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ABSTRACT

GLOBAL MHD AND ACOUSTIC SOLAR MODELING AND
HELIOSEISMIC ANALYSIS

by
Andrey M. Stejko

Computational fluid dynamic simulations have become one of the most prolific

avenues of study in the fields of solar and stellar physics within the last several

decades. With the advent of ever increasing computing power, high-definition global

models of the Sun have become indispensable in understanding the complex and

chaotic nature of flows in the solar interior, as well as their impact on the evolution

of the global solar dynamo. The mechanisms that connect the generation of the

toroidal magnetic field at the base of the convection zone to the emergence of a

poloidal field onto the solar surface can be explored with the non-linear global model:

EULAG-MHD (EULerian/semi-LAGrangian fluid solver—MagnetoHydroDynamic

extension). This model is used to investigate the role that subsurface shear plays

in shaping the extended solar magnetic cycle. The simulation of a wide range of

convective near-surface transport regimes demonstrates that increased subsurface

convection appears to have a significant impact on the distribution of angular

momentum and the development of the α-effect—responsible for transforming the

toroidal magnetic field into a poloidal one. These changes result in a global shift of

the surface expression of the solar dynamo, from a North-South symmetric pattern

to a staggered anti-symmetric emergence, more in line with solar observations.

The results of these global MHD models illustrate the significance of the

near-surface shear layer (NSSL) and the radiative-convective interface (the tachocline)

in shaping the evolution of the global magnetic field. The crucial key connecting the

magnetic activity in these two layers is the action of the meridional circulation in the

convection zone. The exact nature of meridional structure, however, is uncertain, with



techniques in helioseismology showing inferences for both single-cell and double-cell

meridional profiles—results that carry large implications for the transport of magnetic

flux near the tachocline. In order to address this controversy from a modeling

perspective, this dissertation presents the formulation of a three-dimensional (3D)

numerical solver of the linearized compressible Euler equations (GALE—Global

Acoustic Linearized Euler), on a full spherical mesh. The application of an efficient

pseudo-spectral computational method is used to calculate the contribution of the

material derivative dyad in its conservative form, simulating the impact internal

solar mass flows on helioseismic signatures. This algorithm is employed in a

forward-modeling capacity, investigating profiles of single-cell meridional circulation

with deep and shallow return flows, as well as double-cell meridional circulation

with strong and weak reversals. The travel-time signatures for the four profiles

are measured in an attempt to explore whether deviations in these regimes can

be distinguished from realization noise—simulated by the stochastic excitation of

resonant modes in the convective interior. These measurements show that even

though the low-end of differences between profiles of single- and double-cell meridional

circulation may be indistinguishable, the analysis of meridional circulation generated

by mean-field models may offer the opportunity to better understand and constrain

inferences of helioseismology in the context of their impact on global dynamics.

The pseudo-spectral method used in the formulation of the GALE code presents

the possibility of extending its numerical techniques to the contributions of all external

forces in their conservative form. This allows for the development of a new efficient

non-linear compressible global MHD algorithm, computed entirely in frequency space.

Such a global solar model can be used to explore the connection between the action

of the dynamo on the solar surface and at the tachocline as a single interconnected

evolving system, something that cannot be adequately achieved in the anelastic

approximation employed in many global solar MHD models.
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Through the closed blinds the golden sun
Poured in a dusty beam,

Like the celestial ladder seen
By Jacob in his dream.

Henry Wadsworth Longfellow
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CHAPTER 1

INTRODUCTION

1.1 The Solar Dynamo

Figure 1.1 The global magnetic field generated by the EULAG-MHD model (see
Chapter 2). A strong toroidal magnetic field is shown emerging onto the surface in
the upper hemisphere, with magnetic field lines drawn in.
Source: Image generated by Timothy Sandstrom NASA/NAS .

The solar dynamo is a complex magnetic mechanism that serves as the generator

for the Sun’s magnetic field and the 11-year solar cycle that can be observed in the

sunspot pattern on the solar surface (Figure 1.2). By employing large-scale flows of

plasma on the Sun, such as differential rotation (see Subsection 1.2.2) and meridional

circulation (see Subsection 1.2.3), together with the contribution of turbulent cyclonic

motions and currents, the so called α-effect, models of the solar dynamo aim
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to simulate the development and evolution of the large-scale solar magnetic field

(Charbonneau, 2010). Polarity reversals every 11 years, equatorward migration of

sunspots during cycles, as well as the hemispheric anti-symmetry of the magnetic

field, however, are issues that still have not been adequately explained. Between

mean-field dynamo-wave (Parker, 1955; Moffatt, 1978; Brandenburg & Subramanian,

2005; Pipin & Kosovichev, 2019) and flux-transport (Babcock, 1961; Leighton, 1969)

solar dynamo models there is still no consensus about the locations and mechanisms

responsible for these observations.

Figure 1.2 The butterfly diagram of sunspots shows their average location in
latitude plotted against time, since the first detailed observations in 1874.
Source: Hathaway, 2021, https://solarcyclescience.com [accessed on May 1, 2021] .

In mean-field dynamo theory, the generation of the toroidal magnetic field is

presumed to be dominant in the high shear region at the base of the convection

zone, but the location of the α-effect is particularly uncertain. Parker (1955) and

Steenbeck et al. (1966) theorized the contribution of the turbulent kinetic helicty, or

α-effect, while Babcock (1961) suggested the formation of a near-surface poloidal field

due to the diffusive decay of active regions (Subsection 1.1.1). In this scenario the

connection with the toroidal field at the base of the convection zone would occur via

meridional circulation. This approach found relative success in modeling some of the

main characteristics of the solar cycle for profiles of differential rotation, meridional
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Figure 1.3 A visual representation of the evolution of the solar dynamo. In (a), (b),
and (c), the poloidal field is stretched into a toroidal field in the high shear region at
the base of the convection zone. (d), (e), and (f) demonstrate the development of the
toroidal field back into the poloidal field (g), through the turbulent cyclonic process
of the α-effect. (h), (i), and (j) show the development of the poloidal field due to the
diffusive decay of active regions in the Babcock-Leighton dynamo mechanism.
Source: adapted from Sanchez et al. (2014).

circulation and the kinetic α-effect (e.g., Dikpati & Charbonneau, 1999; Nandy

& Choudhuri, 2002). These simulations were performed in one hemisphere and

anti-symmetry of the toroidal field across the equator was not explored. An issue of

parity, however, resulted when flux-transport dynamo models with both hemispheres

were considered. Several alternate theories have been since proposed to address the

issue—among which are three hypotheses: placing the α-effect near the base of

the convection zone (Dikpati & Gilman, 2001; Bonanno et al., 2002), considering

a magnetic diffusivity for the poloidal field two orders of magnitude larger than

that of the toroidal field (Chatterjee et al., 2004), and including the contribution

of turbulent pumping (Guerrero & de Gouveia Dal Pino, 2008). The first hypothesis

has some caveats since the strong toroidal field in the region would normally quench

kinetic turbulent action. Nevertheless, the development of buoyant or magneto-shear

instabilities in this region may circumvent the problem, providing a different source

for the α-effect (Dikpati & Gilman, 2001). By using the test-field method to explore
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the non-linear behavior of turbulent coefficients in simplified flows, Karak et al. (2014)

found that the quenching of turbulent diffusivity is isotropic, i.e., the same for all field

components. Even though the conditions in the test-field models differ from the solar

interior, the second hypothesis seems unrealistic in view of these results. The third

hypothesis is still feasible, however, it is hard to predict the amplitudes and profiles

of the turbulent transport coefficients.

1.1.1 Active regions

Figure 1.4 An active region as viewed by the 1-meter Swedish Solar Telescope
(left, Scharmer et al. (2003)) and the Solar Dynamics Observatory (right, see
Subsection 1.2.1).
Source: https://scied.ucar.edu/sun-active-region [accessed on May 1, 2021].

Active regions are the surface manifestations of the global solar magnetic field.

Toroidal magnetic flux tubes are assumed to rise from the base of the convecction zone

to the surface via magnetic buoyancy and solar convection (Parker, 1955). As flux
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tubes hit the photosphere, they begin to emerge onto the solar surface as magnetic

elements of positive and negative polarities. If the magnetic flux in the region is

strong enough (> 1020 Mx) they begin to form sunspots, otherwise they will remain

as “ephemeral active regions” (Harvey & Martin, 1973). Strong active regions are

often associated with the rise of arch filament systems (AFS), or magnetic loops

pushed into the corona by the undular mode of the Parker instability (Parker, 1979;

Shibata et al., 1989). Magnetic reconnection in these regions can often result in the

abrupt release of energy in the form of solar flares or coronal mass ejections (CMEs)

(see Toriumi & Wang, 2019).

Techniques in local helioseismology (see Subsection 1.2.1) have been used to

probe subsurface regions in an attempt to observe flow fields in the presence of

emerging magnetic structures (Kosovichev, 2009; Kosovichev et al., 2018), with

Ilonidis et al. (2011) demonstrating that a signal can be detected for up to one or two

days before the emergence of the region onto the solar surface.

1.2 Solar Dynamics

Internal solar dynamics describe the complex structure of plasma flows in the

convective interior of the Sun, which act to generate and regulate the solar dynamo.

The two main global regimes of these flows are characterized by differential rotation

(Subsection 1.2.2) and meridional circulation (Subsection 1.2.3). The most effective

tool to observe the action of these flows directly in the solar interior is through the

lens of helioseismology, as described in Subsection 1.2.1.

1.2.1 Helioseismology

Helioseismology has evolved into one of the pillars of heliophysics ever since 5-minute

oscillations were first measured on the solar surface nearly 60 years ago (Leighton

et al., 1962; Claverie et al., 1979). The interior of the solar convective zone forms a
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Figure 1.5 A representation of the path of acoustic rays traveling through the solar
interior.
Source: adapted from Christensen-Dalsgaard (2014).

resonant cavity for acoustic waves called “p-modes”. These acoustic modes are a rich

source of information—allowing for some of the most precise measurements of internal

solar dynamics that are currently available. They have become an indispensable tool

in measuring internal solar rotation (Duvall et al., 1984; Schou et al., 1998; Howe

et al., 2011) as well as meridional circulation (Giles et al., 1997; Zhao & Kosovichev,

2004). Comprehensive overviews on the application and history of global and local

helioseismology techniques can be found in Christensen-Dalsgaard (2002); Di Mauro

(2003); Gizon & Birch (2005).

The Michelson Doppler Imager (MDI) (Scherrer et al., 1995) of the Solar

and Heliospheric Observatory (SOHO) (Domingo et al., 1995), its successor—the

Helioseismic and Magnetic Imager (HMI) (Scherrer et al., 2012) aboard the Solar

Dynamics Observatory (SDO) spacecraft (Pesnell et al., 2012), as well as the Global

Oscillation Network Group (GONG) (Harvey et al., 1996) have been instrumental in
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providing the long-term observational Doppler data needed to analyze these internal

flow structures using helioseismology techniques.

1.2.2 Differential rotation

Figure 1.6 The contour of rotational frequency in the Sun. The profile of differential
rotation shows a substantial acceleration near the equator, within the convection zone.
Source: adapted from Matilsky et al. (2020).

Solar rotation is a deceptively complex part of interconnected flow structure

throughout the Sun’s interior. Understanding the global interplay of the variation in

rotation rates is vital to creating accurate mean-field models of the solar dynamo and

flow dynamics (Kitchatinov, 2013). The solar surface shows a pattern of differential

rotation (Snodgrass & Ulrich, 1990) which varies from its period at the equator

(∼ 24 days) to near the poles (∼ 30 days). This pattern is mimicked throughout

the convective interior (upper 30% of the solar radius), with a slight maximum in

the velocity of subsurface layers (∼ 0.95R�). These rates begin to converge at the

interface between the radiative and convective layers (the “tachocline”, see Kosovichev

(1996)) where the differential rotation is coupled to a solid core rotating at rate of

∼ 430 nHz. Helioseismology has offered a wealth of information about solar rotation,
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however, uncertainties remain in inversion results near the poles. Disagreement can

be seen between measurements from GONG, MDI and HMI (Schou et al., 2002; Howe

et al., 2011); the recent Solar Orbiter mission (Müller et al., 2020), however, hopes to

provide observational data that can help address these discrepancies. The rotation

rate of the solar core also remains a mystery, with measurements of low-degree modes

(l = 1 − 4) ranging from significantly lower rates (BiSON, Chaplin et al. (1996))

to much higher ones (IRIS, Lazrek et al. (1996)). Recent measurements of internal

gravity modes or “g-modes” have also implied rotation rates more than twice as fast

as previous estimates (Fossat et al., 2017).

1.2.3 Meridional circulation

Figure 1.7 A simple model of meridional circulation in the convection zone,
consistent with the continuity of mass flows in the Sun.
Source: adapted from Giles (2000).

Meridional circulation is characterized by poleward flows (20 m s−1) in each

hemisphere, seen in the Doppler measurements of the solar surface (Duvall, 1979;

Hathaway, 1996; Ulrich, 2010). These mass flows operate as large circulation

cells, redistributing angular momentum and magnetic flux (Hathaway et al., 2003)
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throughout the convective interior. Local helioseismology techniques (Christensen-

Dalsgaard, 2002; Gizon & Birch, 2005) have been an indispensable tool with which to

probe the structure of these flows, providing consistent measurements of subsurface

layers (> 0.96R�) (e.g., Giles et al., 1997; Zhao & Kosovichev, 2004; Komm et al.,

2015; Jackiewicz et al., 2015; Bogart et al., 2015; Böning et al., 2017; Lin & Chou,

2018). Attemping to resolve deeper structures, however, has been much more difficult.

Figure 1.8 Travel-time differences in the cross-correlation of acoustic oscillations
(see Section 4.2 for more details), demonstrating the systematic center-to-limb effect,
where φ is the distance from the center of the observed solar disk. ∆ represents
ranges of acoustic ray travel distance along the solar surface and α is the angle from
a horizontal line drawn through the disk center.
Source: adapted from Chen (2019).

Measurements can be affected by systematic errors, such as center-to-limb

(CtoL) variations in travel-time measurements (Zhao et al., 2012; Chen, 2019). This

systematic error is an order of magnitude larger than travel-time differences due to

meridional circulation, making it difficult to minimize errors when attempting to

remove it. The basis of this effect is poorly understood—potentially considered to

be a result of projection effects decreasing the resolution near the limb. Analyzing

simulated foreshortening on remapped HMI data, however, has shown that this is
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most likely not the case (Zhao et al., 2016). Baldner & Schou (2012) suggested that

near-surface convection may cause a phase shift in acoustic modes, varying with the

line-formation height. A detailed analysis of the effect of granulation on acoustic

modes was made by Schou (2015), measuring a strong correlation, although a full

quantative characterization of the effect has yet to be achieved. Removing it from

measurements of meridional circulation is a difficult task, however, new empirical

approaches in disentangling the error using frequency-dependent analysis have shown

some success (e.g., Chen & Zhao, 2018; Rajaguru & Antia, 2020).

Another significant systematic error results from the interference of what appear

to be effective downflows in surface magnetic regions (see Liang & Chou (2015)).

These regions can be masked out (Liang & Chou, 2015; Chen & Zhao, 2017, 2018;

Lin & Chou, 2018; Chen, 2019; Gizon et al., 2020), however, this results in a reduction

of available observational data. Drawing meaningful conclusions from smaller samples

can often be difficult as weak flows deep in the solar interior are obscured by

a realization noise (Gizon & Birch, 2004), resulting from the turbulent nature of

convection near the solar surface.

There is currently no consensus on the exact structure and location of the return

flow of meridional circulation. Although historically thought to sit at the base of the

tachocline (∼ 0.72 R�, see Giles (2000)), recent estimates show a much shallower

return flow (from ∼ 40 to ∼ 70 Mm in depth; Mitra-Kraev & Thompson (2007);

Hathaway (2012), respectively). Double- or multi-cell models have also been proposed

from analysis of MDI, HMI, and GONG data (Zhao et al., 2013; Schad et al., 2013;

Kholikov et al., 2014; Böning, 2018; Lin & Chou, 2018; Chen, 2019). Similar results

can be seen in numerical, convectively driven, magnetohydrodynmic (MHD) and

hydrodynmic (HD) simulations (Brun & Toomre, 2002; Miesch et al., 2006; Guerrero

et al., 2013; Matilsky et al., 2019). Recent analysis of MDI and GONG data, however,

has reasserted the single-cell structure (Gizon et al., 2020), typically employed by
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mean-field models of the Sun (Rempel, 2005; Hotta & Yokoyama, 2011; Küker et al.,

2011; Kitchatinov, 2013) and other late-type stars (Kitchatinov & Olemskoy, 2012).

Figure 1.9 The latitudinal velocities (uθ in m s−1) that characterize meridional
circulation. A) Inversion results of HMI data, implying a two-cell structure.
Source: adapted from Zhao et al. (2013).

B) Inversion results of MDI and GONG data, implying a one-cell meridional structure.
Source: adapted from Gizon et al. (2020).

The convectively-driven hydrodynamic models of Guerrero et al. (2013);

Gastine et al. (2014); Käpylä et al. (2014); Featherstone & Miesch (2015) explore

single/multi-cell circulation regimes constrained by anti-Solar and Solar profiles of

differential rotation. In these models, non-diffusive turbulent Reynolds stresses, or

“gyroscopic pumping” (the Λ-effect, Ruediger (1989); Kitchatinov & Rudiger (1993)),

play a critical role connecting angular momentum transport to transitions between

meridional circulation regimes (Kitchatinov, 2013). Altering the direction of the

Λ-effect directly (Bekki & Yokoyama, 2017) has been shown to form counter-rotation

cells in the lower convection zone; Pipin & Kosovichev (2018) demonstrate that radial

variations of the Coriolis number near the tachocline can be a potential physical source

of this sign inversion.
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1.3 Global Modeling - Overview and Motivation

Global modeling has played a key role in exploring the interactions of differential

rotation, meridional circulation, and the solar dynamo in chaotic interconnected

systems. Without the ability to observe the solar interior directly, 3D models

generate a laboratory environment that can be used to recreate and better understand

the complex dynamics that characterize the Sun’s internal structure. The work

presented in this dissertation focuses on the results and implications of global

magnetohydrodynamic (MHD) modeling (Subsection 1.3.1) as well as the eventual

need for more dynamic models with a greater range in simulation regimes—motivating

the development of a new global linear model (Subsection 1.3.2) that will become a

basis for future investigations.

1.3.1 MHD modeling

Non-linear global convectively-driven magnetohydrodynamic (MHD) modeling has

attempted to answer some of the outstanding questions on the nature of the solar cycle

by incorporating realistic conditions of observable solar parameters in simulations

of internal solar dynamics (Brun et al., 2004; Ghizaru et al., 2010; Racine et al.,

2011; Cossette et al., 2013; Nelson et al., 2013; Augustson et al., 2015; Guerrero

et al., 2016; Cossette et al., 2017; Warnecke, 2018; Guerrero et al., 2019). Even

though there has been enormous progress since the seminal work of Gilman &

Miller (1981), models are not yet able to successfully reproduce many solar cycle

properties; migration patterns of the surface field as well as the non-axisymmetric

dynamo coupled with solar-like differential rotation and meridional circulation has

yet to be naturally simulated in a satisfactory way. Recently, it has become apparent

that limiting the simulated domain to the convective interior may be insufficient,

with Guerrero et al. (2016) demonstrating the substantial effect of the tachocline

layer on the long-term evolution of the magnetic solar cycle. The addition of this
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sub-adiabatic region under the convection zone sees a dramatic increase in the period

of the dynamo cycle, pushing it from a time-frame of years (see also Augustson et al.,

2015; Warnecke, 2018) to that of decades, storing a strong oscillatory magnetic field

below the tachocline. The work presented in this dissertation focuses on the extension

of various regimes of the same model (EULAG-MHD, see Section 2.1) to the solar

surface, where the beginnings of a near-surface shear layer (NSSL) can be seen in

higher Rossby number regimes. High levels of shear are instrumental in generating

large-scale toroidal fields, seen dominating the surface and the base of the tachocline

in previous models (Guerrero et al., 2016). These simulations exhibit solar cycles that

strongly rely on varying regions of shear as well as turbulent helicities to generate

large-scale poloidal fields. The structure of the subsurface rotational shear plays a key

role in shaping the emergence of the solar magnetic field in the form of the butterfly

diagram (Brandenburg, 2005), and introducing changes to this subsurface boundary

layer appears to modify the parity of the solution.

Global convectively driven MHD models focus on the incompressible region of

the convection zone, omitting many important physical consequences of compress-

ibility in the overshoot layer underneath the tachocline, as well as near-surface

regions. An extension of these models is necessary for the next generation of global

simulations to faithfully reproduce features of the solar cycle. In the following

section (Subsection 1.3.2), the formulation and use-case is presented for a new linear

compressible model, whose computational techniques will become the basis for future

investigtions in the development of a compressible non-linear convectively-driven

MHD model.

1.3.2 Acoustic modeling

A complete picture of mass flows inside of the Sun continues to be elusive. In

order to raise the reliability of inferences made through helioseismlolgy, further
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constraints on the understanding of inversion results are necessary. The application

of “forward-modeling” presents an opportunity to test helioseismology techniques

under tightly controlled approximate solar conditions. Since the seminal work of

Jensen et al. (2003), numerical acoustic solar models have been used to simulate

subsurface sound speed perturbations (Parchevsky & Kosovichev, 2007; Parchevsky

et al., 2014). Three-dimenional (3D) cartesian models of the solar atmosphere have

been employed to validate local time-distance measurements in regimes of convection

(Braun et al., 2007) and magnetic fields (Cameron et al., 2008; Khomenko et al., 2009;

Parchevsky & Kosovichev, 2009; Felipe et al., 2016). The need to simulate larger

interconnected hydrodynamic structures led to the development of global spherical

models (Hanasoge et al., 2006, 2007; Hartlep et al., 2008, 2013; Papini et al., 2015;

Gizon et al., 2017) that have been integral in validating inversion techniques. Global

acoustic codes can be used to simulate large numbers of varying structures, providing

a baseline for expected travel-time difference measurements. Such models (Hartlep

et al., 2013) have been used in conjunction with inversion techniques in order to

support inferences of a double-cell meridional structure (Zhao et al., 2013; Chen,

2019) from HMI observations, as well as more recent reassertions of the single-cell

model (Gizon et al., 2020) on MDI and GONG data.

Such discrepancies present a clear role for forward-modeling to play in outlining

the boundaries of possible inferences from helioseismology techniques. A detailed

systematic examination of a variety of meridional circulation profiles is required

to constrain interpretations made from observations. In order to address some

of these issues, as well as to set up a foundation for future investigations, this

dissertation presents the formulation and application of the GALE (Global Acoustic

Linearized Euler) code. This efficient and flexible pseudo-spectral algorithm computes

stochastically excited oscillations over a wide range of static or dynamic 3D

background velocity fields—mimicking the effect of realization noise seen in obser-
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vations. Important insights can be made by simulating acoustic interactions with

profiles of meridional circulation and differential rotation coupled together using

mean-field or MHD/HD models. These simulations can be used as a tool to lend

confidence to various inferences made through helioseismic inversions (Kitchatinov,

2013), as well as aid in the analysis of systematic errors. The physical basis of the CtoL

effect (decribed in Subsection 1.2.3) remains a mystery, however, such acoustic models

provide the flexibility to test effects of projection, as well as allow for the sampling of

velocity perturbation at arbitrary heights in the model atmosphere, under the effect

of near-surface models of convection.

1.4 Outline

This dissertation focuses on the presentation of two main subjects: global MHD

modeling and global acoustic modeling. An overview of these models, results from

their analyses, and discussions of their impacts on the current state of solar physics

are organized as follows.

Chapter 2 contains the formulation of the EULAG-MHD code (Section 2.1).

