

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

RM-NET: RASTERIZING MARKOV SIGNALS TO IMAGES
FOR DEEP LEARNING

by
Kajal Gupta

Statistical machine learning approaches are quite famous for processing Markov signal

data. They can model unobserved states and learn certain characteristics particular to a

signal with good accuracy. However, with the advent of Deep learning the novice ways of

solving a problem has shifted towards this more sophisticated algorithm, which is much

better, powerful and more accurate. Specifically, Convolutional Neural Nets (CNN) have

shown many promising results on images and videos. Here we illustrate how CNN can be

applied to a 1D numeric signal using signal rasterization technique. We start by rasterizing

a 1D numeric Markov signal into an image followed by applying CNN to perform two

basic tasks: signal classification and error localization. We call this process as RM-Net.

We demonstrate the performance of our approach on simulated data benchmarked against

baselined statistical models. We also illustrate the supremacy of our technique on real word

dataset 1000 Genomes Project Phase 3 SV where we try to estimate the location of Copy

Number Variant (CNV) in a chromosome. Finally, we conclude using the metrics obtained

on both the datasets that our proposed approach is much better, shows promising results

and has scope for future improvements over traditional statistical machine learning

approaches.

RM-NET: RASTERIZING MARKOV SIGNALS TO IMAGES
FOR DEEP LEARNING

by
Kajal Gupta

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Data Science

Department of Computer Science

May 2021

APPROVAL PAGE

RM-NET: RASTERIZING MARKOV SIGNALS TO IMAGES
FOR DEEP LEARNING

Kajal Gupta

Dr. Zhi Wei, Dissertation Advisor
Professor of Computer Science, NJIT
Associate Chair for Graduate Studies of Computer Science, NJIT

Date

Dr. Usman Roshan, Committee Member
Associate Professor of Computer Science, NJIT

Date

Dr. Antai Wang, Committee Member
Associate Professor of Mathematical Sciences, NJIT

Date

iv

BIOGRAPHICAL SKETCH

Author:

Degree:

Date:

Kajal Gupta

Master of Science in Data Science

May 2021

Undergraduate and Graduate Education:

• Master of Science in Data Science,
New Jersey Institute of Technology, Newark, NJ, 2021

• Bachelor of Technology in Information Technology,
JSS Academy of Technical Education, Noida, India, 2016

Major: Data Science

v

ACKNOWLEDGMENT

The process of doing research is difficult and certainly cannot be done alone. Two years

that I spent at NJIT concluded with the most fruitful work that I will treasure for life and

has given me something to be proud of when this journey ends. I would like to sincerely

thank those people who provided me their guidance, support, and constantly kept me

motivated even in my tough times.

 First and foremost, I would like to thank my thesis advisor Dr. Zhi Wei, who

believed in me and under his guidance got the opportunity to learn and enhance my

knowledge. There have been undoubtedly numerous times when I felt lost in my research

and didn’t know what to do, but during those times he would be there helping me to move

forward in the right direction. I always felt reassured that if something goes wrong he would

be there to guide me and walk me through the crucial facts that I might have overlooked. I

would really like to thank him and show my earnest gratitude for all his help, advice,

encouragement and expertise.

 Next, I would like to acknowledge my friends Sonal Gupta, Kajal Singh, Deepak

Kumar, Abhishek Sachan and Vikas Gupta for constantly being there for me all the times.

Although they were thousand miles far, they were always there to turn to. I would like to

thank my US friends Tanmay Gupta and Ankita Talwar who were here at NJIT and walked

together with me.

 I would like to thank mom and dad for loving and trusting me and rooting for me

from behind. Lastly, I thank God, for giving me all the wonderful opportunities to be able

pursue things that I cherish and value the most in life.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION…………………………………………………………... 1

 1.1 Objective………………………………………………………………... 1

 1.2 Background Information………………………………………………... 2

2 METHODS………………………………………………………………….. 6

 2.1 Introducing Signal………………………………………………..……... 6

 2.2 Research Synopsis……………………………………………………… 7

 2.3 Competing Methods…………………………………………………….. 8

 2.3.1 Classification………………………………………….…………... 8

 2.3.2 Error Segment Localization…………...…………………………... 10

 2.4 Baseline Methods……………………………………………………….. 14

3 SIMULATION STUDY…………………………………………..………… 20

 3.1 Generating Signal Data for Simulations ……………..…………………. 20

 3.1.1 Data for Classification ……………………………..……………… 20

 3.1.2 Date for Error Segment Localization…..……………..…………… 21

 3.2 Experiments…………………………………………...………………… 22

 3.2.1 Studying Impact of Signal to Noise Ratio………..……………… 23

 i Impact of Variances..……….…...……………………………... 23

 ii Impact of Means……….…………..…………………………... 26

 3.2.2 Studying Impact of Spatial Dependency... 28

 i Impact of Signal Sparsity………………………...……………. 29

 ii Impact of Signal Length……….………………………………. 31

vii

TABLE OF CONTENTS
(Continued)

 Chapter Page

 iii Impact of Presence of Multiple Error Segments….……………. 33

 iv Impact of Normal and Error Segment Length and Loss of

Spatial Collinearity in an Error Segment……….…………...….

36

 3.2.3 Studying Impact of Different Distribution and Model

Misspecification…………………………………………………...

38

 3.3 Conclusion………………………………………………………...…….. 42

4 REAL DATASET……………………..……….……………………………. 44

 4.1 1000 Genomes Project Phase 3 SVs………………………....................... 44

 4.2 Results of Signal Classification and Error Segment Localization………. 46

5 CONCLUSION AND DISCUSSION……………...….…………………….. 49

APPENDIX A COMPREHENSIVE EXPERIMENTAL RESULTS FOR

SIMULATED DATA……………...……………………………………………..

50

 A.1 Results for Impact of Signal to Noise Ratio…………………………... 50

 A.2 Results for Impact of Spatial Dependency.. 52

 A.3 Results for Impact of Different Distribution and Model

Misspecification………………………………………………………

55

REFERENCES…………………………………………………………………... 57

viii

LIST OF TABLES

Table Page

4.1 Classification Performance Summary on 1000 Genomes Project Phase 3

SVs………………………………………………………………………….

46

4.2 Performance Summary of Error Segment Localization on 1000 Genomes

Project Phase 3 SVs…………………………………………………………

47

ix

LIST OF FIGURES

Figure Page

2.1 CNN with two fully connected layers finetuned over top of

InceptionResnetV2…………………………………………………………

9

2.2 YOLO architecture…………...……….……………………………………. 11

3.1 Input signal as variance increases………………..………………………… 24

3.2 Effect on classification accuracy and AUC as signal to noise ratio

increase……………………………………...……………………………...

24

3.3 Effect on accuracy and F1-Score of detecting error bounding box as signal

to noise ratio increases ……………………………………………………...

25

3.4 Input signal as difference in means of Normal and Error segment

increases…………………………………………………………………….

26

3.5 Effect on classification accuracy and AUC as difference in N and E means

increase………………..………...………...………………………………..

27

3.6 Effect on accuracy and F1-Score of detecting error bounding box

as difference in N and E means increase…….………………...…….............

27

3.7 Input signal as sparsity increases………………………………………..….. 29

3.8 Effect on classification accuracy and AUC as sparsity in signal increases..... 30

3.9 Effect on accuracy and F1-Score of detecting error bounding box as sparsity

in signal increases…………………………………………………………..

30

3.10 Input signal as signal length increases……………………………………… 31

3.11 Effect on classification accuracy and AUC as signal length increases……… 32

x

LIST OF FIGURES
(Continued)

Figure Page

3.12 Effect on accuracy and F1-Score of detecting error bounding box as signal

length increases…………………………………………...………………...

32

3.13 Input signal with one and two error segments…..……………….………….. 34

3.14 Effect on classification accuracy and AUC with one or more error

segments………………...………………………………………………….

34

3.15 Effect on accuracy and F1-Score of detecting error bounding box with one

or more error segments……………………………………………………...

35

3.16 Input signal on 1: Signal under study, 2: Large normal length, 3: Large error

length, 4: distributed error states…………………………...……………….

36

3.17 Effect on classification accuracy and AUC on various variants for

experiment 2 problem 4…..

37

3.18 Effect on accuracy and F1-Score of detecting error bounding box on various

variants for experiment 2 problem 4...

37

3.19 Input signal with observations drawn from different distributions…..…….. 40

3.20 Effect on classification accuracy and AUC on various variants for

experiment 3………………………………………………………………...

40

3.21 Effect on accuracy and F1-Score of detecting error bounding box

on various variants for experiment 3…………...………...…………………

40

4.1 Approach used for constructing Phase 3 integrated SV release set…………. 45

4.2 Distribution of Jaccard Index for Type 1 sample……………….…………... 48

1

CHAPTER 1

INTRODUCTION

1.1 Objective

The main objective of this thesis is to present a novel approach of solving an old statistical

problem1, 2 of signal processing using techniques of Computer Vision3 and Deep Learning4.

It has been almost a few decades when HMM5 was proposed to find underlying hidden

states in an observation sequence and models such as SVM6 and decision trees7 were

proposed to perform classification to classify these signals as per state models. However,

with advent of deep learning, there has been a revolution8 on how a statistical problem

which once thought to be solved only using above methodologies can be modified to be

solved using more robust algorithms such as neural networks4. Hence, in this work we

explore deep learning algorithms to build models that are capable of understanding these

signals composed of numeric observation sequences following Markov Processes,

identifying its hidden states and using their knowledge of representation learning9 to not

only classify the signals on basis of presence or absence of these states but also localize10,

11 where exactly those states were found in the given signal, if present. We propose a

technique of signal rasterization where we convert a numeric signal to an image and then

apply computer vison techniques to solve the problem at hand. Finally, we present our

comprehensive findings on simulated data and close our discussion by sharing the results

on a real-world dataset 1000 Genomes Project Phase 3 SV12 to show superiority of our

proposed method as compared to statistical machine learning algorithms.

2

1.2 Background Information

The use of existing knowledge of statistics in various fields such as computational biology

and bioinformatics13, gesture recognition14, finance15 and computer science16, 17 has been

widely popular since decades. Researchers, scientists and students have heavily relied on

it to propose novel algorithms and insights18, 19 using them on huge amounts of data.

