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ABSTRACT

IMPACT OF USER TRAVERSAL ON PERFORMANCE OF STEM
LEARNERS IN IMMERSIVE VIRTUAL ENVIRONMENTS

by
Eric W. Nersesian

The emerging technologies of augmented and virtual reality (AR/VR) may have vast

implications to societal communication and representation of information. AR/VR

computer interfaces are unique in that they may be placed spatially around the user

in three-dimensional (3D) space; this affords new methods of both presentation and

user interaction with the target information.

This may be especially impactful in the education of science, technology,

engineering, and mathematics (STEM) professionals. Prior research has shown that

simulations and visualizations improve the performance of STEM learners compared

to live instruction and textbook reading. Yet, research into AR/VR as a learning

environment for widespread educational applications remains limited.

To address this research gap, this dissertation examines a fundamental AR/VR

interface capability, the ability for the user to traverse a virtual environment, and its

impact on learning. The first study of the dissertation compares the performance

of STEM learners within a physical and a virtual learning environment, both

non-traversable. Evidence from this study suggests that a non-traversable AR/VR

interface offers comparable learning efficacy to a traditional physical environment.

The second study of the dissertation compares the performance of STEM

learners in a non-traversable physical environment against STEM learners in a

traversable virtual environment. Similar to the first study, evidence from this study

suggests that instructional delivery in a virtual environment with a traversable

AR/VR interface offers comparable learning efficacy to a physical environment.



The first two studies of the dissertation suggest that AR/VR computer

interfaces, both with and without user traversal, offer comparable learning efficacy to

their physical environmental equivalents. The final study of the dissertation compares

the performance of STEM learners using the same virtual environment, but alters the

traversal ability between the two groups. Evidence from the third study suggests

that altering the user traversal of an AR/VR interface did positively impact its

learning efficacy. This dissertation offers evidence that AR/VR technologies, with

and without user traversal, are suitable STEM learning environments. Additionally,

AR/VR technologies provide higher levels of traversal capabilities which may serve

to increase learning performance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The emerging technologies of augmented and virtual reality (AR/VR) may have

vast implications to societal communication and representation of information [44].

Similar to the introduction of the personal computer and the internet, AR/VR may

open up new forms of information visualization, manipulation, and communication

[83]. This may be especially impactful in the education and productivity of profes-

sionals, as research shows simulations and visualizations improve science, technology,

engineering, and mathematics (STEM) learner performance and engagement [100].

Data modeling and programming complexity of STEM professions are growing

as their fields become more computational-based. AR/VR interfaces may become

necessary in the STEM fields to manage the higher levels of sensory-processing,

cognitive, and decision-making capabilities required to interact with more complex

computer systems and data sets [60]. Monitor-based interfaces may be replaced

by AR/VR as user interactions require three dimensions to increase information

bandwidth between users and computer systems.

Monitor-based educational technologies, such as simulations, animations, and

video games, have been well explored as STEM learning environments [30, 61].

While AR/VR educational technologies are still in their infancy, they show a strong

inclination towards improving education [48], collaboration [77], and productivity [12].

AR/VR has the potential to increase learner immersion [97], allowing the user to

interact directly with a simulation and focus on the information presented to them.

Learners using educational technologies, e.g., websites, interactive simulations,

and educational video games, have shown improvements in abstract reasoning,

1



spatial cognition, and multitasking abilities compared to traditional educational

media, e.g., textbooks, illustrations, and videos. [8]. These abilities are essential

for modern educational approaches [7], and has led the United States Office of

Educational Technology to call for the integration of immersive technologies into

public schools [86]. Current pedagogical methods of in-person and textbook

instruction will need to be supplemented, especially for students entering STEM

fields since they are more likely to be engaged with higher-end technologies [35].

Examining AR/VR’s impact on STEM education through the fields of learning

science and human computer interaction (HCI) allow for unique understanding of

how these emerging technologies will impact our knowledge-based society. Identifying

STEM educational use cases of AR/VR may help scope research efforts, and improve

technology efficacy, since there is a lack of research into AR/VR as a learning

environment for widespread educational applications [13]. virtual reality (VR) is

an excellent starting point to investigate design frameworks that can be generalized

for the wider range of AR/VR headsets [60]. Current wireless VR headsets are

an affordable self-contained medium to conduct HCI research, where results can

be generalized to identify research and design practices for AR/VR as a general

computing platform.

1.2 Goals

To help define the understudied area of AR/VR use cases in STEM education, this

dissertation will examine one fundamental AR/VR capability, virtual environmental

traversal, and its impact on users’ learning performance. As the common body

position while learning for a student is to be seated for live instruction, use cases of

AR/VR educational technology will need to be compared in the same seated manner

for the user. This limits the students ability to traverse and interact with their

environmental surroundings, which in turn limits the potential for embodied cognition

2



and embodied interactions in physical teaching and educational technology solutions

(see Section 2.4). AR/VR is, currently, the only computer interface which affords the

user environmental traversal capabilities. Since this is a relatively new research area,

little is known about how environmental traversal impacts user learning performance

in AR/VR. Future studies will need to continue this path of exploration into areas of

live instruction where the student is in an active, learn-by-doing physical environment

and identify what benefits AR/VR educational technology may contribute with these

expanded set of user interactions.

The goal of educational technology is not to replace live instruction but to

ensure that comparable alternative learning opportunities are available when live

instruction needs to be supplemented to keep the learning potential high for the

student. As AR/VR is currently the only educational technology that offers the user

environmental traversal, it is important to compare AR/VR against live instruction

with and without the user ability to traverse their environment. It is also important to

compare different environment traversal interactions within AR/VR to see if there is

an learning impact across learning mediums (live instruction vs AR/VR) and within

AR/VR traversal interactions (different traversal methods and styles).

The first goal of this dissertation is to understand the efficacy of AR/VR against

live instruction without the AR/VR users’ ability to traverse the virtual environment.

This is because the common learning arrangement for a student is to be seated,

and not moving from that position, it will be important to understand how a non-

traversable AR/VR learning environment impacts user performance compared to a

seated learning situation. As a supplemental educational technology, non-traversable

AR/VR learning environments’ efficacy would need to be verified, and it would need

to be understood how it impacts a user’s perceptions of their learning material.

The second goal of this dissertation is to understand the efficacy of AR/VR

against live instruction with the AR/VR users’ ability to traverse the environment.

3



Although it is common for students to be seated and not moving from that position

while learning, that is not always the case in live instruction, and it may be necessary

to allow the learner to move throughout their environment may help them learn

the subject matter. It would be important to understand how a traversable AR/VR

learning environment impacts user performance and compare this to a seated physical

learning environment. As a supplemental educational technology, traversable AR/VR

environments’ efficacy would need to be verified. It would need to be understood how

traversing an environment instead of being in a seated or passive position helps with

learning performance. This knowledge may indicate that alternative learning methods

could have increased efficacy when allowing a level of mobility for the learner during

the learning process.

The third and final goal of this dissertation is to understand the impact of

varying the method of the AR/VR environmental traversal interaction. Although it

is common for students to be in a seated position while learning, it is not a universal

learning condition. It fact some learning situations require a mobile learner such as a

physical laboratory experiment requiring the learner to move around the laboratory

table while they interact with laboratory equipment. As a supplemental educational

technology, traversable AR/VR environments’ efficacy would need to be verified

based on the users’ ability to traverse the virtual environment. Different styles and

types of traversal interactions would need to be examined and their impacts to user

performance and usability preferences understood. Since this is an initial exploration

into studying the various methods of AR/VR environmental traversal interaction, a

straight forward test would involve comparing the most natural traversal method

available with the technology against a more limited form of the same traversal

method. This means that one interaction method would be for the user to walk

through the virtual environment exactly as the user would in a physical environment,
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and the other interaction method would be for the user to use a controller device (e.g.,

a keyboard or gamepad) to move the virtual environment around their stationary self.

1.3 Research Statement and Questions

AR/VR technologies show strong potential as the next-generation computer interface

for the education, collaboration, and productivity of STEM professionals. The

dissertation examines a fundamental AR/VR interface capability, the ability to

traverse a virtual environment, and its impact upon learning performance within

STEM education. The first research initiative examines whether STEM learners gain

the same benefits towards their academic performance regardless of whether they

receive training in a physical or virtual environment, while in a stationary position.

The second research initiative examines if a traversable virtual environment could

have the same benefits as live lecture in a physical environment with the learner in

a stationary position. The final research initiative is to understand how the traversal

characteristics of a spatial interface in a virtual environment influences users’ STEM

learning performance.

The research questions that arise from this research statement are:

1. How does a non-traversable AR/VR environment impact learner performance?

(a) Is non-traversable AR/VR environment as effective as in-person instruction?

(b) How does a non-traversable AR/VR environment impact user perceptions?

2. How does a traversable AR/VR environment impact learner performance?

(a) Is a traversable AR/VR environment as effective as in-person instruction?

(b) How does a traversable AR/VR learning environment impact usability?

3. How does body kinematics of AR/VR traversal impact learner performance?

(a) How does body kinematics of AR/VR traversal impact learning?
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(b) How does body kinematics of AR/VR traversal impact retention?

(c) How does body kinematics of AR/VR traversal impact usability?

(d) How does body kinematics of AR/VR traversal impact task time?

1.4 System and Stimuli Prototyping

The limitation of software options for AR/VR educational technologies restricted the

ability to conduct in-depth studies on isolating user traversal factors on the efficacy

of a virtual learning environment. The study for the first research question used

off-the-shelf software with a non-traversable environment, while the studies for the

following two research questions used custom-built prototypes to allow traversal of

the virtual learning environment. Once the prototype was built, the second research

question’s study (see Section 4.3) compared the educational efficacy of a traversable

immersive virtual learning environment in comparison to an instructor-led lecture.

The prototype was then expanded for the third research question’s study to isolate

the impact of traversal ability on learning, retention, task time, and engagement.

The immersive virtual learning environments used in the second and third

research questions’ studies were designed to teach the introductory computer science

(CS) topics, binary counting and a sorting algorithm, bubble sort, to CS novices.

The AR/VR educational software built from the prototyping process in the lab is

called CSpresso, and is designed for students to learn at their own pace in an effort

for them to internalize concepts that produce measurable learning outcomes. The

prototype was designed to simulate learning situations usually found in physical

learning environments, and can engage and measurably teach STEM concepts to

a wide range of learners just as effectively as in a physical learning environment (see

all Figures in Appendix H and I).
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1.5 Overview of the Studies

Examining AR/VR’s impact on STEM education through the fields of learning

science and HCI allow for unique understanding of how these emerging technologies

will impact our knowledge-based society. Identifying STEM educational use cases

of AR/VR may help scope research efforts, and improve technology efficacy, since

there is a a lack of research into AR/VR as a learning environment for widespread

educational applications [13]. To address this research gap, this dissertation

examines a fundamental AR/VR interface capability, the ability to traverse a virtual

environment, and its impact on learning.

The first study of the dissertation compares the performance of STEM learners

within a physical and a virtual learning environment, both with no environmental

traversal abilities afforded to the learners. Learners in the physical environment were

seated during their learning experience. Learners in the virtual environment had their

entire AR/VR interface within reaching distance of their seated position. Evidence

from this study suggests that instructional delivery in a virtual environment with no

traversal of the spatial AR/VR interface offers comparable learning efficacy to the

physical traditional environment.

The second study of the dissertation compares the performance of STEM

learners seated in a physical environment against STEM learners in a virtual

environment that required them to traverse the spatial AR/VR interface. Evidence

from this study suggests that instructional delivery in a virtual environment with

required traversal of the AR/VR interface offers comparable learning experiences to

the physical equivalent. Additionally, the evidence suggests that AR/VR interfaces

with environmental traversal interactions can offer high user engagement as an

effective supplement to traditional physical learning environments.

The final study of the dissertation compares the performance of STEM learners

using the same virtual learning environment, but alters the environmental traversal
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ability between the two groups. It compares the efficacy of a natural walking traversal

method to a hand controller-based traversal method on learning performance of

the subjects. Evidence from this study suggests that the more embodied traversal

interaction of natural walking offers better learning, retention, usability, and task

time performance to its users.

The first and second studies of the dissertation show that AR/VR computer

interfaces, both with and without user traversal ability, offer capable learning efficacy

to their physical environmental equivalents and can offer higher engagement, increased

learning metrics, and enable alternative learning methods. Once it was shown

that AR/VR computer interfaces, both with and without user traversal, can have

comparable efficacy to traditional learning methods, the third study looked at how

altering the user traversal ability on the same AR/VR computer interfaces impacted

its learning efficacy. It was shown that the more embodied traversal of natural walking

across a spatial AR/VR interface may have strong impact on the technology’s learning

efficacy. This dissertation offers evidence that AR/VR technologies, with and without

user traversal, are suitable STEM learning environments. Additionally, providing

higher levels of traversal capabilities may increase learning performance.
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CHAPTER 2

RELATED WORK

2.1 Introduction

This chapter reviews the prevailing theories and models of human cognition from

the fields of educational psychology, the learning sciences, human factors, and HCI.

This review of human cognitive models will be necessary to identify areas of research

that may offer insights to effectively design for AR/VR educational technology. The

chapter will conclude with a review of the current state of educational technology use

cases in STEM education that identifies learning challenges appropriate for AR/VR

educational technology. Conducting research in these areas may indicate STEM

education use cases in AR/VR educational technology that represent an immediately

comparable domain for measuring the likelihood of AR/VR educational technology

benefits for education as a wider field.

2.2 Cognitive Constructivism in the Learning Sciences

Many psychologists use Piaget’s Theory of Cognitive Development and Vygotsky’s

Socio-cultural Perspective as frameworks for cognitive development [124]. Piaget

argued that human cognitive processes change slowly but drastically over their

lifetime because humans are constantly making sense of the world around them [90].

He identified four factors that influence cognitive processes: biological maturation,

activity, social experiences, and equilibration [90]. These factors tend to push thought

processes toward organization and adaptation. Organization refers to the constant

combining and arranging of behaviors and thoughts into coherent systems, which

is what most people will think of in regards to education. Adaptation refers to

the adjustment of behaviors and thoughts to the environment, which indicates that
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environment factors may be an important consideration for both physical and virtual

learning environments.

While Piaget examined how cognition developed internally at an individual

level, Vygotsky examined how cognition developed both internally to an individual

and externally within a culture. It is recognized today by psychologists that the

processes and content of thinking is shaped by culture [124]. Vygotsky believed that

cognitive activities in humans occur in a cultural context and cannot be understood

by itself [56]. He argued that cognitive structures and processes can be connected to

that individual’s social interactions, and that these interactions have active influence

on the creation of these thinking processes [56]. This suggests that cultural conditions

in which learning occurs are factors that should be taken into account when designing

physical and virtual learning environments to maximize their potential.

The previously discussed cognitive development theories have led to an interdis-

ciplinary approach to understanding learning, called the learning sciences, involving

philosophy, sociology, psychology, education, and neuroscience research [124].

Professionals in the learning sciences, regardless of their background, are interested

in how expert-level knowledge in subjects like science, literacy, and mathematics

is acquired and applied by professionals such as scientists, writers, and mathe-

maticians [124]. Even though different learning science approaches and perspectives

exist to study cognitive development, there is common acknowledgement of some

learning fundamentals, which are: experts have deep conceptual knowledge, learning

must come actively from the learner, and reflection is necessary to develop deep

conceptual knowledge [102]. It is acknowledge by learning science professionals

that these fundamentals must be practiced with live instruction and supplemental

mediums, such as educational technologies, for learners to gain the deep conceptual

knowledge allowing them to become expects [124].
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The acknowledged learning fundamentals form a broad term in the learning

sciences, called Constructivism. A standardized constructivist theory of learning does

not currently exist, but there are two core ideas to most constructivist theories [124].

The first idea, called individual constructivism, is that learners are active in

constructing their own knowledge, which centers on Piaget’s theories [124]. The

second idea, called social constructivism, is that social interactions are important in

this knowledge construction process, which centers more on Vygotsky’s theories [16].

Pedagogical practices in STEM education, and educational technology all embrace

constructivist ideas in varying mixtures [124]. Constructivist theories are a useful

framework to connect the domains of learning science and HCI necessary for designing

AR/VR educational technologies. AR/VR can enable users to freely roam through 3D

visual representations of learning objectives, interactions, and environments. While

roaming throughout the virtual learning environment, users can be encouraged to

interact with the simulation through physical input devices to allow the process of

actively construct their own knowledge as stated by constructivist theories.

2.3 Cognitive Models in Human Computer Interaction

When designing a new 3D interaction device or technique, it is important to consider

the human factors that affect its usability and performance [60]. For proper evaluation

of usability and performance, it is important to have a basic knowledge of how users

process information into useful interactions. When a user interacts with a system,

they perceive information from all available sources from the system, process that

information in various forms, and take actions based on decisions they made on the

information made available to them [60]. The system will return information back to

the user that they receive as feedback on their actions, and this starts the beginning

of a new cycle in the information-processing loop [60]. Similar to how a teacher would

build this information-processing loop into their classroom interactions for effective
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learning of their students, designers of AR/VR educational technologies need to be

keenly aware of how the virtual learning environment is interacting with the user.

Wickens and Carswell introduced a high-level model of mapping the information

processing to three main factors: perception, cognition, and physical ergonomics [121].

In the Wickens and Carswell model, stimuli is perceived by the user capable of

interpreting it meaningfully based on past experiences. The user may choose to

respond to the perception by choosing and executing on actions based on their

cognition, which is a key aspect of the user interaction [121]. Knowledge gathered

from perceptions are generally regarded from the user’s perspective as coherent,

justified, and true [51]. Cognition is the primary generator of knowledge from the

users’ attention on their perceptions, and governs processes in memory, language, and

thought [51]. Designing proper educational technology requires particular attention to

this information processing loop and how it can influence user cognition of perceptions

that the system presents to the user.

Information processing models, like Wickens and Carswell’s idea, usually

represent discrete, minute information events occurring during system interactions.

