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ABSTRACT 

METHODS FOR EXTENDING BIOMEDICAL REFERENCE ONTOLOGIES  

AND INTERFACE TERMINOLOGIES FOR EHR TEXT ANNOTATION 

 

by 

Vipina Kuttichi Keloth 

Biomedical ontologies and terminologies are a cornerstone in various electronic health 

record systems (EHRs) for encoding information related to diseases, diagnoses, treatments, 

etc. Ontologies in general represent entities (concepts) and events along with all 

interdependent properties and relationships in an efficient way to facilitate easy access, 

retrieval and sharing. With the landscape of medicine rapidly changing, biomedical 

ontologies and terminologies need to rapidly evolve to support interoperability, medical 

coding, record keeping, and healthcare activities in general, and to facilitate 

interdisciplinary research. Extending ontologies by identifying new and missing concepts 

plays a vital role in the maintenance of ontologies to keep up with the constant changes. 

Even though different biomedical ontologies capture knowledge in a wide variety 

of medical domains, they still have substantial overlap in their conceptual content. This 

dissertation explores various methodologies that can be used to enrich the content of 

biomedical ontologies and terminologies.  

The dissertation is divided into two parts. The first part addresses how cross-

ontology topological patterns can be designed and used to identify missing concepts. The 

methods presented involve comparing horizontal and vertical density differences between 

identical concepts in two ontologies. Horizontal density studies identified cases of missing 

child concepts, alternative classifications, synonyms, and errors in ontologies. A deeper 

analysis of alternative classification is performed. These alternative classifications are 



 
 

analyzed, and a metric is presented for identifying likely cases of such alternative 

classifications. Vertical density differences occur when a concept is missing on a path in 

one ontology but exists in the other one. Furthermore, topological patterns involving three 

terminologies are presented. A pattern named "fire ladder" incorporates both vertical and 

horizontal density differences among three terminologies supporting concepts import. 

Biomedical ontologies are developed with great investment of time, effort, and 

budget. Are biomedical ontologies regularly maintained? If not, what are the root causes 

behind this? A detailed investigation of these questions is conducted both from a 

quantitative and qualitative perspective. 

Ontologies and terminologies are not the only sources of medical concepts. Large 

repositories of unstructured medical text exist in EHRs. Preliminary studies reveal that 

reference ontologies and terminologies do not contain many of the frequently recorded fine 

granularity concepts in EHRs. Recently, with the COVID-19 pandemic, EHRs have been 

accumulating information regarding new symptoms, procedures and tests that are not all 

currently present in existing reference ontologies and terminologies. To overcome these 

issues, in the second part of the dissertation, natural language processing techniques to 

mine concepts from clinical text are presented. The mined concepts are incorporated into 

interface terminologies that are catering to the annotation of EHR text in different medical 

specialties. Mining clinical text to create a COVID interface terminology and a Cardiology 

interface terminology are discussed. EHR annotation enables secondary use of EHR text 

for clinical research, such as identifying eligible patients for clinical trials. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Motivation 

Over the past two decades, the biomedical research community has made tremendous 

progress in developing ontologies and terminologies that encode biomedical knowledge 

about entities (concepts) and their relationships to each other [1, 2]. Biomedical ontologies 

and terminologies are important in Electronic Health Record (EHR) systems (e.g., Epic [3], 

Cerner [4], Allscripts [5], etc.) and play a major role in facilitating clinical practice, 

healthcare applications, biomedical research, and enable reasoning with biomedical 

knowledge. For example, the International Classification of Diseases (ICD- 9/10) [6] 

diagnosis code set is used for billing, the Current Procedural Terminology (CPT) [7] is 

used to code procedures, SNOMED CT [8] is used to encode the clinical data in patient 

records, and Logical Observation Identifiers Names and Codes (LOINC) [9] to encode lab 

and other observations.  

One of the major challenges for biomedical ontologies is keeping up with the pace 

of the rapidly changing biomedical sciences. Hence, a significant amount of effort has gone 

into providing the right infrastructure for the maintenance and interoperability among the 

ontologies. Extending biomedical ontologies and terminologies by adding new concepts is 

a vital part of this maintenance effort. With the COVID-19 pandemic, many ontology and 

terminology developers had to take immediate actions by issuing interim releases and 

updating their ontologies and terminologies by adding new concepts enabling clinicians 

and researchers to code and analyze huge volumes of EHRs of COVID-19 patients [10, 

11]. 
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The distinctions between ontologies and terminologies have been ably discussed by 

other researchers [12-14]. In short, an ontology is concerned with the study of classes of 

entities and the relations among them and is more than just a list of terms, while the purpose 

of a terminology is to collect all the entities in a particular domain. The words 

"terminology" and "ontology" are used in an inclusive sense in this dissertation, whether a 

source is an ontology or "only" a terminology (vocabulary, etc.).  

The number of ontologies and terminologies has grown rapidly over the past decade. 

BioPortal [15, 16], which is widely regarded to be the world’s most comprehensive 

repository of biomedical ontologies, reported around 300 ontologies in 2013 [17] and has 

grown to 841 ontologies to date [18]. The Unified Medical Language System (UMLS) 

Metathesaurus [19] was designed to enable effective retrieval of information and 

understanding of the meaning of different entities across different ontologies and 

terminologies. The UMLS Metathesaurus contains over 200 general and specialized 

biomedical terminologies in about 25 different languages; however, the majority of these 

terminologies are in English [20]. The concepts in these terminologies are organized in 

hierarchical structures based on their relationships to one another. Synonymous terms are 

clustered into a unique concept, identified by a Concept Unique Identifier (CUI). 

Terminologies vary from one another in several aspects like the domain or subject 

area they cover, the level of abstraction, the level of detail, the modeling philosophy, and 

what language its terms are taken from. For example, the National Cancer Institute 

Thesaurus (NCIt) [21] is a reference terminology that includes broad coverage of the cancer 

domain, whereas the Gene Ontology (GO) [22] is an ontology for describing genes and 

their functions. Even though ontologies differ in their domains, there is a significant 
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overlap in the conceptual content among many pairs of ontologies. For instance, according 

to the 2018AB version of the UMLS, NCIt has 20% overlap with MeSH [23], 17.4% 

overlap with SNOMED CT, and 7.1% overlap with MEDCIN [24].  

In prior work, the overlap in the conceptual content was studied in detail [25-27] 

and it was found that there are substantial differences in the "vertical density" of the 

conceptual content among different ontologies. Rector et al. [28] defined density as "The 

number of semantically 'similar' concepts in a particular conceptual region" and further 

states that "High local density in an ontology usually co-occurs with high levels of 

specialisation and degree of detail, …..". Specific topological patterns called m:n 

trapezoids [27] and Cross-Ontology Diamonds [25] (Figure 1.1) were proposed to 

demonstrate the differences in vertical density. Detailed analyses of these patterns were 

conducted to identify missing concepts, synonyms, errors, etc. 

 

Figure 1.1 An example of a Cross-Ontology Diamond. The arrow represents IS-A 

hierarchical relationship. 
Source: [25] 
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This dissertation extends the prior work by identifying patterns based on 

"horizontal density" differences. These patterns reveal cases of missing child concepts in 

an ontology and alternative classifications of identical concepts in different ontologies. A 

mathematically expressed criterion to identify potential cases of alternative classifications 

is introduced. Additionally, the methodology is extended from two ontologies to three 

ontologies to explore a new pattern named "fire ladder."  

The previously discussed methods explored the structural differences among pairs 

of ontologies to identify missing concepts that could be imported from another ontology. 

However, a huge amount of medical data also exists in the form of unstructured text in 

EHRs. This data contains finer levels of information that are usually not present in the 

standard ontologies. Two natural language processing techniques named "concatenation" 

and "anchoring" were used to mine fine granularity concept names from unstructured 

clinical text data. The benefits of creating an interface terminology that has comprehensive 

coverage of a particular medical specialty to annotate EHR data are presented. These 

techniques are demonstrated for the COVID-19 and the cardiology domain.  

 

1.2 Dissertation Overview 

Chapter 2 provides brief information about different biomedical ontologies, integrated 

terminological systems, and clinical databases. In addition, Chapter 2 presents a detailed 

review of the literature in the areas of semantic harmonization and extension of ontologies. 

A distinction between reference ontologies and interface terminologies is also provided.  

Chapter 3 presents a study exploring the horizontal density differences in pairs of 

ontologies in the UMLS. The study introduces an algorithm and a metric that automatically 
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suggests child concepts that are likely to be imported into SNOMED CT and NCIt from 

eight other ontologies in the UMLS.  

Chapter 4 explores the idea of "alternative classifications" of identical concepts in 

different terminologies. The study demonstrates a revised algorithm and metric for 

importing child concepts into NCIt from MEDCIN. The metric automatically identifies 

likely cases of "alternative classifications," that were discovered in this research. 

Furthermore, a detailed analysis of different types of alternative classifications is provided.  

Chapter 5 demonstrates how topological patterns can be extended from two 

terminologies to three terminologies leading to the discovery of "fire ladder" patterns.  

Chapter 6 reports a study conducted on the ontologies in BioPortal. This study 

analyses the life cycle of ontologies, specifically those ontologies that have more than a 

thousand concepts. The root causes for not updating the ontologies are studied and they are 

categorized into groups, based on the phenomenological approach to qualitative data 

analysis. 

Chapter 7 discusses two studies on identifying new fine granularity concepts from 

medical text to create interface terminologies for annotation of EHRs. The techniques are 

demonstrated for the cardiology and COVID-19 domains. 

Finally, Chapter 8 presents future work and Chapter 9 contains concluding remarks 

about the studies discussed in previous chapters. The studies in Chapter 3 and Chapter 6 

were published in the Proceedings of the American Medical Informatics Association 

(AMIA) 2018 Annual Symposium [29, 30], Chapter 4 in the Journal of Biomedical 

Informatics [31], and Chapter 5 in BMC Medical Informatics and Decision Making [32]. 

The two studies in Chapter 7 were published in the Proceedings of the IEEE International 
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Conference on Big Data [33] and the IEEE International Conference on Bioinformatics 

and Biomedicine [34]. 
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CHAPTER 2  

BACKGROUND 

 

2.1 Biomedical Ontologies 

Biomedical ontology research encompasses a variety of entities ranging from dictionaries 

of names for biological products to controlled vocabularies to knowledge bases and 

processes for the acquisition of ontological relations [2]. Biomedical ontologies are widely 

used to facilitate research in many other domains like knowledge and data mining [35, 36], 

natural language processing tasks [37, 38], and other health care applications [39-41]. This 

section will introduce some large biomedical ontologies and terminologies that are relevant 

to this dissertation. 

2.1.1 SNOMED CT  

SNOMED CT is a standardized vocabulary of clinical terms used by healthcare staff all 

over the world for the electronic exchange of clinical health information [42]. SNOMED 

CT is managed by IHTSDO (International Health Terminology Standard Development 

Organization), which in 2017 adopted the trading name of "SNOMED International." The 

number of concepts in SNOMED CT continues to grow, and the January 2021 International 

Edition of SNOMED CT contained 354,448 active concepts and 1,178,592 relationships 

[43]. SNOMED CT is a global clinical ontology, and for improving interoperability and 

healthcare it is being translated into local languages by the SNOMED CT members.  

Concepts in SNOMED CT are arranged in 19 hierarchies under a root concept 

named SNOMED CT Concept. Some of the hierarchies are Body structure, Clinical finding, 

Specimen, and Procedure. Each concept in SNOMED CT has at least one IS-A relationship 
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with a parent concept except for the root concept. A concept can have more than one parent 

concept. Also, a concept can have one or more "attribute relationships." For example, the 

concept Fracture of tarsal bone IS-A Fracture of foot and has finding site – Bone structure 

of tarsus and associated morphology – Fracture, where finding site and associated 

morphology are attribute relationships.  

 

Figure 2.1 An example of different types of relationships in SNOMED CT. 

The U.S. SNOMED CT Content Request System (USCRS) allows SNOMED CT 

users to submit change requests to the curators of SNOMED CT [44]. Online forms 

provided by the system allow users to submit requests for adding new concepts, 

relationships, etc., changing descriptions and relationships and retiring concepts, etc.  

2.1.2 National Cancer Institute Thesaurus (NCIt) 

The National Cancer Institute Thesaurus (NCIt) is a reference ontology for many systems 

and is a widely recognized standard for biomedical coding. NCIt enables retrieval of 

information across a wide range of domains used in cancer research, facilitating the process 

of migrating basic research into clinical research and practice in the cancer research domain 

[21]. NCIt has been developed by NCI Enterprise Vocabulary Services (EVS) [45] to 
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facilitate standardization of terminology use across the biomedical community. NCIt is 

updated monthly and a recent version of NCIt is the January 2021 release version 21.01d. 

NCIt has stable, unique codes for biomedical concepts with over 100,000 textual 

definitions and 400,000 relationships between concepts [46]. NCIt provides cross-links and 

semantics for a broader range of EVS terminology resources. SNOMED CT and NCIt are 

two of the most widely used ontologies with large numbers of concepts. The concepts in 

these ontologies overlap with each other and with several other UMLS ontologies. 

NCIt is modeled based on the description logic (DL) paradigm [21, 47]. NCIt can 

be accessed on the Web [48], or by file download in any of three formats: Ontylog XML, 

OWL Lite, and ASCII flat file. NCIt is maintained by a multidisciplinary team of editors, 

who in the past have added about 700 new entries each month. NCIt also provides facilities 

that allow users to place requests for adding, updating, and retiring concepts and 

relationships [45]. The concepts in NCIt are structured into 19 logically disjoint classes; 

for example, Disease, Disorder or Finding, Abnormal cell, Gene, and Molecular 

Abnormality. The concepts are organized in multiple parent-child IS-A hierarchies within 

each class and have over 100 distinct role relationships that provide asserted and inherited 

logical links between pairs of concepts. Figure 2.2 shows 13 neoplasm concepts in the 

Disease, Disorder or Finding hierarchy of NCIt. 
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Figure 2.2 An excerpt of 13 neoplasm concepts in the Disease, Disorder or Finding 

hierarchy of NCIt. Concepts are represented by rounded rectangles and the arrows 

represent IS-A relationship between the concepts. 