This chapter presents an analysis of the extension of global anelastic MHD models

towards near-surface layers, exploring the substantial impacts of altering profiles of

convection and shear on the parity of the global dynamo (Section 2.3). A discussion of

the implications of these results and the future of global MHD modeling is presented

in Section 2.4.

Chapter 3 contains the numerical formulaion and computational set-up of

the GALE code. An overview and derivation of the governing equations is

presented in Sections 3.1 and 3.2, respectively. Section 3.6 contains the numerical

method employed in the computation of the governing equations, including the

pseudo-spectral formulation, discretization methods, numerical solvers, and the

parallelization technique used for distributed computing. A validation of the
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computational methods can be found Section 3.7, reproducing the solar power

spectrum, measuring frequency splittings due to differential rotation, as well as a

power-map analysis of sound speed perturbations.

Chapter 4 focuses on the helioseismic analysis of radial velocity perturbations

generated by the GALE code. The local helioseismology technique of deep focusing,

used to infer internal background flows in the model, can be found in Section 4.2. This

chapter explores the application of the GALE code in a forward-modeling capacity,

testing the helioseismic signatures of various profiles of meridional circulation

generated by physics-based mean-field models. An analysis of the difference between

signatures of single-cell and double-cell meridional circulation as well as the effect of

realization noise on the ability to distinguish between these regimes can be found in

Section 4.4

Chapter 5 contains a substantive discussion of the results presented in this

dissertation, along with their implications on the current state of solar modeling

for both non-linear and acoustic global algorithms. Section 5.3 describes future

plans for the GALE code, including a derivation of a linearized MHD extension

(Subsection 5.3.1) which will be used to model the helioseismic signatures of internal

magnetic structures. The details on the development of a fully non-linear compressible

MHD model, employing the computational techniques used in the GALE code, can

be found Subsection 5.3.2.

Appendix A presents a derivation of the vector spherical harmonic (VSH)

and tensor spherical harmonic (TSH) coordinate bases used in the pseudo-spectral

formulation of the governing equations in the GALE code. The definition of the

divergence and curl of vector and tensor spherical harmonics can be found in

Section A.4 and Section A.5, repectively.

Appendix B contains the definitions of the recursion relations used to compute

functions in the frequency space of the spherical harmonic decomposition. Relations
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derived for trigonometric functions can be found in Subsection B.2.1, and for

transverse derivatives along the model surface in Subsection B.2.2.
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CHAPTER 2

GLOBAL MHD MODELING WITH EULAG

2.1 Model Description

EULAG-MHD (Smolarkiewicz & Charbonneau, 2013) is the magnetohydrodynamic

extension of the hydrodynamic model EULAG (EULerian/semi-LAGrangian fluid

solver) predominantly used in atmospheric and climate research (Prusa et al.,

2008). It is a versatile numerical solver, well adapted to simulating high-Reynolds

number anelastic flows found in the majority of the solar interior. EULAG is

powered by a nonoscillatory forward-in-time MPDATA method (Multidimensional

Positive Definite Advection Transport Algorithm; see Smolarkiewicz (2006) for

an overview)—a nonlinear second-order-accurate iterative implementation of the

elementary first-order-accurate flux-form upwind scheme.

The leading truncation terms of MPDATA have been shown to act as an effective

subgrid-scale (SGS) turbulence (Smolarkiewicz & Prusa, 2002). Typically, solar

modeling has relied on explicit SGS turbulence models to simulate the transfer and

dissipation of energy below the inertial subrange, such as the large eddy simulation

(LES) model (Lilly, 1966). A newer class of LES methods has also been implemented

with the dynamic Smagorinsky model (Germano et al., 1991; Nelson et al., 2013; Wray

et al., 2015), increasing the accuracy of turbulent dissipation calculations. EULAG

offers an alternative to these classic methods by exploiting the so-called “implicit

large eddy simulation” (ILES) approach (Grinstein et al., 2007), which achieves a

similar goal while obviating the need for evaluating higher-order differential operators.

Other nonoscillatory advection schemes possess the ILES property, and generally

have proven to be effective through a large range of scales and physical scenarios,

from laboratory to stellar (Grinstein et al., 2007). In contrast to the prescription of
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filter length scales in classic LES, the MPDATA-based ILES is parameter free and

adaptive to the regularity of the solution (Margolin et al., 2006), within the scales of

the grid resolution (Margolin et al., 2002; Domaradzki et al., 2003; Kühnlein et al.,

2019). ILES has been applied in EULAG in order to model global solar convection,

comparing results with explicitly filtered spectral methods (Elliott & Smolarkiewicz,

2002). EULAG has been tested for various solar regimes, reproducing hydrodynamic

effects observed on the Sun, such as breaking the Taylor-Proudman balance, as well as

inducing differential rotation (Guerrero et al., 2013). This model has been augmented

for simulating the global solar magnetic dynamo in EULAG-MHD (Smolarkiewicz &

Charbonneau, 2013), adding an ideal MHD component, and employing it in the study

global magnetic dynamics (Ghizaru et al., 2010; Racine et al., 2011).

EULAG-MHD is described in full detail by Smolarkiewicz & Charbonneau

(2013), and its conservative properties are thoroughly discussed by Cossette et al.

(2017). This section (Section 2.1) will only briefly summarise the mathematical

formulation and specific setup, following Guerrero et al. (2016). The governing

equations (Equations (2.1)-(2.4)) assume the anelastic formulation of Lipps & Hemler

(1982). They are solved in a global spherical shell 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, from the

radiative interior at 0.61R� to the surface at 0.97R�. The grid resolution 128×64×64

in φ, θ and r, respectively, corresponds to that of previous long-term EULAG-MHD

simulations of stellar climates (Guerrero et al., 2013, 2016). The governing equations

are:

∇ · (ρsu) = 0 , (2.1)

Du

Dt
+ 2Ω× u = −∇

(
p′

ρs

)
+ g

(
Θ′

Θs

)
+

1

µ0ρs
(B · ∇)B , (2.2)

DΘ′

Dt
= −u · ∇Θe −

Θ′

τ
, (2.3)

DB

Dt
= (B · ∇)u−B(∇ · u) . (2.4)
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In Equations (2.1)-(2.4), D/Dt = ∂/∂t+u·∇, where u denotes the flow velocity,

and Ω = Ω0(cos θ,− sin θ, 0) is the angular velocity of the rotating reference frame

(Ω0 = 2.6 × 10−6). p and Θ mark pressure and potential temperature, with the

latter essentially equivalent to the specific entropy of an ideal gas via ds = cpd ln Θ

where cp is a specific heat at constant pressure. Primes refer to perturbations about

a static ambient state assumed to satisfy the generic Lipps-Hemler equations, an

asymptotic expansion about the hydrostatic isentropic background state (denoted

by the subscript “s”) under gravitational acceleration g ∝ r−2; see Cossette et al.

(2017) for a substantive discussion. The evolution of the magnetic field, B, is

governed by the induction equation (Equation (2.4)) in the classic ideal MHD

limit, where the momentum equation (Equation (2.2)) includes the magnetic tension

(µ−1
0 (B·∇)B) portion of the Lorentz force, with the magnetic pressure subsumed in p′

(Smolarkiewicz & Charbonneau, 2013). The explicit viscous tensor and the magnetic

dissipation term are disregarded in favor of the ILES dissipative action of MPDATA

(Ghizaru et al., 2010).

In this formulation, convection is primarily driven by the advection of a

non-isentropic ambient potential temperature (Θe, Equation (2.3)). This ambient

state can be used to create super-adiabatic entropy gradients that simulate heat flux

from the bottom boundary. If left to evolve naturally, convection will tend to balance

out any entropy gradient in the ambient state. To offset fluid homogenization, the

Newtonian cooling term (second term on the right hand side (RHS) of Equation (2.3))

relaxes potential temperature perturbations to zero, driving the system towards a

balanced statistical equilibrium. In these simulations, the timescale of the relaxation

is set at τ = 1.036 × 108 s ≈ 3.3 yr, a value that is compatible with the solar

rotation rate (Guerrero et al., 2016). This timescale is sufficiently short, so that any

explicit effects of heat diffusion or radiative heat transfer can be omitted in global

energetic balance considerations (Cossette et al., 2013). The boundary conditions are

20



impermeable and stress-free for the velocity field and stop the radial flux of potential

temperature perturbations. The magnetic field is assumed to be entirely radial at

both boundaries.

2.2 Modifying the NSSL

The ambient state is computed for the polytropic stratification of an ideal gas under

hydrostatic equilibrium,

∂Te

∂r
=− g

R(m+ 1)
,

∂ρe

∂r
=− ρe

Te

(
g

R
− ∂Te

∂r

)
,

where R is the specific gas constant and m(r) is the polytropic index function, set to

force entropy gradients in the model. A full review of this ambient state is presented

by Guerrero et al. (2013).

Previous works with EULAG-MHD (Guerrero et al., 2016, 2019) have shown

the effect that the tachocline has on global solar models. This layer of shear at the

radiative boundary begins to play a fundamental role in the storage and generation

of the global magnetic field, going as far as significantly altering the time-scale of

the solar cycle by decades. Another interesting development in these simulations is

the formation of a near-surface shear layer (NSSL) in models with different rotational

periods. In these previous works, the characteristics of convective motions were solely

defined by this rotational period.

Forcing the formation of a NSSL allows for a more in-depth study of the global

impacts of this boundary layer. This section details the profile of several simple

functions of thermodynamic ambient states that generate diverse regimes of near-

surface convection. Simple models of convective acceleration and deceleration offer

the chance to explore the contribution of near-surface stratification to the global
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distribution of angular momentum and the evolution of magnetic solar cycles. To

that end, the three following models are employed (simulations ns1, ns2 and ns3),

each having three distinct global layers: the radiation zone, convection zone, and

the near-surface boundary layer. This is done using a polytropic index function with

two step functions and three polytropic indices (mrz, mcz, and mns), respectively

representing the aforementioned layers;

m(r) = mrz +
mcz −mrz

2

[
1 + erf

(
r − rtac
wt

)]
+
mns −mcz

2

[
1 + erf

(
r − rns
wns

)]
.

The radial position of the tachocline is set at rtac = 0.72R� and the transition

width is wt = 0.015R�. The radiative interior index is set to mrz = 2, creating a

strongly stable subadiabatic layer; the convection zone index is set to mcz = 1.499978

to simulate a slightly superadiabatic convective envelope. The near-surface step is

centered at rns = 0.95R� with a transition width of wns = 0.015R�. Three different

near-surface convection profiles are used, with polytropic indeces: mns1 = 1.499975,

mns2 = 1.5, and mns3 = 1.8. The graph of the resulting potential temperature profiles

for the three ambient states is shown in Figure 2.1.

In the first model (ns1), an ambient state of slightly increased convective

strength was implemented, enhancing less rotationally constrained motions near the

surface and inducing the formation of a well defined near-surface shear layer. The

second case, ns2, exhibits a surface entropy gradient of a hydrostatic polytrope at the

edge of a stable non-convective profile (m = 1.5). This profile is not strong enough to

fully suppress convection, but it does decrease the velocity gradient of flows near the

surface. In the last simulation, ns3, a stable subadiabatic layer is created, decreasing

convective motions in a low density region. This mimics a vacuum boundary for the

magnetic field near the surface; a regime previously tested by Warnecke et al. (2013).

The models are all started with an unmagnetized ambient state and are initiated with
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Figure 2.1 Profiles of ambient states of the potential temperature (Θe) for
simulations: ns1, ns2, and ns3. In ns1, mns1 = 1.499975, slightly increasing convection
near the surface. In ns2, mns2 = 1.5, the super-adiabatic zone is slightly altered to
decrease the rate of convection. Finally, in ns3, mns3 = 1.8. In this case convection
is suppressed at the surface.
Source: adapted from Stejko et al. (2020).

the same set of random white noise as well as perturbations of potential temperature

and divergence-free velocity. The models are evolved until the dependent variables

reach a statistically stable equilibrium.

2.3 Results

Each simulation is evolved for several hundred years, after which the last three polarity

reversals are analyzed with oscillatory periods of the large-scale magnetic field of

∼ 30 yrs for ns1, ∼ 20 yrs for ns2, and ∼ 40 yrs for ns3. Each model develops unique
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Figure 2.2 The time averaged (over three dynamo cycles) and azimuthally-averaged
differential rotation and meridional circulation profiles: ns1, ns2, and ns3, from top
to bottom. The left-hand side shows the angular velocity at various latitudes as
a function of radius. The center column contains a contour plot of this differential
rotation in the meridional plane. The right-hand side shows the meridional circulation
in the same plane, where colored contours show the speed of latitudinal flows;
the dashed and solid contours outline clockwise and counter-clockwise poloidal
circulation.
Source: adapted from Stejko et al. (2020).

rotational hydrodynamic structures and global magnetic profiles; Figure 2.2 presents

the time-averaged (over three magnetic cycles) and azimuthally-averaged differential

rotation profile along with the meridional circulation.
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All three simulations exhibit profiles which appear to be similar to the solar

model (RC02), discussed by Guerrero et al. (2016); there are, however, a few notable

differences. The effect of suppressed surface convection is immediately obvious in the

velocity profile of ns3, where large differences with the other two models begin to

develop. A buildup of rotational velocity near the equator can be observed above the

tachocline, with less angular momentum being carried into the radiative interior as

well as being excluded from the surface. This model also exhibits strong latitudinal

variance of rotational frequency, displaying significant gradation in the differential

rotation profile—extending well into the radiative interior. The subsurface region

of simulation ns3 manifests a strong positive shear, in contrast with the other two

models, ns1 and ns2. The most significant differences are found below the tachocline,

where angular momentum transfer fails to penetrate, especially at higher latitudes,

and maintains the models’ initial rotation rate (Ω/2π ≈ 413 nHz).

The models of slightly increased (ns1) and suppressed (ns2) convection rates,

predictably, look similar, with certain exceptions. The rotation rate of the radiative

interior exhibits the greatest differences between the two models, with simulation ns1

reaching an average angular frequency of ∼ 430 nHz as compared to ∼ 425 nHz of

simulation ns2. Significant differences can also be observed in the rate of rotational

frequency observed at higher latitudes. Even though these results do not closely match

helioseismic inferences of internal solar rotation rates (Schou et al., 1998), the models

do show clear conical iso-contours as opposed cylindrical ones, breaking the Taylor-

Proudman balance at the upper latitudes. Rotational frequency in the convection

zone (Figure 2.2), however, still shows a shallow break in differential rotation near

the equator, aligned along the rotational axis.

One of the largest effects of the subsurface acceleration can be seen in its impact

on the levels of shear experienced at the tachocline (Figure 2.3), decreasing positive

levels of shear near the equator and increasing negative shear near the poles. The

25



result is a changing focus of the Ω-effect, concentrating greater action into higher

latitudes of model ns1.

Figure 2.3 Radial shear profiles of simulations ns1 (left panel) and ns2 (middle),
characterized by the radial derivative of the angular velocity. The largest noticeable
differences are of the shear experienced at the tachocline and at the poles near the
surface (right), an effect consistent with the observed differences in the models’ rate
of angular momentum distribution into the radiation zone (Figure 2.2).
Source: adapted from Stejko et al. (2020).

The shear profiles of these models (ns1, ns2) are structurally similar to those

expected from helioseismic inferences (Schou et al., 1998), with a few significant

differences. The bulk of the convection zone contains contours of shear at low

latitudes—matching the axis-aligned contour in differential rotation, breaking the

conical differential rotational cell seen in Figure 2.2. This is most likely a consequence

of the models limited ability to fully break the Taylor-Proudman balance. Near the

model surface there is more deviation from observed solar rotation, where a consistent

shear (∂ ln Ω/∂ ln r = −1) has been observed up to ∼ 60◦ latitude (Barekat et al.,

2014). Even though near-surface shear in the ns1 and ns2 models hovers around

this value, it begins to diverge at low latitudes—becoming positive (see right panel

of Figure 2.3). Such an acceleration has not been observed in recent hydrodynamic

simulations of near-surface gradation (Matilsky et al., 2019), where different density

contrasts are modeled in an attempt to generate solar-like near-surface shear.
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Their model with large density stratification results in negative surface shear at

equatorial latitudes. Models ns1 and ns2, in comparison, implement various potential

temperature contrasts in the attempt to create rotationally unconstrained flows.

Increasing the density contrast might allow this region to break up the axis-aligned

structures of shear and induce the development of negative radial shear at equatorial

latitudes. These models also do not consider the top 3% of the solar surface—a

turbulent region of a large density stratification where the time-scale of convective

motions is considerably shorter than that of solar rotation.

An interesting feature is exhibited in model ns1, where the rotation of the

radiation zone is not completely hemispherically symmetric, unlike the two others—a

possible structural consequence of the differences in the development of their

respective dynamo profiles. This effect is also apparent in the distribution of shear

(Figure 2.3), which shows a small asymmetrical tilt towards the northern hemisphere.

All three models exhibit a meridional circulation pattern observed in previous

EULAG-MHD models (Guerrero et al., 2016). The only noticeable difference is

a slight poleward increase in meridional velocity at higher latitudes, primarily on

the surface of model ns1. These meridional profiles show the formation of a two

cell structure, recently observed by helioseismology (Zhao et al., 2013); these cells

are, however, confined to low latitudes and aligned with the rotational axis—similar

profiles have been previously observed in other global anelastic models (e.g., Brun &

Toomre, 2002; Featherstone & Miesch, 2015; Matilsky et al., 2019).

The perturbative rms velocity (u′rms =
√
u′r + u′θ + u′φ) can give some insight

into the turbulent structure of the models, shown in Figure 2.4. Model ns3 shows

a significant drop in turbulent velocity near the surface, consistent with the strong

subadiabatic gradient that was induced. In models ns1 and ns2, the differences are

rather small with only the obvious slight changes near the surface. The turbulent u′rms

is largely isotropic in these models, with the exception of the region near the surface
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where the boundary condition transforms the radial velocity (and its perturbative

component) into horizontal flows.

Figure 2.4 Radial profile of the rms velocity (u′rms). Models ns1 and ns2 are
very similar, showing an increasing turbulence near the surface. In model ns3, the
subadaiabtic gradient effectively quenches strong turbulence deep into the convection
zone.
Source: adapted from Stejko et al. (2020).

These relatively small differences in convective structures result in large impacts

on emerging mean flows and global magnetic fields. The time evolution of the

magnetic dynamo over the course of three cycles is shown in Figure 2.5, plotting

a cross section of the azimuthally averaged toroidal magnetic field, Bφ, near the

model surface (∼ 0.95R�), at the tachocline (∼ 0.72R�), as well as a radial cross

section at a latitude of 45◦.
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Figure 2.5 The time-latitude diagrams of the magnetic field (Bφ measured in Tesla) for simulations ns1, ns2, and ns3 (from
top to bottom) at 0.95 R� (left) and 0.72 R� (center), as well as the time-radius diagram at a 45◦ latitude (right). ns1) With
slightly increased convection, the beginnings of a staggered anti-symmetric magnetic cycle start to form. ns2) The field follows
a distinct pattern, but the anti-symmetric nature is lost. ns3) The convection profile is altered such that the field is unstable
and non-uniform, but with a well defined cyclical pattern.
Source: adapted from Stejko et al. (2020).
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Model ns3 exhibits the largest difference in its profile of polarity reversals,

where the pattern of the global magnetic field cannot seem to find a definite

symmetric hemispheric structure, as well as exhibiting the longest periodic evolution

of its dynamo cycle (∼ 40 yrs). Even in the absence of turbulent activity in the

upper convection zone, a strong magnetic field is still being generated and stored,

loosely connected with strong fields below the tachocline. These fields still undergo

regular polarity reversals—but without any defined pattern or symmetric structure.

The models with slightly suppressed (ns2) and slightly increased convection (ns1),

however, both exhibit regular cyclic patterns, with large differences in the time-scale

of their evolution as well as the nature of their symmetries. The toroidal field profile of

model ns2 looks similar to the solar model RC02 (with no alterations of the subsurface

boundary) described by Guerrero et al. (2016), showing minimal structural effects of

its slightly suppressed convective motions. The most significant difference appears to

be with the increased convection model (ns1), where the emerging global magnetic

field begins to shift from the equatorial symmetry seen in profile ns2 to an offset,

staggered near anti-symmetry, exhibiting a more solar-like hemispheric polarity.

2.3.1 Mean-field analysis

An in-depth analysis of the dynamo characteristics that result in the large structural

differences in models ns1 and ns2 can be done with a mean-field analysis, starting with

the induction equation (Equation (2.4)) rewritten into its mean-field form (Moffatt,

1978),

∂B

∂t
= ∇× (u×B + E) , where: E = u′ ×B′ .
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The mean-field terms (denoted by the overline) are averaged over their longitude,

with primed terms being the perturbation from this average. Using the first-order

smoothing approximation (FOSA), the turbulent induction, E (excluding any triple

correlation terms and third-order derivatives), can be writen in the manner of

Brandenburg & Subramanian (2005), with the turbulent transport coefficients defined

as:

E i = (αk + αm)Bj − ηt
∂Bj

∂xk
;

αk = −1

3
τcorr(ω

′ · u′) ,

αm =
1

3
τcorr(j′ ·B′) ,

ηt =
1

3
τcorr(u′2) ,

(2.5)

where ω′ = ∇×u′ is the turbulent vorticity and j′ = ∇×B′ is a perturbation of the

induced current. τcorr is defined as the correlation time of turbulent motions. The

correlation time can be computed using the spectral approach outlined by Guerrero

et al. (2019), where the turbulent energy spectra is used to compute the integral

length scale
(
l(r) = r

∫
E(r, k)k−1dk/

∫
E(r, k)dk

)
as a function of radius. This

approach breaks down, however, in the region below the tachocline (r < 0.72R�),

where convective turbulence is effectively quenched (Figures 2.4, 2.6). The Alfvén

velocity of strong magnetic fields stored in the region can be used to compute the

correlation time of the current helicity. Two length scales (lk, lm) are computed from

their respective kinetic and magnetic energy spectra (E(u′), E(B′)) and the resulting

correlation times are calculated as follows: τk = lk/u
′
rms, τa = lm/va, where the

Alfvén velocity is defined as: va = B′rms/
√
µ0ρe. The resulting correlation times are

presented on the right-hand side of Figure 2.6.

These profiles display little indication as to the cause of the evident shift in the

emergence of the global magnetic field between models ns1 and ns2, with only slight

differences in turbulent diffusivity (ηt) and correlation time (τcorr) in areas directly
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Figure 2.6 Left: radial dependence of the turbulent diffusivity, ηt, and right: the
Alfvén (dashed lines) and kinetic (solid) correlation times, τa and τk, as defined by
the first-order smoothing approximation (FOSA, Equation (2.5)).
Source: adapted from Stejko et al. (2020).

below the tachocline. More differences in the interplay of turbulent coefficients can

be explored in contour plots (Figures 2.7, 2.8) of the global magnetic fields during

their transition from one polarity to another, sampled at t = 25, 35, 45, and 55 years

for simulation ns1, and t = 33, 41, 45, and 53 years for simulation ns2, along with

the corresponding levels of turbulent kinetic and magnetic α-effects, αk and αm; see

Equation (2.5).

