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ABSTRACT 

RM-NET: RASTERIZING MARKOV SIGNALS TO IMAGES 
FOR DEEP LEARNING 

 

by 
Kajal Gupta 

Statistical machine learning approaches are quite famous for processing Markov signal 

data. They can model unobserved states and learn certain characteristics particular to a 

signal with good accuracy. However, with the advent of Deep learning the novice ways of 

solving a problem has shifted towards this more sophisticated algorithm, which is much 

better, powerful and more accurate. Specifically, Convolutional Neural Nets (CNN) have 

shown many promising results on images and videos. Here we illustrate how CNN can be 

applied to a 1D numeric signal using signal rasterization technique. We start by rasterizing 

a 1D numeric Markov signal into an image followed by applying CNN to perform two 

basic tasks: signal classification and error localization. We call this process as RM-Net. 

We demonstrate the performance of our approach on simulated data benchmarked against 

baselined statistical models. We also illustrate the supremacy of our technique on real word 

dataset 1000 Genomes Project Phase 3 SV where we try to estimate the location of Copy 

Number Variant (CNV) in a chromosome. Finally, we conclude using the metrics obtained 

on both the datasets that our proposed approach is much better, shows promising results 

and has scope for future improvements over traditional statistical machine learning 

approaches.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Objective 

The main objective of this thesis is to present a novel approach of solving an old statistical 

problem1, 2 of signal processing using techniques of Computer Vision3 and Deep Learning4. 

It has been almost a few decades when HMM5 was proposed to find underlying hidden 

states in an observation sequence and models such as SVM6 and decision trees7 were 

proposed to perform classification to classify these signals as per state models. However, 

with advent of deep learning, there has been a revolution8 on how a statistical problem 

which once thought to be solved only using above methodologies can be modified to be 

solved using more robust algorithms such as neural networks4. Hence, in this work we 

explore deep learning algorithms to build models that are capable of understanding these 

signals composed of numeric observation sequences following Markov Processes, 

identifying its hidden states and using their knowledge of representation learning9 to not 

only classify the signals on basis of presence or absence of these states but also localize10, 

11 where exactly those states were found in the given signal, if present. We propose a 

technique of signal rasterization where we convert a numeric signal to an image and then 

apply computer vison techniques to solve the problem at hand. Finally, we present our 

comprehensive findings on simulated data and close our discussion by sharing the results 

on a real-world dataset 1000 Genomes Project Phase 3 SV12 to show superiority of our 

proposed method as compared to statistical machine learning algorithms.  
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1.2 Background Information 

The use of existing knowledge of statistics in various fields such as computational biology 

and bioinformatics13, gesture recognition14, finance15 and computer science16, 17 has been 

widely popular since decades. Researchers, scientists and students have heavily relied on 

it to propose novel algorithms and insights18, 19 using them on huge amounts of data. 

Though these machine learning algorithms are capable enough to make accurate decisions, 

they suffer with a drawback that they strongly rely on certain assumptions regarding the 

model they build and the data they work upon. These assumptions sometimes do not cater 

to actual representation of data and may lead to development of models that might be 

misleading or erroneous. Occasionally these errors can be ignored, while other times they 

may be catastrophic for example in cancer detection. With the introduction of deep learning 

models20 the assumption regarding model parameters has been removed entirely and the 

responsibility has been shifted on algorithm to tune itself to the data while training. This 

not only removed the tedious task of feature selection and parameter searching to build 

accurate models, but also improved the accuracy21 of generated deep learning models 

which were much better than its preceding statistical models.   

 Another important factor to consider while building a machine learning model is 

data. Working with real-world observable output needs attention since they might be 

holding unobserved patterns that could not be easily deduced. When such observations are 

exposed to classical machine learning algorithms which are not precisely crafted suiting 

the needs of these observations, those inherent properties that might be influencing greatly 

to the decision boundaries might be subsided and thus lead to reduced performance. The 

breakthrough in learning the representation of these unobserved features was achieved 
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through deep learning’s representation learning capabilities. Deep learning methods are 

representation learning based methods obtained by composing simple but non-linear22 

modules thus holding the ability to learn very complex functions23. 

 Convolutional Neural Networks24 have shown significant improvements in 

performances in area such as natural language processing25, speech recognition26, object 

detection27, image segmentation28, 39, cancer detection30, genomics31 and many more. There 

are various forms in which one can employ CNN in their architecture. It can be in form of 

1D32 or 2D24 CNN. 1D is employed mostly when we have observations in form of sequence 

such as signal. However, the drawback associated with 1D convolution is that it is not able 

to describe the relationships and dependencies in the observation and its neighbors since it 

works in one dimensional space. So, in order to exploit the relationships of a sequence as 

a function of its neighbors 2D convolution works best.  

 2D convolution works finest for images and videos which are inherently 2+ 

dimensions. It uses the concept of kernel24 to learn the complex function exploring the 

spatial relationships between a pixel and its surrounding neighbors using convolution and 

parameter sharing. However, to work with 2D convolution one needs to represent the 1D 

data as 2D. There have been very few works where this concept has been explored. The 

first work around this was proposed in 2018 by Ma S. and Zhang Z. where they took 

advantage of deep learning for representing high dimensional omics data as an image. In 

their work, they rearranged the omics data in 2D space considering molecular features 

related in function, ontologies, and other relationships were organized in spatially adjacent 

and patterned locations33. Then they used deep learning models to classify the images. 

Although the results presented showed decent performances the main drawback was that it 
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used underlying information such as ontologies extracted from Kyoto Encyclopedia of 

Genes and Genomes and thus cannot be extended to data which are non-omics and have 

no ontology information.  

In 2020, Bazgir O. et al.34 proposed a feature representation approach termed 

REFINED to arrange high dimensional data in a form of image for the application of 

convolution neural networks. In this work two methods for representing high dimensional 

data as an image were proposed. First via random projection where each value in a vector 

was placed one after the other in an image matrix. In second approach they used PCA. In 

this they used the first two major eigen vectors of the data covariance matrix as the feature 

coordinate set and projected that as an image. This method showed promising results 

however the only drawback of this is that it is suitable for high dimensional features and 

both of their proposal cannot be applied to data with just one dimension such as a signal 

with hidden states.  

The latest work that has employed the idea of converting N-dimensional information 

as an image and applying deep learning on it is DeepCNV35 proposed by Glessner J. T. et 

al. in 2021. Although feature representation was not the primary focus of their research 

work, they did something similar while trying to reduce false positives in CNV (copy 

number variations) calls. For each CNV call two plots were generated, LRR scatter plot 

image and BAF scatter plot image. For both plots SNPs in candidate CNV were colored 

Red and SNPs in surrounding regions were colored blue. A deep neural network was 

trained to classify the images. The results showed improved performance and reduced false 

positives when above feature transformation was used. However, the above work is 

specific to genomics and cannot be extended to other data as is. Further since we don’t 
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know the hidden states or any such visually distinct features, we cannot employ color 

coding the image and must deal with greyscale images.  

So, in this thesis, we present a simple yet universal way of representing one 

dimensional numeric data as an image. We call it RM-Net: Rasterizing Markov signal, 

where each numeric observation of the signal is plotted on y axis against time on x axis. 

We then use deep learning techniques to perform classification and error segment 

localization which will help us distinguish the type of signal and locate the presence of an 

error segment in this 1D numeric signal, which we will be discussing in detail in the next 

two chapters. 
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CHAPTER 2 

METHODS 

 

2.1 Introducing Signal 

We work with a Markov signal in our research. A signal is composed of sequence of 

numeric observations with some unobserved states and is drawn from a probability 

distribution. It usually consists of three components – signal length, Normal segment and 

an Error segment. Length is the span of signal for T time instances. At each time instance 

a signal can be in one of two states- Normal or Error state. These states have certain 

observation associated with it which is drawn from mutually exclusive probability 

distribution that the state follows. Typically, it is drawn from Normal distribution with 

certain parameters specific to states, however we conducted various experiments to study 

the effects of other distribution as well. 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑂𝑂1 𝑂𝑂2 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 𝑂𝑂6 𝑂𝑂7  𝑂𝑂8 … …𝑂𝑂𝐿𝐿−1,𝑂𝑂𝐿𝐿 where 𝑂𝑂 = {𝑁𝑁,𝐸𝐸}; L = Signal Length 

𝑁𝑁 ~ 𝑃𝑃𝑃𝑃𝑃𝑃(µ1,𝜎𝜎1) 

𝐸𝐸 ~ 𝑃𝑃𝑃𝑃𝑃𝑃(µ2,𝜎𝜎2) 

 

Signal can be of two types:  

Type 1: Signal which contains observations from both Normal and Error states. 

 

𝑂𝑂 = 𝑂𝑂1 𝑂𝑂2 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 𝑂𝑂6 𝑂𝑂7  𝑂𝑂8 … …𝑂𝑂𝐿𝐿−1,𝑂𝑂𝐿𝐿 

𝑆𝑆 = 𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 𝐸𝐸5 𝐸𝐸6 𝐸𝐸7 𝐸𝐸8 𝐸𝐸9 … …𝑁𝑁𝐿𝐿−1,𝑁𝑁𝐿𝐿 
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Type 2: Signal which contains observations only from Normal state. 