 

2.1.3 MEDCIN 

MEDCIN was created and is maintained by Medicomp Systems Inc [49]. It is a medical 

terminology that encompasses symptoms, tests, diagnoses, physical examinations, etc. It 

was designed to allow for rapid entry, retrieval, and correlation of relevant clinical 

information at the point of care, to enable applications to store medical information as 

coded data elements, and to produce narrative reports from the same data. The approach 

used in developing MEDCIN was to organize the individual data elements (findings) into 

six broad categories namely symptoms, history, physical examination, tests, diagnoses, and 

treatments which reflect the types of information acquired during clinical processes [24]. 
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MEDCIN defines each finding with a degree of sensitivity and clinical specificity 

so that it can be used for differential diagnoses and is suitable for documentation and 

research. The findings are organized giving due consideration to the number of steps 

required to record a finding and the number of search elements required to locate it for 

future analysis. For this purpose, MEDCIN uses a data structure that embodies the concept 

of inheritance between levels in a hierarchy. For example, MEDCIN has more than 80 

findings for "numbness," starting with the general finding and proceeding in a structured 

hierarchy through all areas of the body, increasing in detail at each level [24]. 

MEDCIN is updated regularly throughout the year and the updated files are 

released at least twice a year. In the 2020AB release of the UMLS, MEDCIN has around 

358,221 concepts. MEDCIN has about 3% source overlap with NCIt and about 13.9% with 

SNOMED CT. 

2.1.4 Coronavirus Infectious Disease Ontology (CIDO) 

The Coronavirus Infectious Disease Ontology (CIDO) [50] was created to provide a 

standardized representation of various coronavirus infectious diseases. CIDO provides 

standardized human- and computer-interpretable annotations and representations of 

various infectious coronavirus diseases, including their etiology, transmission, 

epidemiology, pathogenesis, diagnosis, prevention, and treatment. Its development follows 

the OBO Foundry Principles [51]. CIDO is released in OWL format and is freely available 

on the GitHub repository [52]. CIDO is available on BioPortal [53] and Ontobee [54]. 

Currently, CIDO is at version 1.0.184 with a total of 6,938 concepts and 371 properties of 

which 201 are relationships. Concepts are interconnected by 201 lateral relationship types 

such as caused by, infection with, and treatment for. 
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As CIDO follows the OBO Foundry [51] principles, there is extensive reuse of 

concepts from about 20 other ontologies including the Chemical Entities of Biological 

Interest (ChEBI) [55] and the Human Phenotype Ontology (HPO) [56]. For example, drug 

concepts are reused from ChEBI, the National Drug File - Reference Terminology (NDF-

RT) [57], and the Drug Ontology (DrON) [58]. CIDO contains 244 original COVID-19-

specific concepts.  

 

2.2 Integrated Terminological Systems 

With the rise in the number of biomedical ontologies, research was also directed towards 

integrating data from different ontologies and providing platforms for the same. The 

Unified Medical Language System (UMLS) [19, 59], and BioPortal [16] were created 

towards achieving this goal. The UMLS aims at merging existing vocabularies. The 

National Center for Biomedical Ontology (NCBO) BioPortal provides access to commonly 

used biomedical ontologies and also tools for working with them. This section will describe 

these two systems in detail. 

2.2.1 Unified Medical Language System (UMLS) 

The Unified Medical Language System (UMLS), initiated in 1986, was designed and is 

maintained by the US National Library of Medicine [59]. It brings together many health 

and biomedical vocabularies and standards to enable interoperability and can be used to 

enhance and develop applications, such as Electronic Health Records, classification tools, 

dictionaries, and language translators. The various subdomains integrated into the UMLS 

include biomedical literature, genome annotations, anatomy, genetic knowledge bases, 

model organisms, clinical repositories, and many more [19]. The UMLS has three 
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components namely, the Metathesaurus, Semantic Network, and SPECIALIST Lexicon 

with Lexical Tools. The UMLS Metathesaurus contains terms and codes from over 200 

vocabularies including CPT, ICD-10, LOINC, MeSH, RxNorm [60], and SNOMED CT. 

The Semantic Network provides the semantic types and the semantic relations between the 

concepts. A large syntactic lexicon of biomedicine and tools for normalizing strings, 

generating lexical variants, and creating indexes are provided by the SPECIALIST Lexicon 

with Lexical Tools component. 

The Metathesaurus organizes concepts by their meaning and synonymous terms are 

grouped into concepts identified by a Concept Unique Identifier (CUI). Different concepts 

are linked to each other using various types of relationships and each relationship is 

identified by a Relationship Unique Identifier (RUI). Relationships (REL) have labels, 

describing their nature, such as, has parent relationship (PAR), has a broader relationship 

(RB), etc. Some relationships also have an additional annotation (RELA) that gives a more 

detailed explanation of the relationship such as consists_of, isa, part_of, location_of, etc. 

The UMLS is updated in May and November of each year. The May release is 

denoted as the AA release and the November release is denoted as the AB release. The 

2020 AB release of the UMLS is distributed in the RRF format (Rich Release Format). 

This release of the UMLS has 4,413,092 unique concepts from 215 source vocabularies in 

25 different languages [20]. In total, 70.78% of concepts in the Metathesaurus are in 

English. 

2.2.2 NCBO BioPortal 

BioPortal is a repository of biomedical ontologies – the largest of its kind, with 841 

ontologies (on 02/24/2021) and growing. The ontologies in BioPortal fall under different 
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categories namely those developed in OWL (Web Ontology Language) format [61], others 

in OBO (Open Biomedical Ontologies) format, several medical terminologies from the 

UMLS in the RRF format, and a few in SKOS (Simple Knowledge Organization System) 

format [62]. Ontologies in BioPortal vary widely in the topic areas that they cover. For 

example, some of the topics are health, anatomy (plant, animal, fish), phenotype, chemical, 

genomic, and proteomic subject areas, etc. 

BioPortal maintains information about various aspects of an ontology. BioPortal 

has a submission page for each ontology. Available data on the submission page includes 

the release date, upload date, ontology format, submission id, short description, URL of 

the homepage, version number, etc. of all the submissions of the ontology to BioPortal. 

Other items of information provided in BioPortal for individual ontologies include the 

number of classes, the number of properties, etc.  

BioPortal SPARQL [63] is a service from BioPortal to query biomedical ontologies 

using the SPARQL standard. All the BioPortal’s ontologies have been transformed into 

RDF triples from their different original formats which helps users with uniform access to 

key properties of the ontologies [17]. Furthermore, it also contains cross-ontology 

mappings of different types, generated both manually and automatically. 

 

2.3 Clinical Databases 

Clinical data in the form of unstructured text present in discharge summaries, lab reports, 

progress notes, etc. contain relevant information and detailed descriptions of patient 

conditions. Many fine granularity concepts that are frequently used by medical 

professionals are recorded in these unstructured clinical text segments.  The standard 
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ontologies and terminologies often do not contain such concepts. To mine these concepts, 

data from two clinical databases was used which are described in detail in this section. 

2.3.1 MIMIC-III Intensive Care Database 

MIMIC-III (Medical Information Mart for Intensive Care) is a freely accessible, de-

identified critical care database comprising information relating to patients admitted to 

critical care units at the Beth Israel Deaconess Medical Center in Boston, Massachusetts 

[64]. The data is very diverse ranging from vital signs, medications, and laboratory 

measurements to procedure codes, diagnostic codes, billing information, and survival data. 

As an extension to the database, MIMIC III also contains waveform data from ECG and 

EEG measurements [65]. The data is de-identified following the Health Insurance 

Portability and Accountability Act (HIPAA) regulations [66]. A schematic overview of the 

database along with the data extraction process is shown in Figure 2.3. The database 

contains data from patients admitted to the hospital from 2001 to 2012 with a total of 

61,532 ICU stays and 46,476 unique patients. 

The MIMIC-III Database provides a table named "NOTEEVENTS" that records 

free text "notes" produced by the hospital staff during the course of the patients’ stay in the 

ICU. Nurses write "nursing notes," which summarize the events that occurred during their 

shift. When a patient is discharged from the hospital, the physician summarizes the entire 

hospitalization period in the form of a "discharge summary," which is also recorded in the 

database table. In addition to the progress or nursing notes and discharge summaries, the 

table also records reports of diagnostic tests including X-rays, echocardiograms, and ECGs. 

Currently, the table "NOTEEVENTS" has 2,083,180 entries, including 59,652 discharge 

summaries. 
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Figure 2.3 Overview of MIMIC-III Database. 
Source: [64] 

 

2.3.2 COVID-19 Radiology Case Studies 

Radiology imaging reports, including Computed Tomography (CT) imaging and X-rays 

play a major role in the diagnosis and management of COVID-19 patients. Radiology case 

studies are chronicles of patient progress describing classic and unusual presentations of 

diseases with a focus on findings in CTs and X-rays. SIRM - the Italian Society of Medical 

and Interventional Radiology has provided a COVID-19 Database [67]. This database 

contains COVID-19 radiological case studies. There are 115 case studies to date. Each case 

study describes patient demographic information such as age and sex, prior medical history, 

symptoms, detailed CT and chest X-ray findings, and medications. X-ray and CT images 

are also provided with a detailed description of the findings. 
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2.4 Semantic Harmonization and Extension of Ontologies 

Biomedical knowledge is in constant evolution and growth. Hence, developing and 

extending biomedical ontologies is a process that can never be considered complete. With 

several ontologies sharing similar domains, semantic harmonization and interoperability 

add another dimension to this challenge. This section introduces prior work that addresses 

challenges in achieving semantic harmonization. Prior research focusing on the structural 

differences among ontologies with similar concepts, and how these differences can be used 

in extending ontologies, is also discussed in detail.  

Semantic harmonization is a process of combining data from multiple sources and 

representations into a form that facilitates sharing the meaning of data across these sources 

and representations. Cunningham et al. [68] identify "re-using standard vocabularies 

wherever possible" with a mechanism to add new terms, as one of the nine principles of 

semantic harmonization. Weng and Fridsma [69] proposed a conceptual design for 

collaborative semantic harmonization that identified three key design principles, namely, 

reuse, collaboration, and harmonization as modeling. Research areas dealing with ontology 

matching [70, 71], ontology mapping [72] and alignment [73-76] that strive to achieve 

semantic harmonization and interoperability, are described in detail in Section 2.4.1. 

Issues that hinder semantic harmonization and interoperability are due to the 

modeling policies adopted by different ontologies and the level of detail they require when 

representing the knowledge in the same domain to support their applications. Literature in 

this area uses either "granularity" or "density" to denote this difference in the level of detail 

in different ontologies. In Section 2.4.2, previous work related to granularity/density 

differences in ontologies that enables the extension of ontologies is described. 
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2.4.1 Ontology Matching/Alignment 

Ontology alignment or ontology matching – the process of finding correspondences 

between concepts in ontologies – has been studied for a long time [70-72, 77-79]. Many 

publications have surveyed the state-of-the-art in this field [72, 79, 80]. There are different 

ontology matching techniques based on the approaches used to implement the matching 

algorithms. Euzenat and Shvaiko [70] proposed a matching technique classification as 

shown in Figure 2.4.  

 

Figure 2.4 Classification of ontology matching techniques. 
Source: [70] 

 

The classification hierarchy can be read top-down as well as bottom-up. The top-

down interpretation is based on whether the matching techniques use:  

1. Element-level matches (obtain the correspondences by considering the entities 

in isolation) or 

2. Structure-level matches (obtain the correspondences by analyzing how the 

entities fit in the structure of the ontology).  
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Reading the classification bottom-up, the matching techniques are initially divided 

into two categories based on the origin of the information considered for the matching 

process as  

1. Content-based (focus on the internal information coming from the ontologies 

to be matched) or 

2. Context-based (focus on external information that comes from relations 

between ontologies or other external resources). 

The methodologies described in different studies in this dissertation use the 

structural classification of the content-based matching techniques. The Ontology 

Alignment Evaluation Initiative (OAEI) [73] works towards achieving consensus for the 

evaluation of these methods. This initiative contains various tracks with different data sets 

that evaluate different features of the system to be tested.  

Most research in this field focuses on methods for finding simple 1:1 

correspondence between concepts in two ontologies. Only a very few alignment systems 

have focused on finding complex correspondences. Recently, Zhou et al. [74] proposed a 

complex alignment benchmark based on the real-world GeoLink dataset. The alignments 

in this dataset not only cover 1:1 correspondences but also contain 1:n and m:n complex 

relations. They have identified 12 different kinds of simple and complex correspondence 

patterns and made available the alignments in both rule and EDOAL syntax [81]. Gouveia 

et al. [78] proposed a method for ensuring the quality of ontology alignments by identifying 

ambiguous 1:1, 1:n, n:1, and m:n ontology matching scenarios and providing sets of 

resolution strategies.  
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Oliveira and Pesquita [76] proposed a set of algorithms to create ternary compound 

alignments (compound matching of three distinct ontologies) for large biomedical 

ontologies. Another work, related to ontology integration based on mapping, repair, and 

conservative alignment proposed by Stoilos et al. [82] focuses on building a framework 

that integrates several medical ontologies to support real-world health care services. The 

integration starts with a seed ontology to which new ontologies are added to enrich and 

extend the seed ontology. They also developed algorithms to deal with structural 

incompatibilities. 