The transition snapshots (Figures 2.7, 2.8) exhibit clear differences between the

models, specifically in the asymmetry of the evolving field in model ns1 (Figure 2.7);

the mean poloidal field, Bp = (Br, Bθ, 0), begins its reversal at the tachocline,

extending into the radiation zone (yr. 35) in the region of minimal hydrodynamic

shear between the radiation and convection zones (see also Figure 2.2). A strong

poloidal field of a single polarity proceeds to encompass the entire radiation zone,

accompanied by the development of strong toroidal fields (Bφ) under the tachocline

in hemispherically anti-symmetric bands. This evolution is followed by much weaker

fields in the convection zone. The convectively suppressed model (ns2, Figure 2.8)

experiences the opposite pattern of development, where a single symmetric toroidal

field (Bφ) band encompasses both hemispheres, with two hemispherically reflected
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Figure 2.7 Snapshots of polarity reversal for model ns1. a) The toroidal magnetic
field (Bφ) exhibited by the colored contour; the poloidal magnetic field (Bp) drawn
by the solid/dashed contour lines. b) The magnetic turbulent transport coefficient
αm. c) The kinetic turbulent transport coefficient αk. d) A summation of the two
coefficients.
Source: adapted from Stejko et al. (2020).
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Figure 2.8 Same as Figure 2.7 for simulation ns2.
Source: adapted from Stejko et al. (2020).
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anti-symmetric poloidal field cells developing (yr. 45) at low latitudes at the base of

the tachocline.

The kinetic α-effect is maintained almost entirely consistently over polarity

reversals in ns1 and ns2; αk emerges in hemispherically anti-symmetric bands near the

surface, followed by a reversal at further depths. In the convection zone, αk appears

to dominate αm by an order of magnitude. Similar turbulent transport coefficient

profiles in EULAG-MHD models are explored in further detail by Guerrero et al.

(2019), while the effectiveness of the first-order smoothing approximation (FOSA) is

thoroughly investigated by the test-field method of Warnecke et al. (2018). Over the

course of the polarity reversals, the region underneath the tachocline experiences the

greatest deviation in its pattern of activity as well as the strongest manifestation of

the turbulent α-effect. A relevant parameter for the evolution of the global magnetic

field seems to be the high level of current helicity (αm) generated underneath the

tachocline. Due to the large values of τa in the radiation zone, the magnetic α-effect

is dominant in the region, intermittently reaching levels much higher than kinetic

turbulent helicity in the convection zone. These cyclonic motions are prominent

during periods of transition when strong toroidal fields encompass the tachocline

and radiation zone at higher latitudes. Figures 2.7 and 2.8 suggest that αm is the

potential source of the large variations observed in the models. The aggregate effects

of turbulence in this region can be seen in the average of the magnetic turbulent

coefficient (αm) over these polarity reversals (Figure 2.9).

These simulations see an αm term with an opposite sign begin to emerge at the

poles with a very weak, but noticeable, onset in the suppressed model ns2. This term

grows to a large field source in ns1, more than three times as strong as the bands

of opposing helicities extended into the lower latitudes of the radiation zone. These

polar helicities are the strongest contributors to the α-effect at and underneath the
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Figure 2.9 The magnetic turbulent transport coefficient, αm, computed from the
current helicity in the FOSA (Equation (2.5)). There are significant differences
between the two models, denoted by the emergence of strong helicities near the poles
of model ns1.
Source: adapted from Stejko et al. (2020).

tachocline. During polarity reversals, these regions intermittently become the single

strongest turbulent sources of the poloidal magnetic field in these models.

2.4 Discussion

The simulations presented in this chapter are a continuation of previous work

done with EULAG-MHD (Ghizaru et al., 2010; Guerrero et al., 2013, 2016, 2019),

simulating solar convection, rotation, turbulence, and dynamo action in the numerical

viscosity regime of the MPDATA alorithm.

In the study of solar convection, the results of models ns1, ns2, and ns3 illustrate

the relevance of the stratification in the near-surface layer. Recent simulations done

by Hotta et al. (2019) (without rotation and magnetic field) show that the near-surface

region does not affect the amplitude of the convective motions in the deep interior.

The results of these simulations, however, suggest that, for rotating hydro-magnetic

convection, small convective acceleration close to the surface was sufficient to impact

the redistribution of angular momentum, especially into the radiative zone. For

simulations ns1 and ns2 there is a marked increase in the levels of rotational frequency,
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while for simulation ns3, where the surface flows were quenched, the rotational

frequency of the radiation zone remained the same as that of the reference frame

(especially at higher latitudes).

The largest hydrodynamic impact at the tachocline is a movement away from

the strongest velocity gradients found at the equator in simulation ns2, along with

the solar rotation model RC02 in Guerrero et al. (2016), to stronger velocity gradients

near the poles in simulation ns1 (Figure 2.3). In ns1, the angular frequency of the

radiative layer begins to approach that of the convection zone near the equator, similar

to the helioseismic inferences of solar observations (Schou et al., 1998).

These models develop dynamo cycles rooted in the area underneath the

tachocline (r < 0.72R�), with strong magnetic fields generated and stored in the

radiation zone (Figure 2.5). The magnetic fields in these regions undergo a much

lower rate of turbulent diffusivity (Figure 2.6), extending the lifetime of their cycle.

High levels of αm and shear at the tachocline (Figure 2.3) allow these regions to

become strong sources of poloidal/toroidal transitions (Figures 2.7, 2.8).

The source of variance in hemispheric parity between models ns1 and ns2

(Figure 2.5) is not entirely clear; all of the models’ parameters, except for the

near-surface boundary, are identical. There are, however, notable differences in the

development of tachoclinic shear (Figure 2.3) as well as substantial differences in the

development of current helicity, and therefore αm (Figure 2.9)—appearing as emerging

turbulent sources near the poles of an opposing sign to the helicity that covers the

rest of the hemisphere. These differences occur in regions of large hydrodynamic

variations, exhibited by increasing rates of rotational frequency (Figure 2.2) from ns2

to ns1 (∼ 425 nHz to ∼ 430 nHz) and evident when comparing rotation rates near

the poles; acceleration appears to filter up the latitudes in concert with increased

convection rates near the surface.

The source of the strong current helicities and their orientation is not yet entirely
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clear, however, it is notable that they are generated directly over the poles, where the

Coriolis force has little influence on the orientation of the turbulent vorticity. It is

also telling that these helicities are more strongly generated in a regime of increased

polar downflow, following the increased subsurface convection in simulation ns1. As

the majority of the impact of turbulent coefficients is shifted towards higher latitudes,

they may result in a more stable manifestation of the dipolar global magnetic dynamo.

It is apparent that the NSSL and the tachocline appear to play a much

more significant role in defining the structure of the global magnetic field than

previously assumed. The overshoot layer underneath the tachocline and the solar

subsurface layer in particular contain compressive effects that may be lost in the

anelastic approximation of Boussinesq-type models such as EULAG and other

convectively-driven global MHD models (Brun et al., 2004; Nelson et al., 2013;

Augustson et al., 2015). Furthermore, the high velocity flows near the solar surface

limit the computational domain of these models. In order to address these issues, and

move towards a new generation of global algorithms that can more accurately simulate

these neglected regions, this dissertaion presents the development of a global accoustic

model (Chapter 3). The computational techniques validated by this model will

become the basis for a future global non-linear compressible algorithm, purpose-built

to extend the computational domain to the solar surface and beyond.
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CHAPTER 3

GLOBAL ACOUSTIC MODEL

3.1 Summary of the Governing Equations

A summary of the governing equations for the GALE code is presented as follows:

mass continuity in Equation (3.1), the divergence of the conservation of momentum in

Equation (3.2), and the conservation of energy in Equation (3.3). The definitions for

terms used in these formulae as well as the conventions for linearizing the fields can

be found in Subsection 3.1.1. Υ is defined as the divergence of the momentum field

(Υ = ∇·ρu = ∇·m) and pseudo-forces relating to rotation in a non-inertial reference

frame are grouped in the term R′Υ (R′Υ = −∇ · (ρ′Ω× (Ω× r))−∇ · (2Ω×m′)).

The definition of the source function (S) can be found in Section 3.4. These linearized

governing equations are solved on a fully global 3D grid, 0 < r < 1.0007R�, 0 < θ < π,

0 < φ ≤ 2π, over background field terms derived from the standard solar model S

(Christensen-Dalsgaard et al., 1996).

∂ρ′

∂t
+ Υ′ = 0 , (3.1)

∂Υ′

∂t
+ ∇ : (m′ũ + ρ̃ũu′) = −∇2 (p′)−∇ · (ρ′g̃rr̂) +R′Υ +∇ · Sr̂ , (3.2)

∂p′

∂t
= −Γ1p̃

ρ̃

(
∇ · ρ̃u′ + ρ′∇ · ũ− p′

p̃
ũ · ∇ρ̃+ ρ̃u′ · N

2

g̃r
r̂

)
. (3.3)

3.1.1 Linearized field formulation

The governing equations (Equations (3.1)-(3.3)) are linearized by splitting the field

terms into a base component (tilde) and a perturbation from that base (prime). The

scale of the perturbation terms is denoted by the small number ε << 1. The split

field is defined as:
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ρ =ρ̃+ ερ′ ,

p =p̃+ εp′ ,

u =ũ + εu′ ,

Γ1 =Γ1 ,

g =g̃rr̂ ,

(3.4)

where ρ is the density, p is the thermodynamic pressure, and u is the velocity vector.

The Cowling approximation is employed in this formulation, making the assumption

that gravitational perturbations will be significantly smaller than corresponding

perturbations in the density profile (Cowling, 1941). In the adiabatic approximation

(Christensen-Dalsgaard, 2014), the time-scale of heat transfer is much smaller than

the oscillation period and is therefore neglected, resulting in an adiabatic ratio (Γ1)

that is constant in time.

3.2 Derivation

The governing equations are derived from the general form of the Navier-Stokes

equations. The following sections demonstrate the linearization of mass continuity

(Subsection 3.2.1), the conservation of momentum (Subsection 3.2.2), and the

conservation of energy (Subsection 3.2.3).

3.2.1 Mass continuity

Mass continuity in the form of Equation (3.1) can be derived from the standard form

of the Navier-Stokes continuity (Equation (3.5)).

∂ρ

∂t
+∇ · ρu = 0 . (3.5)

Using the split field formulation defined in Subsection 3.1.1, the field terms can be

rewritten in the following manner.
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∂

∂t
(ρ̃+ ερ′) +∇ ·

(
ρ̃ũ + ερ̃u′ + ερ′ũ + ε2ρ′u′

)
= 0 .

Since the magnitude of the perturbations (ε << 1) is very small, square terms (ε2),

underlined in the above formula, can be disregarded. The field is then split into a

continuity of base flow and a continuity of the perturbations from that base flow.

∂ρ̃

∂t
+∇ · ρ̃ũ = 0 ,

∂ρ′

∂t
+∇ · (ρ̃u′ + ρ′ũ) = 0 .

Rewriting the divergence of momentum field perturbations as Υ′ = ∇ · m′ = ∇ ·

(ρ̃u′ + ρ′ũ), results in the final form of the mass continuity (Equation (3.1)).

∂ρ′

∂t
+ Υ′ = 0 .

3.2.2 Conservation of momentum

The governing equation for the conservation of momentum (Equation (3.2)) is

derived from the general form of the well-known Cauchy momentum equation in

its conservation form in a rotating non-inertial reference frame:

∂ρu

∂t
+∇ · (ρuu) = −∇p− ρg − ρΩ× (Ω× r)− 2Ω× ρu , (3.6)

where uu is the velocity dyad. This equation is linearized using the formulation

defined in Subsection 3.1.1. Any square (ε2) or cubic (ε3) perturbation terms can be

omitted due to negligible contributions.

∂

∂t
(ρ̃ũ + ερ̃u′ + ερ′ũ) +∇ · (ρ̃ũũ + ε (ρ̃ũ) u′ + ε (ρ̃u′ + ρ′ũ) ũ) = −∇ (p̃+ εp′)

− (ρ̃+ ερ′) g̃rr̂− (ρ̃+ ερ′) (Ω× (Ω× r))− 2 (Ω× (ρ̃ũ + ε (ρ̃u′ + ρ′ũ))) .
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Separating the perturbative flow field from the base, and shortening the perturbation

of the momentum field to m′ = ρ̃u′ + ρ′ũ, results in the following formula for the

conservation of momentum.

∂m′

∂t
+∇ · (m′ũ + ρ̃ũu′) = −∇ (p′)− ρ′g̃rr̂− ρ′ (Ω× (Ω× r))− 2 (Ω×m′) . (3.7)

In order to ease the computational cost of this acoustic algorithm, the field

can be split into two parts: a solenoidal momentum field component and a potential

momentum field component. Solenoidal contributions to the perturbation field are

significantly smaller and are concentrated in different scales from the potential flow

field, as such, the solenoidal contributions can be omitted using the following split-field

formulation:

ρu = m = ∇×Ψ +∇Φ = ms + mp .

The solenoidal momentum field (ms) is defined as the curl of some vector potential

field Ψ, and the potential momentum field (mp) is the divergence of another

scalar potential momentum field Φ. The field is split into two orthogonal parts

(∇×mp = 0 and ∇ ·ms = 0) and the potential flow is isolated by taking the

divergence of the perturbation of the Cauchy conservation of momentum equation

(Equation (3.7)) where, ∇ · ρu = ∇ ·m = ∇2Φ = Υ.

∂Υ′

∂t
+ ∇ : (m′ũ + ρ̃ũu′) = −∇2 (p′)

−∇ · (ρ′g̃rr̂)−∇ · (ρ′Ω× (Ω× r))−∇ · (2Ω×m′) .

This is the full form of the governing equation for potential momentum conservation

(Equation (3.2)) where “∇ :” is defined as the divergence dyad.
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3.2.3 Conservation of energy

The final governing equation (Equation (3.3))—the conservation of energy—is defined

by the following thermodynamic equation of state for the solar interior from the

formulation of Cox & Giuli (1968).

1

Γ3 − 1

(
Dp

Dt
− Γ1p

ρ

Dρ

Dt

)
= ρ

DQ

Dt
,

where: Γ1 =

(
∂ ln ρ

∂ ln p

)
ad

, Γ3 − 1 =

(
∂ lnT

∂ ln ρ

)
ad

.

This relation, where Q is heat added to the system, can be rewritten in Eulerian

form with total material derivatives (Df/Dt = ∂f/∂t+ u · ∇f). In the adiabatic

approximation (Christensen-Dalsgaard, 2014), the assumption that heat transfer is

negligible within the time scale of the period of acoustic oscillations can be employed

(DQ/Dt = 0).

∂p

∂t
+ u · ∇p =

Γ1p

ρ

(
∂ρ

∂t
+ u · ∇ρ

)
.

Using the acoustic formulation outlined in Subsection 3.1.1, the adiabatic relation is

linearized as follows:

(
ρ̃
∂p̃

∂t
+ ε

(
ρ̃
∂p′

∂t
+ ρ′

∂p̃

∂t

)
+ ρ̃ũ · ∇p̃+ ε (ρ′ũ · ∇p̃+ ρ̃ (ũ · ∇p′ + u′ · ∇p̃))

)
=

Γ1

((
p̃
∂ρ̃

∂t
+ ε

(
p̃
∂ρ′

∂t
+ p′

∂ρ̃

∂t

)
+ p̃ũ · ∇ρ̃+ ε (p′ũ · ∇ρ̃+ p̃ (ũ · ∇ρ′ + u′ · ∇ρ̃))

))
.

Separating perturbations from the base flow results in a linear equation for the

conservation of energy.

43



ρ̃
∂p′

∂t
+ (ρ′ũ · ∇p̃+ ρ̃ (ũ · ∇p′ + u′ · ∇p̃)) =

Γ1

(
p̃
∂ρ′

∂t
+ (p′ũ · ∇ρ̃+ p̃ (ũ · ∇ρ′ + u′ · ∇ρ̃))

)
. (3.8)

In order to avoid convective instabilities in the model, Equation (3.8) can be rewritten

in terms of the Brunt-Väisälä frequency (N2, see Section 3.3). Plugging in mass

continuity (Equation (3.1)) and rearranging terms leaves a formula that can be used

to manually alter convection without the need to change background field terms (ρ̃,

p̃, Γ1).

1

p̃Γ1

∂p′

∂t
+

1

ρ̃
∇ · (ρ̃u′ + ρ′ũ) = −u′ ·

(
1

Γ1p̃
∇p̃− 1

ρ̃
∇ρ̃
)
− ũ ·

(
−1

ρ̃

(
∇ρ′ + p′

p̃
∇ρ̃
))

.

Substituting in N2 and rearranging terms further results in the final form of the

governing relation for pressure (Equation (3.3)).

∂p′

∂t
= −Γ1p̃

ρ̃

(
∇ · ρ̃u′ + ρ′∇ · ũ− p′

p̃
ũ · ∇ρ̃+ ρ̃u′ · N

2

g
r̂

)
.

3.3 Brunt-Väisälä Frequency

Buoyancy throughout the solar interior is characterized by the Brunt-Väisälä

frequency (N2), where

N2 = g

(
1

Γ1

∂ ln p

∂r
− ∂ ln ρ

∂r

)
. (3.9)

The governing equations become unconditionally unstable in regions where this term

is negative (N2 < 0). In order to avoid such instabilities, the conservation of energy

(Equation (3.1)) is derived as a function of the Brunt-Väisälä frequency—the slightly

negative values of this term are set to zero directly, obviating the need to alter
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background profiles of pressure (p), density (ρ), or the adiabatic ratio (Γ1) as in similar

convectively stable models of Hanasoge et al. (2006); Parchevsky & Kosovichev (2007);

Hartlep et al. (2008). Altering the algorithm to maintain stability may introduce

small deviations in mode frequencies (Papini et al., 2014); however, it is still accurate

enough to simulate inferences of flows in the convective interior using helioseismology

techniques.

Figure 3.1 The altered background profile of the Brunt-Väisälä frequency, where
slightly negative values in the convection zone are set to zero. An isothermal buffer
layer is extended above the model surface to ∼ 1.0007R�.

3.4 Acoustic Oscillation Source Function

The source of acoustic oscillations is modeled as a radially directed force (Sr̂) in the

conservation of momentum (Equation (3.2)). The structure of the source function is

formulated in a similar manner to Hanasoge et al. (2006), where a thin shallow layer

simulates the region responsible for the excitation of solar p-modes, see Goldreich et al.

(1994), Stein & Nordlund (2001). The source is modeled as a radial Gaussian function

with a standard deviation of σ = 0.0001R� ∼ 69.6 km, centered at µ = 0.9995R�.

The full time-dependent source profile is generated using another Gaussian

function in frequency space, centered at µ = 3.2 mHz, with a standard deviation

of σ = 1 mHz—simulating the power peak of observed solar oscillations. In
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order to mimic a stochastic excitation of acoustic modes (Woodard, 1984), the

frequency-dependent Gaussian function is multiplied by a random number at each

frequency interval (fs = 1/∆t), as shown in Figure 3.2. Applying a Fourier transform

to this spectrum produces a time-dependent profile, of which a unique one is generated

for every harmonic degree and azimuthal order (l,m) in the spherical harmonic

decomposition of the source function (S =
∑

lm almYlm). The stochastic nature of

the source profile forms the basis for simulating realization noise present in solar

observations—inextricably tied to the turbulent convection that excites acoustic

signals in the solar interior.

Figure 3.2 An example of the frequency spectrum that characterizes the time-
dependent profile of the source of acoustic oscillations near the surface of the model;
such a unique random profile is generated for every spherical harmonic degree and
azimuthal order (l, m) of the source function.

3.5 Damping Layer

The boundaries of the model are solved as simple reflective walls with a zero velocity

perturbation condition (u′ = 0). In order to avoid non-physical surface reflections

from affecting internal acoustic mode frequencies, a buffer zone is extended past the
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model surface up to ∼ 1.0007R�. This layer contains an exponentially increasing

damping factor (σ) which can be expressed in the governing equations as follows:

∂ρ′

∂t
= −Υ′ − σρ′ , ∂Υ′

∂t
= −∇2p′ + Y − σΥ′ ,

∂p′

∂t
= P − (σ − α) p′ . (3.10)

This simplified form of the governing Equations (3.1)-(3.3) aggregates external force

contributions in the conservation of momentum (Equation (3.2)) into Y , and the

momentum field variables along with the Brunt-Väisälä term in the conservation of

energy (Equation (3.3)) into P . The pressure term in the RHS of Equation (3.3)

is treated separately, with background field terms defined as α = Γ1ρ̃
−1ũ · ∇ρ̃, and

grouped with the damping term (σ). To avoid precision errors when computing

the damping term, it is solved implicitly in the time-discretization scheme using

the integrating factor method. This layer serves to simulate the escape of acoustic

oscillations above the cutoff frequency (> 5 mHz), into the solar atmosphere.

Figure 3.3 The background profiles of pressure (left) and density (right). A buffer
layer is extended past the surface of the model (vertical line), where profiles of pressure
and density fall exponentially at a rate defined by a constant pressure scale height,
see Equation (3.11).

The buffer zone is isothermal, with background field terms of sound speed

(c2 = Γ1p̃/ρ̃), gravity (g̃rr̂) and Brunt-Väisälä frequency (N2, see Figure 3.1)
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remaining constant throughout the layer. Profiles of pressure (p̃) and density (ρ̃)

fall exponentially at a rate defined by a constant pressure scale height in the buffer

zone (Hanasoge et al., 2006), as shown in Equation (3.11) and Figure 3.3.

p̃ = p̃(R�) exp

(
R� − r
Hp(R�)

)
,

ρ̃ = ρ̃(R�) exp

(
R� − r
Hp(R�)

)
.

R� ≤ r ≤ 1.0007R� (3.11)

3.6 Numerical Method

This section contains the numerical method and computational set-up for the GALE

code. The governing equations are solved using a pseudo-spectral technique, with

second-order finite-difference methods implemented in time (Subsection 3.6.1) and

in the radial direction (Subsection 3.6.2). Field terms along the surface of the

sphere are decomposed into spherical harmonic coefficients with differentiation done

using spectral methods in frequency space (Subsection 3.6.3). The Poisson solver

used to implicitly compute the potential flow (Φ, used to recompute the velocity

field) is described in Subsection 3.6.4. In order to include the contributions of

the material derivative dyad in the conservation of momentum (Equation (3.2)), a

pseudo-spectral formulation of the divergence in a tensor spherical harmonic basis

is defined in Subsection 3.6.5. The derivation of a basic stability condition for

the method can be found in Subsection 3.6.7, and the parallelization technique is

described in Subsection 3.6.8.

3.6.1 Temporal discretization

The time-discretization scheme used in governing Equations (3.1)-(3.3) is a combi-

nation of forward and backward Euler schemes. A first order-accurate backward

Euler scheme is used to help maintain stability when computing the contributions
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of the potential flow field to perturbations of pressure (Equation (3.1)). A combi-

nation of forward and backward Euler schemes for the conservation of momentum

(Equation (3.2)) and continuity (Equation (3.1)), respectively, form a second order-

accurate central finite-difference scheme that computes oscillatory perturbations in

the potential flow field.

Υ′(n+1) = e−σ∆tΥ′(n) −∆te−σ∆t
[
∇2p′(n) − Y(n)(ρ′,u′)

]
,

ρ′(n+1) = e−σ∆tρ′(n) −∆tΥ′(n+1) ,

p′(n+1) = e−(σ−α)∆tp′(n) + ∆tP(n+1)(ρ′,u′) . (3.12)

The governing equations are written using the condensed form introduced in Equation

(3.10), where aggregate terms in the conservation of momentum and the conservation

of energy relations are denoted by Y , P , and α. The integrating factor method is used

to implicitly compute the contributions of the damping term (σ), see Section 3.5.

3.6.2 Radial discretization and differentiation

Spatial differentiation in the radial direction is done on a discrete grid, employing

finite-difference methods. A one-dimensional (1D) representation of the radial mesh

is shown in Figure 3.4, where the subscript “k” denotes discrete mesh points from

k = 1 to k = K. The distance between two points, e.g., k − 1 and k, is represented

by ∆rk.

In order to compute the radial component of the Laplacian (∇2) in Equation

(3.2), the following second order-accurate central finite-difference scheme (Equation

(3.13)) can be used.

