
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

REAL TIME ANALYSIS OF EYE MOVEMENTS

USING COMPUTER AIDED SOFTWARE

by

Farhan Ahmad

Eye movement analysis is a slow and tasking job that require a trained vision analyst to sift

through hundreds of eye movements. The difficulty of the task increases when a subject

has undiagnosed eye related disorders. One such disorder is Convergence insufficiency

(CI) which affects nearly 12 million people in the US. Convergence insufficiency occurs

when the eyes are unable to coordinate simultaneous inward movement for near focal

tracking. Individuals with CI are unable to coordinate eye movements this can result in

many symptoms such as double vision, blurred vision, headaches, vision strain, and fatigue.

A diagnosis for CI relies on the experience of the optometrist and their ability to detect a

deviation in a patient's eyes as they track a near focal object, it also requires the patient to

respond back to the optometrist which can be subjective. In conjunction with a robust eye

tracking camera system, the software described herein, Real Time Analysis of Eye

Movements using Computer Aided Software (R.E.T.I.N.A.S.), allows for large scale

screening by processing eye movement data quickly and accurately as compared to the

current standard that requires a human vision analyst. R.E.T.I.N.A.S. can remove the

subjectivity that is currently a component in CI screening. This allows for inexperienced

users who are not trained in optometry to screen for CI by reviewing the outputted metrics

that R.E.T.I.N.A.S. provides. This type of accessibility allows for patients affected by CI

to get necessary therapy quickly, which can greatly improve the patient’s quality of life.

REAL TIME ANALYSIS OF EYE MOVEMENTS

USING COMPUTER AIDED SOFTWARE

by

Farhan Ahmad

A Thesis

Submitted to the Faculty of

New Jersey Institute of Technology

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2021

APPROVAL PAGE

REAL TIME ANALYSIS OF EYE MOVEMENTS

USING COMPUTER AIDED SOFTWARE

Farhan Ahmad

Dr. Chang Yaramothu, Thesis Advisor Date

Assistant Professor of Engineering Technology and Biomedical Engineering, NJIT

Dr. Tara L. Alvarez, Thesis Co-Advisor Date

Professor of Biomedical Engineering, NJIT

Dr. Xiaobo Li, Committee Member Date

Associate Professor of Biomedical Engineering, NJIT

John Vito d’Antonio-Bertagnolli, Committee Member Date

Adjunct Professor of Biomedical Engineering, NJIT

iv

BIOGRAPHICAL SKETCH

Author:

Degree:

Date:

Farhan Ahmad

Master of Science

May 2021

Undergraduate and Graduate Education

• Bachelor of Science in Biomedical Engineering,

New Jersey Institute of Technology, Newark NJ, 2020

Major: Biomedical Engineering

v

ACKNOWLEDGMENT

To my advisor, Dr. Yaramothu – thank you for helping me throughout the development

process, giving me feedback on ways to improve R.E.T.I.N.A.S and allowing me to better

understand the academic side of the project. To my co-advisor, Dr. Alvarez – thank you

for allowing me to work with you for my senior year capstone which lead to this project

and sharing your immense knowledge of eye movements. To my committee member, Dr.

Li – thank you for serving on my committee, and for your expertise on attention. To my

committee member, John Vito d’Antonio-Bertagnolli – for setting a great example on how

to tackle this project and sharing your experience having gone through something similar.

To my friend, Sebastian – thank you for constant words of encouragement and your cynical

commentary. To my Capstone member, Ayushi – for helping me code R.E.T.I.N.A.S and

help me figure out different strategies when I was stuck. To my friends, Kyle and Jon – for

their great sense of humor and their upbeat attitude towards life. To my parents, Shafiq and

Khushbun – thank you for everything you have done. Without your hard work I would

have never been able to accomplish what I have. Finally, to my uncle, Dr. Ali – for

constantly pushing me and giving me words of encouragement to always apply myself.

vi

TABLES OF CONTENTS

Chapter Page

1 INTRODUCTION 1

 1.1 Objective …………………………………………………………………... 1

 1.2 Visual Perception ………………………………………………………….. 1

 1.3 Types of Eye Movements ………………………………………………….. 2

 1.4 Parts of an Eye Movement……………………………………...………….. 4

 1.5 Classification …………………………………………………..………….. 4

 1.6 Convergence Insufficiency ………………………………………………... 7

 1.7 Automation of Data Analysis …………………………………..………….. 8

2 METHODS …………………………………………………………..…………… 9

 2.1 Raw Data Collection …………………………………………...………….. 9

 2.2 Subject Selection …………………………………………………………... 10

 2.3 R.E.T.I.N.A.S. Software ……………………………………….………….. 10

3 RESULTS ………………………………………………………………………… 18

 3.1 Analysis of Eye Movements ……………………………………………….. 18

 3.2 Accuracy of R.E.T.I.N.A.S. ……………………………………………….. 23

4 DISSCUSION AND FUTURE WORKS ………………………………………… 25

 4.1 Data Retrieval Methods and Improvements ……………………………….. 25

 4.2 Classification Methods and Improvements ………………………………... 26

 4.3 Future of Automated Data Analysis ……………………………………….. 27

vii

 TABLES OF CONTENTS

(Continued)

Chapter Page

APPENDIX A ………………………………………………………………………... 29

 A.1 Python Code ……………………………………………………………….. 29

APPEDNDIX B ………………………………………………………………………. 56

 B.1 Human Vs R.E.T.I.N.A.S. Latency Data ………………………………….. 56

 B.2 Human Vs R.E.T.I.N.A.S. Final Amplitude Data ………………………… 58

 B.3 Human Vs R.E.T.I.N.A.S. Peak Velocity Data …………………………… 60

 B.4 Human Vs R.E.T.I.N.A.S. Time to Peak Velocity Data ………………….. 62

REFRENCES ………………………………………………………………………… 64

viii

LIST OF FIGURES

Figure Page

1.1 Muscles of The Eye …………………………………………………... 2

1.2 Saccades Vs Vergence ………………………………………………... 3

1.3 Convergence Vs Divergence ……………………….………………… 3

1.4 Parts of the Eye Movement ………………………………………..…. 4

1.5 5 Data Metrics ……………………………………………………..…. 5

1.6 Blink Artifact at Transient …………………………………….....…… 6

1.7 Saccade Artifact ………………………………………..……..……… 6

1.8 Convergence Insufficiency …………………………………..………. 7

2.1 ISCAN Setup …………………………………………………....…… 9

2.2 R.E.T.I.N.A.S Main Menu ……………………………………....…… 11

2.3 NORMAL and SACCADE Calibration …………………….………… 12

2.4 Linear Interpolation for Gain Value …………………………..……… 13

2.5 AUTOMATIC Gain Calibration ………………….…………..……… 14

2.6 Acceleration Trace …………………………………..……..………… 15

2.7 Artifact Removal ……………………………..…………….………… 16

3.1 Average Latency Comparison ………………………………...……… 19

3.2 R.E.T.I.N.A.S. VS Human Latency Correlation ……….……..……… 20

3.3 Average Final Amplitude Comparison ………………...………..…… 20

3.4 R.E.T.I.N.A.S. VS Human Final Amplitude Correlation ………..…… 21

3.5 Average Peak Velocity Comparison ...………………………..……… 21

3.6 R.E.T.I.N.A.S. VS Human Peak Velocity Correlation ..……………… 22

ix

 LIST OF FIGURES

(Continued)

Figure Page

3.7 Average Time to Peak Velocity Comparison …………..……………... 22

3.8 R.E.T.I.N.A.S. VS Human Time to Peak Velocity Correlation …….… 23

x

LIST OF TABLES

Table Page

2.1 Subject Data Retention ……………………………………………….. 10

3.1 Latency Comparison ………………………………………………...... 18

3.2 Final Amplitude Comparison ………………………………………… 18

3.3 Peak Velocity Comparison …………………………………………… 18

3.4 Time to Peak Velocity Comparison …………………………………... 19

3.5 Classification of Eye Movements …………………………………….. 24

3.6 The Confusion Matrix ……………………………………………….... 24

xi

LIST OF TERMS

R.E.T.I.N.A.S. – Real-time Eye Tracking Impartial Numerical Analysis Software.

Convergence – The inward rotation of the eyes.

Divergence – The outward rotation of the eyes.

Saccades – The rapid movement of the eyes in the same direction between points of

visual fixation. They are a type of eye movement recorded in the data files but are

considered artifacts when they occur during a vergence movement.

Vergence – Convergent and/or divergent eye movements.

Vergence Demand – The angular requirement from a visual stimulus to produce a single

and clear image, measured in degrees.

Version – Saccadic eye movements, also known as the conjugate rotation (turning) of

both eyes in the same direction.

Artifacts – Recorded blinks or saccades

Blink – Artifacts that cause saturation in the signal.

CSV – comma-separated values, a way to store data in a tabular form in a text file.

DC Voltage Offset – A constant which is added to the raw eye movement data before a

gain value is applied.

Gain Value – A unique and calculated value from raw eye movement data that converts

the native raw data file units of voltage to degrees.

Final Amplitude – The measured amplitude of an eye movement from 0 degrees to

amplitude at settling.

xii

Latency – The time at which a recorded eye movement can reach 5% of the expected

vergence demand.

Peak Velocity – The highest recorded first derivative of position value recorded during

the transient period.

Settling Time – The time at which a recorded eye movement can sustain the required

vergence or version demand.

Transient – The interval between the onset of an eye movement and settling onto a visual

target.

1

CHAPTER 1

INTRODUCTION

1.1 Objective

The main objective of this thesis is to present an alternative way to analyze eye movement

data without the direct need of a trained vision analyst. This will be done using a program

developed in the Python, an open-source coding language. The accuracy and the speed of

the eye movements analyzed will be compared to that of a human analyst to determine the

efficacy of R.E.T.I.N.A.S.

1.2 Visual Perception

Visual perception is the ability of the brain to coordinate with the eye to receive, interpret

and adapt to a visual stimulus. This is not the same as visual acuity or how clearly one can

see. Normally the light first enters the eye through the cornea and then it is focused on to

the retina by the lens. The retina converts the light into neuronal signals. The conversion is

facilitated by specialized photoreceptive cells called cones and rods. The neural signals

then travel down the optic nerve to other intermediaries and finally to the visual cortex.

From there the brain processes the information and adjusts the eyes to follow or focus on

a stimulus. The eye uses the lens to focus on a stimulus, it is achieved by the changing the

shape of the flexible lens by contracting or relaxing the ciliary muscles, this process is

called accommodation. The rotation of the eye is regulated by 6 muscles: the lateral rectus,

medial rectus, the inferior rectus, superior rectus, inferior oblique, and the superior oblique,

2

as seen in Figure 1.1. They attach at different positions on the eye and rotate it about a

point at the center of the eye.

Figure 1.1 The 6 different muscles that control the movement of the eye.
Source: [1]

1.3 Types of Eye Movements

There are 5 main types of eye movements: saccades, vergence, smooth pursuit, optokinetic

and vestibulo-ocular. In this paper the focus will be on the first two, saccades and vergence.

Saccades are the rapid conjugate movement of the eye, that is usually used to quickly scan

an environment. Conjugate refers the ability of the eyes to coordinate together to maintain

binocular vision. They appear as high velocity movements that are used to quickly adjust

to a moving stimulus. Vergence movements are relatively slow and deconjugate eye

movements compared to saccades but are mainly used to fixate on objects. There are two

types of vergence directions: convergence and divergence. In convergence the eyes rotate

inwards and towards each other; this is mainly used to focus on near objects. Divergence

is the outwards rotation of eye, necessary for focusing on far objects.