2.4.2 Granularity/Density Differences and Ontology Enrichment 

Ontologies often adopt different levels of detail when representing the same piece of 

knowledge to support different applications. Many different terms such as granularity, 

specialization, degree of detail, density, etc. are used in literature to describe these 

differences. Rector et al. [28] provided a detailed account of the terms granularity, scale, 

collectivity, specialization, degree of detail, density, and connectivity with the help of 

examples taken from biomedicine.  

Prior research has explored structural incompatibility in granularity (granularity 

differences) among ontologies in the UMLS as a tool to enhance the conceptual content of 

the ontology. This research mainly uses a rule-based approach or a topological pattern-

based approach. As an example of the rule-based approach, Sun and Zhang [83] identified 

granularity differences as well as similarities between large biomedical ontologies through 

rules. They investigated the examples of correspondence across two anatomical ontologies 

(the Adult Mouse Anatomical Dictionary (MA) [84] and NCIt) and synthesized patterns, 

and constructed rules that were then fed into a rule inference engine to distinguish among 
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different subclasses and classifications. An example of multiple subclasses for an anchor 

concept (MA: digestive system fluid/secretion, NCIt: Gastrointestinal Fluid Or Secretion) 

is shown in Figure 2.5. 

 

Figure 2.5 Subclass classification similarity and differences across MA and NCIt. 
Source: [83] 

 

In another work with this approach, the same authors [85] conducted a parallel 

study to construct rules to systematically identify the differences as well as similarities in 

a partonomy (a hierarchy of part-whole relationships) between two biomedical ontologies 

(MA and NCIt) instead of using IS-A relationships. The rules used in these two studies 

were constructed after a manual investigation of some examples of anchor concepts and 

hence do not cover all cases of structural incompatibility among ontologies. The main 

limitation of this approach is that every time a new mismatch pattern is identified new rules 

need to be added. 
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Luo et al. [86] proposed a method for evaluating the granularity balance of IS-A 

and part-of relationships within a biomedical ontology. They used "parallel concept set 

(PCS)" (two concepts that share a similar level of conceptual knowledge) and the length 

and strength of the paths between the PCSs to design evaluation models to improve the 

quality of one ontology.  

 

Figure 2.6 An abstract layout of structurally congruent concepts. 
Source: [26] 

 

The topological pattern-based approach mainly emphasizes identifying the vertical 

density differences among different biomedical terminologies. In this work, He et al. [26] 

used "structurally congruent concepts" in pairs of terminologies as a method for 

harmonizing the terminologies. Two concepts X (from Terminology 1) and Y (from 

Terminology 2) are called "structurally congruent" if X and Y have the same parent and 

the same child in both the terminologies and concept X does not appear anywhere in 

Terminology 2 and Y does not appear anywhere in Terminology 1 and X and Y are not 

synonyms. Figure 2.6 shows an abstract layout of two structurally congruent concepts (X 

and Y). They used six UMLS terminologies to pair with SNOMED CT in their study. The 
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structurally congruent concepts were interpreted in six possible ways, including alternative 

classification, synonyms, structural errors, etc.  

The work on structurally congruent concepts was extended to develop structure-

based algorithmic methods to identify the concepts that could enrich the conceptual content 

of SNOMED CT [27].  More complex topological patterns like m:n trapezoids were 

extracted with the help of the proposed trapezoid identification algorithm, and potential 

concepts for inclusion as parents, children, synonyms, etc. into SNOMED CT were 

identified. Analogous methods were tested to locate potentially missing concepts for NCIt, 

using eight source terminologies from the UMLS [87]. The usefulness of the NCI 

Metathesaurus instead of the UMLS Metathesaurus for enriching NCIt was also studied in 

detail [88]. Figure 2.7 shows the layout of a 2:3 trapezoid pattern. 

 

Figure 2.7 The layout of a 2:3 trapezoid topological pattern. The arrow represents IS-A 

hierarchical relationship. 
Source: [27] 

 

The main limitation of the studies that use topological patterns is that although the 

process of identifying the potentially missing concepts is automated, it still requires a 
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human expert to review the suggestions and make the decision as to whether to import a 

concept or not. A study has been conducted to estimate the difficulty of this task for a 

domain expert and it proved that it is still challenging even with the support of the algorithm 

that offers suggestions for import [25, 89]. 

 

2.5 Reference Ontologies vs. Interface Terminologies 

Biomedical ontologies represent classes of entities, focused on the definition of classes and 

the relations among them. Ontologies represent knowledge in a formal, principled way. 

Burgun in a paper titled "Desiderata for domain reference ontologies in biomedicine" [90] 

describes domain reference ontologies as ontologies that "represent knowledge about a 

particular part of the world in a way that is independent from specific objectives, through 

a theory of the domain represented." Five desirable characteristics are suggested for 

reference ontologies which include good lexical coverage, good coverage in terms of 

relations, compatibility with standards, modularity, and ability to represent variation in 

reality. 

Terminologies are generally built to serve applications such as document retrieval, 

resource annotation, and healthcare billing. Biomedical terminologies do not use formal 

and well-defined descriptions; they usually define the terms by human language 

expressions. Although terminologies can be successfully used in representing abstract 

meaning, they are not precise and expressive enough for more knowledge-intensive 

applications [91].  

Rosenbloom et al. [92] defined a clinical interface terminology as "a systematic 

collection of healthcare-related phrases (terms) that supports clinicians' entry of patient 
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related information into computer programs, such as clinical 'note capture' and decision 

support tools." It is an interface between the users and the standard reference terminologies 

required by clinical information systems [93]. Interface terminologies are designed with 

the end-users in mind and hence consist of relatively common clinical phrases and 

colloquial usages as opposed to a standard concept-based aggregation of clinical 

information in a reference ontology. 

 

2.6 Biomedical Annotation Tools 

A suite of biomedical annotation tools is available for use. Some of these are general-

purpose tools in that they detect a wide variety of entity types, and in most cases, they link 

terms to concepts in the UMLS. The cTAKES [94], MetaMap [95], QuickUMLS [96], and 

NCBO Annotator [97, 98] are examples of general-purpose annotation tools. The NCBO 

Annotator (previously known as the Open Biomedical Annotator) is an ontology-based 

web service, available on the BioPortal platform [15], which tags biomedical text 

automatically with ontology terms. With NCBO Annotator it is possible to annotate text 

with concepts from an ontology of the user's choice (from 840+ BioPortal ontologies). A 

user can also upload a proprietary ontology to BioPortal, and utilize this ontology to 

annotate text, thereby customizing the annotations based on the requirements of different 

studies. MetaMap was developed by the National Library of Medicine (NLM) and can 

annotate clinical text with appropriate concepts from the UMLS. cTAKES is another 

system for the extraction of information from clinical text with the UMLS. It is available 

as open-source software from Apache. 

Another category of annotation tool is trained to identify specific entity types like 
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genes, disease, chemicals, etc. PubTator [99] and BERN [100] are examples in this 

category. Yet another category of annotation tool is trained on manually annotated datasets 

using machine learning techniques and can work on a wide variety of entity types based on 

the training data available. CLAMP [101] is an example of such an annotation tool. 

CLAMP incorporates several machine learning components and the latest release, 1.6.0, 

contains multiple deep learning modules.  
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CHAPTER 3  

HORIZONTAL DENSITY DIFFERENCES IN ONTOLOGIES 

 

Two concepts that occur in different ontologies are known to be identical if they have the 

same Concept Unique Identifier (CUI) in the UMLS Metathesaurus. It was observed that 

such concepts rarely have exactly the same sets of children (=subconcepts) in the two 

ontologies. The number of common children was found to vary widely. While there were 

some cases in which the identical concepts had exactly the same child concepts in both the 

ontologies, in a majority of the cases the number of common children differs widely. This 

difference in the sets of child concepts for identical parent concepts in two different 

ontologies is referred to as horizontal density difference. It was also observed that in many 

cases there were no common children. 

This chapter presents a study on analyzing horizontal density differences and 

exploring how these differences can be utilized to enrich the conceptual content of an 

ontology. The study leverages the horizontal density differences among pairs of ontologies 

in identifying missing child concepts in the target ontology. An algorithm for identifying 

missing child concepts along with a metric that filters these concepts is introduced. The 

identified concepts are reviewed by domain experts for inclusion into the ontology and 

results are presented. 

 

3.1 Concept Import and Density Differences 

The existing biomedical ontologies differ widely in the domain they cover. With the 

medical knowledge continuously expanding, new concepts are being added regularly. As 
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discussed previously, even though ontologies differ in their domain knowledge, there is 

substantial overlap in the conceptual content of the ontologies. This overlap can be utilized 

for identifying missing child concepts by exploring the vertical and horizontal density 

differences. Firstly, a distinction between vertical density difference (which was previously 

explored in the literature and described in Section 2.4.2) and horizontal density difference 

(which is the subject of this study) is provided. 

Consider pairs of ontologies with local similarities where corresponding "IS-A" 

paths in those ontologies are of different lengths. For example, in Figure 3.1 concept GP 

(grandparent of the focal concept F) and concept GC (grandchild of F) are common in both 

ontologies. The ontology on the left side is the source ontology (the ontology which 

supplies missing child concepts). The ontology on the right side is the target ontology (the 

ontology into which the concepts are imported). In the source ontology, between the 

concepts GP and GC, there are three other concepts P (parent), F, and C (child), whereas, 

in the target ontology, there is only one concept δ between GP and GC. This difference in 

the number of intermediate children which leads to "IS-A" paths of different lengths is 

what is called vertical density difference. The resulting topological patterns were named 

m:n trapezoids [27, 87] and m/n cross-ontology diamonds [25]. Prior work explored the 

possibility of importing additional concepts into the target ontology whenever there are 

more concepts on the source ontology side [25, 27, 88]. Notice that these topological 

patterns are highly constrained and used to examine concepts within the boundaries of 

identical ancestors and descendants in both ontologies.  
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Figure 3.1 An abstract layout for demonstrating vertical density differences.  
Source: [30] 

 

Relaxing this vertical constraint leads to horizontal density differences which are 

explored in this study. Consider the concept Gas gangrene in Figure 3.2. It is present in 

both SNOMED CT and MEDCIN. There are 10 child concepts common between the two 

ontologies, of which three are shown in Figure 3.2. The concept puerperal gangrene gas 

in MEDCIN does not exist as a child of Gas gangrene in SNOMED CT. This difference in 

the sets of child concepts for identical parent concepts is called horizontal density 

difference. This leads to the possibility that puerperal gangrene gas is missing in 

SNOMED CT and could be imported into it. Every ontology has its own policies 

concerning what to include and what to omit. However, the possibility exists that this 

concept would be included by the SNOMED CT curators if they were previously not aware 

of the fact that it is potentially missing and were later informed that it might be. 
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Figure 3.2 An example demonstrating horizontal density differences in SNOMED CT and 

MEDCIN. The arrow represents IS-A hierarchical relationship. 
Source: [30] 

 

With an understanding of the difference between vertical and horizontal density 

differences this study asks the question - Given a concept occurring in two different 

ontologies with two different but overlapping sets of children, does this indicate the 

possibility of importing children from one ontology into the other? A quantitative analysis 

of the phenomenon of horizontal density differences in 10 ontologies from the UMLS 

Metathesaurus is presented. 

3.1.1 Identifying Source Ontologies 

The UMLS is used to identify source ontologies that could potentially supply missing child 

concepts to the two target ontologies SNOMED CT and NCIt. Two criteria are applied for 

selecting the source ontologies – 1) the ontology should be in the English language; 2) the 

ontology should have a PAR relationship (parent relationship in a Metathesaurus source 

vocabulary) with an inverse_isa annotation (additional relationship). There are 10 such 

ontologies in the 2017 AA release of the UMLS in addition to SNOMED CT and NCIt, 

namely the Anatomical Therapeutic Chemical Classification System (ATC) [102], Medical 
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Entities Dictionary (CPM) [103], Current Procedural Terminology (CPT) [7], 

Foundational Model of Anatomy Ontology (FMA) [104], Gene Ontology (GO) [22], 

Human Phenotype Ontology (HPO) [105], MEDCIN [24], the Veterinary Extension to 

SNOMED CT (SNOMEDCT_VET) [106], Universal Medical Device Nomenclature 

System (UMD) and University of Washington Digital Anatomist (UWDA). Two 

ontologies were excluded from the study – SNOMEDCT_VET, and UWDA. 

SNOMEDCT_VET was developed and is maintained to extend SNOMED CT with 

additional animal-specific content [55] and UWDA consists of only some selected 

components of FMA and hence it was also not considered, to avoid overlap. When 

SNOMED CT is the target ontology, then NCIt is joined to the group of source ontologies 

and vice versa. 

3.1.2 Finding Potentially Missing Child Concepts 

To find potentially missing child concepts, a process needs to be developed that will alert 

ontology curators concerning concepts that they might want to import into their ontologies, 

as in the example in Figure 3.2, where the SNOMED CT curator might be interested in 

importing puerperal gangrene gas from MEDCIN. For this purpose, there is a need to  

1. establish that there are sufficiently many ontology pairs with adequate numbers 

of pairs of identical concepts to make this endeavor practically useful. 

2. develop an algorithm that will automatically identify horizontal density 

differences for finding appropriate concepts to import. 

3. verify with a human expert that concepts suggested for import, at least in 

principle, qualify, independent of the concept inclusion policies of the ontology 

curators. 