Though these machine learning algorithms are capable enough to make accurate decisions,

they suffer with a drawback that they strongly rely on certain assumptions regarding the

model they build and the data they work upon. These assumptions sometimes do not cater

to actual representation of data and may lead to development of models that might be

misleading or erroneous. Occasionally these errors can be ignored, while other times they

may be catastrophic for example in cancer detection. With the introduction of deep learning

models20 the assumption regarding model parameters has been removed entirely and the

responsibility has been shifted on algorithm to tune itself to the data while training. This

not only removed the tedious task of feature selection and parameter searching to build

accurate models, but also improved the accuracy21 of generated deep learning models

which were much better than its preceding statistical models.

 Another important factor to consider while building a machine learning model is

data. Working with real-world observable output needs attention since they might be

holding unobserved patterns that could not be easily deduced. When such observations are

exposed to classical machine learning algorithms which are not precisely crafted suiting

the needs of these observations, those inherent properties that might be influencing greatly

to the decision boundaries might be subsided and thus lead to reduced performance. The

breakthrough in learning the representation of these unobserved features was achieved

3

through deep learning’s representation learning capabilities. Deep learning methods are

representation learning based methods obtained by composing simple but non-linear22

modules thus holding the ability to learn very complex functions23.

 Convolutional Neural Networks24 have shown significant improvements in

performances in area such as natural language processing25, speech recognition26, object

detection27, image segmentation28, 39, cancer detection30, genomics31 and many more. There

are various forms in which one can employ CNN in their architecture. It can be in form of

1D32 or 2D24 CNN. 1D is employed mostly when we have observations in form of sequence

such as signal. However, the drawback associated with 1D convolution is that it is not able

to describe the relationships and dependencies in the observation and its neighbors since it

works in one dimensional space. So, in order to exploit the relationships of a sequence as

a function of its neighbors 2D convolution works best.

 2D convolution works finest for images and videos which are inherently 2+

dimensions. It uses the concept of kernel24 to learn the complex function exploring the

spatial relationships between a pixel and its surrounding neighbors using convolution and

parameter sharing. However, to work with 2D convolution one needs to represent the 1D

data as 2D. There have been very few works where this concept has been explored. The

first work around this was proposed in 2018 by Ma S. and Zhang Z. where they took

advantage of deep learning for representing high dimensional omics data as an image. In

their work, they rearranged the omics data in 2D space considering molecular features

related in function, ontologies, and other relationships were organized in spatially adjacent

and patterned locations33. Then they used deep learning models to classify the images.

Although the results presented showed decent performances the main drawback was that it

4

used underlying information such as ontologies extracted from Kyoto Encyclopedia of

Genes and Genomes and thus cannot be extended to data which are non-omics and have

no ontology information.

In 2020, Bazgir O. et al.34 proposed a feature representation approach termed

REFINED to arrange high dimensional data in a form of image for the application of

convolution neural networks. In this work two methods for representing high dimensional

data as an image were proposed. First via random projection where each value in a vector

was placed one after the other in an image matrix. In second approach they used PCA. In

this they used the first two major eigen vectors of the data covariance matrix as the feature

coordinate set and projected that as an image. This method showed promising results

however the only drawback of this is that it is suitable for high dimensional features and

both of their proposal cannot be applied to data with just one dimension such as a signal

with hidden states.

The latest work that has employed the idea of converting N-dimensional information

as an image and applying deep learning on it is DeepCNV35 proposed by Glessner J. T. et

al. in 2021. Although feature representation was not the primary focus of their research

work, they did something similar while trying to reduce false positives in CNV (copy

number variations) calls. For each CNV call two plots were generated, LRR scatter plot

image and BAF scatter plot image. For both plots SNPs in candidate CNV were colored

Red and SNPs in surrounding regions were colored blue. A deep neural network was

trained to classify the images. The results showed improved performance and reduced false

positives when above feature transformation was used. However, the above work is

specific to genomics and cannot be extended to other data as is. Further since we don’t

5

know the hidden states or any such visually distinct features, we cannot employ color

coding the image and must deal with greyscale images.

So, in this thesis, we present a simple yet universal way of representing one

dimensional numeric data as an image. We call it RM-Net: Rasterizing Markov signal,

where each numeric observation of the signal is plotted on y axis against time on x axis.

We then use deep learning techniques to perform classification and error segment

localization which will help us distinguish the type of signal and locate the presence of an

error segment in this 1D numeric signal, which we will be discussing in detail in the next

two chapters.

6

CHAPTER 2

METHODS

2.1 Introducing Signal

We work with a Markov signal in our research. A signal is composed of sequence of

numeric observations with some unobserved states and is drawn from a probability

distribution. It usually consists of three components – signal length, Normal segment and

an Error segment. Length is the span of signal for T time instances. At each time instance

a signal can be in one of two states- Normal or Error state. These states have certain

observation associated with it which is drawn from mutually exclusive probability

distribution that the state follows. Typically, it is drawn from Normal distribution with

certain parameters specific to states, however we conducted various experiments to study

the effects of other distribution as well.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑂𝑂1 𝑂𝑂2 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 𝑂𝑂6 𝑂𝑂7 𝑂𝑂8 … …𝑂𝑂𝐿𝐿−1,𝑂𝑂𝐿𝐿 where 𝑂𝑂 = {𝑁𝑁,𝐸𝐸}; L = Signal Length

𝑁𝑁 ~ 𝑃𝑃𝑃𝑃𝑃𝑃(µ1,𝜎𝜎1)

𝐸𝐸 ~ 𝑃𝑃𝑃𝑃𝑃𝑃(µ2,𝜎𝜎2)

Signal can be of two types:

Type 1: Signal which contains observations from both Normal and Error states.

𝑂𝑂 = 𝑂𝑂1 𝑂𝑂2 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 𝑂𝑂6 𝑂𝑂7 𝑂𝑂8 … …𝑂𝑂𝐿𝐿−1,𝑂𝑂𝐿𝐿

𝑆𝑆 = 𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 𝐸𝐸5 𝐸𝐸6 𝐸𝐸7 𝐸𝐸8 𝐸𝐸9 … …𝑁𝑁𝐿𝐿−1,𝑁𝑁𝐿𝐿

7

Type 2: Signal which contains observations only from Normal state.

𝑂𝑂 = 𝑂𝑂1 𝑂𝑂2 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 𝑂𝑂6 𝑂𝑂7 𝑂𝑂8 … …𝑂𝑂𝐿𝐿−1,𝑂𝑂𝐿𝐿

𝑆𝑆 = 𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 𝑁𝑁5 𝑁𝑁6 𝑁𝑁7 𝑁𝑁8 𝑁𝑁9 … …𝑁𝑁𝐿𝐿−1,𝑁𝑁𝐿𝐿

We base our research on identifying the type of signal and further segmenting the

error boundaries if Type 1 is identified i.e. an error segment is present.

2.2 Research Synopsis

In this research we propose a novel way of performing signal classification and error

segment localization in a signal composed of numeric observations using signal

rasterization technique. Given above signal we propose to convert it to an image as is and

use deep learning models to learn the characteristics of the signal using spatial correlation

amongst observations over time. The spatial correlation and the signal patterns are learnt

by deep learning models as features and we use this representation learning to perform the

tasks of classification and object detection aka error segment localization in our case.

 The main goal of our research work is to compare the classical statistical machine

learning approaches with the novel idea hypothesized using computer vision approach

tapping deep learning. We aim to evaluate our computer vision proposed solution for two

tasks:

Task 1: Given a Type 1 and Type 2 signal, will it be possible for a deep learning model to

outperform classical machine learning models like HMM, SVM and Random Forests in

signal classification after signal rasterization?

8

Task 2: Given Type 1 signal will it be possible for a deep learning model to identify where

exactly the error segment is present in the rasterized signal and if yes then with what

accuracy?

We aim to find answers for above two tasks and for it we will be conducting series

of experiments to compare computer vision model with statistical machine learning

models.

2.3 Competing Methods

2.3.1 Classification

In machine learning, classification is considered as an instance of supervised learning and

refers to the tasks of identifying the category which an observation belongs to. For

example, in our case, classification would mean given a signal categorize it to either Type

1 or Type 2 which is nothing but goal of our research work aka Task 1.

Two-layer CNN finetuned on top of InceptionResNetV2

For solving Task 1, we propose a deep learning-based approach to solve the problem. We

used Convolutional Neural Networks24 which works upon our rasterized signal.

Convolutional Neural Networks is a class of deep learning used for working with images

and videos. Convolutional neural networks possess the qualities of shift invariance and

translation invariance that makes them quite robust to the problem they are working upon

in an image or video. During training they learn to optimize convolutional kernels or filters

which represents knowledge of that problem. For our experiment we constructed a two-

layer model with first dense layer of 128 neurons and second dense layer of 16 neurons

finetuned36 over top of InceptionResnetV237 thus transferring the skills learnt by

9

InceptionResentV2 model to our model instead of training the model from scratch. An

output layer is connected to end of last fully connected layer with single neuron and

sigmoid activation function. This neuron is responsible for predicting the class of given

rasterized signal image. The loss is calculated as:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −
1
𝑁𝑁
�𝑦𝑦𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦𝑖𝑖′) + (1 − 𝑦𝑦𝑖𝑖) . 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑦𝑦𝑖𝑖′)
𝑁𝑁

1

Finally, the class decision is made as follows:

𝑓𝑓∗(𝑥𝑥) = � 1 𝑖𝑖𝑖𝑖 𝑝𝑝𝑥𝑥 > 0.5
−1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Figure 2.1 CNN with two fully connected layers finetuned over top of InceptionResnetV2.

Metrics for Classification

Since we have a binary classifier, we evaluated the models using accuracy and area under

the receiver operating characteristic curve.

10

Accuracy measures the fraction of prediction that the model got right. It is defined as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

where TP= True positive, TN=True Negative, FP=False Positive, FN=False Negative

AUC measures the area under the two-dimensional ROC curve. A ROC curve plots

True Positive Rate (TPR) to False Positive Rate (FPR). This plot is used to find AUC which

provides a measure of model’s performance across all possible classification threshold.