∂

∂r

(
r2∂f

∂r

)
=

2

∆rk + ∆rk+1

(
r2
k+0.5

fk+1 − fk
∆rk+1

− r2
k−0.5

fk − fk−1

∆rk

)
. (3.13)
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Figure 3.4 A 1D representation of the radial grid, where discrete mesh points are
denoted by the subscript “k”. r0 and rk+1 represent ghost points outside of the model
boundaries that may be used during finite-difference computations.

Computations of divergence (∇·) and gradient (∇) can be accomplished with the

following second order-accurate polynomial central finite-difference scheme (Equation

(3.14)) for first radial derivatives.

∂f

∂r
= − ∆rk+1

∆rk(∆rk+1 + ∆rk)
fk−1 +

∆rk+1 −∆rk
∆rk+1∆rk

fk +
∆rk

∆rk+1(∆rk+1 + ∆rk)
fk+1 .

(3.14)

The precision of these methods and their agreement with theoretical computations

of eigenmodes is well within an acceptaable range for modeling and testing local

heliosesimology techniques throughout the convective interior. While higher order-

accurate schemes may be more precise, employing a non-uniform grid with large

variations in spacing will diminish any improvements that could be expected.

The radial grid used in this model (Figure 3.5) is spaced evenly with respect to

acoustic travel time (
∫

1/csdr), allowing for the computation of acoustic oscillations

across large variations in sound speed (cs). While this grid is effective at capturing

effects throughout the majority of the model interior, pressure and density scale

heights begin to drop off faster than sound speed closer to the model surface (r >

0.99R�). In order to properly resolve the effects of the Brunt-Väisälä frequency (N2,

Equation (3.9)), a logarithmic pressure grid spaced evenly in ln(p) (e.g., Hanasoge

50



Figure 3.5 The distance between radial grid points in cm. Spacing is even
with respect to acoustic travel time (

∫
1/csdr) between 0 < r < 0.99R�. The

grid is switched to a spacing even with the drop in logarithmic pressure (ln p̃)
between 0.99R� < r < R�. In the isothermal buffer layer above the model surface
(R� < r < 1.0007R�) a uniform spacing is implemented.

et al., 2006) is substituted for this region. In the isothermal buffer layer above the

model surface (Section 3.5), grid spacing becomes uniform.

3.6.3 Spherical harmonic decomposition and differentiation

Transverse discretization is done through spherical harmonic decomposition using

the Libsharp spherical harmonic library (Reinecke & Seljebotn, 2013). The spectral

resolution is defined by the maximum allowable quantum number (lmax(r)) at each

radial point. This value controls the mesh size of the Gauss-Legendre grid, containing

Nφ = 3lmax azimuthal grid points and Nθ = 3lmax/2 latitudinal grid points—chosen

so as to avoid aliasing during spherical harmonic decomposition. The azimuthal mesh

points (Nφ) are spaced at even intervals between 0 < φ ≤ 2π, while the latitudinal

points (Nθ) are placed at the roots of the corresponding Legendre polynomial between

0 < θ < π. To avoid oversampling at high latitudes the Libsharp library natively

implements polar optimisation, or the “reduced Gauss-Legendre grid”.
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Figure 3.6 A representation of the 3D structure of the model grid. The
resolution tangent to the surface of the sphere is defined by the maximum allowable
quantum number (lmax(r)) at each radial point—controlling the mesh size of the
Gauss-Legendre grid, containing Nφ = 3lmax azimuthal grid points and Nθ = 3lmax/2
latitudinal grid points.

Differentiation along the surface of the sphere (θ, φ) can be accomplished with

a spectral method. In the spherical harmonic decomposition, the transverse portion

of the Laplacian (∇θφ) is defined by the following simple relation.

∇θφYlm = −l(l + 1)Ylm .

The first derivatives (sin θ(∂/∂θ), ∂/∂φ) can also be computed in spherical harmonic

space, using the recursion relations derived in Appendix B, Equations (B.13), (B.15),

respectively.

sin θ
∂Ylm
∂θ

= l

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Yl+1,m − (l + 1)

√
(l −m)(l +m)

(2l − 1)(2l + 1)
Yl−1,m .

∂Ylm
∂φ

= imYlm .
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3.6.4 Numerical solver of the potential field

Solving for the potential flow field (mp = ∇ · Φ, Subsection 3.2.2) will allow for

the computation of velocity and density fields used in the governing equations (u′,

ρ′). The spherical harmonic decomposition (Subsection 3.6.3) of the divergence of

the momentum field (Υ = ∇2Φ) can be used to create 1D radial equations for each

azimuthal order and harmonic degree (l, m).

Υ =
lmax∑
l=0

l∑
m=−1

1

r2

[
∂

∂r

(
r2∂Φlm

∂r

)
− l(l + 1)Φlm

]
Ylm . (3.15)

A series of 1D implicit numerical solvers of Poisson’s equation can be used to compute

the potential flow field (Φ) from the divergence of the momentum field (Υ). Using

the central finite-difference method defined in Subsection 3.6.2, Equation (3.13), the

Laplacian (Equation (3.15)) can be discretized as:

r2
k,lmΥk,lm =

2

∆rk + ∆rk+1

(
r2
k+0.5

Φk+1,lm − Φk,lm

∆rk+1

− r2
k−0.5

Φk,lm − Φk−1,lm

∆rk

)
− l(l + 1)Φk,lm , (3.16)

where k is the radial index. Separating, rearranging, and grouping terms of the

same radial index on the RHS of Equation (3.16), leaves the following discrete radial

function.

r2
k,lmΥk,lm = ak,lmΦk−1,lm + bk,lmΦk,lm + ck,lmΦk+1,lm , (3.17)
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where:

ak =
2r2

k−0.5

∆r2
k + ∆rk∆rk+1

,

bk = −2

(
r2
k+0.5∆rk + r2

k−0.5∆rk+1

∆r2
k∆rk+1 + ∆rk∆r2

k+1

)
− l(l + 1) ,

ck =
2r2

k+0.5

∆r2
k+1 + ∆rk∆rk+1

.

The series of Poisson’s equations (Equation (3.17)) along the radial dimension can be

written in the following matrix form.



b1 c1

a2 b2 c2

a3 b3 c3

. . . . . . . . .

aK−2 bK−2 cK−2

aK−1 bK−1 cK−1

aK bK





Φ1

Φ2

Φ3

...

ΦK−2

ΦK−1

ΦK



=



r2
1Υ1

r2
2Υ2

r2
3Υ3

...

r2
K−2ΥK−2

r2
K−1ΥK−1

r2
KΥK



. (3.18)

The tri-diagonal matrix (Equation (3.18)) will always be diagonally dominant (bk >

(ak+ck) for all k), allowing for the direct use of Crout’s method for LU-decomposition

to solve this function implicitly for the potential flow field (Φ). The null points can

be removed and the matrix rewritten into band-storage form (K).

K =



0 b1 c1

a2 b2 c2

...
...

...

aK−1 bK−1 cK−1

aK bK 0


. (3.19)
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The following set of equations compute the LU-decomposition (KLU) from the band-

storage matrix K (Equation (3.19)).

KLU =



0 β1 c1

α2 β2 c2

...
...

...

αK−1 βK−1 cK−1

αK βK 0


, where:

β1 = b1

αk =
ak
βk−1

βk = bk − αkck−1

Breaking the matrix (KLU) into its lower (L) and upper compoennts (U) results in

a linear system of equations that can be iteratively computed using forward- and

backward-substition.

KΦ = r2Υ , ⇒


Ly = r2Υ ,

UΦ = y .

(3.20)

The following set of equations solve the lower matrix (L, Equation (3.20)) for the

dependent variables yk.

y1 = r2
1Υ1 ,

yk = r2
kΥk − αkyk−1 .

The upper matrix (U, Equation (3.20)) can now be computed for the potential flow

field (Φk).

ΦK =
r2
KΥK

βK
,

Φk =
yk − ckΦk+1

βk
.
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This set of equations gives a solution for every radial layer of the Poisson function

(Υ = ∇2Φ). This method is iterated over every spherical harmonic quantum number

(l, m) for the full solution of the potential flow field.

3.6.5 Material derivative dyad

The material derivative in the governing equation for the conservation of momentum

(Equation (3.2)) can be written in its Cauchy conservation form as the linearized

dyad ∇ ·N, where

N = ρ′ũũ + ρ̃u′ũ + ρ̃ũu′ .

In order to compute the divergence of this term in spherical harmonic coefficient

space, a change of basis is required. The tensor spherical harmonic (TSH) basis

defined in Appendix A, Section A.2, can be employed to convert this dyad (N) into

a form that will easily lend itself to the computation of derivatives tangent to the

surface of the sphere with recursion relations. Using the definition of a field in the

TSH basis (Equation (A.23)), the dyad can be expanded as:

N =
lmax∑

m=−lmax

lmax∑
l=|m|

(
NL0
lmTL0

lm +NE1
lmTE1

lm +NB1
lmTB1

lm +NT0
lmTT0

lm +NE2
lmTE2

lm +NB2
lmTB2

lm

)
.

NL0
lm is the fully radial component (N rr) and NT0

lm is the transverse (N θθ, Nφφ)

portion of the trace. NE1
lm and NB1

lm represent the mixed radial/transverse components

(N rθ, N rθ), NE2
lm and NB2

lm are symmetric transverse traceless components. Using

the definition of the divergence of a dyad in the TSH basis (Equation (A.44)), the

three resulting components can be written as the following set of 1D radial partial

differential equations for every spherical harmonic degree and azimuthal order (l, m).
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[∇ ·N]rlm =
1

r2

∂

∂r

(
r2NL0

lm

)
− 1

r

(
l(l + 1)NE1

lm +NT0
lm

)
,

[∇ ·N]
(1)
lm =− l(l + 1)

[
1

r3

∂

∂r

(
r3NE1

lm

)
+

1

r

(
NT0
lm

2
− (l − 1)(l + 2)NE2

lm

)]
,

[∇ ·N]
(2)
lm =− l(l + 1)

[
1

r3

∂

∂r

(
r3NB1

lm

)
− (l − 1)(l + 2)

r
NB2
lm

]
.

The three orthogonal components ([∇ ·N]r, [∇ ·N](1), [∇ ·N](2)) form a 3D coordinate

system using the vector spherical harmonic basis (VSH) basis outlined in Appendix A,

Section A.1;

∇ ·N =
lmax∑

m=−lmax

lmax∑
l=|m|

(
[∇ ·N]rlm Ylm + [∇ ·N]

(1)
lm Ψlm + [∇ ·N]

(2)
lm Φlm

)
.

Ylm, Ψlm, and Φlm represent the radial and two transverse spherical harmonic unit

vectors, respectively. The divergence of the material derivative (∇ : N) in this basis

is defined by the 1D radial PDE—Equation (A.40) in Appendix A.

∇ : N =
lmax∑

m=−lmax

lmax∑
l=|m|

(
1

r2

∂

∂r

(
r2 [∇ ·N]rlm

)
− l(l + 1)

r
[∇ ·N]

(1)
lm

)
Ylm . (3.21)

The scalar divergence of the linearized material derivative dyad (Equation (3.21))

can be plugged into the conservation of momentum (Equation (3.2)), capturing the

effects of a compressible background momentum field on the potential flow.

3.6.6 Rotating reference frame

The governing equations (Equations (3.1)-(3.1)) can be solved in a non-inertial

rotating reference frame, whose angular velocity (Ω) is defined in spherical coordinates

as:
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Ω = Ω cos(θ)r̂ + Ω sin(θ)θ̂ . (3.22)

The pseudo-forces relating to rotation in the conservation of momentum (Equation

(3.2)) are grouped into R′Υ, consisting of the Coriolis force (R′C = 2Ω × m′) and

Centrifugal force (R′F = ρ′Ω× (Ω× r)), where R′Υ = −∇ ·R′F −∇ ·R′C .

Using the definition of angular velocity (Equation (3.22)), the Centrifugal force

can be expressed in spherical coordinates as follows.

R′F = ρ′Ω× (Ω× r) = −ρ′rΩ2 sin2 θr̂− ρ′rΩ2 sin θ cos θθ̂ . (3.23)

A coordinate transformation into the VSH basis can be performed using Equations

(A.14), (A.15) in Appendix A.

Rr
F
′ = −ρ′rΩ2 sin2 θ ,

∇2
θφR

η
F
′ = −rΩ2

[
cos θ

(
sin θ

∂ρ′

∂θ

)
+ 2ρ′ − 3ρ′ sin2 θ

]
,

∇2
θφR

µ
F
′ = rΩ2 cos θ

∂ρ′

∂φ
.

The transverse derivatives and trigonometric functions can be computed in frequency

space, using the recursion relations derived in Appendix B. The Coriolis force can be

similarly expressed in spherical coordinates.

R′C = 2Ω×m′ = 2Ωmφ sin θr̂− 2Ωmφ cos θθ̂+
(
2Ωmθ cos θ − 2Ωmr sin θ

)
φ̂ . (3.24)

Performing another coordinate transformation (Equations (A.14), (A.15)) on the

Coriolis force (Equation (3.24)) results in the following set of VSH coefficients.
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Rr
C =2Ωmφ sin θ ,

∇2
θφR

η
C =

1

sin θ

∂

∂θ

(
sin θ

(
−2Ωmφ cos θ

))
+

1

sin θ

∂

∂φ

(
2Ωmθ cos θ − 2Ωmr sin θ

)
,

∇2
θφR

µ
C =

1

sin θ

∂

∂θ

(
sin θ

(
2Ωmθ cos θ − 2Ωmr sin θ

))
+

1

sin θ

∂

∂φ

(
2Ωmφ cos θ

)
.

The transverse relations (Rη
C ,Rµ

C) can be written in a form that is consistent with the

recursion relations defined in Appendix B, by mulitplying both sides of the functions

by sin2 θ, and rearranging terms.

Rr
C =2Ωmφ sin θ ,

sin2 θ∇2
θφR

η
C =− 2Ω cos θ

(
sin θ

∂

∂θ

(
mφ sin θ

))
+ 2Ω sin2 θ

(
mφ sin θ

)
+ 2Ω

∂

∂φ

(
mθ cos θ sin θ −mr sin2 θ

)
,

sin2 θ∇2
θφR

µ
C =2Ω sin θ

∂

∂θ

(
mθ cos θ sin θ −mr sin2 θ

)
+ 2Ω cos θ

∂

∂φ

(
mφ sin θ

)
.

After solving for the Coriolis terms in frequency space, they can be transformed back

into real space and divided by sin2 θ, resulting in the final forms of the pseudo-force

contributions in a rotating reference frame. The divergene of these terms can be

taken simply by plugging them into the definition for the divergence in the VSH basis

(Section A.4).

3.6.7 Stability and CFL condition

In order to perform the stability analysis and derive an approximate Courant-

Friedrichs-Lewy (CFL) condition for the time-discretization scheme, the following

simplified form of the governing equations (Equations (3.1)-(3.3)) is employed.
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∂ρ′

∂t
= −Υ′ ,

∂Υ′

∂t
= −∇2c2ρ′ . (3.25)

The conservation of energy (Equation (3.3)) is omitted in favor of the simple adiabatic

relation for pressure perturbations, p′ = c2ρ′. Background flows are removed under

the assumption that they are significantly smaller than the sound speed (c), and will

not affect the stability of the algorithm in the model interior. Furthermore, since

sound speed only has a radial dependence and the radial grid is spaced evenly with

respect to acoustic travel time (Subsection 3.6.2), the sound speed can be treated as

a constant without a significant loss in precision. The simplified governing equations

(Equations (3.25)) can now be combined to form the 3D wave equation for density

perturbations.

∂2ρ′

∂t2
= c2∇2ρ′ . (3.26)

This wave equation (Equation (3.26)) can be written out in a finite-difference

form that is consistent with the time-discretization scheme employed in the model

(Subsection 3.6.1).

ρ′(n+1) − 2ρ′(n) + ρ′(n−1)

(∆t)2
=
c2

r2

∂

∂r

(
r2∂ρ

′(n)

∂r

)
− l(l + 1)c2

r2
ρ′

(n)
.

This function can be rewritten under the assumption that density perturbations take

the form of the solution to the 1D radial wave equation
(
ρ′(n)(r) = ρ′

(n)
lm Ylme

ikr
)

on

the discrete intervals of the radial grid. Furthermore, the transformation of this wave

due to sphericity is assumed to be minimal on the order of the grid size, allowing for

the omission of the imaginary term—leaving the following governing equation.
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ρ′
(n+1)
lm − 2ρ′

(n)
lm + ρ′

(n−1)
lm

(∆t)2
= −c2k2ρ′

(n)
lm −

l(l + 1)c2

r2
ρ′

(n)
lm . (3.27)

The terms of the wave equation (Equation (3.27)) can then be rearranged as:

ρ′
(n+1)
lm + aρ′

(n)
lm + ρ′

(n−1)
lm = 0 , where a =

[
(∆t)2c2

(
k2 +

l(l + 1)

r2

)
− 2

]
.

This equation is rewritten under the assumption that each subsequent time-step can

be expressed as a function of a previous time-step and some amplification factor

(ρ′
(n+1)
lm = zρ′

(n)
lm ):

z2ρ′
(n−1)
lm + zaρ′

(n−1)
lm + ρ′

(n−1)
lm = 0 .

The amplification factor can then be solved using the quadratic equation.

z =
−a±

√
a2 − 4

2
. (3.28)

For damping to occur, the amplification factor must be complex, leaving the following

condition on the terms inside of the square root.

a2 − 4 < 0 .

Written out in full form, this condition results in the maximum time-step allowed to

maintain stability.

∆t <
2

c

(
k2 +

l(l + 1)

r2

)1/2
,
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where the wavenumber k can be estimated for each grid point as k = π/∆r.

3.6.8 Parallelization

In order to increase the speed of the computation of the governing equations

(Equations (3.1)-(3.3)), the load can be distributed over several processors working

in parallel. Computations occur in two main regimes: real-space computation and

frequency-space computation in the spherical harmonic decomposition.

Real-space computations include instances of multiplying and dividing flow field

variables. This work is done on the Gauss-Legendre 3D mesh grid (Subsection 3.6.3),

covering the full sphere in the azimuth (0 ≤ φ ≤ 2π) with Nφ grid points, and

the latitude (0 ≤ θ ≤ π) with Nθ grid points. The resolution of each radial

layer is controlled independently and real-space computations are done on each layer

separately.

Figure 3.7 A representation of real-space mesh-point storage in memory; a 1D
array of contiguous radial layer grid points (Nφ × Nθ) are stored consecutively for
each radial layer from the center outwards.

The structure of the real-space variable array is demonstrated in Figure 3.7, where

each colored radial slice represents the full 2D surface grid (Nφ ×Nθ) stored as a 1D

array with the resolution changing as a function of radius. The full 3D mesh is stored

in memory as a single 1D array, where each surface grid is stored contiguously. This

1D array is then separated into some number of chunks of as equal size as possible
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and distributed to the various compute ranks, as demonstrated in Figure 3.8. Each

radial slice must be stored in its entirety in order to perform real-space computations

and subsequent spherical harmonic analysis and decomposition.

Figure 3.8 A symbolic representation of memory arrangement across compute
ranks, showing the transformation between contiguous surface grids at each radial
layer (left) to models separated by azimuthal quantum numbers (m) containing every
radial grid-point (right).

Frequency-space computations in the spherical harmonic decomposition include

solving the time-discretized functions (Subsection 3.6.1, Equations (3.12)) as well

as computing the potential field using the numerical solver for Poisson’s equation

(Subsection 3.6.4). These computations can be performed for each spherical harmonic

degree (l) and azimuthal order (m) individually, but require access to all of their

radial grid points. This can be achieved through spherical harmonic decomposition

of the real-space variables in their compute ranks, as demonstrated symbolically in

Figure 3.8, where, on the left hand side, each radial surface grid is transformed

and stored as a 1D array of contiguous azimuthal orders (m). These 1D arrays are

then broken up by that order and redistributed among the compute ranks, forming

contiguous segments of radial grids for each spherical harmonic quantum number

individually.
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3.7 Model Validation

This section presents a validation of the computational techniques employed in the

GALE code (Section 3.6). The accuracy of the computation of acoustic oscillations

throughout the solar model is tested by comparing them with theoretically computed

acoustic eigenmodes in Subsection 3.7.1. The computation of the material derivative

(see Subsection 3.6.5) is validated by simulating differential rotation as a background

velocity term, and measuring the resulting frequency shifts (Subsection 3.7.2). The

detection of acoustic perturbation using a power-map analysis is tested at a high

resolution in order to mimic observations of small-scale structures on the solar surface

(Subsection 3.7.3).

3.7.1 Power spectrum

Acoustic oscillations on the solar surface can be decomposed into eigenmodes of

radial velocity (u′rr̂), representing standing waves throughout the solar interior. These

modes can be conceptualized as a combination of the scalar spherical harmonic (Ylm)

with a frequency dependent radial order (ξn),

u′r(r, θ, φ, t) =
∑
n,l

l∑
m=−l

ξn(r)Ylm(θ, φ)eiωt . (3.29)

The power spectrum of these modes can be visualized using an l−ν diagram, showing

continuous radial modes throughout the solar interior as a function of their frequency

(ω = 2πν) and spherical harmonic degree (l), Figure 3.9. The eigenmodes are

excited in the frequency range determined by the source function (S, see Section 3.4).

Setting negative values of the Brunt-Väisälä frequency to zero removes the convective

instabilities that act as sources of acoustic perturbations normally seen below 2 mHz.

The structure of the eigenmodes generated by the model shows a good agreement
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with theoretical calculations of eigenmodes from the model S (Christensen-Dalsgaard

et al., 1996), denoted by the dashed blue lines in Figure 3.9.

Figure 3.9 An l − ν diagram, showing the power spectrum of p-modes sampled
20 km above the model surface. Blue dashed lines represent theoretical predictions of
eigenmodes made by the standard solar model S (Christensen-Dalsgaard et al., 1996).
Source: adapted from Stejko et al. (2021a).

3.7.2 Rotation

In order to test the computation of the material derivative (Subsection 3.6.5), a simple

model of differential rotation in a non-rotating reference frame can be implemented

by defining the background velocity term as the angular frequency (Ω) derived from

the mean-field model M1 described in Pipin & Kosovichev (2019) and shown in

Figure 3.10.
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Figure 3.10 The angular frequency (Ω) profile derived from model M1, described
in Pipin & Kosovichev (2019), showing differential rotation in the convection zone
(0.70R� − 1.0007R�) with a solid rotating core (< 0.70R�).
Source: adapted from Stejko et al. (2021a).

This simple azimuthal velocity flow field model creates easily detectable

rotational splitting in the structure of the eigenmodes. The rotational profile will

shift up the frequency of prograde modes and shift down the frequency of retrograde

modes as a function of their azimuthal order (m). This shift can be visualized using

an m − ν diagram of the power spectrum for spherical harmonic degree l = 180

(Figure 3.11), where the simulated modes reproduce the characteristic tilt due to

the average rotation, along with the curvature created by the differential rotation

in the convection zone. The blue dashed lines show frequency splittings calculated

using heliosesimic sensitivity kernels (Schou et al., 1998) for the M1 model (Pipin &

Kosovichev, 2019).
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Figure 3.11 An m−ν diagram, showing the power spectrum of acoustic oscillation,
sampled 30 km above the model surface, for spherical harmonic degree l = 180. Blue
dashed lines represent frequency splittings calculated using heliosesimic sensitivty
kernels (Schou et al., 1998) for the M1 model (Pipin & Kosovichev, 2019).
Source: adapted from Stejko et al. (2021a).