The case for imports is not always clear-cut. For example, if a concept P has 20 

children in ontology T1 and 18 children in T2, such that all 18 are also children of P in T1 
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then it would be highly likely that the two remaining child concepts could or even should 

be imported into T2. On the other hand, if the concept P has 20 children in ontology T1 and 

20 children in T2 and only one of the concepts is common, then the remaining 19 child 

concepts should almost certainly not be suggested for import. The question arises then how 

to deal with intermediate cases between these two extreme examples. 

To provide a rational method to decide when concepts should be suggested for 

import, a "similarity metric," based on the number of identical children and the total 

number of children is used. A curator could be guided by a threshold value of similarity. 

Child concepts with a value of the metric that falls below the threshold would not be 

considered for import, and vice versa. Figure 3.3 demonstrates the basic approach. In 

Figure 3.3(a), the concept P exists in the ontologies T1 and T2. There are two common 

concepts, A and B, and an additional concept C in T1. One can view the two concepts A 

and B as "two votes" that P is meant to represent the same knowledge in T1 and T2. That 

indicates that C should be proposed as a concept for import into T2. On the other hand, in 

Figure 3.3(b) there is only one "vote" and the likelihood that C or B should be imported 

into T2 is greatly reduced. 

 

Figure 3.3 Ratio of similarity between identical concepts in ontology T1 and T2.  

a) Relatively stronger evidence for importing into T2; b) Relatively weaker evidence for 

import into T2. 
Source: [30] 
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Thus, the decision of whether the concepts should be imported depends on two 

variables, the number of common children and the total number of children in the source 

ontology. The closer the number of common children is to the total number of children the 

more evidence there appears to be that the children that are not common should be imported. 

This can be expressed as the requirement that the ratio of these two variables should be as 

close (but not equal) to 1, as possible. This is expressed by the following metric. 

Let |B| denote the number of children that are common in both the ontologies and 

let |Co | denote the number of children in the source ontology. Then the ratio of these two 

variables is given by 

𝐽 =
|𝐵| 

|𝐶o|
 

(3.1) 

 

When J becomes larger than a threshold, then import should be recommended. The 

question remains how to choose the threshold (τ) value. If τ is chosen too large (too close 

to 1) there will be too few concepts that are potentially imported, and the yield of the 

method will be low. If τ is chosen too small, then there is an increased risk of importing 

concepts that are not correct in the context of the target ontology and additional work for 

the curator is caused. 

To overcome this issue, sorting all the available parent concepts (that exist in both 

ontologies) by the decreasing value of J is recommend. If the lowest value of J is equal to 

or below ½ (coin flip), then it is doubtful whether any concepts should be imported. Thus, 

τ must be chosen between ½ and 1 in a way that balances the potential import yield and the 

risk. In any event, the algorithm only proposes concepts for import. A curator of the 

ontology will need to approve every single one of them. Moreover, it makes sense to 
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present parent concepts in a list sorted in decreasing order of J to the curator because the 

highly likely imports will be at the beginning of the list.  

3.1.3 Algorithms 

In this section, the algorithm for computing J is presented. The algorithm is implemented 

in two parts. The first part creates a structure named ontDAG which is used by the second 

part to compute J. First, a brief explanation of the notations used in the algorithm. Curly 

brackets {} are used to denote a dictionary. Dictionaries are unordered key-value pairs, 

where each key is mapped to a value. If there are several levels of dictionaries, then access 

is done from left to right. Thus, in Figure 3.4, ontDAG{ontName} returns the sub-

dictionary with the key ontName. In practice, ontDAG{'SNOMED CT'} would derive a 

sub-dictionary with all data stored about SNOMED CT concepts. Square brackets [] denote 

a set. Empty dictionaries appear as {} and empty sets are written as []. 

Algorithm 1 creates a multi-level dictionary structure, as shown in Figure 3.4, 

which stores the ten ontologies from the UMLS (mentioned in Section 3.1.1) and the 

concepts in the ontologies that have a parent-child relationship. For each concept, a list of 

its parent concepts and a list of its child concepts are stored. The dictionary structure 

facilitates easy retrieval of any concept in any of the ontologies. For each concept, it is also 

possible to easily retrieve its parents and its children or descendants up to any level. The 

ontology DAG that is created for this study takes into consideration only (English) concepts 

with PAR/inverse_isa relationships, but the underlying structure is suitable for any 

relationship that forms a hierarchy. 
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Figure 3.4 Example of content in the ontDAG dictionary. Within SNOMED CT, the 

concept C0002575 has the parents C0042402 and C0015091 and the children C0360204, 

C0304444, etc. 
Source: [30] 

 

The input D to Algorithm 1 is a collection of rows derived from a reduced UMLS 

Metathesaurus relational database representation, containing rows of data values (chid, pid, 

ont), where chid is the child concept id, pid is the parent concept id and ont is the ontology 

in which the relationship is present. There are two issues to deal with when we construct 

the ontology DAG (ontDAG). The first one is the well-documented presence of loops 

(cycles) and self-loops of IS-A links in the UMLS [107, 108]. This happens when the child 

concept id and the parent concept id are the same. In the UMLS tables, these instances 

occur due to the differences in the atom unique identifiers (AUI) for the same concept 

unique identifier (CUI). The second issue is that of multiple edges between the same parent 

and child concepts. This is again due to differences in the AUI’s of the parent and child 

concepts.  
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For removing the cycles, an adaptation of the "naïve" (by their own appellation) 

approach to eliminating cycles by Mougin and Bodenreider [109] was used. This approach 

performs a depth-first search of the Metathesaurus graph and marks nodes as visited to 

detect loops. This approach was adapted by using only concepts that participate in an IS-A 

relationship (PAR, inverse_isa) in the 10 terminologies used in the study, instead of all the 

hierarchical relationships in the Metathesaurus, and also depth was limited to a maximum 

of five levels instead of the 50 levels of Mougin and Bodenreider [109], as the patterns 

described in all the studies in this dissertation would never go beyond five levels for any 

concept. 

Algorithm 1 Build Ontology DAG from UMLS RRF Table 

1: procedure ONTOLOGY-DAG(in: D, out: ontDAG)               

2:      ontDAG ← { }                                             

3:      for each (chid, pid, ont ) in D do 

4:           if ont not-in ontDAG then                          

5:                ontDAG{ont} ← { }                             # sub-dictionary created for a new ontology     

6:           end if 

7:  

8:           if chid  not-in ontDAG{ont} then 

9:                ontDAG{ont}{chid}{ˈparentsˈ} ← [ ]        # initialize empty sets for storing parent       

10:                ontDAG{ont}{chid}{ˈchildrenˈ} ← [ ]                  # and child concepts    

11:                if chid ≠ pid then                                                 

12:                     ontDAG{ont}{chid}{ˈparentsˈ} ← [pid]          # add parent concept id      

13:                end if 

14:           else                                                            # check for multiple edges between par-child 

15:                if pid  not-in ontDAG{ont}{chid}{ˈparentsˈ} and chid ≠ pid then 

16:                     ontDAG{ont}{chid}{ˈparentsˈ} ← ontDAG{ont}{chid}{ˈparentsˈ} U [pid]      

17:                end if 

18:           end if 

19:  

20:           if pid not-in ontDAG{ont} then  

21:                ontDAG{ont}{pid}{ˈparentsˈ} ← [ ]          # initialize empty sets for storing parent                       

22:                ontDAG{ont}{pid}{ˈchildrenˈ} ← [ ]                 # and child concepts               

23:                if pid ≠ chid then                                                                

24:                     ontDAG{ont}{pid}{ˈchildrenˈ} ← [chid]            # add child concept id         

25:                end if 

26:           else                                                            # check for multiple edges between par-child 

27:                if chid  not-in ontDAG{ont}{pid}{ˈchildrenˈ} and pid ≠ chid then        

28:                     ontDAG{ont}{pid}{ˈchildrenˈ} ← ontDAG{ont}{pid}{ˈchildrenˈ} U [chid]      

29:                end if 

30:           end if 

31:      end for 

32: end procedure 



 

37 

 

Algorithm 2 takes as input the ontology DAG (ontDAG which is the output of 

Algorithm 1), the target ontology (SNOMED CT or NCIt denoted by ρ), and the threshold 

value (τ). The output is a file with the parent concepts and all missing child concepts in the 

target ontology. The set of all ontologies (both source and target) is represented by O. Cρ 

and Co represents the set of child concepts for a parent concept in the target and source 

ontology, respectively.  Even though only enriching the conceptual content of SNOMED 

CT and NCIt is described in this study, the algorithm can be trivially extended to other 

Metathesaurus ontologies as a target ontology. 

Algorithm 2  Find children of a concept that do not occur in the target ontology but occur in a 

source ontology 

1: procedure MISSING-CHILDREN(in: ontDAG, ρ,τ out: file (contains pid (s) and all 

missing chid(s)) 

2: O ← [ontology_1, ontology_2…]                          # Set of all ontologies in ontDAG 

3: for concept in ontDAG{ρ} do                                     

4:    C ρ ← ontDAG{ρ}{concept}{ˈchildrenˈ}           # Set of all children of concept in  ρ 
5:    for o in O  ̶  [ρ] do                                     

6:       if concept  in ontDAG{o} then                   

7:          C o ← ontDAG{o}{concept}{ˈchildrenˈ}   

8:       end if 

9:       M ρ ← C o    ̶ C ρ                 # missing concepts in ρ 
10:       B ← C o  ∩ C ρ                            # child concepts in both in ρ and source ontology 
11:      J ← |B| ÷ |C o |                  # Calculate similarity metric for the sets of children 

12:       if J > τ :                               # Metric greater than threshold value 

13:         Output : concept, M ρ  (write to a file)   

14:    end for 

15: end for 

16: end procedure 

 

 

3.2 Randomized Controlled Trial (RCT) 

The concepts proposed for import are presented to a domain expert with long work 

experience in ontology quality assurance.  To assure the validity of the tests and reliability 

of the results, two randomized controlled trials with SNOMED CT and two more with NCIt 

are performed.  This section describes the process of selecting the two control samples for 
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SNOMED CT. The same procedure was adopted for NCIt. Figure 3.5 elucidates the 

experimental group and the two control groups.  

Group 1 consists of concepts that are children of concept P in the target ontology. 

For every parent concept P in the sample, one child concept C1 was removed. When the 

pair (P, C1) is presented to the domain expert, she should determine that an IS-A link 

between C1 and P should exist. In Figure 3.5, concepts of Group 1 are shown with red 

dashed outlines. The IS-A link is shown in green, to indicate that it should be reported as 

a child concept by the domain expert because these concepts are actually children of P in 

the target ontology. This is control group 1. 

 

Figure 3.5 Three groups of concepts for RCT. GP denotes grandparent and P and P2 denote 

parent concepts. 
Source: [30] 

 

Group 2 consists of concepts that are cousins of P’s children. In Figure 3.5, P2 is a 

sibling of P. The children of P2 are cousins of the children of P. Furthermore, it was 

ascertained that none of the selected children of P2 are also children of P (which is 

theoretically possible). For every parent concept P in the study, one such concept was 

selected as cousin C2. When the pair (P, C2) is presented to the domain expert, she should 
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determine that no IS-A link between C2 and P exists, because C2 appears in the target 

ontology but is not hierarchically related to P. In Figure 3.5, concepts of Group 2 are shown 

with green solid outlines. The IS-A links in black accurately show the hierarchical position 

of C2. The IS-A link in red should be reported by the domain expert as "not a child concept." 

This is control group 2. 

Group 3 consists of concepts that were suggested by the algorithm as possible 

children of P in the target ontology because they are children of P in one of the source 

ontologies. When the pair (P, C3) is presented to the domain expert she is expected to report 

that an IS-A link between C3 and P should exist, which implies that C3 should be imported 

into the target ontology. In Figure 3.5, concepts of Group 3 are shown in solid blue. The 

IS-A link is shown in green, to indicate that it should be reported by the domain expert as 

a valid child concept if the algorithm works correctly with the source ontologies. This is 

the experimental group. 

Hypothesis 3.1: Concepts from Group 2 and Group 3 will be distinguishable with 

statistical significance.  

The domain expert should be clearly able to distinguish between IS-A links 

suggested by the source ontology and IS-A links that should not be there. 

Hypothesis 3.2: Concepts from Group 1 and Group 3 will be indistinguishable with 

statistical significance. 

The domain expert should not be able to distinguish between concepts that are 

already in the target ontology and concepts that are suggested by the algorithm for import 

into the target ontology from the group of source ontologies. 
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3.3 Results 

The parent concepts in SNOMED CT and NCIt were sorted based on the value of J 

computed by the algorithm. Table 3.1 shows the numbers of parent concepts obtained for 

different ranges of J values for both SNOMED CT and NCIt. The numbers of concepts 

with J = 1 and J = 0 are not reported.  

Table 3.1 Number of Parent Concepts for Different Ranges of J in SNOMED CT and NCIt 

Range of J SNOMED CT NCIt 

[0.95, 1.0) 3 concepts 0 concepts 

[0.90, 0.95) 34 concepts 3 concepts 

[0.80, 0.90) 322 concepts 42 concepts 

[0.70, 0.80) 615 concepts 59 concepts 

[0.50, 0.70) 2425 concepts 580 concepts 

(0.00, 0.50) 3700 concepts 2644 concepts 

 

It was found that in SNOMED CT there were only three parents with J between 

0.95 and 1. This resulted in too small a sample to be valid for a domain expert study for 

import, and therefore the threshold was lowered to J = 0.9. With a J value ≥ 0.9 and < 1 

there are 37 concepts. In the case of NCIt, choosing a J value of 0.9 would result in only 3 

concepts proposed for import, hence, the threshold was lowered to J ≥ 0.8 in this case, 

resulting in 45 parent concepts for a domain expert study.  