 

𝑂𝑂 = 𝑂𝑂1 𝑂𝑂2 𝑂𝑂3 𝑂𝑂4 𝑂𝑂5 𝑂𝑂6 𝑂𝑂7  𝑂𝑂8 … …𝑂𝑂𝐿𝐿−1,𝑂𝑂𝐿𝐿 

𝑆𝑆 = 𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 𝑁𝑁5 𝑁𝑁6 𝑁𝑁7 𝑁𝑁8 𝑁𝑁9 … …𝑁𝑁𝐿𝐿−1,𝑁𝑁𝐿𝐿 

 

We base our research on identifying the type of signal and further segmenting the 

error boundaries if Type 1 is identified i.e. an error segment is present.  

 

2.2 Research Synopsis 

In this research we propose a novel way of performing signal classification and error 

segment localization in a signal composed of numeric observations using signal 

rasterization technique. Given above signal we propose to convert it to an image as is and 

use deep learning models to learn the characteristics of the signal using spatial correlation 

amongst observations over time. The spatial correlation and the signal patterns are learnt 

by deep learning models as features and we use this representation learning to perform the 

tasks of classification and object detection aka error segment localization in our case. 

 The main goal of our research work is to compare the classical statistical machine 

learning approaches with the novel idea hypothesized using computer vision approach 

tapping deep learning. We aim to evaluate our computer vision proposed solution for two 

tasks: 

Task 1: Given a Type 1 and Type 2 signal, will it be possible for a deep learning model to 

outperform classical machine learning models like HMM, SVM and Random Forests in 

signal classification after signal rasterization? 
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Task 2: Given Type 1 signal will it be possible for a deep learning model to identify where 

exactly the error segment is present in the rasterized signal and if yes then with what 

accuracy?  

We aim to find answers for above two tasks and for it we will be conducting series 

of experiments to compare computer vision model with statistical machine learning 

models. 

 

2.3 Competing Methods 

2.3.1 Classification 

In machine learning, classification is considered as an instance of supervised learning and 

refers to the tasks of identifying the category which an observation belongs to. For 

example, in our case, classification would mean given a signal categorize it to either Type 

1 or Type 2 which is nothing but goal of our research work aka Task 1.  

Two-layer CNN finetuned on top of InceptionResNetV2 

For solving Task 1, we propose a deep learning-based approach to solve the problem. We 

used Convolutional Neural Networks24 which works upon our rasterized signal. 

Convolutional Neural Networks is a class of deep learning used for working with images 

and videos. Convolutional neural networks possess the qualities of shift invariance and 

translation invariance that makes them quite robust to the problem they are working upon 

in an image or video. During training they learn to optimize convolutional kernels or filters 

which represents knowledge of that problem. For our experiment we constructed a two-

layer model with first dense layer of 128 neurons and second dense layer of 16 neurons 

finetuned36 over top of InceptionResnetV237 thus transferring the skills learnt by 
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InceptionResentV2 model to our model instead of training the model from scratch. An 

output layer is connected to end of last fully connected layer with single neuron and 

sigmoid activation function. This neuron is responsible for predicting the class of given 

rasterized signal image. The loss is calculated as: 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  −
1
𝑁𝑁
�𝑦𝑦𝑖𝑖 .  𝑆𝑆𝐿𝐿𝑆𝑆(𝑦𝑦𝑖𝑖′)   + (1 −  𝑦𝑦𝑖𝑖) .  𝑆𝑆𝐿𝐿𝑆𝑆(1 −  𝑦𝑦𝑖𝑖′)
𝑁𝑁

1

 

 

Finally, the class decision is made as follows:  

 

𝑓𝑓∗(𝑥𝑥) =  � 1     𝑆𝑆𝑓𝑓 𝑝𝑝𝑥𝑥 > 0.5
−1        𝐿𝐿𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝐿𝐿𝑒𝑒

 

 

 
Figure 2.1 CNN with two fully connected layers finetuned over top of InceptionResnetV2.  

Metrics for Classification 

Since we have a binary classifier, we evaluated the models using accuracy and area under 

the receiver operating characteristic curve.  
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Accuracy measures the fraction of prediction that the model got right. It is defined as:  

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑆𝑆𝐴𝐴𝑦𝑦 =  
𝑇𝑇𝑃𝑃 +  𝑇𝑇𝑁𝑁

𝑇𝑇𝑃𝑃 +  𝑃𝑃𝑃𝑃 +  𝑃𝑃𝑁𝑁 +  𝑇𝑇𝑁𝑁
 

 

where TP= True positive, TN=True Negative, FP=False Positive, FN=False Negative 

AUC measures the area under the two-dimensional ROC curve. A ROC curve plots 

True Positive Rate (TPR) to False Positive Rate (FPR). This plot is used to find AUC which 

provides a measure of model’s performance across all possible classification threshold. 

AUC ranges between 0 and 1, with 0 implying worst performance and 1 indicating best 

performance.  

2.3.2 Error Segment Localization 

In order to perform Task 2 i.e. determine where exactly the error segment is present in the 

signal, we need to find the location of occurrence of an error segment in each signal. Given 

Type 1 signal our goal is to accurately locate this error segment. In order to do this, we use 

computer vision technique as our proposed method for localizing error segment after signal 

rasterization. This localization of error segment is performed using object detection36 in 

computer vision. Object detection is a technique that allows us to identify and locate the 

presence of an object in an image. In our case the object will be an error segment. In order 

to perform this error segment localization, we use YOLO (you only look once) 

framework38, 39, a popular method for performing object detection in deep learning. 

Deep learning model - YOLO (You only look once) 

YOLO38 is an object detection framework for deep learning which is very fast and accurate. 

It is different from RCNN40 and Faster-RCNN41 family which is based on two step 
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approach for object detection. First being region proposal and next assigning classes to the 

objects in that region. However, YOLO is a one step process that proposes bounding box 

of the objects and class probabilities for the objects simultaneously. It can propose multiple 

instances of objects present in the same image.  

 
Figure 2.2 YOLO Architecture. 

Source: [38] 

 

YOLO starts by dividing the entire image into S x S grid. If the center of object falls 

in a grid then that grid is responsible for predicting that object. Each gird predicts B 

bounding boxes (x, y, w, h) along with its confidence score (c). Each grid also predicts 

class probabilities conditioned on object 𝑃𝑃(𝐴𝐴𝑆𝑆𝑆𝑆𝐿𝐿𝐿𝐿𝑖𝑖| 𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝐴𝐴𝑜𝑜). In order to predict multiple 

instance of object in a grid, YOLO uses concept of Anchor boxes. For each anchor boxes 

x, y, w, h, confidence score and class probability are predicted. The Loss function38 is 

calculated as below: 
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��𝟙𝟙𝑖𝑖𝑖𝑖
𝑐𝑐𝑜𝑜𝑖𝑖[(𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖)2  +  (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2]  

𝐵𝐵

𝑖𝑖=0

𝑆𝑆2

𝑖𝑖=0

+  𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��𝟙𝟙𝑖𝑖𝑖𝑖
𝑐𝑐𝑜𝑜𝑖𝑖

𝐵𝐵

𝑖𝑖=0

𝑆𝑆2

𝑖𝑖=0

���𝑒𝑒𝑖𝑖 − �𝑒𝑒�𝑖𝑖�
2

 +  � �ℎ𝑖𝑖 − �ℎ�𝑖𝑖�
2

�  

+  ��𝟙𝟙𝑖𝑖𝑖𝑖
𝑐𝑐𝑜𝑜𝑖𝑖�𝐶𝐶𝑖𝑖 − �̂�𝐶𝑖𝑖�

2
 + 

𝐵𝐵

𝑖𝑖=0

𝑆𝑆2

𝑖𝑖=0

 𝜆𝜆𝑛𝑛𝑐𝑐𝑐𝑐𝑜𝑜𝑖𝑖��𝟙𝟙𝑖𝑖𝑖𝑖
𝑛𝑛𝑐𝑐𝑐𝑐𝑜𝑜𝑖𝑖�𝐶𝐶𝑖𝑖 − �̂�𝐶𝑖𝑖�

2
 

𝐵𝐵

𝑖𝑖=0

𝑆𝑆2

𝑖𝑖=0

+ �𝟙𝟙𝑖𝑖
𝑐𝑐𝑜𝑜𝑖𝑖 � (𝑝𝑝𝑖𝑖(𝐴𝐴) − �̂�𝑝𝑖𝑖(𝐴𝐴))

𝑐𝑐 ∈ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2𝑆𝑆2

𝑖𝑖=0

  

   

Since multiple boxes are predicted per grid, Non-Maximal suppression is used to 

suppress any boxes which has lower confidence score or low IOU with other boxes. 

Finally, we have non overlapping predicted bounding boxes for a given rasterized signal. 

These boxes are saved as predicted labels containing error for that signal and is later used 

to compare performance metrics against ground truth and HMM. 

Metrics for Error Segment Localization 

Unlike classification, estimating the performance for object detection is not 

straightforward. Once we have predictions we need to measure it against the ground truth. 

Our ground truth is the number of observations sequence that makes up an error segment. 