3

Figure 1.2 The figure above illustrates the difference between a saccadic eye movement

and a vergence eye movement. Left shows the position traces and the right shows the target

movement. Top is a saccadic eye movement and bottom is a vergence eye movement.
Source: [2]

Figure 1.3 The figure above illustrates the difference between convergence and divergence

eye movements. The left side depicts the eyes rotating inwards to fixate on a target that is

coming towards the subject. The right side depicts the eyes rotating outwards to fixate on

a target as it is moving away from the subject.

4

Source: [3]

1.4 Parts of an Eye Movements

Eye movements are separated into two main parts, transient portion, and the steady state

portion. Transient is the dynamic portion of the eye movement where the subjects are trying

to fixate on a target stimulus. This can be seen in Figure 1.3 where the position rapidly

increases between the time intervals of .25s and .75s. Steady state portion of the eye

movement is when the subject has fixated on the target. Steady is the remaining portion of

the eye movements after 1s.

Figure 1.4 The two different parts of the eye movement; transient and steady state.

1.5 Classification

Classification refers to the quality of the movement, the quality of the average eye

movement of a patient can provide a trained vision analyst the information necessary to

determine if the patient has CI. This quality is determined by the data metrics in the eye

movement and the number of blinks, and saccades. There are 5 main data metrics; Final

Amplitude, Peak Velocity, Time to Peak Velocity, Latency and Settling Time. Final

5

amplitude is defined as the average of the last 1 second of the eye movement or position

data, measured in degrees. Peak velocity is defined as the maximum of the derivative of

the position data, measured in degrees/s. Time to peak velocity is measured by taking the

time at which the maximum occurs. Finally, latency and settling time are measured by

taking the time when the 5% and 95% respectively, of the final amplitude is reached.

Another way the quality is determined is by the number of blinks and where they occur.

Blinks are an artifact that are caused when the patient closes their eye lids during the

recording of the data which can saturate the data. If the blink occurs during the transient

portion of the eye movement, as seen in Figure 1.6, this can artificially increase the peak

velocity reported by R.E.T.I.N.A.S.. Saccades are not only a type of eye movement, but

also an artifact when they occur in a vergence trace of an eye movement.

Figure 1.5 The figure above illustrates a position trace of an eye movement (green) and its

respective velocity trace (red). The left y-axis is the amplitude values for the velocity trace

in degrees/second and the right y-axis is the amplitude value of the position trace in

degrees. The x-axis is the amplitude values of time in seconds. The 5 main data metrics

necessary for classification are labeled as well.

6

Figure 1.6 The figure above illustrates a blink artifact occurring at transient portion of

the eye movement. The artifact occurs between .2 to .5 seconds and causes the data to

fluctuate between a large negative and positive value. The position trace of the eye

movement (green) and its respective velocity trace (red) are graphed. The right y-axis is

the amplitude values for the velocity trace in degrees/second and the left y-axis is the

amplitude value of the position trace in degrees. The x-axis is the amplitude values of

time in seconds.

Figure 1.7 The figure above displays a small saccade at .5 seconds which is hard to

notice in the position trace but is more visible in the velocity trace. The saccade is

causing a decrease in the velocity at .5 seconds, but it is not affecting the peak velocity.

7

1.6 Convergence Insufficiency

 The inability to have effective binocular coordination affects one’s quality of life, an

example is convergence insufficiency (CI). CI is an oculomotor dysfunction which affects

nearly 16 million Americans or 4-13% of the population [4]. Symptoms of this dysfunction

are blurry vision, onset of headaches and straining of the eyes from close range work which

can inhibit one’s quality of life just after 15-20 minutes of reading. The current methods

to analyze binocular eye movements and determine if a patient may suffer from

convergence insufficiency requires a trained optometrist or the processing of eye

movement from data analysts in the research setting [5]. The utilization of human analysts

to classify CI introduces biased outputs from the recorded eye movements, and this can

vary between each analyst. As for optometrist many use the Convergence Insufficiency

Symptom Survey, near point of convergence or exodeviation to diagnose CI [6]. All of

these are time consuming and require a trained physician to perform or interpret the results.

Figure 1.8 The image above shows how a patient with CI will have to move an object

further than a healthy patient before they can properly see it.
Source: [7]

8

1.7 Automation of Data Analysis

One of the major issues that arises with classifying eye movements of patients with CI is

that there is a large variation between eye movements. A vision analyst can take up to a

week just classifying eye movements of one patient, this time can be increased if the patient

has CI. The analyst not only has to go through the position trace, but they must also check

if the velocity trace is largely impacted in the transient portion of the eye movement or just

a small fluctuation has occurred, as seen in Figure 1.7. The analyst then must retrieve all

the data metrics which are done manually. If an artifact occurs at any point in the eye

movement, which are more prevalent in patients with CI, then either the eye movement

must be classified as bad, or the analyst must manually change the parameter for calculating

the 5 data metrics. The parameters selected can also vary depending on the vision analyst

and their experience. R.E.T.I.N.A.S. tries to reduce the time for analyzing the eye

movement and more importantly it tries to save the vision analyst the recalculation time

for the 5 data metrics by automating the metric retrieval, while also removing the

subjectivity introduced by the human analyst.

9

CHAPTER 2

METHODS

2.1 Raw Data Collection

The data for this project was collected using a head mounted display with an ISCAN RK-

826PCI infrared eye movement tracking system (Burlington, MA, USA) operating at a

wavelength of 940 nm and sampling at a rate of 240 Hz. The left and right eye are collected

independently, and the data digitized using a custom software written using LabVIEW™

2013 SP1 Virtual Instrument (National Instrument, Austin, TX, USA), called NJIT

VisulaEyes 2020 [8].

Figure 2.1 The ISCAN setup used to provide stimulus and collect data.
Source: [8]

10

2.2 Subject Selection

Five healthy subjects were selected for their high data retention when a human analyst

analyzed the subjects eye movements. Data retention was calculated as the ratio of the

number of eye movements classified as good over the number of total eye movements. The

age and the gender of the participant were unknown. The data collection occurred at The

University of New Mexico.

Table 2.1 Subject Data Retention

Subject Id Data Retention

23389 65%

76947 39%

41857 51%

17530 47%

04370 40%

2.3 R.E.T.I.N.A.S. Software

The R.E.T.I.N.A.S. software consists of 4 main functions; Load Data function, Preprocess

function, Analyze function and Plot function. The Load Data function is launched when

the user presses the “Load Data” button, from there the user selects a subject file that

contains the eye movements. The format of the file is a “.mat” which is a proprietary

extension of MATLAB, the data is already parsed into the different cells and the function

simply exports the data into Python lists.

11

Figure 2.2 The Figure above shows the layout of R.E.T.I.N.A.S and the 4 main functions

and a drop-down menu that lets the user decide which type of calibration they want to use.

The first function is the “Load Data” labeled 1, the next function is the “Preprocess”

function labeled 2a and it’s corresponding drop-down menu labeled 2b. The drop-down

menu has 3 different choices for calibration: “NORMAL”, “SACCADES” and

“AUTOMATIC”. The third function is “Analyze” labeled 3 and last function is “Plot”

labeled 4.

The next function is the Preprocess function, and it is launched automatically when

the user presses the “Preprocess” button. This function calibrates the data and filters it

using a 10th order low pass Butterworth filter at 40 Hz. The user selects how the data is

calibrated using a drop-down menu, there are three modes for calibration: “NORMAL”,

“SACCADES” and “AUTOMATIC”. The NORMAL mode uses 1°, 3° and 5° monocular

vergence stimuli to calibrate the data. The data is then averaged, and a liner interpolation

is taken across the three data points. The slope of the line best fit is used as the gain value.

The SACCADES mode uses -10°, 0 and 10° monocular stimuli and the same process as

the NORMAL mode is used to calculate the gain value. The algorithm used to calculate

1. 2a. 3.

4. 2b.

12

these gain value uses a python library called SciPy and a function called linregress. The

function has two inputs the x input and the y input. The x input was the list of the amplitude

values of the stimuli for the respective modes. For NORMAL mode, the x input is 1, 3 and

5 as for SACCADES the x input is -10, 0 and 10. The y input is the average of the

calibration data at each of the stimuli.

Figure 2.3 The plot of a hypothetical calibration data for 1°, 3° and 5° used for calculating

the gain value for NORMAL mode. The y-axis is the position data in voltage and the x-

axis is the time data in seconds.

13

Figure 2.4 The figure above illustrates a hypothetical value for the linear interpolation used

to calculate the gain value for NORMAL and SACCADE mode. The y-axis is the average

of the position data in voltage and the x-axis is the target stimulus as in 1, 3 and 5 in degrees.

The AUTOMATIC mode uses the saccade left eye 5° and saccade right eye 5°

movements to calculate a gain value. It does this by increasing the gain value of both eyes

symmetrically until the final amplitude reaches 5°, as seen in Figure 2.5. This is done for

all the eye movements and at the end an average is taken to determine the gain value used

to calibrate the data. The gain value is a constant multiplier that convert the data from

millivolts to degrees.

14

Figure 2.5 The figure above illustrates the process of how AUTOMATIC mode

calculates the gain calibration by incrementally increasing the gain value until a target

value is reached. The y axis is the position data in degrees and the x axis is the time

elapsed in seconds.

 The third and the main function is the Analyze function, and it is launched when

the user presses the “Analyze” button. The purpose of this function is to find the 5 data

statistics and classify the eye movement as bad or good. Before all of this happens the data

first goes through artifact removal where blinks and saccades are linearly extrapolated to

best fit the removed data, see Figure 2.7. In the “Analyze” function two python libraries

are used SciPy and NumPy. In SciPy the savgol_filter function is used to calculate the

velocity trace or the derivative of the position trace. It is also used to calculate the

acceleration trace, or the second derivative of the position trace as seen in Figure 2.6. The

acceleration trace is then used to find largest acceleration values. If the acceleration reaches

5 degrees/second2 then a saccade or a blink has occurred and then the data around the peak

15

acceleration is then deleted using the delete function in the NumPy library. After deleting

the data, a linear interpolation is made using the interp1d function in the SciPy library.

Figure 2.6 The acceleration trace of an eye movement calculated using the savgol_filter

function. The position trace of the eye movement (green) and its respective acceleration

trace (red) are graphed. The right y-axis is the amplitude values for the acceleration trace

in degrees/second2 and the left y-axis is the amplitude value of the position trace in

degrees. The x-axis is the amplitude values of time in seconds.

16

Figure 2.7 The figure above shows how two blink artifacts are removed using linear

interpolation between a blink.

 After artifact removal, the data metrics are retrieved from the eye movement, when

the values of the metrics are too large or too small for a healthy participant to achieve then

the eye movement is classified as “bad”. The boundaries for final amplitude are as follows,

it is considered too large if it is 1.5 x target amplitude, for example for a 4-degree eye

movement a final amplitude above 6 degrees is considered “bad”. The final amplitude

value is considered too small if it is .25 x target amplitude or less than 1 degree for a 4-

degree eye movement. For latency, a boundary of .150s to .500s is used to determine if it

can be classified as “good”. The boundary for peak velocity ranged from 7-25

degrees/seconds2 in accordance to a previous paper [9]. Finally for time to peak velocity

the boundary ranged from .200s to 1s. When a value is outside of these ranges the

R.E.T.I.N.A.S. output is changed to “9999” to show that the values gotten were

insufficient. The data metrics are then exported to a CSV.

17

 The last function of R.E.T.I.N.A.S. plots the data for visualization purposes, but

also allows the user to manually change the classification. The last functionality has not

been fully implemented.