For SNOMED CT, a sample of 37 concepts each in Group 1, 2, and 3 giving a total 

of 111 concepts were shuffled to avoid bias and presented as the first sample to the domain 

expert. For NCIt, the same process was followed as with SNOMED CT, but in this case, 

there are 45 concepts each in the three groups yielding 135 concepts as the second sample. 

The samples for SNOMED CT and NCIt were analyzed separately, and both the 

hypotheses were tested for each sample. 
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SNOMED CT: Out of the 37 potentially missing child concepts proposed by the 

algorithm (Group 3) for SNOMED CT, 22 concepts (roughly 60%) were agreed upon as 

missing by the domain expert. For Group 1, which consisted of concepts that were already 

children of the parent concept in both the ontologies, the domain expert disagreed with 

seven concepts. This basically points to some errors during the modeling of the ontologies. 

Regarding the second control group which consisted of cousins and not children, the 

domain expert disagreed with the majority of concepts as expected, but in four cases the 

domain expert found that the concept could potentially be a child. The results for both the 

control and test samples are shown in Table 3.2. 

Table 3.2 Results of each Group as Analyzed by the Domain Expert for SNOMED CT 

Groups Number of concepts agreed for 

import by the domain expert 

Number of concepts disagreed 

for import by the domain expert 

Group 1 30 7 

Group 2 4 33 

Group 3 22 15 

 

Fisher’s exact test (two-tailed) was performed on each control sample and test 

sample for SNOMED CT. For Hypothesis 3.1 a p-value < 0.0001 was obtained. Hypothesis 

3.1 was supported with statistical significance. Thus, the concepts proposed by the 

algorithm as children were distinguishable from known "non-children" with statistical 

significance. 

For Hypothesis 3.2 a p-value of 0.0738 was obtained. Because p > 0.05, it is not 

possible to conclude that concepts from Group 1 and Group 3 are from distinguishable 

groups. However, this does not prove that they are from the same group. Quoting David 

Howell, "We know that we cannot conclude from a non-significant difference that we have 

proved that the mean of a population of scores … is the same as the mean … of control 
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subjects" [110]. Larger sample sizes, possibly in connection with a different statistical 

method, will be needed to get support for Hypothesis 3.2. 

Table 3.3 Examples of Missing Child Concepts in SNOMED CT Identified by the 

Algorithm and Verified to be Missing by the Domain Expert 

Parent concept Missing child concept 

C0004661: Bacteroides C2614420: Bacteroides xylanisolvens 

C0018805: Heart Injuries C2836204: heart injury without hemopericardium 

C0154409: Recurrent major 

depressive episodes 

C2062772: recurrent major depression without 

melancholia 

 

NCIt: For NCIt, 25 concepts (roughly 56%) were agreed upon as missing by the 

domain expert out of the total 45 concepts for Group 3. For Group 1 only three concepts 

were disagreed with by the domain expert and for Group 2 (control group), one concept 

which is a cousin was found to be a potential child concept by the expert. Table 3.4 shows 

the results for both the control and experimental groups. 

Table 3.4 Results of each Group as Analyzed by the Domain Expert for NCIt 

Groups Number of concepts agreed for 

import by the domain expert 

Number of concepts disagreed 

for import by the domain expert 

Group 1 42 3 

Group 2 1 44 

Group 3 25 20 

 

For Hypothesis 3.1 a p-value < 0.0001 was obtained. Hypothesis 3.1 was supported 

with statistical significance. Hence, for NCIt, the concepts proposed by the algorithm as 

children were distinguishable from known "non-children" with statistical significance. For 

Hypothesis 3.2 a p-value < 0.0001 was obtained. Hypothesis 3.2 was not supported for the 

sample. Thus, the existing child concepts and the algorithmically suggested child concepts 

were not indistinguishable.  
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Table 3.5 Examples of Missing Child Concepts in NCIt Identified by the Algorithm and 

Verified to be Missing by the Domain Expert 

Parent concept Missing child concept 

C0010266: Cranial nerve diseases C0154733: Multiple cranial nerve palsy 

C0042672: Vinca Alkaloids C0059752: Vinpocetine 

C0012611: Disaccharides C0007630: Cellobiose 

 

3.4 Discussion 

The reasons why the expert did not agree to import some concepts suggested by the 

algorithm were analyzed. For SNOMED CT, the number of rejected concepts was 15 and 

for NCIt it was 20. Different reasons suggested for not agreeing to import the child concept 

are explained below with an example. 

1. The algorithmically suggested concept was observed to fit as a grandchild 

instead of a child concept. Such scenarios indicate the finer level of detail 

captured by the target ontology. There were six concepts in SNOMED CT 

and two concepts in NCIt falling into this category. 

For example, consider a parent concept Intensive Care Unit. The missing concept 

suggested by the source ontology is Intensive Care Unit, Neonatal. There exists a concept 

Pediatric Intensive Care Unit in the target ontology as the child of Intensive Care Unit. 

The missing concept Intensive Care Unit, Neonatal would qualify better as a child of 

Pediatric Intensive Care Unit than Intensive Care Unit. 

2. The algorithm suggested a concept that was found to be a synonym of the 

already existing child and was not recorded as a synonym (SY) in UMLS. 

Eight concepts from NCIt and one concept from SNOMED CT belonged to 

this case. 

The concept Cervical Vertebrae has children C1 Vertebra, C2 Vertebra, etc. in the 

target ontology. The concept suggested by the algorithm is Axis Vertebra and according to 

the domain expert, it is a synonym of C2 Vertebra. 
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3. The algorithmically suggested concept is a combination of two concepts 

that exist separately in the target ontology. There was one concept each from 

SNOMED CT and NCIt reported in this category. 

The concept in the source ontology that was suggested as missing in the target 

ontology by the algorithm is Spina bifida of thoracolumbar region. This concept is a 

combination of two concepts existing in the target ontology namely Spina bifida of lumbar 

region and Thoracic Spina bifida. 

4. The algorithmically suggested concept could possibly be a child concept 

but then the already existing children should be moved one level down to 

become the children of the suggested concept. 

The concept Thoracic spinal ganglion in the target ontology has children T1 spinal 

ganglion, …., T12 spinal ganglion. The algorithmically suggested concept Variant 

thoracic spinal ganglion could be a child of Thoracic spinal ganglion but then T1 spinal 

ganglion, …., T12 spinal ganglion should become the children of Variant thoracic spinal 

ganglion. 

If a concept is reported as missing by the algorithm that does not imply that it should 

be imported automatically. In many cases, curators of ontologies do not include concepts 

on purpose. One reason for this is that such concepts have no known use case and would 

"clutter up the ontology" and make maintenance more difficult. Larger ontologies also 

result in slower responses of user-facing applications using those ontologies. In fact, some 

curators tend to include new concepts only if there is an explicit request from a user as was 

found out in extensive prior work on ontology quality assurance. 

Another possible reason for rejecting the import of a concept could be that it is at a 

too fine-grained level of detail, which contradicts the overall philosophy behind the design 

of the ontology. However, these design philosophies are rarely made available to 
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researchers outside of the organization and in many cases appear not to exist in a written 

format. The final decision concerning an import always must be made by an expert, who 

has to balance factors of completeness against efficiency, usability, and maintainability. 
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CHAPTER 4  

ALTERNATIVE CLASSIFICATION OF IDENTICAL CONCEPTS 

 

The study in Chapter 3 discussed how horizontal density differences between pairs of 

terminologies could be used to identify missing child concepts in the target terminology. It 

was noted that pairs of terminologies with identical concepts do not always have the same 

set of children in the two terminologies.  The number of children was found to vary widely, 

and a special situation was identified where the children in one terminology relate to the 

common parent in a very different way than the children in the other terminology. For 

example, children in one terminology might subdivide a parent concept by anatomical 

location in one terminology and by disease kind in the other terminology. We coined the 

term "alternative classification" (of the same parent concept) for such situations. In 

previous work, only human experts could recognize alternative classifications. In this study, 

we present a mathematically expressed criterion for likely cases of alternative 

classifications. Besides alternative classifications, common parent concepts in a pair of 

terminologies might also indicate a possible import of a child concept missing in one 

terminology, different granularities, or errors in either one of the two terminologies. We 

also investigate different kinds of alternative classifications. 

 

4.1 Identification of Alternative Classifications 

While conducting the study described in Chapter 3, observations were made where a 

concept existing in two terminologies has children in both, yet these sets of children do not 

have a single child in common. In such cases, the two concepts are actually quite different 
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in the two terminologies, even though they have the same CUI. This extreme difference is 

a possible indicator of an "alternative classification" or an error. While the discovery of 

such an alternative classification candidate or error candidate should be made based on a 

formula/algorithm, the final interpretation and decision always must be made by a human 

expert.  

Figure 4.1 exemplifies a case where the two occurrences of the same concept in 

two different terminologies have no common children. The concept Benign 

Nasopharyngeal Neoplasm has three children in NCIt and four children in MEDCIN. The 

three child concepts present in NCIt do not exist anywhere in MEDCIN and similarly, the 

four child concepts in MEDCIN do not exist anywhere in NCIt. 

 

 

Figure 4.1 An example of alternative classification in NCIt and MEDCIN. 
Source: [31] 

 

The three child concepts in NCIt specialize the parent concept Benign 

Nasopharyngeal Neoplasm by disease kind (polyp, squamous papilloma, and 

angiofibroma), whereas the four child concepts in MEDCIN specialize Benign 

Nasopharyngeal Neoplasm by anatomical location (superior wall, posterior wall, etc.). 
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These two different classifications, which arise because of the difference in the modeling 

philosophies of the two terminologies, constitute what we call an alternative classification. 

Although these two hierarchies are individually correct, merging them in a naïve way 

would lead to a loss of structural information. 

The focus of this study is to 1) develop a method to identify highly likely cases of 

alternative classifications algorithmically; 2) develop a metric that identifies concepts with 

children that are highly likely to be proposed for import from one terminology into the 

other; 3) compare how different ranges of the metric might affect the number of concepts 

that should be considered for import; 4) analyze different cases of alternative classifications 

in more detail.  

4.1.1 Terminology Selection 

The first step is identifying terminologies in the UMLS that can be used as source 

terminologies to supply possible concepts for import into target terminologies. For this the 

following criteria are used: 

1. Only English terminologies could be processed, due to our linguistic limitations. 

2. Only terminologies with an IS-A backbone support the hierarchy-based 

methodology. A necessary but not sufficient condition for this is that the 

terminology uses the UMLS PAR(ent) relationships. 

3. PAR relationships are not always IS-A relationships, thus as an additional 

condition, only PAR relationships that are marked with inverse_isa annotations, 

guarantees that IS-A relationships are expressed. 

4. If two terminologies have substantial overlap due to common ancestry and/or 

common domain, then only one of them will be chosen. 

5. The chosen terminologies should not have been the subject of our previous 

investigation on horizontal density (described in Chapter 3). 
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6. The research is oriented towards terms used in cancer care. 

7. As pairs of terminologies are being processed, interesting results can only be 

expected if there is substantial overlap between the two terminologies of a pair. 

It should be noted that criteria 1-4 were applied for identifying source ontologies 

(Section 3.1.1) in Chapter 3. As a result of this, eight ontologies were obtained in addition 

to NCIt and SNOMED CT. SNOMED CT was used extensively in the study described in 

Chapter 3 [30], thus it is excluded by the fifth criterion. But by the sixth criterion NCIt is 

included as the target terminology of this study as it is a terminology for cancer research. 

Together with the overlap requirement of the seventh criterion, that leaves only the pair of 

MEDCIN and NCIt. Thus, in this study, NCIt is our target terminology and MEDCIN is 

the source terminology. 

4.1.2 Algorithm and Revised Metric 

The algorithm described in Section 3.1.3 explored horizontal density differences to suggest 

child concepts that are highly likely to be imported. For the algorithm for computing 

alternative classification criteria with NCIt as the target and MEDCIN as the source 

terminology, some modifications were made to the previous algorithm. It is possible that 

one or more of the child concepts present in the source terminology but missing from the 

target terminology as immediate children could exist somewhere else in the target 

terminology. To overcome this issue, it was confirmed that each of the identified missing 

child concepts does not exist anywhere else in the target terminology by performing a 

search on the target terminology’s sub dictionary. The metric J was completely revised to 

cover the different cases (alternative classifications, concept import, and errors) more 

precisely, based on the ranges of the values of the metric. 
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As a first step, the algorithm identifies all common concepts in NCIt and MEDCIN 

and then finds all the children of these common concepts in both the terminologies. In the 

next step, all the children that are common in both the terminologies for each parent concept 

are identified along with the child concepts present in MEDCIN but missing from NCIt. 

For each of the missing child concepts identified, the algorithm makes sure that the concept 

is not present anywhere else in the target terminology. If the concept is present anywhere 

else, it is removed from the list of missing child concepts. The final step is to develop a 

formula that computes the evidence for import (EFI). The goal is to distinguish between 

likely cases of alternative classifications versus predictions when concepts should be 

imported directly (without further consideration) from the source terminology into the 

target terminology. 

Consider a concept P that is the same in the source and target terminologies, by the 

authority of the UMLS Concept Unique Identifier (CUI). Intuitively, the more common 

children Psource and Ptarget have, the higher the evidence that the remaining children that are 

not common should be imported. Thus, initially  

 

𝐸𝐹𝐼̂ =
𝐶𝑐𝑜𝑚𝑚𝑜𝑛
𝐶𝑠𝑜𝑢𝑟𝑐𝑒

, 𝐶𝑆𝑜𝑢𝑟𝑐𝑒 > 0 
(4.1) 

 

Ccommon is the number of concepts that are children of P in both the source and the 

target terminology, and Csource is the number of concepts that are children of P in the source 

terminology. Note that 𝐸𝐹𝐼̂  is a number between 0 and 1. 