3.7.3 Sound speed perturbations

The modeling of subsurface sound speed perturbations can be used as a general proxy

for the measurement of magnetic flux emerging onto the solar surface (Hartlep et al.,

2011; Ilonidis et al., 2013). In order to further validate the computational techniques

presented here, this algorithm is used to simulate the observation of sound speed

perturbations in a similar manner to the power-map analysis of the acoustic solar

model presented in Hartlep et al. (2011). Such global acoustic models can be used as

validation tools to test local helioseismology techniques used for the measurement of

travel-time differences in the presence of emerging active regions (Ilonidis et al., 2013;

Stefan et al., 2021). These regions can be simulated using the following 3D spherical
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Gaussian perturbations (Equation (3.30)) in the background profiles of sound speed

(c, in Equation (3.3)).

c(r, θ, φ)

c0

= 1 + A exp

(
−(r (θ − θ0))2 + (r sin θ (φ− φ0))2 + (r −R� + z0)2

2w2
0

)
,

(3.30)

where w0 is the characteristic width of the 1D Gaussian function, θ0 and φ0 are the

transverse coordinates of the perturbation, and z0 is the depth from the solar surface.

c0 is the unperturbed solar sound speed profile.

Figure 3.12 An l− ν diagram for a spectral resolution of lmax = 1000, showing the
power spectrum of p-modes sampled 20 km above the model surface.

The analysis of active regions is performed on a scale of an order of magnitude

smaller than investigations of global structures such as differential rotation and
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meridional circulation; helioseismic measurements are taken from MDI data, with

a spatial resolution of 0.12◦ per pixel and a time cadence of one minute. To match

this resolution, the maximum spherical harmonic degree of the algorithm is set to

lmax = 1000, corresponding to Nφ = 3000 azimuthal, and Nθ = 1500 latitudinal grid

points. The data is saved every minute for 8 hours of model time—corresponding to

approximately a day in computational walltime. The resulting l−ν diagram is shown

in Figure 3.12.

Figure 3.13 The acoustic power map generated by a summation of Fourier
decomposed modes over the frequency intervals: 1-3 mHz (top) and 3-5 mHz
(bottom), sampled 30 km above the solar surface. Boxes highlight four sound speed
perturbations of varying widths, w0 = 20, 30, 40, and 50 Mm.
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Figure 3.14 Acoustic power maps of sound speed perturbations, over the frequency
intervals: 1-3 mHz (left) and 3-5 mHz (right), remapped into 30◦ × 30◦ patches
centered at the equator and the 45◦ (A), 90◦ (B), 135◦ (C), 180◦ (D) longitude,
corresponding to a width of w0 = 20 (A), 30 (B), 40 (C), 50 (D) Mm.
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Four different active regions are tested, all corresponding to an amplitude of

A = −10% and a width of w0 = 20, 30, 40, and 50 Mm. They are placed at varying

depths of z0 = 10, 15, 20, and 25 Mm, at the equator and corresponding to a longitude

of φ0 = 45◦, 90◦, 135◦, and 180◦, respectively. Acoustic perturbations can be detected

on the solar surface using a power-map analysis of radial velocity perturbations (u′r)—

decomposed into Fourier modes and summed over frequency intervals (Hartlep et al.,

2011; Toriumi et al., 2013). A synoptic power map for 1-3 mHz and 3-5 mHz can be

seen in Figure 3.13.

These structures are visualized in detail in Figure 3.14, showing the two

frequency ranges remapped into 30◦ × 30◦ patches using Postel’s projection. These

panels show the expected decrease in acoustic power footprints, corresponding to the

varying width of the emerging sound speed perturbations—with the majority of the

changes concentrated in the 3-5 mHz frequency range (Hartlep et al., 2011). These

perturbations are representative of an approximate cross-section of strong active

regions of various sizes, emerging onto the solar surface. This analysis reproduces

the ability to detect relatively short-lived (∼ 8 hours) structures using the power of

acoustic modes.

The simulation presented in this section reproduces the results of the investi-

gation of Hartlep et al. (2011), validating the methods used in this acoustic solar

model, as well as serving as a foundation for testing the algorithm at high spectral

resolutions. This analysis demonstrates potential uses for the code in the small-scale

examination of near-surface active regions within a reasonable modeling time frame,

something that has been too computationally expensive with previous iterations of

global acoustic models.
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CHAPTER 4

HELIOSEISMIC ANALYSIS

4.1 Model Parameters

Helioseismic analysis is performed on models of meridional circulation with the

following parameter set-up. The spatial resolution of the model is set by the spherical

harmonic degree lmax = 200. This value corresponds to an azimuthal resolution of

Nφ = 600 and a latitudinal resolution of Nθ = 450, chosen to avoid aliasing errors

during sampling. This resolution allows for the detection of signals throughout the

convection zone to an upper limit of ∼ 0.96R�. The temporal cadence of the model

is 3 seconds with data being saved at 1 minute intervals for a total of 67 hours (4000

minutes)—a time-scale too short to effectively resolve signals in the convection zone

(Braun & Birch, 2008). The signal-to-noise ratio (SNR) can be improved by increasing

the background velocities in the model by a factor of 36 (see Hartlep et al. (2013)),

mimicking the SNR expected in approximately a decade of solar observations—within

the operational time-frame of HMI.

4.2 Deep Focusing Method

Acoustic oscillations traveling through the solar interior are advected by regimes of

mean mass-flows in the convection zone. Measuring perturbations on the solar surface

allows for the application of local helioseismology techniques (see Gizon & Birch

(2005)) in order to infer the structure of these internal flow velocities. This analyis

employs the technique of deep focusing (Zhao et al., 2009; Charbonneau, 2010), in

which radial velocity perturbtaions at two points on the model surface, separated

by some angular distance (∆), are cross-correlated. The resulting correlation signal

forms the characteristic profile of a Gabor wavelet (Kosovichev & Duvall, 1997; Giles,

2000; Nigam et al., 2007), which can be described by the function:
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Ψ(τ,∆) ∝
∑
δv

cos

[
ω0

(
τ − ∆

v

)]
exp

[
−δω

2

4

(
τ − ∆

u

)2
]
. (4.1)

τ is the time-lag between the signals, ω0 and δω are the central frequency and width

of the frequency filter respectively. v = ω/
√
l(l + 1) is the horizontal phase velocity

and u = ∂ω/∂kh is the horizontal group velocity. The function is summed over

the narrow range of phase velocities δv. Fitting this function (Equation (4.1)) to

the cross-correlated signal is done using the iterative Levenberg-Marquardt method,

resulting in an estimate of the time-lag from the group and phase velocities.

Figure 4.1 Time-distance diagram of the cross-correlation of radial velocity
perturbations for a range of angular travel distances (∆ = 5◦− 60◦), sampled 300 km
above the solar surface. Bottom figures show a slice of the correlation signal at the red
dashed line in the time-distance diagram, fit to a Gabor wavelet pattern (Equation
(4.1)).
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In order to measure the impact of meridional flow fields on acoustic rays, the

time-lag (τ) of southward traveling waves is subtracted from their northward traveling

counterparts (δτNS). The ray-path approximation (Giles, 2000) then offers a basis for

inferring the magnitude of the velocity field in the direction of the traveling acoustic

ray (assuming the path of the ray Γ0 remains unperturbed).

δτ = −2

∫
Γ0

u · n
c2

ds . (4.2)

Although this functions omits non-linear effects of large flow velocities, it serves as

a basic approximation of travel-time differences—seen by the computed travel-time

comparisons in Figure 4.12.

This method is applied to the surface mesh-grid of the model, sampled at

approximately 300 km above the photosphere (1.0004R�). Each pixel (Nθ x Nφ =

450 x 600) is treated as a center point around which cubic hermite splines are used to

remap a 60◦ x 60◦ patch into azimuthal equidistant coordinates (Postel’s proejection)

at a resolution of approximately 0.6◦ per pixel. Great circle distances (∆) are selected

at every interval (1.2◦) from 0◦ to 60◦, for which 30◦ wide sectors in the north and

south (two pixels in radius) are averaged and cross-correlated with each other. This

signal can be enhanced by averaging over every point in the longitude (Nφ = 600) and

smoothed by averaging ±3◦ (±5 pixels) in the latitude. The data can be smoothed

further by averaging the diameter of each great circle over ±2.4◦, where travel-time

offsets are interpolated to an estimated time-lag using the ray-path approximation.

The application of this method allows for the measurement of acoustic travel times

and inferences of meridional velocities throughout the convection zone—from the

convective-radiative interface at the tachocline (0.70R�) to near the solar surface

(0.96R�). An illustration of the remapping and pixel selection technique, along with

corresponding acoustic ray-paths through the model interior can be seen in Figure 4.2.
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Figure 4.2 An illustration of the deep-focusing method. Left) A 60◦ x 60◦ patch
is remapped into azimuthal equidistant coordinates, pixels are selected in 30◦ wide
northern and southern sectors (two pixels in radius). Right) The acoustic ray paths
associated with the selected travel distances.
Source: adapted from Stejko et al. (2021b).

4.3 Measuring Acoustic Travel Times

In order to validate the computational techniques used in the GALE algorithm,

the deep-focuing method is tested on the same simple model of shallow single-cell

meridional circulation presented in Hartlep et al. (2013). Following their formulation,

travel-time differences are taken from great circle distance intervals at ∆ = 12◦, 18◦,

24◦, 30◦, 36◦. The radial turning points of acoustic waves corresponding to each

angular distance are ∼ 0.93, 0.89, 0.85, 0.81, 0.77, 0.72 R�, respectively. Figure 4.3

shows the meridional flow profile used in the model with dashed lines in the upper

hemisphere corresponding to the ray paths for each great circle.

The travel-time differences (δτNS) for each ring diameter are plotted as a

function of latitude in Figure 4.4. These values are compared to theoretical travel-time

differences (dashed lines in Figure 4.4) computed using the ray-path approximation

(Equation (4.2)) employing the standard solar model S (Christensen-Dalsgaard et al.,

1996). These travel-time differences show solid agreement with theoretical predictions
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Figure 4.3 The latitudinal velocity (ũθ) of a single-cell model of meridional
circulation (Hartlep et al., 2013). The dashed lines represent ray paths of acoustic
oscillations (p-modes) between diameters of ∆ = 12◦, 18◦, 24◦, 30◦, 36◦ and 42◦ with
radial turning points at depths: ∼ 0.93, 0.89, 0.85, 0.81, 0.77, 0.72 R�, respectively.
Meridional circulation models are amplified by a factor of 36 (see Section 4.1).
Source: adapted from Stejko et al. (2021a).

as well as the analysis of Hartlep et al. (2013). These results show a key validation

of the numerical procedure used to compute the model as well as the deep focusing

techniques used to analyze the data. The error (σNS) is calculated using the procedure

described in Subsection 4.3.1.

In order to increase the SNR in these measurements, a phase-speed filter can be

applied—defined by a Gaussian function with a width of σ = 0.05vp, where vp = ω/L

is the phase speed, see Nigam et al. (2007) for details. Under the application of

this filter, the travel-time differences display high levels precision but do show a

latitude-independent systematic offset for different ring diameters. This offset, which

seems to have a maximum of approximately±1 s (Figure 4.5), is a characteristic of the

realization noise in the model and can be removed by subtracting the phase-filtered

noise profile for the same model with no background flows (Subsection 4.3.1).
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Figure 4.4 The N-S travel-time differences (δtNS) as a function of latitude for six different depths: ∼ 0.93, 0.89, 0.85, 0.81,
0.77, 0.72 R�, corresponding to travel distances of ∆ = 12◦, 18◦, 24◦, 30◦, 36◦, and 42◦, respectively. The signal is averaged over
±3◦ in latitude and ±2.4◦ in travel distance. Meridional circulation models are amplified by a factor of 36 (see Section 4.1).
Source: adapted from Stejko et al. (2021a).
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Figure 4.5 The N-S travel-time differences (δtNS) under the application of a Gaussian phase-speed filter (σ = 0.05vp) as a
function of latitude for six different depths: ∼ 0.93, 0.89, 0.85, 0.81, 0.77, 0.72 R�, corresponding to travel distances of ∆ = 12◦,
18◦, 24◦, 30◦, 36◦, and 42◦, respectively. The signal is averaged over ±3◦ in latitude and ±2.4◦ in travel distance. Meridional
circulation models are amplified by a factor of 36 (see Section 4.1).
Source: adapted from Stejko et al. (2021a).
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4.3.1 Characterizing noise

The error (σNS) is calculated using a separate model with no background flows;

this reference model uses an identical source function (S, Section 3.4) and analysis

sequence, producing the same error profile for each ring diameter (Figure 4.4). This

error is characterized as the standard deviation of travel-time differences (δτ) from

zero in the reference model, taking the root-mean-square (RMS) over latitudinal grid

points.

σNS =

√√√√ 1

N

N∑
i=1

δτ 2
i . (4.3)

The characteristic noise profiles seen in models without flows can be subtracted from

measured travel-time differences (Figure 4.4) in order to remove some of the most

significant impacts of realization noise on measurements (Hanasoge et al., 2007). This

method of attenuating noise provides an opportunity to compare measurements made

by computational helioseismology to estimates of the ray-path approximation. The

resulting N-S travel-time profile is shown in Figure 4.6 for unflitered measurements

and in Figure 4.7 for measurements under the application of the phase-speed filter.

These profiles show remarkable agreement with predictions made using the ray-path

approximation (Equation (4.2)), implying that non-linear effects do not seem to have

dramatic impacts on the measurement of travel times.
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Figure 4.6 The N-S travel-time differences (δtNS) with noise subtracted from the corresponding model with no flows. The
travel-times are plotted as a function of latitude for six different depths: ∼ 0.93, 0.89, 0.85, 0.81, 0.77, 0.72 R�, corresponding
to travel distances of ∆ = 12◦, 18◦, 24◦, 30◦, 36◦, and 42◦, respectively. The signal is averaged over ±3◦ in latitude and ±2.4◦

in travel distance. Meridional circulation models are amplified by a factor of 36 (see Section 4.1).
Source: adapted from Stejko et al. (2021a).
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Figure 4.7 The N-S travel-time differences (δtNS) under the application of a Gaussian phase-speed filter (σ = 0.05vp) with
noise subtracted from the corresponding model with no flows. The travel-times are plotted as a function of latitude for six
different depths: ∼ 0.93, 0.89, 0.85, 0.81, 0.77, 0.72 R�, corresponding to travel distances of ∆ = 12◦, 18◦, 24◦, 30◦, 36◦, and
42◦, respectively. The signal is averaged over ±3◦ in latitude and ±2.4◦ in travel distance. Meridional circulation models are
amplified by a factor of 36 (see Section 4.1).
Source: adapted from Stejko et al. (2021a).
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The error function (σNS, Equation (4.3)) provides a solid foundation for the

characterization of realization noise at various acoustic travel depths. This error

is shown as a function of travel distance (∆) in Figure 4.8, along with travel-time

differences (δτ) from the reference model without background flows for five separate

latitudinal averages (30◦N−50◦N, 10◦N−30◦N, 10◦S−10◦N, 10◦S−30◦S, 30◦S−50◦S);

errors are shown for both filtered and unfiltered signals (see Section 4.3). The cause

of the apparent systematic error is unclear, however, the latitude-dependent offset is

strongly linked to the structure of the source function (S, Section 3.4), with different

random number seeds generating different error profiles. This effect deserves its own

systematic investigation for varying parameters of source locations and structures.

Figure 4.8 The error in travel-time differences (δτ) as a function of travel distance
(∆) for five latitudinal averages spanning 30◦N − 50◦N, 10◦N − 30◦N, 10◦S − 10◦N,
10◦S − 30◦S, 30◦S − 50◦S. Error bars show the standard deviation of the measured
offset (σNS, Equation (4.3)) across the entire latitude. Left) Error for data analyzed
with a Gaussian phase-speed filter (σ = 0.05vp). Right) Error for unfiltered signal.
Source: adapted from Stejko et al. (2021a).

Figure 4.8 shows similar systematic error structures in both the filtered and

unfiltered signals. Moving towards greater depths, however, shows a significant

increase in the noise of the unfiltered signal, concealing any potential offset. These

results may have interesting implications for measuring meridional flow structures at
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the base of the tachocline. The application of the phase-speed filter seems to have

preserved signal quality relatively evenly throughout the convection zone, offering

encouraging results for probing flows deep in the solar interior.

4.4 Analysis of Meridional Circulation

A useful application of this algorithm lies in the in-depth investigation of the

propagation of acoustic waves over profiles of meridional circulation. This section

explores measurements made from profiles of shallow and deep single-cell, as well as

strong and weak double-cell regimes of meridional background flows—generated by

the mean-field non-linear hydrodynamic and dynamo models of Pipin & Kosovichev

(2018, 2019). The stochastic excitation of oscillations over background flows generated

by these models allows for a systematic examination of realization noise in the

helioseismic signatures generated by each regime. This investigation offers a baseline

for the low-end of variance in travel-time measurements that characterize single-cell

and double-cell meridional circulation—resulting from minimal parameter changes

near the base of the tachocline. Previous conclusions on the nature of meridional

circulation structure and the bounds of realization noise have been inferred with the

aid of ad-hoc models (Zhao et al., 2013; Hartlep et al., 2013; Rajaguru & Antia, 2015;

Chen, 2019; Gizon et al., 2020); this section presents the analysis of physics-based

meridional velocity profiles in order to help constrain the large variance of possible

internal structures.

4.4.1 Meridional profiles

The deep focusing method (Section 4.2) is applied to four profiles of meridional

circulation. The first two are: a shallow single-cell profile, with a return flow at

approximately 0.80R�, along with a double-cell meridional circulation profile with

a weak reversal, referred to as M1 and M2, respectively, in Pipin & Kosovichev
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(2019). The next two are: a single-cell meridional circulation model with a deep

return flow situated near the base of the tachocline—based on the mean-field model

of Kitchatinov (2004), along with a double-cell meridional circulation profile with a

stronger return flow induced by gyroscopic pumping in the same model. They are

described as models M2 and M3, respectively, in Pipin & Kosovichev (2018), and

referred to as K1 and K2 here, in order to avoid confusion with the other models.

These meridional velocities are used as the background terms (ũr,ũθ) in the governing

equations (Equations (3.1)-(3.3)). The latitudinal velocities (ũθ) for the models (M1,

M2, K1, & K2) are shown in Figure 4.9, with streamlines representing the circulation

profile.

Figure 4.9 Latitudinal velocities (ũθ), generated by the mean-field models of Pipin
& Kosovichev (2019) (M1 and M2) and Pipin & Kosovichev (2018) (K1 and K2—
referred to as M2 and M3 in their paper). a) Single-cell meridional circulation with
a shallow return flow at ∼ 0.80R�. b) Double-cell meridional circulation with weak
reversal. c) Single-cell meridional circulation with a deep return flow near the base
of the tachocline. d) Double-cell meridional circulation with strong reversal. Solid
and dashed contours represent counterclockwise and clockwise rotation respectively.
Meridional circulation models are amplified by a factor of 36 (see Section 4.1).
Source: adapted from Stejko et al. (2021b).

The internal meridional flow profiles can be characterized by plotting N-S

travel-time differences (δτNS) as a function of their travel distance (∆ = 12◦ −
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42◦)—corresponding to an increasing depth in the convection zone (r = 0.93R� −

0.72R�). Figure 4.10 presents five latitudinal averages (30◦N − 50◦N, 10◦N − 30◦N,

10◦S − 10◦N, 10◦S − 30◦S, 30◦S − 50◦S) of these travel-time differences for the four

regimes of meridional circulation. Measured travel-time differences (solid lines) are

compared to theoretical travel-time differences (dashed lines) computed using the

ray-path approximation (Equation (4.2)). Randomized functions are used to generate

Figure 4.10 The N-S travel-time differences (δτNS) as a function of travel distance
(∆) for models M1 (a), M2 (b), K1 (c), and K2 (d). The travel-time measurements
are shown unfiltered for five latitudinal averages spanning 30◦N−50◦N, 10◦N−30◦N,
10◦S− 10◦N, 10◦S− 30◦S, 30◦S− 50◦S. Dashed lines are theoretical times computed
using the ray-path approximation (Equation (4.2)). Meridional circulation models
are amplified by a factor of 36 (see Section 4.1).
Source: adapted from Stejko et al. (2021b).
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the oscillatory signal in the source (S, see Section 3.4)—of which four different profiles

are shown for models M1, M2, K1, and K2 (Figure 4.10).

The bounds of the noise can be measured with the method described in

Subsection 4.3.1; 100 unique source functions on a model with no background flows are

used to characterize the noise as the standard deviation (σNS, Equation (4.3)) of the

measured signal from zero. Error bars in Figure 4.10 show one standard deviation

Figure 4.11 The N-S travel-time differences (δτNS) as a function of travel distance
(∆) for models M1 (a), M2 (b), K1 (c), and K2 (d). The travel-time measurements
are shown under the application of a Gaussian phase-speed filter (σ = 0.05vp) for
five latitudinal averages spanning 30◦N − 50◦N, 10◦N − 30◦N, 10◦S − 10◦N, 10◦S −
30◦S, 30◦S − 50◦S. Dashed lines are theoretical times computed using the ray-path
approximation (Equation (4.2)). Meridional circulation models are amplified by a
factor of 36 (see Section 4.1).
Source: adapted from Stejko et al. (2021b).
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of this noise profile. The SNR can be improved significantly—especially at larger

travel-distances, by applying a phase-velocity filter to the data prior to deep focusing

(see Section 4.3). The resulting travel-time differences can be seen in Figure 4.11.

A comparison of signals from the four models, shows noticeable variations

between three of them. Moving from the deep single-cell profile (K1) to the

shallow single-cell and weak-reversal double-cell profiles (M1 & M2), further onto the

strong-reversal double-cell profile (K2), highlights a trend of increasing curvature,

showing a more rapid decrease in travel-time differences with travel distance. These

trends result in gaps wider than one standard deviation of the noise throughout a

large part of the convective interior. The shallow single-cell and double-cell regimes

(M1 and M2, respectively), however, fall within one standard deviation of the range of

realization noise, even with the significant increase in the SNR through the application

of a phase-velocity filter. These results have positive implications for the ability to

distinguish between deep and shallow single-cell meridional circulation, as well as

profiles of double-cell circulation with strong reversals. Unfortunately, the differences

between shallow single- and double-cell profiles are much more subtle; using current

helioseismology techniques, within the time-frame of HMI measurements (∼ 10 years),

any definitive statements on whether meridional circulation has one or two cells may

be difficult to make.

In order to highlight systematic errors present in the model, as well as

compare measurements to ray-path theory, computed travel-time differences of models

with no background flows can be subtracted from the travel-time differences of

the models with meridional circulation profiles that were excited with the same

source (see Subsection 4.3.1). This results in realization noise being removed from

travel-time differences in models M1, M2, K1, and K2, for the phase-speed filtered

data-set (Figure 4.12)—revealing a close and consistent agreement to the ray-path

approximation with the travel-time differences in the K1 model. As travel-time
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Figure 4.12 The N-S travel-time differences (δτNS) as a function of travel distance
(∆) for models M1 (a), M2 (b), K1 (c), and K2 (d), under the application of
Gaussian phase-speed filter (σ = 0.05vp), with profiles of noise subtracted, showing
five latitudinal averages spanning 30◦N−50◦N, 10◦N−30◦N, 10◦S−10◦N, 10◦S−30◦S,
30◦S − 50◦S. Dashed lines are theoretical times computed using the ray-path
approximation (Equation (4.2)). Meridional circulation models are amplified by a
factor of 36 (see Section 4.1)
Source: adapted from Stejko et al. (2021b).

difference profiles begin to fall off more steeply with travel distance, however, the

results begin to diverge slightly from the approximation, culminating in an inability to

match the travel-time difference increase seen at large depths in model K2. Whether

this is due to intrinsic systematic errors in the model or in the approximation itself

deserves an in-depth investigation.