In contrast to these models, user action models portray high-level system interactions

by the user consisting of four aspects: goals, execution of physical actions, system

outcomes of those actions, and outcome evaluations [60]. Norman’s Seven Stages of

Action was one of the first well-known user action models as he defined stages of

user interactions with a system. He studied the structure of actions, and identified

the four mentioned aspects: “the goal, what is done to the world, the world itself,

and the check of the world” [84]. Abstracting the information processing models to

higher levers of system interactions and user actions helps keep the design structure

of learning goals clear and consistent for educational technologies.

A user action model that has been designed specifically for 3D user interfaces

is the User-System Loop as a system oriented adaption of Norman’s Seven Stages of
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Action [74]. In this model, user interactions begin with actions that manipulate input

devices, which are interpreted as sensory information to the system. The system alters

the data and models underlying the simulation of objects, their physical attributes

and behavior. The system updates the rendering information going to the system’s

outputs connecting to the user’s inputs based on changes to the simulation’s data

and models. The information is processed by the user as stimulus to be perceived.

The User-System Loop model is a helpful abstraction of the interactions between

the user and system hardware interfaces that are common for AR/VR technologies.

Identifying frameworks with the correct level of abstraction is helpful for educational

technology designers to have enough information about the lower level details of the

psychological, educational, ergonomics, and system requirements while keeping their

decisions oriented to the higher level goals of the software design requirements.

2.4 Principles of Embodiment Across Learning Sciences and HCI

Recently, Embodied Cognition has become more prevalent in the learning sciences.

This is awareness that “the way we think about and represent information reflects

the fact that we need to interact with the world” [4]. The interactions humans have

with the world around them perceived through their senses and bodies affects their

thinking [4]. This means that humans’ cognitive processes are deeply connected to

their bodies’ interactions with the physical world, and that cognition depends on the

sensorimotor experiences [4]. Shifting the perspective on cognition allows for viewing

the body, not the mind, as the primary motivator of cognition but the mind is still

necessary for interactions with the outside world. The relationship of the body to

the mind in regards to learning offers insights into the benefits of AR/VR as an

educational technology.

Humans’ senses and motor functions are essential to their understanding of the

world and not just simple channels for the mind to gather audio and visual information
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from the world [28]. Understanding how the human body interacts with the world is

essential to understanding the mind [28]. An example would be observational learning,

where watching a person demonstrate a skill activates the areas of the brain that

would be involved in acting the skill themselves. It is similar to the effect of the brain

learning the skill by performing it directly [24]. Using objects to act out the skill can

support learning, such as using models, gestures, movements, simulations, drama, and

re-enactments [24]. Observational learning, and other Embodied Cognition learning

scaffolds, are highly reliant on the proper physical environment, participants, and

objects to engage these learning methods. AR/VR educational technologies would

be well suited as alternative Embodied Cognition learning methods when the proper

physical requirements are hard to meet.

The HCI field has a similar theory called Embodied Interaction, which is defined

as “interaction with computer systems that occupy our world, a world of physical

and social reality, and that exploit this fact in how they interact with us” [26].

Embodied Interaction takes advantage of a user’s familiarity with the real world,

including interactions with socializing and physical artifacts [60]. Dourish identifies

these real-world familarities as embodied phenomena, which he describes as objects in

existence located in “real time and real space.” Embodied Interaction is “the creation,

manipulation, and sharing of meaning through active, and sustained interaction

with these embodied phenomena” [26]. This theory is the starting framework to

understand how to incorporate 3D user interfaces of AR/VR educational technologies

to apply Embodied Cognition learning methods, such as observational learning.

Dourish discusses the concept of Embodied Interaction in the contexts of social

and tangible computing [26]. Tangible Computing is the concept of user interactions

through physical environments on digital information [45]. Tangible user interfaces

integrate physical representations of digital information with the use of physical

objects and the physical mechanisms for interacting with them [46]. Interacting
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with physical objects allows the user to take advantage of already developed skills for

physical interactions with physical world objects [26]. I would extend the definitions

of Embodied Interaction and Tangible user interfaces into digital objects represented

through AR/VR headsets that can occupy our physical reality as well as physical

objects. This would extend the insights of these theories to the capabilities of AR/VR

educational technologies as well.

These digital objects would appear overlaid into the user’s physical world, and

allow interaction with computer systems for more natural educational technologies

that are intertwined with the user’s physical reality without the overhead of using

physical objects for the user interface. AR/VR educational technologies using

headsets and hand controllers can simulate aspects of the physical objects and

environments that may offer learning benefits to STEM education by combining ideas

from embodied cognition and embodied interaction. AR/VR educational technologies

could be designed to simulate the sensorimotor experiences that a learner would have

while using their body to learn about the world around them, and to encourage the

user to interact and explore the virtual environment that is presented to them.

2.5 Physical and Virtual Lab Work Contextualizes STEM Education

Issues with contextualizing, effectively demonstrating and visualizing class material is

a constant concern for STEM educators, and is characterized as a disconnect between

the student’s perspectives and the pedagogical frameworks of the topic [41, 109, 11].

Attempts to resolve this contextual disconnect range from instructional frameworks

[94], to social media integration [43], to physical laboratory work as it provides

a connection between the class material and “the real world” [36]. When used

properly, lab work improves overall learning outcomes [98], positively effects student

engagement [6], and contextualizes the material [115]. Yet there are challenges to
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overcome with implementing physical lab work, including safety and cost, that point

to educational technologies as a solution.

A common solution is virtual simulations designed to mimic the experience of

physical lab work [93]. An extensive review by Brinson suggests that non-traditional

labs, such as virtual and remote implementations, are as effective as traditionally

implemented physical labs [15]. Even partial emulations of physical lab experiences

are shown to have positive effects on the learning process. For example, Herga

used animations and dynamic simulations of chemistry models to positively impact

students’ formation of mental models [40]. Monitor-based educational technologies

often provide virtual laboratory simulations, where certain parts of the physical lab

experience are emulated digitally to help achieve a specific learning goal. Some

examples are labSimuLab, ChemVLab+, MatLab simulations, and Multimodal

Virtual Chemistry Laboratory.

ChemVLab+ is a monitor-based application that allows students to solve

real-world lab problems [23]. Designers of ChemVLab+ focused on integrating

science practices into an authentic context while providing immediate feedback with

simulated measuring tools. labSimuLab is a monitor-based learning tool where certain

lab processes are accelerated to allow more time for interpretation of results by

students [49]. Al-Moameri studied an approach of using MatLab simulations as an

core around which the textbook was designed. Using MatLab for the simulations

was proven to be an practical solution given it’s availability and ease of integrating

computing with visualizations [3]. Multimodal Virtual Chemistry Laboratory is

a multimodal simulation experience designed for easy procedure guidance where

students can get feedback on their chemical mixing procedure from either textual

or tactile modes of interaction [114]. Beyond monitor-based implementations of

laboratory simulations, AR/VR technologies have begun to be explored for their

potential to emulate the laboratory experience.
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Akcayir demonstrated a physics laboratory augmented reality (AR) experience,

and showed it was effective in increasing laboratory skills, improved students’ work

speed, and allowed for more discussion time [1]. Yee demonstrated a chemistry AR

educational technology for colorimetric titration, which proved to be effective while

remaining cost-efficient [111]. These results align with existing literature as confirmed

by Cheng and Tsai, whom compiled a literature review of AR educational technologies

for STEM lab work, classifying them into image and location-based AR [20]. Image-

based AR delivers affordances including spatial ability, practical laboratory skills, and

conceptual understanding. Location-based AR provides opportunities for supporting

inquiry-based learning using collaborative role-play gaming [20]. In one study, Barrett

described VR as providing a more tactile experience, where he implemented a VR

table as a collaborative educational technology tool for undergraduate laboratory

sessions [6]. While the body of research for AR virtual laboratories was relatively

substantial, little was found for VR virtual laboratories and further studies will be

required to identify the impact of such technologies.

The studies reviewed in this section have revealed a large body of work

supporting the effectiveness of physical laboratory work as a tool for learning in STEM

education. In addition, it is shown that educational technology from monitor-based to

AR/VR implementations can virtualize aspects of physical laboratory work and still

maintain the lab’s effectiveness as a STEM learning tool. While AR/VR educational

technologies are not reviewed heavily, the current generation of monitor-based

educational technologies has been and suggests that virtualizing physical laboratory

work may be a prime supporting capacity for future AR/VR education technologies

in the STEM fields.
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2.6 Educational Technology Contextualizes STEM Education

The previous section showed that principles of constructivism can be applied

effectively in the context of physical lab work for STEM education, and that

virtualization of lab work can provide benefits over it’s physical implementation.

When designed correctly, educational technology and hands-on programs can create

active learning scenarios in STEM education to promote students’ learning and

engagement factors. A study conducted by Christensen et al. examined positive

STEM dispositions of students from three different programs using the STEM

Semantics Survey [21]. They concluded that active learning programs can improve

or maintain STEM dispositions in high school settings [21]. CS education curriculum

revolving around making animations or games have proven to be successful in primary

students, resulting in increased student engagement [120]. Game-based learning in

after-school programs, such as Lee’s work using the Gidget programming game, has

shown to increase learners’ engagement in with programming, even for members from

underrepresented groups in computing [63, 62, 66]. Engaging students with interactive

visualizations and simulations can be a powerful supplemental learning tool that

AR/VR may be able to enhance.

Pancratz and Diethelm focused on the students’ thought process to help

underrepresented STEM minorities, such as females, to improve their enrollment and

retention in a CS degree [88]. They demonstrated that teaching problem solving

techniques by breaking down large problems into parts not only teaches good life

skills but helps a larger student audience learn fundamental CS concepts, such as

object oriented programming, modularity, and divide and conquer techniques. The

research team used rapid prototyping techniques for small Internet-of-Things as the

teaching medium, and showed that having students focus on small hands-on projects

helps them learn fundamental CS concepts. Zhu and Panorkou looked at the whole

of simulation technologies to help students comprehend STEM concepts [128]. They
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explored use cases of computer simulations in K-12 environment science involving

the modeling environment, Netlogo, and the visual programming language, Scratch.

Students were able to manipulate system parameters and interpret the results of

environmental changes. The presented studies demonstrated novel approaches to

teaching complex CS and STEM concepts using computer simulations whose effects

may be enhanced using AR/VR technologies.

Other researchers have also looked at a similar challenge of inspiring non-

STEM students to become interested in STEM and CS learning using immersive

technologies [103, 106, 108, 118]. Wang and Frye used VR to focus on engaging

art aspects of STEAM with experiential learning to recruit underrepresented females

into STEM [118]. Surveys indicated that students had minimal STEM backgrounds

and found the arts and crafts style hands-on activities were engaging and helped

them acclimate to abstract concepts and STEM career potentials. Seo and Lawrence

exposed design students, especially females, to software engineering with VR as an

approachable technology [103]. They used design focused students inherent interest

in visual technologies to teach them that CS concepts are an approachable academic

discipline. 3D printing, CAD software, and VR technologies were a variety of teaching

aids used in this project-driven workshop. The researchers showed the importance

of visualizing STEM topics when teaching them to non-STEM students, which

instructed the visual design of the prototypes be as literal as possible for students to

make the visual connection to the material presented to them.

Shamir et al. taught and increased interest in CS to non-CS students with

VR, art, and animation [106]. They developed a teaching paradigm using interlacing

structures in dancing, body poses, song melodies, and painting composition that

increased student interest in pursuing VR careers. They showed that incorporating

physical activities and creative pursuits with CS education can increase student

engagement, and resulted in designing the prototypes’ educational experiences with
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physical movements and creative decisions in mind. Frydenberg and Andone

found that having students collaborate on VR projects increased their interest

in technology [29]. The project paired students from universities in the United

States and Romania to remotely visit and learn about each other’s region and

culture through shared VR development projects. Students reported broadening their

understanding of applications for future technologies. Using emerging technologies

can increase integration of STEM education and demonstrates new directions for

virtual learning environments. AR/VR learning environments can promote discussion

of ideas between learners with enhanced spatial and visual explanations of abstract

topics supported by user environmental exploration and interactions that are not

easily reproduced in physical environments.

2.7 Conclusion

Learning science theories indicate the importance of constructivist cognition in the

learning process. That active learning scenarios, with physical attributes, often offer

the best learning performances. These ideas of embodiment offering better learning

experiences appear across the learning and HCI sciences. In fact, the review of

existing literature identified many benefits to using educational technologies in STEM

education. Educational technology provides ample opportunity for constructivist

cognition in the form of active learning. Additionally, the immersive qualities of

AR/VR educational technology can help contextualize STEM topics to students.

The studies presented in this chapter discuss the benefits of physical lab work

and technology usage in contextualizing STEM education. This contextualization

of abstract material has shown demonstrated improvements in learning performance.

The studies showed strong evidence that the embodied qualities of physical laboratory

work helps contextualize STEM education, and that physical laboratory work can

be effectively virtualized with educational technology to maintain the same learning
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benefits while removing the physical constraints of space, location, cost, equipment,

and personnel.

Although these studies point to both the benefits of physicality to aid

constructionist learning in STEM education, and the benefits of virtualizing the

physical learning environment, learning science and HCI user studies were hard to

find specifying the type and details for physical user actions associated with cognition

that aid with the learning process. The studies in the literature review indicate that

virtualizing physical laboratories are an effective teaching technique, but are there

differences between a non-traversable an a traversable virtual learning environment?

If so, how do each compare to a physical learning environment? And if principles of

embodiment can impact the learning experience, what parts of the body and types

of body movement might impact learning performance?

To address this gap in research, this dissertation examines the impact of one

virtual environmental factor, traversal fidelity, on the efficacy of immersive virtual

learning environments. The first of three studies compares the effectiveness of

AR/VR educational technology against live instruction without traversal of the

virtual learning environment, while the second study does the same comparison with

traversal of the virtual learning environment, and the final study seeks to isolate the

effects of traversal fidelity as an environmental factor for immersive virtual learning

environments. It is the intention of this dissertation to increase the knowledge of the

learning and HCI sciences to help identify how physical user actions associated with

cognition can aid with the learning process.
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CHAPTER 3

EFFECT OF NON-TRAVERSABLE IMMERSIVE VIRTUAL
ENVIRONMENT ON LEARNING IN STEM EDUCATION

3.1 Introduction

In today’s educational environment, increasing demands require educators to use

new techniques to improve the quality and frequency of learning experiences [87].

learning community (LC)s are one well-researched approach to using structured

socialization environments to maximize the potential for informal learning oppor-

tunities [9]. Higher educational institutions often formalize LC skill training for their

incoming undergraduate student population with regulated fall semester classes called

freshman year seminars (FYS), which traditionally takes the form of physical (i.e.,

in-person), classroom-based environments. Recent studies have shown that virtual

LC environments can offer improved results over physical LC environments [50].

This chapter examines whether STEM learners gain the same benefits to their

academic performance regardless of whether they receive collaboration training in

physical or virtual treatment. It explores the effects of a non-traversable immersive

virtual environment on undergraduate STEM students learning collaboration skills,

which are important for learners entering a new professional environment where

the social support network can be vital to their survival. Collaboration training

is a suitable medium to compare virtual and physical treatments without the

environmental traversal variable as most collaborations involve individuals working

in a LC in a stationary manner.

This chapter presents the first of three studies examining how traversability in

virtual learning environments impacts user performance. It compares the efficacy of

a non-traversable virtual learning environment against live instruction in a physical

learning environment. The research questions are:
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1. How does a non-traversable AR/VR environment impact learner performance?

(a) Is non-traversable AR/VR environment as effective as in-person instruction?

(b) How does a non-traversable AR/VR environment impact user perceptions?

3.2 Related Work

A LC is a group of people who share common academic goals and attitudes; who

meet semi-regularly to collaborate on classwork [9]. These groups are documented to

provide a significant positive impact on participating students’ academic performance

[34]. Carrino and Gerace found that socialization factors such as collaboration,

networking, and organizational thinking are of particular interest due to their critical

influence on students’ ability to form LCs independently. These skill sets are

important for STEM students that statistically spend less time honing these social

skill sets [18], which STEM careers value highly.

LCs vary depending on desired outcomes and do not have a definitive set of

implementation guidelines. The literature does, however, provide best practices and

theoretical frameworks to inform LC education [37, 127]. Implementing appropriate

scaffolds and curricular structures are also considered a good practice [112]. The

benefits of LCs and other programs targeting first-year students extend beyond

academic improvements. Improved engagement with peers and instructors has

a positive impact on overall engagement [57]. In more recent literature, Settle

demonstrated that participating in LCs showed increased retention rates [105] and

improved on feelings of isolation [104] in minority student cohorts.

LC curriculum needs to address skill training at the individual and social level to

be successful in STEM education. Carrino and Gerace analysed two years of open-end

response questionnaires and interviews from participants in STEM based LCs. Their

codification process revealed two primary categories of positive effects on participants:

the individual and social level. The individual level had codes involving self-efficacy,
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self-regulation, identity and meta-cognition. The social level has interaction with

faculty/professionals and with peers. Their research confirmed the individual and

social aspects of learning science have a strong impact on LC curriculum, and that

the growth of self identity and efficacy area are necessary to enable better socialization

and collaboration with STEM professionals and peers alike.

These individual and social categories of learner growth are important to

consider when developing LC curriculum, structure, and assessments, as well as

alternative curriculum deliverable methods. Boyce and Mishra found evidence

that virtualizing LCs has the potential to expand and supplement existing learning

structures, and create new ones where not previously available [14]. They conducted

educational research deploying tablet computers outside the classroom to direct

informal LC assignments in environmental science primary education. The researchers

used qualitative data collection techniques such as ethnographic observation, surveys,

and interviews to understand the impact to the students. It was found that technology

usage, e.g., a virtualization of the LC curriculum, improved student engagement with

the STEM topics, student socialization, and attitudes toward nature.

Both physical and virtual LC structures need to be sympathetic to the quality

of instructors and students interaction to ensure high retention for STEM learners.

Guidelines proposed by Yuan suggest using both synchronous and asynchronous

technologies to overcome issues with presence and schedule, which are not limited

to online students [126]. Yuan identified instructor quality and interaction between

learners as factors for dropout rates in STEM programs. Online LCs are also useful in

reducing the negative impact of limited communication of students in online classes.