18

CHAPTER 3

RESULTS

3.1 Analysis of Eye Movements

The data consisted of convergent and divergent 4° eye movements. It was then analyzed

using a custom MATLAB software by the human analyst. The human analyst did not need

settling time to classify the data and hence it is unavailable for comparison. Table 3.1, 3.2,

3.3 and 3.4 shows the comparison of the average data metrics analyzed by the human

analyst and R.E.T.I.N.A.S., in total 65 eye movements that were able to be analyzed by

both R.E.T.I.N.A.S. and the human analyst were used.

Table 3.1 Latency Comparison

Latency

 Human Analyst R.E.T.I.N.A.S.

Average 0.275 0.328

STD 0.163 0.297

Table 3.2 Final Amplitude Comparison

Final Amplitude

 Human Analyst R.E.T.I.N.A.S.

Average 3.674 1.873

STD 0.936 1.289

Table 3.3 Peak Velocity Comparison

Peak Velocity

 Human Analyst R.E.T.I.N.A.S.

Average 11.371 14.035

STD 3.858 6.929

19

Table 3.4 Time to Peak Velocity Comparison

Time to Peak Velocity

 Human Analyst R.E.T.I.N.A.S.

Average 0.426 0.638

STD 0.125 0.439

The total average and the standard of deviation was taken across the multiple

subjects to determine the behavioral data. A paired t-test was used to measure the

differences between the averages. A Pearson correlation test was also done to measure the

statistical relationship between the metrics received from human analyst and

R.E.T.I.N.A.S., with a N = 65. Figures 3.1-3.8 illustrate the main differences between the

human analyst and the R.E.T.I.N.A.S output.

Figure 3.1 Average latency comparison between the data analyzed by human analyst Vs

R.E.T.I.N.A.S.. The human analyst achieved an average latency of 0.275s with STD of

.163, whereas R.E.T.I.N.A.S. reported a value of .328s with a STD of .297.

20

Figure 3.2 Correlation of Latency between human analyst and R.E.T.I.N.A.S.. On the x

axis, it is the data analyzed by the human analyst and on the y axis it is the data analyzed

by R.E.T.I.N.A.S.. The Pearson correlation value of -.0085 and a P-value of .946.

Figure 3.3 Average final amplitude comparison between the data analyzed by human

analyst Vs R.E.T.I.N.A.S.. The human analyst achieved a final amplitude of 3.674° with a

21

standard of deviation of .936, whereas R.E.T.I.N.A.S. reported a value of 1.873° with a

STD of 1.289.

Figure 3.4 Correlation of final amplitude between human analyst and R.E.T.I.N.A.S.. The

Pearson correlation value of .122 and a P-value of .332.

Figure 3.5 Average peak velocity comparison between the data analyzed by human analyst

Vs R.E.T.I.N.A.S.. The human analyst achieved a final amplitude of 11.371°/s with a STD

of 3.858, whereas R.E.T.I.N.A.S. reported a value of 14.035°/s with a STD of 6.929.

22

Figure 3.6 Correlation of peak velocity between human analyst and R.E.T.I.N.A.S.. The

Pearson correlation value of -.265 and a P-value of .0331.

23

Figure 3.7 Average time to peak velocity comparison between the data analyzed by human

analyst Vs R.E.T.I.N.A.S.. The human analyst achieved a final amplitude of .426s with a

STD of .125, whereas R.E.T.I.N.A.S. reported a value of .638s with a STD of .439.

Figure 3.8 Correlation of time to peak velocity between human analyst and R.E.T.I.N.A.S..

The Pearson correlation value of -.151 and a P-value of .223.

3.2 Accuracy of R.E.T.I.N.A.S

The overall accuracy of R.E.T.I.N.A.S was measured using a confusion matrix. The matrix

allows the for quick calculation for accuracy, sensitivity, and specificity. Table 3.5 shows

the data used to create the confusion matrix. A true positive is considered when the

R.E.T.I.N.A.S software and the human analyst classify an eye movement as good, true

negative is the inverse when both classify the eye movement as bad. A false negative is

when R.E.T.I.N.A.S classify an eye movement as bad, but the human analyst classifies the

24

data as good, false positive is the opposite when R.E.T.I.N.A.S classifies the eye movement

as good, but the analyst classifies it as bad.

Table 3.5 Classification of Eye Movements

Subj Id

True

Positive

True

Negative

False

Negative

False

Positive

Total Eye

Movements Accuracy

23389 49 10 10 27 96 0.615

76947 67 5 1 23 96 0.750

41857 33 31 3 29 96 0.667

17530 59 9 1 27 96 0.677

4370 35 45 3 12 96 0.842

Table 3.6 The Confusion Matrix

 Analyst Classified Good Analyst Classified Bad

R.E.T.I.N.A.S Good

Classification 243 118

R.E.T.I.N.A.S Bad

Classification 18 100

The average accuracy of R.E.T.I.N.A.S across the 5 subjects was 71.6% with a STD of

7.889%. The specificity of R.E.T.I.N.A.S is 45.9% and the sensitivity of 93.1%. This

means that R.E.T.I.N.A.S is strong in identifying true negatives, in other words it is

statistically likely to label a bad eye movement as bad.

25

CHAPTER 4

DISCUSSION AND FUTURE WORKS

4.1 Data Retrieval Methods and Improvements

R.E.T.I.N.A.S. as a whole was unable to retrieve data metrics at the same quality as the

human analyst. This can mainly be attributed to the rigid way some of the data metrics are

calculated. One such metric is final amplitude which is calculated as the average of the last

one second of the eye movement. When artifacts are involved, they can drastically change

the final amplitude reported, especially if multiple blinks occur with in a small duration.

Artifact removal cannot remove artifacts when they are very close to each other. This is

then used to calculate the latency and settling time which can be negatively impacted by it.

As seen in Figure 3.3, the average final amplitude given by R.E.T.I.N.A.S. was nearly half

as much as that of human analyst. This large discrepancy then went on to affect latency

which had a p = .164, seen in Figure 3.1. One way to fix this would be to change how final

amplitude is calculated by taking a smaller portion of the steady state to better estimate the

final amplitude. Furthermore, the region where final amplitude is gotten can be shifted

anywhere within the steady-state portion of the eye movement, a standard while-loop can

be used to shift and decrease this region until a final amplitude that falls with in the ranges

described previously. Finally, a check for the standard of deviation within the region where

final amplitude is retrieved can help determine if a blink is still prevalent even after artifacts

are removed.

Another metric that can be largely improved is peak velocity. The approach for this

would follow similar steps to how final amplitude should be calculated. A set of while-

26

loop that are decreasing the region where the peak velocity is calculated until the standard

of deviation falls below a certain range. The boundaries of this region can be easily

determined by the settling time and latency calculated for the eye movement. This in

combination with a while-loop that checks for the amplitude of the peak velocity with

boundaries described previously.

4.2 Classification Methods and Improvements

This study provides credence to the fact that an automated eye movement analysis software

can classify data at near equal efficacy to that of a human analyst. Furthermore, the

R.E.T.I.N.A.S. package provides great artifact removal capabilities which are currently not

found in most research settings. There are many avenues for improving R.E.T.I.N.A.S

classification as a useful eye movement analysis software. The most important

improvement should be focused on heightening true positive classifications. Since there is

a large amount of variability in good eye movements the conservative and rigid approach

of the software must dynamically change to better understand the behaviors of each subject.

This can be implemented by using a more sophisticated classification model that keeps

track of all the eye movements of the subject and changes the classification based on that.

First a total average for all the data metrics can be calculated across multiple eye

movements. Then a using the standard of deviation any eye movements that have 3 out of

the 5 data metrics that fall outside of 2 times the standard deviation are classified as “bad”.

The “bad” eye movements are then removed from the calculation for the mean and standard

of deviation, and the process is repeated. If in the first run no eye movements are removed,

then the multiplier for the standard of deviation can be decreased to 1.5 times. This type of

27

elimination process allows the classification change depending on the data and how the

subject performs.

Another approach to refining the classification function is by using a more complicated

neural network. Neural networks are series of algorithms that can recognize patterns in

between vast amount of data. Creating a neural network might be time consuming upfront

but can easily pay off after being trained. The application of neural networks for

classification purposes are numerous. For purposes of R.E.T.I.N.A.S. 5 different model

would be necessary for each of the data metrics. Then together the models would determine

a score for each individual eye movement, if the total score reaches above a certain

threshold, then the eye movement can be classified as “good”. The threshold can be

changed by the user and the weight each model has for the final score can be changed to

better fit the importance of certain metrics. For example, final amplitude is necessary for

calculation of settling time and latency, by increasing the weight of final amplitude it

becomes a greater determinant of a “good” eye movement and the same can be said for

peak velocity.

4.3 Future of Automated Data Analysis

As more data becomes computerized the importance of automation of the data analysis

increases. More importantly, in areas where data is still analyzed by hand or by semi-

automated programs, objectivity becomes another key factor. Increasing is the time

demand or monetary cost of analyzing large sets of data by hand. R.E.T.I.N.A.S. is a step

in the right direction in try to solve these problems simultaneously. If the correction stated

above can be applied to R.E.T.I.N.A.S., then it can greatly impact how data in vision

28

research is analyzed. It can decrease the undue cost of labor on researchers that can better

spend designing more complex studies. It can even decrease the monetary cost associated

with hiring multiple data analyst. Furthermore, currently in the research setting data is

analyzed by a human analyst which raises the question for subjectivity since each analyst

may define certain data metrics differently. Finally, R.E.T.I.N.A.S. can be further

developed into a screening tool for convergence insufficiency. This would eliminate the

need for an optometrist or hours of analyzing eye movements. This type of quick and easy

screening tool can greatly increase the accessibility for patients affected by CI to get

necessary therapy, which can greatly improve the patient’s quality of life.