The profiles can also be compared to the publicly available data from the
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analysis of Gizon et al. (2020) (Figure 4.13), scaling the travel-time differences

computed using the ray-path approximation in models M1, M2, K1, and K2, to

their travel-time measurements using MDI/GONG observations for Solar Cycle 24

(2008-2019). It is apparent that the level of noise is too large to draw significant

conclusions distinguishing single- and double-cell regimes of meridional circulation.

Figure 4.13 The N-S travel-time differences (δτNS) as a function of travel distance
(∆) for MDI/GONG data published by Gizon et al. (2020). Latitude ranges in both
hemispheres (10◦N − 30◦N, 10◦S − 30◦S) are averaged in order to reduce noise and
are compared to dashed lines representing latitudinal averages for models K1, K2,
M1, and M2, as measured using the ray-path approximation (Equation (4.2)). Error
bars are computed as the standard deviation (σ, Equation (4.3)) of the travel-time
differences in the 10◦N− 10◦S latitude range from zero.
Source: adapted from Stejko et al. (2021b).
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CHAPTER 5

DISCUSSION

5.1 Global Solar Modeling

The work presented in this dissertation focuses on the current state of global

solar modeling. 3D simulations have become an indispensable part of the field of

heliophysics and as the power of computing hardware and software continues to grow,

these models will continue to open up new avenues of investigation. The study of solar

and stellar environments is fundamentally a theoretical exercise, as their inhospitable

environment may forever preclude direct observation. While the chaotic nature of

solar dynamics does not lend itself well to simple theoretical explanations, it is exactly

these types of situations where the promise of computational algorithms can be seen.

The better that simple principles of physics can be prescribed, the more accurate and

insightful the aggregate of computational solutions will be. Models of solar and stellar

evolution will become the key to unlocking a deep and fundamental understanding

of the nature of solar structure and pave the way for accurate predictive models of

space weather.

Global MHD modeling has been instrumental in unlocking questions on the

evolution of the solar dynamo. Simple operational dynamo models (Parker, 1955;

Moffatt, 1978; Babcock, 1961; Leighton, 1969) build the foundation for mean-field

theory (Brandenburg & Subramanian, 2005) to create a framework for the evolution

of the solar cycle. Convectively-driven MHD models take the opposite approach,

attemping to reproduce solar obervations as a natural byproduct of an evolving

system, and gain insight into the structure of turbulet coefficients in a holistic way.

When these two approaches meet, they will signify a validation of our understanding of

the nature of solar structure and the parameters that drive the system. Unfortunately,
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global MHD modeling (Brun et al., 2004; Ghizaru et al., 2010; Racine et al., 2011;

Cossette et al., 2013; Nelson et al., 2013; Augustson et al., 2015; Guerrero et al.,

2016; Cossette et al., 2017; Warnecke, 2018; Guerrero et al., 2019) still has a long way

to go before fully replicating solar observations in a satisfactory way. An important

insight that these model have begun to show, however, is that they may have been

taking a too narrow view of the system. The complex interaction of the internal

dynamo structure with the solar surface presents an obstacle for the anelastic models

that cannot simulate compressive interactions and are not built for the high plasma

flow speeds in subsurfae layers. It seems that the next step will rely on novel

systems, purpose-built to simulate these interactions. A completely new non-linear

compressible MHD model is a massive undertaking; in order to move the needle on this

topic slightly forward, this dissertation presents the formulation of a new linearized

compressible solar model. The pseudo-spectral computational techniques presented,

are formulated in a way that can be extended to a non-linear model in the future. In

the mean-time, there is no shortage of uses for a new generation of fast and efficient

acoustic models, especially in the context of interpreting inferences of helioseismic

observations of the Sun.

5.2 The GALE Code

The GALE code can be used facilitate the testing and validation of local and global

helioseismology techniques in diverse regimes of three-dimensional flows. While

helioseismology has been an indispensable tool in exploring interior dynamics on the

Sun, it can have trouble resolving exact profiles of flow, especially at greater depths.

Forward-modeling offers the opportunity to test the impact of subtle differences

generated by a variety of theoretical models of mean mass flows, forming a basis

to better interpret observational oscillation data.
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This model is validated for two distinct profiles: differential rotation and

meridional circulation. These two regimes are critical for understanding and

simulating the distribution of angular momentum and magnetic flux that governs

the solar magnetic cycle. The pseudo-spectral techniques presented here will be

necessary components for future models to efficiently compute spherical harmonic

resolutions of lmax > 300, previously considered to be too computationally expensive.

These resolutions will be necessary to model local helioseismology techniques on sound

speed perturbations due to small-scale structures on the solar surface, creating a link

to linear effects of global perturbations.

In this dissertation, the GALE code is employed in an attempt to tackle

unanswered questions on the nature of meridional circulation. Large variations in

inferences have been made using similar local helioseismology techniques—from a

double-cell meridional circulation profile seen in HMI observations (Zhao et al., 2013;

Chen, 2019) to recent reassertions of a single cell profile from MDI/GONG data

(Gizon et al., 2020). The feasibility of the two regimes has been explored in recent

years, with convectively driven MHD and HD models reproducing the necessary

environment for both.

The actual differences may lie somewhere in between the large variations inferred

in the two regimes. This model attempts to test the feasibility of discerning between

meridional profiles with a deep and shallow single-cell as well as strong and weak

secondary-cell profiles, generated by the same mean-field model, operating with

minimal parameter changes (K1 & K2 in Pipin & Kosovichev (2018)—referred to

as M2 and M3 in their paper; M1 & M2 in Pipin & Kosovichev (2019)). Using the

GALE code to simulate the stochastic excitation of acoustic modes throughout the

convective interior, the deep focusing method can measure the resulting realization

noise in travel-time differences. Noise is one of the main obstacles when inferring

structures from observations. Even if the systematic CtoL effect can be fully resolved,
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the time-frame of measurements remains a limiting factor. The high levels of noise in

these measurements leave large uncertainties that may be the source of the divergent

conclusions made on the nature of meridional circulation. Physics-based models can

be used to constrain results in the context of a broader complex system. The GALE

code is used to analyze differences between a shallow single-cell and a weak-reversal

double-cell regime, generated by a mean-field simulation that uses a physics-based

model of gyroscopic pumping to induce the reverse-flow cell near the base of the

tachocline. These models show that even with the formation of a reverse flow, the

travel-time differences may fall well within one standard deviation of error for both

phase-speed filtered and unfiltered deep-focusing measurements. These profiles (M1

& M2) provide the low end of the baseline for variance between the two regimes. An

examination of physics-based profiles that may be more consistent with single-cell

(Gizon et al., 2020) inferences such as K1 or double-cell (Zhao et al., 2013; Chen,

2019) inferences such as K2, can also be useful. The deep single-cell profile (K1)

and strong-reversal double-cell profile (K2) show large enough differences that a

distinction with a relatively high degree of confidence is feasible. For now, however,

the best way to constrain these solutions is by looking at the broader impacts of these

profiles within the context of their effects on global solar dynamics (see Kitchatinov,

2013). Pipin & Kosovichev (2018) show that an unavoidable effect of increasing the

strength of the return flow is a profile of differential rotation that is inconsistent

with inferences of global helioseismology (Howe et al., 2011). While mean-field

modeling does not fully capture the structure of the solar interior, a consistency with a

theoretical understanding of the system can lend confidence to inferred results. While

meaningful conclusions on the nature of the return flow are within the reach of local

helioseismology techniques, currently, mean-field model-based profiles of meridional

circulation show that any definitive statements on the prevalence of either a single-

or double-cell regime should be taken with a grain of salt.
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5.3 Future Plans

This section describes the future applications of the GALE code, including an

extension that solves for the perturbations of a background magnetic field in the ideal

MHD limit (Subsection 5.3.1), as well as the formulation of a non-linear algorithm

based on the computational methods described in this dissertation (Subsection 5.3.2).

5.3.1 Magnetic field extension

Future iterations of the GALE code will include a linear perturbative magnetic field

term, allowing helioseismic techniques to explore large global magnetic structures, as

well as magnetic flux from emerging active regions on the solar surface. The effect of

a background magnetic field on the conservation of momentum (Equation (3.2)) can

be easily modeled by the action of the Lorentz force, which, with the aid of Ampere’s

law, vector identities, and the divergence-free field condition (∇ · B = 0), can be

written in the following conservative form.

FL =
J×B

c
= −∇

(
B2

8π

)
+∇ · BB

4π
, (5.1)

where the first term on the RHS of Equation (5.1) is the magnetic pressure and the

second term is a magnetic hoop stress. The Lorentz Force (FL) can be linearized by

splitting the magnetic field into a base field (B̃) and a perturbation (B′), keeping

only the linear perturbation terms.

F′L = −∇

(
B̃ ·B′

8π

)
+∇ ·

B′ij
4π

, (5.2)

The perturbation of the magnetic dyad is written as B′ij = B̃B′+B′B̃. The linearized

Lorentz force can be added to the conservation of momentum (Equation (3.2)); writing

the new relation alongside the linearized induction equation in the ideal MHD limit
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(where conductivity is infinite), results in the extended linearized MHD governing

equations:

∂Υ′

∂t
+∇ : (m′ũ + ρ̃ũu′) = −∇2

(
p′ +

B̃ ·B′

8π

)
−∇ · (ρ′g̃rr̂) +R′Υ +∇ :

B′ij
4π

, (5.3)

∂B′

∂t
= ∇×

(
u′ × B̃ + ũ×B′

)
. (5.4)

The governing equation for the induction of the magnetic field (Equation (5.4)) can

be solved in spherical coordinates, by computing the cross product of the velocity

and the magnetic field (u′× B̃+ ũ×B′) in real space. Taking the spherical harmonic

decomposition of the resulting cross product coefficients will allow for a coordinate

transformation into the VSH basis, using Equations (A.12), (A.13). The curl can then

be computed with the technique defined in Appendix A, Section A.5. The induction

equation can be discretized in time using the backward Euler method to maintain

the stability of the solution. The resulting magnetic field term can now be used to

solve for the Lorentz force contributions in the MHD extension of the conservation of

momentum (Equation (5.3)). Computing the magnetic pressure is relatively easy to

do in real space. The divergence of the linearized hoop stress (∇ : B′ij/4π) can also

be efficiently solved using the pseudo-spectral technique for the computation of the

material derivative described in Subsection 3.6.5.

This algorithm presents the opportunity to test and simulate helioseismology

techniques employed in the detection of magnetic structures. While linear acoustic

simulations with magnetic fields already exist (Cameron et al., 2008; Khomenko

et al., 2009; Parchevsky & Kosovichev, 2009; Felipe et al., 2016), they are exclusively

relegated to small domains at the solar surface. A fast and efficient fully global linear

MHD algorithm can open up many new avenues of investigation. Helioseismology

is currently the only tool that can truly probe the solar interior directly, however,
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the resulting structural inferenes are only as good as the understanding of the

technique’s limitations. Global linear MHD models offer the opportunity for an

in-depth analysis of how large global magnetic fields can affect travel-time signatures

at varying depths and magnetic field strengths, presenting a detailed picture of what

can be expected when probing the solar interior. Such analyses can offer new insight

into the opportunities and limits of what current techniques in helioseismology can

achieve when attempting to detect global magnetic structures.

Global linear MHD models also offer an uprecedented chance to create a link

between large global flows and the emergence of relatively small-scale active regions. A

deeper understanding of the interconnected nature of these systems is fundamentally

necessary in order to fully grasp how magnetic structures are created, stored, and

then emerge onto the solar surface. More importantly, mapping the action of global

and local subsurface flows can aid in building predictive models to more accurately

gauge the potential strengths and locations of energetic events on the solar surface.

5.3.2 Non-linear algorithm

The computational structure of the GALE code, as well as its method of paral-

lelization (Subsection 3.6.8), will become the foundation for the development of a fully

non-linear global MHD algorithm. The formulation of this algorithm must include the

solenoidal portion of the momentum field that was previously discarded. This field is

mainly solved with force contributions from baroclinicity and the Coriolis force and

the majority of its effects will be felt on vastly different scales than the potential

flow field. Using the split-field formulation defined in Subsection 3.2.2, allows for

the ability to control the resolution of the two fields independently, concentrating

computing power where it is most needed.

The solenoidal field is defined as some vector potential (ms = ∇ × Ψ) under

the divergence-free field condition (∇ · ms = 0). These conditions are ensured
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by solving for the curl of the conservation of momentum, Equation (3.7), where

∇ × ρu = ∇ ×m = ∇2Ψ = $. M is defined as the aggregate of all internal and

external forces.

∂$′

∂t
= ∇×M . (5.5)

The governing equation for the curl of the momentum field (Equation (5.5)) can

be broken down into the orthogonal set of coefficients spanning the VSH basis

(Section A.1).

∂$r

∂t
= [∇×M]r ,

∂$(1)

∂t
= [∇×M](1) ,

∂$(2)

∂t
= [∇×M](2) .

Using the definition for a curl in the VSH basis (Section A.5), it is immediately obvious

that the relations for the first two coordinates ($r, $(1)) are degenerate solutions for

the m(2) momentum field, while the last relation solves for $(2) as a function ofM(1)

and Mr.

∂m(2)

∂t
=M(2) ,

∂$(2)

∂t
=

1

r

∂

∂r

(
rM(1)

)
− M

r

r
.

This new governing equation for $(2) can be used to solve for the orthogonal

coefficients of the momentum field (mr, m(1)), using the definition of a curl in the VSH

basis (Section A.5) and the divergence-free condition for the solenoidal momentum

field (∇ · ρu = 0, Section A.4).

$(2) =
1

r

∂

∂r

(
rm(1)

)
− mr

r
,
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1

r2

∂

∂r

(
r2mr

)
− l(l + 1)

r
m(1) = 0 .

Rearranging terms leaves the following two equalities needed to solve for the full

solenoidal momentum field.

∂2

∂r2

(
r2mr

)
− l(l + 1)mr = l(l + 1)r$(2) , (5.6)

rm(1) =
1

l(l + 1)

∂

∂r

(
r2mr

)
. (5.7)

An implicit numerical Helmholtz solver, formulated in a similar manner to the Poisson

solver presented in Subsection 3.6.4, can be used to compute the radial part of

solenoidal field (mr, Equation (5.6)), while a simple radial finite-difference method

can be ued to compute m(1) (Equation (5.7)).

Gibb’s relation (T (Ds/Dt) = De/Dt + p(DV /Dt)) lets the conservation of

energy be expressed as an entropy relation in its conservative form, where Q is the

aggregate of heat conduction, radiation, viscous friction, and Ohmic heating. Using

the formulation described in this section, the full set of governing equations for a

non-linear global compressible MHD model can be written as:

∂ρ

∂t
+ Υ = 0 , (5.8)

∂Υ

∂t
+ ∇ : (ρuu) = −∇2

(
p+

B2

8π

)
+∇ ·M+ ∇ :

BB

4π
, (5.9)

∂m(2)

∂t
+ [∇ · (ρuu)](2) =M(2) +

[
∇ · BB

4π

](2)

, (5.10)

∂$(2)

∂t
+

1

r

∂

∂r

(
r [∇ · (ρuu)](1)

)
− 1

r
[∇ · (ρuu)](r) =

1

r

∂

∂r

(
rM(1)

)
− M

r

r

+
1

r

∂

∂r

(
r

[
∇ · BB

4π

](1)
)
− 1

r

[
∇ · BB

4π

]r
, (5.11)
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∂ρs

∂t
+∇ · (ρus) = Q , (5.12)

∂B

∂t
= ∇× (u×B)− c2

4πσ
∇× (∇×B) . (5.13)

In these governing equations,M is the aggregate of gravitational effects, pseudo-forces

in a rotating reference frame, and the divergence of the viscous stress tensor (∇·τ ij).

The conservation of the full momentum field is defined by the potential flow (Equation

(5.9)), where Υ = ∇ · ρu, as well as the two components of the solenoidal field

(Equations (5.10), (5.11)) in the VSH basis. These relations include the magnetic

effects of the Lorentz force in its conservative form (see Subsection 5.3.1). This allows

for the hoop stress, along with the material derivative, and the viscous stress tensor (in

a gas with no angular momentum), to be defined as second-rank symmetric tensors,

which can be decomposed into the TSH basis described in Appendix A, Section A.2.

The divergence can be computed using the simple set of 1D radial PDE’s in the

pseudo-spectral method employed in the GALE code (Subsection 3.6.5), solving for

components in the VSH basis directly. Induction of the magnetic field (Equation

(5.13)) includes effects of plasma resistivity, where σ is the conductivity, and is solved

in the manner described in Subsection 5.3.1. Pressure can be computed from entropy

and density (p(ρ, s)), using ideal gas relations or equations of state for solar plasma.

The techniques tested and validated in this dissertation are all extendable

to the operation of the non-linear code. The simple and efficient pseudo-spectral

method used to compute the material derivative in the linearized GALE code

(Subsection 3.6.5) can be used to solve for the other external force contributions, when

expressed in their conservative form. This allows for the conservation of momentum

equations to be solved entirely in frequency space—including the considerations of

the viscous stress tensor, which can be used to model SGS turbulence in the LES

approach (Germano et al., 1991). This culminates in a new and efficient method for
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the numerical computation of the Navier-Stokes equations and can serve as a stepping

stone for a new generation of global MHD solar and stellar models.

The promise of a new set of compressible global MHD models is an alluring one.

The details of the mechanisms that connect the global toroidal magnetic field at the

base of the tachocline to the poloidal field emerging on the solar surface remains one

of the fundamental mysteries in solar physics. Fully compressible global model have

the potential to simulate the complex interplay of turbulent transport coefficients

in the overshoot layer underneath the tachocline, as well as addressing the complex

role that near-surface shear plays in shaping the structure of the butterfly diagram.

These simulations offer an unprecedented opportunity to link the evolution of the

global dynamo to internal flow structures, such as differential rotation, meridional

circulation, and convection. Understanding the influence of global flows on specific

dynamo patterns will lead to much more robust models of the extended solar cycle,

as well as be useful in putting a constraint on the wide range of inferences made

using helioseismology. An efficient compressible algorithm will also set the ground

work for global solar MHD models that can be extended beyond the solar atmosphere

and into the corona, developing a full interconnected picture of how global magnetic

structures develop, evolve, and emerge onto the solar surface to form highly energetic

active regions.
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APPENDIX A

VECTOR/TENSOR SPHERICAL HARMONICS

This appendix contains the description and derivation of the vector and tensor

spherical harmonic coordinate bases employed in the pseudo-spectral computation

of the GALE code.

A.1 Vector Spherical Harmonics

The VSH basis is defined by extending the scalar spherical harmonic (Ylm) to a 3D

vector field, described by the following linearly independent basis.

Ylm = Ylmr̂ , (A.1)

Ψlm = r∇Ylm , (A.2)

Φlm = ~r×∇Ylm , (A.3)

where r̂ is the unit radial vector in spherical coordinates, ~r is the radial position

vector, and Ylm is the spherical harmonic function, written in the Condon-Shortley

convention as:

Ylm = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cosθ)eimφ . (A.4)

The VSH unit vectors (Equations (A.1)-(A.3)) can also be described as a function of

the scalar spherical harmonic (Equation (A.4)) in spherical coordinates.
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Ylm = Ylmr̂ (A.5)

Ψlm =
∂Ylm
∂θ

θ̂ +
1

sin θ

∂Ylm
∂φ

φ̂ (A.6)

Φlm = − 1

sin θ

∂Ylm
∂φ

θ̂ +
∂Ylm
∂θ

φ̂ (A.7)

An arbitrary 3D vector field (v) can be expanded into the following components of

the VSH basis.

v =
lmax∑

m=−lmax

lmax∑
l=|m|

(
vrlm(r)Ylm + v

(1)
lm (r)Ψlm + v

(2)
lm (r)Φlm

)
(A.8)

The superscript “r” (vr) denotes the radial component of the vector field, while

superscripts “(1)” (v(1)) and “(2)” (v(2)) represent components tangent to the surface

of the two-sphere.

In order to ease the difficulty of working with vector spherical harmonics, the

following set of real-space scalar VSH components defined by Novak et al. (2010),

recast the VSH basis into Equations (A.9)-(A.11).

vr =
lmax∑

m=−lmax

lmax∑
l=|m|

vrlm(r)Ylm , (A.9)

vη =
lmax∑

m=−lmax

lmax∑
l=|m|

v
(1)
lm (r)Ylm , (A.10)

vµ =
lmax∑

m=−lmax

lmax∑
l=|m|

v
(2)
lm (r)Ylm . (A.11)

These components define a set of orthogonal VSH coefficients onto scalar spherical

harmonic space (Ylm), resulting in easy to use real-space components that lend

themselves well to performing vector operations using recursion relations, such as

the divergence (∇·) and the Laplacian (∇2). The transverse scalar VSH components
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(Equations (A.10),(A.11)) can be defined in terms of spherical coordinates by plugging

them into the definition for the VSH basis (Equations (A.6),(A.7)).

vθ =
∂vη

∂θ
− 1

sin θ

∂vµ

∂φ
, (A.12)

vφ =
∂vµ

∂θ
+

1

sin θ

∂vη

∂φ
. (A.13)

The scalar VSH basis can also be defined as a function of spherical coordinates by

taking the transverse Laplacian (∇2
θφ) of the scalar VSH components and substituting

in the spherical coordinate definitions above (Equations (A.12),(A.13)).

∇2
θφv

η =
1

sin θ

∂

∂θ

(
sin θvθ

)
+

1

sin θ

∂vφ

∂φ
, (A.14)

∇2
θφv

µ =
1

sin θ

∂

∂θ

(
sin θvφ

)
− 1

sin θ

∂vθ

∂φ
, (A.15)

where the transverse Laplacian (∇2
θφ) for some function f , is defined as:

∇2
θφf =

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2
. (A.16)

A.2 Tensor Spherical Harmonics

The following section contains extensive use of tensor notation, the unit vectors of

which (êr, êθ
, êφ) can be explicitly defined as the covariant orthonormal natural basis

in spherical coordinates.

êr =
∂

∂r
, êθ =

1

r

∂

∂θ
, êφ =

1

r sin θ

∂

∂φ
. (A.17)

In this basis, the contravariant tensor components of some arbitrary tensor (T) are:

103



T =
∑
i=r,θ,φ

∑
j=r,θ,φ

T ijêi ⊗ êj . (A.18)

The definition of the tensor spherical harmonic basis follows the general

formulation and notation initially defined by Mathews (1962), and expanded on by

Zerilli (1970) and Thorne (1980). An orthonormal basis for the rank two tensor, can

be initially defined in the manner of Mathews (1962), by deriving a set of unit tensors

(tm) from the second-order spherical harmonic (Yl=2,m(Ω)), expressed in cartesian

vectors (x̂, ŷ, ẑ) as:

t±2 =
1

2
(x̂x̂− ŷŷ)± i

2
(x̂ŷ + ŷx̂) ,

t±1 = ∓1

2
(x̂ẑ + ẑx̂)− i

2
(ŷẑ + ẑŷ) ,

t0 =

√
1

6
(2ẑẑ− x̂x̂− ŷŷ) .

This basis corresponds to the irreducible representation of the rotation group of order

two in SO(3) (D(2) where t = D(0) + D(1) + D(2)), which forms the complete basis

for a traceless symmetric tensor. The other two irreducible parts of this rotation

group consist of the order one (D(1)) and order zero (D(0)), which correspond to the

antisymmetric part of a tensor and trace of a tensor respectively. Only symmetric

tensors are used in this formulation, so the antisymmetric part can be discarded.

Including the trace completes the definition of the symmetric tensor basis.