Virtualizing LC has the potential to expand and supplement existing learning

structures, and create new ones where not previously available [14]. Virtualization can

improve learning interaction and overcome instructor quality variation if implemented

successfully [14]. Guidelines include continued and iterative curriculum development
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through the lifetime of the program, consistent feedback from both learners and

instructors incorporated regularly, use of synchronous technologies to create a shared

virtual learning space, varied and flexible approaches to consistently stimulate

discussions amongst learners, encouragement of both task-oriented and socialization

group discussions, and assignments centered around collaboration activities. This

research will lead to a better understanding of the strengths and limitations of

introducing AR/VR technologies in higher education for collaboration training.

3.3 Method

3.3.1 Study Design

The study was a between-group design with three groups: control, physical treatment,

and virtual treatment (see Table 3.1). All participants were placed randomly into

the control and treatment groups. The control group had no LC training, the

physical treatment group had LC training in a physical environment, and the virtual

treatment group had LC training in a virtual environment. The two treatment groups

were randomized again when they were divided into smaller teams for effective LC

training. Curriculum topics, activities and weekly structure were developed with the

FYS director.

Table 3.1 Treatment Group Details

Group Subjects Collab Assessments

Control 28 None Academic/Social/Survey

Physical Treatment 29 Physical Academic/Social/Survey/Interview

Virtual Treatment 33 Virtual Academic/Social/Survey/Interview

The null hypothesis of the experiment was that there was no measurable

differences of the academic and social metrics between any of the control and
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treatment groups. The alternative hypothesis of the experiment was that there was

measurable differences of the academic and social metrics between the control and

either (or both) of the treatments groups.

The independent variables in the experiment were whether a participant had

LC training, and whether that training was administered in a physical or virtual

environment. The dependent variables were the participants’ self-reported academic

grades from their common core exams, weekly self-reported peer socializing, and

perceptions on collaboration as formed from the environmental variable for the

collaboration training. The essential dependent variables were the academic and

social metrics which were gathered as quantitative data. The exploratory dependent

variables were the participants’ perceptions on collaboration, which were gathered as

qualitative data to complement and better understand the quantitative results.

New curriculum was developed to test between two experimental conditions

(physical in-person interactions vs. virtual interactions using the exact same

curriculum), and a control condition (the current LC instruction at New Jersey

Institute of Technology (NJIT) using their original curriculum). Specifically, we

compared the following outcomes: academic performance, and social connectedness.

The experimental groups had learning sessions regularly at the same time,

with the same instructor, and same the frequency as FYS sessions for eight weeks.

Academic and social assessments were administered to participants during and

after treatment for the entire semester over 15 weeks. Qualitative measures of

participant preferences and opinions of the collaboration training were gathered from

semi-structured interviews.

3.3.2 System

The virtual treatment used a networked, multi-player social VR software called

“Facebook Spaces” made by Facebook [85]. It allows up to four users to connect
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Figure 3.1 Screenshot of virtual treatment participants in “Facebook Spaces”.

remotely via Facebook accounts to a virtual space. The space includes a flat 360

panoramic image for the surrounding environment, and a circular table for up to

four users to sit around to interact with each other, objects and the environment.

The feature set available within the Facebook Spaces software, includes discussions,

drawing, dice, playing cards, 3D model viewing, and photo viewing (see Figure 3.1).

3.3.3 Stimuli

Each user in the virtual treatment was represented by a virtual avatar that was placed

in a stationary position around a circular table, see Figure 3.1. The avatar’s head was

moved by the user’s head rotations with a head mounted device. The avatar’s hands

were moved by the user’s hand positions and rotations through inverse kinematics with

hand controller devices. The user saw the virtual space through the head mounted

device. The user could speak through a microphone and listen through headphones

in the head mounted device. Finally, the user could interact with objects in the space

with the hand controllers.
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3.3.4 Participants

Each fall semester, NJIT offers 55 LC class sections and 5 non-LC class sections to

freshman undergraduate students, with approximately 25-30 students self-enrolling

into each section. We visited most class sections during the first week to explain

the study and recruit participants from NJIT’s College of Engineering and College of

Computing (representing 75% of the total student body).

To account for instructor effects, the participants were randomized into each

group. Each experimental group had 8 teams of 3-4 participants each, for a total

of 62 participants. The control group had no teams as they only had to fill out

assessments for the study, and included a total of 28 participants. We compensated

each participant a minimum of $150 for the duration of the study, requiring them to

participate in the study for 2 hours each Wednesday, for 10 consecutive Wednesdays

(equating to $15/hour, which is 107% more than the federal minimum wage of $7.25,

and 74.4% more than our state’s minimum wage of $8.60).

3.3.5 Procedure

For the control group, participants had their FYS curriculum as-is with no additional

LC training. For the physical treatment, participants were randomly placed in groups

of four as that was the size limit for the virtual treatment. The physical treatment

groups met in a small meeting room at a table and were guided on physical group

activities. For the virtual treatment, participants were randomly placed in groups of

four and used the social VR software, Facebook Spaces. For each virtual treatment

session, the participants were separated physically, connected together by networked

computers around a virtual table and were guided on the virtualized group activities.

During the initial stages of the study, the virtual treatment participants came for

assistance and training to interact within the virtual space using the hardware

controllers and software.
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Implementation began with an exploration and design phase for the virtual

and physical collaboration curriculum modules. A corpus of unique curricula

was created spanning several socialization and collaboration topics oriented toward

learning community skill sets (explained further in the following subsections). The

collaboration curriculum was aligned so both the physical and virtual form would be

equivalent. Both curricula was structured around the feature set available within the

Facebook Spaces software, which included discussions, drawing, dice, playing cards,

3D model viewing, photo viewing around a round table. Facebook spaces allows a

maximum of four participants in a session, so all of the study’s groups were limited

to 3-4 participants each.

The experiment ran for the first eight weeks of the semester to coincide with the

FYS classes. Assessments ran for the entire semester to measure the full academic

and social impact of the LC training. Academic assessments were self-reported by

the participants at the four common core and final exams that all first-year students

must take in their required math and science classes to acquire as much academic data

possible. Social assessments were based off established Social Network Analysis and

were self-reported in weekly intervals to maximize the chances that the participants

would remember their social interactions with peers from their classes. Participants

in the two treatment groups were interviewed at the end of the semester to give them

as much time as possible to see how the LC training impacted their academic and

social performance during their first semester at college.

Collaboration Curriculum The study ran concurrent to the FYS classes, which

were active for the first ten weeks of the fall semester. The two treatment groups,

physical and virtual, went through eight weeks of the collaboration curriculum (see

Table 3.2), which included the same activity between the two treatments for one hour

each week. We outline these activities below:
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Table 3.2 Weekly Collaboration Curriculum Breakdown

Time Physical Treatment Virtual Treatment

Week 1 Lost at Sea Intro to Virtual Reality

Week 2 Academic Discussions Lost at Sea

Week 3 Ship of Theseus Academic Discussions

Week 4 Is Hotdog a Sandwich? Ship of Theseus

Week 5 Missionaries and Cannibals Is Hotdog a Sandwich?

Week 6 Rocket Ship Missionaries and Cannibals

Week 7 Moon Landing Rocket Ship

Week 8 Pictionary Moon Landing

Lost at Sea The goal of this activity was to introduce participants to the type of

tasks they would be doing throughout the study. Each participant was asked to rank

a list of items given a survival situation. The participants then discussed among the

entire group to establish a group rating. In most cases, the group rating score was

higher than individuals’ ratings, demonstrating that group work often yields better

results. The measures of success for this activity included: every member actively

participated, participants understood that working in groups can yield better results,

and participants responded generally positively to the activity [54].

Academic Discussions The goal of this activity was to encourage participants

to share relevant experiences in the academic domain. Participants answered a list

of questions regarding their study habits. The designated organizer led a discussion

based on a script of questions, including “What is your favorite class so far?,” “What

is the class you think will require most work?,” and “Do you think study groups are

effective for classes?”. The measures of success for this activity included: apparent
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comfort of the group, attitude towards the activity, and willingness to collaborate

beyond the activity.

Ship of Theseus The goal of this activity was to facilitate discussion of an abstract

problem. The participants discuss a thought experiment questioning an identity of

an object, called “the Ship of Theseus” thought experiment. Over time, the ship has

every part replaced with a new part, and the old parts are used to build another ship.

The participants are asked to discuss within their group which is the real ship. The

measures of success for this activity included: participants come to some conclusions

even if they do not reach a consensus [92].

Is a Hot Dog a Sandwich? The goal of this activity was to facilitate discussion of

an abstract problem. The participants discuss a thought experiment questioning an

identify of an object. They go through a list of foods that are questionable whether

they should be classified as a sandwich, and the group must come to a discussion on

each object. The measures of success for this activity included: participants come to

some conclusions even if they do not reach a consensus.

Problem Solving Activities The goal of this activity was to facilitate solving

a series of logic puzzles with defined solutions with focus on role and task division.

The logic puzzles were titled “Missionaries and Cannibals” and “Rocket Ship”. They

can often be solved with trial and error by keeping track of individual steps and

backtracking them. The measures of success for this activity included: participants

solved all problems in the time allotted [122].

Moon Landing The goal of this activity was to recognize progress already made

as a group. This activity came from the same source as Lost at Sea and had the same

structure to the activity. Since first week served as an icebreaker and the content of
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the activity served largely secondary roles, this reiterated the general trend for groups

to outperform individual scores. The measures of success for this activity included:

the group recognized that working collaboratively had better overall results, and that

they recognized they made progress since the first meeting [55].

Pictionary The goal of this activity was to serve as a morale boost during periods of

increased stress and anxiety affecting all members of the group. In this case, midterm

exams. The researcher adjusted rules to competitive or collaborative depending on

group preferences and perception of flow. The measures of success for this activity

included: every member participated, and group morale remains high [123].

3.3.6 Measures

Academic Assessment All participants filled out provided academic assessments

in designated forms and times during the semester (see Figure A.1). Data collection

points occurred in person on a one-on-one basis starting at the beginning of the

semester, and ending at the end of the semester. The participants were required to

fill out the academic assessment a week before all exams and final grades were due.

The academic assessment was a form asking the participant to list any classes

they had an exam or grade in within the next week, and what grade they believed

they would receive from A to F, which was converted to 1-5 (only integers). The

participants had on average five classes and each class had between 3-4 exams along

with a final class grade, resulting in a minimum of 4 grade data points.

Social Assessment All participants filled out provided social assessments in

designated forms and times during the semester (see Figure B.1). Data collection

points occurred in person on a one-on-one basis starting at the beginning of the

semester, and ending at the end of the semester. The participants were required to

fill out the social assessment every week during the semester.
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No established methods were found for measuring students’ connectedness in

LC settings. Therefore, we adapted work from Social Network Analysis for the social

metric, which is a tool for describing the underlying mechanisms for social dynamic

theory. The resulting social metric was a form asking participants to list out fellow

students that they had academically-related social interactions with over the past

week. These “academically-related social interaction” were defined as at least five

minutes of socialization, either in-person or remotely, in any location outside of

the classroom where the participant was given help or gave help in regards to a

class activity (e.g., an assignment). The form had room to list out five classes (the

average number of classes for a freshman) and up to 12 fellow students per class with

directionality (i.e., half indicated that they provided help to someone else, and half

indicated that they received help from someone else).

Interviews At the end of the semester, 1-hour semi-structured interviews were

conducted with participants from both the treatment groups. 26 participants were

interviews from the virtual treatment group and 19 from the physical treatment group

for a total of 45 interviews. Two researchers conducted all the interviews, one for all

physical treatment participants, and the other for all virtual treatment participants.

A total of 23 questions were asked intended to better understand how the different

treatments affected participants’ opinions about collaboration and LCs. A sample of

our questions include:

1. Which activity did you like the most?

2. Was there an activity you really disliked?

3. Do the activities help students communicate better?

4. Are you more likely to ask students for help?

5. Are you more likely to socialize with other students?
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A three-stage coding process described by Cambell et al. was used for the

measurement of intercoder reliability for semi-structured interviews [17]. The lead

interviewer read through all interviews and generated a list of themes. A second

researcher reviewed 10% of the transcripts and reached a minimum of 87% intercoder

reliability after two trials (86% than 89%). Once this was complete, the lead

interviewer coded the remaining transcripts and counted code occurrences.

After consolidation, 52 codes were identified and grouped into 10 themes. The

occurrences of each code were coded as a binary output, no(0)/yes(1). As the resulting

data are nominal/categorical, the counts of the different labels (e.g., histograms) were

reported; shown as percentages of ’yes’ responses per group.

Codes grouped into their themes:

1. Factors for choosing NJIT:

Family, Reputation, Finance, Location, Academics

2. Current experience at NJIT:

Academic, People, Independence, Campus

3. Motivations behind collaboration:

Sharing ideas, Social, Solving problems, Shared workload, Helping

4. Significance behind collaboration:

Social skills, Mindsets, Jobs, Comfort

5. General activities participants liked or disliked:

Sports, Games, Social, Academic, Difficulty, Public speaking

6. Perception of roles in collaborative activities:

Assigned, Natural, Leader, Follower, Multiple, Power, Ability, Interest

7. Mentors and their roles on collaboration:

Guidance, Per request, Supervision, Contamination
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8. Collaboration activites participants liked:

Problem solving, Novelty, Competitive, Fun, Word-based, Different views

9. Purpose of LCs:

Guidance, Comfort, Getting to know people, Building relationships, Future

10. Effects of collaboration activities:

Friends, Being heard, Easier to work, Communicating, Differences

3.4 Results

3.4.1 Academic Difference between Treatments and Control

Academic assessments were gathered that were filled out throughout the semester and

converted letter grades of A through F to a scale of 1 to 5. All academic assessments

were averaged per participant to get a final academic metric, which was analyzed

as ordinal variables using the non-parametric Mann-Whitney test (as the data was

not normally distributed). No significance was found in comparing the treatment

groups (U = 954.0, n = 62, p = 0.573), meaning there was no observable difference

between the physical and virtual treatment group participants’ self-reported semester

grades. However, significant difference was found between the physical treatment and

control (U = 993.0, n = 57, p = 0.016) and between the virtual treatment and control

(U = 726.5, n = 61, p = 0.041), with both the physical and virtual treatment groups

having a significantly higher self-reported semester grades (control median = 3.792,

physical median = 4.0, virtual median = 4.0) (see Figure 3.2).

3.4.2 Social Assessment Difference between Virtual Treatment and Control

The social metrics of the three study groups were compared by examining the total

academic social interactions per semester of each participant and the directional sums

of the their social interactions (giving or receiving help). Chi-Squared tests were

used as the data was not normally distributed. A significant difference was found
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Figure 3.2 Boxplot of academic metric average per participant by study group.

when comparing virtual treatment to the control group for giving help (χ2(2, n =

57) = 5.6531, z = 2.376, p = 0.0175), with the virtual treatment participants giving

significantly more help than their control counterparts (see Figure 3.3).

3.4.3 Interview Codifications of Physical and Virtual Treatments

For the mentor roles on collaboration theme, the guidance code appeared in 88%

of the virtual treatment participant interviews and 32% of the physical treatment

participant interviews. This means the virtual treatment participants mentioned the

idea of guidance 2.75 times more than the physical treatment participants when asked

about mentor roles on collaboration (see Figure 3.4).

For the perception of collaboration roles theme, the natural and ability codes

appeared in 79% and 42% of virtual treatment participant interviews and 63% and

21% of physical treatment participant interviews. This means the virtual treatment

participants mentioned the ideas of natural and ability 1.25 and 2 times more than the

physical treatment participants when asked about perception of roles in collaboration.

The follower code appeared in 58% of physical treatment participant interviews and

36



Figure 3.3 Boxplot of the social metric “Giving Help” by study group.

29% of virtual treatment participant interviews, which means the physical treatment

participants mentioned being a follower two times more than the virtual treatment

participants when asked about their collaboration roles (see Figure 3.4).

For the motivations behind collaboration theme, the shared workload and helping

codes appeared in 58% and 38% of the virtual treatment participant interviews

and 37% and 26% of the physical treatment participant interviews. This means

the virtual treatment participants mentioned the idea of shared workload 1.57 and

helping 1.46 times more than the physical treatment participants when asked about

the motivation behind collaboration. The sharing ideas code appeared in 63%

of the physical treatment participant interviews and 42% of the virtual treatment

participant interviews, which means the physical treatment participants mentioned

being a follower 1.5 times more than the virtual treatment participants when asked

about their collaboration roles (see Figure 3.5).

For the enjoyment factors of collaboration theme, the fun and different views

codes appeared in 68% and 32% of the physical treatment participant interviews and

54% and 17% of the virtual treatment participant interviews. This means the physical
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Figure 3.4 Mentor roles and perception of roles on collaboration codes.

treatment participants mentioned the idea of fun 1.26 and different views 1.88 times

more than the virtual treatment participants when asked about the enjoyment factors

of collaboration. The problem solving code appeared in 67% of the virtual treatment

participant interviews and 47% of the physical treatment participant interviews, which

means the virtual treatment participants mentioned solving problems 1.43 times more

than the physical treatment participants when asked about their enjoyment factors

of collaboration (see Figure 3.5).

For the significance of collaboration theme, the jobs code appeared in 83%

of the virtual treatment participant interviews and 42% of the physical treatment

participant interviews. This means the virtual treatment participants mentioned the

idea of jobs 1.98 times more than the physical treatment participants when asked the

significance of collaboration (see Figure 3.6).

For the Purpose of Learning Communities (LCs) theme, the future code

appeared in 25% of the virtual treatment participant interviews and 0% of the physical

treatment participant interviews. This means the virtual treatment participants

mentioned the idea of the future 25 times more than the physical treatment

participants when asked about the purpose of LCs. The comfort code appeared

in 58% of physical treatment participant interviews and 33% of virtual treatment
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Figure 3.5 Motivations and enjoyment factors of collaboration codes.

participant interviews, which means the physical treatment participants mentioned

being comfortable 1.76 times more than the virtual treatment participants when asked

about the purpose of LCs (see Figure 3.6).