AUC ranges between 0 and 1, with 0 implying worst performance and 1 indicating best

performance.

2.3.2 Error Segment Localization

In order to perform Task 2 i.e. determine where exactly the error segment is present in the

signal, we need to find the location of occurrence of an error segment in each signal. Given

Type 1 signal our goal is to accurately locate this error segment. In order to do this, we use

computer vision technique as our proposed method for localizing error segment after signal

rasterization. This localization of error segment is performed using object detection36 in

computer vision. Object detection is a technique that allows us to identify and locate the

presence of an object in an image. In our case the object will be an error segment. In order

to perform this error segment localization, we use YOLO (you only look once)

framework38, 39, a popular method for performing object detection in deep learning.

Deep learning model - YOLO (You only look once)

YOLO38 is an object detection framework for deep learning which is very fast and accurate.

It is different from RCNN40 and Faster-RCNN41 family which is based on two step

11

approach for object detection. First being region proposal and next assigning classes to the

objects in that region. However, YOLO is a one step process that proposes bounding box

of the objects and class probabilities for the objects simultaneously. It can propose multiple

instances of objects present in the same image.

Figure 2.2 YOLO Architecture.

Source: [38]

YOLO starts by dividing the entire image into S x S grid. If the center of object falls

in a grid then that grid is responsible for predicting that object. Each gird predicts B

bounding boxes (x, y, w, h) along with its confidence score (c). Each grid also predicts

class probabilities conditioned on object 𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖| 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂). In order to predict multiple

instance of object in a grid, YOLO uses concept of Anchor boxes. For each anchor boxes

x, y, w, h, confidence score and class probability are predicted. The Loss function38 is

calculated as below:

12

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��𝟙𝟙𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜[(𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2]

𝐵𝐵

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

+ 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��𝟙𝟙𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜

𝐵𝐵

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

���𝑤𝑤𝑖𝑖 − �𝑤𝑤�𝑖𝑖�
2

 + � �ℎ𝑖𝑖 − �ℎ�𝑖𝑖�
2

�

+ ��𝟙𝟙𝑖𝑖𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜�𝐶𝐶𝑖𝑖 − 𝐶̂𝐶𝑖𝑖�

2
 +

𝐵𝐵

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

 𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛��𝟙𝟙𝑖𝑖𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝐶𝐶𝑖𝑖 − 𝐶̂𝐶𝑖𝑖�

2

𝐵𝐵

𝑗𝑗=0

𝑆𝑆2

𝑖𝑖=0

+ �𝟙𝟙𝑖𝑖
𝑜𝑜𝑜𝑜𝑜𝑜 � (𝑝𝑝𝑖𝑖(𝑐𝑐) − 𝑝̂𝑝𝑖𝑖(𝑐𝑐))

𝑐𝑐 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2𝑆𝑆2

𝑖𝑖=0

Since multiple boxes are predicted per grid, Non-Maximal suppression is used to

suppress any boxes which has lower confidence score or low IOU with other boxes.

Finally, we have non overlapping predicted bounding boxes for a given rasterized signal.

These boxes are saved as predicted labels containing error for that signal and is later used

to compare performance metrics against ground truth and HMM.

Metrics for Error Segment Localization

Unlike classification, estimating the performance for object detection is not

straightforward. Once we have predictions we need to measure it against the ground truth.

Our ground truth is the number of observations sequence that makes up an error segment.

Since YOLO works on images we need one additional step to convert the boundary

locations in graphic coordinates back to index mapping to each observation. Once we

reverse transform these coordinates we can find out how many observations fall under this

predicted boundary. Then we use Jaccard Index for measuring the model performance

against ground truth. Jaccard Index is defined as follows:

13

𝐽𝐽(𝐴𝐴,𝐵𝐵) =
|𝐴𝐴 ∩ 𝐵𝐵|
|𝐴𝐴 ∪ 𝐵𝐵|

 Jaccard Index measures the similarity between two sets. It ranges between 0 and 1,

with 0 indicating no similarity and 1 indicating sets being perfectly similar. We then use

Jaccard Index to define whether a prediction is considered as true positive, true negative,

false positive or false negative. We make this decision for per Type 1 as signal follows:

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1(𝑂𝑂) = �
𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 𝐽𝐽(𝐴𝐴,𝐵𝐵) ≥ 0.5
𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 𝐽𝐽(𝐴𝐴,𝐵𝐵) ≤ 0.1
𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 Since Type 2 signal doesn’t contain an observation belonging to error states in

ground truth, Jaccard Index will be 0 showing no overlap. But let’s say model predicted

many observations belonging to error state it will skew the performance if this is not

penalized. Hence, we give a penalty if the number of observations predicted as being in

error state for Type 2 signal is greater than 10% of the signal length.

𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇2(𝑂𝑂) = �𝐹𝐹𝐹𝐹 𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑂𝑂 ∈ 𝐸𝐸) ≥ 0.1 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ
𝑇𝑇𝑇𝑇 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 Once we have TP, TN, FP and FN, we use to calculate accuracy, precision, recall

and F1-Score.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

14

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

2.4 Baseline Methods

Support Vector Machines

Support Vector Machines are most popular classification algorithms and has robust

prediction methods. They can classify both linear as well nonlinear42 data using kernel trick

which makes them widely used and suited to various applications. Given observations with

labels SVM tries to find the most optimal hyper plane that maximizes the distance between

the hyper plane and the nearest data point. This distance is known as margin and the data

points that lies on this margin and contributes to deciding the optimal hyper plane are called

support vectors.

In our research since the observations belonging to two states are drawn from

probability distribution function with different parameters, we projected them to higher

dimensions using kernel trick. This allows the algorithm to work in the transformed space

and find the optimal hyperplane. We used Radial Basis Function kernel commonly known

RBF kernel. The RBF kernel on two samples X and X' is defined as:

𝐾𝐾(𝑋𝑋,𝑋𝑋′) =
−exp ��|𝑋𝑋 − 𝑋𝑋′|�

2
�

2𝜎𝜎2

15

We train the model on training dataset. The goal of the model is to optimize hinge

loss. The optimization function with regularization is given as:

�
1
𝑛𝑛
�𝑚𝑚𝑚𝑚𝑚𝑚�0, 1− 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑏𝑏)�
𝑛𝑛

𝑖𝑖=1

� + 𝜆𝜆‖𝑤𝑤‖2

𝞴𝞴 determines the tradeoff between increasing the margin and ensuring that 𝑋𝑋𝑖𝑖 lies

on the correct side. Once training is done, we test on test datasets. For a given observation

in a test dataset and a model we predict the classes as follows:

𝑓𝑓∗(𝑥𝑥) = � 1 𝑖𝑖𝑖𝑖 𝑝𝑝𝑥𝑥 > 0.5
−1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Random Forests

Random forest is a supervised ensemble learning method available for classification as

well as regression. Random forests add randomness to the model as compared to decision

trees. Instead of searching the most important feature in the entire data to make a split, it

searches for best features amongst random subset of features thus constructing multiple

uncorrelated individual trees. It then outputs the class output as the mode of classes of

those individually constructed trees. In our experiment we have used Random Forests of

Python’s Sklearn library with all default parameters. Given a test observation the final

decision is made as follows:

𝑓𝑓∗(𝑥𝑥) = � 1 𝑖𝑖𝑖𝑖 𝑝𝑝𝑥𝑥 > 0.5
−1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

16

Hidden Markov Model for Classification

A Hidden Markov Model is a statistical model which models a system following Markov

processes. A Markov processes models a Markov chain which describes a sequence of

event in which the probability of next event depends on the state attained before it.

Formally, consider a sequence of state variables 𝑞𝑞1, 𝑞𝑞2 … 𝑞𝑞𝑖𝑖, a first-order Markov model

embodies Markov Assumption on the probabilities of this sequence:

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨:𝑃𝑃(𝑞𝑞𝑖𝑖 = 𝑎𝑎|𝑞𝑞1 … 𝑞𝑞𝑖𝑖−1) = 𝑃𝑃(𝑞𝑞𝑖𝑖 = 𝑎𝑎|𝑞𝑞𝑖𝑖−1)

In our signal we have set of observations however we don’t know the underlying

states which contributed to it i.e. which probability distribution model it was drawn from.

That makes our model hidden as the events contributing to observations can’t be observed

directly. So, we use first-order Hidden Markov Model that helps us build a model with both

the observed states as well as the hidden states. Along with Markov Assumption, HMM

instantiates another assumption known as Output Independence which states that the

probability of an output observation 𝑜𝑜𝑖𝑖 depends only on the state 𝑞𝑞𝑖𝑖 that produced the

observation and not on any other states or any other observations:

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈: P(𝑜𝑜𝑖𝑖|𝑞𝑞1, 𝑞𝑞2 … . 𝑞𝑞𝑇𝑇 , 𝑜𝑜1, 𝑜𝑜2 … 𝑂𝑂𝑇𝑇) = 𝑃𝑃(𝑜𝑜𝑖𝑖|𝑞𝑞𝑖𝑖)

In order to apply HMM to our Task 1 of classification we follow method suggested

by Rabiner1 in 1989. Given set of observations in a 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑜𝑜1, 𝑜𝑜2, … … 𝑜𝑜𝑇𝑇, and model

we calculate the probability of observation sequence given the model:

17

𝑃𝑃(𝑂𝑂|𝜆𝜆)

where 𝜆𝜆 = (𝐴𝐴,𝐵𝐵,𝜋𝜋); A = Transition probability, B = Observation probability distribution

in a state and 𝜋𝜋 = Initial state distribution.

This is typically the problem 1 of three basic problems1 of HMM and it can be

viewed as the evaluation problem i.e. how do we compute the probability that the observed

sequence was produced by the model. It can also be viewed as scoring problem of how

well the observation matches a given model. Before solving Problem 1 we optimize the

model parameters using HMM training. Once we have found the parameters, we proceed

with calculating 𝑃𝑃(𝑂𝑂|𝜆𝜆).

 Following this idea, we build two models one for Type 1 and other for Type 2 since

both the types are drawn from different probability distribution space. This is type of One-

vs-Rest classification also known as One-vs-All. We then calculate the probability of

observed sequence with both the models and assign final class to the given signal as one

whose probability is greater.