For example, if there are 11 children in the source and eight common children that 

is higher evidence than if there are 11 children in the source and only five common children. 

In other words, the ratio of the number of common children and source children needs to 
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be computed, assuming the parent is the same in both terminologies. 

When the number of common children becomes "almost" equal to the number of 

source children, then the evidence should become "almost" 1. When the number of 

common children becomes equal to the number of source children, then the evidence 

becomes 1, but then there are no concepts left to import. Thus, this is an uninteresting case; 

and hence, an assumption is made that the number of common children is strictly smaller 

than the number of source children. 

 

𝐶𝑐𝑜𝑚𝑚𝑜𝑛 < 𝐶𝑠𝑜𝑢𝑟𝑐𝑒 (4.2) 

 

However, the evidence for importing concepts should also be based on the total 

number of children, not just on the ratio.  For example, if there are 70 common children 

out of 110 source children, this should provide stronger evidence than if there are only 

seven common children out of 11 source children, even though the ratio would be the same. 

Therefore, an additional corrective factor (F) is required.  

Let the parameter MAX, represent the number of children of that parent P that has 

the most children in the source. (There might be several such parents with equally high 

numbers of children.) Let #𝐶(𝑃𝑖, 𝑆) be the number of children of the parent 𝑃𝑖 in the source 

terminology S, then,  

 

𝑀𝐴𝑋 = #𝐶(𝑃, 𝑆) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∀𝑖  #𝐶(𝑃, 𝑆) ≥ #𝐶(𝑃𝑖 , 𝑆) (4.3) 

  

𝑀𝐴𝑋 − 𝐶𝑐𝑜𝑚𝑚𝑜𝑛
𝑀𝐴𝑋

 
(4.4) 
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Equation 4.4 will become smaller when there are more children in common 

between source and target terminology. But the evidence for import should increase when 

there are many common children. Hence, the corrective factor F is computed as 

 

𝐹 = 1 −
𝑀𝐴𝑋 − 𝐶𝑐𝑜𝑚𝑚𝑜𝑛

𝑀𝐴𝑋
=  
𝐶𝑐𝑜𝑚𝑚𝑜𝑛
𝑀𝐴𝑋

 
(4.5) 

 

The problem is that this corrective factor F becomes too small for terminologies 

containing concepts with many children.  As F is between 0 and 1, a convenient way to 

make it larger but keep it in the same range [0,1] is to apply the square root to it. Thus, 

applying the square root to F (Equation 4.5) and multiplying with Equation (4.1), and 

observing all the boundary conditions the evidence for import (EFI) is calculated as: 

 

𝐸𝐹𝐼 =  

{
 
 

 
 

 𝐸𝐹𝐼̂ ∗ √
𝐶𝑐𝑜𝑚𝑚𝑜𝑛
𝑀𝐴𝑋

   𝑤ℎ𝑒𝑛  𝐶𝑐𝑜𝑚𝑚𝑜𝑛 < 𝐶𝑠𝑜𝑢𝑟𝑐𝑒  𝑎𝑛𝑑   𝐶𝑠𝑜𝑢𝑟𝑐𝑒 > 0 

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                                                

 

(4.6) 

 

By the above definition, the value of 𝐸𝐹𝐼̂  is in the interval [0,1). The corrective 

factor F can only become 1 if Ccommon = Csource, which was excluded; and therefore, F is 

also in the range [0,1). Thus, the value of EFI will always be in the range [0,1). 

In the extreme case, when there are no common concepts, EFI becomes zero. As 

noted above, when there are no children in common, this appears to be an indicator of an 

alternative classification or an error.  In cases when EFI is relatively closer to 0 it is more 

likely to indicate a mix of imports, alternative classifications, and errors. When the value 

of EFI becomes relatively closer to 1, it most likely indicates a possible import. 



 

53 

4.1.3 Sample Preparation 

The values of 𝐸𝐹𝐼̂  and EFI were computed for all concepts present in both NCIt and 

MEDCIN. A total of 1049 identical parent concepts in both MEDCIN and NCIt did not 

have any overlapping children and hence had their EFI = 0. The remaining 917 identical 

parent concepts had an EFI value >0 and <1.  

Sample 1: Sample 1 consisted of 50 parent concepts randomly chosen from those 

parent concepts that have no common children between the two terminologies (i.e., Ccommon 

= 0). For each of the 50 concepts in Sample 1 (i.e., with no common children) all the 

children of each parent concept (P) in both the source and target terminologies are listed 

for the domain expert to review. The following four choices were then presented to the 

domain expert. 

1. The children in source and target terminologies form an alternative 

classification. 

2. Error in the source terminology – one or more children in the source 

terminology should not be children of P. 

3. Error in the target terminology – one or more children in the target terminology 

should not be children of P. 

4. A case of a finer level of detail in the source or target terminology – Suppose 

the parent concept (P) is Thoracic spinal ganglion. In the source terminology, 

the immediate child concepts are T1 spinal ganglion, T2 spinal ganglion..., T12 

spinal ganglion, whereas in the target terminology the immediate child is 

Variant thoracic spinal ganglion, while T1 spinal ganglion…, T12 spinal 

ganglion are listed as children of Variant thoracic spinal ganglion. This is a 

case of a finer level of detail in the target terminology. 

These options are not mutually exclusive. It is possible that for a parent concept P 

there is an error in both the source and target terminology. Thus, the domain expert was 

asked to consider more than one choice if necessary. 
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Sample 2: For sample 2, the parent concepts were ordered according to their EFI 

values in decreasing order and the top 50 parent concepts were selected. One missing child 

concept was randomly selected for each of these 50 parent concepts and made part of the 

sample. A randomized controlled trial (RCT) was performed for Sample 2 similar to the 

one described in Section 3.2. For this, a control group was created with the same 50 parent 

concepts as in Sample 2. For each of these parent concepts (P) a sibling of P was found 

and one of its children was chosen, which therefore is a cousin of P’s children, and included 

in the control group. Thus, there were two groups for the RCT – the experimental group 

and the control group. Figure 4.2 shows this selection process for one parent concept P. 

The order of the concepts in the two groups was randomized. When the domain expert is 

presented with two concepts for each parent concept (one suggested by the algorithm and 

the other the cousin of P’s children; separated due to the randomization) s/he should be 

able to distinguish whether there should exist IS-A links between these two concepts and 

the parent concept P. 

 

Figure 4.2 Selecting experimental and control group concepts for a parent concept P. 
Source: [31] 
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Sample 3: From the ordered list of parent concepts, based on the EFI values in 

decreasing order, the bottom 50 concepts with an EFI value > 0 were selected. As before, 

one randomly chosen missing child concept suggested by the algorithm for each parent 

concept was added to create the sample. 

It was observed that the number of common children in Sample 3 is small and in 

47 of the cases, there is only one common child between the source and target terminology. 

The maximum number of common children in Sample 3 was four, which was observed in 

one case. Also, as discussed before, this sample is likely to contain concepts with errors or 

cases of alternative classifications. Taking this into account, the domain expert was 

presented with the following four choices for a parent concept P. 

1. The suggested child concept should be imported into the target terminology. 

2. The suggested child concept should not be imported into the target terminology. 

3. Error in the source terminology – the suggested child concept should not be a 

child of the parent concept P. 

4. The common children and the suggested child concept form an alternative 

classification. 

As for Sample 2, an RCT was performed for Sample 3. Two groups were created – 

the experimental group and control group in the same way as for Sample 2 (Figure 4.2). 

For both Samples 2 and 3, the domain expert was also provided with all the common 

children from the source and target terminologies, separately for each parent concept, as 

part of the sample for a better understanding of the context.  

Based on the previous work [30] and preliminary research, three hypotheses were 

formulated. In preliminary research, it was observed that for the case of no common 

children "many" parents defined alternative classifications. To quantify "many," there are 
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two cases to be noted to make this observation practically applicable. The first one is 

distinguishing between a case of an absolute majority, where there are more alternative 

classifications than other choices. The second is a relative majority, where there are more 

alternative classifications than cases of the most common second category (error, import, 

or finer level of detail). Hypothesis 4.1 is formulated for the stronger case.  

Hypothesis 4.1: For parent concepts with EFI=0 (Ccommon = 0), i.e., there are no 

overlapping children in the two terminologies for the same parent, it is more likely that the 

children define alternative classifications than the union of the other possible cases. 

(Possible other cases are error, import, or finer level of detail).  

Hypothesis 4.2: Concepts proposed for import as children from a source terminology into 

a target terminology, based on their EFI values’ proximity to 1, will be distinguishable 

with statistical significance from concepts that are known to be cousins and not children. 

Note that a concept could be both a cousin and a child at the same time, thus the 

wording of the hypothesis excludes this case explicitly. The domain expert should be 

clearly able to distinguish between IS-A links suggested by the source terminology and IS-

A links that should not be there. 

Hypothesis 4.3: Concepts proposed for import as children from a source terminology into 

a target terminology, based on their EFI values’ proximity to 0, will be distinguishable 

with statistical significance from concepts that are known to be cousins and not children. 

 

4.2 Results 

Sample 1: For Sample 1, with no overlapping children for a parent concept between both 

the terminologies, the domain expert was provided with four choices as discussed in 
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Section 4.1.3. As the choices were not mutually exclusive, multiple responses were 

received for each concept. Table 4.1 shows all the possible combinations of choices as 

analyzed by the domain expert. Overall, out of the 50 concepts, 36 (29+5+2) concepts were 

found to have children that are alternative classifications in the source and target 

terminology. Thus, 72% (=36/50) of concepts belonging to the category of alternative 

classification supports Hypothesis 4.1 that when there are no overlapping children in the 

two terminologies for the same parent, then it is more likely to be a case of alternative 

classification. 

Table 4.1 Results for Sample 1 as Analyzed by the Domain Expert 

Sample 1: EFI=0  

Alternative 

classification  

29 Finer level of detail in 

source or target 

terminology 

3 Error in source 

terminology + Error in 

target terminology 

3 

Error in source 

terminology 

5 Alternative 

classification + Error 

in source terminology 

5 Error in source 

terminology + Finer level 

of detail 

1 

Error in target 

terminology 

1 Alternative 

classification + Error 

in target terminology 

2 Error in target 

terminology + Finer level 

of detail 

1 

 

A review of alternative classifications in Sample 1 uncovered the following.  The 

two parent concepts are identical in each case but are divided up according to different 

organizational viewpoints. There were four different categories identified. 

1. One set of qualifiers (e.g., from the qualifier hierarchy of NCIt) is applied in 

one terminology, while no qualifiers are applied in the other terminology under 

the same parent. 

An example would be the concept Visual Impairment. In one terminology the child 

concepts are a result of applying the spatial qualifiers left and right (i.e., Visual impairment 
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of right eye and Visual impairment of left eye) whereas no qualifier is used in the other 

terminology (e.g., Myopia). There were five such cases, out of 36, in Sample 1. 

2. One set of qualifiers is applied in one terminology, while another set of 

qualifiers is applied in the other terminology. 

As an example, consider the concept Irradiation of breast. One terminology uses 

the qualifiers "left" and "right" (i.e., Irradiation of left breast and Irradiation of right breast) 

while the other terminology uses the qualifiers "whole" and "partial" (i.e., Whole Breast 

Irradiation and Partial Breast Irradiation). In Sample 1, out of 36 alternative 

classifications, this happened twice. 

3. Different axes of classification are used in the two terminologies. 

In the case of the concept Cardiac Lipoma, the children in one terminology are 

subcategorized based on the anatomical structure (e.g., Epicardial Lipoma), whereas the 

children in the other terminology are organized based on the histological finding (e.g., 

Fibrolipoma of heart and Myelolipoma of heart). There were 11 concepts of this type in 

Sample 1. 

4. Combinations 

In many cases, alternative classifications show that the original modeling of the two 

terminologies is not consistent, and therefore they do not cleanly fit into one of the first 

three categories. For example, the parent Renal cyst (C3887499) has the children 

C0268799: acquired cyst of kidney, C0268800: simple renal cyst, C0403383: Infected 

renal cyst, C0431718: multiple renal cysts, and C3812408: congenital renal cyst in the 

source terminology MEDCIN and the children C0521621: Solitary Multilocular Kidney 

Cyst and C4022836: Solitary Cyst of Kidney in the target terminology NCIt. Notably, 

"acquired," "simple," "multiple," and "congenital," used in the source terminology, are 
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qualifiers in the target terminology. The word "solitary," used in the target terminology, is 

a qualifier there. Yet the term "infected," which is used in a parallel manner to the four 

qualifiers, is a finding. Furthermore, it is remarkable that two terminologies use qualifiers 

for the same parent concept, yet do not have a single qualifier in common. In Sample 1, 

50% (18/36) of all parent concepts fall into this category. 

Solutions are demonstrated for the different categories above from a user 

perspective as follows. For categories 1 and 3 the default solution is that concept import is 

still possible. However, straightforward import would lead to a notable loss of information. 

Thus, in such a case it is advised to create an intermediate level of two concepts that make 

explicit the different nature of the original child concepts and the imported children. This 

is demonstrated visually and abstractly in Figure 4.3. 

 

Figure 4.3 Proposed solution for categories 1 and 3 of alternative classification. 

 

For category 2, all concepts can be imported from the source terminology into the 

target terminology and this merge would not create any loss of information. For category 

4 the correct solution would be to clean up the child structure first, e.g., in the above 
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example by moving "infected" to a more appropriate position and then allowing for direct 

import or for import while adding an additional level of concepts (Figure 4.3). 