3.5 Discussion

3.5.1 Interpretation of Academic Assessment Difference

Analysis of the academic metrics revealed a statistical significance of the self-reported

semester grades for the two treatment groups compared to the control group. It is

believed that having any type of collaboration training has direct positive impact to

the incoming undergraduate STEM students’ academic performance. Since both the

physical and virtual treatment groups had statistical academic improvements over

the control group, it has been shown that virtualization of collaboration training for

FYS LCs is a viable alternative to the traditional, physical training.

3.5.2 Interpretation of Social Assessment Difference

Social metric analysis revealed a statistical significance between the virtual treatment

and control for the amount of academic help offered by the participant to fellow

students during the semester. It is believed that this result is explained by the

interview results from the motivations behind the collaboration theme. The shared
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Figure 3.6 Significance and purpose of collaboration codes.

workload and the helping code were much higher in the virtual treatment participant

interviews, showing that the virtual treatment participants learned more about

offering help and sharing work, which was reflected in their giving help social metric.

3.5.3 Interpretation of Interview Codification

For the mentor roles on collaboration theme, the guidance code was much higher

in the virtual treatment participant interviews. This could be a result of the large

amounts of technical help and training that was needed in the first few weeks to get

the virtual treatment participants acclimated to the hardware.

For the perception of participant roles in collaboration theme, the natural and

ability codes were higher in the virtual treatment participant interviews. The guidance

code from the previous theme may be an influential factor since the guidance during

the early stages of the study may have felt as a natural ability formation for the

virtual treatment group. This effect may also be seen in the higher follower code for

the participants in the physical treatment group, which could also be interpreted in

the lower follower code for the participants in the virtual treatment group.

For the motivations behind the collaboration theme, the shared workload code

was higher in the virtual treatment participant interviews, while the sharing of ideas
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code was higher in the physical treatment participant interviews. This contrast in

identification of collaboration motivation between the treatment is reinforced with the

additional code of helping being higher in the virtual treatment participant interviews.

Since participants in the virtual treatment viewed collaboration motivation involving

a shared work experience, it is believed they were less shy about asking a fellow group

member to do a task for them. This interpretation is reinforced with the difference in

the helping code between treatment. Meanwhile, the physical treatment participants

had real interactions building appreciation for personal qualities such as what others

were thinking and their ideas.

For the enjoyment factors of collaboration theme, the problem solving code was

higher in the virtual treatment participants interviews, while the physical treatment

participants interviews had higher mentions of the fun and different views codes. This

preference for problem solving and different views reinforces the interpretation of the

different presence of the shared ideas and shared workloads codes.

For the significance of collaboration theme, the jobs code was higher in the

virtual treatment participants interviews. This may be because VR is an emerging

technology, and the introduction to the VR software was set in a fictional world.

These may have caused the virtual treatment participants to start thinking about

their futures since many were engineering students. This interpretation is reinforced

by the fact that the future code was much higher in the virtual treatment participants

interviews from the purpose of LCs theme. It is also noted that the comfort code

was higher in the physical treatment participants interviews for this theme. This

would indicate that the physical treatment participants got more comfortable with

collaboration which reinforcing the interpretation from the shared ideas, and different

views codes.
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3.5.4 Lessons Learned

Virtual Treatment Impact on Socialization Abilities The virtual treatment

participants reported that VR can address the anxiety of freshman relating to their

new college environment full of strangers that may carry risk of public humiliation.

The virtual treatment participants indicated that socializing in VR helped remove

the fear from public interactions with unknown fellow students. They reported that

over the several weeks of the study, they felt more comfortable during the rest of their

week when they were out on the campus and interacting with other students.

Preference of Cooperative vs Competitive Activities The study focused

mostly on collaborative problem solving but games worked well and were usually

successful in groups with past poor performance. Most groups direct their interactions

around cooperation, or at least a mixture of cooperative and competitive with

the competitive interactions blending into a cooperation nature, and vice versa.

One group would only compete with each other and another group had very low

interactions in general, but leaned toward cooperation interactions.

Open-ended vs Concrete Solutions The treatment participants seemed split on

open-ended vs closed solution problems. Some participants pointed out that problems

with defined solutions are more satisfying to solve, with the solution serving as a kind

of reward. Participants that preferred the Ship of Theseus and “Is a hot dog a

sandwich?” type problems, listed a variety of causes, including:

1. Open-ended problems are more challenging

2. They liked the opportunity to discuss and debate

3. These kinds of problems are different

4. Longer problems have depth to talk about
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Additionally, some of the participants are inclined to lead and moderate and

this could affect their preferences.

Session Breakdown The researchers found it useful to observe the group as they

entered the room, and trying to start with activities that are at the group’s emotional

state and allow them to warm up. At the beginning, the researchers stuck mostly to

a single activity per session. The fourth week started a slow introduction of other

activities, like card games, and the week 5 activity was three different problems

presented as a single activity. Some participants liked the variety of having multiple

activities, others preferred to focus on one.

Math Anxiety Breaks Collaboration The counting task involving math could

stop collaboration as participants were afraid of making a mistake and being

embarrassed in front of their group. In the future, it will be best to avoid activities

that break the flow of collaboration and discussion as it simply defeats the purpose

of our intervention.

Three Types of Group Mentalities: Talkers, Doers, Not Ripe Yet The

“Talker” groups preferring discussion activities, their interactions peaked around

conversations. Conversations were not all collaborative, they flow between collab-

oration and competitive natures with the main dialogue themes exploring personal

opinions on a subject. After personal explorations, they can easily come to group

decisions. Usually, these groups were formed around one personality with the

others feeling comfortable as a secondary personality with followup comments or

confirmation or reject of direction that the group leader is going. Usually, these roles

were define based on the communication abilities of each member, with the last group

member having the lowest socialization ability listening, and doing something with

their hands, i.e., drawing or playing with models, but still verbally confirming their
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approval of the group’s direction. It is currently unknown if these groups only form

when there is this single dominant personality.

These groups enjoyed all collaboration activities with personal preferences

ranging on the types of activities. They usually do not need to be warmed up,

or coerced into interacting with each other, and usually were very excited to start

up their session and bonded quickly as a group. They came in together chatting,

were quick with the assessments, and any logistics of the study since they help each

other, and left the sessions together. This phenomena made the researchers curious

about using another assessment of checking their times to coming into the study, the

speed of filling of the assessments, speed of entering into VR, and speed of finishing

up activities.

The “Doer” groups preferring physical activities, their interactions peaked

around games, puzzles, activities that can be completed successfully with minimal

conversations and more interactions involving physical manipulations with the hands.

Tactile stimulation and manipulation was preferred for shared experiences. It is not

known if this is because the group did not have a persona to lead the conversation

situations and they preferred these more silent group activities. It may have be

a hierarchy situation based on the social skill level of participants, and that all

participants matured through these levels of preferred group dynamics and social

interactions. For this study’s purpose, the researchers were trying to get the

participants to be as comfortable conversationally as possible since the end goal is

to maximize the chances that out in the real world of campus and class interactions

they would ask for help when needed and offer help when capable to do so.

This style of group dynamic seemed to prefer logic puzzle activities when forced

to do a conversational activity. This seemed to be because they can rely on a tactile

interaction point with the group, i.e., drawing, to supplement their conversations

when interacting with each other to solve the puzzle. These groups seemed to prefer
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collaborative tactile exercises like Pictionary and puzzle-solving as that seemed to

avoid confrontations. They seemed to want to positively interact with the group but

lacked the confidence or experiences to do so in full conversational situations.

Only two groups were “Not Ripe Yet” and not ready for any structured type

of interactions. They needed unstructured playtime to pull out group interactions,

and exploratory environments with opportunities for immature jokes. The simplest

games of hangman and blackjack were most effective. Their collaboration fell apart

under conversations and goal-oriented activities. Although both groups solved the

missionaries puzzle, which was surprising, they did poorly compared to the other

groups. The logic puzzle gave them something interesting to solve where they did

not need to perform in front of the rest of the group. Pictionary did not work well

because they were focused on making fun of each other’s drawing skills which gave

them performance anxiety for both the drawer and the guesser.

They needed activities with minimal structure. The researchers gave them 3D

models to play around with to get used to the presence of the other participants.

That was followed up with some type of activity that gives a small amount of

structure and performance but not enough to evoke sarcasm from the group and

elicit performance anxiety. After that, the session was usually followed with a mildly

structured activity when it was needed to actively promote positive collaboration

experiences while minimizing the potential for public humiliation. Of the two groups

with this mentality, both were all males, with one all Caucasian and the other

all African-American. Most girls in the study were more socially advanced, more

collaboration and conversation focused, yet did seem shier and tended to not be the

primary personality of conversation groups. It is thought that had mostly to do with

the fact that they are an underrepresented minority.
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3.5.5 Study Limitations

The development of the collaborative activities was limited due to the study’s

requirement of keeping everything consistent across conditions. The software used

in the virtual treatment had limited tools for user interactions, so the activities were

built around these limitations.

3.6 Conclusion

This chapter compared the efficacy of a non-traversable immersive virtual learning

environment against live instruction in a physical learning environment. The effects

of the treatments were examined upon a population of incoming undergraduate

STEM freshmen students learning collaboration skills, which are important as modern

educational and work environments are highly team-centric. Collaboration training

is a suitable medium to compare virtual and physical treatments without the

environmental traversal variable as most collaborations involve individuals working

together in a stationary manner.

Either treatment of collaboration training was found to improve the partic-

ipants’ academic performance in comparison to the control treatment. This evidence

suggests that instructional delivery in a virtual environment with no traversal of

the spatial AR/VR interface offers comparable learning efficacy to the traditional

physical environment. In addition, the virtual treatment participants gave more

academic help in social settings to their peers throughout the semester than their

control group counterparts. Upon interviewing the two treatment group participants,

the virtualization of collaboration was found to positively impact perceptions on

leadership roles, group functions, and thinking about their future careers.

46



CHAPTER 4

EFFECT OF TRAVERSABLE IMMERSIVE VIRTUAL
ENVIRONMENT ON LEARNING IN STEM EDUCATION

4.1 Introduction

Educational fields may find alternative teaching methods useful to maximize student

opportunities to internalize and process the curriculum. AR/VR educational

experiences have the potential to be used as alternative teaching tools in STEM

education, which can supplement traditional teaching methods enabling new learning

methods for students in the classroom and at home. This chapter examines whether

STEM learners can gain the same academic performance benefits regardless of

receiving CS training in physical or virtual modalities. It explores the effects of a

traversable immersive virtual environment on middle school students learning binary

(base-2) counting, which is an important computational skill for CS learners. The

outcomes from this research can support a larger effort in adapting the current STEM

education system to meet the needs of a more diverse student body that may find

alternative teaching tools useful in internalizing abstract concepts.

The goal of this chapter is to examine if a traversable AR/VR educational

experience could have the same benefits as live lecture in the classroom for student

understanding binary (base-2) counting. To address this goal, a controlled experiment

was conducted comparing a teacher-led lecture (the control) and a AR/VR experience

(the treatment) introducing binary counting. AR/VR technology was designed with

the teacher and student considerations in mind, as a CS educational technology in

school settings. When designing AR/VR educational technology, having the user

move through and interact with the virtual environment may help learners engage

with abstract STEM concepts and attract a more diverse population to CS and

STEM. With this objective in mind, a CS educational VR experience, called CSpresso,
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was developed to teach students to count in a binary number system. The study

compared the efficacy of a traversable immersive virtual learning environment against

live instruction in a physical learning environment. The research questions were:

• How does a traversable AR/VR environment impact learner performance?

1. Is a traversable AR/VR environment as effective as in-person instruction?

2. How does a traversable AR/VR learning environment impact usability?

4.2 Related Work

The traditional method of CS teaching involves lecture and textbook methods,

with alternative teaching methods involving project-based learning and interactive

programming tools. Modernizing education practices with interactive technology to

supplement traditional teaching methods may give students additional opportunities,

at school and at home, to be given the opportunity to excel in the field [117]. However,

technology usage in the classroom often depends on the teacher’s beliefs and their

teaching philosophy [27, 117]. Instructors’ self-efficacy is one of the most significant

factors that impact their use of technology in the classroom [27]. Participatory

design initiatives allow instructors to familiarize themselves with the technology

allowing them to suggest modifications, which can help align the technology with

their pedagogical beliefs better.

This gives educational technologists an opportunity to increase the positive

impact of technology in the classroom. They can increase the overall usage of such

technology if they consider integration in their design. The newest generation of

AR/VR headsets, called standalone VR, have wireless free roaming features that may

be able to accomplish an engaging virtual learning environment that is a self-contained

alternative teaching tool in the classroom and at home [85]. Based on this hypothesis,

an educational VR experience was co-designed, CSpresso, with CS educators, to be

accessible, engaging with its narrative and gameplay, and have an adjustable pace
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to match an individual’s learning pace [107]. The aim was to use AR/VR as an

alternative teaching tool to attract a more diverse student population who may not

otherwise choose to learn CS.

Game-based learning is an approach to education that uses games to enhance

or facilitate the learning process, which encompasses VR. Unlike gamification, this

approach does not limit itself to using game mechanics such as incentive systems in

non-game settings [2]. The exact relationship between game complexity and learning

has not been definitively confirmed by literature [95]. The effectiveness of games

used purely as a substitute for “drill and practice” activities has not been verified by

existing research [110] as well.

Among the frequently cited reasons for the use of games are motivation and

engagement that games enhance in their players [91]. The impact on skill and

knowledge acquisition is the common measure of success in games in education

settings [22, 95]. Recent reviews by Qian et al. suggest an expansion of criteria

to include problem-solving and other skills, sometimes referred to as “21st-century

skills” [95]. They highlight recent interest in approaches expanded beyond course

material and educational outcome measures, such as computational thinking and

problem solving skill building.

Studies examining the impact of game-based learning approaches in mathe-

matics have shown improvement in self-efficacy and increased learning motivation

in addition to improved learning achievement [42]. Applications that depend on

game-based learning to encourage students to self-study have also shown a positive

impact on math scores [19]. To better understand different student populations, Ku

et al. investigated the effect of game-based learning on confidence and performance by

separating participants into low and high ability groups for math education [59]. Ku et

al.compared traditional paper-based instruction in a physical environment to a digital

game-based instruction in a virtual environment. While students in both groups
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improved in performance, the low-ability students have shown improved confidence

in the game-based learning group only [59]. These findings helped direct our design

efforts when building CSpresso for binary counting. When designed well, AR/VR

experiences can immerse the user in the virtual environment causing them to be less

aware of their surroundings which may increase their confidence of performing binary

math equations in front of their peers.

Game-based learning also shows promise in CS education at the K-12 level [62,

63, 64]. Comparing game and non-game versions of otherwise identical educational

material demonstrated better results in the game version, effectively isolating

gameplay as a significant factor [89]. Recent interest in computational thinking

education promotes novel designs and approaches. Other projects exploring multistage

game-based system for fostering computational thinking skills show positive results

on student engagement [61, 65, 68, 69, 113, 125]. Similar parallels were found when

designing CSpresso around an open exploration space with interaction elements meant

for open-ended tinkering. The experience was designed to account for multiple play

styles by having interaction elements display the results of their actions, and show

how multiple actions stack together for a final answer that the student may change

at any time during the task based on reviewing any of the feedback areas.

4.3 Method

4.3.1 Study Design

The study was a between-group design with two groups: learning in a physical

environment (our control), and learning in a virtual environment (our treatment).

Participants were placed randomly into the two groups. The control group had binary

counting training with a live instructor in a physical environment, and the treatment

group had binary counting training with interactive software in a virtual environment.
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The two groups were randomly divided into smaller teams of five for effective training

and participant management.

The null hypothesis of the experiment was that there is no measurable

differences of the learning metrics between the control and treatment groups. The

alternative hypothesis of the experiment was that there is measurable differences of

the learning metrics between the control and treatment groups.

The independent variables in the experiment were whether the binary counting

training of a participant is administered in a physical or virtual environment. The

dependent variables were the participants’ knowledge scores from their pre- and

post-learning assessments, and participant perceptions on usability and engagement

factors of the virtual environment training. The essential dependent variables were

the learning metrics which are gathered as quantitative data. The exploratory

dependent variables were the virtual treatment participants’ perceptions on usability

and engagement factors which were gathered as qualitative data to understand if

rationale can be suggested for any differences of the quantitative results.

Curriculum for both groups was developed from a nationally recognized CS

program, and taught by a certified CS instructor. The experiment was conducted for

one day of an unrelated CS summer camp. Learning assessments were administered

to participants before and after the experiment. Qualitative measures of the virtual

participant usability and engagement metrics were gathered from semi-structured

focus groups.

4.3.2 System

The design goal of the virtual learning environment was to take full advantage of

the Oculus Quest VR headset’s free roaming feature, which would allow the user to

move through virtual space without entanglement by physical wires in the real world.

The Oculus Quest was a standalone VR headset that gives stimulus input to the
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user through a wireless headset and takes output from the user through wireless hand

controllers [85]. It was an Android computer system that can connect to a developer’s

PC for software development, testing, and data input and output. The user could

experience standing or sitting based VR experiences in the headset, and this system

was a standing VR experience requiring 20’ x 20’ of empty room space for the user

to move around the virtual learning environment (see Figure 4.1).

Figure 4.1 Treatment participants immersed in the virtual environment.

The software development environment used to build this system was the

Unity real-time 3D development platform [116]. It was an integrated development

environment specialized for the developer needs of real-time 3D applications including

AR/VR educational technologies. Unity also was a multi-windowed development

environment with some panes for visualizing and building the interactive 3D virtual

environments, and some panes for programming in the computer language C# to

create the functionality of the application. Other software packages were needed to

create two-dimensional (2D) and 3D graphical and animation elements needed for the

virtual learning environment. Autodesk Maya and Max were used for the 3D models
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and animations. Adobe Photoshop and Substance Designer were used for the texture

creation of the 3D models.