𝑃𝑃�𝑂𝑂�𝜆𝜆1 = (𝐴𝐴1, 𝐵𝐵1, 𝜋𝜋1)� = 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1

𝑃𝑃�𝑂𝑂�𝜆𝜆2 = (𝐴𝐴2, 𝐵𝐵2, 𝜋𝜋2)� = 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

In order to compute above probability, we used hmmlearn a Python package, that

given an HMM model and observations returns the likelihood aka confidence score of the

observation matching that model. Once we have score for each Types, we apply a softmax

function on the output scores to have consistent baselining along with SVM and Random

18

Forests in terms of probabilities. This also helps us determining AUC correctly for this

method. Given [𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2] softmax is applied as follows to get

probabilities:

𝜎𝜎(𝑧𝑧𝑖𝑖) = 𝑒𝑒𝑧𝑧𝑖𝑖
𝑒𝑒𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1+ 𝑒𝑒𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑖𝑖 = {𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2}

Once we have the probabilities we assign classes to the given test signal as:

𝑓𝑓∗(𝑥𝑥) = �1 𝑖𝑖𝑖𝑖 𝜎𝜎�𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1� > 𝜎𝜎�𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2�
−1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Hidden Markov Model for Error Segment Localization

Above we described Hidden Markov Model for classification task. We utilize the

capabilities of HMM in our Task 2 to perform error segment localization. Given set of

observations in a 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑜𝑜1, 𝑜𝑜2, … … 𝑜𝑜𝑇𝑇, and model 𝜆𝜆 = (𝐴𝐴,𝐵𝐵,𝜋𝜋) our goal is to

determine the hidden state sequences for this observation. Once we have that we can

generate a bounding box around error segment to measure performance against the deep

learning model YOLO. We start by determining A and 𝜋𝜋 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. The

state transition probability A and initial probability 𝜋𝜋 are given as:

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃�𝑞𝑞𝑡𝑡+1 = 𝑆𝑆𝑗𝑗| 𝑞𝑞𝑡𝑡 = 𝑆𝑆𝑖𝑖� 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁

𝜋𝜋𝑖𝑖 = 𝑃𝑃[𝑞𝑞1 = 𝑆𝑆𝑖𝑖] 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁

19

 we determine the mean and variance of observations belonging to Normal and

Error states respectively: 𝜇𝜇𝑛𝑛,𝝈𝝈𝒏𝒏, 𝜇𝜇𝑒𝑒 ,𝝈𝝈𝒆𝒆. Once we have these six parameters from our

training data we attempt to optimize the model parameters to best optimize how the given

sequence is generated. We perform HMM training using Baum-Welch algorithm. Once we

have optimized out parameters we perform decoding on test data using Viterbi Algorithm:

𝛿𝛿𝑡𝑡+1(𝑗𝑗) = [max
𝑖𝑖
𝛿𝛿𝑡𝑡(𝑖𝑖)𝑎𝑎𝑖𝑖𝑖𝑖] .𝐵𝐵𝑗𝑗𝑂𝑂𝑡𝑡+1

where 𝛿𝛿𝑡𝑡(𝑖𝑖) = max
𝑞𝑞1,𝑞𝑞2...𝑞𝑞𝑡𝑡−1

𝑃𝑃[𝑞𝑞1, 𝑞𝑞2. . . 𝑞𝑞𝑡𝑡 = 𝑖𝑖,𝑂𝑂1,𝑂𝑂2 . . .𝑂𝑂𝑡𝑡| 𝜆𝜆]

After the hidden states of all the observations in a signal are known, we save the

start and end location of each error segment by finding the x position around continuous

error states. These locations maps to predicted error segment index by HMM which will

be used later for performance evaluation.

20

CHAPTER 3

SIMULATION STUDY

3.1 Generating Signal Data for Simulations

3.1.1 Data for Classification

Given a Type 1 and Type 2 signal our goal is to classify these two types correctly in their

distinct classes. In order to do so we needed to prepare dataset for training both our

statistical as well as well as deep learning model. In order to perform classification; train,

test and validation datasets were prepared. To prepare signal dataset, we chose signal length

(L) as per our experiment and created signal with observation for Normal states. Most of

the experiment have L set to 200 and Normal state observations 𝑂𝑂𝑁𝑁 drawn from Ν(𝜇𝜇𝑛𝑛, 𝞼𝞼).

Later we ingested error segment continuously at a random position in the above signal

obtaining a Type 1 signal. The length of error segment was drawn from a Poisson

distribution with lambda(𝞴𝞴) = 75 and Error state observations 𝑂𝑂𝐸𝐸 were drawn from

Ν(𝜇𝜇𝑒𝑒 ,𝞼𝞼). For obtaining Type 2 we didn’t ingest the normal state observations with error

states. We also introduced sparsity to mimic real world data. Then we randomly removed

X% of observations from our signal to make it sparse. We generated 4400 signals in total

with 2200 belonging to Type 1 and 2200 belonging to Type 2. We used a split of 2000

signal for training, 2000 for testing and 400 for validation. These observations were then

saved in CSV file for later training of our SVM, HMM and Random Forests models.

For preparing data for deep learning model we plotted a scatter plot of the

observations against time (x axis). This process can be viewed as rasterizing a signal to

create an image. The plots where then saved as 256 x 256 image and was further

21

preprocessed to remove any unwanted grids that might be present in the plot. Titles and

axis lines were also removed, and the image was converted to greyscale and saved. These

images were then used to train a deep learning model.

3.1.2 Data for Error Segment Localization

Generating data for Error Segment Localization involved one additional step where we also

saved the location of an error segment in our signal for Type 1 data. For each signal four

points in graphic coordinate system were recorded corresponding to the error segment–

top left, bottom right, width and height.

𝑇𝑇𝑇𝑇𝑇𝑇 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = (𝑥𝑥0,𝑦𝑦0)

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 = (𝑥𝑥1, 𝑦𝑦1)

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ = 𝑥𝑥1 − 𝑥𝑥0

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 = 𝑦𝑦1 − 𝑦𝑦0

These points were then used to prepare labels corresponding to each signal in the

format specified for training YOLO, an object detection deep learning model. Each label

files consists of four normalized information – xcenter, ycenter, width and height; one per

an error segment in a signal image.

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 =
𝑥𝑥0 + 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

2
256

𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 =
𝑦𝑦0 + ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

2
256

22

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ =
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ

256

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡 =
ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

256

These labels were saved for Type 1 signal in corresponding train, test and validation

directory along with rasterized signal image.

3.2 Experiments

As an attempt to investigate how better or worse a deep learning model is on our proposed

rasterized signal solution as compared to statistical models, we performed series of

experiments on simulated data. These simulated data were generated with various

parameters in order to create data as close as to a real-world dataset. Since parameters in

real world data are unknown we wanted to study how a model is impacted if certain

parameters of signal are changed. Our experiments are organized as follows:

Experiment XX –

Variant 1, Variant 2 …. Variant X

Each of the experiments stresses features of our simulated signal and each variant in

that experiment evaluates model performances on a slighter variation of it. For example,

studying impact of spatial dependency will be one experiment and signal lengths will be

its variants. The reason why we have multiple variants is to mimic real-world signal that

could be drawn from infinite possibilities with various permutations and combinations.

Therefore, in our research we perform extensive simulations to study various parameters

23

that can impact signal ultimately improving or degrading model’s performance. This helps

us to extend our research work to real world signal seamlessly.

3.2.1 Studying impact of Signal to Noise Ratio

A given signal may be impacted by certain amount of noise that can impact model

performance either its deep learning or statistical model. Consequently, its useful to study

how signal to noise ratio impacts the performance metrics such as accuracy, AUC etc. SNR

is defined as mean over variance and higher the SNR, with more certainty model can

distinguish the states of the signal. Therefore, we study the impact on performance on

changing variance while keeping mean fixed and impact on performance while changing

mean and keep variance fixed respectively.

For this experiment we generate a base signal of length L = 200. Let 𝑂𝑂𝑁𝑁 be

Normal(N) state observations drawn from mixture model of Ν(𝜇𝜇𝑛𝑛, 𝞼𝞼) and 𝑂𝑂𝐸𝐸 be Error(E)

state observations drawn from Ν(𝜇𝜇𝑒𝑒 ,𝞼𝞼). Let length of 𝑂𝑂𝐸𝐸 be determined from a Poisson

distribution with lambda(𝞴𝞴) = 75. Let X% of sparsity ranging from 20-80% be randomly

introduced for each signal in the dataset. This specification forms our base signal.

i. Impact of Variances

In this variant we aim to study the effect of signal to noise ratio when mean is fixed, and

variance varies.

Variants: Given base signal, we obtain a mixture model of 𝑂𝑂𝑁𝑁 with 𝜇𝜇𝑛𝑛 = {1, 0.5 𝑜𝑜𝑜𝑜 −

0.5}. We insert 𝑂𝑂𝐸𝐸 with 𝜇𝜇𝑒𝑒 = {−2 𝑜𝑜𝑜𝑜 2} and study effects on classification by increasing

the variance for N and E states as follows:

Variant 1: 𝞼𝞼 = 𝟎𝟎.𝟓𝟓 for both N and E states

24

Variant 2: 𝞼𝞼 = 𝟏𝟏 for both N and E states

Variant 3: 𝞼𝞼 = 𝟐𝟐 for both N and E states

Variant 4: 𝞼𝞼 = 𝟑𝟑 for both N and E states

Variant 5: 𝞼𝞼 = 𝟒𝟒 for both N and E states

Variant 6: 𝞼𝞼 = 𝟓𝟓 for both N and E states

Figure 3.1 Input signal as variance increases.

Results:

Figure 3.2 Shows the effect on classification accuracy and AUC as signal to noise ratio
increases. Performance scores are represented on Y axis and distribution variance on X
axis.

25

Figure 3.3 Shows the effect on accuracy and F1-Score of detecting error bounding box as
signal to noise ratio increases. Performance scores are represented on Y axis and
distribution variance on X axis.