29

APPENDIX A

PYTHON CODE

root = Tk() # Initialize GUI
root.title("RETINAS") # Title the GUI

def stop(): # Break GUI loop and exit
 root.destroy()

def resize_image(event):
 new_width = int(event.width)
 new_height = int(event.height)
 image = copy_of_image.resize((new_width, new_height))
 photo = ImageTk.PhotoImage(image)
 VNEL_Label.config(image = photo)
 VNEL_Label.image = photo

def dataBWFilter(dataInput):
 o, p = sig.butter(10, .08, 'low')
 filteredData = sig.filtfilt(o,p,dataInput)
 return filteredData

def metrics (position,velocity,badval):
 from scipy.signal import find_peaks
 import numpy as np
 import matplotlib.pyplot as plt
 if badval != 1:

 finarr = position
 o, p = sig.butter(10, .08, 'low')
 finarr_filtered = sig.filtfilt(o,p,finarr) #Filter data
 time= numpy.arange(0., .002*finarr.size, .002) #Create x-axis

 #This function finds the final amplitude
 from statistics import mean
 a = finarr_filtered
 #this average is the average of the last 1/5 of the data Or the final Amplitude
 indices = a[-len(a)//5:]
 average = mean(indices)
 fa = average
 if testcase==2:

 print("The following is the average of the last second of the position trace")
 print("Final Amplitude value:")
 print(average)

 #This function finds the Latency and graphs it

30

 latencydeg = .05*average

 if testcase == 2:
 print("This is the latency degree value:")
 print(latencydeg)

 #Find where this .05 value is taken and then find the corresponding time value
 #it is important to understand that you can't assume that the latency degree value is plotted
within the graph.

 array1 = np.argwhere(a>latencydeg)
 array2 = np.argwhere(array1>50)

 if array2.shape[0] ==0:
 latency=9999
 else:
 latency = ((np.argwhere(a>latencydeg)[array2[0]][0])/500)
 latency=round(latency[0],3)
 latpt=(np.argwhere(a>latencydeg)[array2[0]][0])

 #print(latency.shape,latency)
 #defining where degrees can be high enough
 #Defining that it is going to be greater than 50 for now. Estimation.
 if testcase==2:
 print("Latency in seconds:")
 print(array1, array2,latency)
 plt.clf()
 plt.plot(time,finarr_filtered,'b') #r stands for red.
 plt.plot(latency,latencydeg,"r*")
 plt.title('Filtered Position Trace Data')
 plt.xlabel('Seconds')
 plt.ylabel('Degrees')
 plt.figure(figsize=(w, h))

 #This cell will find the settling time of the position trace data
 settledeg=.95*average
 #print(settledeg)
 if testcase==1:
 print("This is the settling degree value:")
 print(settledeg)

 #Find where this .05 value is taken and then find the corresponding time value
 #it is important to understand that you can't assume that the latency degree value is plotted
within the graph.
 #in this example you have .1333 as the latency degree value and you must find the index
which

31

 # Find the x value corresponding to the maximum y value
 #Because there is nothing exactly equal to the actual latencydeg
 array1=np.argwhere(a>settledeg)
 array2=np.argwhere(array1>50)
 if settledeg>-1:
 settletime = ((np.argwhere(a>settledeg)[array2[0]][0])/500)

 settlept=(np.argwhere(a>settledeg)[array2[0]][0])
 #print(settletime,settlept)
 else:
 settletime=[9999]
 settlept=[9999]

 #defining where degrees can be high enough
 #Defining that it is going to be greater than 50 for now. Estimation.
 if testcase==2:
 print("Settling time in seconds:")
 print(settletime)

 plt.plot(time,finarr_filtered,'b') #r stands for red.
 plt.plot(settletime,settledeg,"r*")
 plt.title('Filtered Position Trace Data')
 plt.xlabel('Seconds')
 plt.ylabel('Degrees')
 plt.figure(figsize=(w, h))

 #The following takes the derivative of the data to get the velocity of the data and plots
 #Refer to https://docs.scipy.org/doc/scipy-
0.16.1/reference/generated/scipy.signal.savgol_filter.html
 #Output is velocity function
 if latency !=9999 and latpt[0]<settlept[0]:
 outputvelocity=sig.savgol_filter(finarr_filtered,15,3,1,delta=.002)
 #outputvelocity.shape=(outputvelocity.size,1)
 #time.shape=(time.size,1)
 #print(outputvelocity.shape,latpt,settlept)
 outputvelocity2=outputvelocity [int(latpt[0]):int(settlept[0])]
 time2=time[int(latpt[0]):int(settlept[0])]
 if testcase==2:
 plt.figure(figsize=(w, h))
 plt.plot(time2,outputvelocity2,'r')
 #15 is window size, 3 is ? ,
 #1 is 1st derivative, delta is time between samples aka sampling rate
 print ("This is the Velocity Graph")
 plt.title('Velocity Trace Graph')
 plt.xlabel('Seconds')
 plt.ylabel('Degrees/Sec')

 #This code will Find the peaks of the data for Position

32

 #Refer to https://plotly.com/python/peak-finding/#peak-detection
 #Try runnin previous codes before running this.
 #import plotly.graph_objects as go

 time= np.arange(0., .002*finarr.size, .002)
 indices = find_peaks(time2, threshold=20)[0]
 if testcase==2:
 print("This is the maximum peak value of finarr using the max function")
 print (max(finarr))
 #Finding Peak Velocity and Graphs it https://thispointer.com/find-max-value-its-index-in-
numpy-array-numpy-amax/
 #Finding time to Peak velocity.
 #Peak velocity
 max_y = max(outputvelocity2) # Find the maximum y value
 max_x = time2[outputvelocity2.argmax()] # Find the x value corresponding to the
maximum y value
 pv=max_y
 ttpv=max_x
 if testcase==2:
 print ("The following is the coordinate when peak velocity occurs:")
 print ("[x,y]=",[max_x, max_y])

 #The next step would be to highlight these peaks within the graph.
 #This site helped me:https://stackoverflow.com/questions/41489543/using-matplotlib-
how-to-highlight-one-point-in-the-final-plot/41489810

 plt.plot(time,outputvelocity,'r')
 plt.plot(max_x,max_y,"b*")
 plt.title('Velocity Trace Graph')
 plt.xlabel('Seconds')
 plt.ylabel('Degrees/Sec')
 plt.figure(figsize=(w, h))

 else:
 max_x=9999
 latency=latency
 if latency>99: #no good latency
 latency=9999
 pv=9999
 ttpv=9999
 st=9999
 fa=9999
 elif max_x>1.5: #late time to peak velocity
 latency=9999
 pv=9999
 ttpv=9999
 st=9999

33

 fa=9999
 elif fa<.5:
 latency=9999
 pv=9999
 ttpv=9999
 st=9999
 fa=9999
 else:
 pv=round(max_y,3)
 ttpv=round(max_x,3)
 st=round(settletime[0],3)
 fa=round(average,3)
 else:
 latency=9999
 pv=9999
 ttpv=9999
 st=9999
 fa=9999
 return (latency,pv,ttpv,st,fa)

def artrem(x):

 issame=1
 badval=0
 time= numpy.arange(0., .002*x.size, .002)

 if testcase==1:
 print(time.shape)
 print(time.size)
 print(x.shape)
 print(x.size)
 xorg=x
 xbeg=x[0:int(x.size/10)]
 xend=x[9*int(x.size/10):x.size]
 if abs(numpy.mean(xbeg)-numpy.mean(xend))>.5:
 if numpy.mean(xbeg)>numpy.mean(xend):
 x=-x
 else:
 xmid=x[2*int(x.size/10):3*int(x.size/10)]
 if numpy.mean(xbeg)>numpy.mean(xmid):
 x=-x
 x=x-x[0]

 # 60hz filter
 x_filtered = dataBWFilter(x)

 if testcase==1:print(x)
 if testcase==1:print(x_filtered)

34

 x = x_filtered

 num=0
 siz=x.size
 x_orignal=numpy.zeros((siz,1))
 x_filtered=numpy.zeros((siz,1))
 x_vel=numpy.zeros((siz,1))
 x_acc=numpy.zeros((siz,1))

 if testcase==1:
 w=6
 h=4
 plt.figure(figsize=(w, h))

 val=18
 for m in range (15,16,2): # savgol filter inputs m & p can be changed @Farhan
 for p in range (3,4,1):
 #print(m)
 if p<m:
 x_orignal =1*sig.savgol_filter(x,int(m),int(p),0,delta=.002)
 x_filtered[0:siz,num]=x_orignal
 x_vel[0:siz,num]=1*sig.savgol_filter(x,int(m),int(p),1,delta=.002)
 x_acc[0:siz,num]=.002*sig.savgol_filter(x,int(m),int(p),2,delta=.002)

 if testcase==1:
 plt.plot(time,x_orignal,'g',time,x_filtered,'k',time,x_vel,'b',time,x_acc,'r')
 plt.title('window size '+str(m) +' polynomial fit '+ str(p))
 plt.legend(['orig','x', 'xsm', 'v', 'acc'])
 plt.axis((0.002*0,.002*300,-10, 10))
 plt.show()

 #part 4 get blinks

 acc = x_acc[0:siz,num]
 bigacc=numpy.nonzero((acc) > 3) #The acceleration threshold can be changed @Farhan
 #print(bigacc)
 bigacc=bigacc[0]
 if testcase==1:
 print(bigacc,bigacc.size)
 if testcase==1:
 if bigacc.size>0:
 w=6
 h=4

 plt.plot(time[bigacc[0]-100:bigacc[-1]+100],x[bigacc[0]-100:bigacc[-
1]+100],'k',time[bigacc[0]:bigacc[-1]],output[bigacc[0]:bigacc[-

35

1],num],'b',time[bigacc[0]:bigacc[-1]],output2[bigacc[0]:bigacc[-
1],num],'r',time[bigacc[0]:bigacc[-1]],output3[bigacc[0]:bigacc[-1],num],'m')

#plt.plot(time,output[0:siz,num],'b',time,output2[0:siz,num],'r',time,output3[0:siz,num],'m')
#(has some changes)
 plt.title('zoomed on artifacts')
 plt.legend(['orig','pos savgol', 'vel savgol', 'acc savgol'])
 plt.figure(figsize=(w, h))
 #plt.axis((0,.002*x.size,-50, 50))
 #print(num)

 #hifixinghere
 #part 5 - take out filtered x,v,a
 #take out middle points

 x = x_orignal
 x2 = x_filtered[0:siz,num]
 v2= x_vel[0:siz,num]
 vorg=v2
 a2= x_acc[0:siz,num]
 numberbuffer=20
 (latency,pv,ttpv,st,fa)=metrics(x,vorg,0)
print(latency,pv,ttpv,st,fa) #@Farhan

 #part 6 - blink fix -
 #check near
 if testcase==1:print(bigacc)
 if bigacc.size>0:
 breakacc=numpy.zeros(100)
 breakid=1
 if testcase==1:print(bigacc.shape)
 for i in range (1,bigacc.size):
 if abs(bigacc[i]- bigacc[i-1])>30:
 breakacc[breakid]=i
 breakid=breakid+1
 if bigacc.size==1:
 breakacc[breakid]=1
 else:
 breakacc[breakid]=i+1
 if testcase==1:print(breakacc,breakid)
 #print(bigacc[int(breakacc[i-1])],bigacc[int(breakacc[i])-1])

 #interpolate pos

 fixblink1=v2

36

 fixblink2=x2

 countsaccades=0
 bufferzonesacc=18 #I can change buffer zones @Farhan
 for i in range (1,breakid+1):
 countsaccades=countsaccades+1
 if testcase==1:print("blink detected ranges",bigacc[int(breakacc[i-
1])],bigacc[int(breakacc[i])-1])
 if bigacc[int(breakacc[i-1])]<=300:
 badval=1
 if bigacc[int(breakacc[i-1])]<=bufferzonesacc:
 startpoint= 1
 else:
 index=int(breakacc[i-1])
 startpoint= bigacc[index] -bufferzonesacc
 if bigacc[int(breakacc[i])-1]>=time.size-bufferzonesacc:
 endpoint=time.size-2
 else:
 index=int(breakacc[i]-1)
 #print(index)
 endpoint= bigacc[index] +bufferzonesacc
 if testcase==1:print("buffered ranges",startpoint,endpoint)
 if bigacc[int(breakacc[i-1])]<bufferzonesacc:
print('Test is working')
 if testcase==1:print(fixblink1[0],fixblink2[0])

#fixblink1[0]=numpy.mean(fixblink1[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

fixblink2[0]=numpy.mean(fixblink2[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 if testcase==1:print(fixblink1[0],fixblink2[0])
 if bigacc[int(breakacc[i])-1]>time.size-bufferzonesacc:
print('Test is working 2')
 if testcase==1:print(fixblink1[-1])
 #fixblink1[-1]=numpy.mean(fixblink1[endpoint-bufferzonesacc-3:endpoint-
bufferzonesacc])
 fixblink2[-1]=numpy.mean(fixblink2[endpoint-bufferzonesacc-3:endpoint-
bufferzonesacc])
 if testcase==1:print(fixvel1[-1])
 tshort=numpy.delete(time,numpy.s_[startpoint:endpoint])
 #remo=numpy.delete (fixblink1,numpy.s_[startpoint:endpoint])
 rem=numpy.delete (fixblink2,numpy.s_[startpoint:endpoint])