The virtual environment was presented as visuals through the left and right eye

monitors of the headset. The headset tracks where the user was walking and looking

in the virtual environment by recording the position and rotation of the user’s head.

This allowed the visuals to be updated in the left and right eye monitors. The

hand controllers tracked where the position of the user’s hands were in the virtual

environment as well as the hand poses that the user created by moving their fingers

across sensors on the hand controllers. Position and rotation data from the headset

and hand controllers were recorded by the developer’s software for analysis of the task

time and movement of the users. 3D user interface elements in the virtual learning

environment were also recorded for analysis of the user task time and error rates.

4.3.3 Stimuli

The stimuli to the participants were visual and interaction only, there was no audio

stimuli. The virtual environment was visually presented as the user standing in a

circular room with a waist high station in front of them with a user interface to give

text directions to the user. The only part of the user that was represented visually in

the virtual environment was their hands since that was their interaction point with

3D user interface. The “binary counting” station was interactive, allowing the user

to grasp their virtual hands through virtual representations of pullable levels. All

interactions required of the user were presented as a tutorial when the application

first started (see Figure 4.1). Details of the software design are listed in the appendix

(see all Figures in Appendix H and I).

CSpresso’s virtual environment included stations with interactive consoles

organized into a concentric circle, all sequentially placed in clockwise direction. The

design followed the order of interaction from start to finish, in one circular loop. Each
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Figure 4.2 User interacting with the color station in the virtual activity.

station must be visited and interacted on by the user to complete a task, with the

entire experience requiring the completion of seven progressive harder tasks involving

solving binary counting problems.

There were five stations (task station, number station, color station, shape

station, and output station) to interact with during a task, each with a set of levers

that the user pulls to set binary values of either 0 or 1 disguised in various forms such

as on or off, 0 or 2, red or green, and cube or sphere. Each task started with the

user receiving directions to perform at the task station, which involved recreating the

correct binary value to represent a number, color, or shape. To do so, the user must

travel to several other, specialized stations to create the correct output and return it

to the task station. For example, one task was to bring five yellow spheres back to the

task station. The user must go to the number, color, and shape stations, respectively,

pull on the correct levers, and created the correct number of required colored shapes

(see Figure 4.2).
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4.3.4 Participants

The participants were 34 middle school students (19 girls and 15 boys), from 5th to

8th grade (median 6th grade), participating in a 9-session Saturday CS camp. The

students were randomly dividing into two classrooms at the beginning of the camp,

and the binary counting session was held during their 7th Saturday. The students

were randomly assigned in one room to be the control group, and the other room’s

students as the treatment group. Neither room’s students were aware of the other

room’s assigned activity. This was done to minimize distractions, as recruiting only

a subset of students from each room to participate in the treatment group might

cause the control participants to complain that they could not partake in the novel

activity. After data collection was completed for the day, the control participants

were informed about the activity, and allowed to try out the treatment activity.

4.3.5 Procedure

For the study, a gymnasium was used (for the treatment activity), along with two

classrooms (one for the teacher to lecture about binary counting to the control group;

and one for interviewing treatment participants after completing their activity). The

gymnasium was split into five 20ft x 20ft quadrants (using marking tape on the

floor), one for each treatment participant per session (see Figure 4.1). Due to this

configuration, we were able to run a maximum of five treatment participants per

sessions concurrently.

The activity was developed for the study by reviewing CS Unplugged—activities

designed to introduce computational thinking concepts to students without the use

of computers [10]. It was decided to teach a binary counting lesson (specifically,

the binary counting card lesson), which was a topic that was not covered in the CS

camp. For the control condition, the teacher used the binary counting lesson from

55



CS Unplugged. For the virtual condition, the lesson was adapted into the CSpresso

VR learning experience.

The control group had 15 participants (8 girls and 7 boys). Individuals from this

group participated in a 45-minute session, which included taking a pre-assessment, a

20-minute learning activity, and a post-assessment. The learning activity was led by

one of the researchers (i.e., the activity teacher), an experienced educator, with over

a decade of practice teaching introductory computer science materials.

The treatment group had 19 participants (11 girls, 8 boys) divided into three

groups of five and one group of four (as the researchers were only able to have five

concurrent treatment participants active per session). These groups participated in a

one-hour session, which included taking a pre-assessment, a 5 minute VR equipment

training session (see Figure 4.3), a 20-minute VR learning activity using CSpresso

(see Figure 4.1), a post-assessment, and a 10-minute focus group interview.

Before starting the sessions, all participants filled out a pre-test learning

assessment with 12 fill-in-the-blank questions (see Figure C.1). Questions were used

from the CS Unplugged binary card counting activity, and took about 15 minutes for

students to complete [10]. After learning about binary counting, all participants were

given the same questionnaire as the post-assessment. Changes in the participants’ pre

Figure 4.3 Virtual treatment participants receiving equipment training.
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and post assessments were used to understand the differences in the learning impact

of the control and treatment conditions.

4.3.6 Measures

Learning Assessment Before starting the sessions, participants filled out a

pre-test learning assessment with six open-ended questions (see Figure C.1). The

questions tested participants understanding of the procedure for binary counting of

increasing larger numbers. Questions also inquired about symbol systems, that the

participants were not taught during the experiment, to understand if the knowledge

was transferable. The assessment questions came from CSUnplugged [10]. After

learning about binary counting in the experimental training session, participants were

given the same questionnaire as the post-assessment. Changes in the participants’

pre- and post-assessments were used to understand the differences in the learning

impact of the conditions.

Usability Interviews Focus group interviews were conducted with all participants

in the treatment group after they completed their post-assessments. The research

team had more than 15 years of experience in HCI research and the researcher

conducting the interviews was a certified CS teacher. The participants were

accompanied by their CS teacher who they had known from the program. The

researchers interviewed students in focus groups of five participants as this was the

size of a session group and past research indicate that is an appropriate size for these

activities with children [39, 31]. This allowed the students to feel more comfortable

with their peers and also there was limited time and resources to interview two

students at a time. Each group that was interviewed took 10 to 15 minutes to discuss

the key questions outlined in the semi-structured protocol below. All interviews were

recorded and transcribed for further analysis.
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Semi-structured focus group protocol to probe participants’ understanding of

their user experience within the virtual treatment:

• What did you like? What was fun? Did you feel engaged?

• What did you dislike? What was challenging about VR?

• Did you learn anything while playing VR?

• Did this exceed your expectations?

• Would you hope to see or do something different?

• How easy/hard it was to use the controller?

• Was it easy/hard to select/manipulate objects?

• Were you dizzy? Did you feel uncomfortable? Sick?

• Did you find the tutorials helpful? Why? Or why not?

• Could you figure things out without a tutorial?

• Did you like physical movements?

• Did you like walking while learning/playing?

• Did you need to stop early?

• Where you comfortable for a whole time?

• Did you want to stay longer or less?

• Did you experience any blurriness?

• Would you like to play on a computer or a headset?
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A three-stage coding process described by Cambell et al. was used for

the measurement of intercoder reliability for semi-structured interviews [17]. The

interview lead read through all interviews and generated a list of codes. A group

of three researchers reviewed 10% of the transcripts and reached a minimum of

87% intercoder reliability. Once this was completed, the three researchers coded

the remaining transcripts and counted code occurrences.

After consolidation, 13 codes were identified and grouped into three themes as

shown below. Since the researchers conducted focus group interviews, the frequency of

each code was counted as it appeared in each group’s transcript, totaled up all group’s

code frequencies and ordered the codes within each themes as to their frequency totals.

This gave an understanding to the dominant trends reported by the focus groups in

each theme. As the resulting data are nominal/categorical, the frequencies were

reported of the different codes; shown as total frequency per code for all participants

from the treatment group.

Codes grouped into their themes:

1. User Emotions of the Virtual Experience:

Enjoying Immersion, Enjoying Physical Activity, Enjoying Learning, Feeling
Bored, Feeling Distracted

2. Usability Suggestions for the Virtual Experience:

Adjustable Difficulty, More Content, Clearer Directions, Improve Interactions,
Fix Broken Objects

3. Platform Issues of the Virtual Experience:

Blurry Vision, Disorientation, Headset Discomfort
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Figure 4.4 Control pre and post scores show knowledge difference.

4.4 Results

4.4.1 Pre and Post Learning Assessment Difference per Condition

To see if there was any affect by the interventions, analysis of differences within each

condition (e.g., control pre-test vs. control post-test) was conducted. In the control

group, middle school students (n = 15) were taught by a teacher how to count in

binary up to three digits. In the treatment group, middle school students (n = 19)

were taught by CSpresso how to count in binary up to three digits. Students were

given a pre-test and post-test with 12 questions each involving counting in binary up

to five digits. Here, “Questions Answered Correctly” (in Figures 4.4-4.7) all refer to

the total number of questions a student got correct on either the pre-test of post-test.

The minimum score was 0, and the maximum (perfect) score was 12. For all learning

assessment analysis, Wilcoxon Rank Sum test with α = 0.01 confidence was used, as

the data was not normally distributed.

The control group participants did not do well in the pre-test, which is to be

expected for participants with no prior knowledge in binary counting, but showed a

statistically significant increase in their post-test scores (W = 108, Z = −3.895, p <
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Figure 4.5 Treatment pre and post scores show knowledge difference.

0.01), suggesting that the teacher-led lecture helped them understand how to count

in binary, up to five digits (see Figure 4.4).

The treatment group participants also did not do well in the pre-test, which

is to be expected for participants with no prior knowledge in binary counting, but

showed a statistically significant increase in their post-test scores (W = 493, Z =

5.6786, p < 0.01), suggesting that CSpresso helped them understand how to count in

binary, up to five digits (see Figure 4.5).

4.4.2 Learning Assessment Differences between Conditions

To see if there were any differences between the classrooms, differences between

condition (e.g., control pre-test vs treatment pre-test) were analyzed. The control

and treatment condition participants were comparable at the beginning, with no

measurable difference in their pre-test scores (W = 241, Z = 1.7376, p = n.s.),

meaning that these students all started with the same inexperience in counting binary

(see Figure 4.6).

After the learning activity (either a physical lecture or a virtual experience),

there were no measurable difference in participants’ post-test scores (W = 286.5, Z =
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Figure 4.6 Control and treatment pre-test scores show no knowledge difference.

1.4875, p = n.s.) while the scores were much improved compared to their pre-test

scores. This demonstrates that the physical lecture and the virtual activity were

both effective in teaching their respective students how to count in binary. Examining

the boxplot (see Figure 4.7) suggests that the control condition students did slightly

better overall in the post-test compared to the treatment condition, but not enough

to make a statistically significant difference.

Interview Codifications of Treatment Condition

Analysis of the interview data revealed three major themes: user emotions of the

virtual experience, usability suggestions for the virtual experience, and platform

issues with the virtual experience. For user emotions of the virtual experience, five

codes appeared in the focus group interviews for a total count of 36 appearances

in the interviews (see Figure 4.8). Of the fives codes for the user emotions of

the virtual experience theme, three were positive of the experience (enjoying of

immersion, physical activity and learning of the experience) and two were negative

of the experience (feeling bored and distracted). All three positive emotions about

the experience were reported at higher rates (33.33%, 30.55%, 25%) than than the
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Figure 4.7 Control and treatment post-test scores show no knowledge difference.

negative emotions about the experience (5.6%). For usability suggestions for the

virtual experience, five codes appeared in the focus group interviews for a total count

of 38 appearances in the interviews (see Figure 4.9). For platform issues with the

virtual experience, three codes appeared in the focus group interviews for a total

count of 13 appearances in the interviews.

Participants reported feeling enjoyment by the immersion of the experience 12

times, which is 33.33% of the total reported counted codes for the user emotions

of the virtual experience theme. Enjoyment of immersion covers topics of enjoying

physically moving around the virtual space, and observing objects and performing

the tasks that gave them the feeling of actually being in the experience.

Participants reported feeling enjoyed by the physical activity of the virtual

experience 11 times, which is 30.55% of the total reported counted codes for the

user emotions of the virtual experience theme. Enjoyment of physical activity covers

topics of enjoying actively interacting with objects, such as throwing objects, pulling

levers, picking up and moving objects with their virtual hands.

Participants reported feeling enjoyed by the learning of the experience nine

times, which is 25% of the total reported counted codes for the user emotions of the
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Figure 4.8 User emotions of the virtual treatment experience.

virtual experience theme. Enjoyment of learning covers topics of problem solving

without any guidance, while in experience and/or retaining knowledge from the

tutorial or experience.

Participants reported feeling bored by the experience two times, which is 5.6%

of the total reported counted codes for the user emotions of the virtual experience

theme. Feeling bored covers topics of expressing a frustration of not being challenged

enough or the activities becoming too tedious.

Participants reported feeling distracted by the experience two times, which is

5.6% of the total reported counted codes for the user emotions of the virtual experience

theme. Feeling distracted covers topics of being afraid of bumping into things, while

trying to concentrate on tasks in the experience. Hearing classmates talking while in

the experience.

Participants reported wanting adjustable difficulty for the experience 15 times,

which is 39.5% of the total reported counted codes for the usability suggestions of

the virtual experience theme. Adjustable difficulty covers topics of complaints about

task difficulty, and expressing the need for more guidance in the experience.

Participants reported wanting more content for the experience eight times,

which is 21.1% of the total reported counted codes for the usability suggestions of the
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Figure 4.9 Usability suggestions for the virtual treatment experience.

VR experience theme. More content covers topics of suggesting or asking for more

levels, different activities, characters, or scenarios.

Participants reported wanting clearer directions for the experience seven times,

which is 18.4% of the total reported counted codes for the usability suggestions of

the virtual experience theme. clearer directions covers topics of walking out of the

boundary, pressing buttons that are instructed not to press, not following along with

either in-game or pre-game tutorials.

Participants reported wanting improved interactions for the experience five

times, which is 13.2% of the total reported counted codes for the usability suggestions

of the virtual experience theme. Improved interactions covers topics of not liking how

something works or looks in the experience.

Participants reported wanting to fix broken objects in the experience three

times, which is 7.9% of the total reported counted codes for the usability suggestions

of the virtual experience theme. Fixing broken objects covers topics of functions of

different objects in experience not working correctly.

Participants reported blurry vision in the experience seven times, which is 53.8%

of the total reported counted codes for the platform issues of the virtual experience

theme. Blurry vision covers vision issues or trouble with fitting glasses into headset.
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Participants reported disorientation in the experience four times, which is 30.8%

of the total reported counted codes for platform issues of the virtual experience theme.

Disorientation covers topics of disoriented during or after experience, complaints

about no visible feet or legs, and jittering of the virtual hands.

Participants reported discomfort from the headset in the experience two times,

which is 15.4% of the total reported counted codes for the platform issues of the virtual

experience theme. Discomfort from the headset covers topics of uncomfortable, heavy

feeling on the face from headset.

4.5 Discussion

The outcome of this user study was found to be highly rewarding to the treatment

participants with a majority not wanting to stop playing CSpresso at their maximum

play time of 20 minutes. The overall impression received from observing the treatment

participants in the second study was that CSpresso, even in its preliminary state, was

engaging and fun. Students made full use of the Quest’s untethered feature, breaking

out into victory dances and freely moving about in their 20 by 20 foot space.

4.5.1 Interpretation of Learning Assessments

The analysis of the learning assessments indicated the treatment group participants

learned binary math just as well as the control group participants that were taught by

the summer camp’s instructor. This suggests that CSpresso can be as effective as an

instructor-led lecture without the restrictions on instructor availability and locality.

These results revealed that the CSpresso experience is educational, and suggests that

it may have some benefits over traditional teaching methods.

The control and treatment condition participants both started off the same

score that is close to zero. In other words, they did not know how to count in

binary. After either a physical lecture or using the virtual educational experience,
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students’ post-test scores were significantly higher. However, there was no statistically

significant difference between these groups’ post-test scores, meaning that both the

physical lecture and virtual educational experience led to similar outcomes when

teaching the students how to count in binary.

The results of the learning assessments shows that the participants who learned

binary math through the virtual educational experience were just as successful

as those who learned from a certified CS instructor. This indicates that virtual

educational experiences can be used as alternative teaching tools in CS education

which can supplement traditional teaching methods enabling new learning methods

for students in the classroom and at home.

4.5.2 Interpretation of Interview Data

Of the fives codes for the user emotions of the virtual experience theme, the three

positive emotions about the experience were reported 5-6 times more frequently than

the two negative emotions about the experience. Since all three positive emotions are

reported at a much higher frequency compared to negative experiences, it may suggest

that the experience is engaging, immersive, and an impactful learning experience–all

which point to success for this chapter’s study of the virtual educational experience.

Of the five codes for the usability suggestions of the virtual experience theme,

the most frequent was to make the experience more customizable to the user. This

involves adjusting task difficulty and training time during the tutorial, and offering

help during tasks if users get stuck. The second most frequent request was for more

content, which is reasonable since this version of the experience had no high quality

graphics and only focused on the interactions and user experience needed for learning

the binary math material. Since then, extensive work was put into the graphics

quality of the experience, which can be seen at artncoding.com (see all Figures in
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Appendix H and I). The remaining codes dealt with refining the current experience

by making the directions clearer, improving interactions, and fixing broken objects.

Of the three codes for the platform issues of the virtual experience theme, the

most frequent issue was blurry vision, followed by user disorientation and discomfort

of the headset. Since these are issues with the current hardware implementation, it

is not worth discussing them and assume that these issues will be fixed with future

hardware iterations. Some additional observations from listening to participants were:

Effortless and intuitive interaction Participants felt that learning was natural

and easy. They liked to see their hand motions and the natural interaction through

hand gestures. Most of all, they liked the ability to physically walk around in VR.

Request for more content Participants liked the provided activities and wanted

to participate in more similar activities as they felt the task got redundant toward

the end when they grasped the main concept taught by the activity.

Gender-specific feedback Male participants requested action-based and exciting

events such as explosions while the female participants were happy with a calm and

quiet virtual environment allowing them to take their time to solve the tasks.

Other Requests Participants wished to have a guide or a friendly helper during

an experience and wanted to see more of their virtual body parts besides their hands.