From above we can see that as variance increases, model’s ability to classify between

Type 1 and Type 2 class decreases. If we observe the visual representation of the data, we

can see that as variance increases it becomes extremely difficult to view the error segment

in a signal. Statistical models rely on certain assumptions based on model parameters that

is the reason why we see a dip in accuracy drastically for statistical model as compared to

DNN. However, we see the deep learning model outperforming statistical models in this

experiment. This is because deep learning model tries to learn representation of data rather

than relying on certain assumption which might not hold true for a complex data.

So is true for error segment localization, as variance increases, we observe a drop in

the accuracy. However, if we compare YOLO’s performance with HMM in detecting the

location of error segment in a signal we can see that it is still able to perform better than

HMM which adds to the point that our suggested method is better than statistical approach.

26

ii. Impact of Means

In this experiment we aim to study the effect signal to noise ratio when increasing the

difference between N and E means while keeping the variance fixed between these two

states.

Variants: Given base signal we fix 𝞼𝞼 to 1 and 𝜇𝜇𝑛𝑛 𝑡𝑡𝑡𝑡 1. We study the effect on signal

classification when mean difference between Normal and Error state increases. Let mean

difference be defined as:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = |𝜇𝜇𝑛𝑛 − 𝜇𝜇𝑒𝑒|

We study effects on the following variants:

Variant 1: |𝜇𝜇𝑛𝑛 − 𝜇𝜇𝑒𝑒| = 𝟎𝟎.𝟓𝟓, where 𝜇𝜇𝑒𝑒 = {−0.5 𝑜𝑜𝑜𝑜 0.5}

Variant 2: |𝜇𝜇𝑛𝑛 − 𝜇𝜇𝑒𝑒| = 𝟏𝟏,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇𝑒𝑒 = {−2 𝑜𝑜𝑜𝑜 2}

Variant 3:|𝜇𝜇𝑛𝑛 − 𝜇𝜇𝑒𝑒| = 𝟐𝟐,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇𝑒𝑒 = {−3 𝑜𝑜𝑜𝑜 3}

Variant 4:|𝜇𝜇𝑛𝑛 − 𝜇𝜇𝑒𝑒| = 𝟑𝟑,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇𝑒𝑒 = {−4 𝑜𝑜𝑜𝑜 4}

Figure 3.4 Input signal as difference in means of Normal and Error segment increases.

27

Results:

Figure 3.5 Shows the effect on classification accuracy and AUC as difference in N and E
means increase.

Figure 3.6 Shows the effect on accuracy and F1-Score of detecting error bounding box
as difference in N and E means increase.

As the difference in means of Normal and Error segment increases it becomes easier

for both deep learning and statistical model to classify the signal in Type 1 and Type 2.

However, when the performance improves for both approaches, one must notice that it’s

quite significant for deep learning models which has better accuracy and AUC even when

the mean difference is low. This might be because of spatial coherency which is visually

visible with slightest difference in means. This pattern is utilized by deep learning model

to learn to distinguish between both the types. For statistical models too as the difference

28

in means increases, the model parameters around both the types of signal changes

significantly and becomes easier to distinguish. This is evident from the above figure where

we can see the performance of HMM, SVM and Random Forests increase when the

difference in means becomes significant. Same goes for error segment localization. With

increase in difference one can observe that the performance for both the models increases.

However deep neural networks seem to be performing much better than HMM. Their F1-

Scores also suggests the same. A high F1-Score suggests that the model’s precision and

recall were high indicating model’s ability to locate and identify an error segment correctly.

3.2.2 Studying Impact of Spatial Dependency

There are various factors that can impact a signal such as length, how sparse it is or

presence or absence of intra state correlation. In this experiment, we aim to study the impact

on performance when such factors change. Studying these factors will help us design our

model to incorporate unusual behaviors that might impact its performance. This will also

help us to explore the signal characteristics and draw conclusions if similar thing happens

in a real-world dataset.

 For this experiment we generate base signal with following specifications. Let

signal length L = 200. Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Ν(𝜇𝜇𝑛𝑛, 𝞼𝞼) where

𝜇𝜇𝑛𝑛 = 1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn from Ν(𝜇𝜇𝑒𝑒 , 𝞼𝞼) where 𝜇𝜇𝑒𝑒 =

 {−2 𝑜𝑜𝑜𝑜 2}. We fix 𝞼𝞼 to 1 for both the states. Let length of 𝑂𝑂𝐸𝐸 be determined from a Poisson

distribution with lambda(𝞴𝞴) = 75. Let X% of sparsity ranging from 20-80% be randomly

introduced for each signal in the dataset.

29

i. Impact of Signal Sparsity

In this experiment we aim to study how inter and intra states for Normal and Error segments

are correlated and how increase in sparsity effect this correlation and impact model’s

performance.

Variants: We generate base signal data without sparsity factor and introduce X% of

sparsity specific to the variants. We then study effects on classification by increasing the

sparsity in a signal as follows:

Variant 1: 10% sparse

Variant 2: 20% sparse

Variant 3: 10% sparse

Variant 4: 80% sparse

Figure 3.7 Input signal as sparsity increases.

30

Result:

Figure 3.8 Shows the effect on classification accuracy and AUC as sparsity in signal
increases.

Figure 3.9 Shows the effect on accuracy and F1-Score of detecting error bounding box as
sparsity in signal increases.

From above figure one can see that performance decreases as sparsity is introduced.

The decrease in performance would be due to loss of information which might be impacting

model’s ability to classify the signals since certain useful information must have been lost.

However, we can see deep learning approach is still better than HMM and Random Forests

and is comparable with SVM. This is also true for error segment localization. YOLO

31

performs significantly better than HMM in localizing error segment even when sparsity

increases.

ii. Impact of Signal Length

In this experiment we aim to study the effect of increasing signal length and compare the

performance of proposed our deep neural network with statistical models.

Variants: We generate base signal data without length factor and generate signal of length

L specific to the variants. We then study effects on classification by increasing the length

of a signal as follows:

Variant 1: L= 200

Variant 2: L = 500

Variant 3: L = 1000

Variant 4: L = 2000

Figure 3.10 Input signal as length of the signal increases.

32

Result:

Figure 3.11 Shows the effect on classification accuracy and AUC as signal length
increases.

Figure 3.12 Shows the effect on accuracy and F1-Score of detecting error bounding boxes
signal length increases.

In this experiment we can see our proposed technique outperforming other

statistical model. The performance metrics for the Task 1 is higher than statistical models

which might be attributed to the factor that deep learning models are not sensitive to signal

length rather it solely depends on finding visual pattern through which it decides. However,

as length of signal increases, statistical models are impacted considerably, since the

33

parameters might be getting tuned around Normal state values as length increases as

compared to Error state observations which is constant; leading to reduced performance.

 For error segment localization, we saw an elbow pattern in HMM and Deep

learning in which performance increased as signal length increased and after certain

threshold it decreased. To confirm this pattern, we tested this experiment with four more

variants. One can see that as length of signal increases with constant error length across

variants, we see performance improving up to a certain threshold (500 for HMM and 800

for DNN) and with further increase of signal length the performance starts to fall. This

might be due to the ratio of error length to signal length. We observed ratio of 0.12 (average

of 75/500 and 75/800 where 75 is error length) was an optimal ratio for our experiment

where maximum optimal performance was achieved by both the models. Anything other

than this threshold resulted in performance degradation.

iii. Impact of Presence of Multiple Error Segments

A signal containing Normal and Error state, presence of multiple error or absence of it

might impacts how model learns parameters or features during the training process. In this

experiment we aim to study the effect of presence of one or more such error segment in

Type1 signal and compare the performance of proposed our deep neural network with

statistical models.

Variants: In this we generate base signal data and introduce one more error segment with

same specification but specific to the variant. We then study effects on classification for

presence of one or more error segment as follows:

Variant 1: Signal with one error segment

Variant 2: Signal with two error segments

34

Variant 3: Signal with either one or two segments

Figure 3.13 Input signal with one and two error segments. Variant 3 is combination of
these two.

Result:

Figure 3.14 Shows the effect on classification accuracy and AUC with one or more error
segments. Performance scores are represented on Y axis and no. of error segment on X
axis.

35

Figure 3.15 Shows the effect on accuracy and F1-Score of detecting error bounding box

with one or more error segments.

From the figure we can see that classification performance when there exist exactly

two error segments is much better than when there is either one error segment (variant 1)

or at most two error segments (variant 3). This might be because presence of two signal

helps boost model classification tendency for both deep learning as well as statistical

models. For deep learning the pattern is quite visible if you compare Type 1 and Type 2

signal and for statistical model, the learnt model parameters are very different from a signal

with two Error segment and one containing only Normal segment.

However, in error segment localization, we can see dip in accuracy for two error

segments as compared to variant 1 and 2. YOLO’s performance for all the variants are

quite analogous. In HMM we observed that it made wrong predictions while detecting

multi-error segments. Most of the time only one error segment was predicted for both the

variants (2 & 3). The other segment was predicted as Normal Segment which impacted

model’s performance metrics dropping it below YOLO.

36

iv. Impact of Normal and Error Segment Length and Loss of Spatial Collinearity in

an Error Segment

Since we assumed that occurrence of observations following an Error or Normal state in a

given signal is continuous, we wanted to experiment with various variants of it such as

when length of an Error segment is much large as compared to length of a Normal segment

in a signal or a special case when the continuous spatial dependency between the

observations following error state is removed. Henceforth we formulated variants

including these cases under our simulation study.

Variants: We introduce following variants while changing certain properties of signal.

Variant 1: Base Signal

Variant 2: Signal with 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑂𝑂𝑁𝑁 ~90% and length of 𝑂𝑂𝐸𝐸 ~10% of the base signal

Variant 3: Signal with 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑂𝑂𝑁𝑁 ~10% and length of 𝑂𝑂𝐸𝐸 ~90% of the base signal

Variant 4: Signal with distributed error i.e. with no spatial dependency

Figure 3.16 Input signal on 1: Signal under study, 2: Large normal length, 3: Large error
length, 4: distributed error states.

37

Result:

Figure 3.17 Shows the effect on classification accuracy and AUC on various variants.

Figure 3.18 Shows the effect on accuracy and F1-Score of detecting error bounding box
on various variants.

