describes a black box idea: use of Machine learning methods 

such as k-NN and Elastic Net for the process of feature selection then trains model using Support 

Vector Machine Regression with Least Square loss function to predict minimum and maximum 

temperature. After 3 years, R. Isabelle used Recurrent Convolutional Neural Networks for 

weather forecasting and visualization [11] where they propose use of convolution filters + 

LSTMs. Their results were found substantially better in comparison with popular methods. 

  Another approach was used by P. Hewage [4], where they used multiple features like 

temperature, pressure, wind, humidity, precipitation and moisture to predict future value of the 

same feature. This was executed by implementing several machine learning and deep learning 

algorithms like TCN [13], LSTM with multi-input multi-output and multi-input single-output 

methods. S. Kendzierski used a novel approach by implementing Jordan Pi-Sigma Neural 

Network (JPSN) for time series data, introduced by N. Husaini [14]. In this paper they combined 

two methodology: Jordan Neural Network, Pi-Sigma Neural Network to predict the temperature. 

The MSE of the model is remarkably low, but model does not satisfy the criteria suggested by A. 

Kumar [3]—the performance of the model can be acceptable if: NMSE ≤ 0.5. 
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 Detail-metrics of work described in this section is presented in table 2.1. **Region of interest 

varies with different journals. 

Table 2.1 Detail-Metrics Of Related Work 

References Input variables Algorithm Error Metrics 

[9] temperature ANN RMSE = 1  

[10] wind, snow, rain, 
fog, MIN, AVG and 
MAX temperature, 

wind speed, 
humidity, sea level 

pressure 

k-NN + Elastic Net + 
LS-SVM 

MAE = 1.15 

[11] temperature, 
pressure, wind 
directions (2D) 

CNN+LSTM 
(RCNN) 

MAE = 0.88 

[4]  temperature, 
pressure, wind, 

humidity, 
precipitation and 

moisture 

TCN, MIMO-LSTM, 
MISO-LSTM 

MSE = 3.4 

[15] temperature JPSN MSE = 0.006462, 
NMSE = 0.7710 
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CHAPTER 3 

PRELIMINIRIES 

 

Accurate prediction of temperature requires knowledge of various parameters: longitude, 

latitude, sea level, pressure, wind, precipitation; and their internal correlations. Ecosystem of 

some parameters complete within small areas and for some-other, it occupies large areas. As 

consequences, it becomes difficult to define a region to accurately estimate those parameters. 

Due to this difficulty, parameterization becomes a vital part of the process. Parameterization is a 

complex and instantiate process. In the sense of computational liability, it is very resource 

consuming procedure. In different regions, temperature patterns may vary. However, it is 

generally repetitive with respect to time. Hence, with help of recent developments in the field of 

machine learning and deep learning, we can eliminate use of parameterization. In this thesis, we 

have used black box methods described in subsection 3.1 and 3.2 to forecast temperature using 

past temperature data points. Our aim is to create an accurate procedure which analyzes the 

patterns of past temperature data to predict future results.  

 

3.1 Long Short-Term Memory (LSTM) 

LSTM is a variant of Recurrent Neural Networks. RNNs are special types of Neural Networks 

with recurring properties. It takes current input example, and what they have perceived 

previously in time as their input as well. 

LSTM adds three gate functions on the basis of the RNN: input, forgetting, and output 

gates which are used to control the input, memory, and output values, respectively. 
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z୲ = 𝜎(𝑊௭. [ℎ௧ିଵ, 𝑥௧]) (3.1) 

r௧ = 𝜎(𝑊௥ . [ℎ௧ିଵ, 𝑥௧]) (3.2) 

ℎ̃୲ = 𝑡𝑎𝑛ℎ(𝑊௥. [𝑟௧ ∗ ℎ௧ିଵ, 𝑥௧]) (3.3) 

ℎ௧ = (1 − 𝑧௧) ∗ (ℎ௧ିଵ) + z௧ ∗ ℎ̃௧) (3.4) 

𝜎(𝑥) =
1

1 + eି௫

 (3.5) 

 

In the equations described above, zt is the input; ht is the output at the time t. Wz Wr and W 

are weights of input gate, forgetting gate and output gate respectively.  

 

3.2 1D Convolutions 

Concept of convolution is adapted from digital signal processing [17]. Convolution is used for 

many purposes like smoothing, Image and pattern recognition. In deep learning, one dimensional 

convolution is helpful in time series analysis.    

