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ABSTRACT 

DEVELOPMENT OF DEEP LEARNING NEURAL NETWORK FOR ECOLOGY 

DATA AND MEDICAL IMAGE 

 

by 

Shaobo Liu 

Deep learning in computer vision and image processing has attracted attentions from 

various fields including ecology and medical image. Ecologists are interested in finding an 

effective model structure to classify different species. Tradition deep learning model use a 

convolutional neural network, such as LeNet, AlexNet, VGG models, residual neural 

network, and inception models, are first used on classifying bee wing and butterfly datasets. 

However, insufficient data sample and unbalanced samples in each class have caused a 

poor accuracy. To make improvement the test accuracy, data augmentation and transfer 

learning are applied. Recently developed deep learning framework based on mathematical 

morphology also shows its effective in shape representation, contour detection and image 

smoothing.  The experimental results in the morphological neural network shows this type 

of deep learning model is also effective in ecology datasets and medical dataset. Compared 

with CNN, the MNN could achieve a similar or better result in the following datasets.   

 The chest X-ray images are notoriously difficult to analyze for the radiologists due 

to their noisy nature. The existing models based on convolutional neural networks contain 

a giant number of parameters and thus require multi-advanced GPUs to deploy. In this 

research, the morphological neural networks are developed to classify chest X-ray images, 

including the Pneumonia Dataset and the COVID-19 Dataset. A novel structure, which can 

self-learn a morphological dilation or erosion, is proposed for determining the most suitable 

depth of the adaptive layer. Experimental results on the chest X-ray dataset and the 



COVID-19 dataset show that the proposed model achieves the highest classification rate 

as comparing against the existing models. More significant improvement is that the 

proposed model reduces around 97% computational parameters of the existing models. 

 Automatic identification of pneumonia on medical images has attracted intensive 

studies recently. The model for detecting pneumonia requires both a precise classification 

model and a localization model. A joint-task joint learning model with shared parameters 

is proposed to combine the classification model and segmentation model. To accurately 

classify and localize pneumonia area. Experimental results using the massive dataset of 

Radiology Society of North America have confirmed the efficiency of showing a test mean 

interception over union (IoU) of 89.27% and a mean precision of area detection result of 

58.45% in segmentation model. Then, two new models are proposed to improve the 

performance of the original joint-task learning model. Two new modules are developed to 

improve both classification and segmentation accuracies in the first model. These modules 

including an image preprocessing module and an attention module.  In the second model, 

a novel design is used to combine both convolutional layers and morphological layers with 

an attention mechanism. Experimental results performed on the massive dataset of the 

Radiology Society of North America have confirmed its superiority over other existing 

methods. The classification test accuracy is improved from 0.89 to 0.95, and the 

segmentation model achieves an improved mean precision result from 0.58 to 0.78. Finally, 

two weakly-supervised learning methods: class-saliency map and grad-cam, are used to 

highlight corresponding pixels or areas which have significant influence on the 

classification model, such that the refined segmentation can focus on the correct areas with 

high confidence.  
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1 

CHAPTER 1 

INTRODUCTION 

 

 

1.1 Objective 

 

The objective of this dissertation is to present applications of deep learning models for 

small datasets such as ecology datasets and medical datasets. First, traditional 

convolutional neural network, the Convolutional Neural Network, is applied to the 

ecology dataset, such as the bee wing dataset and the butterfly dataset. Since the 

capacity of the original dataset is a relatively small dataset, several measures are used 

to improve the CNN models’ performance, such as data augmentation and transfer 

learning methods.  

Second, a new deep learning model use a novel feature extraction mechanism, 

the morphology neural network, is applied to the ecological dataset and the medical 

images, such as chest X-ray images and Covid-19 dataset. The experimental results 

shows MNN can extract the features with relatively less parameters then the CNN 

models and achieves a relatively higher classification rate.  

However, the drawbacks for MNN are also shown in experiments. For image like 

dogs and cats, which shares similar features, MNN will show a relatively lower 

classification accuracy.  

To overcome the drawback for MNN models, a new model is proposed and 

presented. It overcomes previous difficulties and also reduced the model’s parameters 

tremendously. Finally, a joint task learning model use the proposed structure and 

applied to medical images. 

 



 

 

 

 

2 

1.2 Background Information 

 

Deep learning has recently received lots of attentions in various fields of pattern 

recognition.  Deep learning, also called deep structured learning, is a broader kind of 

machine learning methods based on a large amount of data. Different from traditional 

machine learning methods, deep learning does not require domain experts’ help in 

building feature extractors. As a part of machine learning, deep learning can be 

categorized into supervised or unsupervised learning. Deep learning can be applied for 

various tasks with different types of data. For example, one can apply the 

Convolutional Neural Network (CNN) for image classification or the Recursive Neural 

Network (RNN) for language processing. In computer vision, CNN is an effective 

framework to recognize and classify multiple targets due to an auto feature extraction 

ability. Thanks to the expansional growth of computation ability, different structures 

of convolutional neural networks are developed, especially for image classification and 

objective detection.  

The CNN models are designed to process multi-arrays, especially for image 

data or video. Although they were proposed by Yann LeCun in 1995 [1], the limitations 

of computing capacity and incomplete mathematical proof made deep learning difficult 

to be accepted by researchers. With the recent development of computing capacity, 

deep learning has much more great performance than the traditional machine learning 

methods on object classification, object detection, natural language processing, etc.  

In 2012, Alex Krizhevsky developed AlexNet [2] based on LeNet proposed by 

Yann LeCun. The AlexNet has a complex structure; although there are only eight 

layers, it has millions of parameters in the whole model. It won the champion of 
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ImageNet competition in 2012, with the result of 15.4% test error. The network is made 

up of five convolution layers, including max-pooling layer, dropout layer, and three 

fully connected layers. In 2014, Google company, proposed a large CNN network, 

called GoogleNet [3], which has 22 layers and achieves the error rate of 6.7% on 

ImageNet competition. Its success proves that much deeper network and more 

convolution layers will have much better performance. Another network developed in 

2014 is the VGG network [4], which has 19 layers. The VGG network keeps the 

network deep enough, and in the meantime, it keeps the network simple. In 2015, 

ResNet [5] proposed by Microsoft Research Asian achieved an incredible error rate of 

3.6% on ImageNet competition. ResNet uses a residual block to avoid the problem of 

degradation: gradient disappearance in the back propagation. However, it takes two to 

three weeks to finish training on an 8-GPU machine. The CNN network has been 

applied by researchers in many fields, such as video classification [7] and NLP [8], to 

develop new deep learning networks such as AlphaGo [9] and Generative Adversarial 

Network [10].  

There has seldom research on the combination of deep learning and ecology. 

Previously, the classification of ecological image data was applied by traditional 

machine learning methods, including random forest, artificial neural networks, support 

vector machines, and genetic algorithms [11-17]. Specifically, for recognizing bee 

wings, researchers have tried various methods machine learning methods including 

support vector machines, Naïve Bayes [18], k-nearest neighbors [19] and logistic 

classifier [20]. These methods are relatively effective experts before the popularity of 

CNN, but mainly focusing on extract features by domain experts.   However, currently 
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biologists especially ecologists are showing their interests in building an efficient 

species recognition system by using deep learning neural networks, given the reason 

that convolutional neural networks’ automatic feature extraction outstanding 

performance.   

Schneider et al. [21] used RNN to classify different types of animals from trap 

camera data. Their result shows the test accuracy reaches 93%, which delivers that 

deep learning methods have a promising future in the ecological research. Different 

from the following tasks, this one is to recognize different species from limited and 

unbalanced datasets. These datasets include 19 classes of wings belonging to bees in 

New Jersey, 10 classes different butterflies from all over the world. In ecology, species 

are various, and one specie usually has different kinds of subspecies. This task requires 

a robust classification model to identify spice’s class from given image data. 

Concerning the great progress having made by the Convolutional Neural Network 

model, especially the backpropagation applied in the training phase, CNN should be 

suitable for the classification task. Although given the fact that some of the samples 

are really hard to be distinguished by human’s vision system.  

One problem faced in training CNN models in our ecology datasets is the 

limitation in amount and highly imbalanced dataset. For example, in the dataset of bee-

wings images data differs from osmiageorgica. With 9 images to bombusimpatiens 

with 132 images. In order to solve this problem, two methods are proposed to increase 

its performance. The first solution is data augmentation, which focus on enlarge the 

dataset based on current dataset and perform image processing operations such as 

rotation, skewing and shearing. The result for our data augmentation is the that the 
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training dataset are enraged to a balanced dataset and an improvement in overall 

accuracy and single class accuracy. The second solution is by transfer learning [22]. 

This technique utilizes the parameters of a well-trained CNN model and performed to 

ecology classification task. Several pre-trained models which already been trained on 

large dataset are applied in ecology dataset and improve the model performance.  

In AlexNet [2], VGG models [4] and residual model [5], a fixed kernel size is 

used in convolution layer. In GoogleNet [3], a novel convolution block consists 4 

different feature maps is termed as Inception modules. With this enriched feature maps, 

GoogleNet (or Inception v1, follow by Inception v2 [31], Inception v3 [23], Inception 

v4 [32]) won the ILSVRC (ImageNet Large Scale Visual Recognition Competition) at 

2014. The high performance for inception modules attracts more and more attentions 

in this area. 

Mathematical morphology has been used in effectively extracting object 

features, such as shapes, regions, edges, skeleton, and convex hull, which can improve 

the object representation and description [33, 34]. Similar to a mask used in the 

convolution operation, mathematical morphology needs a structure element to perform 

the operation on the image. Two essential operations are dilation and erosion, and other 

operations are different combinations. Dilation tends to enlarge objects, while erosion 

tends to shrink it. Another application for mathematical morphology is image pre-

processing like morphological filtering [35].  

Shih and Moh [36] proposed to implement morphological operations using 

programmable neural networks. Davidson and Hummer  [37] presented morphological 

neural networks (MNN) with applications. Masci et al. [38] proposed a method using 
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counter harmonic mean for dilation and erosion in the deep learning framework. Shih 

et al. [39] proposed a morphological deep learning framework using smooth local 

minimum and local maximum to simulate erosion and dilation, respectively. 

Radiologists use chest X-ray images to diagnose diseases in the lung area. 

However, these images are noisy and hard to analyze the diseases, such as bacteria 

pneumonia, virus pneumonia or healthy. Moreover, we apply our model to recognize 

possible samples of the recent COVID-19 pandemic cases. We use different 

morphological layers, including dilation, erosion, opening, closing, etc., combined 

with convolutional neural networks. It can help convolutional neural networks to refine 

the feature extraction process. Furthermore, we develop adaptive morphological layers 

for feature extraction, which can determine a suitable morphological operation and 

structure elements in the training process.  

In the past few years, pneumonia has ranked as a top-ten cause of death in the 

United States of America.  An effective automatic pneumonia identification system on 

medical images will help doctors to find and localize the pneumonia area. The 

requirements for this system are twofold. First, this system should be effective in 

classifying the pneumonia body from thousands of health bodies. Then this system 

should be able to localize the pneumonia area with a mask.  

In this research, a joint-task learning model is designed for image classification 

and image segmentation with shared feature extraction blocks is firstly be presented. 