From above figure, one can see that if we increase normal segment length with

respect to error segment (variant 2), it becomes hard form models to distinguish between

Type1 and Type2 signal because both Type 1 and Type 2 signal gets similar to each other

either visually or parametrically and we see drop of performance from variant 1 to variant

2. Same is true for error segment localization, the model is not able to accurately determine

the location of error in each signal.

38

Alternatively, if we increase error segment length (variant 3), it again becomes much

easier for models to distinguish between Type1 and Type2 signal because in Type 1 signal

observations of error state are in majority and would be controlling model parameters while

in Type 2 signal, observations of normal state would be controlling the parameters. For

deep learning models, a significant difference in pattern might be reason why it is

performing slightly better than variant 1 & 2. Same reasoning goes for error segment

localization.

Finally, if we remove spatial collinearity between error segments (variant 4), we can

see that it becomes harder for models to classify the type of signal and accuracy drops

considerable for all the models as compared to variant 1. For error segment localization,

loss of spatial collinearity renders object detection model YOLO meaningless and hence

we could not train an object detection model for this variant.

3.2.3 Studying Impact of Different Distribution and Model Misspecification

Till now, all the experiments assumed that observations were drawn from Normal

distribution following certain mean and variance. However, it is possible that the real-

world dataset is drawn from some other distribution. So, we wanted to study the robustness

of statistical and our proposed deep learning solution when observations were drawn from

different distributions or the states in each signal belongs to two different distributions. We

also explore a special case when training is performed on a distribution different than the

distribution test observations are drawn from. This is known as model misspecification.

This study thus aims to bring out the intrinsic property of model’s performance when the

distribution is different than the one it expects.

39

For this experiment we generate base signal with following common specifications.

Let signal length L = 200. Let length of 𝑂𝑂𝐸𝐸 be determined from a Poisson distribution with

lambda(𝞴𝞴) = 75. Let X% of sparsity ranging from 20-80% be randomly introduced for each

signal in the dataset. We choose distribution of the observations specific to the variants.

Variants: We conduct series of experiments to see the effect of different distributions from

which the signal state observations are drawn from.

Variant 1: Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Ν(𝜇𝜇𝑛𝑛, 𝜎𝜎𝑛𝑛) where 𝜇𝜇𝑛𝑛 =

 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑛𝑛 = 1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn from Ν(𝜇𝜇𝑒𝑒 ,𝞼𝞼𝒆𝒆) where

𝜇𝜇𝑒𝑒 = {−2 𝑜𝑜𝑜𝑜 2} 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑒𝑒 = 1.

Variant 2: Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Ν(𝜇𝜇𝑛𝑛, 𝜎𝜎𝑛𝑛) where 𝜇𝜇𝑛𝑛 =

 1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑛𝑛 = 1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn from Γ(𝛼𝛼,𝛽𝛽) where 𝛼𝛼 =

 {5 𝑜𝑜𝑜𝑜 6 𝑜𝑜𝑜𝑜 7.5} 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 1.

Variant 3: Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Γ(𝛼𝛼,𝛽𝛽) where 𝛼𝛼 =

 {5 𝑜𝑜𝑜𝑜 6 𝑜𝑜𝑜𝑜 7.5} 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn Ν(𝜇𝜇𝑒𝑒, 𝜎𝜎𝑒𝑒) where

𝜇𝜇𝑒𝑒 = {−2 𝑜𝑜𝑜𝑜 2} 𝑎𝑎𝑎𝑎𝑎𝑎 𝜎𝜎𝑒𝑒 = 1

Variant 4: Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Γ(𝛼𝛼,𝛽𝛽) where

𝛼𝛼 = 18 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn Γ(𝛼𝛼,𝛽𝛽) where

𝛼𝛼 = {6 𝑜𝑜𝑜𝑜 30} 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 1

Variant 5: Train on variant 1 and test on variant 4

Variant 6: Train on variant 4 and test on variant 1

Note: If one plots the signal, Gamma parameters have been selected in a way such that

they appear visually same as observations from Normal distribution

40

Figure 3.19 Input signal with observations drawn from different distributions.

Result:

Figure 3.20 Shows the effect on classification accuracy and AUC on various variants.

Figure 3.21 Shows the effect on accuracy and F1-Score of detecting error bounding box
on various variants.

41

Few observations from above figure, if we compare: when both Normal or Error state

observations are drawn from either Normal (variant 1) or Gamma (variant 4) probability

distributions, the performance seems to comparable for HMM and Deep Learning model

and not affected much by change in distribution. Same goes for error segment localization.

This ensures us that both the models will be robust in case new incoming data changes.

Although same is not true for SVM and RF which appears to be affected by change in

probability distributions.

If we compare variant 1 and variant 2, when the distribution of Error segment in a

signal is different than Normal segment in the same signal, for both classification and

localization tasks performance doesn’t degrade rather it improves slightly for all the

models. This might be because the range of value from which error state observations are

drawn from (Gamma distribution) is usually high and might be boosting statistical model’s

performance and its learning capabilities as it learns and tunes its parameters around it and

thus enhancing classification and localization precisely. Same goes for deep learning model

and is evident from Figure 3.21 variant 2 that error segment with gamma distribution is

much more visually distinctive from signal with both the segments from same distribution.

Similarly, if we compare variant 3 with variant 4, we see model performance is quite

comparable. This could be because Normal state observations which are drawn from

Gamma distributions and whose observation values and segment length is quite large as

compared to Error state observations which are small both in length and value (since they

are drawn from Normal distribution) doesn’t affect much the model parameters tuned by

statistical models while training. Thus, leading to comparable performance. Deep learning

model’s performance is again comparable with each other and slightly better than variant1.

42

Finally, we see the performance in case of model misspecification in variant 5 and

variant 6 in which you train on one distribution and test on other. Both variants see

performance degradation since statistical models makes certain parametric assumption

while modeling which gets invalidated if you test on dataset drawn from completely

different distributions and deep learning model is not trained to recognize patterns present

in test datasets since it has learnt to recognize patterns in training dataset. Although with

low accuracy and AUC, for classification task deep learning model is still able to categorize

the type of signal in classes. This proves the point that deep learning models are highly

robust to underlying observation distributions. However, for error segment localization

both YOLO and HMM fails to make any predictions and end up with zero Accuracy and

F1-Score. This adds to the point that achieving Task 2 is much harder as compared to Task1.

3.3 Conclusion

The performance metrics on the experiments conducted above for Task 1 and Task 2

suggests that the performance of our proposed signal rasterization technique using deep

learning is much better than its competing baseline statistical models. For all the complex

experiments and its variants, deep learning models have significant edge over the metrics

of the baseline methods. First, this might be due to inherent property of deep learning

models that learns to observe patterns in an image and uses it to make further decision

unlike statistical models that makes certain assumptions while modeling which may or may

not hold true for a given signal during testing. Second, deep learning models do not work

directly with observations due to which they are immune to aspects where values interfere

with the learning process. They learn features via representation learning and by tuning

43

weights propagated forward in the network and adjusting them on basis of loss propagated

backwards enabling them to refine their learning process. Lastly, in our experiment we kept

the model hyper-parameters and architecture of our deep learning model same for all the

experiments and its corresponding variants. However, if we had changed them suiting to

the needs of respective data, we are confident that for the cases where it performed at par

with statistical models it would have certainly outperformed them. For now, using the

performance metrics above we can successfully conclude that our method achieves higher

performance on any given signal and is highly robust to change in signal distribution and

intrinsic properties of the signal.

44

CHAPTER 4

REAL DATASET

4.1 1000 Genomes Project Phase 3 SVs

Structural Variants as the name suggests are the variations43 in organism’s chromosomes

and are accountable for many diseases44, 45 and genomic disorders46 in humans. Structural

Variants are generally defined as a region on DNA 1 kb or larger in size and includes many

kinds of variations such as deletions, insertions, duplications, inversions, copy-number

variation and translocations. Here in this research we deal with Copy Number Variation

(CNV). CNV refers to deletion or duplication of reference DNA compared to reference

genome assembly47. Presence of CNV has shown associations with diseases48 and

disorders49 and comprehensive analysis of presence of CNVs will benefit genetics in

accounting human genome variations as well as identifying diseases and disorders in a

wider population and human diversity. Hence, we try to detect CNVs in 1000 Genomes

Project Phase 3 integrated SV release set12 which was published by Sudmant et al. in 2015.

We show the performance of our suggested signal rasterization technique over statistical

modelling by attempting to discover the presence of a CNV in a chromosome sample. The

dataset we work upon was constructed through series of steps. Following figure describes

the dataset construction process by Sudmant et al.

45

Figure 4.1 Approach used for constructing Phase 3 integrated SV release set.

Source: [12]

 The dataset consists of 1000 chromosomes samples with 500 labeled as positive

which indicates presence of Copy Number Variation treated as an error segment for our

case (Type 1) and 500 labeled as NEG which indicates absence of a Copy Number

Variation representing a normal segment i.e. signal without an error segment (Type 2).

Each sample represents of SNP at a chromosome location. We have three information for

each location: SNP position in a Chromosome, Log R Ratio: measure of normalized total

signal intensity, B Allele Frequency: measure of normalized allelic intensity ratio. Our

main task is to segment CNV in a chromosome sample. We split the entire data set in

training, testing and validation sets for both the tasks. For Task 1, 560 samples were used

for training, 140 for validation and 300 samples were used for testing. For Task 2, since

YOLO is trained on data containing only error segment we used 300 POS samples for

46

training, 50 POS samples for validation and remaining 150 POS samples and 150 NEG

samples were used for testing.

4.2 Results of Signal Classification and Error Segment Localization

We began training the models by preparing the datasets in the format suitable for respective

tasks as described in chapter 2. Each of sample’s log R Ratio was mapped against index

and rasterized image was produced. Similarly labels for training YOLO was also generated

corresponding to each error segments.

 Once the data preparation was done we trained all the models for error classification

and error segment localization tasks. Our signal rasterization technique outperformed

statistical learning approaches by a good margin. It achieved an accuracy of 0.947 and

AUC of 0.984 in classification task. Localizing an error segment was more complicated

due to the complexity of samples and would be difficult even for human experts if they did

the localization manually, so achieving an accuracy of 0.80 by YOLO was quite good.