Since YOLO works on images we need one additional step to convert the boundary 

locations in graphic coordinates back to index mapping to each observation. Once we 

reverse transform these coordinates we can find out how many observations fall under this 

predicted boundary. Then we use Jaccard Index for measuring the model performance 

against ground truth. Jaccard Index is defined as follows: 
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𝐽𝐽(𝐴𝐴,𝐵𝐵)  =  
|𝐴𝐴 ∩  𝐵𝐵|
|𝐴𝐴 ∪  𝐵𝐵|

 

 

 Jaccard Index measures the similarity between two sets. It ranges between 0 and 1, 

with 0 indicating no similarity and 1 indicating sets being perfectly similar. We then use 

Jaccard Index to define whether a prediction is considered as true positive, true negative, 

false positive or false negative. We make this decision for per Type 1 as signal follows: 

 

𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐1(𝑂𝑂)  =  �
𝑇𝑇𝑃𝑃           𝑆𝑆𝑓𝑓  𝐽𝐽(𝐴𝐴,𝐵𝐵)  ≥  0.5
𝑃𝑃𝑁𝑁          𝑆𝑆𝑓𝑓  𝐽𝐽(𝐴𝐴,𝐵𝐵)   ≤  0.1
𝑃𝑃𝑃𝑃                       𝐿𝐿𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝐿𝐿𝑒𝑒

 

 

 Since Type 2 signal doesn’t contain an observation belonging to error states in 

ground truth, Jaccard Index will be 0 showing no overlap. But let’s say model predicted 

many observations belonging to error state it will skew the performance if this is not 

penalized. Hence, we give a penalty if the number of observations predicted as being in 

error state for Type 2 signal is greater than 10% of the signal length. 

 

𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐2(𝑂𝑂)  =  �𝑃𝑃𝑃𝑃      𝑆𝑆𝑓𝑓  𝐿𝐿𝑒𝑒𝑆𝑆𝑆𝑆𝑜𝑜ℎ(𝑂𝑂 ∈  𝐸𝐸)  ≥  0.1 ∗  𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝑒𝑒𝑆𝑆𝑆𝑆𝑜𝑜ℎ
𝑇𝑇𝑁𝑁                                                                      𝐿𝐿𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝐿𝐿𝑒𝑒

 

 

 Once we have TP, TN, FP and FN, we use to calculate accuracy, precision, recall 

and F1-Score. 

 

𝑃𝑃𝑒𝑒𝑒𝑒𝐴𝐴𝑆𝑆𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝑃𝑃𝑃𝑃
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𝑅𝑅𝑒𝑒𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝑃𝑃𝑁𝑁
 

 

𝑃𝑃1 𝑆𝑆𝐴𝐴𝐿𝐿𝑒𝑒𝑒𝑒 = 2 ∗  
𝑃𝑃𝑒𝑒𝑒𝑒𝐴𝐴𝑆𝑆𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆 ∗  𝑅𝑅𝑒𝑒𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆
𝑃𝑃𝑒𝑒𝑒𝑒𝐴𝐴𝑆𝑆𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆 +  𝑅𝑅𝑒𝑒𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆

 

  

2.4 Baseline Methods 

Support Vector Machines 

Support Vector Machines are most popular classification algorithms and has robust 

prediction methods. They can classify both linear as well nonlinear42 data using kernel trick 

which makes them widely used and suited to various applications. Given observations with 

labels SVM tries to find the most optimal hyper plane that maximizes the distance between 

the hyper plane and the nearest data point. This distance is known as margin and the data 

points that lies on this margin and contributes to deciding the optimal hyper plane are called 

support vectors.  

In our research since the observations belonging to two states are drawn from 

probability distribution function with different parameters, we projected them to higher 

dimensions using kernel trick. This allows the algorithm to work in the transformed space 

and find the optimal hyperplane. We used Radial Basis Function kernel commonly known 

RBF kernel. The RBF kernel on two samples X and X' is defined as: 

 

𝐾𝐾(𝑋𝑋,𝑋𝑋′) =
−exp ��|𝑋𝑋 − 𝑋𝑋′|�

2
�

2𝜎𝜎2
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We train the model on training dataset. The goal of the model is to optimize hinge 

loss. The optimization function with regularization is given as: 

 

�
1
𝑆𝑆
�𝑚𝑚𝑆𝑆𝑥𝑥�0, 1− 𝑦𝑦𝑖𝑖(𝑒𝑒𝑇𝑇𝑥𝑥𝑖𝑖  −  𝑂𝑂)�
𝑛𝑛

𝑖𝑖=1

� +  𝜆𝜆‖𝑒𝑒‖2 

 

𝞴𝞴 determines the tradeoff between increasing the margin and ensuring that 𝑋𝑋𝑖𝑖 lies 

on the correct side. Once training is done, we test on test datasets. For a given observation 

in a test dataset and a model we predict the classes as follows: 

 

𝑓𝑓∗(𝑥𝑥) =  � 1    𝑆𝑆𝑓𝑓 𝑝𝑝𝑥𝑥 > 0.5
−1     𝐿𝐿𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝐿𝐿𝑒𝑒

 

 

Random Forests 

Random forest is a supervised ensemble learning method available for classification as 

well as regression. Random forests add randomness to the model as compared to decision 

trees. Instead of searching the most important feature in the entire data to make a split, it 

searches for best features amongst random subset of features thus constructing multiple 

uncorrelated individual trees. It then outputs the class output as the mode of classes of 

those individually constructed trees.  In our experiment we have used Random Forests of 

Python’s Sklearn library with all default parameters. Given a test observation the final 

decision is made as follows: 

 

𝑓𝑓∗(𝑥𝑥) =  � 1    𝑆𝑆𝑓𝑓 𝑝𝑝𝑥𝑥 > 0.5
−1     𝐿𝐿𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝐿𝐿𝑒𝑒
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Hidden Markov Model for Classification 

A Hidden Markov Model is a statistical model which models a system following Markov 

processes.  A Markov processes models a Markov chain which describes a sequence of 

event in which the probability of next event depends on the state attained before it. 

Formally, consider a sequence of state variables  𝑞𝑞1, 𝑞𝑞2 … 𝑞𝑞𝑖𝑖, a first-order Markov model 

embodies Markov Assumption on the probabilities of this sequence: 

 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑴𝑴𝑨𝑨:𝑃𝑃(𝑞𝑞𝑖𝑖 = 𝑆𝑆|𝑞𝑞1 … 𝑞𝑞𝑖𝑖−1) = 𝑃𝑃(𝑞𝑞𝑖𝑖 = 𝑆𝑆|𝑞𝑞𝑖𝑖−1) 

 

In our signal we have set of observations however we don’t know the underlying 

states which contributed to it i.e. which probability distribution model it was drawn from. 

That makes our model hidden as the events contributing to observations can’t be observed 

directly. So, we use first-order Hidden Markov Model that helps us build a model with both 

the observed states as well as the hidden states. Along with Markov Assumption, HMM 

instantiates another assumption known as Output Independence which states that the 

probability of an output observation 𝐿𝐿𝑖𝑖 depends only on the state 𝑞𝑞𝑖𝑖 that produced the 

observation and not on any other states or any other observations:  

 

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐎𝐎𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈: P(𝐿𝐿𝑖𝑖|𝑞𝑞1, 𝑞𝑞2 … . 𝑞𝑞𝑇𝑇 , 𝐿𝐿1, 𝐿𝐿2 … 𝑂𝑂𝑇𝑇) = 𝑃𝑃(𝐿𝐿𝑖𝑖|𝑞𝑞𝑖𝑖) 

 

In order to apply HMM to our Task 1 of classification we follow method suggested 

by Rabiner1 in 1989. Given set of observations in a 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿1, 𝐿𝐿2, … … 𝐿𝐿𝑇𝑇, and model 

we calculate the probability of observation sequence given the model: 
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𝑃𝑃(𝑂𝑂|𝜆𝜆) 

 

where 𝜆𝜆 =  (𝐴𝐴,𝐵𝐵,𝜋𝜋); A = Transition probability, B = Observation probability distribution 

in a state and  𝜋𝜋 = Initial state distribution. 

This is typically the problem 1 of three basic problems1 of HMM and it can be 

viewed as the evaluation problem i.e. how do we compute the probability that the observed 

sequence was produced by the model.  It can also be viewed as scoring problem of how 

well the observation matches a given model. Before solving Problem 1 we optimize the 

model parameters using HMM training. Once we have found the parameters, we proceed 

with calculating 𝑃𝑃(𝑂𝑂|𝜆𝜆). 

 Following this idea, we build two models one for Type 1 and other for Type 2 since 

both the types are drawn from different probability distribution space. This is type of One-

vs-Rest classification also known as One-vs-All. We then calculate the probability of 

observed sequence with both the models and assign final class to the given signal as one 

whose probability is greater.  