√
1

3
δ =

√
1

3
(x̂x̂ + ŷŷ + ẑẑ) ,

where
√

1/3 is a normalization factor. These unit tensors can be coupled to the scalar

spherical harmonic to complete the definition for a linearly independent spherical

harmonic tensor basis (Equations (A.19)).
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T
(0)l
lm = −δYlm√

3
,

T
(2)l
lm =

∑
µ

〈l,m− µ, 2, µ|lm〉Yl,m−µtµ ,

T
(2)l+1
lm =

∑
µ

〈l + 1,m− µ, 2, µ|lm〉Yl+1,m−µtµ ,

T
(2)l+2
lm =

∑
µ

〈l + 2,m− µ, 2, µ|lm〉Yl+2,m−µtµ ,

T
(2)l−1
lm =

∑
µ

〈l − 1,m− µ, 2, µ|lm〉Yl−1,m−µtµ ,

T
(2)l−2
lm =

∑
µ

〈l − 2,m− µ, 2, µ|lm〉Yl−2,m−µtµ . (A.19)

This orthonormal basis for tensor spherical harmonics can be conceptualized in a

similar way to a scalar spherical harmonic with an additional “spin” of two, creating

five linearly independent spherical harmonic terms of the same degree and azimuthal

order (l, m), covering the full basis of a symmetric traceless tensor. This basis,

however, is not the optimal form for performing vector and tensor operations in

this formulation. For a simple linearly independent basis with useful orthogonality

relationships, these unit tensors (Equations (A.19)) can be rearranged into the TSH

basis outlined and defined by Zerilli (1970), consisting of the following vector dyad

operations on the scalar spherical harmonic.

∇∇Ylm , L∇Ylm , LLYlm ,

r̂∇Ylm , r̂LYlm , r̂r̂Ylm .

(A.20)

∇∇ is the gradient dyad and LL is the angular momentum operator dyad, where

L = −i(~r×∇). Zerilli (1970) expands these operations explicitly (Equations (A.20)),

keeping only the terms corresponding to the tensor spherical harmonic basis for a

symmetric tensor with a trace (Equations (A.19)):
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[∇∇Ylm]s =
1

r2
l(l + 2)

√
(l + 1)(l + 2)

(2l + 1)(2l + 3)
T

(2)l+2
lm +

1

r2
l(l + 1)

√
2l(l + 1)

3(2l − 1)(2l + 3)
T

(2)l
lm

+
(l + 1)(l − 1)

r2

√
l(l − 1)

(2l + 1)(2l − 1)
T

(2)l−2
lm +

l(l + 1)

r2
√

3
T

(0)l
lm ,

[L∇Ylm]s =− 1

r
l

√
l(l + 1)(l + 2)

2(2l + 1)
T

(2)l+1
lm − 1

r
(l + 1)

√
l(l + 1)(l − 1)

2(2l + 1)
T

(2)l−1
lm ,

[LLYlm]s =

√
l(l + 1)(2l − 1)(2l + 3)

6
T

(2)l
lm −

l(l + 1)√
3

T
(0)l
lm ,

[r̂∇Ylm]s =
1

r

√
l(l + 1)

[
−

√
l(l + 2)

(2l + 1)(2l + 3)
T

(2)l+2
lm − 3√

6(2l − 1)(2l + 3)
T

(2)l
lm

+

√
(l + 1)(l − 1)

(2l − 1)(2l + 1)
T

(2)l−2
lm

]
,

[r̂LYlm]s =

√
l(l + 1)

2

[√
(l + 2)

(2l + 1)
T

(2)l+1
lm −

√
(l − 1)

(2l + 1)
T

(2)l−1
lm

]
,

[r̂r̂Ylm]s =

√
(l + 1)(l + 2)

(2l + 1)(2l + 3)
T

(2)l+2
lm −

√
2l(l + 1)

3(2l − 1)(2l + 3)
T

(2)l
lm

+

√
l(l − 1)

(2l + 1)(2l − 1)
T

(2)l−2
lm − 1√

3
T

(0)l
lm .

(A.21)

The subscript “s” denotes the symmetric part of a tensor. This new TSH basis

(Equations (A.21)) is defined as a complete set of linearly independent coordinates for

a rank-two symmetric tensor. When written in spherical coordinates, Zerilli (1970)

shows that these terms can be further arranged into six orthonormal unit tensors,
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of which TL0
lm is the fully radial coordinate, TT0

lm is the transverse portion of the

trace, TE1
lm and TB1

lm are mixed radial/transverse components, and TE2
lm, TB2

lm are fully

transverse. The final form of the TSH basis, in the notation of Thorne (1980), is:

TL0
lm = [r̂r̂Ylm]s ,

TE1
lm =r

√
2

l(l + 1)
[r̂∇Ylm]s ,

TB1
lm =i

√
2

l(l + 1)
[r̂LYlm]s ,

TT0
lm =− 1√

2l(l + 1)

[
r2 [∇∇Ylm]s + r [r̂∇Ylm]s − [LLYlm]s

]
,

TE2
lm =

√
1

2l(l + 1)(l − 1)(l + 2)

[
r2 [∇∇Ylm]s + 3r [r̂∇Ylm]s + [LLYlm]s

]
,

TB2
lm =ir

√
2

l(l + 1)(l − 1)(l + 2)

[
[L∇Ylm]s +

[r̂LYlm]s
r

]
.

Writing these basis tensors explicitly in spherical coordinates (êr,êθ,êφ) can give

further insight into their structure.

TL0
lm =


Ylm 0 0

0 0 0

0 0 0

 , TE1
lm =

√
1

2l(l + 1)



0
∂Ylm
∂θ

1

sin θ

∂Ylm
∂φ

∂Ylm
∂θ

0 0

1

sin θ

∂Ylm
∂φ

0 0


,

TB1
lm =

√
1

2l(l + 1)



0 − 1

sin θ

∂Ylm
∂φ

∂Ylm
∂θ

− 1

sin θ

∂Ylm
∂φ

0 0

∂Ylm
∂θ

0 0


,
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TT0
lm =

1√
2


0 0 0

0 Ylm 0

0 0 Ylm

 ,

TE2
lm =

√
1

2l(l + 1)(l − 1)(l + 2)


0 0 0

0 Wlm
Xlm

sin θ

0
Xlm

sin θ
−Wlm

 ,

TB2
lm =

√
1

2l(l + 1)(l − 1)(l + 2)


0 0 0

0 −Xlm

sin θ
Wlm

0 Wlm
Xlm

sin θ

 ,

where:

Xlm = 2
∂

∂φ

(
∂

∂θ
− cot θ

)
Ylm , Wlm =

(
∂2

∂θ2
− cot θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2

)
Ylm . (A.22)

This TSH basis (Equation (A.22)) can be employed to expand any arbitrary

symmetric 3D tensor field (T) in the following manner (Equation (A.23)).

T =
lmax∑

m=−lmax

lmax∑
l=|m|

(
L0
lmTL0

lm + E1
lmTE1

lm +B1
lmTB1

lm + T 0
lmTT0

lm + E2
lmTE2

lm +B2
lmTB2

lm

)
.

(A.23)

Recasting the TSH coordinates into scalar spherical harmonic space (Novak

et al., 2010), results in a simpler and more useful form of the TSH basis.

108



T rr =
lmax∑

m=−lmax

lmax∑
l=|m|

L0
lm(r)Ylm , (A.24)

T η =
lmax∑

m=−lmax

lmax∑
l=|m|

√
1

2l(l + 1)
E1
lm(r)Ylm , (A.25)

T µ =
lmax∑

m=−lmax

lmax∑
l=|m|

√
1

2l(l + 1)
B1
lm(r)Ylm , (A.26)

T τ =
lmax∑

m=−lmax

lmax∑
l=|m|

√
1

2
T 0
lm(r)Ylm , (A.27)

TW =
lmax∑

m=−lmax

lmax∑
l=|m|

√
1

2l(l + 1)(l − 1)(l + 2)
E2
lm(r)Ylm , (A.28)

TX =
lmax∑

m=−lmax

lmax∑
l=|m|

√
1

2l(l + 1)(l − 1)(l + 2)
B2
lm(r)Ylm . (A.29)

The scalar TSH components (T rr, T η, T µ, T τ , TW , TX) can be expressed in terms of

spherical coordinates (T rr, T θθ, T φφ, T rθ, T rφ, T θφ), allowing for the transformation

of field terms between the two bases (Novak et al., 2010). These relations can be built

by using the spherical coordinate expression in Equation (A.22), substitutng the new

scalar TSH basis into the tensor field (Equation (A.23)).

The fully radial term (T rr) corresponds to the radial coordinate TL0
lm. The other

two components of the trace (T θθ, T φφ) are spanned by the transverse components

(TT0
lm , TE2

lm, TB2
lm). By inspection of Equation (A.22), it is clear that TE2

lm, TB2
lm are

traceless, leaving only the single basis TT0
lm to fully describe the transverse trace

(Equation (A.30)).

T τ = T θθ + T φφ . (A.30)

The total trace (T ) can be written as:
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T = T rr + T τ . (A.31)

The two mixed radial/transverse components (T rθ, T rφ) are spanned by T η and T µ,

corresponding to the tensor coordinates TE1
lm and TB1

lm .

T rθ =
∂T η

∂θ
− 1

sin θ

∂T µ

∂φ
, (A.32)

T rφ =
∂T µ

∂θ
+

1

sin θ

∂T η

∂φ
. (A.33)

These relations take on a similar form to the VSH basis in spherical coordinates

(Equations (A.12),(A.13)). The inverse relations for the TSH components (T η,

T µ) can be derived in a similar manner to the VSH components in Equations

(A.14),(A.15).

∇2
θφT

η =
1

sin θ

∂

∂θ

(
sin θT rθ

)
+

1

sin θ

∂T rφ

∂φ
, (A.34)

∇2
θφT

µ =
1

sin θ

∂

∂θ

(
sin θT rφ

)
− 1

sin θ

∂T rθ

∂φ
. (A.35)

The last component in the spherical coordinate basis (T θφ) can be solved as a function

of the scalar TSH components TW and TX , correponding to the transverse traceless

TSH basis (TE2
lm, TB2

lm).

T θφ =
∂2TX

∂θ2
− cot θ

∂TX

∂θ
− 1

sin2 θ

∂2TX

∂φ2
+ 2

∂

∂θ

(
1

sin θ

∂TW

∂φ

)
. (A.36)

One more relation is required to solve for the transverse trace components (tθθ, tφφ)

independently. Taking the difference of these two terms eliminates the trace (TT0
lm),

resulting in a definition spanned by the transverse traceless components (TE2
lm, TB2

lm).
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P =
T θθ − T φφ

2
=
∂2TW

∂θ2
− cot θ

∂TW

∂θ
− 1

sin2 θ

∂2TW

∂φ2
− 2

∂

∂θ

(
1

sin θ

∂TX

∂φ

)
. (A.37)

The inverse relations for the tranverse TSH components (TX , TW ) can be computed

through the application of the operator: ∇2
θφ

(
∇2
θφ + 2

)
, followed by the substitution

of the spherical coordinate definitions (Equations (A.36),(A.37)).

∇2
θφ

(
∇2
θφ + 2

)
TX =

∂2T θφ

∂θ2
+

3

tan θ

∂T θφ

∂θ
− 1

sin2 θ

∂2T θφ

∂φ2

− 2T θφ − 2

sin θ

∂

∂φ

(
∂P

∂θ
+

P

tan θ

)
, (A.38)

∇2
θφ

(
∇2
θφ + 2

)
TW =

∂2P

∂θ2
+

3

tan θ

∂P

∂θ
− 1

sin2 θ

∂2P

∂φ2

− 2P +
2

sin θ

∂

∂φ

(
∂T θφ

∂θ
+

T θφ

tan θ

)
. (A.39)

These relations allow for the transformation of field variables between spherical

coordinates and the TSH basis.

A.3 Properties

The Vector and Tensor Spherical Harmonics have the same properties as scalar

spherical harmonics, such as symmetry:

Yl,−m = (−1)mY∗lm ,

Ψl,−m = (−1)mΨ∗lm ,

Φl,−m = (−1)mΦ∗lm ,

TL0
l,−m = (−1)mTL0∗

lm ,

TE1
1,−m = (−1)mTE1∗

1m ,

TB1
l,−m = (−1)mTB1∗

lm ,

TT0
l,−m = (−1)mTT0∗

lm ,

TE2
1,−m = (−1)mTE2∗

1m ,

TB2
l,−m = (−1)mTB2∗

lm .

Being a linearly independent basis, the unit coordinates satsify orthogonality.

111



Yl,m ·Ψl,m = 0 ,

Yl,m ·Φl,m = 0 ,

Ψl,m ·Φl,m = 0 ,

T
αβ

lm ·T
γδ
lm = 0 .

The vector and tensor bases also satisfy orthogonality in Hilbert space.

∫
Ylm ·Y∗l′m′ = δll′δmm′ ,∫

Ψlm ·Ψ∗l′m′ = l(l + 1)δll′δmm′ ,∫
Φlm ·Φ∗l′m′ = l(l + 1)δll′δmm′ ,

∫
T
αβ

lm ·T
γδ∗
l′m′ = δαγδβδδll′δmm′ .

A.4 Divergence

The divergence of a vector field in the VSH basis can be defined by taking the

divergence of each basis coordinate (Equations (A.1)-(A.3)).

∇ · (f(r)Ylm) =

(
df

dr
+

2

r
f

)
Ylm ,

∇ · (f(r)Ψlm) = − l(l + 1)

r
fYlm ,

∇ · (f(r)Φlm) = 0 .

By definition, the Φ coordinate is a curl, resulting in a zero divergence. The other

coordinates can be merged to define the divergence of a field (v) in the VSH basis.

∇ · v =
lmax∑

m=−lmax

lmax∑
l=|m|

(
dvrlm
dr

+
2

r
vrlm −

l(l + 1)

r
v

(1)
lm

)
Ylm . (A.40)

The divergence can be written in real space by substituting in the definitions for the

scalar VSH coordinates (Equations (A.9)-(A.11)).

112



∇ · v =
dvr

dr
+

2

r
vr +

1

r
∇2
θφv

η . (A.41)

The divergence of a tensor field (T) in the TSH basis can be derived from the

covariant divergence of a contravariant tensor (T ij) (Equation (A.18)) in spherical

coordinates (Equation (A.17)).

∇·T =



[∇ ·T]r =
1

r2

∂

∂r
(r2T rr) +

1

r sin θ

∂

∂θ

(
sin θT rθ

)
+

1

r sin θ

∂T rφ

∂φ
− T θθ + T φφ

r
,

[∇ ·T]θ =
1

r3

∂

∂r

(
r3T rθ

)
+

1

r sin θ

∂

∂θ

(
sin θT θθ

)
+

1

r sin θ

∂T θφ

∂φ
− T φφ

r tan θ
,

[∇ ·T]φ =
1

r3

∂

∂r

(
r3T rφ

)
+

1

r

∂T θφ

∂θ
+

1

r sin θ

∂tT φφ

∂φ
+

2T θφ

r tan θ
.

(A.42)

The spherical coordinate components of the tensor (T rr, T θθ, T φφ, T rθ, T rφ, T θφ)

can be written in terms of the scalar TSH components (T rr, T η, T µ, T τ , TW , TX)

using the TSH basis definitions in Equations (A.30)-(A.39). The spherical coordinate

components of the divergence ([∇ ·T]r, [∇ ·T]θ, [∇ ·T]φ) can similarly be defined in

the VSH basis using the relationships in Equations (A.12)-(A.15).

[∇ ·T]r =
1

r2

∂

∂r

(
r2T rr

)
+

1

r

(
∇2
θφT

η − T τ
)
,

[∇ ·T]η = ∇2
θφ

[
1

r3

∂

∂r

(
r3T η

)
+

1

r

((
∇2
θφ + 2

)
TW +

T τ

2

)]
,

[∇ ·T]µ = ∇2
θφ

[
1

r3

∂

∂r

(
r3T µ

)
+

1

r

(
∇2
θφ + 2

)
TX
]
. (A.43)

The tensor divergence (Equation (A.43)) can be expressed in its spherical harmonic

decomposition by expanding the TSH components in terms of the scalar spherical

harmonic as defined in Equations (A.24)-(A.29)).
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[∇ ·T]r =
lmax∑

m=−lmax

lmax∑
l=|m|

[
1

r2

∂

∂r

(
r2L0

lm

)
− 1

r

(
l(l + 1)E1

lm + T 0
lm

)]
Ylm ,

[∇ ·T]η =
lmax∑

m=−lmax

lmax∑
l=|m|

−l(l + 1)

[
1

r3

∂

∂r

(
r3E1

lm

)
+

1

r

(
T 0
lm

2
− (l − 1)(l + 2)E2

lm

)]
Ylm ,

[∇ ·T]µ =
lmax∑

m=−lmax

lmax∑
l=|m|

−l(l + 1)

[
1

r3

∂

∂r

(
r3B1

lm

)
− (l − 1)(l + 2)

r
B2
lm

]
Ylm .

(A.44)

A.5 Curl

The curl of a vector field can be defined in a similar way to the divergence, by taking

the curl of the components of some field (f) in the VSH basis.

∇× (f(r)Ylm) = −1

r
fΦlm

∇× (f(r)Ψlm) =

(
df

dr
+

1

r
f

)
Φlm

∇× (f(r)Φlm) = − l(l + 1)

r
fYlm −

(
df

dr
+

1

r
f

)
Ψlm

These components can be merged to define the curl of a vector field (∇× v).

∇× v =
lmax∑

m=−lmax

lmax∑
l=|m|

(
− l(l + 1)

r
v

(2)
lmYlm −

(
∂v

(2)
lm

∂r
+

1

r
v

(2)
lm

)
Ψlm

+

(
−1

r
vrlm +

∂v
(1)
lm

∂r
+

1

r
v

(1)
lm

)
Φlm

)
(A.45)

The curl (Equation (A.45)) can be written in real-space using the scalar VSH

components defined in Section A.1.
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[∇× v]r =
1

r
∇2
θφv

η

[∇× v]η =− 1

r

∂

∂r
(rvµ)

[∇× v]µ =
1

r

(
−vr +

∂

∂r
(rEη)

)
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APPENDIX B

RECURSION RELATIONS

This appendix contains the full description and derivation of the recursion relations

employed by transformations between the vector and tensor spherical harmonic

coordinate bases described in Appendix A.

B.1 Calculating Clebsch-Gordan Coefficients

In the formulation of the GALE code, various sets of spherical harmonic (Ylm) terms

are convolved during the computation of the potential flow in spherical harmonic

space. The relevant convolutions can be solved explicitly in their full form, starting

with the definition of the convolution identity in its canonical Clebsch-Gordan form

(Landau & Lifshitz, 1977):

Yl1m1Yl2m2 =
∑
L,M

√
(2l1 + 1)(2l2 + 1)

4π(2L+ 1)
〈l1 0 l2 0|L 0〉 〈l1m1l2m2|LM〉YLM , (B.1)

where L and M are the coupled spherical harmonic degree and angular momentum,

under the following selection rules: M = m1 + m2 and |l1 − l2| ≤ L ≤ l1 + l2.

〈l1 0 l2 0|L 0〉 and 〈l1m1l2m2|LM〉 are the Clebsch-Gordan (CG) Coefficients (Landau

& Lifshitz, 1977). The spherical harmonic convolutions relevant to this formulation

(Y00Ylm, Y10Ylm, Y20Ylm) can be explicitly expanded using these identities.

The convolution identity (Equation (B.1)) can be used to express the definition

of Y00Ylm as follows:

Y00Ylm =
∑
L

√
(2l + 1)

4π(2L+ 1)
〈0 0 l 0|L 0〉 〈0 0 l m|L m〉YLm .
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The selection rules call for the superposition of all values of L simultaneously, however,

since there is only a single value of L (L = l), the sum can be written as:

Y00Ylm =

√
1

4π
〈0 0 l 0|L 0〉 〈0 0 l m|L m〉Ylm .

The definition of this special case of CG coefficients is unity (Varshalovich et al.,

1988), resulting in the final form of the convolution identity for Y00Ylm.

Y00Ylm =

√
1

4π
Ylm . (B.2)

The next convolution term (Y10Ylm) can also be written with help of the

convolution identity (Equation (B.1)).

Y10Ylm =
∑
L

√
3(2l + 1)

4π(2L+ 1)
〈1 0 l 0|L 0〉 〈1 0 l m|L m〉YLm .

The sum is explicitly expressed as a superpostion of all allowable degrees of L (L =

l − 1, L = l, L = l + 1).

Y10Ylm =

√
3(2l + 1)

4π(2l + 3)
〈1 0 l 0|l + 1 0〉 〈1 0 l m|l + 1 m〉Yl+1,m

+

√
3

4π
〈1 0 l 0|l 0〉 〈1 0 l m|l m〉Ylm

+

√
3(2l + 1)

4π(2l − 1)
〈1 0 l 0|l − 1 0〉 〈1 0 l m|l − 1 m〉Yl−1,m .

Calculating these CG coeffiecients directly is overly cumbersome, however, there are

a few special cases which have been precomputed and are formulated in Table (8.2)

of Varshalovich et al. (1988) as follows:
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〈1 0 l 0|(l + 1) 0〉 〈1 0 l m|(l + 1) m〉 =

(√
(l + 1)

(2l + 1)

)(√
(l −m+ 1)(l +m+ 1)

(2l + 1)(l + 1)

)
,

〈1 0 l 0|l 0〉 〈1 0 l m|l m〉 = 0 ,

〈1 0 l 0|(l − 1) 0〉 〈1 0 l m|(l − 1) m〉 =

(
− l√

l(2l + 1)

)(
−

√
(l −m)(l +m)

l(2l + 1)

)
.

The convolution identity (Y10Ylm) can be defined explicitly, using these relations.

Y10Ylm =

√
3(l −m+ 1)(l +m+ 1)

4π(2l + 3)(2l + 1)
Yl+1,m +

√
3(l −m)(l +m)

4π(2l − 1)(2l + 1)
Yl−1,m . (B.3)

The final convolution term (Y20Ylm) will be solved using the same approach,

starting with the convolution identity (Equation (B.1)).

Y20Ylm =
∑
L

√
5(2l + 1)

4π(2L+ 1)
〈2 0 l 0|L 0〉 〈2 0 l m|L m〉YLm .

Opening up the sum as a superposition of all allowable degrees of L (L = l + 2,

L = l + 1, L = l, L = l − 1, L = l − 2) results in:

Y20Ylm =

√
5(2l + 1)

4π(2l + 5)
〈2 0 l 0|l + 2 0〉 〈2 0 l m|l + 2 m〉Yl+2,m

+

√
5(2l + 1)

4π(2l + 3)
〈2 0 l 0|l + 1 0〉 〈2 0 l m|l + 1 m〉Yl+1,m

+

√
5

4π
〈2 0 l 0|l 0〉 〈2 0 l m|l m〉Ylm

+

√
5(2l + 1)

4π(2l − 1)
〈2 0 l 0|l − 1 0〉 〈2 0 l m|l − 1 m〉Yl−1,m

+

√
5(2l + 1)

4π(2l − 3)
〈2 0 l 0|l − 2 0〉 〈2 0 l m|l − 2 m〉Yl−2,m .
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The CG coeffiecients for this term (Y20Ylm) can also be found precomputed in Table

(8.4) of Varshalovich et al. (1988).