One student found the found the headset to be heavy.

4.5.3 Study Limitations

Experimental bias existed and could not be reduced from the influence that all

participants were already registered for a CS summer camp. Both groups taught the

participants to count up to three digits in binary and learning assessments checked
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up to five digits in binary. Further training sessions and assessments may need higher

amounts of binary digits to verify educational efficacy of both groups.

4.6 Conclusion

This chapter compared the efficacy of a traversable immersive virtual learning

environment against live instruction in a physical learning environment. It explored

the effects of a traversable immersive virtual environment on middle school students

learning binary counting, which is an important computational skill for CS and STEM

learners. Educational fields that are abstract in nature, such as CS and other STEM

fields may find alternative teaching methods useful to maximize student opportunities

to internalize and process the curriculum.

When designing AR/VR educational tools, having the user move through

and interact with the virtual environment may help learners engage with STEM

educational concepts. With this objective in mind, a CS educational VR experience,

called CSpresso, was developed to teach students to count in a binary number

system (see all Figures in Appendix H and I). User testing confirmed that the

treatment group, who learned to count binary in a traversable virtual environment,

were just as successful as the control group, who learned with live instruction in a

physical environment. This evidence suggests that instructional delivery in a virtual

environment with traversal of the spatial AR/VR interface offers comparable learning

efficacy to the traditional physical environment.
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CHAPTER 5

EFFECT OF TRAVERSAL KINEMATICS ON EFFICACY OF
IMMERSIVE VIRTUAL LEARNING ENVIRONMENTS IN STEM

EDUCATION

5.1 Introduction

As AR/VR technologies become more mainstream, educational technologies will

increase use of AR/VR capabilities. User experience (UX) designers will need

to understand the extent that these capabilities can impact a virtual learning

environment. AR/VR technologies have the unique feature of a spatial interface,

which is a system interface that is embedded into the virtual environment in 3D

around the user. This enables a level of realism to computer system interfaces that

can emulate physical interactions with a higher fidelity than 2D user interfaces on

computer monitors. Understanding the benefits that spatial interfaces can bring to

user learning and performance, and help UX designers develop better virtual learning

environments using AR/VR technologies. The proposed experiment in this chapter

seeks to isolate the interface components of traversal fidelity that are unique to

AR/VR technologies and offer insight into their impact to user learning, performance,

and usability preferences.

The goal of the chapter is to understand how the traversal characteristics of

a spatial interface in a virtual environment influences the user’s STEM learning

performance. We examined if learning, retention, and engagement of CS educational

concepts improve when users are exposed to iterations of that virtual environment in

an AR/VR platform with controlled variations of spatial interface traversal. The

traversal methods and their effects are explored with undergraduate CS student

participants learning “bubble sort”, which is an important computational skill for

CS and STEM learners. Students that find educational topics within the STEM

fields difficult to learn, may find alternative teaching methods useful to maximize
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their performance and comprehension. When designing AR/VR educational tools,

having the user move through and interact with the virtual environment may help

learners engage with difficult to learn STEM concepts, and attract a more diverse

population to the STEM fields.

This chapter examines the effect of varying the kinematic style of traversal

within an immersive virtual environment on STEM learner performance. The

previously presented studies (see Section 3.3 and Section 4.3), compared the effects of

immersive virtual learning environments against physical instructor-led live lectures,

but did not examine the effects of traversal variations within an immersive virtual

learning environment. The two kinematic styles of traversal that will be compared

are natural walking and hand controller-based walking. The learning objective will

be a fundamental CS sorting algorithm called “bubble sort”.

This chapter presents the final of three studies examining how traversability

affects user performance in a virtual learning environment. It compares the efficacy of

two AR/VR traversal methods on learning performance within a virtual environment:

natural walking and hand controller-based walking (i.e., with the user in a stationary,

seated position). The research questions are:

• How does body kinematics of AR/VR traversal impact learner performance?

1. How does body kinematics of AR/VR traversal impact learning?

2. How does body kinematics of AR/VR traversal impact retention?

3. How does body kinematics of AR/VR traversal impact usability?

4. How does body kinematics of AR/VR traversal impact task time?

5.2 Related Work

Due to its focus on 3D user interfaces, the User-System Loop (USL) framework

was selected to design and evaluate the AR/VR prototype built to teach the CS
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sorting algorithm, bubble sort, for this chapter’s study [60]. The essence of the USL

framework is based on the model-view-controller design pattern of object-oriented

programming [60]. The model is the simulation of the learning objective, while the

view is the spread out amongst the virtual environment as the 3D visualization of

the simulation, and the input are the physical devices on the users’ head and hands

that allow them to interact with the simulation. As such the AR/VR prototype

followed model-view-controller design within a 3D virtual space to accommodate the

evaluation principles of the USL framework.

When a system interface is displayed spatially in 3D around the user, the

traversal fidelity of the interface may have a stronger impact on user performance [74,

75]. This is because the interface elements are not restricted to a 2D monitor that

is completely contained within the user’s field of view [60]. Interface elements can

be placed in any location around and distance from the user. This increases the

complexity of the decisions for the UX designer, so it is important to understand

how traversal fidelity around a spatial interface can impact user performance in an

immersive virtual learning environment.

A framework-based approach is needed to evaluate the effects of the spatial

interface components on user performance in an immersive virtual learning environment,

in particular how the fidelity or realism or a user’s traversal affects their learning

performance. A framework-based evaluation approach that has been designed

specifically for 3D user interfaces is the USL as a system oriented adaption of

Norman’s Seven Stages of Action [74]. In this model, user interactions begin with

actions that manipulate input devices, which are interpreted as sensory information

to the system. The system alters the data and models underlying the simulation

of objects, their physical attributes and behavior. The system then updates the

rendering information going to the system’s outputs connecting to the user’s input
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based on changes to the simulation’s data and models. This information is process

by the user as stimulus to be perceived.

Each stage of the framework identifies components that affect the overall

interaction and usability of the system. Component evaluation examines one

component while keeping the other components the same to alleviate confounding

variables, which yields an understanding of best practices to use a combination of

components to build a desirable system. Using a controlled experiment structure

results in general knowledge applicable to a wider range of spatial interface design

patterns. This component evaluation approach requires consideration to define the

components that affect the system’s stage of action.

McMahan et al. described a method to define the components within a USL in

terms of fidelity, or realism including three categories of interaction fidelity, scenario

fidelity and display fidelity [74, 75]. This study will be examining the virtual

environmental factor of traversal fidelity within the USL framework as an interaction

fidelity, which is defined as “the objective degree of exactness with which real-world

actions are reproduced in an interactive system” [74, 75]. This study will be examining

the fidelity of user traversal fidelity through the framework of biomechanical symmetry

with its real-world counterpart.

Biomechanical symmetry is defined as “the objective degree of exactness with

which real-world body movements for a task are reproduced during interaction”, and

can be further divided into subcategories of Anthropometric symmetry (IBA), and

Kinematic symmetry (IBK) [74, 75]. IBA is the degree of fidelity which body parts

involved in a real-world task are required by an interaction technique. IBK is the

degree of fidelity which a body motion for a real-world task is recreated during an

interaction technique. This study will examine the fidelity difference of IBK, while

holding still the fidelity of IBA within the interaction biomechanical symmetry of the

virtual environment factor of traversal fidelity of a spatial interface.
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Traversal tasks have been lightly researched in relation to general or STEM

based virtual learning environments, as most research focuses within the training

scenarios of industrial, military, or naval traversal tasks. Mas et al. developed a

VR multiplayer game for traversal skill training of workers in complex industrial

facilities. They found that VR makes it possible to “multiply the number and duration

of situations that learners can experience to better consolidate their skills”, which

would be a beneficial effect if it can be generalize to STEM education [73]. Jingxian

et al. found that the simulation of ship motion within a 3D virtual environment in

VR improved the traversal training and wharf traversal assessment of future naval

officers, and suggested that this may be helpful to other learning objectives of these

officers which includes STEM areas [47]. No prior research was found examining how

traversal interfaces can impact a general learning or a STEM learning task within a

virtual environment, which is what this study will seek to find insights, but first we

must identify proper traversal and interface techniques for AR/VR applications.

AR/VR applications have different demands for a user interface than monitor-

based applications, which led Weib et al. to conduct a quantitative user study to

identify advantages and disadvantages of 2D, 3D, and speech based user interfaces

for virtual environments [119]. They found that 3D interfaces have higher ratings for

natural and intuitive inputs along with better immersion into the experience but that

2D interfaces are easier to learn and comprehend. This lead the design of the study’s

interface as a mixture of 2D and 3D elements to attempt to gain the advantages

and minimize the disadvantages of both techniques. Lorenz et al. studied how the

feeling of “being” in a virtual environment, called presence, are determined by the

level of immersion and the style of traversal [72]. They simulated natural walking

using a Wii Balance Board and a Kinect Sensor, and found that the more natural

method of walking using the Kinect Sensor gave a stronger sense of presense to the
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participants. This study would like to confirm if that stronger sense of presense can

aid in a learning task in a virtual environment as well.

Traversal tasks within virtual environments can be problematic for users to

process. Kheddar et al. approached these traversal task issues with a proposed

traversal control algorithm based on the behavior of how humans move their head

while intuitively exploring the real world [53]. Their psychology review of how

human’s process a new environment in the real world lead to design decisions in

the study on how to build the 3D representation of the list in the virtual world.

Kruijff and Riecke did an extensive review of spatial traversal interfaces allowing

for locomotion through a virtual environment [58]. They examined the basics of

traversal, including the user’s psychological factors of exploration and travel inquiry.

From these theoretical foundations, a practical framework was established and is

the basis for the two styles of traversal devised in this study, natural walking and

hand-controller based walking. As practical solutions for AR/VR interfaces emerge,

well-research pedagogical practices should be identified to help design the virtual

learning environment.

Modern CS pedagogical practices may be a good educational research area

to find use cases that can be generalized to larger STEM areas. Multidisciplinary

approaches to active learning scenarios, that simulate constructivist learning

environments, and integrate CS and computational thinking with other disciplines

have shown a positive impact on student outcomes. A study investigating the

effects of a math, dance, and music program suggested that besides the increased

CS knowledge, students showed increased interest in STEM education [106]. Courses

with computational thinking learning objectives that applied scientific computation

resulted in student reporting of stronger interest in pursuing CS education [38].

Similarly, Goode et al.’s “Exploring Computer Science” program combines content

knowledge with instructional techniques in a professional development program,
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makes a strong case for empowering teachers to introduce active learning in settings

where traditional curricula have proven to be inadequate [33]. These studies

indicate that virtual learning environments designed for active learning scenarios that

encourage constructivism may help improve STEM educational practices.

Previous research has looked at the challenge of increasing the learning and

interest of STEM students in CS using immersive technologies [99, 32, 88, 128]. In

a study by Reuter et al., the use of AR/VR to teach CS showed that technology

makes the learning material less abstract and complex using a more approachable

technology [99]. They argued that the application of AR/VR techniques to teaching

software engineering in higher education may alleviate learning obstacles attributed

to its abstract and complex nature. Of particular interest, they point out that

virtual simulations of system processes may appear more tangible to students,

which guided the design principles of the prototypes presented in this dissertation.

Gokhale demonstrated a teaching style that used the inherent students’ interest in

technology to teach and connect them to CS concepts [32]. Their approach utilized

evidence-based reasoning of questions for students to understand abstract CS concepts

by exploring the ideas of how the concept is applied to their favorite technologies.

Both research approaches found favorable methods for making abstract CS concepts

for STEM students more concrete, but they did not identify specific HCI factors

that may have contributed to these learning and engagement outcomes, which is the

agenda for this chapter’s study.

When software requirements and constraints limit the use of the Embodied

Interaction concept, then AR/VR technologies could simulate aspects of the physical

objects to still enable the benefits of user interactions with physical objects or

environments. AR/VR educational technologies using headsets and hand controllers

can simulate aspects of the physical objects and environments that may offer learning

benefits to STEM education by combining ideas from embodied cognition and
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embodied interaction. The AR/VR learning environment tested in this chapter’s

study were designed to simulate the sensorimotor experiences that a learner would

have while using their body to learn about the world around them, and to encourage

the user to interact and explore the virtual environment that is presented to them.

5.3 Method

5.3.1 Study Design

The study was a between-group design with two groups, a control and a treatment,

that both learned the “bubble sort” algorithm in a virtual environment. The control

group had to stand still and use the hand controller to move through the 3D

representation of a list as they sorted its elements. While the treatment group was

allowed to physically walk through a 3D representation of a list as they sorted its

elements. The control group was given the hand controller interaction, since traversing

an environment with a hand controller is typical in video games, whereas physically

walking to traverse a virtual environment is less standard, i.e., more experimental.

The study compared the learning, retention, task time, engagement, and usability

measures between the conditions and interviewed all participants with open-ended

questions to understand how the traversal characteristics of a virtual environment

improves the users’ learning experience.

The null hypothesis of the experiment was that there are no differences of

the learning, retention, usability, and task time metrics between the control and

treatment groups’ movement interface of traversing the virtual learning environment.

The alternative hypothesis of the experiment was that there are differences in the

learning, retention, usability, and task time metrics between the control and treatment

groups’ movement interface of traversing the virtual learning environment.

The independent variables were kinematic symmetry of the virtual environ-

mental traversal interaction and demographics. There were two groups for the
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traversal interaction independent variable based on how a participant is allowed to

traverse the virtual environment. Demographics collected for this study represent

control variables, and were participant gender, participant age, participant country of

origin, and participant corrective lens usage. The dependent variables were the partic-

ipants’ knowledge scores from their pre, post, and retention learning assessments, total

task and sub task times, error rates of tasks completed, and participant perceptions

on usability and engagement factors of the virtual environment training.

5.3.2 System

The design goal of the virtual learning environment was to take full advantage of the

Oculus Quest VR headset’s free roaming feature, which would allow the user to move

around without entanglement by physical wires in the real world [85]. The Oculus

Quest was a standalone VR headset that gives stimulus input to the user through a

wireless headset and takes output from the user through wireless hand controllers [85].

It was an Android computer system that could connect to a developer’s PC for

software development, testing, and data input and output. The software was designed

as a standing VR experience requiring 20’ x 6’ of empty physical space for the user

to move around the virtual learning environment (see Figure 5.1).

Figure 5.1 Participants immersed in the virtual bubble sort trainer.
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The software development environment used to build this system was the

Unity development platform [116]. It was an integrated development environment

specialized for the developer needs of real-time 3D applications including AR/VR

educational technologies. It was a multi-windowed development environment with

some windows for visualizing and building the interactive 3D virtual environments,

and some windows for programming in the computer language C# to create the

functionality of the application. Other software packages were needed to create 2D

and 3D graphical and animation elements needed for the virtual learning environment.

Autodesk Maya was used for the 3D models and animations. Adobe Photoshop and

Substance Designer were used for the texture creation of the 3D models.

The virtual environment was presented as visuals through the left and right eye

monitors of the headset. The headset tracked where the user was walking and looking

in the virtual environment by recording the position and rotation of the user’s head

and hands. This allowed the visuals to be updated in the left and right eye monitors.

The hand controllers tracked where the position of the user’s hands were in the

virtual environment as well as the hand poses of the user by moving their fingers

across sensors on the hand controllers. Position and rotation data from the headset

and hand controllers were recorded by the software for analysis of the task time and

movement of the users. 3D user interface elements in the virtual environment were

also recorded for analysis of the task time and error rates of the user.

5.3.3 Stimuli

The stimuli to the participants were visual and interaction only, there was no audio

stimuli. The virtual environment was visually presented as the user standing in an

empty landscape with a waist high station in front of them with a user interface

to give text directions to the user. The only part of the user that was represented

visually in the virtual environment was their hands since that was their interaction
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point with 3D user interface. The “bubble sort” station was interactable by allowing

the user to push their virtual hands through virtual representations of push buttons.

All interactions required of the user was presented as a tutorial when the application

first starts (see Figure 5.1). Details of the software design are listed in the appendix

(see Figures in Appendix H and I).

The virtual environment included a waist-high station, that grew length-wise

with the size of the list to sort (see Figure 5.2). The station has an interactive console

to give directions to the user and allowed the user to sort elements in the list and

to move through the list. The console had a next and swap button to enable those

actions to the user, and it had a small 2D representation of the list for ease of the

user to understand all the elements and their relative amounts.

Figure 5.2 Console user interface of the virtual bubble sort activity.

At the beginning of each task, the station grew to the size of the list, the console

gave directions to the user, and the user must move the console sequentially through

the list deciding to swap the two active elements or to move to the next. When the

user moved the console to the end of the list, and pushed the next button, then the

console returned to the beginning of the list. Only when the user moved through all

elements in the list and not swap any elements did the console check if the list is
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in order. There are a total of seven tasks that should take the user between 15-30

minutes to complete (see Figure 5.3).

Figure 5.3 Station grows to accommodate larger lists.

5.3.4 Participants

Participants were gathered from the researchers’ undergraduate classes for 5% extra

credit. The participants were 42 undergraduate information technology (IT) students,

of which 14.3% were female and 85.7% were male. Participant ages ranged from 18-36

years old (mean 21.55, median 21, and standard deviation 3.467). Demographics were

gathered from a pre-assessment survey asking for participants’ age, gender, ethnicity,

prescriptive lens usage, and experience with AR/VR technologies (see Figure D.1).

Table 5.1 Control Group Details

Groups Participants Immersion Anthropometric Kinematic

Control 21 Virtual Reality Standing Hand Controller

Treatment 21 Virtual Reality Standing Physical Walking
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5.3.5 Procedure

The participants were randomly assigned to one of the two groups, and came in for

their learning sessions on separately assigned one hour time slots in one of the five

experiment days to avoid participant interaction between groups during the study

(see Table 5.1). The control group used a virtual learning environment with a

hand controller based traversal interface teaching undergraduate students (n = 21)

how to bubble sort lists from three to eight elements. The treatment group used

a virtual learning environment with a natural walking traversal interface teaching

undergraduate students (n = 21) how to bubble sort lists from three to eight elements.