YOLO achieved slightly high precision relative to recall suggesting that it was not able to

localize the CNVs but segmented it perfectly if it did identify it. We tried to change the

hyper parameters such as batch size, learning rates, anchors but it didn’t have much impact

on the performance. We didn’t replace YOLO architecture to keep it consistent with

simulations, that is something which can be explored in future.

Table 4.1 Classification Performance Summary on 1000 Genomes Project Phase 3 SVs
Algorithm Accuracy AUC

SVM 0.737 0.944
RF 0.880 0.950

HMM 0.820 0.905
DNN 0.946 0.984

47

Table 4.2 Performance Summary of Error Segment Localization on 1000 Genomes Project
Phase 3 SVs
Algorithm Accuracy Precision Recall F1-Score

HMM 0.677 0.602 0.645 0.623
DNN 0.800 0.839 0.722 0.776

One problem that we observed while performing error localization using HMM was

many signal observations were predicted being in Error state even when they were in

Normal state. This made localizing the error segment aka CNVs bit difficult. This resulted

in reduced performance of HMM. From our observation, both models suggest the difficulty

in localizing error segments is much higher than the simple task of classifying it and thus

provides future work for advancements.

 We also conducted a one-sided t-tests on Jaccard index obtained from HMM and

YOLO for each sample in error segment localization. Our null hypothesis stated no

difference in the performance of both the models while alternative stated that performance

of YOLO is greater than HMM. We tested this at 95% confidence interval. We obtained t-

statistics as 3.0755 on df=299 and p-value of 0.001148. The results show that we can reject

null hypothesis and accept alternative hypothesis that YOLO is in fact better than HMM.

 We also mapped the distribution of Jaccard Index obtained for Type 1 signal. From

the following figure we can see the prediction of YOLO was very close to ground truth

resulting in majority of 1s as compared to HMM where density lies between 0.9 and 1.

48

Figure 4.2 Distribution of Jaccard Index for Type 1 sample.

49

CHAPTER 5

CONCLUSION AND DISCUSSION

Statistical approaches of machine learning depend on underlying model parameters that are

assumed from set of observations. In case these hidden states of observations and

distributions are unknown, the parameters are heuristically defined that may or may not be

true for a given model. In addition to this, there might be chances that in the future the

incoming data does not strictly follow the same distribution as well as underlying principles

as that of current one. In that case retraining and tuning the parameters becomes quite

tedious and expensive task. It can rig the performance metrics and may not be suited to

production deployment. Creating a robust model which is not dependent on data’s

distribution rather than on it features, patterns and visual properties is more suited for such

tasks. In this research we proposed a signal rasterization technique for 1D numeric signal

data following a Markov process calling it RM-Net. We showed the supremacy of our

technique of image rasterization by converting the same problem to a computer vision

problem and solving it using deep learning which is more robust and feature driven. We

validated the superiority of our performance on simulated as well as real dataset and

reported its metrics. We are confident that our approach can further be extended to multi-

dimensional signals with correlated neighbors and associations within its observations too.

However, currently one can observe that as complexity of real data increases, more work

needs to be done in terms of localization and there is much more scope for improvement.

This leaves us with possibility of future expansions and enhancements that might be more

suited to complex dataset. We leave that probes to future work.

50

APPENDIX A

COMPREHENSIVE EXPERIMENTAL RESULTS FOR SIMULATED DATA

Following tables summarizes the results of classification and error segment localization on

simulated data.

A.1 Studying impact of Signal to Noise Ratio

Table A.1 Classification Performance Summary for Impact of Variances
 Algorithm Accuracy AUC

Variant 1
SVM 0.983 0.999
RF 0.938 0.988

HMM 0.831 1.000
DNN 0.999 0.998

Variant 2

SVM 0.899 0.958
RF 0.811 0.885

HMM 0.744 0.920
DNN 0.973 0.995

Variant 3

SVM 0.709 0.799
RF 0.636 0.682

HMM 0.723 0.690
DNN 0.842 0.923

Variant 4

SVM 0.560 0.681
RF 0.568 0.594

HMM 0.669 0.651
DNN 0.716 0.795

Variant 5

SVM 0.523 0.483
RF 0.543 0.539

HMM 0.632 0.640
DNN 0.665 0.726

Variant 6

SVM 0.507 0.501
RF 0.524 0.539

HMM 0.607 0.631
DNN 0.643 0.660

Table A.2 Error Segment Localization Performance Summary for Impact of Variances
 Algorithm Accuracy F1-Score

Variant 1
HMM 0.921 0.913
DNN 0.958 0.958

 HMM 0.767 0.740
Variant 2 DNN 0.830 0.825

51

Variant 3

HMM 0.627 0.544
DNN 0.716 0.626

 HMM 0.571 0.474
Variant 4 DNN 0.654 0.510

 HMM 0.525 0.397
Variant 5 DNN 0.550 0.412

 HMM 0.498 0.332
Variant 6 DNN 0.527 0.391

Table A.3 Classification Performance Summary for Impact of Means
 Algorithm Accuracy AUC

Variant 1
SVM 0.785 0.871
RF 0.731 0.807

HMM 0.744 0.860
DNN 0.884 0.954

Variant 2

SVM 0.899 0.958
RF 0.813 0.885

HMM 0.836 0.947
DNN 0.973 0.995

Variant 3

SVM 0.983 0.998
RF 0.953 0.988

HMM 0.958 0.998
DNN 0.999 1.000

Variant 4

SVM 0.999 0.998
RF 0.986 0.998

HMM 0.999 0.998
DNN 0.999 1.000

Table A.4 Error Segment Localization Performance Summary for Impact of Means
 Algorithm Accuracy F1-Score

Variant 1
HMM 0.829 0.806
DNN 0.862 0.843

 HMM 0.879 0.865
Variant 2 DNN 0.921 0.915

Variant 3

HMM 0.975 0.974
DNN 0.996 0.995

 HMM 0.979 0.978
Variant 4 DNN 1.000 0.999

52

A.2 Studying impact of Spatial Dependency

Table A.5 Classification Performance Summary for Impact of Signal Sparsity
 Algorithm Accuracy AUC

Variant 1
SVM 1.000 1.000
RF 0.875 0.955

HMM 0.989 0.999
DNN 0.989 0.999

Variant 2

SVM 0.996 1.000
RF 0.868 0.943

HMM 0.979 0.999
DNN 0.995 0.999

Variant 3

SVM 0.986 0.998
RF 0.839 0.921

HMM 0.963 0.999
DNN 0.978 0.998

Variant 4

SVM 0.898 0.966
RF 0.767 0.846

HMM 0.888 0.977
DNN 0.910 0.974

Table A.6 Error Segment Localization Performance Summary for Impact of Signal
Sparsity

 Algorithm Accuracy F1-Score

Variant 1
HMM 0.925 0.9202
DNN 0.98 0.98

 HMM 0.91 0.902
Variant 2 DNN 0.977 0.98

Variant 3

HMM 0.896 0.885
DNN 0.967 0.967

 HMM 0.812 0.772
Variant 4 DNN 0.831 0.791

Table A.7 Classification Performance Summary for Impact of Signal Length
 Algorithm Accuracy AUC

Variant 1
SVM 0.899 0.958
RF 0.811 0.886

HMM 0.957 0.995
DNN 0.973 0.995

Variant 2

SVM 0.840 0.905
RF 0.718 0.766

HMM 0.918 0.982
DNN 0.959 0.991

53

Variant 3 SVM 0.770 0.850
RF 0.620 0.648

HMM 0.886 0.959
DNN 0.899 0.963

Variant 4

SVM 0.733 0.802
RF 0.545 0.573

HMM 0.844 0.959
DNN 0.879 0.944

Table A.8 Error Segment Localization Performance Summary for Impact of Signal Length
 Algorithm Accuracy F1-Score

Variant 1 (200)
HMM 0.879 0.865
DNN 0.921 0.915

 HMM 0.901 0.891
Variant 2 (300) DNN 0.959 0.958

Variant 3 (400)

HMM 0.900 0.877
DNN 0.960 0.939

 HMM 0.917 0.909
Variant 4 (500) DNN 0.971 0.971

Variant 5 (800)

HMM 0.723 0.616
DNN 0.982 0.981

 HMM 0.649 0.458
Variant 6 (1000) DNN 0.971 0.970

Variant 7 (1500)

HMM 0.590 0.303
DNN 0.909 0.899

 HMM 0.501 0.018
Variant 8 (2000) DNN 0.883 0.868

Table A.9 Classification Performance Summary for Impact of Presence of Multiple Error
Segments

 Algorithm Accuracy AUC

Variant 1
SVM 0.839 0.905
RF 0.726 0.787

HMM 0.839 0.905
DNN 0.959 0.991

Variant 2

SVM 0.932 0.979
RF 0.845 0.913

HMM 0.932 0.961
DNN 0.989 0.999

Variant 3

SVM 0.863 0.929
RF 0.759 0.816

HMM 0.862 0.929
DNN 0.949 0.999

54

Table A.10 Error Segment Localization Performance Summary for Impact of Presence of
Multiple Error Segments

 Algorithm Accuracy F1-Score

Variant 1
HMM 0.917 0.909
DNN 0.971 0.971

 HMM 0.812 0.769
Variant 2 DNN 0.915 0.914

Variant 3

HMM 0.849 0.822
DNN 0.930 0.942

Table A.11 Classification Performance Summary for Impact of Normal and Error Segment
Length and Loss of Spatial Correlation in an Error Segment

 Algorithm Accuracy AUC

Variant 1
SVM 0.899 0.958
RF 0.798 0.868

HMM 0.744 0.920
DNN 0.973 0.995

Variant 2

SVM 0.760 0.826
RF 0.639 0.675

HMM 0.755 0.817
DNN 0.821 0.885

Variant 3

SVM 0.951 0.991
RF 0.903 0.957

HMM 0.760 0.980
DNN 0.997 1.000

Variant 4

SVM 0.814 0.882
RF 0.707 0.765

HMM 0.751 0.862
DNN 0.887 0.940

Table A.12 Error Segment Localization Performance Summary for Impact of Normal and
Error Segment Length and Loss of Spatial Correlation in an Error Segment