 #f1blv = interp1d(tshort, remo,kind='slinear')
 f1sblp = interp1d(tshort, rem,kind='slinear')
 fixblink2=f1sblp(time)

 if testcase==1:
 print(tshort.shape,tshort.size,startpoint,endpoint)

37

 print("artremerr",f1sblp,rem.shape,rem.size)
 print("artremerr2",fixblink2.shape)
 #fixblink1=f1blv(time)

 #if testcase==1:print(breakacc,breakacc)

 #integrate velocity
 #yint=integrate.cumtrapz(fixblink1,time,initial=0)

 tshort=numpy.delete(time,numpy.s_[bigacc[0]-numberbuffer:bigacc[-1]+numberbuffer])
 rem=numpy.delete(x2,numpy.s_[bigacc[0]-numberbuffer:bigacc[-1]+numberbuffer])

 f = interp1d(tshort, rem,kind='slinear')
 f2=interp1d(tshort, rem, kind='cubic')
 f3=interp1d(tshort, rem, kind='nearest')
 f4=interp1d(tshort, rem, kind='zero')
 f5=interp1d(tshort, rem, kind='slinear')
 f6=interp1d(tshort, rem, kind='quadratic')
 f7=interp1d(tshort, rem, kind='previous')
 f8=interp1d(tshort, rem, kind='next')
fig1 =
plt.plot(time,x,'k',time,f(time),time,f1sblp(time))#,time,f2(time),time,f5(time),time,f6(time),line
width=2)
plt.legend(['orig','slinear', 'cubic'])

 if testcase == 1:

 w=6
 h=4
 plt.figure(figsize=(w, h))
 plt.plot(time,x,'k',time,f(time),time,f2(time),time,f5(time),time,f6(time),linewidth=2)
 plt.plot(time, fixblink2,'m')
 #plt.plot(time, fixblink2,'m',time,yint,'c')
 #plt.axis((0,.002*x.size,-1, 1))
 plt.title('After fixing blinks: position')
 plt.legend(['orig','pos interp', 'vel interp'])
 xmin, xmax, ymin, ymax = plt.axis()
 plt.axis((0,.002*x.size,ymin, ymax))

 x3=fixblink2
 v3f1=1*sig.savgol_filter(x3,int(m),int(p),1,delta=.002)
 a3=.002*sig.savgol_filter(x3,int(m),int(p),2,delta=.002)
 v3=v3f1
 else:
 x3=x2
 v3f1=v2
 v3=v3f1

38

 a3=a2

 #part 7 plot velocities after blinks
 #velocity after blinks
 #v2 is before blinks
 #v3 is after

 if testcase==1:
 print(x3)
 w=6
 h=4
 plt.figure(figsize=(w, h))

 plt.plot(time,v2,'k',time, v3f1,'r')#time, v3f2,'r',time, v3f5,'b',time, v3f6,'g')
 plt.plot(time,a3,'b')
 plt.plot(time,x3,'m')#time, v3f2,'r',time, v3f5,'b',time, v3f6,'g')
 plt.legend(['orig vel','after:vel', 'after: acc', 'pos', 'quadratic'])
 #plt.axis((0,.002*x.size,-5, 5))
 plt.title('After fixing blinks: velocity/acc')
 xmin, xmax, ymin, ymax = plt.axis()
 plt.axis((0,.002*500,ymin, ymax))

 #part 8 find saccades, the thresholds for bigvel1 & 2 can be changed
 bigvel1=numpy.nonzero(abs(a3) > 1.6) #Accelaration
 bigvel2=numpy.nonzero(abs(v3) > 15) #Velocity

 bigvel1=bigvel1[0]
 bigvel2=bigvel2[0]
 bigvel=numpy.intersect1d(bigvel1, bigvel2)

 if bigvel.size>0:
 if testcase==1:
 print(bigvel1)
 #print(bigvel[0])
 print(bigvel2)
 print(bigvel)

 w=6
 h=4
 #plt.figure(figsize=(w, h))
 #plt.plot(time[bigacc[0]-100:bigacc[-1]+100],x[bigacc[0]-100:bigacc[-
1]+100],'k',time[bigacc[0]:bigacc[-1]],output[bigacc[0]:bigacc[-
1],num],'b',time[bigacc[0]:bigacc[-1]],output2[bigacc[0]:bigacc[-
1],num],'r',time[bigacc[0]:bigacc[-1]],output3[bigacc[0]:bigacc[-1],num],'m')

39

#plt.plot(time,output[0:siz,num],'b',time,output2[0:siz,num],'r',time,output3[0:siz,num],'m')
 #plt.title('window size '+str(m) +' polynomial fit '+ str(p))

 #print(num)

 #part 9 break down locations of saccades
 #print(bigvel.size)
 if bigvel.size>0:
 breakvel=numpy.zeros(100)
 breakid=1
 for i in range (1,bigvel.size):
 if abs(bigvel[i]- bigvel[i-1])>1:
 breakvel[breakid]=i
 breakid=breakid+1
 breakvel[breakid]=i+1
 if testcase==1:print(breakvel)
 if testcase>2:
 #print(x3)
 w=6
 h=4
 plt.figure(figsize=(w, h))

 plt.plot(time,v2,'k',time, v3f1,'r')#time, v3f2,'r',time, v3f5,'b',time, v3f6,'g')
 plt.plot(time,a3,'b')#time, v3f2,'r',time, v3f5,'b',time, v3f6,'g')
 plt.legend(['orig vel','after:vel', 'after: acc', 'slinear', 'quadratic'])
 plt.axis((385*.002,425*.002,-50, 50))
 plt.title('zoom 1After fixing blinks: velocity/acc')
 plt.axis((0*.002,1500*.002,-50, 50))
 xmin, xmax, ymin, ymax = plt.axis()
 #plt.axis((0,.002*x.size,ymin, ymax))

 #part 10 - fix saccades
 if bigvel.size>0:
 fixvel1=v3f1
 fixpos1=x3
 if testcase==1:print(bigvel)

 countsaccades=0
 bufferzonesacc=16 #I can change buffer @Farhan
 for i in range (1,breakid+1):
 countsaccades=countsaccades+1
 if testcase==1:print("sacc detected ranges",bigvel[int(breakvel[i-
1])],bigvel[int(breakvel[i])-1])
 if bigvel[int(breakvel[i-1])]<=bufferzonesacc:

40

 startpoint= 1
 else:
 index=int(breakvel[i-1])
 startpoint= bigvel[index] -bufferzonesacc
 if bigvel[int(breakvel[i])-1]>=time.size-bufferzonesacc:
 endpoint=time.size-2
 else:
 index=int(breakvel[i]-1)
 #print(index)
 endpoint= bigvel[index] +bufferzonesacc
 if testcase==1:print(startpoint,endpoint)
 if bigvel[int(breakvel[i-1])]<bufferzonesacc:
 if testcase==1:print(fixvel1[0],fixpos1[0])

#fixvel1[0]=numpy.mean(fixvel1[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

fixpos1[0]=numpy.mean(fixpos1[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

#fixpos2[0]=numpy.mean(fixpos2[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

#fixpos5[0]=numpy.mean(fixpos5[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

#fixpos6[0]=numpy.mean(fixpos6[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 if testcase==1:print(fixvel1[0],fixpos1[0])
 if bigvel[int(breakvel[i])-1]>time.size-bufferzonesacc:
 if testcase==1:print(fixvel1[-1])
 #fixvel1[-
1]=numpy.mean(fixvel1[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 fixpos1[-1]=numpy.mean(fixpos1[endpoint-bufferzonesacc-3:endpoint-
bufferzonesacc])
 #fixpos2[-
1]=numpy.mean(fixpos2[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 #fixpos5[-
1]=numpy.mean(fixpos5[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 #fixpos6[-
1]=numpy.mean(fixpos6[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 if testcase==1:print(fixvel1[-1])
 tshort=numpy.delete(time,numpy.s_[startpoint:endpoint])
 #remo=numpy.delete (fixvel1,numpy.s_[startpoint:endpoint])
 rem=numpy.delete (fixpos1,numpy.s_[startpoint:endpoint])

 #f1saccv = interp1d(tshort, remo,kind='slinear')
 f1saccp = interp1d(tshort, rem,kind='slinear')
 fixpos1=f1saccp(time)
 #fixvel1=f1saccv(time)
 #yint=integrate.cumtrapz(fixvel1,time,initial=0)

 if testcase==1:

41

 w=6
 h=4

 plt.plot(time, x,'k')
 plt.plot(time, fixpos1,'r')
 #plt.plot(time, yint,'g')
 plt.legend(['orig pos','after: interp pos', 'after: interp vel', 'slinear', 'quadratic'])
 plt.axis((0,x.size*.002,-6, 6))
 plt.title('zoom 1After fixing blinks: velocity/acc')
 plt.figure(figsize=(w, h))
 xmin, xmax, ymin, ymax = plt.axis()
 #plt.axis((0,.002*x.size,ymin, ymax))
 print(breakvel)

 plt.show
 #plt.legend()
 else:
 #fixvel1=v3
 fixpos1=x3

plt.plot(time, x,'k')
plt.plot(time, fixpos1,'r')

 #print(fixpos1.shape,fixpos1)
 x3 = fixpos1;
 v3 = sig.savgol_filter(x3,int(m),int(p),1,delta=.002)
 a3 = .002*sig.savgol_filter(x,int(m),int(p),2,delta=.002)

 ##inserting start
 bigvel1=numpy.nonzero(abs(a3) > 1.6)
 bigvel2=numpy.nonzero(abs(v3) > 15)

 bigvel1=bigvel1[0]
 bigvel2=bigvel2[0]
 bigvel=numpy.intersect1d(bigvel1, bigvel2)
print("ROUND
333")
 if bigvel.size>0:
 if testcase==1:
 print(bigvel1)
 #print(bigvel[0])
 print(bigvel2)
 print(bigvel)

 w=6
 h=4
 #plt.figure(figsize=(w, h))

42

 #plt.plot(time[bigacc[0]-100:bigacc[-1]+100],x[bigacc[0]-100:bigacc[-
1]+100],'k',time[bigacc[0]:bigacc[-1]],output[bigacc[0]:bigacc[-
1],num],'b',time[bigacc[0]:bigacc[-1]],output2[bigacc[0]:bigacc[-
1],num],'r',time[bigacc[0]:bigacc[-1]],output3[bigacc[0]:bigacc[-1],num],'m')

#plt.plot(time,output[0:siz,num],'b',time,output2[0:siz,num],'r',time,output3[0:siz,num],'m')
 #plt.title('window size '+str(m) +' polynomial fit '+ str(p))

 #print(num)

 #part 9 break down locations of saccades
 #print(bigvel.size)
 if bigvel.size>0:
 breakvel=numpy.zeros(100)
 breakid=1
 for i in range (1,bigvel.size):
 if abs(bigvel[i]- bigvel[i-1])>1:
 breakvel[breakid]=i
 breakid=breakid+1
 breakvel[breakid]=i+1
 if testcase==1:print(breakvel)
 if testcase>2:
 #print(x3)
 w=6
 h=4
 plt.figure(figsize=(w, h))

 plt.plot(time,v2,'k',time, v3f1,'r')#time, v3f2,'r',time, v3f5,'b',time, v3f6,'g')
 plt.plot(time,a3,'b')#time, v3f2,'r',time, v3f5,'b',time, v3f6,'g')
 plt.legend(['orig vel','after:vel', 'after: acc', 'slinear', 'quadratic'])
 plt.axis((385*.002,425*.002,-50, 50))
 plt.title('zoom 1After fixing blinks: velocity/acc')
 plt.axis((0*.002,1500*.002,-50, 50))
 xmin, xmax, ymin, ymax = plt.axis()
 #plt.axis((0,.002*x.size,ymin, ymax))