Group sizes were based on a power analysis to estimate minimum sample size required

for an experiment, given a desired significance level (5%), effect size (default 80%),

and statistical power (default 80%) [76].

Before starting the sessions, all participants were informed on the purpose and

design of the study and asked to fill out the pre-assessments including a consent

form, a demographic survey, and a learning assessment. Learning assessments had

four questions involving bubble sorting lists from three to six elements. Training

sessions were conducted in a virtual learning environment composed of six tasks that

the participants needed to complete to finish the training. Each task involved bubble

sorting a progressively longer list, where the first task involves sorting a list of three

elements, and the final sixth task involves sorting a list of eight elements.

For both conditions, participants were provided with a demonstration of the

Oculus Quest VR system, and then fitted with the headset and hand controllers. The

participants spent 20 minutes in the VR interactive lesson, where they interacted

with the “bubble sort” station and the console by pushing their virtual hands through

virtual representations of push buttons, which was part of the tutorial presented to

the participant when the application first started (see Figure 5.1). Control group

participants were trained to use the thumb stick on the hand controller to virtually
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walk through the 3D representation of a list of as elements as they learned the bubble

sort algorithm. Treatment group participants were trained to physically walk through

the 3D representation of a list of elements as they learned the “bubble sort” algorithm.

After the learning session, the participants were asked to fill out a learning

assessment, a simulator sickness assessment, and a usability assessment. The

participants continued participation remotely for the retention assessments, which

were the learning assessments administered one day, one week, and one month after

the treatment. The learning assessment was designed to be taken in under 10

minutes since it needed to be taken five times over the course of the experiment. All

assessments were processed as digital forms to make the pre, post, and three retention

assessments easy for the participants to fill out and the researchers to analyze.

5.3.6 Measurements

The measurements were designed to gather data on the learning, retention, usability,

and task time metrics of the participants in the two groups. Learning measurements

were taken as pre-assessment, post-assessment, and at three later dates to examine

learning and retention metrics. Usability measurements were taken as post-

assessment to examine usability metrics. Task time measurements were taken during

the treatment session to examine task time metrics.

Learning Assessment The learning assessment had four multiple choice questions

and test participants understanding of the procedure for bubble sorting progressively

longer lists of elements (see Figure E.1). The multiple choice questions came from

two popular computer science educational websites called geeksforgeeks.com and

proprofs.com [101, 96]. The multiple choice questions were pilot tested and refined

on five undergraduate CS students.
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Simulator Sickness Assessment The simulator sickness assessment had 15

questions on a Likert-type scale (see Figure F.1) and an open-ended response

question. The assessment was originally developed by Dr. Berbaum in 1993 and

used extensively in aviation simulation studies and within the NJIT MIXR lab [52].

Usability Assessment The usability assessment had four sections of questions:

usability, attention, spatial awareness, and presence. Survey sections were comprised

of Likert-type scale questions on a seven point scale each followed by a open-ended

response question that allowed the participants to explain their answers in more depth

(see Figure G.1). Questions were designed to probe participant experiences with

the immersion, traversal, visual fidelity, and user experience of the virtual learning

environments. The usability questions were developed from previous experiments in

the NJIT MIXR lab, and refined by one round of pilot testing on five undergraduate

CS students. Participant responses were aggregated and analyzed for user experience

trends in the virtual learning environments.

Open-ended Usability Questions Due to the large number of participants, and

the limited number of researchers, interviews were conducted as open-ended questions

listed in the usability assessment. There were four constructs to evaluate in the

assessment: general usability, presence, spatial awareness, and attention [71]. Each

construct had a section of the usability survey that contained a set of Likert-type

questions, with an open-ended question asking for the participants’ thoughts and

rationale for choosing their previous response(s). The general usability construct was

the broadest, and had eight Likert-type and four open-ended questions. The other

three constructs were more specialized and had four Likert-type and one open-ended

question, each. This allowed for gathering qualitative data that could be codified

without having to interview each participant individually.
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A three-stage coding process was used as described by Cambell et al., for

the measurement of intercoder reliability for semi-structured interviews [17]. The

interview lead read through all open-ended responses in the usability assessment

and generate a list of codes. A second researcher reviewed 10% of the open-ended

responses and reached a minimum of 87% intercoder reliability with the interview

lead, which was 90% intercoder reliability. Once this is completed, both researchers

coded the remaining open-ended responses and counted code occurrences.

Likert-type scale usability questions with statistically significant differences

between the control and treatment had their open-ended responses analyzed to

suggest rationale for differences between the groups. Means of construct group

of questions showed no statistically significant difference, and only one usability

question had a statistically significant difference, “How much did you enjoy moving

your body”. After consolidation of codes on this usability question, four codes

were identified. The frequency of each code was counted as it appeared in each

participant’s usability assessment, totaling up all participants’ code frequencies and

ordering the codes within each themes as to their frequency totals. This gave an

understanding to the dominant trends reported by the participants. As the resulting

data are nominal/categorical, we reported on the frequencies of the different codes

(e.g., histograms); shown as total frequency per code for all participants from all

treatments.

Codes generated for the statistically significant usability question:

1. Embodied Interaction Enjoyment:

Participants reported positive feelings of their computer interactions involving
body kinematics.

2. Embodied Interaction Improvement:

Participants reported negative feelings of their interactions involving body
kinematics and/or suggested improvements.
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3. Embodied Cognition Enjoyment:

Participants reported positive feelings of their learning experience within the
virtual environment involving body kinematics.

4. Cyber Sickness:

Participant reported feelings of nausea, feeling ill, or feeling a mismatch of cues
between the body’s actual motion and the mind’s perception of that motion.

5.4 Results

5.4.1 Pre and Post Learning Assessment Difference per Condition

To see if there was any learning affect by the interventions, analysis of learning

differences within each condition (e.g., natural walk pre-test vs. natural walk

post-test) was conducted. The mean learning assessment scores per treatment

show general trends of learning in the treatments over the course of the study (see

Figure 5.4). The minimum score is 0, and the maximum score is 4. A repeated

measurement analysis was conducted by modeling the discrete data of the five

learning measurements and then running the Friedman test on the modeled data.

No statistically significant differences of the five learning measurements between the

groups was found (F = 1.2058, n = 41, p = n.s.). For all learning assessment analysis,

the non-parametric Wilcoxon Rank Sum test with α = 0.01 confidence was used,

as the data was not normally distributed. When stated in the figures, “Questions

Answered Correctly” labels refer to the total number of questions a student got

correct on either the pre-test, post-test, 1 day retention-test, 1 week retention-test,

or 1 month retention-test.

The control group participants did not do well in the pre-test, which is to

be expected for participants with little-to-no prior knowledge of the bubble sort

algorithm, but showed a statistically significant increase in their post-test scores

(W = 344.5, n = 21, p = 0.007). This suggests that the virtual learning environment
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Figure 5.4 Mean learning assessment scores per condition.

with hand-controller traversal interface helped the participants understand how to

implement a bubble sort algorithm on a list up to six elements (see Figure 5.5).

The treatment group participants also did not do well in the pre-test, and also

showed a statistically significant increase in their post-test scores (W = 291.5, n =

21, p < 0.001). This suggests that the virtual learning environment with the natural

walking traversal interface helped the participants understand how to implement a

bubble sort algorithm on a list up to six elements (see Figure 5.5).

5.4.2 Pre to Post Learning Assessment Differences between Conditions

To see if there were any learning differences between the control and treatment,

analysis of learning differences between each condition (e.g., natural walking pre-test

vs hand-controller movement pre-test) were analyzed. Participants from both groups

started off the same, without any statistically significant difference between their

pre-test scores (W = 437.5, n = 42, p = n.s.). This meant that these participants
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Figure 5.5 Pre-test and post-test learning assessment differences per condition.

all started off the same inexperience in regards to the bubble sort algorithm (see

Figure 5.5).

After the learning activity, there were no statistically significant difference

in participants post-test scores between the control and treatment groups (W =

481.0, n = 42, p = n.s.). This demonstrates that both the natural walking

and hand-controller traversal interface were both effective teaching the respective

participants how to implement a bubble sort algorithm. Examining the mean

assessments scores and the boxplots of the two conditions (see Figures 5.4 and 5.5),

suggested that the control group participants knew a small amount more about the

“bubble sort” algorithm in the pre-test and knew a small amount less in the post-test

compared to the treatment group participants.

Upon further analysis, there was a statistically significant difference between

the learning improvements from the pre-test to the post-test of the two groups. The

estimate of difference in the population medians was 1, and the confidence interval
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Figure 5.6 Mean task completion time per condition.

was (0, 2) with an achieved confidence of 95.11%.The treatment group participants

did statistically perform significant better than the control group participants when

comparing the differences between their pre-test and post-test learning assessments

scores (W = 535.0, n = 42, p = 0.037). This suggests that the virtual learning

environment with natural walking traversal interface helped the participants learn

the “bubble sort algorithm” better than with the hand controller traversal interface.

5.4.3 Task Time Differences between Conditions

To see if there was any task time affect by the interventions, analysis of task time

differences between each condition was conducted. The mean task completion times

per group showed general trends of task completion time increasing as the list required

to sort got longer per task over the course of the training session (see Figure 5.6).

The treatment group participants had a mean session time of 11.42 minutes and the

control group participants had a mean session time of 12.65 minutes. For all task

completion time analysis, the non-parametric Mann-Whitney test was used, as the

data was not normally distributed. Outliers (that were two standard deviations away
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Figure 5.7 Task 1 and 2 completion time comparisons per condition.

from the mean—a threshold that can be considered “unusual” [67]) were removed

from the task time data-sets prior to statistical analysis [25]. For thoroughness,

analyses were performed without removing outliers and using the Mann-Whitney

test as recommended by Bakker and Wicherts [5], but no differences were detected in

any of the final results.

For task 1, the estimate of difference in the population medians was -12, and

the confidence interval was (-28, -2) with an achieved confidence of 95.11%. The

treatment group participants completed task 1 with statistically significant difference

in the time to completion compared to the control group participants (W = 308.5, n =

41, p = 0.018) (see Figure 5.7). For task 2, the estimate of difference in the population

medians was -12, and the confidence interval was (-23, 0) with an achieved confidence

of 95.11%. In addition, the treatment group participants also completed task 2 with

statistically significant difference in the time to completion compared to the control

group participants (W = 286.5, n = 37, p = 0.025) (see Figure 5.7). This suggests

that the virtual learning environment with the natural walking traversal interface

helped the participants complete their “bubble sort algorithm” tasks faster than with

the hand controller traversal interface.
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Figure 5.8 Median usability scores per condition.

5.4.4 Usability Assessment Differences between Conditions

To see if there was any usability affect by the interventions, analysis of usability

differences between each condition was conducted. The non-parametric Mann-

Whitney test was used for all usability survey analysis of the Likert-type scale

responses, as the data was not normally distributed. All questions within the

attention, spatial awareness, and presence sections had no statistically significant

differences to report (see Figure 5.8). Within the usability section of the usability

survey, seven of the eight Likert-type scale questions showed no statistically significant

difference between the two conditions (see Figure 5.8). The fifth usability question,

“How much did you enjoy moving your body while learning?”, did have statistically

significant difference with the treatment group reporting a higher satisfaction response

(W = 528.0, n = 42, p = 0.037) (see Figure 5.9). The estimation of difference in the

population medians was 1, and the confidence interval was (0, 2) with an achieved

confidence of 95.03%.

Analysis of the open-ended responses for the “How much did you enjoy moving

your body while learning?” usability question revealed four major codes to report

on: embodied interaction enjoyment, embodied interaction improvement, embodied

cognition enjoyment, and cyber sickness (see Figure 5.10). Total code count for
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Figure 5.9 ”Enjoy moving your body” question differences between conditions.

both treatments was 43, with 22 total code count for treatment group and 21 total

code count for control group. Enjoyment of embodied interactions covered topics

of participants responding positively about the body kinematics involved with the

computer interactions. Improvement suggestions or negative feelings of embodied

interactions covered topics of participants responding negatively and/or offering

improvement suggestions about the body kinematics involved with the computer

interactions. Enjoyment of embodied cognition covered topics of participants

responding positively about the body kinematics involved with learning the subject

matter. Feelings of motion sickness covered topics of nausea, stomach pain, head

pain, light headiness, and psychological uneasiness with feeling a difference between

what the body parts are doing and what the mind thinks the body parts are doing.

Treatment group participants reported enjoyment or positive feelings toward

the embodied interaction experiences of the virtual learning environment eight times,

which is 36.4% of the total reported counted codes for their treatment. Control
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Figure 5.10 ”Enjoy moving your body” codification differences per condition.

group treatment participants reported enjoyment or positive feelings toward the

embodied interaction experiences of the virtual learning environment eight times,

which is 36.4% of the total reported counted codes for their treatment. Treatment

group participants expressed positive statements about being about to physically

achieve a goal, interacting with a clean UI, appreciated not sitting still, wanted more

body movements incorporated into the experience, enjoyed moving their body, and

enjoyed experiencing a new type of interaction experience. Control group participants

expressed positive statements about interesting experiences with their first time in

VR, moving their hands in VR is impressive and realistic, enjoyed moving through

the environment, and enjoyed standing better than sitting.

Treatment group participants reported improvement suggestions or negative

feelings toward the embodied interaction experiences of the virtual learning environment
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seven times, which is 31.8% of the total reported counted codes for their treatment.

Control group participants reported improvement suggestions or negative feelings

toward the embodied interaction experiences of the virtual learning environment

eight times, which is 36.4% of the total reported counted codes for their treatment.

Improvement suggestions or negative feelings of embodied interactions covered topics

of participants responding negatively and/or offering improvement suggestions about

the body kinematics involved with the computer interactions. Treatment group

participants expressed negative statements and/or improvements about walking

becoming cumbersome as the list got larger, it can become annoying to walk all

the way back to the beginning of the list, it was getting tiring toward the end of

the experience, it would be a good feature to allow a fast forwarding movement

through the list, and that the walking through the list can be slower than what

the participant wants to mentally move through the list. Control group participants

expressed negative statements and/or improvements about that they would like to

walk around the list, that they would want to sit me down instead of stand, whole

body movements would be more immersive, wanted to use their legs in the interaction.

Treatment group participants reported enjoyment or positive feelings toward the

embodied cognitive experiences of the virtual learning environment seven times, which

is 31.8% of the total reported counted codes for their treatment. Control treatment

participants reported enjoyment or positive feelings toward the embodied cognitive

experiences of the virtual learning environment one time, which is 4.5% of the

total reported counted codes for their treatment. Enjoyment of embodied cognition

covers topics of participants responding positively about the body kinematics involved

with learning the subject matter. Treatment group participants expressed positive

statements about being more of a physical person, needing to walk and talk through

a lesson, that they learn by doing, walking allows them to understand the concept

quickly, enjoying the ability to stretch, increased comprehension of iteration and
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computer processes, and gave them more of an accomplishment. Control group

participants expressed positive statements about moving their body makes it easier

to understand the content.

Treatment group participants reported feelings of cyber sickness by the virtual

learning environment zero times, which is 0.0% of the total reported counted codes for

their treatment. Control group participants reported feelings of cyber sickness by the

virtual learning environment four times, which is 18.2% of the total reported counted

codes for their treatment. Feelings of cyber sickness covers topics of nausea, stomach

pain, head pain, light headiness, and psychological uneasiness with feeling a difference

between what the body parts are doing and what the mind thinks the body parts

are doing. Treatment group participants did not express cyber sickness comments.

Control group participants expressed being nauseous, having cyber sickness, feeling

disconnected from body movement to their mental models, and that their brain felt

like things were not cooperating right.

5.5 Discussion

5.5.1 Interpretation of Learning Assessment

The control and treatment group participants showed no measurable difference

between their pre-assessment learning scores, implying that they started the experiment

with the same level of knowledge on the “bubble sort” algorithm. Both groups had

a median score close to one on their pre-assessment learning score, which indicated

low pre-existing knowledge, since the assessment is four questions long. After the

treatments, the participants from both groups showed statistically higher post-

assessment learning scores compared to their pre-assessment learning scores. This

suggests that both treatments were effective virtual learning environments. However,

there was a statistically significant difference between the groups’ post-assessment
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learning scores, meaning that the treatment group participants learned the “bubble

sort” algorithm better than the control group participants.

The results of the learning assessments showed that the participants from both

groups learned the “bubble sort” algorithm through the virtual learning environment

and that the treatment group learned better than the control group. This suggests

that the virtual learning environment could be used as alternative teaching tools in

CS education, supplementing traditional teaching methods and possibly enabling new

learning methods for students in the classroom and at home. The results also suggest

that the more natural that an environmental traversal interaction is, i.e., a stronger

kinematic symmetry, the learner will have better comprehension of the material.

There were no statistical differences in the retention of the knowledge between the

two environmental traversal interactions.

5.5.2 Interpretation of Task Time Assessment

Participants in both groups had similar total session times of completing the six

learning tasks in the virtual learning environment. Of the six tasks, the treatment

group had a statistically faster task time for tasks 1 and 2 compared to the control

group. Although the treatment group had a mean over a minute faster for the total

session time over a minute compared to the control group, the only statistically faster

task times for the treatment group was in the first two tasks.

This was possibly due to fact that the lists in the earlier tasks were shorter

creating less distance to travel and giving an advantage to the treatment group that

diminished as the later lists got longer creating larger distances to travel. Although

the last task, which had the largest distance to travel, still showed the treatment

group performing the task faster than the control group. There may be a distance

where the control group does start to outperform the natural walking group, but
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within the current limitations of standalone VR headsets and normal room sizes, the

natural walking treatment did show a faster task time completion time.

5.5.3 Interpretation of Usability Assessment

Data analysis of the simulator sickness survey and the attention, presence, and

spatial awareness sections of the usability survey did not reveal any interesting

trends. Overall, both groups reported low scores on a seven point Likert-type

scale for simulator sickness, and high scores for all sections of the usability

survey. One question within the usability section of the usability survey showed

a statistical difference between the groups, which happened to ask about movement

enjoyment. The treatment group statistically enjoyed the amount of body movement

and kinematic symmetry available to them while learning with this environmental

traversal interaction. Analysis of the open-ended responses revealed four major codes

to report on: embodied interaction enjoyment, embodied interaction improvement,

embodied cognition enjoyment, and cyber sickness (see Figure 5.10).