  

(𝑓 ∗ 𝑔)(𝑖) = ∑ 𝑓(𝑖)  ·  𝑓(𝑖 −  𝑗 + 
௠

ଶ
)௠

௝ୀଵ
 (3.6) 

 

 



 

 

In this thesis, we have used 1D 

adjusting back variations into the 

Figure 3.1 Shows how input gets smoothen

Figure 3.2 Shows 1D convolution 
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, we have used 1D convolution for smoothing the data as well as for 

the smoothed data.  

Shows how input gets smoothen by 1D convolution with filter size = k
 

1D convolution across the signals having filter size 
 

ing the data as well as for 

 

filter size = k. 

 

having filter size K = 3. 



 

 

In this part, we used a smoothing technique to prepare data

fitting. The local extreme differences reduce 

reduces variance in the data. It also 

causes increase in the performance of

  In our experiment, we applied 

size = 2. Use of minimum necessary window size

data set for generalization. Smooth

in the figure 4.1. 

Figure 4.1 Smoothing the data of 

In this experiment, we used smoothed data as the dependent variable and the not smoothed data 

as target variable. There are two purposes of using 

unsmooth data is output of the model
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CHAPTER 4 

METHODOLOGY 

 

4.1 Preprocessing: Smoothing 

a smoothing technique to prepare data. Smoothing helps prevent 

he local extreme differences reduce by use of this technique which consequently 

It also handles outliers and generalizes them significantly 

performance of the training model.  

experiment, we applied convolution smoother on the whole data set 

minimum necessary window size removes the harmful differences and clean

Smoothing effects on sample of 100 days temperature da

of 100 days, using convolutional smoother with window 
 

4.2 Architecture 

we used smoothed data as the dependent variable and the not smoothed data 

as target variable. There are two purposes of using unprocessed data as the output. (1) If 

unsmooth data is output of the model, then there is no need for having an extra process

. Smoothing helps prevent over 

which consequently 

handles outliers and generalizes them significantly .This 

the whole data set with window 

differences and cleans the 

temperature data is shown 

 

window size = 2. 

we used smoothed data as the dependent variable and the not smoothed data 

data as the output. (1) If 

process to get the 
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desired answer. (2) Un-smoothing the variable would lead to irrelevant variance and increase the 

error rate. 

  After the smoothing step, we split both—smoothed and unprocessed dataset—into m:n 

ratio. We stored values of multiple past days of smoothed data as input variables and we kept 

unsmoothed data as output variable. Following that, we merged input and output variables for 

both train and test data. As the preprocessing completed, we trained data on the specific neural 

network architecture. In this experiment, neural network architecture was composed of LSTMs, 

1D convolutions and a single perceptron. 

We analyzed significance the error rate of predictions using the performance evaluation 

matrices, during testing. The whole process of the algorithm is shown in the figure4.2. 

 

Figure 4.2 Architecture of our proposed method. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

 

We ran our experiment on Windows operating system having version 10. Processes were 

executed by Intel i5-9300H CPU, running at 2.4 GHz and 8 GB of RAM, and NVIDIA GeForce 

GTX 1660 Ti with Max-Q Design GPU, running at 1.34 GHz using 6 GB of RAM.  

 

5.1 Performance Matrix 

In this part of the study, we applied model evaluation based on the MSE, MAE error matrices. 

Since, the values of temperatures are in Celsius, the interpretation of MSE is the average squared 

difference between predictions and real values in terms of Celsius. MSE is defined by the 

following formula. 

 

𝑀𝑆𝐸 =
1

𝑛
 ෍(𝑦 ෝ − 𝑦)ଶ

୬

ଵ

 
(5.1) 

                          

The interpretation of MAE is the average absolute difference between predictions and real values 

in terms of Celsius.  

 

𝑀𝐴𝐸 =
1

𝑛
 ෍ ||𝑦 ෝ − 𝑦|

୬

ଵ

|
 

(5.2) 
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NMSE is used to avoid overestimate or underestimates values caused by bias in models. 

NMSE is defined by the following formula. 

 

𝑁𝑀𝑆𝐸 =
1

𝑛
 ෍

 (𝑦 ෝ − 𝑦)ଶ

𝑦

୬

ଵ

 
(5.3) 

 

  We also used, Pearson Correlation and R2 score values to check the reliability of the 

model. Both matrices are described as below. 