 Algorithm Accuracy F1-Score

Variant 1
HMM 0.879 0.865
DNN 0.921 0.915

 HMM 0.794 0.745
Variant 2 DNN 0.822 0.782

Variant 3

HMM 0.875 0.860
DNN 0.920 0.920

 HMM - -
Variant 4 DNN - -

55

A.3 Studying impact of Different Distribution and Model Misspecification

Table A.13 Classification Performance Summary for Different Distribution and Model
Misspecification

 Algorithm Accuracy AUC

Variant 1
SVM 0.899 0.958
RF 0.811 0.886

HMM 0.957 0.995
DNN 0.973 0.995

Variant 2

SVM 0.998 1.000
RF 0.993 1.000

HMM 1.000 1.000
DNN 1.000 1.000

Variant 3

SVM 0.545 0.770
RF 0.905 0.972

HMM 0.889 0.958
DNN 0.997 0.998

Variant 4

SVM 0.502 0.500
RF 0.878 0.952

HMM 1.000 1.000
DNN 1.000 1.000

Variant 5

SVM 0.500 0.500
RF 0.494 0.502

HMM 0.500 0.510
DNN 0.924 1.000

Variant 6

SVM 0.500 0.500
RF 0.500 0.472

HMM 0.680 0.635
DNN 0.720 0.730

Table A.14 Error Segment Localization Performance Summary for Different Distribution
and Model Misspecification

 Algorithm Accuracy F1-Score

Variant 1
HMM 0.879 0.865
DNN 0.921 0.915

 HMM 1.000 1.000
Variant 2 DNN 0.977 0.976

Variant 3

HMM 0.989 0.989
DNN 0.989 0.989

 HMM 0.990 0.990
Variant 4 DNN 0.980 0.979

 HMM 0.000 0.000
Variant 5 DNN 0.000 0.000

 HMM 0.000 0.000

56

Variant 6 DNN 0.000 0.000

57

REFERENCES

1. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2), 257–286.

2. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
273–297.

3. Voulodimos, A., Doulamis, N., Doulamis, A., & Protopapadakis, E. (2018). Deep
Learning for Computer Vision: A Brief Review. Computational Intelligence and
Neuroscience, 2018, 1–13.

4. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–
444.

5. Baum, L. E., & Petrie, T. (1966). Statistical Inference for Probabilistic Functions of
Finite State Markov Chains. The Annals of Mathematical Statistics, 37(6), 1554–
1563.

6. Silva, C., & Ribeiro, B. (2007). Combining active learning and relevance vector
machines for text classification. Sixth International Conference on Machine
Learning and Applications (ICMLA 2007).

7. Hastie, T., Friedman, J., & Tisbshirani, R. (2017). The Elements of statistical learning:
data mining, inference, and prediction. Springer.

8. Dean, J. (2020). 1.1 The Deep Learning Revolution and Its Implications for Computer
Architecture and Chip Design. 2020 IEEE International Solid- State Circuits
Conference - (ISSCC).

9. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation Learning: A Review
and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8), 1798–1828.

10. Bazzani, L., Bergamo, A., Anguelov, D., & Torresani, L. (2016). Self-taught object
localization with deep networks. 2016 IEEE Winter Conference on Applications of
Computer Vision (WACV).

11. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object
localization using Convolutional Networks. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

58

12. Sudmant, P. H., Rausch, T., Gardner, E. J., Handsaker, R. E., Abyzov, A., Huddleston,
J., … Korbel, J. O. (2015). An integrated map of structural variation in 2,504 human
genomes. Nature, 526(7571), 75–81.

13. Yoon, B.-J. (2009). Hidden Markov Models and their Applications in Biological
Sequence Analysis. Current Genomics, 10(6), 402–415.

14. Ren, Y., & Zhang, F. (2009). Hand Gesture Recognition Based on MEB-SVM. 2009
International Conference on Embedded Software and Systems.

15. Dias, J. G., Vermunt, J. K., & Ramos, S. (2009). Mixture Hidden Markov Models in
Finance Research. Advances in Data Analysis, Data Handling and Business
Intelligence, 451–459.

16. ZHOU, X., WU, Y., & YANG, B. (2010). Signal Classification Method Based on
Support Vector Machine and High-Order Cumulants. Wireless Sensor Network,
02(01), 48–52.

17. R., S. (2020). Sampling Distributive Discriminant Random Decision Tree
Classification for Spatio-temporal Pattern Prediction. Journal of Advanced
Research in Dynamical and Control Systems, 12(SP3), 1429–1440.

18. Almanjahie, I. M., Khan, R. N., Milne, R. K., Nomura, T., & Martinac, B. (2015).
Hidden Markov analysis of improved bandwidth mechanosensitive ion channel
data. European Biophysics Journal, 44(7), 545–556.

19. Jojoa, M., & Garcia-Zapirain, B. (2020). Forecasting COVID 19 Confirmed Cases
Using Machine Learning: the Case of America.

20. Shrestha, A., & Mahmood, A. (2019). Review of Deep Learning Algorithms and
Architectures. IEEE Access, 7, 53040–53065.

21. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with
deep convolutional neural networks. Communications of the ACM, 60(6), 84–90.

22. Nwankpa, C. E. (2020). Advances in Optimisation Algorithms and Techniques for
Deep Learning. Advances in Science, Technology and Engineering Systems
Journal, 5(5), 563–577.

23. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

24. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a
convolutional neural network. 2017 International Conference on Engineering and
Technology (ICET).

59

25. González, J. Á., Hurtado, L.-F., & Pla, F. (2021). TWilBert: Pre-trained deep
bidirectional transformers for Spanish Twitter. Neurocomputing, 426, 58–69.

26. Kundu, S., Sim, K. C., & Gales, M. J. F. (2016). Incorporating a Generative Front-
End Layer to Deep Neural Network for Noise Robust Automatic Speech
Recognition. Interspeech 2016.

27. Pang, Y., & Cao, J. (2019). Deep Learning in Object Detection. Deep Learning in
Object Detection and Recognition, 19–57.

28. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for
Biomedical Image Segmentation. Lecture Notes in Computer Science, 234–241.

29. Xia, A., Li, D., Cai, J., Gu, H., & Qin, P. (2020). QNet: A Quick Deep Neural
Network for Real-Time Semantic Segmentation. 2020 IEEE 5th International
Conference on Signal and Image Processing (ICSIP).

30. Kleppe, A., Skrede, O.-J., De Raedt, S., Liestøl, K., Kerr, D. J., & Danielsen, H. E.
(2021). Designing deep learning studies in cancer diagnostics. Nature Reviews
Cancer, 21(3), 199–211.

31. Poplin, R., Chang, P.-C., Alexander, D., Schwartz, S., Colthurst, T., Ku, A., …
DePristo, M. A. (2018). A universal SNP and small-indel variant caller using deep
neural networks. Nature Biotechnology, 36(10), 983–987.

32. Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M., & Inman, D. J. (2021).
1D convolutional neural networks and applications: A survey. Mechanical Systems
and Signal Processing, 151, 107398.

33. Ma, S., & Zhang, Z. (2019, May 23). OmicsMapNet: Transforming omics data to take
advantage of Deep Convolutional Neural Network for discovery. [1804.05283v2]
OmicsMapNet: Transforming omics data to take advantage of Deep Convolutional
Neural Network for discovery.

34. Bazgir, O., Zhang, R., Dhruba, S. R., Rahman, R., Ghosh, S., & Pal, R. (2020).
Representation of features as images with neighborhood dependencies for
compatibility with convolutional neural networks. Nature Communications, 11(1).

35. Glessner, J. T., Hou, X., Zhong, C., Zhang, J., Khan, M., Brand, F., … Wei, Z.
(2021). DeepCNV: a deep learning approach for authenticating copy number
variations. Briefings in Bioinformatics.

36. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018, August 6). A
Survey on Deep Transfer Learning. [1808.01974v1] A Survey on Deep Transfer
Learning.

60

37. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016, August 23). Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning. arXiv.org.

38. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once:
Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

39. Redmon, J., & Farhadi, A. (2018, April 8). YOLOv3: An Incremental Improvement.
[1804.02767] YOLOv3: An Incremental Improvement.

40. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference
on Computer Vision and Pattern Recognition.

41. Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(6), 1137–1149.

42. Suykens, J. A. K. (2001). Support Vector Machines: A Nonlinear Modelling and
Control Perspective. European Journal of Control, 7(2-3), 311–327.

43. Feuk, L., Carson, A. R., & Scherer, S. W. (2006). Structural variation in the human
genome. Nature Reviews Genetics, 7(2), 85–97.

44. International Schizophrenia Consortium (2008). Rare chromosomal deletions and
duplications increase risk of schizophrenia. Nature, 455(7210), 237–241.

45. Lupski, J. R. (1998). Genomic disorders: structural features of the genome can lead to
DNA rearrangements and human disease traits. Trends in Genetics, 14(10), 417–
422.

46. Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F. A., … Bucan, M.
(2007). PennCNV: An integrated hidden Markov model designed for high-
resolution copy number variation detection in whole-genome SNP genotyping data.
Genome Research, 17(11), 1665–1674.

47. Deng, F.-Y., Zhao, L.-J., Pei, Y.-F., Sha, B.-Y., Liu, X.-G., Yan, H., … Deng, H.-W.
(2010). Erratum to: Genome-wide copy number variation association study
suggested VPS13B gene for osteoporosis in Caucasians. Osteoporosis
International, 21(8), 1455–1455.

48. Deng, F.-Y., Zhao, L.-J., Pei, Y.-F., Sha, B.-Y., Liu, X.-G., Yan, H., … Deng, H.-W.
(2009). Genome-wide copy number variation association study suggested VPS13B
gene for osteoporosis in Caucasians. Osteoporosis International, 21(4), 579–587.

61

49. Rucker, J. J., & McGuffin, P. (2013). Copy Number Variation in Neuropsychiatric
Disorders. Oxford Handbooks Online.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Methods
	Chapter 3: Simulation Study
	Chapter 4: Real Dataset
	Chapter 5: Conclusion and Discussion
	Appendix A: Comprehensive Experimental Results for Simulated Data
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