The dataset is highly unbalancing, with 8,900 patience and 20,000 healthy body. In 

this paper, we first propose a baseline model that learns image classification and 

segmentation simultaneously. Two algorithms of saliency map and Grad-CAM for 
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image classification model explanation are adopted. Secondly, an image preprocessing 

module and an attention module are applied to refine the baseline model. Experimental 

results show these modules can separately improve the performance of the joint-task 

learning model. However, when the following modules are combined, the unguided 

MNN layers change the gradient and cause the saliency map and Grad-CAM focusing 

on irreverent area. To overcome the problem, the attention module is applied to refine 

the feature maps between morphological layers in both channel-wise and spatial 

attention modules. The MBAM successfully helps the model to focus on the 

corresponding area with higher confidence. Furthermore, by combining the CNN 

layers and morphological layers in the same feature extraction layer, a new designed 

model is further proposed and achieved a higher performance.  
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CHAPTER 2 

CLASSIFICATION OF ECOLOGICAL DATA USING DEEP LEARNING 

METHODS 

 

2.1 Convolution Neural Networks 

 

Deep learning [40], as a part of machine learning, requires a large amount data to train 

and evaluate its performance. In computer vision, convolutional neural network is first 

proposed by Yann LeCun [1] and has been populated since 2011 when AlexNet [2], 

the first deep neural network, is used to process a large amount of data classification 

problem and surprised the world by winning the champion of 2012 ImageNet 

Challenge. This community keeps growing till now. Before understanding the reasons 

that why the convolution neural network grows so fast, it is essential to understand 

how this model works. Since CNN models are based on a similar structure proposed 

by Dr. Yann LeCun and LeNet-5 is the first convolution neural network using this 

design, a detailed study on this structure is necessary. 

Figure. 2.1 shows the structure of LeNet-5, which is first used for the 

classification of hand written digits. LeNet-5 is composed by several layers with 

different function. Similar to other machine learning models applied on image data, 

LeNet-5 needs a feature representation method to compress one (grayscale image) or 

three (RGB image) 2D matrices in to a kind of feature representation.  
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Figure 2.1 Structure of LeNet-5. 

In LeCun’s design, LeNet-5 contains an input layer which is used to read 

training or testing images. It is followed by a convolution layer used to extract features 

and a pooling layer used for reducing unnecessary data. After a second connection of 

convolutional layer with pooling layer, the feature representations are feed to a fully-

connected artificial neural networks for classification.  

In the convolutional layer, the input is one or several images with one or three 

channels, which could be grayscale or RGB images. In general, we perform 

convolution several times with different filters, so there are several output images, 

called feature maps. The convolutional layers extract different local features with 

different filters, making the whole network to learn all the main features in the input 

images. The convolutional layer followed by an activate function is described as: 

 

                                      ℎ𝑘 = 𝑓(∑ 𝑥𝑙 ⊗ 𝑤𝑘 + 𝑏𝑘)𝑙𝜖𝐿                                   (1.1)     

 

                                          

where ℎ𝑘 is the latent representation of 𝑘-th feature map of the current layer, 𝑓 

is the activation function, 𝑥𝑙 is the 𝑙-th feature map of group of feature maps 𝐿 of the 
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previous layers or the 𝑙-th channel of the input images with totally 𝐿 channels in the 

case of the first layer of the network, ⊗ denotes the 2D convolution operation, and 𝑤𝑘 

and 𝑏𝑘 denote the weights (filters) and biases of the 𝑘-th feature map of the current 

layer respectively. A nonlinear function called ReLU (Rectified Linear Unit) works as 

the activation function f, which can be written as f(x) = max (0, x).  This function will 

stay 0 when x is less than 0 but return to be x for any positive input. ReLU works well 

for neural network models because it allows the models to compute non-linearities and 

interaction, which makes ReLU a commonly used activation function. 

Let a SoftMax function be defined as:  

 

                                    𝑝𝑖 =
𝑟𝑧𝑖

∑ 𝑒𝑧𝑘𝐾
𝑘=1

, 𝑖 = 1, 2, 3, … , 𝐾                                         (1.2) 

 

where 𝑧𝑖  is an element of the input tensor. With SoftMax function, an N-

dimensional vector of real numbers can be transfered into a vector of real numbers in 

range (0,1). The loss function is the cross-entropy , which is a widely-used alternative 

of squared error and defined as  

 

                                             𝐻(𝑦, 𝑝) = − ∑ 𝑦𝑖𝑙𝑜𝑔 (𝑝𝑖)𝑖                                              (1.3)            

 

where 𝑦𝑖 is the label of i-th input image and 𝑝𝑖 is the i-th item of the output of SoftMax 

function. 

The pooling layer is designed for perform down-sampling to image data. The 

purpose for down-sampling is to extract useful information and reduce the size of 

feature maps. Typically, there are two different down-sampling methods: average 
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pooling and max-pooling. Average pooling is used to compute the average value as 

feature in a small area and max-pooling is used to extract the maximum value in a 

small area.  

After sufficient information is acquired from convolutional layers and pooling 

layers, the fully-connected layer is used to map the output to linearly separable space 

and flatten the matrix into a vector. Then SoftMax is used for regression to classify the 

data, so the output of the last fully-connected layer would be the predicted label.  

AlexNet [2] is the first deep convolutional neural network. AlexNet is the first 

model to use ReLu as an activation function and utilize dropout layer.  In ILSVRC 

2010, AlexNet got the Top-1 and top-5 error rates of 37.5% and 17.0% respectively. 

An original design for AlexNet [2] is shown at Figure 2.2. 

 

 

Figure 2.2 Design for AlexNet.  
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VGG neural network [4] is created by Visual Geometry Group. VGG-16 

obtains 8.8% error rate and VGG-19 obtain 9.0% in ILSVRC 2014 (ImageNet Large 

Scale Visual Recognition Competition). With VGG19 stacked more convolutional 

layers than VGG16, the test error increased. Fig. 2.3 shows the structure of VGG16 & 

VGG19 model. 

 

 

Figure 2.3 Structure [4] of VGG models. 

 

VGG neural network [4] was developed by Visual Geometry Group, University 

of Oxford. In the 2014 ILSVRC (ImageNet Large Scale Visual Recognition 

Competition), VGG-16 obtained an error rate of 8.8% and VGG-19 obtained an error 

rate of 9.0%. In the VGG model, stacked convolution kernels with 3 by 3 are used. 

Note that two 3-by-3 convolution kernels equal to a 5-by-5 effective convolution area, 

three 3-by-3 kernels equal to a 7-by-7 effective area, and so on. The purpose of using 

stack convolutions is to reduce parameters in the learning process. The VGG16 

contains two 5-by-5 convolutional layers and three 7-by-7 convolutional layers and the 

VGG19 contains two 5-by-5 convolutional layers and three 9-by-9 convolutional 

layers. However, when more convolution layers are stacked together, a vanishing 

gradient problem may happen. It is occurred during backpropagation when several 
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small derivatives are multiplied together after the same activation function. The 

problem of a small gradient will cause the parameters not to be updated effectively.  

To solve the vanishing gradient problem, a new convolutional block, called 

residual block, is introduced in residual neural network [5]. By adding a shortcut 

connection between the input 𝑥 to learn residual mapping 𝐹(𝑥) before the activation 

function, the output 𝑥 + 𝐹(𝑥) can maintain a higher overall derivative. With residual 

connections, the residual neural network can add up to 152 layers. It won the 

competition in 2015 ILSVRC.  

With a skip connection between activation functions, the problem of vanishing 

gradient problem in VGG model is solved. Fig. 2.4 shows the residual block in [5]. 

The shortcut connection is added between a short connection from input 𝑥 to 𝐹(𝑥), the 

output H (𝑥) = 𝑥 + 𝐹(𝑥). The learnt residual mapping 𝐹(𝑥) = 𝐻(𝑥) − 𝑥. When 𝐹(𝑥) 

is close to 0, 𝑥 can still pass to the next layer by shortcut connection. With residual 

connections, the residual can be added up to 152 layers.  

 

Figure 2.4 Residual block in Residual Network. 
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Inception block is first introduced by GoogleNet [3]. GoogleNet is also called 

Inception v1 and continued by Inception v2 [31], Inception v3 [23] and Inception v4 

[32]. Inception v1 is the winner of the ILSVRC (ImageNet Large Scale Visual 

Recognition Competition) 2014. In the design of convolution blocks in GoogleNet, 

1 × 1  convolution with ReLu activation works as a dimension reduction and 

reconstruct the feature maps [33]; Inception module contains different size of 

convolution kernels which is helpful to enrich the feature maps. 

The inception block was introduced by GoogleNet [3], which uses different 

kernel sizes. In inception block, 1 × 1  convolution, 3 × 3 convolution, 5 × 5 

convolution, and 3 × 3  Max-pooling are used at the same time using the same 

convolution. The 1 × 1  convolution with ReLu activation works as dimension 

reduction to reconstruct the feature maps [6]. Figure 2.6 shows the inception block in 

GoogleNet [3]. 

 

Figure 2.5 Inception module with dimension reduction 
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Figure 2.6 Feature Maps for Inception Module. 

 

Inception v2 [31] introduces a concept termed as batch normalization, which is 

applied to normalizing the value distributions of a layers’ output and keep the 

distribution remain fixed. Inception v3 [23] factorizing convolution is used to reduce 

parameters. Two kind of factorizing convolutions are introduced, including using small 

kernel convolutions to replace large convolutions or using asymmetric convolution to 

replace symmetric convolutions. Figure 2.7 shows a factorization into smaller 

convolution. The 5 × 5 convolution area is replaced by two  3 × 3 convolution areas.  

 

Figure 2.7 Factorization into Smaller Convolution. 
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Similar with two symmetric 3 × 3  convolution covering a  5 × 5  area, 

asymmetric convolution with one 3 × 1 followed by one 1 × 3 convolution can also 

replace a 3 × 3 convolution area. The purpose of using the asymmetric convolution is 

to reduce the number of operation while keep the network’s efficiency.  With 

asymmetric convolution, a new version of inception module is shown at Figure 2.8. 

 

Figure.2.8 Inception Module with Asymmetric Convolution. 

 

Compared with Inception-v3, Inception v4 [32] has more Inception modules. 

The techniques developed from Inception v1 to Inception v3 are all used to improve 

model performance. In the Inception-ResNet-v1 and Inception-Resnet-v2, a shortcut 

connection is added between two activation functions. Three Inception residual block 

in Inception-ResNet-v1 and Inception Resnet-v2 are shown in Figure.2.9. 
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Figure 2.9 Inception–Residual modules in Inception-Residual v2. 
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2.2 Ecology Datasets 

In this classification task, two different ecological datasets respectively are: the bee-

wing dataset and the butterfly dataset. The bee-wing is a relatively small and 

unbalanced dataset and butterfly is a small and relatively balanced datasets. There are 

19 classes of New Jersey local bees, which is captured by Dr Gareth Russell’s research 

team, from the biological science department of NJIT. The purpose of this research is 

to recognize the type of bee only by the image of wings, which is an important part in  

Dr Russell’s research area. The images are captured using a microscope in a 1K by 1K 

resolution.  

There are totally 755 images, including 566 training samples and 189 testing 

samples. The bee wing dataset contains eight main class in grayscale images, which 

respectively are agapostemon, augochlora, augochlorella, augochlorella, ceratina, 

dialictus, halictus and osmia. The first-four type only have one sub-class while the last 

four type contain more than one sub-class. Ceratina contains three subclasses, which 

are ceratinacalcarata, ceratinadupla and ceratinametallica. Dialictus contains four 

subclasses which are dialictusbruneri, dialictusillinoensis, dialictusimitatus and 

dialictusrohweri. Figure. 2.10 shows sample images for the bee wing dataset and the 

Figure 2.11 shows the distribution of each class in the bee wing dataset.  
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Figure 2.10 Sample image in the Bee Wing Dataset. 
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Figure.2.11 Data sample distribution of the Bee Wing Dataset. 
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The butterfly dataset contains 10 classes of butterfly species, with a range vary from 

55 to 100 images per class. The data sample in the butterfly dataset is in RGB format. The 

total dataset contains 832 image samples, 627 samples for training and 205 image samples 

for testing. There are ten classes in the butterfly dataset. Figure 2.12 shows data samples 

and Figure 2.13 shows the data samples’ distribution in the butterfly dataset, respectively.  