 

𝑃𝑃�𝑂𝑂�𝜆𝜆1 =  (𝐴𝐴1, 𝐵𝐵1, 𝜋𝜋1)� =  𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1 

𝑃𝑃�𝑂𝑂�𝜆𝜆2 =  (𝐴𝐴2, 𝐵𝐵2, 𝜋𝜋2)� =  𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 

 

In order to compute above probability, we used hmmlearn a Python package, that 

given an HMM model and observations returns the likelihood aka confidence score of the 

observation matching that model. Once we have score for each Types, we apply a softmax 

function on the output scores to have consistent baselining along with SVM and Random 
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Forests in terms of probabilities. This also helps us determining AUC correctly for this 

method. Given [𝐿𝐿𝐴𝐴𝐿𝐿𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1,  𝐿𝐿𝐴𝐴𝐿𝐿𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2] softmax is applied as follows to get 

probabilities: 

 

𝜎𝜎(𝑧𝑧𝑖𝑖) =  𝑐𝑐𝑧𝑧𝑖𝑖
𝑐𝑐𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠1+ 𝑐𝑐𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2

 𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑖𝑖 = {𝐿𝐿𝐴𝐴𝐿𝐿𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1,  𝐿𝐿𝐴𝐴𝐿𝐿𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2} 

 

Once we have the probabilities we assign classes to the given test signal as: 

 

𝑓𝑓∗(𝑥𝑥) =  �1     𝑆𝑆𝑓𝑓 𝜎𝜎�𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠1� > 𝜎𝜎�𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠2�
−1              𝐿𝐿𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝐿𝐿𝑒𝑒

 

 

Hidden Markov Model for Error Segment Localization 

Above we described Hidden Markov Model for classification task. We utilize the 

capabilities of HMM in our Task 2 to perform error segment localization.  Given set of 

observations in a 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐿𝐿1, 𝐿𝐿2, … … 𝐿𝐿𝑇𝑇, and model  𝜆𝜆 =  (𝐴𝐴,𝐵𝐵,𝜋𝜋) our goal is to 

determine the hidden state sequences for this observation. Once we have that we can 

generate a bounding box around error segment to measure performance against the deep 

learning model YOLO. We start by determining A and  𝜋𝜋 𝑓𝑓𝑒𝑒𝐿𝐿𝑚𝑚 𝑜𝑜ℎ𝑒𝑒 𝑜𝑜𝑒𝑒𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑆𝑆𝑜𝑜𝑆𝑆. The 

state transition probability A and initial probability 𝜋𝜋 are given as: 

 

𝑆𝑆𝑆𝑆𝑂𝑂 =  𝑃𝑃�𝑞𝑞𝑡𝑡+1  =  𝑆𝑆𝑖𝑖| 𝑞𝑞𝑡𝑡  =  𝑆𝑆𝑖𝑖� 1 ≤  𝑆𝑆, 𝑂𝑂 ≤  𝑁𝑁 

𝜋𝜋𝑖𝑖  =  𝑃𝑃[𝑞𝑞1  =  𝑆𝑆𝑖𝑖]  1 ≤  𝑆𝑆 ≤  𝑁𝑁 
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 we determine the mean and variance of observations belonging to Normal and 

Error states respectively: 𝜇𝜇𝑛𝑛,𝝈𝝈𝑨𝑨, 𝜇𝜇𝑐𝑐 ,𝝈𝝈𝒆𝒆. Once we have these six parameters from our 

training data we attempt to optimize the model parameters to best optimize how the given 

sequence is generated. We perform HMM training using Baum-Welch algorithm. Once we 

have optimized out parameters we perform decoding on test data using Viterbi Algorithm:  

 

𝛿𝛿𝑡𝑡+1(𝑂𝑂) =  [max
𝑖𝑖
𝛿𝛿𝑡𝑡(𝑆𝑆)𝑆𝑆𝑖𝑖𝑖𝑖] .𝐵𝐵𝑖𝑖𝑂𝑂𝑡𝑡+1 

where 𝛿𝛿𝑡𝑡(𝑆𝑆) = max
𝑞𝑞1,𝑞𝑞2...𝑞𝑞𝑡𝑡−1

𝑃𝑃[𝑞𝑞1, 𝑞𝑞2. . . 𝑞𝑞𝑡𝑡 = 𝑆𝑆,𝑂𝑂1,𝑂𝑂2 . . .𝑂𝑂𝑡𝑡| 𝜆𝜆] 

 

After the hidden states of all the observations in a signal are known, we save the 

start and end location of each error segment by finding the x position around continuous 

error states. These locations maps to predicted error segment index by HMM which will 

be used later for performance evaluation. 
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CHAPTER 3 

SIMULATION STUDY 

 

3.1 Generating Signal Data for Simulations 

3.1.1 Data for Classification 

Given a Type 1 and Type 2 signal our goal is to classify these two types correctly in their 

distinct classes. In order to do so we needed to prepare dataset for training both our 

statistical as well as well as deep learning model. In order to perform classification; train, 

test and validation datasets were prepared. To prepare signal dataset, we chose signal length 

(L) as per our experiment and created signal with observation for Normal states. Most of 

the experiment have L set to 200 and Normal state observations 𝑂𝑂𝑁𝑁 drawn from Ν(𝜇𝜇𝑛𝑛, 𝞼𝞼). 

Later we ingested error segment continuously at a random position in the above signal 

obtaining a Type 1 signal. The length of error segment was drawn from a Poisson 

distribution with lambda(𝞴𝞴) = 75 and Error state observations 𝑂𝑂𝐸𝐸 were drawn from 

Ν(𝜇𝜇𝑐𝑐 ,𝞼𝞼). For obtaining Type 2 we didn’t ingest the normal state observations with error 

states. We also introduced sparsity to mimic real world data. Then we randomly removed 

X% of observations from our signal to make it sparse. We generated 4400 signals in total 

with 2200 belonging to Type 1 and 2200 belonging to Type 2. We used a split of 2000 

signal for training, 2000 for testing and 400 for validation. These observations were then 

saved in CSV file for later training of our SVM, HMM and Random Forests models. 

For preparing data for deep learning model we plotted a scatter plot of the 

observations against time (x axis). This process can be viewed as rasterizing a signal to 

create an image. The plots where then saved as 256 x 256 image and was further 
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preprocessed to remove any unwanted grids that might be present in the plot. Titles and 

axis lines were also removed, and the image was converted to greyscale and saved. These 

images were then used to train a deep learning model. 

3.1.2 Data for Error Segment Localization 

Generating data for Error Segment Localization involved one additional step where we also 

saved the location of an error segment in our signal for Type 1 data. For each signal four 

points in graphic coordinate system were recorded corresponding to the error segment– 

top left, bottom right, width and height.  

 

𝑇𝑇𝐿𝐿𝑝𝑝 𝐿𝐿𝑒𝑒𝑓𝑓𝑜𝑜 = (𝑥𝑥0,𝑦𝑦0) 

𝐵𝐵𝐿𝐿𝑜𝑜𝑜𝑜𝐿𝐿𝑚𝑚 𝑅𝑅𝑆𝑆𝑆𝑆ℎ𝑜𝑜 = (𝑥𝑥1, 𝑦𝑦1) 

𝑒𝑒𝑆𝑆𝑑𝑑𝑜𝑜ℎ = 𝑥𝑥1 − 𝑥𝑥0 

ℎ𝑒𝑒𝑆𝑆𝑆𝑆ℎ𝑜𝑜 = 𝑦𝑦1 − 𝑦𝑦0 

 

These points were then used to prepare labels corresponding to each signal in the 

format specified for training YOLO, an object detection deep learning model. Each label 

files consists of four normalized information – xcenter, ycenter, width and height; one per 

an error segment in a signal image.  

 

𝑥𝑥𝐴𝐴𝑒𝑒𝑆𝑆𝑜𝑜𝑒𝑒𝑒𝑒 =
𝑥𝑥0 + 𝑒𝑒𝑆𝑆𝑑𝑑𝑜𝑜ℎ

2
256

 

𝑦𝑦𝐴𝐴𝑒𝑒𝑆𝑆𝑜𝑜𝑒𝑒𝑒𝑒 =
𝑦𝑦0 + ℎ𝑒𝑒𝑆𝑆𝑆𝑆ℎ𝑜𝑜

2
256
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𝑒𝑒𝑆𝑆𝑑𝑑𝑜𝑜ℎ =
𝑒𝑒𝑆𝑆𝑑𝑑𝑜𝑜ℎ

256
 

ℎ𝑒𝑒𝑆𝑆𝑆𝑆ℎ𝑜𝑜 =
ℎ𝑒𝑒𝑆𝑆𝑆𝑆ℎ𝑜𝑜

256
 

 

These labels were saved for Type 1 signal in corresponding train, test and validation 

directory along with rasterized signal image. 

 

3.2 Experiments 

As an attempt to investigate how better or worse a deep learning model is on our proposed 

rasterized signal solution as compared to statistical models, we performed series of 

experiments on simulated data.  These simulated data were generated with various 

parameters in order to create data as close as to a real-world dataset. Since parameters in 

real world data are unknown we wanted to study how a model is impacted if certain 

parameters of signal are changed. Our experiments are organized as follows: 

Experiment XX –  

Variant 1, Variant 2 …. Variant X 

Each of the experiments stresses features of our simulated signal and each variant in 

that experiment evaluates model performances on a slighter variation of it. For example, 

studying impact of spatial dependency will be one experiment and signal lengths will be 

its variants. The reason why we have multiple variants is to mimic real-world signal that 

could be drawn from infinite possibilities with various permutations and combinations. 

Therefore, in our research we perform extensive simulations to study various parameters 



23 
 

that can impact signal ultimately improving or degrading model’s performance. This helps 

us to extend our research work to real world signal seamlessly.  

3.2.1 Studying impact of Signal to Noise Ratio 

A given signal may be impacted by certain amount of noise that can impact model 

performance either its deep learning or statistical model. Consequently, its useful to study 

how signal to noise ratio impacts the performance metrics such as accuracy, AUC etc. SNR 

is defined as mean over variance and higher the SNR, with more certainty model can 

distinguish the states of the signal. Therefore, we study the impact on performance on 

changing variance while keeping mean fixed and impact on performance while changing 

mean and keep variance fixed respectively.  