Treatment group participants reported enjoyment or positive feelings toward

the embodied interaction experiences of the virtual learning environment at the

same level to the control group participants. Treatment group participants reported

improvement suggestions or negative feelings toward the embodied interaction

experiences of the virtual learning environment at near same level, to the control group

participants. Treatment group participants reported enjoyment or positive feelings

toward the embodied cognitive experiences of the virtual learning environment at a

much higher level to the control group participants. This is a large difference in the

enjoyment towards the embodied cognitive experience and shows that the treatment

group participants had strong positive emotions toward embodied learning and this

is reflected in their statistical difference in reporting high levels of “How much did

you enjoy moving your body while learning”.
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Treatment group participants reported feelings of cyber sickness by the virtual

learning environment at a much lower level to the control group participants.

Interesting, the simulator sickness survey did not show the level of cyber sickness

reported from the control group participants. It could be that the simulator sickness

was the last survey given and the participants were tired at that point, which is why

most answers on the simulator sickness survey were reported at the one point of the

seven-point Likert-type scale. In either case, the control group reported a modest

level of cyber sickness symptoms that contributed to their statistical difference in

reporting low levels of “How much did you enjoy moving your body while learning”.

5.5.4 Study Limitations

Experimental bias existed and could not be reduced from the influence that all

participants were already registered as undergraduate computing students at a

technical higher educational institution. Both conditions taught the participants to

“bubble sort” lists up to eight elements and learning assessments tested “bubble sort”

algorithm up to six elements. Further training sessions and assessments may need

lists with more elements to verify educational efficacy of both conditions.

5.6 Conclusion

This chapter explored the effect of varying the kinematic style of traversal within

an immersive virtual learning environment on user performance. The two kinematic

styles of traversal that were compared are natural walking and hand controller-based

walking. The traversal methods and their effects were explored on undergraduate

CS students learning a fundamental CS sorting algorithm called “bubble sort”,

which is an important computational skill for CS learners. User testing confirmed

that the treatment group that learned to “bubble sort” a list using the natural

walking kinematic style of environmental traversal showed statistical improvements
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in learning, usability, and task time compared to the control group that used the

hand-controller kinematic style of environment traversal.

This showed that the kinematic style of environmental traversal should be

taken into consideration as alternative teaching tools in STEM education when

designing AR/VR educational experiences. Students that find educational topics

within the STEM fields difficult to learn, may find alternative teaching methods

useful to maximize their performance and comprehension. When designing AR/VR

educational tools, having the user move through and interact with the virtual

environment may help learners engage with difficult to learn STEM concepts, and

attract a more diverse population to the STEM fields.
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CHAPTER 6

CONCLUSION

6.1 Summary of Key Findings

The emerging technologies of AR/VR may have vast implications to societal

communication and representation of information. AR/VR computer interfaces

are unique in that they may be placed spatially in 3D around the user. This

affords new methods of presenting information to the user and user interactions with

that information. As demonstrated, these spatial interactions of AR/VR computer

interfaces may enhance the efficacy of virtual learning environments beyond what is

currently possible with monitor-based computer interfaces.

This may be especially impactful in the education of STEM professionals. Prior

research has shown that simulations and visualizations improve the performance and

engagement of STEM learners compared to live instruction and textbook reading. To

build upon this research, this dissertation examines how user traversal across spatial

AR/VR computer interfaces impacts their learning performance. The goal is to help

understand the benefits of AR/VR computer interfaces for the education of STEM

professionals. For educational technology research, it is important to build off prior

research in both the learning science and HCI fields.

Examining AR/VR’s impact on STEM education through the fields of learning

science, and HCI allow for unique understanding of how these emerging technologies

will impact our knowledge-based society. Identifying STEM educational use cases

of AR/VR may help scope research efforts, and improve technology efficacy, since

there is a a lack of research into AR/VR as a learning environment for widespread

educational applications [13]. To address this research gap, this dissertation
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examined a fundamental AR/VR interface capability, the ability to traverse a virtual

environment, and its impact on learning.

The first study of the dissertation compared the performance of STEM learners

within a physical and a virtual learning environment, both with no traversal abilities.

Learners in the physical environment were seated during their learning experience.

Learners in the virtual environment had their entire AR/VR interface within reaching

distance of their seated position. Evidence from this study suggests that instructional

delivery in a virtual environment with no traversal of the spatial AR/VR interface

offers comparable learning efficacy to the traditional physical environment.

The second study of the dissertation compared the performance of STEM

learners seated in a physical environment against STEM learners in a virtual

environment that required them to traverse the spatial AR/VR interface. Evidence

from this study suggests that instructional delivery in a virtual environment with

required traversal of the AR/VR interface offers comparable learning experiences to

the physical equivalent. Additionally, the evidence suggests that AR/VR interfaces

with environmental traversal interactions can offer high user engagement as an

effective supplement to traditional physical learning environments.

The final study of the dissertation compared the performance of STEM learners

using the same virtual learning environment, but alters the environmental traversal

ability between the two groups. It compared the efficacy of a natural walking traversal

method to a hand controller-based traversal method on learning performance of

the subjects. Evidence from this study suggests that the more embodied traversal

interaction of natural walking offers better learning, retention, usability, and task

time performance to its users.

The first and second studies of the dissertation showed that AR/VR computer

interfaces, both with and without user traversal ability, offer capable learning efficacy

to their physical environmental equivalents and can offer higher engagement, increased
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learning metrics, and enable alternative learning methods. Once it was shown

that AR/VR computer interfaces, both with and without user traversal, can have

comparable efficacy to traditional learning methods, the third study looked at how

altering the user traversal ability on the same AR/VR computer interfaces impacted

its learning efficacy. It was shown that the more embodied traversal of natural walking

across a spatial AR/VR interface may have strong impact on the technology’s learning

efficacy. This dissertation offers evidence that AR/VR technologies, with and without

user traversal, are suitable STEM learning environments. Additionally, providing

higher levels of traversal capabilities may increase learning performance.

6.2 Contribution of Work

• Identified new connections involving embodiment theories in literature between
learning and HCI science.

• Designed new interaction techniques based on embodiment theories for virtual
learning environments [78].

• Developed and released new LC curriculum for virtual learning environments [79].

• Developed and released new CS educational software for VR systems [81].

• Identified novel benefits for socialization within virtual learning environments [80].

• Identified novel benefits for interaction techniques for learner performance
within virtual learning environments [82].

• Identified novel benefits of virtual learning environments to secondary and
collegiate STEM students. [70].

The contribution of this body of work to the fields of learning science and

glshci involved novel benefits to users of virtual learning environments along with

novel study methodologies and literature review. Novel benefits of virtual learning

environments included reduced barriers to successful socialization. The virtual

treatment participants from the first study reported that VR can address the anxiety

of freshman relating to their new college environment full of strangers that may carry
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risk of public humiliation. The participants indicated that socializing in VR helped

remove the fear from public interactions with unknown fellow students.

We identified new connections involving embodiment theories in literature

between learning and HCI science. New theories in learning science involve ideas

of embodied cognition, while HCI studies are starting to explore ideas of embodied

interaction. This guided our design efforts of new interaction techniques based on

embodiment theories for virtual learning environments. The software used in the

second and third study had the user interactions centered the learning of binary

counting and “bubble sort” algorithm around user movement of their arms and legs.

The overall impression received from observing the participants in the second study

was that CSpresso, even in its preliminary state, was engaging and fun. Students

made full use of the Quest’s untethered feature, breaking out into victory dances

and freely moving about in their 20 by 20 foot space (see Figures in Appendix H

and I). The third study recorded stronger evidence for the efficacy of the embodied

interactions by indicating statistical differences in the participants learning, and time

to complete tasks between the partial traversal of hand controller walking and full

traversal of natural walking.

6.3 Future Direction

For future studies based on the virtual collaboration study, see Chapter 3, the

research would focus on combining collaboration research with learning science

research, particularly for undergraduate computer science education where group-

based problem solving and communication skills are essential for students upon

entering the job market.

For future studies based on the binary counting study, see Chapter 4, the

research would look at the student’s recall of the lesson learned over a period of

time. It is believed this is where a significant difference between a standard lesson
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and hands-on VR technology will be seen. The second level of CSpresso has already

been designed, which teaches bubble sort, a CS sorting algorithm. An AR alternative

teaching tool has also been developed for the binary counting concept that works

with a textbook supplemental section designed to work with the AR educational

experience. The researchers would like to test both educational experiences on

the same student demographic, and are currently testing the VR binary counting

activity with different virtual environment features to see the effects on undergraduate

students.

For future studies based on the bubble sort study, see Chapter 5, the study

methodology would be revised to administer the retention assessments in a lab setting

as opposed to a remote setting to verify reasons for retention assessments showing

little to no loss of knowledge compared to the post assessment, which would be

expected. In order to get a richer analysis of the learning processes per condition, the

researchers proposed recording the participants steps in all learning assessments to

analyze another level of detail, including the time to complete assessments, and the

error rate of the algorithm steps.

6.4 Final Remarks

In summary, this dissertation presented several examples of AR/VR educational

technology studies involving learners from primary and undergraduate STEM education.

Each study found interesting learning and usability considerations while examining

different STEM topics with different kinematic symmetries of environmental traversal.

This led to a final identification of the learning and usability impacts of the kinematic

symmetry of environmental traversal for one STEM learning task. Further studies

will need to investigate a higher fidelity of kinematic symmetries of environmental

traversal and across a larger spectrum of learning topics to generalize the knowledge
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gained in this dissertation to the broader applications of AR/VR to the HCI and

educational technology fields.
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APPENDIX A

ACADEMIC ASSESSMENT

In this appendix, you will find a description of the common core exam academic

metric assessment used in the collaboration training study of chapter three.

Figure A.1 Common core exam academic assessment.
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APPENDIX B

SOCIAL ASSESSMENT

In this appendix, you will find a description of the weekly social metric assessment

used in the collaboration training study of chapter three.

Figure B.1 Weekly social metric assessment.
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APPENDIX C

BINARY COUNTING LEARNING ASSESSMENT

In this appendix, you will find a description of the learning assessment used in the

binary counting study of chapter four. It was used as a pre and post assessment.

Figure C.1 Binary counting learning assessment.
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APPENDIX D

DEMOGRAPHIC ASSESSMENT

In this appendix, you will find a description of the demographic assessment used in

the bubble sort study of chapter five. It was used as a pre assessment.

Figure D.1 Demographic assessment.
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APPENDIX E

BUBBLE SORT LEARNING ASSESSMENT

In this appendix, you will find a description of the learning assessment used in the

bubble sort study of chapter five. It was used as a pre, post, and retention assessment.

Figure E.1 Bubble sort learning assessment.
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APPENDIX F

SIMULATOR SICKNESS ASSESSMENT

In this appendix, you will find a description of the simulator sickness assessment used

in the bubble sort study of chapter five. It was used as a post assessment.

Figure F.1 Simulator sickness assessment.
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APPENDIX G

USABILITY ASSESSMENT

In this appendix, you will find a description of the usability assessment used in the

bubble sort study of chapter five. It was used as a post assessment.

Figure G.1 Usability assessment.
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APPENDIX H

SOFTWARE DESIGN - MAKING OF CSPRESSO

In this appendix, you will the first of two books explaining the design of the software

used in the binary counting study in chapter four. The basis of that software design

was also used to build the software used in the bubble sort study in chapter five.

The software design description excerpts are from “Making of” books that were

presented at the Oculus Connect 6 Conference on September 25-26, 2019 at the San

Jose McEnery Convention Center in San Jose, California USA.

Figure H.1 Making of CSpresso cover page.
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Figure H.2 Making of CSpresso pages 1-6.
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Figure H.3 Making of CSpresso pages 7-12.
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Figure H.4 Making of CSpresso pages 13-18.
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Figure H.5 Making of CSpresso pages 19-24.
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Figure H.6 Making of CSpresso pages 25-30.
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Figure H.7 Making of CSpresso pages 31-36.
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Figure H.8 Making of CSpresso pages 37-42.
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Figure H.9 Making of CSpresso pages 43-50.
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Figure H.10 Making of CSpresso pages 51-56.
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Figure H.11 Making of CSpresso pages 57-62.

123



Figure H.12 Making of CSpresso pages 63-68.
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Figure H.13 Making of CSpresso back cover page.
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APPENDIX I

SOFTWARE DESIGN - APP DESIGN BOOK OF CSPRESSO

In this appendix, you will the second of two books explaining the design of the

software used in the binary counting study in chapter four. The basis of that software

design was also used to build the software used in the bubble sort study in chapter

five. The software design description excerpts are from “Making of” books that were

presented at the Oculus Connect 6 Conference on September 25-26, 2019 at the San

Jose McEnery Convention Center in San Jose, California USA.

Figure I.1 App design book of CSpresso cover page.
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Figure I.2 App design book of CSpresso pages 1-6.
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Figure I.3 App design book of CSpresso pages 7-12.
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Figure I.4 App design book of CSpresso pages 13-18.
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Figure I.5 App design book of CSpresso pages 19-24.
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Figure I.6 App design book of CSpresso pages 25-30.
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Figure I.7 App design book of CSpresso pages 31-36.
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Figure I.8 App design book of CSpresso pages 37-42.
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Figure I.9 App design book of CSpresso pages 43-48.
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Figure I.10 App design book of CSpresso pages 49-54.
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Figure I.11 App design book of CSpresso pages 55-59.
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Vladimir Petrović, and Kosta Jovanović. Virtual laboratories for education
in science, technology, and engineering: A review. Computers and Education,
95:309–327, 2016.

[94] Gjalt Prins, Astrid Bulte, and Albert Pilot. An activity-based instructional framework
for transforming authentic modeling practices into meaningful contexts for
learning in science education. Science Education, 100(6):1092–1123, 2016.

[95] Meihua Qian and Karen Clark. Game-based learning and 21st century skills: A review
of recent research. Computers in Human Behavior, 63:50–58, 2016.

[96] ProProfs Quizzes. Bubble sort algorithm questions. https://www.proprofs.com/quiz-
school/story.php?title=bubble-sort-quiz, accessed on 3/6/2021, published 2020.

[97] Eric Ragan, Doug Bowman, and Karl Huber. Supporting cognitive processing with
spatial information presentations in virtual environments. Virtual Reality,
16(4):301–314, 2012.

[98] Norman Reid and Iqbal Shah. The role of laboratory work in university chemistry.
Educational Research and Practice, 8(2):172–185, 2007.

[99] Rebecca Reuter, Magdalena Beslmeisl, and Jurgen Mottok. Work in progress:
Teaching-obstacles in higher software engineering education. In 2017 IEEE
Global Engineering Education Conference (EDUCON), pages 25–28. IEEE,
2017.

[100] Nico Rutten, Wouter R Van Joolingen, and Jan T Van Der Veen. The learning effects
of computer simulations in science education. Computers and Education,
58(1):136–153, 2012.

[101] Jain Sandeep, Goel Shikhar, Dharmesh Singh, and Shubham Baranwal. Geeks for
geeks: Bubble sort quiz. https://www.geeksforgeeks.org/quiz-bubblesort-gq/,
accessed on 3/6/2021, published 2020.

[102] Keith Sawyer. Introduction: The new science of learning. Cambridge, Cambridge,
United Kingdom, 2006.

[103] Dugwon Seo and Michael Lawrence. Workshop to increase women’s enrollment in
technology discipline at the community college. In 2019 IEEE Integrated
STEM Education Conference (ISEC), pages 160–162. IEEE, 2019.

144



[104] Amber Settle, James Doyle, and Theresa Steinbach. Participating in a computer
science linked-courses learning community reduces isolation. arXiv preprint
arXiv:1704.07898, 2017.

[105] Amber Settle and Theresa Steinbach. Retention rates for the first three years of
a linked-courses learning community. In 19th Annual SIG Conference on
Information Technology Education, pages 166–171, 2018.

[106] Mirit Shamir, Mark Kocherovsky, and ChanJin Chung. A paradigm for teaching math
and computer science concepts in k-12 learning environment by integrating
coding, animation, dance, music and art. In 2019 IEEE Integrated STEM
Education Conference (ISEC), pages 62–68. IEEE, 2019.

[107] Ruiqi Shen, Donghee Yvette Wohn, and Michael Lee. Comparison of learning
programming between interactive computer tutors and human teachers. In
ACM Conference on Global Computing Education, pages 2–8, 2019.

[108] Hajime Shibata, Harumi Kasiwagi, Yasunori Motomura, and Kazuhiro Ohtsuki. A
learning model of computer science education for liberal arts students. In 2012
IEEE Frontiers in Education Conference, volume 2, pages 1–7. IEEE, 2012.

[109] Jesper Sjostrom and Vicente Talanquer. Humanizing chemistry education: From
simple contextualization to multifaceted problematization. Journal of
Chemical Education, 2014.

[110] Kurt Squire. Video games in education. International Journal of Intelligent Games
and Simulation, 2(1):49–62, 2003.

[111] Nicholas Yee Kwang Tee, Hong Seng Gan, Jonathan Li, Brandon Huey-Ping
Cheong, Han Yen Tan, Oi Wah Liew, and Tuck Wah Ng. Developing and
demonstrating an augmented reality colorimetric titration tool. Journal of
Chemical Education, 2018.

[112] Vincent Tinto. Learning better together. Transitioning Students in Higher Education:
Philosophy, Pedagogy and Practice, page 2, 2019.

[113] Tommaso Turchi, Daniela Fogli, and Alessio Malizia. Fostering computational
thinking through collaborative game-based learning. Multimed. Tools Appl.,
78(10):13649–13673, May 2019.

[114] Sehat Ullah, Numan Ali, and Sami Ur Rahman. The effect of procedural guidance
on students’ skill enhancement in a virtual chemistry laboratory. Journal of
Chemical Education, 2016.
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