 

Figure 2.12 Sample image in Butterfly. 
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Figure 2.13 Distribution for 10 types of butterfly. 
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2.3 Classification in Original Dataset 

To discovery the best performance for the ecology datasets, seven CNN models, 

including LeNet-5[1], Alex Net [2], VGG16[4], VGG19[4], Residual Net 50[5], 

InceptionV3[23], Inception Residue V2[24],  are tested with the ecology datasets.  The 

test accuracies are shown in Table 2.1. 

Table 2.1:  Test Accuracy of the Ecology Datasets 

 Bee Wing Butterfly 

LeNet-5 87.78% 70.24% 

AlexNet 86.04% 79.85% 

VGG16 17.74% 12.17% 

VGG19 17.72% 12.28% 

ResNet50 86.54% 75.36% 

Inception v3 87.16% 78.84% 

InceptionResNetV2 87.72% 79.98% 

 

For a small and unbalanced dataset (Bee Wing), a similar test accuracy is 

achieved at nearly 87%, except for VGG16 & VGG19.  Considering LeNet is a two-

layer convolutional neural network and a similar test accuracy is achieved in Inception-

V3 and Inception-ResNet-V2, the feature in this dataset is a relatively simpler than the 

butterfly dataset and can be extracted by a two-layer CNN.  The feature in bee wing 

dataset is mainly lines or blobs also indicate the CNN models do not need to extract 

this feature from a much more complicate background.  
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VGG 16 and VGG 19 model are facing a convergence problem in training, it 

is probably due to limited data caused underfitting or a vanishing gradient problem. 

Researches in [3] [4] shows that with the increasing of complexity of a CNN model, a 

deeper neural network may have a high possibility to have difficulties in convergence. 

However, the problem in VGG-Net did not show in Reset50. This is due to Residual 

Neural Network uses residual connections to avoid vanishing gradient problem.  

Inception v3 uses an inception blocks with different convolution kernel size to 

enrich the feature maps; Inception Residual Neural network combine inception blocks 

with residual connection. With a residual block, Inception v2 model achieves a higher 

test accuracy than Inception v3 model.  

Also, the low-test accuracy in bee-wing is due to the effect form sub-species 

which may have more common features. The single class test accuracy of each dataset 

is shown in Figure 2.14. A relatively lower test accuracy is achieved between sub-class 

species. In ceratina class, ceratinadupla’s single class achieved a test accuracy of 70%, 

17% lower than the overall accuracy. And in halictus, halictusconfusus achieved a test 

accuracy of 60%, 27% lower than the overall accuracy. In osmia, osmiageorgica 

achieved a test accuracy of 0, both of the two samples are classified to osmiageorgica, 

another sub-class in osmia. Figure 2.14(c) shows a heap map of the confusion matrix. 

Although given the fact that subclass species are closely to each other and an 

insufficient data sample obstruct feature learning process, a class of bee-wing achieved 

0 performance should be aware. This phenomenon signifies a close impossibility for 

this classifier to recognize any it’s related target. It also attracts ecologists’ attention 

especially when they are trying to build a specie classifier or ecology ID system. 
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Ecologists are focusing on increase the possibility to recognize the minority class of 

species and improve model performance. Future work will be focused on increasing 

the model’s ability to recognize specie with little data samples. 

 

 

 (a) Each class accuracy: Bee Wing 
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(b)  Wing (b) Bee-Wing subclass classification 
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(c) Heatmap of confusion matrix (labels from 1-19, represent from agapostemonvirescens 

to osmiapumila) 

Figure 2.14. Each class classification rate and Bee-wing subclass classification rate. 

For a small and relatively balanced dataset(butterfly), two similar test 

accuracies close to 79% are achieved in AlexNet model and InceptionResV2 model. 

The reason that LeNet achieve a low accuracy at 70% is partially due to this dataset 

contains complexed background and need more convolution layers to extract features 

from background.  

VGG16 and VGG19 models are facing a similar convergence problem in this 

bee-wing dataset. A 75% test accuracy is achieved in ResNet50 shows residual 

connection is helpful for models to go deeper. The low-test accuracy also due to an 
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insufficient dataset. InceptionRes v2 models are achieved a higher test accuracy than 

Inception v3, shows a promising feature extraction ability for inception residual block.  

In order to solve the low-test accuracy problem for small datasets, two 

approaches in deep learning are applied to make improvement in Bee-wing and 

butterfly, respectively are data augmentation and transfer learning.   

 

2.4 Data Augmentation  

Data augmentation is a technique that artificially generate new images from the 

original dataset. Compared to the large dataset samples usually used in training a CNN 

model, the original data in bee wings dataset and butterfly are relatively small. By 

using data augmentation technique, the amount of data samples can be enlarged based 

on original dataset while at the same time keeps the features from original dataset. 

Thus, the first approach to improve model’s performance is by using data 

augmentation techniques to enlarge the dataset. Data augmentation is by performing a 

sequence of image-processing operations to the original image. This operations 

including perspective skewing, elastic distortion, rotation, mirroring and cropping. The 

following operations focus on changing the images from different view angles and 

does not change the features in these images.  

The tool to create an augmented dataset is called Augmentor [26]. The process 

of creating an augmented dataset is as follow. First, image-processing functions are 

performed sequentially through a pipeline. Then, a set of predefined probability is 

applied to control the probability of each image processing operation. After that, a large 
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number of new images depending on the number of operations and the range of values 

used in each operation.   

Perspective skewing is referred to an image transformation whose effect is 

viewing this object from different angles. Users can define a direction to perform 

skewing. Figure 2.15 shows the augmented images from bee wing dataset after 

perspective skewing functions are applied. Figure 2.16 shows the augmented images 

from butterfly dataset after perspective skewing functions are applied. 

 

Figure 2.15 Perspective skewing performed on the Bee Wing Dataset. (a) Original image, 

(b)-(e) the images after performing perspective skewing to a certain direction, (f) the image 

after performing perspective skewing to a random direction.  
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Figure. 2.16 Perspective skewing performed on the Butterfly Dataset. (a) Original image, 

(b)-(e) the images after performing perspective skewing to a certain direction, (f) the image 

after performing perspective skewing to a random direction.  

 

Elastic distortion is a function that allows users to make random distortions on 

the original image, while the image’s aspect ratio is still maintained. Figure 2.15 shows 

the augmented images from bee wing dataset after elastic distortion functions are 

applied; Figure 2.16 shows the augmented images from butterfly dataset after elastic 

distortion functions are applied. 
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Figure. 2.17 Elastic Distortion on the Bee Wing Dataset. (a) Original image and (b) the 

image after elastic distortion. 

 

 

Figure. 2.18 Elastic distortion on the Butterfly Dataset. (a) Original image and (b) the 

image after elastic distortion. 

Rotation is a function to rotate an image in a number of ways, such as rotating 

90°, 180°, or 270°. However, it could be performed by a random degree, which 

incorporates zoom-in or zoom-out from the original image. Figure 2.19 shows the 
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augmented images from bee wing dataset after rotation functions are applied; Fig 2.20 

shows the augmented images from butterfly dataset after rotation functions are applied. 

 

 

Figure 2.19 Rotation on the Bee Wings Dataset. (a) Original image, (b) and (c) rotated 

by two random angles (range is set from -45° to 45°) with a zoom-in effect, (d)-(e) 

rotated by 90°, 180°, or 270°, respectively. 
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Figure 2.20 Rotation on the Butterfly Dataset. (a) Original image, (b) and (c) rotated by 

two random angles (range is set from -45° to 45°) with a zoom-in effect, (d)-(e) rotated by 

90°, 180°, or 270°, respectively. 

 

Shearing is a function that tilts an image along one of its sides. It can be tilted 

from left-to-right or right-to-left. Fig 2.21 shows the augmented images from bee wing 

dataset after shearing functions are applied; Fig 2.22 shows the augmented images 

from butterfly dataset after shearing functions are applied. 
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Figure 2.21 Shearing on the Bee Wing dataset. (a) Original image and (b) shearing to 

random directions 

 

Figure 2.22 Shearing on the Butterfly Dataset. (a) Original image and (b) shearing to 

random directions 

Mirroring is a function that reflect duplication of an object that appears almost 

identical but is reversed in the direction perpendicular to the mirror surface. Figure 

2.23 shows the augmented images from bee wing dataset after mirroring functions are 

applied; Figure 2.24 shows the augmented images from butterfly dataset after 

mirroring functions are applied. 
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Figure 2.23 Mirroring on the Bee Wing Dataset. (a) Original image (b) flip_left_right 

(c)flip_top_bottom

 

Figure 2.24 Mirroring on the Butterfly Dataset. (a) Original image (b) flip_left_right 

(c)flip_top_bottom 

 

Cropping is the removal of unwanted outer areas from a photographic or 

illustrated image. Figure 2.25 shows the augmented images from bee wing dataset after 



 

 

 

 

36 

cropping functions are applied; Figure 2.26 shows the augmented images from 

butterfly dataset after cropping functions are applied. 

 

 

Figure.2.25 Cropping on the Bee Wing Dataset. (a) Original image (b) cropped image 

 

Figure.2.26 Cropping on the Butterfly Dataset. (a) Original image (b) cropped image 
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2.5 Transfer Learning 

Transfer learning is referred as a machine learning concept that gains knowledge from 

one task and reuse it to fulfill a different task [28]. In deep learning, transfer learning 

is often conducted by using a well-trained model which previously been trained on a 

large dataset and then utilize the parameters for another task. SInce The ecology dataset 

does not have a sufficient size to train an entire CNN with random initialization. So 

pretrain deep learning model on a large dataset and train from scratch is an approach 

to solve this problem. Several pre-trained models that have been trained on ImageNet 

[29] are used for transfer learning model. These models including VGG16, VGG19, 

ResNet50, InceptionV3, InceptionResV2.  

According to [30], in a deep convolution neural network, some features are 

learned from convolutional neural networks that contain more common features, such 

as edge detectors or color blob detectors, which can be used in many other tasks. The 

later layers become progressively more specific to the details of the classes contained 

in the original dataset. The design for using transfer learning takes the following steps: 

First, using a pre-trained CNN model which been trained on ImageNet and replace the 

previous fully connected layers. Second, add new fully-connected layers and use the 

model to train for ecology datasets. At last, fine-tune some higher-level portion of the 

network. 
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2.6 Re-designed Convolution Blocks 

In the inception models, different convolutional kernel sizes are used for feature 

extraction. Inspired by this idea, we redesign the inception block and the inception 

residual block using four convolutional kernels, which are  1 × 1 Same Conv, 3 × 3 

Same Conv, 5 × 5 same Conv, and 7× 7 same Conv. The outputs are concatenated 

together and then passed to a 1 × 1 Conv. We replace the max-pooling layers by 7 x 7 

same convolution to include a larger convolution kernel for detecting a wider and 

larger area. By combining more information in feature map, the CNN model can be 

more sensitive in telling the difference among different classes. 