For this experiment we generate a base signal of length L = 200. Let 𝑂𝑂𝑁𝑁 be 

Normal(N) state observations drawn from mixture model of Ν(𝜇𝜇𝑛𝑛, 𝞼𝞼) and 𝑂𝑂𝐸𝐸 be Error(E) 

state observations drawn from Ν(𝜇𝜇𝑐𝑐 ,𝞼𝞼). Let length of 𝑂𝑂𝐸𝐸 be determined from a Poisson 

distribution with lambda(𝞴𝞴) = 75. Let X% of sparsity ranging from 20-80% be randomly 

introduced for each signal in the dataset. This specification forms our base signal. 

i. Impact of Variances 

In this variant we aim to study the effect of signal to noise ratio when mean is fixed, and 

variance varies.  

Variants: Given base signal, we obtain a mixture model of 𝑂𝑂𝑁𝑁 with 𝜇𝜇𝑛𝑛 = {1, 0.5 𝐿𝐿𝑒𝑒 −

0.5}. We insert 𝑂𝑂𝐸𝐸 with 𝜇𝜇𝑐𝑐  =  {−2 𝐿𝐿𝑒𝑒  2}  and study effects on classification by increasing 

the variance for N and E states as follows: 

Variant 1: 𝞼𝞼 =  𝟎𝟎.𝟓𝟓 for both N and E states 
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Variant 2: 𝞼𝞼 =  𝟏𝟏 for both N and E states 

Variant 3: 𝞼𝞼 =  𝟐𝟐 for both N and E states 

Variant 4: 𝞼𝞼 =  𝟑𝟑 for both N and E states 

Variant 5: 𝞼𝞼 =  𝟒𝟒 for both N and E states 

Variant 6: 𝞼𝞼 =  𝟓𝟓 for both N and E states 

 
Figure 3.1 Input signal as variance increases. 

 

Results: 

 
Figure 3.2 Shows the effect on classification accuracy and AUC as signal to noise ratio 
increases. Performance scores are represented on Y axis and distribution variance on X 
axis. 
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Figure 3.3 Shows the effect on accuracy and F1-Score of detecting error bounding box as 
signal to noise ratio increases. Performance scores are represented on Y axis and 
distribution variance on X axis. 

 

From above we can see that as variance increases, model’s ability to classify between 

Type 1 and Type 2 class decreases. If we observe the visual representation of the data, we 

can see that as variance increases it becomes extremely difficult to view the error segment 

in a signal. Statistical models rely on certain assumptions based on model parameters that 

is the reason why we see a dip in accuracy drastically for statistical model as compared to 

DNN. However, we see the deep learning model outperforming statistical models in this 

experiment. This is because deep learning model tries to learn representation of data rather 

than relying on certain assumption which might not hold true for a complex data.   

So is true for error segment localization, as variance increases, we observe a drop in 

the accuracy. However, if we compare YOLO’s performance with HMM in detecting the 

location of error segment in a signal we can see that it is still able to perform better than 

HMM which adds to the point that our suggested method is better than statistical approach. 
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ii. Impact of Means 

In this experiment we aim to study the effect signal to noise ratio when increasing the 

difference between N and E means while keeping the variance fixed between these two 

states.  

Variants: Given base signal we fix 𝞼𝞼 to 1 and 𝜇𝜇𝑛𝑛 𝑜𝑜𝐿𝐿 1. We study the effect on signal 

classification when mean difference between Normal and Error state increases. Let mean 

difference be defined as: 

 

𝑚𝑚𝑒𝑒𝑆𝑆𝑆𝑆 𝑑𝑑𝑆𝑆𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝐴𝐴𝑒𝑒 =  |𝜇𝜇𝑛𝑛  −   𝜇𝜇𝑐𝑐| 

 

We study effects on the following variants: 

Variant 1: |𝜇𝜇𝑛𝑛  −   𝜇𝜇𝑐𝑐|  =  𝟎𝟎.𝟓𝟓, where 𝜇𝜇𝑐𝑐  =  {−0.5 𝐿𝐿𝑒𝑒 0.5} 

Variant 2: |𝜇𝜇𝑛𝑛  −   𝜇𝜇𝑐𝑐| =  𝟏𝟏,𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇𝑐𝑐  =  {−2 𝐿𝐿𝑒𝑒 2} 

Variant 3:|𝜇𝜇𝑛𝑛  −   𝜇𝜇𝑐𝑐|  =  𝟐𝟐,𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇𝑐𝑐  =  {−3 𝐿𝐿𝑒𝑒 3} 

Variant 4:|𝜇𝜇𝑛𝑛  −   𝜇𝜇𝑐𝑐|  =  𝟑𝟑,𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜇𝜇𝑐𝑐  =  {−4 𝐿𝐿𝑒𝑒 4} 

 

 
Figure 3.4 Input signal as difference in means of Normal and Error segment increases. 
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Results: 

 
Figure 3.5 Shows the effect on classification accuracy and AUC as difference in N and E 
means increase.  
 

 
Figure 3.6 Shows the effect on accuracy and F1-Score of detecting error bounding box 
as difference in N and E means increase. 

As the difference in means of Normal and Error segment increases it becomes easier 

for both deep learning and statistical model to classify the signal in Type 1 and Type 2. 

However, when the performance improves for both approaches, one must notice that it’s 

quite significant for deep learning models which has better accuracy and AUC even when 

the mean difference is low. This might be because of spatial coherency which is visually 

visible with slightest difference in means. This pattern is utilized by deep learning model 

to learn to distinguish between both the types. For statistical models too as the difference 
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in means increases, the model parameters around both the types of signal changes 

significantly and becomes easier to distinguish. This is evident from the above figure where 

we can see the performance of HMM, SVM and Random Forests increase when the 

difference in means becomes significant. Same goes for error segment localization. With 

increase in difference one can observe that the performance for both the models increases. 

However deep neural networks seem to be performing much better than HMM. Their F1-

Scores also suggests the same. A high F1-Score suggests that the model’s precision and 

recall were high indicating model’s ability to locate and identify an error segment correctly.  

3.2.2 Studying Impact of Spatial Dependency 

There are various factors that can impact a signal such as length, how sparse it is or 

presence or absence of intra state correlation. In this experiment, we aim to study the impact 

on performance when such factors change. Studying these factors will help us design our 

model to incorporate unusual behaviors that might impact its performance. This will also 

help us to explore the signal characteristics and draw conclusions if similar thing happens 

in a real-world dataset. 

 For this experiment we generate base signal with following specifications. Let 

signal length L = 200. Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Ν(𝜇𝜇𝑛𝑛, 𝞼𝞼) where 

𝜇𝜇𝑛𝑛 =  1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn from Ν(𝜇𝜇𝑐𝑐 , 𝞼𝞼) where 𝜇𝜇𝑐𝑐  =

 {−2 𝐿𝐿𝑒𝑒 2}. We fix 𝞼𝞼 to 1 for both the states. Let length of 𝑂𝑂𝐸𝐸 be determined from a Poisson 

distribution with lambda(𝞴𝞴) = 75. Let X% of sparsity ranging from 20-80% be randomly 

introduced for each signal in the dataset.  
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i. Impact of Signal Sparsity 

In this experiment we aim to study how inter and intra states for Normal and Error segments 

are correlated and how increase in sparsity effect this correlation and impact model’s 

performance.  

Variants: We generate base signal data without sparsity factor and introduce X% of 

sparsity specific to the variants. We then study effects on classification by increasing the 

sparsity in a signal as follows: 

Variant 1: 10% sparse 

Variant 2: 20% sparse 

Variant 3: 10% sparse 

Variant 4: 80% sparse 

 
Figure 3.7 Input signal as sparsity increases. 
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Result: 

 
Figure 3.8 Shows the effect on classification accuracy and AUC as sparsity in signal 
increases.  
 

Figure 3.9 Shows the effect on accuracy and F1-Score of detecting error bounding box as 
sparsity in signal increases. 

 

From above figure one can see that performance decreases as sparsity is introduced. 

The decrease in performance would be due to loss of information which might be impacting 

model’s ability to classify the signals since certain useful information must have been lost. 

However, we can see deep learning approach is still better than HMM and Random Forests 

and is comparable with SVM. This is also true for error segment localization. YOLO 
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performs significantly better than HMM in localizing error segment even when sparsity 

increases.  

ii. Impact of Signal Length 

In this experiment we aim to study the effect of increasing signal length and compare the 

performance of proposed our deep neural network with statistical models.  

Variants: We generate base signal data without length factor and generate signal of length 

L specific to the variants. We then study effects on classification by increasing the length 

of a signal as follows: 

Variant 1: L= 200 

Variant 2: L = 500 

Variant 3: L = 1000 

Variant 4: L = 2000 

 
Figure 3.10 Input signal as length of the signal increases. 
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Result: 

Figure 3.11 Shows the effect on classification accuracy and AUC as signal length 
increases.  
 

 
Figure 3.12 Shows the effect on accuracy and F1-Score of detecting error bounding boxes 
signal length increases.  
 

In this experiment we can see our proposed technique outperforming other 

statistical model. The performance metrics for the Task 1 is higher than statistical models 

which might be attributed to the factor that deep learning models are not sensitive to signal 

length rather it solely depends on finding visual pattern through which it decides. However, 

as length of signal increases, statistical models are impacted considerably, since the 
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parameters might be getting tuned around Normal state values as length increases as 

compared to Error state observations which is constant; leading to reduced performance.   