 #part 10 - fix saccades
 if bigvel.size>0:
 fixvel1=v3f1
 fixpos1=x3
 if testcase==1:print(bigvel)

 countsaccades=0
 bufferzonesacc=16 #15
 for i in range (1,breakid+1):

43

 countsaccades=countsaccades+1
 if testcase==1:print("sacc detected ranges",bigvel[int(breakvel[i-
1])],bigvel[int(breakvel[i])-1])
 if bigvel[int(breakvel[i-1])]<=bufferzonesacc:
 startpoint= 1
 else:
 index=int(breakvel[i-1])
 startpoint= bigvel[index] -bufferzonesacc
 if bigvel[int(breakvel[i])-1]>=time.size-bufferzonesacc:
 endpoint=time.size-2
 else:
 index=int(breakvel[i]-1)
 #print(index)
 endpoint= bigvel[index] +bufferzonesacc
 if testcase==1:print(startpoint,endpoint)
 if bigvel[int(breakvel[i-1])]<bufferzonesacc:
 if testcase==1:print(fixvel1[0],fixpos1[0])

#fixvel1[0]=numpy.mean(fixvel1[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

fixpos1[0]=numpy.mean(fixpos1[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

#fixpos2[0]=numpy.mean(fixpos2[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

#fixpos5[0]=numpy.mean(fixpos5[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])

#fixpos6[0]=numpy.mean(fixpos6[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 if testcase==1:print(fixvel1[0],fixpos1[0])
 if bigvel[int(breakvel[i])-1]>time.size-bufferzonesacc:
 if testcase==1:print(fixvel1[-1])
 #fixvel1[-
1]=numpy.mean(fixvel1[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 fixpos1[-1]=numpy.mean(fixpos1[endpoint-bufferzonesacc-3:endpoint-
bufferzonesacc])
 #fixpos2[-
1]=numpy.mean(fixpos2[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 #fixpos5[-
1]=numpy.mean(fixpos5[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 #fixpos6[-
1]=numpy.mean(fixpos6[endpoint+bufferzonesacc:endpoint+bufferzonesacc+3])
 if testcase==1:print(fixvel1[-1])
 tshort=numpy.delete(time,numpy.s_[startpoint:endpoint])
 #remo=numpy.delete (fixvel1,numpy.s_[startpoint:endpoint])
 rem=numpy.delete (fixpos1,numpy.s_[startpoint:endpoint])

 #f1saccv = interp1d(tshort, remo,kind='slinear')
 f1saccp = interp1d(tshort, rem,kind='slinear')
 fixpos1=f1saccp(time)

44

 #fixvel1=f1saccv(time)
 #yint=integrate.cumtrapz(fixvel1,time,initial=0)
 if testcase==1:
 w=6
 h=4

 plt.plot(time, x,'k')
 plt.plot(time, fixpos1,'r')
 #plt.plot(time, yint,'g')
 plt.legend(['orig pos','after: interp pos', 'after: interp vel', 'slinear', 'quadratic'])
 plt.axis((0,x.size*.002,-6, 6))
 plt.title('zoom 1After fixing blinks: velocity/acc')
 plt.figure(figsize=(w, h))
 xmin, xmax, ymin, ymax = plt.axis()
 #plt.axis((0,.002*x.size,ymin, ymax))
 print(breakvel)

 plt.show
 #plt.legend()
 else:
 #fixvel1=v3
 fixpos1=x3

 #print(fixpos1.shape,fixpos1)

 ##inserting end

 #part 11
 #integration for velocity
 aftersaccadevel=1*sig.savgol_filter(fixpos1,int(m),int(p),1,delta=.002)
 aftersaccadeacc=1*sig.savgol_filter(fixpos1,int(m),int(p),2,delta=.002)
 if testcase==1:
 plt.figure(figsize=(w, h))
 plt.plot(time,v2,'k',time,aftersaccadevel ,'r')
 plt.legend(['orig vel','vel with pos interp', 'vel with vel interp integ'])
 plt.axis((0,.002*x.size,-30, 30))
 plt.title('After fixing saccades: velocity/acc')

 for element in range (0,len(xorg)) :
 if abs(xorg[element]-fixpos1[element])>.01:
 issame=0

 if issame==1:
 badval=-1

 #part 12 final output

45

 finaloutputx=fixpos1
 finaloutputv=aftersaccadevel
 finaloutputa=aftersaccadeacc
 w=6
 h=4
 if testcase==1:
 print(finaloutputx,finaloutputv)
 plt.figure(figsize=(w, h))
 plt.plot(time,x,'k',time,finaloutputx ,'g')
 plt.plot(time,finaloutputv,'b',time, finaloutputv,'c')
 plt.plot(time,.002*a2,'r',time, .002*finaloutputa,'m')
 plt.legend(['orig pos','after pos', 'orig v', 'after v','orig a','after a'])
 plt.axis((0,.002*x.size,-5, 15))
 plt.title('After fixing saccades: velocity/acc')

 return(finaloutputx,finaloutputv,finaloutputa,badval)

def loaddata(): # Open file dialog and setup initial directory
 t = time.time()
 global protodata, filepath, filename, matdata, caldata

 root.choosefile = filedialog.askopenfilename(initialdir = r"C:\Users\Farhan
Ahmad\Dropbox\DoD_NewMexico\Analysis\VEMAP_DualMode_Farhan\Data\Preprocessed")
 filepath = root.choosefile # Get file path from loaddata function
 filename = os.path.split(filepath) # Split path into 2, file name and directory
 os.chdir(filename[0]) # Set working directory using filepath
 mat = loadmat(filename[1]) # load selected matlab file
 matdata = mat['RawData'] # Select RawData array which contains the raw data
 caldata = mat['CalData'] # Select CalDaata array which contains the calibration
data
 protocolpath = filename[0].strip('Data/Preprocessed') # strip file path to general directory
 protocolpath = protocolpath+"/Protocols/TRANSITIONS_DUALMODE.protocol.mat" # add
directions to TRANSITIONS_DUALMODE protocol file
 protocol = loadmat(protocolpath) # load TRANSITIONS_DUALMODE.protocol.mat
 protodata = protocol['protocol'][0, 0] # Select protocol array and select first cell which
holds all the index values

def analyze():
 global testcase
 excelpath = filename[0].strip("/Preprocessed")+"/RETINAS/"+filename[1].strip(".mat")+".xlsx"
 writer = pandas.ExcelWriter(excelpath, engine='xlsxwriter')
 testcase = 0
 k = 0
 for mvmttype in numpy.arange(0,len(eye_movments)):
 for mvmtlen in numpy.arange(0,len(eye_movments[mvmttype])):
 Latency = []

46

 Peak_Velocity = []
 TimetoPV = []
 SettlingT = []
 Final_AMP = []
 Classification = []
 for i in numpy.arange(0,len(eye_movments[mvmttype][mvmtlen])):
 print(mvmttype,mvmtlen,i)
 if mvmttype == "SACCADES":
 try:
 vergence =
eye_movments[mvmttype][mvmtlen][i][0]+eye_movments[mvmttype][mvmtlen][i][1]
 a = artrem(vergence)
 except(RuntimeError, TypeError, NameError, ValueError, LinAlgError):
 velocity = 1*sig.savgol_filter(vergence,15,3,1,delta=.002)
 a = [vergence,velocity,1]
 continue
 else:
 try:
 vergence = eye_movments[mvmttype][mvmtlen][i][0]-
eye_movments[mvmttype][mvmtlen][i][1]
 a = artrem(vergence)
 except(RuntimeError, TypeError, NameError, ValueError, LinAlgError):
 velocity = 1*sig.savgol_filter(vergence,15,3,1,delta=.002)
 a = [vergence,velocity,1]
 continue
 (latency,pv,ttpv,st,fa) = metrics(a[0], a[1], 0)
 Latency.append(latency)
 Peak_Velocity.append(pv)
 TimetoPV.append(ttpv)
 SettlingT.append(st)
 Final_AMP.append(fa)
 Classification.append(a[3])
 RETINAS_OUTPUT = {'Latency':Latency,'Peak Velocity':Peak_Velocity,'Time to
PV':TimetoPV,'Settling Time':SettlingT, 'Final Amplitude':Final_AMP, 'RETINAS Classification':
Classification}
 df = pandas.DataFrame(RETINAS_OUTPUT)
 Sheet_Name = str(mvmttype)+"_"+str(mvmtlen)+"_"+str(i)
 df.to_excel(writer, sheet_name = Sheet_Name)
 writer.save()

def preprocess(): # Find gain values and load the subject data into memory
 global eye_movments, Cal_option, testcase
 print(Cal_option.get())
 # Cal_option can be "NORMAL", "SACCADES" or "AUTOMATIC"
 GAINS_FOR_TESTING,RE_ALL_Gains,LE_ALL_Gains = ([] for i in range(3))
 test_arr = numpy.zeros((3,2))
 testcase = 0
 x = numpy.arange(1,6,2)

47

 y = numpy.zeros((3,2))
 Gain_values = numpy.zeros((3,2))
 Best_Gains = numpy.zeros((3,2))

 k = 0
 if Cal_option.get() == "NORMAL":
 for i in [0,6,12]:

 RE_avg_1deg = numpy.mean(caldata[0][i+3][0])
 RE_avg_3deg = numpy.mean(caldata[0][i+4][0])
 RE_avg_5deg = numpy.mean(caldata[0][i+5][0])

 LE_avg_1deg = numpy.mean(caldata[0][i+0][1])
 LE_avg_3deg = numpy.mean(caldata[0][i+1][1])
 LE_avg_5deg = numpy.mean(caldata[0][i+2][1])

 RE_avg = numpy.array([RE_avg_1deg,RE_avg_3deg, RE_avg_5deg])
 LE_avg = numpy.array([LE_avg_1deg,LE_avg_3deg, LE_avg_5deg])

 RE_slope, RE_intercept, RE_r_value, RE_p_value, RE_std_err = stats.linregress(x,RE_avg)
 LE_slope, LE_intercept, LE_r_value, LE_p_value, LE_std_err = stats.linregress(x,LE_avg)

 Right_Rvalue_string = "Right R^2 vlaue is:" +" "+ str(round(RE_r_value**2,3))
 Left_Rvalue_string = "Left R^2 vlaue is:" +" "+ str(round(LE_r_value**2,3))

 y[k,0] = LE_slope
 y[k,1] = RE_slope

print("Left Eye slope: %f, intercept: %f and R^2: %f" %(1/LE_slope, LE_intercept,
LE_r_value**2))
print("Right Eye slope: %f, intercept: %f and R^2: %f" %(1/RE_slope, RE_intercept,
RE_r_value**2))

 if .9*y[k,1] > y[k,0] > 1.1*y[k,1] and .9*y[k,0] > y[k,1] > 1.1*y[k,0]:
 Gain_values[k,0] = 1/RE_slope
 Gain_values[k,1] = 1/LE_slope

 elif LE_r_value**2 and RE_r_value**2 > .9:
 Gain_values[k,0] = 1/RE_slope
 Gain_values[k,1] = 1/LE_slope
 k= k+1

 if numpy.all(Gain_values == test_arr) == 1:
 Gain_values[0,0] = 9999
 Gain_values[0,1] = -9999
 else:
 sign = numpy.sign(Gain_values)