 

Figure 2.27 Re-designed Inception block. 

The inception residual block contains four different size of convolution kernels, 

which are  1 × 1  Conv, 3 × 3  Conv, 5 × 5  Conv, 7 × 7  Conv and a residual 

connection from block input to block output. The residual may help if the weight in 

inception block is not well trained. Figure 2.29 shows the Inception Residual blocks.  
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Figure 2.28 Re-designed Inception Residual Block  

By using a different number of convolution blocks and subsampling layers in 

the bee wing dataset, we can compare the performance of redesigned inception block 

and inception residual block. shows the model to compare the redesigned inception 

and the inception residual block.  

 

Figure 2.29 Different 𝑛 ×  Conv_blocks classification model 
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2.7 Experimental Results 

Table 2.1 Test Accuracy of the Ecology Datasets 

 

 Bee Wing Butterfly 

LeNet-5 87.78% 70.24% 

AlexNet 86.04% 79.85% 

VGG16 17.74% 12.17% 

VGG19 17.72% 12.28% 

ResNet50 86.54% 75.36% 

Inception v3 87.16% 78.84% 

InceptionResNetV2 87.72% 79.98% 

 

The test accuracy in original dataset is shown in Table 2.1. Bee wing achieve a 

test accuracy among 86% ~ 87% in LeNet, AlexNet and Inception models. Butterfly 

achieve a similar test accuracy among 78%~79% in AlexNet and Inception models. To 

improve the performance for bee wing and butterfly, data augmentation, transfer 

learning, and data augmentation with transfer learning are applied. 
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Table 2.2 Test accuracy for bee wing dataset 

 

 

Bee Wing Original 

dataset 

Data Augment Transfer 

Learning 

 Transfer 

& Aug 

LeNet-5 87.78% 89.97% _ _ 

AlexNet 86.04% 89.8% 90.37% 91.28% 

VGG16 17.74% 88.7% 92.58% 93.41% 

VGG19 17.72% 87.34% 91.67% 93.19% 

ResNet50 86.54% 89.34% 92.5% 93.12% 

Inception v3 87.16% 91.46% 92.28% 93.95% 

InceptionResNetV2 87.72% 90.91% 92.97% 94.40% 

 

Table 2.2 shows the test accuracy of the bee wing dataset. The test accuracy in 

original dataset shows a similarity test accuracy at 87%. By applying data 

augmentation, the test accuracy gets improved in each model. A similar test accuracy 

close to 90% is shown by using LeNet, AlexNet and Inception models. Also, data 

augmentation helps to improve VGG 16 and VGG19 models’ convergence problem in 

training with limited samples of data.  

Transfer learning also improved the test accuracy with the original dataset. 

VGG19 shows the best test accuracy at 94.67% and inception models shows a common 

performance at 90%, indicate a well-trained VGG19 model do not need to select a 

suitable kernel size and has an ability to achieve a better performance in bee wing 

dataset.  
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By combine the data augmentation and transfer learning, a similar test accuracy 

at 94% is achieved. These improvements prove the effectiveness of using data 

augmentation, transfer learning and their combination in small dataset classification 

problems. 

   Table 2.3. Test Accuracy of the Butterfly Dataset 

 

Butterfly Original 

dataset 

Data 

Augment 

Transfer 

Learning 

 Transfer 

& Aug 

LeNet-5 70.24% 71.41% _ _ 

AlexNet 79.85% 80.83% 89.28% 92.75% 

VGG16 17.74% 79.91% 90.65% 95.04% 

VGG19 17.72% 80.33% 90.73% 94.66% 

ResNet50 79.21% 86.54% 92.60% 96.88% 

Inception v3 80.32% 87.16% 93.10% 96.10% 

InceptionResNetV2 81.94% 87.72% 93.67% 96.07% 

 

Table 2.3.  shows the test accuracy for butterfly dataset. In original dataset, LeNet 

achieves a 70.24% test accuracy and AlexNet shows a test accuracy at 79.85% proves 

a deeper convolution models can improve the models’ performance. By using data 

augmentation, a slightly improvement is made for each model. This may indicate the 

data augmentation failed to improve the diversity of this small dataset by only 

performing image transformations. But transfer learning provides more generated 

information from a pre-trained model. By combining the data augmentation and 

transfer learning, the performance improved much better than bee wing dataset. The 
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test result in butterfly dataset also improved the effectiveness of transfer learning and 

data augmentation.  

The test result with original dataset for using different number of inception and 

inception residual block is shown at Table 2.4 and the test result with augmented 

dataset for using different number of inception and inception residual block is shown 

at Table 2.5. 

 

 

Table 2.4. Test accuracy for inception and inception residual models (Original dataset) 

 

Original  

Dataset 

Inception Block Inception residual 

Block 

2 × Blocks 90.04% 92.89% 

3 × Blocks 90.04% 92.05% 

4 × Blocks 89.24% 92.09% 

5 × Blocks 88.75% 92.90% 
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Table 2.5. Test accuracy for inception and inception residual models (augmented 

dataset) 

 

Augmented 

Dataset 

Inception Block Inception residual 

Block 

2 × Blocks 90.31% 93.05% 

3 × Blocks 90.96% 92.44% 

4 × Blocks 89.93% 92.34% 

5 × Blocks 89.90% 92.40% 

 

In Table 2.4, different number of Inception blocks and Inception residual blocks 

are used in original bee wing dataset. The test accuracy for 2x inception block is 

90.04% and for 2 x inception residual block is is 92.89%, while LeNet achieves an 

accuracy of 87.78%. In Table 5, different number of Inception blocks and Inception 

residual blocks are used in augmented bee wing dataset. The test accuracy for 2x 

inception block is 90.31% and for 2 x inception residual block is 93.05%, while LeNet 

achieves an accuracy of 89.87%.   

Compared with inception block, Inception residual block achieves a better test 

accuracy. The experiment result proves the Inception residual block has the ability to 

achieve a higher performance in feature extraction. 
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2.8 Summary 

First, different deep learning models are used to train the ecology datasets. Due to a 

small sample dataset problem, the test accuracy for bee wing is achieved at 87% and 

for butterfly is achieved at 79% except for VGG16 and VGG19 models. VGG16 and 

VGG19 also shows a poor ability in training for a small sample dataset with deeper 

convolutional layers. Because a small data sample problem causes model underfitting 

and a stacked convolution connection cause vanishing gradient.  

To solve the following problem in original dataset, data augmentation and 

transfer learning are used to improve the performance of the deep neural network. The 

experiment result shows data augmentation improves the test accuracy slightly may 

suggest that by only using image transformation technique cannot provide enough 

feature for the learning models. Transfer learning can help to improve the test accuracy 

in small datasets by first learning from a large dataset and fine-tuned in the original 

ecology dataset. Also, the combination of these two methods can help to improve to a 

higher test accuracy of 94% for bee wing and 98% to butterfly by providing the pre-

trained model with more data samples. Also, by using data augmentation technique, 

the VGG16 and VGG19 models conquer the problem of underfitting. And by using 

transfer learning, a pre-trained VGG16 or VGG19 model conquered the problem of 

vanishing gradient in small dataset.  

Finally, a comparison between using inception block and inception residual 

block in bee wing dataset suggest the redesigned inception residual block has an 

advantage in maintaining its advantage when model goes deeper. 
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Chapter 3 

 
CLASSIFICATION OF ECOLOGY IMAGES USING MORPHOLOGICAL 

NEURAL NETWORK 

 

Deep learning [38] is an essential part in machine learning, which requires a large 

amount data to train a model and then evaluate the model’s performance on different 

datasets. In this section, we present the basic structure of convolution neural networks, 

the mathematical morphological operations, and the morphological neural networks.  

 

3.1   Morphological Neural Network 

   3.1.1   Mathematical Morphological Operations  

In computer vision, the convolutional neural networks are widely used in many areas. 

The basic deep learning framework contains an input layer, a feature extraction layers, 

and a pooling layer to reduce unnecessary data. After the feature extraction layers, the 

feature representations are fed to a fully connected artificial neural networks for 

classification. Typically, the input is one or several images with one or three channels, 

which could be grayscale or RGB images. Traditional CNN models perform 

convolution operations for several times with different filters, so there are several 

output images, called feature maps. In this part, a different and novel feature extraction 

mechanism, the Mathematical morphology, instead of convolution, is presented and 

shows its effectiveness. 

Mathematical morphology is a widely used approach for shape representation 

and image preprocessing. Two fundamental morphological operations are dilation and 
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erosion. Let the input image be I and the structuring element be s. The dilation 

operation is denoted as 𝐼 ⨁ 𝑠, which expands the image by the structuring element. 

The erosion is denoted as 𝐼 ⊖ 𝑠, which shrinks the image by the structuring element. 

Other often used morphological operations are opening, closing.  

The opening is typically used for contour smoothing, especially for breaking 

thin connections between components and enlarging small holes or gaps. It is defined 

as an erosion followed by a dilation as the equation (3.1). 

 

                                                      𝐼 ∘ 𝑠 = (𝐼 ⊖ 𝑠) ⨁𝑠                                                  (3.1) 

 

 

Different from opening, the closing can be used for connecting narrow areas 

and filling in small holes or gaps. It is defined as a dilation followed by an erosion as 

as the equation (3.1). 

                                                     𝐼 • 𝑠 = (𝐼 ⊕ 𝑠) ⊖ 𝑠                                                  (3.2)    

 

 

Figure 3.1 shows two sample images for chest X-ray images, which are 

processed using dilation and erosion with a 6 × 6 structure element of all 1’s. Figure 

3.2 shows two sample images, which are processed using closing and opening with a 

6 × 6 structure element of all 1’s.  
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Figure 3.1 Sample images after morphological operations. Column 1 shows input 

images; column 2 shows dilation; column 3 shows erosion. 
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Figure 3.2 Sample images after morphological operations. Column 1 shows input 

images; column 2 shows closing; column 3 shows opening. 

 

 

 

For the X-ray images, the dilation operation can expand some of the small areas 

while enlarging some of the noisy areas. The erosion can clean the background by 

eliminating some noisy areas, but at the same time, filtering out some pixels. Opening 



 

 

 

 

50 

and closing can smooth the contour, where closing tends to fill in some holes and 

opening tends to make them larger. Other usually used morphological operations 

including the top-hat transformation operation and the bottom-hat transformation. The 

top-hat transformation is denoted as 𝐼 −  𝐼 ∘ 𝑠 , and the bottom hat transformation is 

denoted as 𝐼 • 𝑠 − 𝐼 . 

 

   3.1.2   Morphological Layers  

 

The morphological neural network (MNN) is another type of deep learning framework. 

Similar to the convolutional layers in CNN, the morphological layers work as a feature 

extraction tool. Shih et al. [5] proposed the development of deep learning framework 

for two morphological layers: the dilation layer and the erosion layer. For the j-th pixel 

in an output image Y, the dilation layer is defined as equation (3.3) 

 

                                           𝑌𝑗 = ln(∑ 𝑒𝑊𝑖𝑋𝑖𝑛
𝑖=1 )                                                          (3.3) 

 

 

W represents the corresponding structure element and X represents the input image. 

For the j-th pixel in an output image Y, the erosion layer is defined as equation (3.4): 

 

                                               𝑌𝑗 = −ln(∑ 𝑒−𝑊𝑖𝑋𝑖𝑛
𝑖=1 )                                                    (3.4) 

 
 

 

3.2 Basic Morphological Neural Network Design 

In this section, we present different deep learning models for the classification of ecology 

images. Different mathematical morphological operations, such as dilation, erosion, 
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closing, opening top-hat and bottom-hat, are developed with different combinations of 

morphological layers. These models require to specify the operation types before training 

the deep neural networks. To solve this problem, morphological neural networks using 

adaptive layers are proposed and applied for pneumonia classification. These models do 

not require to specify the morphological operation types for each layer.  