 For error segment localization, we saw an elbow pattern in HMM and Deep 

learning in which performance increased as signal length increased and after certain 

threshold it decreased.  To confirm this pattern, we tested this experiment with four more 

variants. One can see that as length of signal increases with constant error length across 

variants, we see performance improving up to a certain threshold (500 for HMM and 800 

for DNN) and with further increase of signal length the performance starts to fall. This 

might be due to the ratio of error length to signal length.  We observed ratio of 0.12 (average 

of 75/500 and 75/800 where 75 is error length) was an optimal ratio for our experiment 

where maximum optimal performance was achieved by both the models. Anything other 

than this threshold resulted in performance degradation. 

iii. Impact of Presence of Multiple Error Segments 

A signal containing Normal and Error state, presence of multiple error or absence of it 

might impacts how model learns parameters or features during the training process. In this 

experiment we aim to study the effect of presence of one or more such error segment in 

Type1 signal and compare the performance of proposed our deep neural network with 

statistical models.  

Variants: In this we generate base signal data and introduce one more error segment with 

same specification but specific to the variant. We then study effects on classification for 

presence of one or more error segment as follows: 

Variant 1: Signal with one error segment 

Variant 2: Signal with two error segments 
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Variant 3: Signal with either one or two segments 

 

 
Figure 3.13 Input signal with one and two error segments. Variant 3 is combination of 
these two. 
 

Result: 

 
Figure 3.14 Shows the effect on classification accuracy and AUC with one or more error 
segments. Performance scores are represented on Y axis and no. of error segment on X 
axis. 
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Figure 3.15 Shows the effect on accuracy and F1-Score of detecting error bounding box 

with one or more error segments. 
 

From the figure we can see that classification performance when there exist exactly 

two error segments is much better than when there is either one error segment (variant 1) 

or at most two error segments (variant 3). This might be because presence of two signal 

helps boost model classification tendency for both deep learning as well as statistical 

models. For deep learning the pattern is quite visible if you compare Type 1 and Type 2 

signal and for statistical model, the learnt model parameters are very different from a signal 

with two Error segment and one containing only Normal segment.  

However, in error segment localization, we can see dip in accuracy for two error 

segments as compared to variant 1 and 2. YOLO’s performance for all the variants are 

quite analogous. In HMM we observed that it made wrong predictions while detecting 

multi-error segments. Most of the time only one error segment was predicted for both the 

variants (2 & 3). The other segment was predicted as Normal Segment which impacted 

model’s performance metrics dropping it below YOLO.  
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iv. Impact of Normal and Error Segment Length and Loss of Spatial Collinearity in 

an Error Segment 

Since we assumed that occurrence of observations following an Error or Normal state in a 

given signal is continuous, we wanted to experiment with various variants of it such as 

when length of an Error segment is much large as compared to length of a Normal segment 

in a signal or a special case when the continuous spatial dependency between the 

observations following error state is removed. Henceforth we formulated variants 

including these cases under our simulation study. 

Variants: We introduce following variants while changing certain properties of signal.   

Variant 1: Base Signal  

Variant 2: Signal with 𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑜𝑜ℎ 𝐿𝐿𝑓𝑓 𝑂𝑂𝑁𝑁  ~90% and length of 𝑂𝑂𝐸𝐸  ~10% of the base signal 

Variant 3: Signal with 𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑜𝑜ℎ 𝐿𝐿𝑓𝑓 𝑂𝑂𝑁𝑁  ~10% and length of 𝑂𝑂𝐸𝐸  ~90% of the base signal 

Variant 4: Signal with distributed error i.e. with no spatial dependency 

 

 
Figure 3.16 Input signal on 1: Signal under study, 2: Large normal length, 3: Large error 
length, 4: distributed error states. 
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Result: 

 
Figure 3.17 Shows the effect on classification accuracy and AUC on various variants. 

 

 
Figure 3.18 Shows the effect on accuracy and F1-Score of detecting error bounding box 
on various variants. 
 

From above figure, one can see that if we increase normal segment length with 

respect to error segment (variant 2), it becomes hard form models to distinguish between 

Type1 and Type2 signal because both Type 1 and Type 2 signal gets similar to each other 

either visually or parametrically and we see drop of performance from variant 1 to variant 

2. Same is true for error segment localization, the model is not able to accurately determine 

the location of error in each signal.  



38 
 

Alternatively, if we increase error segment length (variant 3), it again becomes much 

easier for models to distinguish between Type1 and Type2 signal because in Type 1 signal 

observations of error state are in majority and would be controlling model parameters while 

in Type 2 signal, observations of normal state would be controlling the parameters. For 

deep learning models, a significant difference in pattern might be reason why it is 

performing slightly better than variant 1 & 2. Same reasoning goes for error segment 

localization.  

Finally, if we remove spatial collinearity between error segments (variant 4), we can 

see that it becomes harder for models to classify the type of signal and accuracy drops 

considerable for all the models as compared to variant 1. For error segment localization, 

loss of spatial collinearity renders object detection model YOLO meaningless and hence 

we could not train an object detection model for this variant. 

3.2.3 Studying Impact of Different Distribution and Model Misspecification 

Till now, all the experiments assumed that observations were drawn from Normal 

distribution following certain mean and variance. However, it is possible that the real-

world dataset is drawn from some other distribution. So, we wanted to study the robustness 

of statistical and our proposed deep learning solution when observations were drawn from 

different distributions or the states in each signal belongs to two different distributions. We 

also explore a special case when training is performed on a distribution different than the 

distribution test observations are drawn from. This is known as model misspecification. 

This study thus aims to bring out the intrinsic property of model’s performance when the 

distribution is different than the one it expects. 
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For this experiment we generate base signal with following common specifications. 

Let signal length L = 200. Let length of 𝑂𝑂𝐸𝐸 be determined from a Poisson distribution with 

lambda(𝞴𝞴) = 75. Let X% of sparsity ranging from 20-80% be randomly introduced for each 

signal in the dataset. We choose distribution of the observations specific to the variants. 

Variants: We conduct series of experiments to see the effect of different distributions from 

which the signal state observations are drawn from.   

Variant 1: Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Ν(𝜇𝜇𝑛𝑛, 𝜎𝜎𝑛𝑛) where 𝜇𝜇𝑛𝑛 =

 1 𝑆𝑆𝑆𝑆𝑑𝑑  𝜎𝜎𝑛𝑛 = 1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn from Ν(𝜇𝜇𝑐𝑐 ,𝞼𝞼𝒆𝒆) where 

𝜇𝜇𝑐𝑐 =  {−2 𝐿𝐿𝑒𝑒 2} 𝑆𝑆𝑆𝑆𝑑𝑑 𝜎𝜎𝑐𝑐 =  1.  

Variant 2: Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Ν(𝜇𝜇𝑛𝑛, 𝜎𝜎𝑛𝑛) where 𝜇𝜇𝑛𝑛 =

 1 𝑆𝑆𝑆𝑆𝑑𝑑  𝜎𝜎𝑛𝑛 = 1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn from Γ(𝛼𝛼,𝛽𝛽) where 𝛼𝛼 =

 {5 𝐿𝐿𝑒𝑒 6 𝐿𝐿𝑒𝑒 7.5} 𝑆𝑆𝑆𝑆𝑑𝑑 𝛽𝛽 =  1.  

Variant 3: Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Γ(𝛼𝛼,𝛽𝛽) where 𝛼𝛼 =

 {5 𝐿𝐿𝑒𝑒 6 𝐿𝐿𝑒𝑒 7.5} 𝑆𝑆𝑆𝑆𝑑𝑑 𝛽𝛽 =  1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn Ν(𝜇𝜇𝑐𝑐, 𝜎𝜎𝑐𝑐) where 

𝜇𝜇𝑐𝑐 =  {−2 𝐿𝐿𝑒𝑒 2} 𝑆𝑆𝑆𝑆𝑑𝑑  𝜎𝜎𝑐𝑐 = 1 

Variant 4: Let 𝑂𝑂𝑁𝑁 be Normal(N) state observations drawn from Γ(𝛼𝛼,𝛽𝛽) where  

𝛼𝛼 = 18 𝑆𝑆𝑆𝑆𝑑𝑑 𝛽𝛽 =  1 and 𝑂𝑂𝐸𝐸 be Error(E) state observations drawn Γ(𝛼𝛼,𝛽𝛽) where 

𝛼𝛼 = {6 𝐿𝐿𝑒𝑒 30} 𝑆𝑆𝑆𝑆𝑑𝑑 𝛽𝛽 =  1 

Variant 5: Train on variant 1 and test on variant 4 

Variant 6: Train on variant 4 and test on variant 1 

Note: If one plots the signal, Gamma parameters have been selected in a way such that 

they appear visually same as observations from Normal distribution 
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Figure 3.19 Input signal with observations drawn from different distributions. 
 

Result: 

 
Figure 3.20 Shows the effect on classification accuracy and AUC on various variants. 
 

 
Figure 3.21 Shows the effect on accuracy and F1-Score of detecting error bounding box 
on various variants. 
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Few observations from above figure, if we compare: when both Normal or Error state 

observations are drawn from either Normal (variant 1) or Gamma (variant 4) probability 

distributions, the performance seems to comparable for HMM and Deep Learning model 

and not affected much by change in distribution. Same goes for error segment localization. 

This ensures us that both the models will be robust in case new incoming data changes. 

Although same is not true for SVM and RF which appears to be affected by change in 

probability distributions. 