〈2 0 l 0 | l + 2 0〉 =

√
3(l + 1)(l + 2)(l + 1)

(2l + 1)(2l + 2)(2l + 3)
,

〈2 0 l m|l + 2 m〉 =

√
3(l + 1 +m)(l + 2 +m)(l + 1−m)(l + 2−m)

(2l + 1)(2l + 2)(2l + 3)(l + 2)
,

〈2 0 l 0 | l + 1 0〉 = 0

√
3(l + 1)(l + 1)

l(2l + 1)(l + 1)(l + 2)
= 0 ,

〈2 0 l m|l + 1 m〉 = m

√
3(l + 1 +m)(l + 1−m)

l(2l + 1)(l + 1)(l + 2)
,

〈2 0 l 0 | l 0〉 = − l(l + 1)√
(2l − 1)l(l + 1)(2l + 3)

,

〈2 0 l m|l m〉 =
3m2 − l(l + 1)√

(2l − 1)l(l + 1)(2l + 3)
,

〈2 0 l 0 | l − 1 0〉 = −0

√
3l

(l − 1)(2l + 1)(l + 1)
= 0 ,

〈2 0 l m|l − 1 m〉 = −m

√
3(l +m)(l −m)

(l − 1)l(2l + 1)(l + 1)
,

〈2 0 l 0 | l − 2 0〉 =

√
3l(l − 1)

2(2l − 1)(2l + 1)
,

〈2 0 l m|l − 2 m〉 =

√
3(l − 1 +m)(l +m)(l − 1−m)(l −m)

(l − 1)(2l − 1)(2l)(2l + 1)
.

The defintion for the final convolution identity (Y20Ylm) can now be written explicitly

using these relations.
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Y20Ylm =
3(l + 1)

(2l + 2)(2l + 3)

√
5(l + 1 +m)(l + 2 +m)(l + 1−m)(l + 2−m)

4π(2l + 1)(2l + 5)
Yl+2,m

− 3m2 − l(l + 1)

(2l − 1)(2l + 3)

√
5

4π
Ylm

+
3

2(2l − 1)

√
5(l − 1 +m)(l +m)(l − 1−m)(l −m)

4π(2l − 3)(2l + 1)
Yl−2,m .

(B.4)

B.2 Deriving Recursion Relations

Various recursion relations are employed in computing the governing equations in

spherical harmonic space. These include the application of simple trigonometric

functions on the surface of a two-sphere (cos θ, sin2 θ), as well as the surface derivatives

(sin θ(∂/∂θ), ∂/∂φ).

B.2.1 Surface functions

In order to define the recursion relation for the application of the cosine function

(cos θ), the function is first written in spherical harmonic space as:

cos θ = 2

√
π

3
Y10 .

Taking the cosine of some function in spherical harmonic space (f(r, θ, φ) =

alm(r)Ylm(θ, φ)) results in the following convolution.

cos θf(r, θ, φ) = 2alm

√
π

3
Y10Ylm . (B.5)

The Clebsch-Gordan coefficients that have been computed for this convolution in the

previous section (Equation (B.3)) can be plugged into the cosine function (Equation

(B.5)), resulting in the following recursion relation for cosine.
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cos θf(r, θ, φ) = alm

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Yl+1,m +

√
(l −m)(l +m)

(2l − 1)(2l + 1)
Yl−1,m .

(B.6)

To solve for the squared sine function (sin2 θ), it is first written as a superposition

of orthogonal spherical harmonics, which can be derived by inspection from the

definition of a spherical harmonic in Section A.1, Equation (A.4).

sin2 θ =
4

3

√
π

(
Y00 −

√
1

5
Y20

)
.

Taking the square sine of some function decomposed in spherical harmonic space

(f(r, θ, φ) = alm(r)Ylm(θ, φ)), results in the two following convolutions.

sin2 θf(r, θ, φ) =
4

3

√
πalm

(
Y00Ylm −

√
1

5
Y20Ylm

)
. (B.7)

The definitions for coupled spherical harmonics that were derived in the previous

section (Y00Ylm, Y20Ylm), Equations (B.2), (B.4), respectively, can be plugged into the

squared sine function (Equation (B.7)) resulting in the following recursion relation

for sin2 θ.

sin2 θf(r, θ, φ) = alm

(
− 1

(2l + 3)

√
[(l + 1)2 −m2][(l + 2)2 −m2]

(2l + 1)(2l + 5)
Yl+2,m

+
2(l2 + l − 1 +m2)

(2l − 1)(2l + 3)
Ylm −

1

(2l − 1)

√
[(l − 1)2 −m2](l2 −m2)

(2l − 3)(2l + 1)
Yl−2,m

)
. (B.8)
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B.2.2 Surface derivatives

The recursion relations for the surface derivatives can be derived using the derivative

of the spherical harmonic function (Ylm), defined in the Condon-Shortley convention

in Appendix A, Equation (A.4).

Ylm = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cosθ)eimφ .

The surface derivatives of some function in spherical harmonic space (f(r, θ, φ) =

alm(r)Ylm(θ, φ)) are written as follows:

∂f

∂θ
= alm(r)

∂

∂θ
Ylm(θ, φ) ,

∂f

∂φ
= alm(r)

∂

∂φ
Ylm(θ, φ) ,

where the derivatives of the spherical harmonic function (Ylm) (Equation (A.4)) are

∂Ylm
∂θ

= (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
eimφ

∂

∂θ
Pm
l (cosθ) , (B.9)

∂Ylm
∂φ

= (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cosθ)

∂

∂φ
eimφ . (B.10)

To compute the polar derivative (Equation (B.9)) as a recursion relation, the

identity for the first derivative of the associated Legendre polynomial (Pm
l ) can be

employed.

dPm
l (µ)

dθ
=
lµPm

l (µ)− (l +m)Pm
l−1(µ)√

1− µ2
, where µ = cos θ . (B.11)

Plugging this identity (Equation (B.11)) into the polar derivative of the spherical

harmonic (Equation (B.9)), results in the relation:
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∂Ylm
∂θ

= (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
eimφ

(
l cos θPm

l (cos θ)− (l +m)Pm
l−1(cos θ)

sin θ

)
.

Expanding this function and rewriting the Legendre polynomials as spherical

harmonic terms, results in a recursion relation which can be multplied by the sine

function—leaving an equation that can be fully defined by a superposition of spherical

harmonics.

sin θ
∂Ylm
∂θ

= l cos θYlm(θ, φ)−
√

2l + 1

2l − 1
(l2 −m2)Yl−1,m(θ, φ) . (B.12)

The cosine function can be computed in spherical harmonic space using the recursion

relation derived in the previous section (Equation (B.6)). Plugging this definition

into the polar derivative (Equation (B.12)) results in a spectral recursion relation for

the polar surface derivative.

sin θ
∂Ylm
∂θ

= l

√
(l −m+ 1)(l +m+ 1)

(2l + 3)(2l + 1)
Yl+1,m − (l + 1)

√
(l −m)(l +m)

(2l − 1)(2l + 1)
Yl−1,m .

(B.13)

The solution for the azimuthal derivative (Equation (B.10)) is trivial and can

be written as follows:

∂Ylm
∂φ

= im(−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cosθ)eimφ . (B.14)

This relation (Equation (B.14)) can easily be expressed in terms of the spherical

harmonic function (Ylm).

∂Ylm
∂φ

= imYlm . (B.15)
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The definition of the azimuthal derivative (Equation (B.15)) can be reformulated in

real spherical harmonic space as:

∂Ylm
∂φ

= −|m|Yl,−m ,

∂Yl,0
∂φ

= 0 ,

∂Yl,−m
∂φ

= |m|Yl,m . (B.16)
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Böning, V. G. A. 2018. Ambiguity of the Solar Meridional Flow. IAU Symposium,
340, 13, doi: 10.1017/S1743921318001837
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Gizon, L., Barucq, H., Duruflé, M., et al. 2017. Computational Helioseismology in
the Frequency Domain: Acoustic Waves in Axisymmetric Solar Models with
Flows. A&A, 600, A35, doi: 10.1051/0004-6361/201629470

Goldreich, P., Murray, N., & Kumar, P. 1994. Excitation of Solar p-modes. ApJ, 424,
466, doi: 10.1086/173904

Grinstein, F. F., Margolin, L. G., & Rider, W. J. 2007, Implicit Large Eddy
Simulation: Computing Turbulent Fluid Dynamics (Cambridge: Cambridge
University Press), doi: 10.1017/CBO9780511618604

Guerrero, G., & de Gouveia Dal Pino, E. M. 2008. Turbulent Magnetic Pumping
in a Babcock-Leighton Solar Dynamo Model. A&A, 485, 267, doi: 10.1051/
0004-6361:200809351

Guerrero, G., Smolarkiewicz, P. K., de Gouveia Dal Pino, E. M., Kosovichev, A. G.,
& Mansour, N. N. 2016. On the Role of Tachoclines in Solar and Stellar
Dynamos. ApJ, 819, 104, doi: 10.3847/0004-637X/819/2/104

Guerrero, G., Smolarkiewicz, P. K., Kosovichev, A. G., & Mansour, N. N. 2013.
Differential Rotation in Solar-like Stars from Global Simulations. ApJ, 779,
176, doi: 10.1088/0004-637X/779/2/176

Guerrero, G., Zaire, B., Smolarkiewicz, P. K., et al. 2019. What Sets the Magnetic
Field Strength and Cycle Period in Solar-type Stars? ApJ, 880, 6, doi: 10.
3847/1538-4357/ab224a

Hanasoge, S. M., Duvall, T. L., J., & Couvidat, S. 2007. Validation of Helioseismology
through Forward Modeling: Realization Noise Subtraction and Kernels. ApJ,
664, 1234, doi: 10.1086/519070

129

http://doi.org/10.1086/190743
http://doi.org/10.1086/190743
http://doi.org/10.1086/423367
http://doi.org/10.12942/lrsp-2005-6
http://doi.org/10.12942/lrsp-2005-6
http://doi.org/10.1126/science.aaz7119
http://doi.org/10.1051/0004-6361/201629470
http://doi.org/10.1086/173904
http://doi.org/10.1017/CBO9780511618604
http://doi.org/10.1051/0004-6361:200809351
http://doi.org/10.1051/0004-6361:200809351
http://doi.org/10.3847/0004-637X/819/2/104
http://doi.org/10.1088/0004-637X/779/2/176
http://doi.org/10.3847/1538-4357/ab224a
http://doi.org/10.3847/1538-4357/ab224a
http://doi.org/10.1086/519070


Hanasoge, S. M., Larsen, R. M., Duvall, T. L., J., et al. 2006. Computational
Acoustics in Spherical Geometry: Steps toward Validating Helioseismology.
ApJ, 648, 1268, doi: 10.1086/505927

Hartlep, T., Kosovichev, A. G., Zhao, J., & Mansour, N. N. 2011. Signatures
of Emerging Subsurface Structures in Acoustic Power Maps of the Sun.
Sol. Phys., 268, 321, doi: 10.1007/s11207-010-9544-1

Hartlep, T., Zhao, J., Kosovichev, A. G., & Mansour, N. N. 2013. Solar Wave-
field Simulation for Testing Prospects of Helioseismic Measurements of Deep
Meridional Flows. ApJ, 762, 132, doi: 10.1088/0004-637X/762/2/132

Hartlep, T., Zhao, J., Mansour, N. N., & Kosovichev, A. G. 2008. Validating
Time-distance Far-side Imaging of Solar Active Regions through Numerical
Simulations. ApJ, 689, 1373, doi: 10.1086/592721

Harvey, J. W., Hill, F., Hubbard, R. P., et al. 1996. The Global Oscillation Network
Group (GONG) Project. Science, 272, 1284, doi: 10.1126/science.272.

5266.1284

Harvey, K. L., & Martin, S. F. 1973. Ephemeral Active Regions. Sol. Phys., 32, 389,
doi: 10.1007/BF00154951

Hathaway, D. H. 1996. Doppler Measurements of the Sun’s Meridional Flow. ApJ,
460, 1027, doi: 10.1086/177029

—. 2012. Supergranules as Probes of the Sun’s Meridional Circulation. ApJ, 760, 84,
doi: 10.1088/0004-637X/760/1/84

Hathaway, D. H., Nandy, D., Wilson, R. M., & Reichmann, E. J. 2003. Evidence
That a Deep Meridional Flow Sets the Sunspot Cycle Period. ApJ, 589, 665,
doi: 10.1086/374393

Hotta, H., Iijima, H., & Kusano, K. 2019. Weak Influence of Near-surface Layer
on Solar Deep Convection Zone Revealed by Comprehensive Simulation from
Base to Surface. Sci. Adv., 5, 2307, doi: 10.1126/sciadv.aau2307

Hotta, H., & Yokoyama, T. 2011. Modeling of Differential Rotation in Rapidly
Rotating Solar-type Stars. ApJ, 740, 12, doi: 10.1088/0004-637X/740/1/12

Howe, R., Larson, T. P., Schou, J., et al. 2011. First Global Rotation Inversions of
HMI Data. J. Phys.: Conf. Ser., 271, 012061, doi: 10.1088/1742-6596/271/
1/012061

130

http://doi.org/10.1086/505927
http://doi.org/10.1007/s11207-010-9544-1
http://doi.org/10.1088/0004-637X/762/2/132
http://doi.org/10.1086/592721
http://doi.org/10.1126/science.272.5266.1284
http://doi.org/10.1126/science.272.5266.1284
http://doi.org/10.1007/BF00154951
http://doi.org/10.1086/177029
http://doi.org/10.1088/0004-637X/760/1/84
http://doi.org/10.1086/374393
http://doi.org/10.1126/sciadv.aau2307
http://doi.org/10.1088/0004-637X/740/1/12
http://doi.org/10.1088/1742-6596/271/1/012061
http://doi.org/10.1088/1742-6596/271/1/012061


Ilonidis, S., Zhao, J., & Hartlep, T. 2013. Helioseismic Investigation of Emerging
Magnetic Flux in the Solar Convection Zone. ApJ, 777, 138, doi: 10.1088/
0004-637X/777/2/138

Ilonidis, S., Zhao, J., & Kosovichev, A. 2011. Detection of Emerging Sunspot Regions
in the Solar Interior. Science, 333, 993, doi: 10.1126/science.1206253

Jackiewicz, J., Serebryanskiy, A., & Kholikov, S. 2015. Meridional Flow in the Solar
Convection Zone. II. Helioseismic Inversions of GONG Data. ApJ, 805, 133,
doi: 10.1088/0004-637X/805/2/133

Jensen, J. M., Olsen, K. B., Duvall, Thomas L., J., & Jacobsen, B. H. 2003. Test
of Helioseismic Time-distance Inversion using 3-D Finite-difference Wavefield
Modeling. In GONG+ 2002. Local and Global Helioseismology: the Present
and Future, ed. H. Sawaya-Lacoste, Vol. 517, 319–320. https://ui.adsabs.

harvard.edu/abs/2003ESASP.517..319J [accessed on May 1, 2021]
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Küker, M., Rüdiger, G., & Kitchatinov, L. L. 2011. The Differential Rotation of G
Dwarfs. A&A, 530, A48, doi: 10.1051/0004-6361/201015994

Landau, L. D., & Lifshitz, E. M. 1977, In Quantum Mechanics (Third Edition), ed.
L. D. Landau & E. M. Lifshitz (Oxford: Pergamon Press), 431–452, doi: 10.
1016/B978-0-08-020940-1.50021-9

Lazrek, M., Pantel, A., Fossat, E., et al. 1996. Is the Solar Core Rotating Faster of
Slower Than the Envelope? Sol. Phys., 166, 1, doi: 10.1007/BF00179353

132

http://doi.org/10.1111/j.1365-2966.2012.21126.x
https://ui.adsabs.harvard.edu/abs/1993A&A...276...96K
https://ui.adsabs.harvard.edu/abs/1993A&A...276...96K
http://doi.org/10.1007/s11207-015-0729-5
http://doi.org/10.1086/310253
http://doi.org/10.1007/s11214-009-9487-8
http://doi.org/10.1007/978-94-011-5167-2_26
https://ui.adsabs.harvard.edu/abs/2018vsss.book...15K
https://ui.adsabs.harvard.edu/abs/2018vsss.book...15K
http://doi.org/10.5194/gmd-12-651-2019
http://doi.org/10.1051/0004-6361/201015994
http://doi.org/10.1016/B978-0-08-020940-1.50021-9
http://doi.org/10.1016/B978-0-08-020940-1.50021-9
http://doi.org/10.1007/BF00179353


Leighton, R. B. 1969. A Magneto-Kinematic Model of the Solar Cycle. ApJ, 156, 1,
doi: 10.1086/149943

Leighton, R. B., Noyes, R. W., & Simon, G. W. 1962. Velocity Fields in the Solar
Atmosphere. I. Preliminary Report. ApJ, 135, 474, doi: 10.1086/147285

Liang, Z.-C., & Chou, D.-Y. 2015. Effects of Solar Surface Magnetic Fields on the
Time-distance Analysis of Solar Subsurface Meridional Flows. ApJ, 805, 165,
doi: 10.1088/0004-637X/805/2/165

Lilly, K. 1966. On the Application of the Eddy Viscosity Concept in the Inertial Sub-
range of Turbulence. In NCAR Manuscript No. 123, doi: 10.5065/D67H1GGQ

Lin, C.-H., & Chou, D.-Y. 2018. Solar-cycle Variations of Meridional Flows in the
Solar Convection Zone Using Helioseismic Methods. ApJ, 860, 48, doi: 10.
3847/1538-4357/aac026

Lipps, F. B., & Hemler, R. S. 1982. A Scale Analysis of Deep Moist Convection and
Some Related Numerical Calculations. J. Atmos. Sci., 39, 2192, doi: 10.1175/
1520-0469(1982)039<2192:ASAODM>2.0.CO;2

Margolin, L. G., Smolarkiewicz, P. K., & Wyszogradzki, A. A. 2006. Dissipation in
Implicit Turbulence Models: A Computational Study. J. Appl. Mech., 73, 469,
doi: 10.1115/1.2176749

Margolin, L. G., Smolarkiewicz, P. K., & Wyszogrodzki, A. A. 2002. Implicit
Turbulence Modeling for High Reynolds Number Flows . J. Fluids Eng., 124,
862, doi: 10.1115/1.1514210

Mathews, J. 1962. Gravitational Multipole Radiation. J. Soc. Ind. Appl. Math., 10,
768. http://www.jstor.org/stable/2098922 [accessed on May 1, 2021]

Matilsky, L. I., Hindman, B. W., & Toomre, J. 2019. The Role of Downflows
in Establishing Solar Near-surface Shear. ApJ, 871, 217, doi: 10.3847/

1538-4357/aaf647

—. 2020. Revisiting the Sun’s Strong Differential Rotation along Radial Lines. ApJ,
898, 111, doi: 10.3847/1538-4357/ab9ca0

Miesch, M. S., Brun, A. S., & Toomre, J. 2006. Solar Differential Rotation Influenced
by Latitudinal Entropy Variations in the Tachocline. ApJ, 641, 618, doi: 10.
1086/499621

133

http://doi.org/10.1086/149943
http://doi.org/10.1086/147285
http://doi.org/10.1088/0004-637X/805/2/165
http://doi.org/10.5065/D67H1GGQ
http://doi.org/10.3847/1538-4357/aac026
http://doi.org/10.3847/1538-4357/aac026
http://doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2
http://doi.org/10.1175/1520-0469(1982)039<2192:ASAODM>2.0.CO;2
http://doi.org/10.1115/1.2176749
http://doi.org/10.1115/1.1514210
http://www.jstor.org/stable/2098922
http://doi.org/10.3847/1538-4357/aaf647
http://doi.org/10.3847/1538-4357/aaf647
http://doi.org/10.3847/1538-4357/ab9ca0
http://doi.org/10.1086/499621
http://doi.org/10.1086/499621


Mitra-Kraev, U., & Thompson, M. J. 2007. Meridional Flow Profile Measurements
with SOHO/MDI. Astron. Nachr., 328, 1009, doi: 10.1002/asna.200710873

Moffatt, H. K. 1978, Magnetic Field Generation in Electrically Conducting Fluids
(Cambridge: Cambridge University Press), doi: 10.1017/S002211207923067X

Müller, D., St. Cyr, O. C., Zouganelis, I., et al. 2020. The Solar Orbiter Mission.
Science Overview. A&A, 642, A1, doi: 10.1051/0004-6361/202038467

Nandy, D., & Choudhuri, A. R. 2002. Explaining the Latitudinal Distribution of
Sunspots with Deep Meridional Flow. Science, 296, 1671, doi: 10.1126/

science.1070955

Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2013. Magnetic
Wreaths and Cycles in Convective Dynamos. ApJ, 762, 73, doi: 10.1088/

0004-637X/762/2/73

Nigam, R., Kosovichev, A. G., & Scherrer, P. H. 2007. Analytical Models for Cross-
Correlation Signal in Time-Distance Helioseismology. ApJ, 659, 1736, doi: 10.
1086/512535

Novak, J., Cornou, J. L., & Vasset, N. 2010. A Spectral Method for the Wave
Equation of Divergence-free Vectors and Symmetric Tensors inside a Sphere.
J. Comput. Phys., 229, 399, doi: 10.1016/j.jcp.2009.09.033

Papini, E., Birch, A. C., Gizon, L., & Hanasoge, S. M. 2015. Simulating acoustic waves
in spotted stars. A&A, 577, A145, doi: 10.1051/0004-6361/201525842

Papini, E., Gizon, L., & Birch, A. C. 2014. Propagating Linear Waves in Convectively
Unstable Stellar Models: A Perturbative Approach. Sol. Phys., 289, 1919,
doi: 10.1007/s11207-013-0457-7

Parchevsky, K. V., & Kosovichev, A. G. 2007. Three-dimensional Numerical
Simulations of the Acoustic Wave Field in the Upper Convection Zone of the
Sun. ApJ, 666, 547, doi: 10.1086/520108

—. 2009. Numerical Simulation of Excitation and Propagation of Helioseismic MHD
Waves: Effects of Inclined Magnetic Field. ApJ, 694, 573, doi: 10.1088/

0004-637X/694/1/573

Parchevsky, K. V., Zhao, J., Hartlep, T., & Kosovichev, A. G. 2014. Verification
of the Helioseismology Travel-time Measurement Technique and the Inversion
Procedure for Sound Speed Using Artificial Data. ApJ, 785, 40, doi: 10.1088/
0004-637X/785/1/40

134

http://doi.org/10.1002/asna.200710873
http://doi.org/10.1017/S002211207923067X
http://doi.org/10.1051/0004-6361/202038467
http://doi.org/10.1126/science.1070955
http://doi.org/10.1126/science.1070955
http://doi.org/10.1088/0004-637X/762/2/73
http://doi.org/10.1088/0004-637X/762/2/73
http://doi.org/10.1086/512535
http://doi.org/10.1086/512535
http://doi.org/10.1016/j.jcp.2009.09.033
http://doi.org/10.1051/0004-6361/201525842
http://doi.org/10.1007/s11207-013-0457-7
http://doi.org/10.1086/520108
http://doi.org/10.1088/0004-637X/694/1/573
http://doi.org/10.1088/0004-637X/694/1/573
http://doi.org/10.1088/0004-637X/785/1/40
http://doi.org/10.1088/0004-637X/785/1/40


Parker, E. N. 1955. Hydromagnetic Dynamo Models. ApJ, 122, 293, doi: 10.1086/
146087

—. 1979, Cosmical Magnetic Fields: their Origin and their Activity (Oxford: Oxford
University Press). https://ui.adsabs.harvard.edu/abs/1979cmft.book.

....P [accessed on May 1, 2021]

Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012. The Solar Dynamics
Observatory (SDO). Sol. Phys., 275, 3, doi: 10.1007/s11207-011-9841-3

Pipin, V. V., & Kosovichev, A. G. 2018. On the Origin of the Double-cell Meridional
Circulation in the Solar Convection Zone. ApJ, 854, 67, doi: 10.3847/

1538-4357/aaa759

—. 2019. On the Origin of Solar Torsional Oscillations and Extended Solar Cycle.
ApJ, 887, 215, doi: 10.3847/1538-4357/ab5952

Prusa, J. M., Smolarkiewicz, P. K., & Wyszogrodzki, A. A. 2008. EULAG,
a Computational Model for Multiscale Flows. Comput. Fluids, 37, 1193,
doi: 10.1016/j.compfluid.2007.12.001
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