 

3.2.1 Basic Morphological Neural Networks  

The basic morphological neural networks using morphological layers are shown in Figure 

3.3 (a) shows the structure of MNN model performing erosion operation. Figure 3.3 (b) 

shows the structure of MNN model performing dilation operation. Figure 3.4(c) and 4(d) 

show the structure of MNN models performing opening and closing operations, 

respectively. Figs. 4(e) and 4(f) show the structure of MNN models performing top-hat and 

bottom-hat operations. 

 

 

(a) Erosion classifier for pneumonia chest X-ray images 
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(b) Dilation classifier for pneumonia chest X-ray images 

 

 

 

(c) Opening classifier for pneumonia chest X-ray images 
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(d) Closing classifier for pneumonia chest X-ray images 

 

(e) Top-hat classifier for pneumonia chest X-ray images 
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(f) Bottom-hat classifier for pneumonia chest X-ray images 

Figure 3.3. Morphological neural network structures for basic mathematic morphological 

operations. 

 

3.2.2 Adaptive Morphological Neural Networks 

Morphological operations can be various due to different combinations of dilations and 

erosions. From Eqs. (6) and (7), the only difference between dilation and erosion layers is 

the sign before the weights. Therefore, a trainable weight for sign function is used to decide 

the morphological operation types (dilation or erosion). The proposed adaptive 

morphological layer is defined in equation (3.4). 

𝑧𝑗 = 𝑠𝑖𝑔𝑛(𝑎) ∗ ln(∑ 𝑒𝑠𝑖𝑔𝑛(𝑎)∗𝜔𝑖𝑥𝑖𝑛
𝑖=1 ) + 𝑏                                   (3.4) 

 

 

𝑎  is an extra trainable variable aside with 𝜔𝑖  and b. If 𝑠𝑖𝑔𝑛(𝑎) is +1, the 

adaptive morphological layer carries out a dilation operation layer; however, if 

𝑠𝑖𝑔𝑛(𝑎) is −1, the adaptive morphological layer carries out an erosion operation. 
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However, the sign function cannot be used in a deep neural network since it is not 

continuous making Eq. (8) undifferentiable.  

To solve the undifferentiability problem, an improved sign function in the 

interval [−1, +1]  is applied for the adaptive morphological layer. The proposed 

morphological adaptive layer is defined in equation (3.5). 

 

𝑍𝑗 =
𝑒𝑎−𝑒−𝑎

𝑒𝑎+𝑒−𝑎 ∙ ln (∑ 𝑒
𝑒𝑎−𝑒−𝑎

𝑒𝑎+𝑒−𝑎𝜔𝑖𝑥𝑖
𝑛
𝑖=1 ) + 𝑏.                                  (3.5) 

 

 

With the proposed sign function, the adaptive morphological layers can self-

learn a morphological type: dilation or erosion. A novel structure is proposed to decide 

the most suitable depth of the adaptive layer for pneumonia classification. Fig. 5 shows 

the structure of the proposed stacked adaptive morphological deep learning model. The 

activation functions are added before each pooling layer. After the pooling layer, the 

feature maps are processed by a fully connected layer and output the class predictions. 

The design is intended to decide the best depth for stacked adaptive layers.  
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Figure. 3.4. Stacked Adaptive Morphological Deep Leaning Model. 
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3.3. Medical Datasets  

To evaluate the performance of the proposed models, two datasets of the chest X-ray 

images are used. We compare the experimental results against three existing models, 

including LeNet, VGG16, and ResNet-50.  

Two datasets are used to evaluate the performance: the chest X-Ray dataset 

[30] and the COVID-19 dataset [31]. The chest X-ray dataset is from Kaggle 

competition, which contains two categories (pneumonia/normal). It consists of 5,863 

X-ray images, where 4,398 images are used for training, 1,375 images are used for 

testing, and 93 images are used for validation. In order to balance the training sample, 

we apply data augmentation in the training process.   

The COVID-19 dataset contains 219 positive cases and 1,341 normal cases, 

where 165 positive cases and 1,005 normal cases are randomly selected in the training 

process. For the test dataset, 43 positive samples and 43 normal samples are used. The 

validation dataset contains 11 positive samples and 68 normal samples. To balance the 

cases in the training process, each category is augmented to 10,000 new images using 

image augmentation techniques. In the experiment, all the images are resized to 

256 × 256, 
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3.4 Experimental Results  

Table 3.1 and Table 3.2 show the experimental results of the basic morphological 

neural networks in two datasets. The erosion classifier and the dilation classifier use 

only one layer for feature extraction. In comparison, the erosion classifier achieves a 

95.27% accuracy rate for the chest X-ray dataset, while the dilation classifier achieves 

a test accuracy rate at 98.10%. The reason is that the erosion classifier tends to shrink 

the images. The performance for opening and closing are similar since both operations 

tend to eliminate the noise. The definition for recall, precision and accuracy are defined 

in equation (3.6) equation (3.7) and equation (3.8). 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 = 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                  (3.6) 

 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                           (3.7) 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 =

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
                             (3.8) 
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     Table 3.1. Test Accuracy for Basic MNN in Chest X-Ray dataset 

 

Chest X-Ray 

dataset 

Recall Precision Accuracy  Total 

Parameter 

Erosion  95.7% 96.06% 95.27% 0.81 Million 

Dilation  98.21% 98.47% 98.10% 0.81 Million 

Closing  98.85% 98.35% 98.41% 0.82 Million 

Opening  98.60% 98.09% 98.10% 
 

0.82 million 

 

Top-hat  98.22% 98.01% 97.89% 0.83 Million 

Bottom-hat 97.21% 96.60% 96.45% 0.83 Million 
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      Table 3.2. Test Accuracy for Basic MNN in COVID-19 Dataset 

 

COVID-19 

dataset 

Recall Precision Accuracy  Total 

Parameter 

Erosion  95.23% 93.02% 94.71% 0.81 Million 

Dilation  95.35% 95.35% 96.26% 0.81 Million 

Closing  95.45% 97.67% 96.57% 0.82 Million 

Opening  93.33% 97.67% 95.97% 0.82 million 

 

Top-hat  93.18% 95.34% 95.15% 0.83 Million 

Bottom-hat 95.23% 93.02% 94.79% 0.83 Million 

 

Table 3.3 shows the test accuracy of the stacked adaptive morphological neural 

network model. We observe that the best performance for the stacked adaptive 

morphological neural network is achieved at six layers. An obvious overfitting 

occurred when the seventh adaptive layer is stacked. For the chest X-ray dataset, the 

best performance is 98.75%, and for the COVID-19 dataset, the best performance is 

97.33%.  
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     Table 3.3. Test Accuracy Stacked Adaptive MNN Model 

 

Stacked Numbers Chest X-Ray 

dataset  

COVID-19 

dataset 

Total Parameter 

1 75.13% 75.43% 0.81 Million 

2 80.35% 84.66% 0.81 Million 

3 89.41% 91.19% 0.82 Million 

4 93.02% 

 

94.97% 0.82 million 

 

5 97.39% 95.97% 0.83 Million 

6 98.75% 97.33% 0.84 Million 

7 

 

96.10% 95.10% 0.85 million 

 

8 93.16% 92.15% 0.88 million 

9 90.33% 90.26% 0.9 million 

 

Table 3.3 shows the comparison of our proposed models against three CNN 

models, including LeNet, VGG16, ResNet-50, DenseNet, SqueezeNet, MobileNet and 

Inception v4. We observe that the proposed MNN models achieve similar and even 

better performance than the CNN models. Although as comparing to the best 

performance Inception v4 model, the proposed model achieves the highest 

performance at 98.75% and 97.33%, the total of parameters in the proposed model is 



 

 

 

 

62 

reduced by 98.7% significantly against the parameters in Inception v4 model. Even 

compared with the CNN model has the least parameters ( SqueezeNet ), our proposed 

model could achieve better performance. 

   Table 3.4. Comparison with CNN Models 

 

Model Chest X-Ray 

dataset  

COVID-19 

dataset 

Total Parameter 

The proposed 

stacked adaptive 

MNN 

98.75% 97.33% 0.84 Million 

LeNet [1] 85.92% 79.68% 1.4 Million 

VGG16[8] 95.77% 93.27% 9.1 Million 

ResNet[9] 98.69% 96.78% 25.6 million 

 

DenseNet[14] 98.91% 97.44% 30.2 million 

SqueezeNet [32] 

 

90.53% 90.26% 0.49 Million 

MobileNet [33] 

 

91.02% 92.21% 4.2 Million 

Inception v4[12] 

 

99.04% 97.77% 65 Million 
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3.5 Conclusion 

In this chapter, the morphological neural networks are used for the classification tasks 

for chest X-ray images. Traditional deep learning models such as CNN contains a giant 

number of parameters in the feature extraction process to achieves a high performance. 

The MNN models could achieve a similar result with far more less parameters than the 

CNN models. This advantage makes MNN more competitive than CNN models to 

deploy in website or other platforms. Two deep learning models are introduced in this 

chapter. In the basic morphological neural network, the operation type needs to be 

specified before training. The adaptive morphological neural network is able to train a 

sign function to help the model to self-learn the morphology operation type. 

Experimental results show MNN models can achieve better performance with much 

less parameters in chest x-ray datasets. Considering the effectiveness for MNN models 

in classification task, the MNN models is able to be applying such model to other 

computer vision tasks, such as image segmentation or objective detection. 
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Chapter 4 

 
JOINT TASK LEARNING MODEL FOR PNEUMONIA 

CLASSIFICATIONN AND SEGMENTATION ON MEDICAL IMAGES 

 

Chest X-ray images are notoriously difficult to analyze due to the noisy nature. 

Automatic identification of pneumonia on medical images has attracted intensive study 

recently. In this paper, a novel joint-task architecture that can learn pneumonia 

classification and segmentation simultaneously is presented. Two modules, including 

an image preprocessing module and an attention module, are developed to improve 

both classification and segmentation accuracies. Experimental results performed on 

the massive dataset of the Radiology Society of North America have confirmed its 

superiority over other existing methods. The classification test accuracy is improved 

from 0.89 to 0.95, and the segmentation model achieves an improved mean precision 

result from 0.58 to 0.78. Finally, two weakly supervised learning methods: class-

saliency map and grad-cam, are used to highlight corresponding pixels or areas which 

have significant influence on the classification model, such that the refined 

segmentation can focus on the correct areas with high confidence.  

 

4.1 Baseline Model 

In this section, the original joint-task learning model for classification and 

segmentation is presented. The model performs binary classification that separates 

pneumonia samples from healthy ones. The classifier is based on VGG16 and contains 

three parts: the input layer, feature extraction layers, and fully connected layers. The 

loss function using binary cross-entropy is defined in equation (4.1). 
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  𝐵𝐶𝐸_𝐿𝑜𝑠𝑠 = − 
1

𝑁
∑ 𝑦𝑖  𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝(𝑦𝑖)) + (1 −  𝑦𝑖) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − 𝑝(𝑦𝑖))𝑁

𝑖=1        (4.1)      

  

 

𝑦𝑖 is the label (1 for pneumonia pixel and 0 for healthy pixel) and 𝑝(𝑦𝑖) is the predicted 

probability of the pixel belonging to pneumonia for all N pixels. In the segmentation 

task, the model is required to output a pixelwise label map, where the target area is 

labeled as 1 while other areas as 0. The segmentation model is an encoder-decoder 

structure. The encoder converts an input image 𝑥 into a latent-space representation ℎ 

as ℎ = 𝑓(𝑥). The decoder reconstructs the input from latent space representation ℎ to 

a label map 𝑟 is defined in equation (4.2) 

 

                                             𝑟 = 𝑔(ℎ).                                                                        (4.2) 

 

The autoencoder is defined in equation (4.3).       