48

 Gain_values[0,0] = numpy.max((abs(Gain_values[:,0])))
 Gain_values[0,1] = numpy.max((abs(Gain_values[:,1])))

 Gain_values = Gain_values*sign
 Gain_values = Gain_values[~(Gain_values==0).any(1), :]

 if Cal_option.get() == "SACCADES":

 RE_sacades_10 = numpy.mean(caldata[0][18][0])
 RE_sacades_0 = numpy.mean(caldata[0][19][0])
 RE_sacades_neg10 = numpy.mean(caldata[0][20][0])

 LE_sacades_10 = numpy.mean(caldata[0][21][0])
 LE_sacades_0 = numpy.mean(caldata[0][22][0])
 LE_sacades_neg10 = numpy.mean(caldata[0][23][0])

 LE_saccades = numpy.array([LE_sacades_10,LE_sacades_0,LE_sacades_neg10])
 RE_saccades = numpy.array([RE_sacades_10,RE_sacades_0,RE_sacades_neg10])

 RE_Sslope, RE_Sintercept, RE_r_Svalue, RE_p_Svalue, RE_std_Serr =
stats.linregress(x,RE_saccades)
 LE_Sslope, LE_Sintercept, LE_r_Svalue, LE_p_Svalue, LE_std_Serr =
stats.linregress(x,LE_saccades)

 Right_Rvalue_string = "Right R^2 vlaue is:" +" "+ str(round(RE_r_Svalue**2,3))
 Left_Rvalue_string = "Left R^2 vlaue is:" +" "+ str(round(LE_r_Svalue**2,3))

 y[0,0] = RE_Sslope
 y[0,1] = LE_Sslope

print("Left Eye slope: %f, intercept: %f and R^2: %f" %(LE_Sslope, LE_Sintercept,
LE_r_Svalue**2))
print("Right Eye slope: %f, intercept: %f and R^2: %f" %(RE_Sslope, RE_Sintercept,
RE_r_Svalue**2))

 if .9*y[0,1] > y[0,0] > 1.1*y[0,1] and .9*y[0,0] > y[0,1] > 1.1*y[0,0]:
 Gain_values[0,0] = RE_Sslope
 Gain_values[0,1] = LE_Sslope

 elif LE_r_Svalue**2 and RE_r_Svalue**2 > .9:
 Gain_values[0,0] = RE_Sslope
 Gain_values[0,1] = LE_Sslope

 if numpy.all(Gain_values == test_arr) == 1:
 Gain_values[0,0] = 9999
 Gain_values[0,1] = -9999

49

 if Cal_option.get() == "AUTOMATIC":
 RE_gain = 1
 LE_gain = 1
 R05_seq = protodata[2][0][0][0]
 L05_seq = protodata[2][0][0][2]
 RE_gain_arr = []
 LE_gain_arr = []
 fa = 0
 pv = 0
 badval = 0
 for seq in [R05_seq[0],L05_seq[0]]:
 for i in seq:
 print(i)
 data = matdata[0][i-1]
 fa = 0
 pv = 0
 RE_gain = 1
 LE_gain = 1
 while RE_gain and LE_gain < 2.5:
 RE_gain = RE_gain +.01
 LE_gain = LE_gain +.01

 right_eye = data[0]
 left_eye = data[1]

 RE_filteredData = dataBWFilter(right_eye)
 LE_filteredData = dataBWFilter(left_eye)

 RE_Offset = numpy.mean(RE_filteredData[0:20])
 LE_Offset = numpy.mean(LE_filteredData[0:20])

 RE_OffsetData = RE_filteredData - RE_Offset
 LE_OffsetData = LE_filteredData - LE_Offset

 RE_CalibratedData = numpy.dot(LE_OffsetData, RE_gain)*1
 LE_CalibratedData = numpy.dot(RE_OffsetData, LE_gain)*1

 vergence = RE_CalibratedData - LE_CalibratedData

 try:
 position = artrem(vergence)
 (latency,pv,ttpv,st,fa) = metrics (position[0],position[1],0)
 transient = abs(numpy.mean(vergence[-round(len(vergence)/2):]))
 if abs(fa) == 9999 and abs(pv) == 9999:
 fa = 0
 pv = 0
 if transient > 5 or pv > 50:
 break

50

 except(RuntimeError, TypeError, NameError, ValueError, LinAlgError):
 RE_gain = numpy.nan
 LE_gain = numpy.nan
 break

 RE_gain_arr.append(RE_gain)
 LE_gain_arr.append(LE_gain)
 k = 0
 for i in numpy.arange(0,len(RE_gain_arr)-1):
 if RE_gain_arr[i-k] and LE_gain_arr[i-k] > 1.1:
 RE_gain_arr[i-k] = RE_gain_arr[i-k]
 LE_gain_arr[i-k] = LE_gain_arr[i-k]
 else:
 RE_gain_arr.remove(RE_gain_arr[i-k])
 LE_gain_arr.remove(LE_gain_arr[i-k])
 k = k + 1

 if len(RE_gain_arr) == 0:
 Gain_values[0,0] = 9999
 Gain_values[0,1] = -9999
 else:
 Gain_values[0,0] = numpy.nanmean(RE_gain_arr)
 Gain_values[0,1] = numpy.nanmean(LE_gain_arr)

 Right_Rvalue_string = "Right R^2 vlaue is:" +" "+ "NAN"
 Left_Rvalue_string = "Left R^2 vlaue is:" +" "+ "NAN"

 sign = numpy.sign(Gain_values)
 sign[0,0] = 1
 sign[0,1] = -1
 Best_Gains[0,0] = numpy.max((abs(Gain_values[:,0])))
 Best_Gains[0,1] = numpy.max((abs(Gain_values[:,1])))

 Best_Gains = Best_Gains*sign
 Best_Gains = Best_Gains[~(Best_Gains==0).any(1), :]
 Gain_values = Best_Gains

 Right_Gain_string = "Right Gain vlaue is:" +" "+ str(round(Gain_values[0][0],3))

 Left_Gain_string = "Left Gain vlaue is:" +" "+ str(round(Gain_values[0][1],3))

 mylist.insert(END, Right_Gain_string)
 mylist.insert(END, Right_Rvalue_string)
 mylist.insert(END, Left_Gain_string)
 mylist.insert(END, Left_Rvalue_string)

 # Create empty lists contaning all the different eye movments
 t = time.time()

51

 CON_04_08, CON_02_06, CON_02_08, DIV_08_04, DIV_06_02, DIV_08_02,
CON_STEP_2to6_RAMP_6to8, DIV_STEP_8to4_RAMP_4to2 = ([] for i in range(8))
 CON_08_12, CON_06_10, CON_06_12, DIV_12_08, DIV_10_06, DIV_12_06,
CON_STEP_6to10_RAMP_10to12, DIV_STEP_12to8_RAMP_8to6 = ([] for i in range(8))
 R05, R10, L05, L10 = ([] for i in range(4))
 FAR = [CON_04_08, CON_02_06, CON_02_08, DIV_08_04, DIV_06_02, DIV_08_02,
CON_STEP_2to6_RAMP_6to8, DIV_STEP_8to4_RAMP_4to2]
 NEAR = [CON_08_12, CON_06_10, CON_06_12, DIV_12_08, DIV_10_06, DIV_12_06,
CON_STEP_6to10_RAMP_10to12, DIV_STEP_12to8_RAMP_8to6]
 SACCADES = [R05, R10, L05, L10]
 eye_movments = [FAR, NEAR, SACCADES]

 l = 0
 for mvmttype in ["FAR","NEAR","SACCADES"]:
 mvmtlen = protodata[mvmttype][0][0].__len__()
 j = 0
 for k in numpy.arange(0,mvmtlen):
 sequnumber = protodata[mvmttype][0][0][k]-1
 for i in numpy.arange(0,sequnumber.shape[1]):
 data = matdata[0][sequnumber[0][i]]
 right_eye = data[0]
 left_eye = data[1]

 RE_filteredData = dataBWFilter(right_eye)
 LE_filteredData = dataBWFilter(left_eye)

 LE_Offset = numpy.mean(LE_filteredData[0:20])
 RE_Offset = numpy.mean(RE_filteredData[0:20])

 LE_OffsetData = LE_filteredData - LE_Offset
 RE_OffsetData = RE_filteredData - RE_Offset

 RE_CalibratedData = numpy.dot(LE_OffsetData,(1/Gain_values[0][0]))*1
 LE_CalibratedData = numpy.dot(RE_OffsetData,(1/Gain_values[0][1]))*1

 eyemvmt = [RE_CalibratedData,LE_CalibratedData]

 if i == sequnumber[0][0]:
 eye_movments[l][j].append(eyemvmt)
 elif data.shape[1] != 2000:
 eyemvmt = [RE_CalibratedData[0:2000],LE_CalibratedData[0:2000]]
 eye_movments[l][j].append(eyemvmt)
 continue
 else:
 eye_movments[l][j].append(eyemvmt)
 j = j + 1
 l = l + 1

52

 t = time.time() - t
 print(t)

def openNewWindow():

 # Toplevel object which will
 # be treated as a new window
 plotWindow = Toplevel(root)

 # sets the title of the
 # Toplevel widget
 plotWindow.title("Plot Window")

 def plot():
 # the figure that will contain the plot
 fig = Figure(figsize = (2.5, 2.5),
 dpi = 100)

 # adding the subplot
 plot1 = fig.add_subplot(111)

 vergence = eye_movments[0][0][2][0] + eye_movments[0][0][2][1]

 # plotting the graph
 plot1.plot(vergence)

 # creating the Tkinter canvas
 # containing the Matplotlib figure
 canvas = FigureCanvasTkAgg(fig,
 master = plotWindow)
 canvas.draw()

 # placing the canvas on the Tkinter window
 canvas.get_tk_widget().place(anchor = CENTER, relheight=.250, relwidth=.250, relx = .50, rely
= .50)

 # creating the Matplotlib toolbar
 toolbar = NavigationToolbar2Tk(canvas,
 plotWindow)
 toolbar.update()

 # placing the toolbar on the Tkinter window
 canvas.get_tk_widget().pack()
 def setEyemvmnt_option(event):
 global Eyemvmnt_option
 if Eyemvmnt_option.get() == "FAR":
 eye_movments[0][0][k][0]
 if Eyemvmnt_option.get() == "NEAR":

53

 eye_movments[0][0][k][0]
 if Eyemvmnt_option.get() == "SACCADES":
 eye_movments[0][0][k][0]

 FAR_mvmttype = ["CON_04_08", "CON_02_06", "CON_02_08", "DIV_08_04", "DIV_06_02",
"DIV_08_02", "CON_STEP_2to6_RAMP_6to8", "DIV_STEP_8to4_RAMP_4to2"]
 NEAR_mvmttype = ["CON_08_12", "CON_06_10", "CON_06_12", "DIV_12_08", "DIV_10_06",
"DIV_12_06", "CON_STEP_6to10_RAMP_10to12","DIV_STEP_12to8_RAMP_8to6"]
 SACCADES_mvmttype = ["R05", "R10", "L05", "L10"]
 EyemvmntList = ["FAR","NEAR","SACCADES"]

MvmntType_option = FAR_mvmttype
 MvmntType_option = StringVar()
 MvmntType_option.set(FAR_mvmttype[0])

 Eyemvmnt_option = StringVar()
 Eyemvmnt_option.set(EyemvmntList[0])

 MvmntTypeDropDown = OptionMenu(plotWindow, MvmntType_option, *FAR_mvmttype)
#Dropdown Menu
 MvmntTypeDropDown.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = .35, rely =
0.15)