If we compare variant 1 and variant 2, when the distribution of Error segment in a 

signal is different than Normal segment in the same signal, for both classification and 

localization tasks performance doesn’t degrade rather it improves slightly for all the 

models. This might be because the range of value from which error state observations are 

drawn from (Gamma distribution) is usually high and might be boosting statistical model’s 

performance and its learning capabilities as it learns and tunes its parameters around it and 

thus enhancing classification and localization precisely. Same goes for deep learning model 

and is evident from Figure 3.21 variant 2 that error segment with gamma distribution is 

much more visually distinctive from signal with both the segments from same distribution. 

Similarly, if we compare variant 3 with variant 4, we see model performance is quite 

comparable. This could be because Normal state observations which are drawn from 

Gamma distributions and whose observation values and segment length is quite large as 

compared to Error state observations which are small both in length and value (since they 

are drawn from Normal distribution) doesn’t affect much the model parameters tuned by 

statistical models while training. Thus, leading to comparable performance. Deep learning 

model’s performance is again comparable with each other and slightly better than variant1. 
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Finally, we see the performance in case of model misspecification in variant 5 and 

variant 6 in which you train on one distribution and test on other. Both variants see 

performance degradation since statistical models makes certain parametric assumption 

while modeling which gets invalidated if you test on dataset drawn from completely 

different distributions and deep learning model is not trained to recognize patterns present 

in test datasets since it has learnt to recognize patterns in training dataset. Although with 

low accuracy and AUC, for classification task deep learning model is still able to categorize 

the type of signal in classes. This proves the point that deep learning models are highly 

robust to underlying observation distributions. However, for error segment localization 

both YOLO and HMM fails to make any predictions and end up with zero Accuracy and 

F1-Score. This adds to the point that achieving Task 2 is much harder as compared to Task1. 

 

3.3 Conclusion 

The performance metrics on the experiments conducted above for Task 1 and Task 2 

suggests that the performance of our proposed signal rasterization technique using deep 

learning is much better than its competing baseline statistical models. For all the complex 

experiments and its variants, deep learning models have significant edge over the metrics 

of the baseline methods. First, this might be due to inherent property of deep learning 

models that learns to observe patterns in an image and uses it to make further decision 

unlike statistical models that makes certain assumptions while modeling which may or may 

not hold true for a given signal during testing. Second, deep learning models do not work 

directly with observations due to which they are immune to aspects where values interfere 

with the learning process. They learn features via representation learning and by tuning 
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weights propagated forward in the network and adjusting them on basis of loss propagated 

backwards enabling them to refine their learning process. Lastly, in our experiment we kept 

the model hyper-parameters and architecture of our deep learning model same for all the 

experiments and its corresponding variants. However, if we had changed them suiting to 

the needs of respective data, we are confident that for the cases where it performed at par 

with statistical models it would have certainly outperformed them. For now, using the 

performance metrics above we can successfully conclude that our method achieves higher 

performance on any given signal and is highly robust to change in signal distribution and 

intrinsic properties of the signal. 

 



44 
 

CHAPTER 4 

REAL DATASET 

 

4.1 1000 Genomes Project Phase 3 SVs 

Structural Variants as the name suggests are the variations43 in organism’s chromosomes 

and are accountable for many diseases44, 45 and genomic disorders46 in humans. Structural 

Variants are generally defined as a region on DNA 1 kb or larger in size and includes many 

kinds of variations such as deletions, insertions, duplications, inversions, copy-number 

variation and translocations. Here in this research we deal with Copy Number Variation 

(CNV). CNV refers to deletion or duplication of reference DNA compared to reference 

genome assembly47. Presence of CNV has shown associations with diseases48 and 

disorders49 and comprehensive analysis of presence of CNVs will benefit genetics in 

accounting human genome variations as well as identifying diseases and disorders in a 

wider population and human diversity. Hence, we try to detect CNVs in 1000 Genomes 

Project Phase 3 integrated SV release set12 which was published by Sudmant et al. in 2015. 

We show the performance of our suggested signal rasterization technique over statistical 

modelling by attempting to discover the presence of a CNV in a chromosome sample. The 

dataset we work upon was constructed through series of steps. Following figure describes 

the dataset construction process by Sudmant et al.  
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Figure 4.1 Approach used for constructing Phase 3 integrated SV release set. 

Source: [12] 

 

 The dataset consists of 1000 chromosomes samples with 500 labeled as positive 

which indicates presence of Copy Number Variation treated as an error segment for our 

case (Type 1) and 500 labeled as NEG which indicates absence of a Copy Number 

Variation representing a normal segment i.e. signal without an error segment (Type 2). 

Each sample represents of SNP at a chromosome location. We have three information for 

each location: SNP position in a Chromosome, Log R Ratio: measure of normalized total 

signal intensity, B Allele Frequency: measure of normalized allelic intensity ratio. Our 

main task is to segment CNV in a chromosome sample. We split the entire data set in 

training, testing and validation sets for both the tasks. For Task 1, 560 samples were used 

for training, 140 for validation and 300 samples were used for testing. For Task 2, since 

YOLO is trained on data containing only error segment we used 300 POS samples for 
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training, 50 POS samples for validation and remaining 150 POS samples and 150 NEG 

samples were used for testing.  

 

4.2 Results of Signal Classification and Error Segment Localization 

We began training the models by preparing the datasets in the format suitable for respective 

tasks as described in chapter 2. Each of sample’s log R Ratio was mapped against index 

and rasterized image was produced. Similarly labels for training YOLO was also generated 

corresponding to each error segments.  

 Once the data preparation was done we trained all the models for error classification 

and error segment localization tasks. Our signal rasterization technique outperformed 

statistical learning approaches by a good margin. It achieved an accuracy of 0.947 and 

AUC of 0.984 in classification task. Localizing an error segment was more complicated 

due to the complexity of samples and would be difficult even for human experts if they did 

the localization manually, so achieving an accuracy of 0.80 by YOLO was quite good. 

YOLO achieved slightly high precision relative to recall suggesting that it was not able to 

localize the CNVs but segmented it perfectly if it did identify it. We tried to change the 

hyper parameters such as batch size, learning rates, anchors but it didn’t have much impact 

on the performance. We didn’t replace YOLO architecture to keep it consistent with 

simulations, that is something which can be explored in future. 

Table 4.1 Classification Performance Summary on 1000 Genomes Project Phase 3 SVs 
Algorithm Accuracy AUC 

SVM 0.737 0.944 
RF 0.880 0.950 

HMM 0.820 0.905 
DNN 0.946 0.984 
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Table 4.2 Performance Summary of Error Segment Localization on 1000 Genomes Project 
Phase 3 SVs 
Algorithm Accuracy Precision Recall F1-Score 

HMM 0.677 0.602 0.645 0.623 
DNN 0.800 0.839 0.722 0.776 

 

One problem that we observed while performing error localization using HMM was 

many signal observations were predicted being in Error state even when they were in 

Normal state. This made localizing the error segment aka CNVs bit difficult. This resulted 

in reduced performance of HMM. From our observation, both models suggest the difficulty 

in localizing error segments is much higher than the simple task of classifying it and thus 

provides future work for advancements. 

 We also conducted a one-sided t-tests on Jaccard index obtained from HMM and 

YOLO for each sample in error segment localization. Our null hypothesis stated no 

difference in the performance of both the models while alternative stated that performance 

of YOLO is greater than HMM. We tested this at 95% confidence interval. We obtained t-

statistics as 3.0755 on df=299 and p-value of 0.001148. The results show that we can reject 

null hypothesis and accept alternative hypothesis that YOLO is in fact better than HMM. 

 We also mapped the distribution of Jaccard Index obtained for Type 1 signal. From 

the following figure we can see the prediction of YOLO was very close to ground truth 

resulting in majority of 1s as compared to HMM where density lies between 0.9 and 1.  
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Figure 4.2 Distribution of Jaccard Index for Type 1 sample. 
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CHAPTER 5 

CONCLUSION AND DISCUSSION 

 

Statistical approaches of machine learning depend on underlying model parameters that are 

assumed from set of observations. In case these hidden states of observations and 

distributions are unknown, the parameters are heuristically defined that may or may not be 

true for a given model. In addition to this, there might be chances that in the future the 

incoming data does not strictly follow the same distribution as well as underlying principles 

as that of current one. In that case retraining and tuning the parameters becomes quite 

tedious and expensive task. It can rig the performance metrics and may not be suited to 

production deployment. Creating a robust model which is not dependent on data’s 

distribution rather than on it features, patterns and visual properties is more suited for such 

tasks. In this research we proposed a signal rasterization technique for 1D numeric signal 

data following a Markov process calling it RM-Net. We showed the supremacy of our 

technique of image rasterization by converting the same problem to a computer vision 

problem and solving it using deep learning which is more robust and feature driven. We 

validated the superiority of our performance on simulated as well as real dataset and 

reported its metrics. We are confident that our approach can further be extended to multi-

dimensional signals with correlated neighbors and associations within its observations too. 

However, currently one can observe that as complexity of real data increases, more work 

needs to be done in terms of localization and there is much more scope for improvement. 

This leaves us with possibility of future expansions and enhancements that might be more 

suited to complex dataset. We leave that probes to future work. 
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APPENDIX A 

COMPREHENSIVE EXPERIMENTAL RESULTS FOR SIMULATED DATA  

 

Following tables summarizes the results of classification and error segment localization on 

simulated data. 