 

                                       𝑟 = 𝑔(𝑓(𝑥)).                                                                    (4.3) 

 

 

By encoding the input image into latent representation and decoding it back to 

a label map, each pixel is assigned a label in the reconstruction process. Pixels labeled 

as 1 represent belonging to an opacity area, while the normal area is labeled as 0.  

The segmentation model is a U-net like structure. The loss function in our 

segmentation model uses mean square error, which can be described as the summation 

of squared distances between ground truth map and decoded label map. Let 𝑦𝑖 

represent the ground truth for 𝑖-th pixel and 𝑌𝑖 represent the model’s prediction for 𝑖-

th pixel. The mean square error loss is computed in equation (4.4) 
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                                                𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑖 − 𝑌𝑖)

2𝑁
𝑖=1                                               (4.4) 

 

 

The baseline joint-task learning model combines the classification and 

segmentation models with sharing feature extraction layers. The original joint-task 

learning model is shown in Figure 4.1. An input image is firstly going through 

convolutional layers for feature extraction. Secondly, the feature maps are fed into 

dense layers for classicization and output the class types: Pneumonia or Healthy. At 

the same time, the feature maps are fed into the decoder for segmentation. Finally, in 

the segmentation model, the feature maps in the first step are concatenated with the 

feature maps and output the segmentation maps. 
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Figure 4.1. The Original Joint-Task Learning Model. 
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4.2 Class Saliency Map and Grad-CAM 

When the training of the joint-task learning model is finished, a class saliency map 

[41] and a Grad-Cam [42] are used to interpret the classifier and visualize the 

corresponding area which has a great influence. A high-class score means a relatively 

high influence. The class saliency maps compute the class score 𝑆𝑐(𝐼) from a given 

test image 𝐼 in equation (4.5) 

 

                                       𝑆𝑐(𝐼) =   𝑤𝑐
𝑇𝐼 + 𝑏𝑐                                                        (4.5) 

 

 

where the label for image 𝐼 is 𝑐. The class score’s derivative 𝑤 is defined in equation 

(4.6) 

                                             𝑤 =  
𝜕𝑆𝑐

𝜕𝐼
                                                                     (4.6) 

 

By computing 𝑤 in back-propagation, the pixels which have a stronger influence in 

determining class-score can be found. Thus, the class saliency map is determined by 

the classification model and class 𝑐. By visualizing the corresponding saliency map, 

one can understand why the classification model makes such a decision. Although the 

class saliency map is not a restrict segmentation tool, especially in lung CT images, it 

can still highlight corresponding pixels.  

The grad-cam or gradient-weighted class activation mapping performs a 

weakly supervised localization according to the image’s label and the gradient of the 

model’s last convolutional layer. For a given image and its label, the image is forward-

propagated to the CNN model, and a confidence score is obtained for its corresponding 

label. The signal is then back-propagated to produce the feature maps. Finally, a ReLU 
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activation function is used to combine the feature maps to show where the model is 

focused on when the prediction is made. Compared to CAM [43], the Grad-cam is a 

generalization method and can be applied to any CNN model without modifying the 

model’s structure. By visualizing the testing samples of using class saliency map and 

grad-cam in different models, it is possible to visualize whether the model focuses on 

the correct area or not.  

 

 

4.3 Image Preprocessing and Visual Attention Modules 

In this section, the image preprocessing and visual attention module is discussed. The 

purpose for this module is to improve the baseline model’s performance and remove 

noise in the original dataset. 

 

  4.3.1 Image Preprocessing Module with Morphological Layers 

 

Mathematical morphology is a widely-used approach for shape representation and 

image preprocessing in image processing. Two fundamental morphological operations 

are dilation and erosion. Let the input image be I and the structuring element be s. 

Dilation is denoted as 𝐼 ⨁ 𝑠, which expands the image by the structuring element. 

Erosion is denoted as 𝐼 ⊖ 𝑠, which shrinks the image by the structuring element.  

The opening is typically used for contour smoothing, especially for breaking 

thin connections between components and enlarging small holes or gaps. It is defined 

as an erosion followed by a dilation as 
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                                               𝐼 ∘ 𝑠 = (𝐼 ⊖ 𝑠) ⨁𝑠                                                    (4.7) 

 

Different from opening, the closing can be used for connecting narrow areas 

and filling in small holes or gaps. It is defined as a dilation followed by an erosion as 

 

                                             𝐼 • 𝑠 = (𝐼 ⊕ 𝑠) ⊖ 𝑠                                                    (4.8)    

 

Figure 4.2 shows two sample images from the Kaggle Pneumonia dataset, 

which are processed using dilation and erosion with a 6 × 6 structure element of all 

1’s. Fig. 3 shows two sample images, which are processed using closing and opening 

with a 6 × 6 structure element of all 1’s.  
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Figure 4. 2. Sample images after morphological operations. Column 1 shows input 

images; column 2 shows dilation; column 3 shows erosion. 
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Figure 4.3 Sample images after morphological operations. Column 1 shows input 

images; column 2 shows closing; column 3 shows opening 

 

 

 Previous work on morphological neural network [45] is applied as preprocessing 

and a feature extraction layer is used for classification. Dilation can expand some of the 

small areas while enlarging some of the noisy areas. Erosion can clean the background by 

eliminating some noisy areas, but at the same time, filtering out some pixels. Opening and 

closing can smooth the contour, where closing tends to fill in some holes and opening tends 

to make them larger. Figure 4.4 shows four basic morphological operations using 

morphological layers. 
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Figure 4.4. Morphological image preprocessing modules with morphological operations. 
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4.3.2 Visual Attention Modules 

 

The convolutional block attention module (CBAM) [44] and morphological block attention 

module (MBAM), are applied separately to improve the performance of the original joint-

task learning model.  The CBAM is used to learn the weight of feature maps in 

convolutional layers. While the MBAM is used to learn the weight of feature maps in 

morphological layers and to refine the feature maps between morphological layers and 

correctly locate a target area. The two visual attention modules are shown in Figure 4.5.  

 

 

Figure 4.5. Visual attention modules (a) Convolutional block attention module, (b) 

morphological block attention module. 
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4.4 Experimental Results 

Experiments of combining different modules with the proposed joint-task learning model 

are conducted in this section. In the segmentation task, a U-Net like structure is used for 

reconstructing the masks. Considering that the ground truth is given by a bounding box 

instead of pixelwise label maps, performing a pixelwise segmentation may encode non-

opacity regions inside a bounding box and further influence the model’s prediction. The 

bounding box may indicate a rough area containing the lung opacity but cannot annotate 

each pixel. The segmentation model may not be able to preciously recognize a target area. 

Thus, we evaluate the performance of the joint-task learning model by showing both the 

segmentation model and the weakly supervised segmentation result.  

The dataset from Kaggle’s RSNA (Radiological Society of North America) 

Pneumonia Detection Challenge [46] is used, which contains CT chest images in the 

DICOM format. The pixel in the opacity area is labeled as 1, indicating a potential 

pneumonia sample; otherwise, it is labeled as 0.  Figure 4.6, (a) shows an image which 

does not contain the opacity area Figure 4.6 (b) shows an image containing two opacity 

areas. The dataset contains 9,555 samples with pneumonia and 8,851 normal (healthy) 

samples. This dataset is randomly shuffled and divided into three groups: training data, 

validation data, and testing data, which respectively have 13,804 (75%), 920 (5%), and 

3,862 (20%) images. To compare the performance of each model, all the experiments 

conducted in this research uses the same images for training, validation and testing. 
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(a)                                                (b) 

Figure 4.6. Sample images in RSNA Pneumonia Detection Challenge. (a) Healthy body 

(b) sample with lung opacity.       
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4.4.1 Performance of the Baseline Joint-task Learning Model 

 

To design the proposed joint-task learning model, two main problems need to be solved. 

First, it is difficult for the classification and segmentation models to converge at the same 

time. The reason is the classification model converges much faster than the segmentation 

model. In the segmentation model, the decoder part has similar parameters with the encoder 

part, which is far more overweight than the parameters in classification model. Second, the 

parameter in the convolutional layers should be sufficient to extract the features and cannot 

be overweighed due to the limited computational capacity. Thus, the classification model 

uses a VGG16 structure and the segmentation model use a U-Net structure.  

The joint-task learning model is compared against different models. For 

classification, it is compared with ResNet-50, and for segmentation, it is compared with 

SegNet, FCN and DeepLab V3 [47]. The performance of these models is listed in Table 

5.1 
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Table 4.1. Test Accuracy for Original Joint-Task Learning Model 

 

Model Classification    

Accuracy 

       Classifier 

Parameter 

Segmentation 

MAP 

Total 

Parameter 

Joint-task 

Model 

89.27% 9.1 Million 0.5945 25 Million 

SegNet / / 0.5072 21.8 Million 

FCN / / 0.4368 9.1 Million 

ResNet-50 88.73% 

 

25.6 million 

 

/ 25.6 million 

 

Deep Lab V3 

[47] 

/ / 0.6012 2.5 Million 

 

For classification, VGG16 and ResNet achieve a similar test accuracy. Our 

proposed joint- task learning model, FCN, and SegNet use a VGG16 as feature extractor. 

However, in the up-sampling part our joint-task learning model uses a U-Net structure, 

which adds the corresponding feature maps from previous feature extractors. Compared to 

FCN and SegNet, our proposed joint-task learning model can directly combine previous 

feature maps in the feature extraction process to achieve a higher mean-average precision. 

When compared with the most recent semantic segmentation model-- the Deep Lab V3 

[36], our joint-task learning model can achieve similar performance. Since the ground truth 

is just a roughly area with a bounding box, it is hard for the segmentation models to 

recognize each pixel precisely.  Although Deep lab V3 has less parameters and a better 

performance, it cannot perform the classification task.   
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4.4.2 Performance of the Different Joint-Task Learning Models 

 

The baseline model classifier utilizes a VGG16 structure, which is combined with different 

modules: morphological layers, CBAM, and MBAM. Table 4.2 shows different 

combinations of morphological layers as a pre-processing module with a VGG16 classifier 

on the Kaggle pneumonia dataset. The performance of CNN classifier works as a baseline 

model and achieves a accuracy at 89.13%. It is observed that the opening + closing + 

VGG16 model achieves a relatively high-test accuracy. In Figure 4.2, it is clear to find a 

dilation can blur the CT image, while an erosion can clear the noise. The pre-processing 

module using a dilation layer has a relatively weak performance than the erosion layer + 

CNN model. The opening and closing operations are both designed for contour smoothing. 