 EyemvmntDropDown = OptionMenu(plotWindow, Eyemvmnt_option, *EyemvmntList)
#Dropdown Menu
 EyemvmntDropDown.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = .15, rely =
0.15)

 plot_button = Button(master = plotWindow,
 command = plot,
 height = 2,
 width = 10,
 text = "Plot")

 # place the button
 # in main window
 plot_button.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = 0.15, rely = 0.35)

 # sets the geometry of toplevel
 plotWindow.geometry("1080x720")

VNEL_Image = Image.open(r"C:\Users\Farhan Ahmad\Desktop\rawData\RETINAS
Image\VNEL_final.png")
VNEL_photo = ImageTk.PhotoImage(VNEL_Image)
copy_of_image = VNEL_Image.copy()

54

VNEL_Label = Label(root, image = VNEL_photo, width = 100, height = 50)
VNEL_Label.bind('<Configure>', resize_image)
VNEL_Label.place(anchor = SE, relheight= .250, relwidth= .250, relx= 1, rely= 1)

quitButton = Button(root, text = "Quit", width = 10, height = 5, command = stop) #Quit Button
quitButton.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = .15, rely = .75)

LoadModeButton = Button(root, text = "Load Preprocessed Data", width = 10, height = 5,
command = loaddata) #Load Button
LoadModeButton.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = 0.15, rely = .5)

def setgain_type(event):
 global Cal_option
 if Cal_option.get() == "NORMAL":
 mylist.insert(END, "Gain selection using NORMAL procedure")
 elif Cal_option.get() == "SACCADES":
 mylist.insert(END, "Gain selection using SACCADES procedure")
 elif Cal_option.get() == "AUTOMATIC":
 mylist.insert(END, "Gain selection using AUTOMATIC procedure")

Cal_options = ["NORMAL", "SACCADES", "AUTOMATIC"]
Cal_option = StringVar()
Cal_option.set(Cal_options[0])

GainDropDown = OptionMenu(root, Cal_option, *Cal_options, command = setgain_type)
#Dropdown Menu
GainDropDown.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = .35, rely = 0.75)

PreprocessModeButton = Button(root, text = "Preprocess", width = 10, height = 5, command =
preprocess) #Preprocess button
PreprocessModeButton.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = .35, rely =
0.5)

AnalyzeModeButton = Button(root, text = "Analyze", width = 10, height = 5, command = analyze)
#Analyze button
AnalyzeModeButton.place(anchor = CENTER, relheight=.150, relwidth=.1500, relx = 0.55, rely =
0.5)

scrollbar = Scrollbar(root)
scrollbar.place(anchor = CENTER, relheight=.150, relwidth=.025, relx = 0.85, rely = 0.25)
mylist = Listbox(root, yscrollcommand = scrollbar.set)
mylist.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = 0.75, rely = 0.25)
scrollbar.config(command = mylist.yview)

PlotModeButton = Button(root, text = "Plot Data", width = 10, height = 5, command =
openNewWindow) #Plot data button
PlotModeButton.place(anchor = CENTER, relheight=.150, relwidth=.150, relx = 0.55, rely = 0.75)

55

myLabel = Label(root, text = "Select The Action You Wish To Choose", font = ("Purisa", 15), width
= 10, height = 5)
myLabel.place(anchor = CENTER, relheight=.100, relwidth=.250, relx = 0.15, rely = 0.15)

root.geometry("1080x720")
root.mainloop()

56

APPENDIX B

HUMAN VS R.E.T.I.N.A.S. LATENCY DATA

Human R.E.T.I.N.A.S.

0.246 0.136

0.238 0.120

0.232 0.654

0.696 0.102

0.53 0.262

0.2218 0.276

0.256 0.334

0.248 0.378

0.208 0.222

0.21 0.260

0.254 0.186

0.1982 0.238

0.312 0.102

0.292 0.102

0.3744 0.718

0.206 1.196

0.21 0.102

0.208 0.270

0.214 1.160

0.2648 0.116

0.3 0.578

0.282 0.102

0.3374 0.424

0.2442 0.102

0.2258 0.268

0.23 0.102

0.8525 0.102

0.3733 0.782

0.3825 0.220

0.2487 0.102

0.312 0.164

0.174 0.140

0.248 0.496

0.1705 0.178

0.214 0.102

0.1521 0.170

0.2074 0.258

1.228 0.516

0.218 1.130

0.2442 0.198

0.2298 1.422

57

0.264 0.102

0.33 0.102

0.168 0.102

0.2166 0.102

0.216 0.964

0.1705 0.258

0.2056 0.116

0.168 0.352

0.1922 0.392

0.252 0.267

0.1949 0.114

0.1868 0.308

0.2298 0.102

0.211 0.340

0.1613 0.102

0.2594 0.600

0.246 0.338

0.2442 0.470

0.208 0.347

0.203 0.250

0.252 0.334

0.212 0.158

0.258 0.284

0.276 0.102

58

Human Vs R.E.T.I.N.A.S. Final Amplitude Data

Human R.E.T.I.N.A.S.

3.3797 1.714

3.5338 1.841

3.7288 1.679

3.3453 4.264

2.9713 1.925

4.6135 1.528

4.667 1.767

4.5677 1.229

3.0695 1.866

0.6753 1.907

1.2109 1.203

0.4571 1.544

3.0596 4.468

2.2158 2.487

0.5865 1.509

4.0639 1.304

3.7315 1.603

4.1384 1.537

3.3699 1.090

4.009 1.535

4.1006 1.298

4.0406 1.525

3.7601 1.044

3.0585 1.802

2.2243 1.532

3.7032 2.904

3.0147 1.026

3.6798 2.713

3.8092 4.208

2.9789 2.230

3.8996 2.146

4.6016 4.455

4.4428 1.522

4.4317 4.048

4.6919 1.602

4.6346 4.356

4.2732 4.458

4.3098 2.649

4.3639 4.132

3.3398 1.373

3.2817 2.988

4.2196 1.339

4.0412 2.502

59

4.423 1.046

3.8826 1.202

4.5793 1.080

4.0814 1.592

4.1221 1.836

3.7091 1.136

4.4266 1.875

4.2778 1.973

4.1085 1.931

3.9618 2.692

3.144 3.073

3.7337 2.572

3.6906 3.141

3.656 1.693

3.6137 1.885

3.7244 1.170

3.9377 1.468

4.4257 4.322

4.4636 2.162

4.0322 2.117

4.5621 1.980

3.6715 4.786

60

Human Vs R.E.T.I.N.A.S. Peak Velocity Data

Human R.E.T.I.N.A.S.

10.7165 16.172

10.009 14.447

10.8732 11.342

7.0793 12.742

4.9345 11.610

16.0948 11.573

14.6448 9.740

15.9397 16.670

12.891 11.456

8.5144 22.610

7.835 18.153

3.7159 16.820

7.7495 18.664

4.1456 18.176

1.3047 13.540

10.774 16.285

14.6801 21.370

12.0319 9.881

14.8472 24.869

11.6516 12.691

9.774 24.812

9.3139 16.586

8.5854 25.737

9.4598 11.750

9.7972 11.600

10.2007 11.500

11.274 8.858

8.352 18.994

7.3087 24.480

10.9129 5.350

7.8292 13.890

18.0064 2.715

7.7009 9.675

14.8706 15.358

19.8708 2.170

21.097 13.579

10.3521 26.250

18.9755 14.970

13.7074 22.630

6.3565 15.982

7.5614 13.437

12.8372 11.186

10.9242 23.560

61

8.5538 11.631

7.361 23.329

13.1491 17.240

13.6461 2.540

14.8495 11.860

14.8158 16.229

12.9024 21.323

18.5257 14.110

17.5655 8.178

13.4847 17.160

11.7514 16.461

11.1788 3.978

9.8343 17.720

13.5276 11.160

13.2339 11.450

12.1802 25.456

11.3719 22.290

12.2976 13.318

11.0531 17.684

11.3179 11.222

12.1755 11.772

8.1986 14.444

62

Human Vs R.E.T.I.N.A.S. Time to Peak Velocity Data

Human R.E.T.I.N.A.S.

0.56 0.148

0.512 0.410

0.462 0.136

0.832 0.666

0.678 0.284

0.448 0.992

0.404 0.350

0.354 0.390

0.356 0.254

0.376 0.260

0.404 0.418

0.232 0.298

0.4 0.220

0.372 0.650

0.656 0.856

0.404 1.196

0.374 1.014

0.272 0.296

0.258 1.214

0.476 0.448

0.504 1.148

0.54 0.420

0.504 1.240

0.578 0.128

0.446 0.292

0.476 0.242

0.866 0.520

0.624 0.906

0.68 0.344

0.548 0.192

0.44 0.264

0.322 0.326

0.33 0.864

0.43 0.236

0.274 0.900

0.416 0.340

0.304 0.276

0.386 0.694

0.448 1.212

0.284 0.266

63

0.294 1.484

0.416 0.122

0.386 1.350

0.38 0.102

0.308 1.332

0.314 1.442

0.478 0.498

0.34 0.420

0.35 0.364

0.322 0.556

0.34 1.324

0.356 0.186

0.384 1.094

0.3 0.744

0.442 1.348

0.398 0.102

0.472 0.774

0.476 0.338

0.504 1.116

0.302 1.348

0.294 1.398

0.496 0.350

0.45 1.396

0.372 0.342

0.396 0.116

64

REFERENCES

1. Daniel M. Albert, D.M.G. Ophthalmoplegia. 2018;
https://www.britannica.com/science/ophthalmoplegia].

2. Coubard, O., et al., Effects of TMS over the right prefrontal cortex on latency of saccades
and convergence. Invest Ophthalmol Vis Sci, 2003. 44(2): p. 600-9.

3. Giesel, M., et al., Relative contributions to vergence eye movements of two binocular cues
for motion-in-depth. Scientific Reports, 2019. 9(1): p. 17412.

4. Scheiman, M., J. Gwiazda, and T. Li, Non-surgical interventions for convergence
insufficiency. The Cochrane database of systematic reviews, 2011(3): p. CD006768-
CD006768.

5. Ciuffreda, K.J., Eye Movements; Vergence, in Encyclopedia of the Neurological Sciences
(Second Edition), M.J. Aminoff and R.B. Daroff, Editors. 2014, Academic Press: Oxford. p.
258-259.

6. Convergence Insufficiency Treatment Trial Study, G., Randomized clinical trial of
treatments for symptomatic convergence insufficiency in children. Archives of
ophthalmology (Chicago, Ill. : 1960), 2008. 126(10): p. 1336-1349.

7. Convergence insufficiency/excess. 2018; Available from:
https://visiontherapypaducah.com/convergence-insufficiency-excess/.

8. Alvarez, T.L., et al., The Convergence Insufficiency Neuro-mechanism in Adult Population
Study (CINAPS) Randomized Clinical Trial: Design, Methods, and Clinical Data. Ophthalmic
epidemiology, 2020. 27(1): p. 52-72.

9. Dalton, P.D., et al., Chapter 17 - Tissue Engineering of the Nervous System, in Tissue
Engineering (Second Edition), C.A.V. Blitterswijk and J. De Boer, Editors. 2014, Academic
Press: Oxford. p. 583-625.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2 Methods
	Chapter 3: Results
	Chapter 4: Discussion and Future Works
	Appendix A: Python Code
	Appendix B: Human vs R.E.T.I.N.A.S. Latency Data
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

	List of Tables
	List of Terms (1 of 2)
	List of Terms (2 of 2)