Sample 2: For Sample 2, out of the 50 concepts, the domain expert determined that 

40 concepts should be imported. Thus, we have 80% (=40/50) of cases of import. Table 

4.2 shows the results for this sample. Fisher’s exact test (two-tailed) was performed on the 

control and experimental group for Sample 2. For Hypothesis 4.2, statistical significance 

was obtained with p-value<0.001 supporting the hypothesis. Thus, the child concepts 

suggested by the algorithm for import based on their EFI values’ proximity to 1 could be 

distinguished from the non-children (cousins) with statistical significance. 

Table 4.2 Results of each Group as Analyzed by the Domain Expert for Sample 2 

Sample 2 

Groups Number of concepts 

agreed for import 

Number of concepts 

disagreed for import 

Experimental 40 10 

Control 6 44 

 

Sample 3: For Sample 3, out of the 50 concepts, the domain expert determined that 

27 concepts should be imported. This corresponds to 54% of cases for import, which is 

much less than the percentage of import for Sample 2. Table 4.3 shows the results for both 

the experimental and control groups. Fisher’s exact test (two-tailed) was performed on the 

control and experimental group for Sample 3 and statistical significance was obtained with 

p-value<0.001 supporting Hypothesis 4.3. Thus, the child concepts suggested by the 

algorithm for import based on their EFI values’ proximity to 0 could be distinguished from 

the cousins with statistical significance. 
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Table 4.3 Results of each Group as Analyzed by the Domain Expert for Sample 3 

Sample 3 

Groups Number of 

concepts agreed 

for import 

Number of 

concepts disagreed 

for import 

Alternative 

classifications 

Error 

Experimental 27 5 12 6 

Control 6 29 1 14 

 

4.3 Discussion 

It was initially assumed that a pair of concepts appearing in two terminologies, designated 

in the UMLS to be identical, but having no common children, would sometimes indicate 

that the concepts are in fact homonyms and not identical. This study and the detailed 

analysis of Sample 1 did not bear this out. 

Hypothesis 4.2 and Hypothesis 4.3 were separated, because the raw numbers 

seemed to indicate different "behavior" when EFI tends to 1, compared to when EFI tends 

to 0. Indeed, there are relatively more alternative classifications and errors for EFI close to 

0. Nevertheless, for both polarities of EFI, the largest number of choices according to the 

domain expert was "import." 

An important distinction in this study is between EFI = 0 and EFI ≠ 0. The case of 

EFI = 0 provides a fully automatic criterion for recognizing likely alternative 

classifications. To the best of our knowledge, no such criterion has been previously 

reported in the literature. Recognizing an alternative classification can then be followed by 

a human review to determine which approach should be taken when importing concepts 

into the target terminology. Ideally, the distinctions between different methods of import 

and different kinds of errors should be recognized by an algorithm with high reliability. 

While this goal is hard to reach, the current results establish a step in that direction. 
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CHAPTER 5  

EXTENDING CONCEPT IMPORT TO THREE TERMINOLOGIES 

 

The topological patterns discussed in Chapters 3 and 4 used a single source terminology 

with one target terminology for identifying potentially missing concepts in the target 

terminology. The study presented in this chapter extends the algorithmic detection of 

"candidate concepts for import" from one source terminology to two source terminologies 

used in tandem. The combination of two source terminologies relative to one target 

terminology leads to the discovery of candidate concepts for import that could not be found 

with the same "reliability" when comparing one source terminology alone to the target 

terminology. The analysis revealed a specific configuration of concepts, overlapping two 

source terminologies and one target terminology, for which the name "fire ladder" pattern 

was coined. The three terminologies in this pattern are tied together by a kind of 

"transitivity." In this chapter, a quantitative analysis of the discovered fire ladder patterns 

is provided with a report on the inter-rater agreement concerning the decision of importing 

candidate concepts from source terminologies into the target terminology. 

 

5.1 Fire Ladder Pattern for Concept Import 

Consider three terminologies A, B, and C shown in Figure 5.1. Concept A1 in terminology 

A has a child concept A3, the concept B1 in terminology B has a child B2, and the concept 

C2 in terminology C has a child C3. The concepts A1 and B1 are identical by means of 

having the same UMLS CUI. Similarly, the concepts B2 and C2 are identical, and so are 

A3 and C3. It should also be noted that the concept C3 (=A3) does not exist anywhere in 
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terminology B, the concept B2 (=C2) does not exist anywhere in terminology A, and the 

concept A1 (=B1) does not exist anywhere in terminology C. Looking only at A1, B1, B2, 

C2, and ignoring that the connections between them are of two different kinds (IS-A versus 

identity) this identifies a kind of transitivity (Figure 5.1) [111]. 

 

Figure 5.1 An abstract fire ladder pattern involving three terminologies. 
Source: [32]  
 

 

Figure 5.2 Image of a fire truck with an extensible fire ladder.  
Source: [112] 

 

As two vertical patterns are chained together to jointly achieve a "higher reach," 

the pattern resembles an extensible ladder carried by fire trucks (Figure 5.2). Thus, the 
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pattern in Figure 5.1 is referred to as the fire ladder pattern in contrast to the diamond 

patterns that used vertical density differences [25]. Terminology A is denoted as the target 

terminology, Terminology B as the "upper source terminology," and Terminology C as the 

"lower source terminology." The primary questions that arise from Figure 5.1 are whether 

B2 (=C2) should be proposed for import into Terminology A and whether C3 should be 

recommended for import into terminology B. 

In this study, a quantitative exploration of the fire ladder patterns formed by the 

concepts from 10 different terminologies in the UMLS Metathesaurus was conducted. An 

algorithm that identifies the fire ladder patterns and suggests concepts that could potentially 

be imported into the target terminology was developed. Two domain experts reviewed the 

suggestions made by the algorithm for deciding whether the concepts should be imported 

or not. An example involving the terminologies HPO, NCIt, and SNOMED CT is shown 

in Figure 5.3. 

 

Figure 5.3 An example of a fire ladder pattern with the terminologies HPO, NCIt, and 

SNOMED CT. The UMLS CUIs of the concepts are provided inside the parentheses. 
Source: [32] 
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5.1.1 Algorithm 

The fire ladder pattern is formed by concepts having a PAR relationship with an inverse_isa 

Relationship Attribute, which denotes in the UMLS the hierarchical IS-A relationship. As 

discussed previously in Sections 3.1.1 and 4.1.1 there are 10 such terminologies excluding 

SNOMEDCT_VET and UWDA (excluded as they are subsets of other terminologies). In 

the algorithm, these 10 terminologies are referred as T1, T2, …, T10. For this study, the 2018 

AB release of the UMLS was used.  

The algorithm has two parts. FIRE_LADDER is the top-level algorithm. It 

generates the set PT of all distinct triples of terminologies taken from the set T = {T1, T2, …, 

T10}, i.e., PT = {<T1, T2, T3>, <T1, T2, T4>, …. <T8, T9, T10>}. Because one of these three 

terminologies is designated the target terminology, the second is the "upper source" and 

the third is the "lower source," (Figure 5.1) <T1, T2, T3> is distinct from <T1, T3, T2>, etc. 

Thus, PT is the set of all permutations [113] of three terminologies taken from 10 

terminologies. Therefore, there are 720 triples in PT, according to the formula, 

 

𝑃 (𝑛, 𝑘) =
𝑛!

(𝑛 –  𝑘)! 
, 𝑤ℎ𝑒𝑟𝑒 𝑘 =  3 and 𝑛 =  10 

(5.1) 

 

The second part of the algorithm, named FIRE_LADDER_SUB, takes two inputs, 

namely ontDAG (described in detail in Section 3.1.3) and the set PT generated by 

FIRE_LADDER. The pseudocode of FIRE_LADDER_SUB is given below. 

The algorithm outputs a file (F) with information about sets of concepts that form 

a fire ladder pattern and the three terminologies each concept set is derived from. The total 

time to execute the script corresponding to the above algorithms and to generate the output 

file was approximately 22 seconds on an Intel(R) Core i5 CPU with four cores and 
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~2.4GHz clock speed. 

Procedure FIRE_LADDER_SUB(in: (ontDAG, PT) out: file F) 

for each <Ti, Tj, Tk> in PT do                        

   TA ← Ti 

   TB ← Tj 

   TC ← Tk 

   for each concept in ontDAG{TA} do                                                           

      if concept in ontDAG{TB} then                                                                  

         A1, B1 ← concept 

       A1_children ← ontDAG{TA}{A1}{ˈchildrenˈ}         

       B1_children ← ontDAG{TB}{B1}{ˈchildrenˈ}          

         for each b1_child in B1_children do  

            if b1_child not in ontDAG{TA} then                                                     

                if b1_child in ontDAG{TC} and B1 not in ontDAG{TC} then        

                   B2, C2 ← b1_child 

                   C2_children ← ontDAG{TC}{C2}{ˈchildrenˈ}                               

                    for each c2_child in C2_children do 

                        if c2_child not in ontDAG{TB}and c2_child in A1_children then   

                            C3, A3 ← c2_child 

                            Output: Write (TA, TB, TC, A1, B1, B2, C2, C3, A3) to file F          

                        end if                                                                                                 

                    end for                                                                                                  

                end if                                                                                                         

            end if 

         end for 

      end if 

   end for 

end for 

 

5.1.2 Sample Preparation and Evaluation 

Two data sets (Data Sets 1 and 2) were created from the fire-ladder pattern obtained by the 

algorithm. The patterns were reviewed for import by two domain experts. Data Set 1 

corresponds to the enrichment of Terminology A by importing B2.  For this data set, the 

domain experts were provided with the names of the three terminologies (A, B, and C) and 

also the concepts A1 (=B1), B2 (=C2), and C3 (=A3) and asked for their judgement on 

whether the concept B2 should be imported into Terminology A as the child of A1 and 

parent of A3.  
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It should be noted that the fire ladder pattern supports another possible import 

resulting from the horizontal density difference between the terminologies B and C. Thus, 

the domain experts were also asked about their judgement on importing C3 (=A3) into 

Terminology B as a child of B2. Accordingly, for this Data Set 2, the domain experts were 

provided with the names of the terminologies (B and C) and the concepts B2 and C3. For 

this import, B would become the target terminology and C would simply be the source 

terminology without qualification as upper or lower. This kind of import would be similar 

to the study on horizontal density differences [30] in Chapter 2. However, a larger number 

of ontology combinations are investigated in this study. 

The review of Data Set 1 was done in two phases. In the first phase, along with the 

decision on whether a concept should be imported or not, the domain experts were also 

asked to provide the reasons behind their judgment. Once the results of the first phase from 

both of our domain experts were received, another round of reviews was initiated limited 

to those patterns on which the domain experts disagreed with each other. In this phase, both 

of the domain experts were shown the reasons behind each other’s decisions. This resulted 

in only one change to the data for Data Set 1, increasing the metric of agreement minimally. 

The inter-rater agreements based on Krippendorf’s α and Cohen’s Kappa were also 

calculated. 

 

5.2 Results 

Out of the 720 triples of terminologies possible according to Equation 5.1, 26 triples 

formed fire ladder patterns. For Data Set 1, 55 distinct B2 concepts were identified by the 

algorithm for import into Terminology A. These concepts were reviewed by the experts. 
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There were two cases (in addition to the 55 mentioned above) in which the same triple of 

concepts (A1, B2, C3) was formed by different permutations of terminologies. For example, 

A1: Rhabdomyoma, B2: Cardiac rhabdomyoma, C3: Congenital rhabdomyoma of heart 

was formed by the triple <SNOMED CT, NCIt, MEDCIN> and the triple <SNOMED CT, 

HPO, MEDCIN>. Since the target terminology is the same (SNOMED CT in this case), 

these two permutations were considered together for Data Set 1, yielding a total of 55 

distinct B2 concepts for a total of 57 fire ladder patterns discovered.  

Table 5.1 shows each triple of terminologies and the number of fire ladder patterns 

formed by the permutations of these terminologies. There were 18 instances formed by 

permutations of {SNOMED CT, MEDCIN, CPT} and another 17 instances by 

permutations of {SNOMED CT, NCIt, MEDCIN} accounting for more than half of the 

candidate concepts. It should be noted that columns one and three in Table 5.1 represent 

permutations of triples of terminologies and not a single triple. For example, the triples 

<HPO, SNOMED CT, NCIt> and <HPO, NCIt, SNOMED CT> contributed two fire ladder 

patterns each to get the four patterns listed in the third row of Table 5.1. 

Table 5.1 Triples of Terminologies and the Number of Fire Ladder Patterns Formed by 

Permutations of each Triple 

 
All permutations of a 

triple of terminologies 

Number of fire 

ladder patterns 

All permutations of a 

triple of terminologies 

Number of fire 

ladder patterns 

CPT, SNOMED CT, 

MEDCIN 

18 UMD, SNOMED CT, 

NCIt 

2 

NCIt, SNOMED CT, 

MEDCIN,  

17 MEDCIN, ATC, NCIt 2 

HPO, SNOMED CT, NCIt 4 SNOMED CT, HPO, 

MEDCIN 

2 

CPT, NCIt, MEDCIN 3 CPM, SNOMED CT, 

NCIt 

1 

FMA, SNOMED CT, NCIt 3 HPO, SNOMED CT, 

MEDCIN 

1 

SNOMED CT, CPM, 

MEDCIN 

3 SNOMED CT, GO, 

FMA 

1 
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Out of the 55 concepts suggested for import by our algorithm for Data Set 1, one 

domain expert agreed on importing 42 concepts (76.3%) and the other agreed on 45 

concepts (81.8%) (Table 5.2). The two domain experts agreed in their decisions regarding 

39 out of 55 concepts (71%). The inter-rater agreements using Krippendorff’s α score and 

Cohen’s Kappa were 0.51 and 0.507, respectively. Examples of fire ladder patterns are 

shown in Table 5.3. 