The better performance for the image preprocessing module is through two different 

smoothing layers, which add more smoothing, so the infected samples are easier to be 

recognized.  
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Table 4.2  Test Accuracy for Classification Accuracy Different Morphological Layers  

Model    Classification Accuracy 

VGG16 89.13% 

Dilation + VGG16 88.38% 

Erosion + VGG16 91.62% 

Closing +VGG16 93.02% 

Opening+VGG16 92.78% 

Opening + Closing + VGG16                         94.32% 

Closing + Opening+ VGG16                         94.14% 

 

Figure 4.7 shows the proposed models, where (a) VGG16 model, (b) the structure 

of morph layers + VGG16, (c) the structure of CBAM + VGG16, (d) the structure of Morph 

layers + CBAM + VGG16, and (e) the structure of MBAM + CBAM + VGG16.  
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Figure 4.7 The Proposed Joint-task Learning Models. 
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The performance of the proposed joint-task learning model is listed in Table 3. As 

compared to the baseline model, the MNN + VGG16 model achieves a 5.13% improvement 

in classification and 2.32% improvement in segmentation. The reason for this improvement 

is caused by the image pre-processing layers using morphological layers. The MNN layers 

use soft minima or soft maxima function to respectively approximate dilation or erosion, 

which mathematically performs the morphological filtering on input images to enrich the 

feature maps.  
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 Table 4.3  Test Accuracy for Joint-task Learning Model with Different Modules 

Model Classification    Accuracy Segmentation 

MAP 

VGG16 89.27% 58.45% 

MNN+ VGG16 94.14% 60.73% 

CBAM + VGG16 93.85% 71.78% 

MNN+CBAM+VGG16 90.85% 63.85% 

MBAM+CBAM+VGG16 95.73% 78.72% 

 

The CBAM+VGG16 model utilizes the CBAM mechanism to refine the feature 

maps between convolutional layers and improves the classification model by 4.58% and 

the segmentation model by 13.33%. The reason for this improvement is that CBAM guides 

the model in both spatial domain and channel-wise domain.   

The MNN + CBAM + VGG16 model combines MNN and CBAM. Even though 

the classification rate is increased by 1.58% and the segmentation MAP is increased by 

5.4%, it is still worse than MNN + VGG16 and CBAM + VGG16. The reason is that MNN 

layers and CBAM change the gradients in original images.  
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The MBAM + CBAM + VGG16 model refines the feature maps between 

convolutional layers and between morphological layers. Experimental results show that it 

improves the classification accuracy by 6.46% and the segmentation by 20.27%, as 

compared to the baseline model. The MBAM correctly guides the MNN layers in the 

training process to correct the gradient in MNN + CBAM + VGG16, where the gradient is 

changed due to unorganized feature maps in morphological layers.  

 

4.4.3 Evaluate Model Performance by Class Saliency Map and Grad-Cam 

 

The class saliency maps and Grad-Cam on four random samples from the test dataset to 

illustrate the model performance. Since the original joint-task learning models have 

confidence ranging from 89% to 95%, it is critical to interpret whether the classifiers can 

detect the correct area. The class saliency map shows the corresponding influential pixels 

when the classifier makes its prediction. The Grad-Cam shows the probability map to 

indicate which area has a high possibility when the classifier makes the prediction. By 

attaching the segmentation model’s prediction with bounding boxes, we can finally decide 

whether this model is trusted. Fig. 8 shows different model’s performance on four 

pneumonia samples. The first row shows the segmentation prediction in a red bounding 

box, while the ground truth is displayed as a blue bounding box. The second row shows 

the class saliency map, and the third row shows the Grad-Cam attention map. 
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a. Baseline Model 
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b. Baseline Model + MNN(closing + opening) 



 

 

 

 

87 

   

c. CBAM + Baseline Model 
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d. MNN + CBAM + Baseline Model 
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e. MBAM+ CBAM + Baseline Model 

Figure 4.8.  Class saliency map and Grad-cam for different models. 
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Figure 8(a) shows that the samples are all classified as pneumonia. The class 

saliency map shows a weak segmentation of the lung area. The Grad-Cam maps show that 

the baseline model is more likely to focus on the corners or bottom, instead of the lung area 

when making its prediction. The target area has a relatively low attention probability. Thus, 

the baseline model has poor performance because the classifier makes its prediction based 

on the wrong attention area.  

Figure 8(b) shows the baseline model with morphological layers. The class saliency 

map shows possible influential pixels. The morphological layers improve the model to 

focus on the correct attention area, so the Grad-Cam can focus on the target area instead of 

other areas of the test images in the baseline model. Fig. 8(c) shows the samples for the 

baseline model with convolutional block attention module, which successfully improves 

the baseline model by channel-wise attention and spatial attention modules. Compared to 

the baseline model, the CBAM guides the model to focus on target areas correctly.  

Figure 8(d) shows the samples for the baseline model combined with morphological 

layers and CBAM. Since the morphological layers are not well guided, the image 

preprocessing module misleads the model to focus on other areas. Fig. 8(e) shows the 

samples for the baseline model combined with MBAM and CBAM. Compared to the Grad-

Cam maps in Fig. 8(d), the morphological layers are well guided by attention modules. 

Thus, the model can focus on the correct target with higher confidence and solve the 

problems as shown in Figure 8(a) and Figure 8(d).  
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4.5. Conclusion 

 

In this chapter, a joint-task learning model is proposed for pneumonia classification and 

segmentation. The effectiveness of this model is proven by comparing different 

classification or segmentation models. From visualizing the class saliency map and Grad-

Cam map, we find that the baseline model’s classifier focuses on other areas instead of the 

target area. The image preprocessing and attention modules are developed to refine the 

joint-task learning model. Experimental results show that the CBAM or the morphological 

layers can help the proposed joint-task learning model to focus on the correct area with 

higher confidence. Furthermore, by combining the MBAM and CBAM to the baseline 

model, the proposed joint-task learning model not only achieves the best classification test 

rate at 95.73% and the best mean-average precision of 0.7872, but also helps the 

classification model to focus on the correct area.  
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Chapter 5 

THE ATTENTIONED MORPHOLOGICAL AND CONVOLUTIONAL 

NEURAL NETWORK FOR ECOLOGY DATA AND MEDICAL IMAGE 

 

5.1 Morphological Neural Networks in Ecology Datasets  

In section 3 and section 4, the morphological neural networks are used for different 

tasks. In the previous chapters of this research, the ecology datasets (bee wings and 

butterfly datasets) and the Chest X-ray datasets (Kaggle dataset and COVID 19 

dataset) are respectively used to test on the morphological neural networks. To evaluate 

the performance of MNN in ecology datasets and medical datasets, experiments on all 

ecology datasets and medical datasets are conducted in this chapter. First, ecology 

datasets are used for the basic morphological operation neural networks. Table 5.1 

shows the results in the bee wing dataset and butterfly dataset.  

Table 5.1 shows the results in bee wing dataset and augmented bee wing dataset 

and Table 5.2 shows the results in butterfly dataset and augmented bee wing dataset. 

To compare with the performance with CNN models, the relevant experimental results 

are added after the MNN models. The experimental results show MNN can achieves 

relatively similar and even higher in some of this model. Second, the adaptative 

morphological neural works are used for the ecology datasets. Table 5.3 shows the test 

accuracy of stacked adaptive morphological neural network in Bee Wing dataset and 

augmented Bee Wing dataset. Table 5.4 shows the shows the test accuracy of stacked 

adaptive morphological neural network in the Butterfly dataset and the augmented 

Butterfly dataset. 

Table 5.1.  MNN in Bee Wing Dataset and Augmented Bee Wing Dataset 
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Bee Wing Original dataset Data Augment 

Erosion 84.53% 85.64% 

Dilation 86.15% 88.53% 

Closing 87.76% 89.37% 

Opening 87.93% 89.77% 

Top-hat 87.39% 89.55% 

Bottom-hat 87.41% 88.89% 

LeNet-5 87.78% 89.97% 

AlexNet 86.04% 89.8% 

VGG16 17.74% 88.7% 

VGG19 17.72% 87.34% 

ResNet50 86.54% 89.34% 

Inception v3 87.16% 91.46% 

InceptionResNetV2 87.72% 90.91% 
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 Table 5.2.  MNN in Butterfly dataset and Augmented Butterfly Dataset 

 

Butterfly Original dataset Data Augment 

Erosion 67.33% 69.81% 

Dilation 68.45% 70.31% 

Closing 76.76% 78.53% 

Opening 77.93% 79.48% 

Top-hat 79.10% 81.55% 

Bottom-hat 79.71% 80.89% 

LeNet-5 70.24% 71.41% 

AlexNet 79.85% 80.83% 

VGG16 17.74% 79.91% 

VGG19 17.72% 80.33% 

ResNet50 79.21% 86.54% 

Inception v3 80.32% 87.16% 

InceptionResNetV2 81.94% 87.72% 
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Table 5.3. Test Accuracy Stacked Adaptive Morphological Neural Network Model 

 

Stacked Numbers Bee Wing  

dataset  

Augmented Bee 

Wing  

dataset 

Total Parameter 

1 65.13% 68.43% 0.81 Million 

2 70.55% 72.66% 0.81 Million 

3 81.49% 85.19% 0.82 Million 

4 𝟖𝟕. 𝟕𝟐% 
 

88.97% 0.82 million 

 

5 87.39% 89.97% 0.83 Million 

6 86.61% 90.33% 0.84 Million 

7 
 

84.10% 90.10% 0.85 million 

 

8 80.16% 89.15% 0.88 million 

9 79.63% 89.26% 0.9 million 
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Table 5.4. Test Accuracy of the Stacked Adaptive Morphological Neural Network Model 

 

a Butterfly  

dataset 

Augmented   

Butterfly 

dataset 

Total 

Parameter 

1 55.33% 60.77% 0.81 Million 

2 60.75% 75.66% 0.81 Million 

3 73.66% 81.19% 0.82 Million 

4 78.72% 
 

83.64% 0.82 million 

 

5 80.39% 87.30% 0.83 Million 

6 81.61% 88.33% 0.84 Million 

7 
 

80.10% 85.10% 0.85 million 

 

8 79.16% 83.89% 0.88 million 

9 77.63% 82.62% 0.9 million 
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Compared with CNN models, the morphological neural networks contain relatively 

less parameters and could achieve even higher test accuracy. For the ecology datasets and 

chest x-ray datasets, MNN is even more affective than CNN models. However, MNN is 

not always surpass the CNNs. In the next section, the MNN will extend to more datasets 

and thoroughly evaluate the advantages and disadvantages in morphological neural 

networks.  
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5.2 The Limitations of MNN Model  

MNN refers as the morphological neural network, which use mathematical morphology as 

a feature extraction mechanism. Compared with convolutional neural network, which uses 

convolution operation to amplify and extract features from image, MNN replace this 

process by local minimum or local maximum. MNN is proposed for different tasks, such 

as handwritten digits (MNIST) classification, traffic sign recognition and brain tumor sign 

recognition (MRI brain), geometric shapes dataset, ecology datasets and chest X-ray 

datasets. Also, MNNs are also used to detect other datasets such dogs and cats’ datasets.  

 In this part, the MNN models are applied to more datasets to extend it performance 

on more datasets. The extended datasets including the Brain Tumor Dataset [48], the 

MNIST Dataset [49], the Traffic Sign dataset [50], the Geometric Shapes Dataset and the 

Cat and Dog dataset [51].   

The Brain Tumor dataset [48], also called the MRI Brain Dataset, contains 3,064 

grayscale images from 233 patients with three kinds of brain tumor: meningioma (708 

samples), glioma (1426 samples), and pituitary tumor (930 samples). In the experiment, all 

the images are 64 × 64 for classification, and 2,910 images are used for training and 154 

images for testing. 

The MNIST Dataset [49] is a database consisting of 70,000 examples of 

handwritten digits 0~9. It has 60,000 training images and 10,000 testing images. The image 

size in the MNIST Dataset are all 28 × 28 grayscale images in 10 classes.  