A.1 Studying impact of Signal to Noise Ratio 

Table A.1 Classification Performance Summary for Impact of Variances 
 Algorithm Accuracy AUC 
 

Variant 1 
SVM 0.983 0.999 
RF 0.938 0.988 

HMM 0.831 1.000 
DNN 0.999 0.998 

 
Variant 2 

SVM 0.899 0.958 
RF 0.811 0.885 

HMM 0.744 0.920 
DNN 0.973 0.995 

 
Variant 3 

SVM 0.709 0.799 
RF 0.636 0.682 

HMM 0.723 0.690 
DNN 0.842 0.923 

 
Variant 4 

SVM 0.560 0.681 
RF 0.568 0.594 

HMM 0.669 0.651 
DNN 0.716 0.795 

 
Variant 5 

SVM 0.523 0.483 
RF 0.543 0.539 

HMM 0.632 0.640 
DNN 0.665 0.726 

 
Variant 6 

SVM 0.507 0.501 
RF 0.524 0.539 

HMM 0.607 0.631 
DNN 0.643 0.660 

 

Table A.2 Error Segment Localization Performance Summary for Impact of Variances 
 Algorithm Accuracy F1-Score 
 

Variant 1 
HMM 0.921 0.913 
DNN 0.958 0.958 

 HMM 0.767 0.740 
Variant 2 DNN 0.830 0.825 
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Variant 3 

HMM 0.627 0.544 
DNN 0.716 0.626 

 HMM 0.571 0.474 
Variant 4 DNN 0.654 0.510 

 HMM 0.525 0.397 
Variant 5 DNN 0.550 0.412 

 HMM 0.498 0.332 
Variant 6 DNN 0.527 0.391 

 

Table A.3 Classification Performance Summary for Impact of Means 
 Algorithm Accuracy AUC 
 

Variant 1 
SVM 0.785 0.871 
RF 0.731 0.807 

HMM 0.744 0.860 
DNN 0.884 0.954 

 
Variant 2 

SVM 0.899 0.958 
RF 0.813 0.885 

HMM 0.836 0.947 
DNN 0.973 0.995 

 
Variant 3 

SVM 0.983 0.998 
RF 0.953 0.988 

HMM 0.958 0.998 
DNN 0.999 1.000 

 
Variant 4 

SVM 0.999 0.998 
RF 0.986 0.998 

HMM 0.999 0.998 
DNN 0.999 1.000 

 

Table A.4 Error Segment Localization Performance Summary for Impact of Means 
 Algorithm Accuracy F1-Score 
 

Variant 1 
HMM 0.829 0.806 
DNN 0.862 0.843 

 HMM 0.879 0.865 
Variant 2 DNN 0.921 0.915 

 
Variant 3 

HMM 0.975 0.974 
DNN 0.996 0.995 

 HMM 0.979 0.978 
Variant 4 DNN 1.000 0.999 
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A.2 Studying impact of Spatial Dependency 

Table A.5 Classification Performance Summary for Impact of Signal Sparsity 
 Algorithm Accuracy AUC 
 

Variant 1 
SVM 1.000 1.000 
RF 0.875 0.955 

HMM 0.989 0.999 
DNN 0.989 0.999 

 
Variant 2 

SVM 0.996 1.000 
RF 0.868 0.943 

HMM 0.979 0.999 
DNN 0.995 0.999 

 
Variant 3 

SVM 0.986 0.998 
RF 0.839 0.921 

HMM 0.963 0.999 
DNN 0.978 0.998 

 
Variant 4 

SVM 0.898 0.966 
RF 0.767 0.846 

HMM 0.888 0.977 
DNN 0.910 0.974 

 

Table A.6 Error Segment Localization Performance Summary for Impact of Signal 
Sparsity 

 Algorithm Accuracy F1-Score 
 

Variant 1 
HMM 0.925 0.9202 
DNN 0.98 0.98 

 HMM 0.91 0.902 
Variant 2 DNN 0.977 0.98 

 
Variant 3 

HMM 0.896 0.885 
DNN 0.967 0.967 

 HMM 0.812 0.772 
Variant 4 DNN 0.831 0.791 

 

Table A.7 Classification Performance Summary for Impact of Signal Length 
 Algorithm Accuracy AUC 
 

Variant 1 
SVM 0.899 0.958 
RF 0.811 0.886 

HMM 0.957 0.995 
DNN 0.973 0.995 

 
Variant 2 

SVM 0.840 0.905 
RF 0.718 0.766 

HMM 0.918 0.982 
DNN 0.959 0.991 
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Variant 3 SVM 0.770 0.850 
RF 0.620 0.648 

HMM 0.886 0.959 
DNN 0.899 0.963 

 
Variant 4 

SVM 0.733 0.802 
RF 0.545 0.573 

HMM 0.844 0.959 
DNN 0.879 0.944 

 

Table A.8 Error Segment Localization Performance Summary for Impact of Signal Length 
 Algorithm Accuracy F1-Score 
 

Variant 1 (200) 
HMM 0.879 0.865 
DNN 0.921 0.915 

 HMM 0.901 0.891 
Variant 2 (300) DNN 0.959 0.958 

 
Variant 3 (400) 

HMM 0.900 0.877 
DNN 0.960 0.939 

 HMM 0.917 0.909 
Variant 4 (500) DNN 0.971 0.971 

 
Variant 5 (800) 

HMM 0.723 0.616 
DNN 0.982 0.981 

 HMM 0.649 0.458 
Variant 6 (1000) DNN 0.971 0.970 

 
Variant 7 (1500) 

HMM 0.590 0.303 
DNN 0.909 0.899 

 HMM 0.501 0.018 
Variant 8 (2000) DNN 0.883 0.868 

 

Table A.9 Classification Performance Summary for Impact of Presence of Multiple Error 
Segments 

 Algorithm Accuracy AUC 
 

Variant 1 
SVM 0.839 0.905 
RF 0.726 0.787 

HMM 0.839 0.905 
DNN 0.959 0.991 

 
Variant 2 

SVM 0.932 0.979 
RF 0.845 0.913 

HMM 0.932 0.961 
DNN 0.989 0.999 

 
Variant 3 

SVM 0.863 0.929 
RF 0.759 0.816 

HMM 0.862 0.929 
DNN 0.949 0.999 
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Table A.10 Error Segment Localization Performance Summary for Impact of Presence of 
Multiple Error Segments 

 Algorithm Accuracy F1-Score 
 

Variant 1 
HMM 0.917 0.909 
DNN 0.971 0.971 

 HMM 0.812 0.769 
Variant 2 DNN 0.915 0.914 

 
Variant 3 

HMM 0.849 0.822 
DNN 0.930 0.942 

 

Table A.11 Classification Performance Summary for Impact of Normal and Error Segment 
Length and Loss of Spatial Correlation in an Error Segment 

 Algorithm Accuracy AUC 
 

Variant 1 
SVM 0.899 0.958 
RF 0.798 0.868 

HMM 0.744 0.920 
DNN 0.973 0.995 

 
Variant 2 

SVM 0.760 0.826 
RF 0.639 0.675 

HMM 0.755 0.817 
DNN 0.821 0.885 

 
Variant 3 

SVM 0.951 0.991 
RF 0.903 0.957 

HMM 0.760 0.980 
DNN 0.997 1.000 

 
Variant 4 

SVM 0.814 0.882 
RF 0.707 0.765 

HMM 0.751 0.862 
DNN 0.887 0.940 

 
 
Table A.12 Error Segment Localization Performance Summary for Impact of Normal and 
Error Segment Length and Loss of Spatial Correlation in an Error Segment 

 Algorithm Accuracy F1-Score 
 

Variant 1 
HMM 0.879 0.865 
DNN 0.921 0.915 

 HMM 0.794 0.745 
Variant 2 DNN 0.822 0.782 

 
Variant 3 

HMM 0.875 0.860 
DNN 0.920 0.920 

 HMM - - 
Variant 4 DNN - - 
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A.3 Studying impact of Different Distribution and Model Misspecification 

Table A.13 Classification Performance Summary for Different Distribution and Model 
Misspecification 

 Algorithm Accuracy AUC 
 

Variant 1 
SVM 0.899 0.958 
RF 0.811 0.886 

HMM 0.957 0.995 
DNN 0.973 0.995 

 
Variant 2 

SVM 0.998 1.000 
RF 0.993 1.000 

HMM 1.000 1.000 
DNN 1.000 1.000 

 
Variant 3 

SVM 0.545 0.770 
RF 0.905 0.972 

HMM 0.889 0.958 
DNN 0.997 0.998 

 
Variant 4 

SVM 0.502 0.500 
RF 0.878 0.952 

HMM 1.000 1.000 
DNN 1.000 1.000 

 
Variant 5 

SVM 0.500 0.500 
RF 0.494 0.502 

HMM 0.500 0.510 
DNN 0.924 1.000 

 
Variant 6 

SVM 0.500 0.500 
RF 0.500 0.472 

HMM 0.680 0.635 
DNN 0.720 0.730 

 

Table A.14 Error Segment Localization Performance Summary for Different Distribution 
and Model Misspecification 

 Algorithm Accuracy F1-Score 
 

Variant 1 
HMM 0.879 0.865 
DNN 0.921 0.915 

 HMM 1.000 1.000 
Variant 2 DNN 0.977 0.976 

 
Variant 3 

HMM 0.989 0.989 
DNN 0.989 0.989 

 HMM 0.990 0.990 
Variant 4 DNN 0.980 0.979 

 HMM 0.000 0.000 
Variant 5 DNN 0.000 0.000 

 HMM 0.000 0.000 



56 
 

Variant 6 DNN 0.000 0.000 
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