 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
∑൫𝑦ො − 𝑦ොത൯(𝑦 − 𝑦ത)

ට∑൫𝑦ො − 𝑦ොത൯
ଶ

+  ∑(𝑦 − 𝑦ത)ଶ 

 (5.4) 

𝑅ଶ =
∑(𝑦 −  𝑦ො )2

∑(𝑦 − 𝑦ത)
2

 

 (5.5) 

 

 

5.2 Data Preparation 

 In this thesis, we used Basel, Switzerland’s average temperature of January 1989 to March 2012 

as our dataset. Ratio was set to traindata:testdata = 20:1. The training data was used to build the 

model and the test set was used to evaluate the model. 

The average temperature of the day is predicted using previous n days’ average 

temperature. During our analysis, we found that decision process of the value of n is a greedy 

algorithm problem as there is a trade-off to be considered—increase in days, decreases the error 

and increases the resource engagement at same time. 



 

 

Figure 5.1 Visualization of how
 

Going by the steps of optimal trade

of n = 30, to predict next day average temperature.

 

The proposed model took temperature data of 

architecture after hyper parameter tuning. In the model,

data and provided output for the 

with kernel size = 7 to train the data further. Output of this

flattening, it goes through single perceptron to predict the next day average temperature. Model

learning rate was set to 0.001. Ridge regularizer 

LSTM layer. Furthermore, early stopping conditions were applied

model was assigned 1000 epochs to run the training data.

12 

Visualization of how, different values of n affect error and training time.

of optimal trade-off resolution method, we found the

to predict next day average temperature. 

5.3 Training & Performance 

ook temperature data of previous 30 days as input and passed

architecture after hyper parameter tuning. In the model, 50 neurons of LSTM layer 

 1D convolution layer. There were 50 kernels of 1D convolutions 

to train the data further. Output of this layer was then flattened. F

flattening, it goes through single perceptron to predict the next day average temperature. Model

. Ridge regularizer with importance = 0.01 was used to regularize 

early stopping conditions were applied to avoid over fitting

epochs to run the training data. 

 

and training time. 

the minimum value 

as input and passed through the 

neurons of LSTM layer took input 

kernels of 1D convolutions 

layer was then flattened. Finally, after 

flattening, it goes through single perceptron to predict the next day average temperature. Model’s 

was used to regularize 

to avoid over fitting. This 
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For the comparison, we created two models: one model was trained on smoothed input 

and other one was trained on unsmooth input. Both models had similar training duration which 

was approximately 20 seconds and both models had NMSE ≅ 0 which suggested the models 

were acceptable and significant. However, from the perspective of accuracy, the model created 

with unsmooth inputs, gave high error rates with MSE = 3.4 and MAE = 1.44. Meanwhile, 

performance of the proposed model which was train on smoothed inputs provided substantially 

low errors. The MSE of proposed model was about 0.064 and MAE = 0.202. Proposed method 

seems to give better performance of accuracy on test data, as shown in the figures. Our model 

outperformed other models except JPSN. JPSN had MSE = 0.006462. NMSE of JPSN model is 

0.771. Hence, it fails NMSE test which requires NMSE < 0.5 for model to be acceptable. 

Performance comparisons of different methods are shown in the figure 5.4, 5.5, and 5.6. The R2 

value of proposed model was found 0.9984 and correlation = 0.9991. Same experiment was 

done using ARIMA method where we found high error rates with MSE = 3.52, MAE = 1.47, 

NMSE ≅ 0, correlation = 0.9629, and R2 = 0.9217. Comparing performance of proposed model 

with ARIMA performance, our method outperforms ARIMA model. 



 

 

Figure 5.2 Comparison of actual values and predictions using unsmooth input.
 

Figure 5.3 Comparison of actual values and predictions using smooth input.
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Comparison of actual values and predictions using unsmooth input.

Comparison of actual values and predictions using smooth input.

 

Comparison of actual values and predictions using unsmooth input. 

 

Comparison of actual values and predictions using smooth input. 



 

15 
 

 

Figure 5.4 Comparison of actual values mean absolute error. 
 

 

Figure 5.5 Comparison of actual values mean squared error. 
 

 

Figure 5.6 Comparison of actual values normalized mean squared error. 
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CHAPTER 6 

CONCLUSIONS 

 

In this thesis, we proposed a model for temperature forecasting. The objective of this study was 

to forecast the daily mean temperature using three LSTM, 1D convolution and smoothing 

technique. Model showed acceptable and significantly high performance in terms of normalized 

mean squared error, mean squared error and mean absolute error on predicting average next day 

temperature of Basil region. Model used the previous n day’s temperature where the optimal 

trade-off resolution method selected the value of n. Smoothing dataset played an important role 

in performance of the model. 
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