The Geometric Shapes Dataset contains 120,000 grayscale images of size 64 × 64 

in 5 classes: ellipse, line, rectangle, triangle, and five-edge polygon. The images are created 

by randomly drawing white objects on a black background, where the size, position, and 
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orientation are randomly initialized. There are 20,000 images in each class for training and 

5,000 images used in each class for testing. 

The Traffic Sign Dataset, or named the GTSRB Dataset, introduces a single-image, 

multi-class classification problem, and there are 42 classes in total. The images contain one 

traffic sign each, and each real-world traffic sign only occurs once. We resize all the images 

into 31 × 35 and select 31,367 images for training and 7,842 images for testing. All the 

images are in grayscale. Figure 5.1 shows sample images of the following datasets.  

 

 

Figure 5.1 The examples from the four datasets in the experiments. The first row is the 

images from brain tumor dataset, the second row from MNIST dataset, the third row from 

GTSRB dataset, and the fourth row from SCGS dataset. 
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The Cat VS Dog Dataset contains 25000 RGB images. There are 12500 image of 

cats and 12500 image of dogs.  The training datasets contains 18750 (75% total) images 

and the testing dataset contains 3750 (15% total) images. To avoid overfitting in the 

training process, a validation dataset, which contains 1250 (5% total) images, is applied. 

Figure 5.2 shows the sample images in the Dog VS Cat Dataset. 

 

 

Figure 5.2 The examples from the sample images Dog VS Cat Dataset in this experiment. 

The left part shows the sample images of cays and the right part shows the sample images 

of dogs.  

 

 

To evaluate the performance of MNN, the comparison experiments are conducted 

in different CNN models. The CNN models including LeNet-5, VGG16, ResNet 101, 

Inception v3 and InceptionResNet V2. The morphological neural network in the 

experiment including the Morphological Operation Model and the Adaptive MNN.  

Considering there are not only one type of Morphological Operation Model, only the 

highest classification accuracy is recorded in Table 5.5.  Table 5.5 shows the comparison 

experimental results between CNN and MNN.  
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Table 5.5   Comparison Experimental Results Between CNN and MNN.  

 

 

Table 5.5 shows the performance of seven deep learning model. These seven 

models can also be classified as two categories: the morphological neural networks and the 

 Morphological 

Operation 

Model 

Adaptive 

MNN 

LeNet-

5 

VGG16 ResNet-

50 

Inception 

v3 

Inception 

ResNet 

V2 

Bee-Wing 87.93% 86.35% 87.78% 17.74% 86.54% 87.16% 87.72% 

Augmented 
Bee-Wing 

89.77% 90.33% 89.97% 88.7% 89.34% 91.46% 90.91% 

Brain 
Tumor 

95.33% 96.47% 90.17% 95.69% 96.30% 97.61% 97.91% 

MNIST 98.93% 97.33% 98.10% 98.50% 98.79% 99.13% 99.65% 

GTSRB  97.48% 97.53% 90.49% 95.32% 97.39% 

 

97.89% 98.01% 

Chest X-
Ray 

96.75% 98.75% 92.40% 94,89% 97.04% 98.63% 98.78% 

COVID-19 96.57% 97.33% 93.96% 94.91% 95.68% 97.09% 97.92% 

Cat & Dog 78.31%  78.64% 96.00% 97.53% 98.32% 99.62% 99.83% 

SCGS 97.75% 98.14% 90.97% 93.18% 94.15%  97.96% 97.05% 
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convolutional neural networks. The two kinds of deep learning models are based on 

different feature extraction mechanisms, the mathematical morphology and the 

mathematical convolution, respectively.  

 In the ecology datasets and medical datasets: the Bee Wing Dataset, the 

Augmented Bee Wing Dataset, the Chest X-Ray Dataset and the COVID-19 Dataset. The 

features in these samples are relatively easy to tell. The performance of the MNNs and the 

CNN are similar, which indicate both of the models can extract enough features. However, 

considering the LeNet-5 and the Morphological Operation Model both contains two feature 

extraction layers and CNN requires more, the MNN could use less parameters to achieve a 

similar and even better performance. The following results show MNN is can be applied 

to image smoothing and feature extraction in ecology dataset and medical datasets. 

In the recognition tasks, such as digital recognition, shape recognition and traffic 

sign recognition. MNN and CNN also can achieve similar results, while MNN can still use 

less parameter than CNN. The experimental results in MNIST Dataset, Traffic Sign 

Datasets and Traffic Sign Dataset, shows MNN is good at shape recognition and contour 

extraction.  

In a more general image classification task, such as the Cat VS Dog Dataset, the 

experimental result shows MNN has a limitation to recognize more detailed features.  Since 

dogs and cats shares a very close features, such as noses, eyes and ears, the  MNN performs 

poor and achieves almost 20% lower accuracy. The reason is MNN has troubles in 

extracting features which has similar feature and shapes. However, the CNN models are 

fundamentally designed for this Dog VS. Cat recognition task.   
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In conclusion, the MNNs are designed based on mathematical morphology and it 

is good at shape representation, contour recognition and image smoothing. Compared with 

CNN model, MNN’s limitation is it cannot recognize objects with similar features, such as 

whether an object is a Dog or Cat. To overcome this limitation in MNN, a new feature 

extraction layer is proposed in the next chapter.  

5.3 The Attention Morphological and Convolutional Neural Network 

In Section 5.2, experimental results show the MNN is able to achieve a relatively high 

performance in image smoothing, shape recognition and contour extraction with a 

relatively small parameters with CNN. And CNNs are able to be applied to images which 

share some similar features but with more feature extraction layers. Based on the following 

experimental results, a novel feature extraction layer which combines both the advantages 

of convolution layer and morphological layer is proposed in this section.  

The attention MCNN layer’s structure contains three parts: The Convolution layers, 

the morphological layers and an attention module. In the feature extraction layer, each 

feature map has the same size. The convolutional layers perform the convolutional 

operation while the morphological layers perform the morphological operation. The 

attention module is applied to calculate the weights of each layer, including all the 

convolutional layers and morphological layers. The purpose in this design is to weight each 

layer and make the model to achieve the best performance. Figure 5.3 shows the proposed 

Attention MCNN for feature extraction layer and Table 5.6 shows the technical detail of 

the design in the proposed structure.  
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Figure 5.3 The Attention MCNN Extraction Layer and Feature Maps. The upper part 

shows the Attention MCNN Extraction Layer and the lower part shows the organization of  

feature maps.  
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Table 5.6 The Technical Detail in the Proposed Structure 

 

No. of Filters in each 

feature extraction 

layer  

Convolutional 

 Layers in CNN 

Morphological  

Layer in MNN 

Attention 

MCNN layer 

In MCNN 

Structure 1 32 4 10 Conv + 4 

Morph 

Structure 2 64 4 15 Conv+ 4 

Morph 

Structure 3  128 4 30 Conv+ 4 

Morph 

Structure 4 312 4 60 Conv+ 4 

Morph 

Structure 5 624 4 100 Conv + 4 

Morph 

 

The second Colum of Table 5.6 shows the common filter numbers in CNN 

extraction layer, the third column shows the filter numbers in MNN and the fourth column 

shows the proposed filter numbers in the MCNN feature extractor. Although 

morphological layers only contain 4 layers in each feature extraction layer, the attention 

module could train a learnable weight for each layer and the convolutional layers also 

reduced tremendously compared with the reverent CNN layers. To evaluate the 

performance of the proposed feature extraction structure, the CNN models are used as a 

baseline model and reverent convolutional layers are replace to Attention MCNN layers.  



 

 

 

 

106 

The new model with MCNN layers is named the MCNN model and Table 5.7 shows the 

experimental results for MCNN model in the ecology datasets and medical datasets and 

other datasets that have been mentioned in this research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

107 

Table 5.7 The Experimental Results for MCNN Model 

 

 

 MCNN Morphological 

Operation Model 

Adaptive 

MNN 

LeNet-5 VGG16 

Bee-Wing 87.17% 87.93% 86.35% 87.78% 17.74% 

Augmented 
Bee-Wing 

92.03% 89.77% 90.33% 89.97% 88.7% 

Brain Tumor 96.79% 95.33% 96.47% 90.17% 95.69% 

MNIST 98.95% 98.93% 97.33% 98.10% 98.50% 

Traffic Sign 
 

97.44% 97.48% 97.53% 90.49% 95.32% 

Chest X-Ray 97.99% 96.75% 98.75% 92.40% 94.89% 

COVID-19 97.01% 96.57% 97.33% 93.96% 94.91% 

Cat & Dog 98.75% 78.31%  78.64% 96.00% 97.53% 

GTSRB 98.97% 97.75% 98.14% 90.97% 93.18% 
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In. Chapter 4, a joint task learning model is mentioned and applied to chest X-ray 

‘s classification and localization task. Based on the MCNN layer, a new joint learning 

model using MCNN layer is applied. Table 5.8 shows the experimental results of the new 

model’s performance.  

 

Table 5.7 The Experimental Results for MCNN Model 

Model Classification    Accuracy Segmentation 

MAP 

VGG16 89.27% 58.45% 

MNN+ VGG16 94.14% 60.73% 

CBAM + VGG16 93.85% 71.78% 

MNN+CBAM+VGG16 90.85% 63.85% 

MBAM+CBAM+VGG16 95.73% 78.72% 

MCNN  96.47% 80.36% 
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 The proposed deep learning model use MCNN layer. Compared to CNN models, 

the proposed model can utilize less convolutional layers in the feature extraction and 

achieve a relative higher test accuracy in different tasks. Compared to MNN model and 

CNN, the MCNN model is able to utilize both advantages of MNN and CNN. And also 

overcome the difficulties in MNN.  

 

5.4 Conclusion 

 

This chapter discussed more about how morphological neural network performs on the 

ecology dataset and the medical dataset. It can be described as three parts:  

First, then MNN are used on the Bee Wing datasets. The experimental result shows 

the MNNs can performs similar results than CNN, but with a small parameter in the feature 

extraction layers in the bee wing datasets. It proves MNN is also useful in the bee wing 

classification task.  

Second, the MNNs are applied to more dataset such as the Brain Tumor Dataset 

[48], the MNIST Dataset [49], the Traffic Sign dataset [50], the Geometric Shapes Dataset 

and the Cat and Dog dataset [51].  The purpose in these experiments is to explore the 

boundary for MNNs. The experimental results in as the Brain Tumor Dataset [48], the 

MNIST Dataset [49], the Traffic Sign dataset [50], the Geometric Shapes Dataset proves 

it can be useful in contour extraction, shape representation and image smoothing. But the 

results in the Cat VS Dog dataset shows the MNN is hardly to recognize items with similar 

features, such as the dog and cats all contains legs, ears and nose. Since these features are 
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hard to extract and analysis in the MNN, it requires MNN to combine some convolutional 

layers in the model. 

Third, a feature extraction layer is developed, which combines both the 

morphological layer and the convolutional layer. In the proposed feature extraction 

structure, contains 4 adaptive morphological layers and different numbers of convolutional 

layers. All layers concatenated with the same shape by an attention module. The attention 

module is used to weight each layer, convolutional or morphological. The weight is learned 

in the training process with a random initialization. With the MCNN layer, a MCNN model, 

similar with VGG16 structure, but replaced by the MCNN layers, rather than the 

convolutional layers are developed.  Experimental results shows the proposed MCNN 

model can achieves a better results than CNN or MNN in all datasets which has been 

mentioned in this research.  
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