Table 5.2 Details of the Domain Experts’ Decisions Regarding Importing the Concepts out 

of 55 Suggestions Made by the Algorithm 

 

Domain Expert 1 Domain Expert 2 Two Domain Experts 

Recommends import Recommends import 

 

Both recommend import 

39 

42 45 Both recommend non-import 

7 

Recommends  

non-import 

Recommends  

non-import 

One Expert for import  

one against 

13 10 9 

 

Table 5.3 Examples of Fire Ladder Patterns  

Term. A Term. B Term. C Concept A1 Concept B2 Concept A3 

SNOMED 

CT 

MEDCIN CPT Drug 

measurement 

Therapeutic 

drug assays 

Theophylline 

assay 

NCIt MEDCIN SNOMED 

CT 

Urologic 

surgical 

procedures 

Operation on 

urethra 

Urethrostomy 

HPO SNOMED 

CT 

NCIt Adrenal 

gland 

hypofunction 

Adrenal 

cortical 

hypofunction 

Secondary 

adrenal 

insufficiency 

 

For Data Set 2, 105 distinct pairs of concepts (B2, C3) in terminologies B and C 

were identified. For one concept B2, there were several concepts in the position of C3. For 

instance, for the fire ladder pattern formed by A1: Tract of spinal cord, B2: Descending 

spinal cord tract two different C3s namely Structure of medial reticulospinal tract and 
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Structure of lateral reticulospinal tract were observed. While for Data Set 1 each 

algorithmic suggestion would potentially result in importing one concept into Terminology 

A, for Data Set 2 two potential imports into Terminology B were possible in this example. 

The domain expert agreed to the import of 98 concepts out of 105 concepts (93.33%). 

Examples are shown in Table 5.4. 

Table 5.4 Examples from Data Set 2, for Concept C3 Agreed to be Imported into 

Terminology B as the Child of Concept B2 

 

Term. B Term. C Concept B2 Concept C3 

MEDCIN NCIt Vital signs measurements Heart rate 

HPO MEDCIN Cardiac rhabdomyoma Congenital rhabdomyoma 

of heart 

NCIt SNOMED 

CT 

Colon carcinoma Carcinoma of descending 

colon 

ATC NCIt Thyroid hormones Levothyroxine sodium 

GO  FMA Region of chromosome Short arm of chromosome 

 

An error analysis was performed for cases in which the domain experts did not 

recommend algorithmically determined candidate concepts for import. One example from 

Data Set 1 consists of the fire ladder pattern formed by A1: Metastatic Neoplasm, B2: 

Secondary Neoplasm, and C3: Metastasis to digestive organs. According to the domain 

experts, A1 and B2 are sufficiently close to each other to be considered synonyms. For 

Data Set 2, the concept anterior radial head dislocation was not imported as the child of 

Congenital dislocation of radial head, because the former concept is not necessarily 

congenital. 

5.3 Discussion 

The study discussed two possible cases of import. One can think of a third possible case of 

import based on Figure 5.1, which is importing B1 (=A1) into terminology C as a parent 

of C2. However, this presents another question as to how to find a parent for the new C1, 
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given that there should be a path from every concept to the root of its terminology, 

following design standards in the field of ontologies and terminologies. 

The question arises whether transitive patterns can be constructed for four 

terminologies at a time. Preliminary research was performed on this question and no such 

patterns were identified with the 10 terminologies from the UMLS. Another question, to 

be explored in the future, is whether the import of a concept could lead to the subsequent 

discovery of new vertical density differences. Thus, after importing B2 into A (Figure 5.1), 

A1 and B2 together could form the right side of a new diamond pattern (Figure 3.1) with a 

fourth terminology. 

There is one more approach to extend the set of density-based methods for 

discovering candidate concepts for import. Referring to Figure 5.1, B2 is a child of B1. 

However, it is possible that B1 and B2 together define a path with one or more intermediate 

concepts between them. Consider that there is exactly one such intermediate concept (say 

B1.5). In that case, the fire ladder pattern of Figure 5.1 would suggest the import of both 

B2 and B1.5 into the terminology A. This approach can also be extended for importing 

concepts from terminology C into terminology B, by extending the length of the path 

between C2 and C3 and adding intermediate concepts such as "C2.5" between them. 

Investigating this kind of pattern requires a more complicated algorithmic approach and is 

left for future work. 

It is important to stress the contribution of using two source terminologies in 

tandem, which is a novel method reported for the first time in this study. In Data Set 1, the 

level of confidence that a suggested candidate for import is correct is high because it is 

constrained from above and below. While there have been cases [27] where candidates 
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were constrained from above and below by a single source terminology, this was not 

possible for the 55 candidate concepts that there were discovered in this study. For Data 

Set 2, a candidate concept for import is only constrained from above, similar to the previous 

work [30], which is a weaker indication that an import is desirable. 

The question of the right degree of pre-coordination has been discussed previously 

in the literature, e.g., [114]. On one hand, the difficult task of post-coordinating concepts 

should not be left to the users, who are likely not experienced and knowledgeable about 

ontologies. On the other hand, creating many pre-coordinated concepts increases both the 

effort of the curator and the search effort of the user, because these concepts are "cluttering 

up" the ontology. Finding the right balance between too much pre-coordination and too 

little pre-coordination is difficult. 
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CHAPTER 6  

SUSTAINABILITY OF BIOMEDICAL ONTOLOGIES 

 

Biomedical ontologies are developed by investing large number of resources including 

money and manpower. The study described in this chapter presents an attempt to 

understand how well the ontologies are maintained over the years after their initial 

development and thus whether developing maintenance methods is of wider interest. This 

study is motivated by the fact that the attempts at identifying missing concepts in ontologies 

and suggesting concepts for import become fruitless if the ontologies are not being updated 

and maintained by the ontology developers. The study is based on ontologies in BioPortal. 

BioPortal maintains information about various aspects of each ontology. The information 

from BioPortal collected on January 18th, 2018 was used to analyze various aspects of the 

ontologies. On that date, there were 684 ontologies listed on BioPortal. 

One of the primary goals of this study is to identify the ontologies in BioPortal that 

are not regularly updated and try to understand the root causes of this situation. To this end, 

83 ontologies were identified with at least 1000 distinct concepts that had not been updated 

since January 1, 2016, on the BioPortal site. Despite not being updated for quite a long 

time, some of these ontologies still had a substantial user base as evident by their recent 

usage patterns reported on BioPortal. However, the analysis shows that there are several 

reasons behind the sporadic update/maintenance of these ontologies. 

 

6.1 Analysis of BioPortal Ontologies 

BioPortal maintains a submission page for each ontology uploaded into it. This submission 
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page contains information pertaining to that particular ontology, including the release date, 

upload date, ontology format, short description, URL of the homepage, version number, 

contact information of ontology curators, etc., for different submissions of the ontology on 

BioPortal. Out of 684 ontologies at the time of this study, 653 had detailed information on 

the submission page. Figure 6.1 shows the number of ontologies released each year, based 

on the first release date information in BioPortal. 

 

Figure 6.1 Number of ontologies released per year based on the release date in BioPortal 

for the first submission. 
Source: [29] 

 

The information provided in the metrics page of the ontologies in BioPortal 

contains data about 601 ontologies. According to this data, the 10 largest ontologies (based 

on the number of classes) include the National Center for Biotechnology Information 

(NCBI) Organismal Classification (NCBITAXON) [115], Gazetteer (GAZ) [116], the 

Drug Ontology (DRON) [58], SNOMED CT [117], the Protein Ontology (PR) [118], 

Robert Hoehndorf Version of MeSH (RH-MESH) [119], Medical Subject Headings 

(MeSH) [23], Logical Observation Identifier Names and Codes (LOINC) [120] and the 
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BioModels Ontology (BIOMODELS) [121]. 

It is not immediately obvious how to measure the popularity of an ontology. 

However, the NCBO Ontology Recommender service [122] uses the number of ontology 

accesses as a proxy for popularity. To this end, BioPortal provides a bar chart of the most 

visited ontologies of the current month on its home page. For example, in February 2018, 

the Current Procedural Terminology (CPT) [123] (69,417) tops the list, followed by the 

Medical Dictionary for Regulatory Activities (MEDDRA) [124] (14,437), RXNORM [60] 

(11,798), SNOMED CT (9,153) and the National Drug Data File (NDDF) [125] (7,511). 

Additionally, the number of visits per month for each ontology is also presented on 

the corresponding pages. This information was exploited to generate a scatter plot 

of/between the number of days since an ontology was last updated in BioPortal and the 

number of times that ontology has been accessed since the last update, for all the ontologies 

in BioPortal at the time. Figure 6.2 depicts this scatter plot. The top-5 accessed ontologies 

mentioned above were excluded to avoid the scaling effect caused by them. It was observed 

that many of the ontologies, even though they were not updated for more than two years, 

are being actively used, which is evident from the number of accesses shown in the plot. 

To be specific, for the 83 ontologies that were not updated since January 2016, the average 

number of accesses since the last update date was 1548 at the time of the study. 

Another proxy for the popularity of an ontology could be the number of projects 

that make use of it. According to BioPortal, the Gene Ontology (GO) [22] is used in the 

largest number of projects (61). The other ontologies that have many associated projects 

are the Basic Formal Ontology (BFO) [126], the Ontology for Biomedical Investigations 

(OBI) [127], SNOMED CT, the Foundational Model of Anatomy (FMA) [128], National 



 

76 

Cancer Institute Thesaurus (NCIt), Chemical Entities of Biological Interest Ontology 

(ChEBI) [55] and MeSH. Around 35% of the ontologies in BioPortal have project 

information associated with them. 

 

Figure 6.2 Number of days since the last update vs. number of visits since the last update. 
Source: [29] 
 

The frequencies with which the ontologies are updated in BioPortal also vary 

widely. For example, some ontologies are updated 3-4 times a week, while others are 

updated quarterly or twice a year. The most commonly updated ontology in BioPortal is 

the Gene Ontology (GO). Some other frequently updated ontologies include the Mosquito 

Insecticide Resistance Ontology (MIRO) [129], the Systems Biology Ontology (SBO) 

[130], the Human Disease Ontology (DOID) [131], and the Human Phenotype Ontology 

(HP) [56]. 

In this study, the primary interest is in ontologies that have not been updated for a 

long time, and that are of a substantial size. The goal is to understand why ontologies that 

were apparently built with a great investment of time, effort, and budget are not being 
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maintained/sustained and how big a problem this constitutes. Another question of interest 

is whether the fact that an ontology is not actively maintained has an effect on the frequency 

of access to it. 

6.1.1 Methods 

To limit the scope of the study to a manageable size, only those ontologies that had not 

been updated in BioPortal since January 1, 2016, were chosen. There was a total of 317 

such ontologies. In Figure 6.3 the number of ontologies based on their last update date in 

BioPortal is presented.  

 

Figure 6.3 Number of ontologies based on the date of their last submission in BioPortal. 
Source: [29] 

 

Roughly 47% of the ontologies in BioPortal had not been updated since January 1, 

2016. Small ontologies with few concepts may not be of great interest to a broader 

community. Hence, the study is limited to the subset of ontologies that have a substantial 
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number of concepts. From the above 317, a subset of 83 ontologies with at least 1,000 

distinct concepts was filtered out.  

To identify the root causes why the ontologies are not regularly updated/maintained, 

personalized email messages were sent to the curators/owners on file for these 83 

ontologies. The traditional route of questionnaires was avoided due to general 

questionnaire fatigue [132] and scientific evidence of continuously falling response rates 

[133]. The email was composed with three questions shown below: 

I am working on a study on the life cycle of ontologies. In BioPortal you are listed 

as the contact for the xxx ontology. According to the information in BioPortal, the xxx 

ontology has not been updated for two years or longer. 

1. For my study, I am wondering what has motivated the developers of the xxx 

ontology to stop updating it on BioPortal.   

2. Has the development in general stopped, or is it being made available at a 

different website? 

3. If the development has stopped, I wonder if you could shed some light on the 

question why this happened. 

If you are the wrong person for these questions, I apologize, and could you please 

direct me to the Principal Investigator of this ontology project. 

The responses received were studied in detail, to categorize them into groups that 

had not been preconceived to avoid any limiting biases. This modus operandi is loosely 

based on the phenomenological approach [134, 135] to qualitative data analysis. There 

were seven categories derived that accounted for almost all the email responses. 

As a second source of information concerning whether an ontology is being 

maintained, the publications indexed by the name of the ontology and papers on which the 

curators of the ontology appear as authors were used. For this purpose, an extensive search 
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of PubMed and Google Scholar was performed.  The specific interest was to identify when 

the most recent publication about an ontology appeared. Allowing for delays in publishing 

a paper, a hypothesis was formulated that work on an ontology might be terminated after a 

concluding paper had been published by a journal or a major conference. 

 

6.2 Results 

For sending emails, the contact information of the curators of the 83 ontologies that were 

filtered for the study was collected from BioPortal. There was no contact information 

available for one ontology. Also, 14 emails bounced back with "address not found" 

messages returned to us. In the first five days after the initial email, 29 responses were 

received. After that, a reminder email was sent to the remaining ontology curators and then 

another 19 responses were received, giving a total of 48 responses. It should be noted that 

48/83 = 0.5783 = 57.8% is much larger than the typical response rate for a survey for which 

no incentive is given, confirming the choice of using an individualized email instead of a 

questionnaire. According to Medway [136], a response rate of 10.9% was achieved in her 

study for a control group that was not incentivized. Below a few prototypical anonymized 

responses (not edited for spelling errors etc.) from ontology curators are presented. 

Response Sample 1: Ontology X1 has been developed in the frame of xxx 

(http://www.xxx.xxx) a xxx funded project in which out team in xxx were partners since the 

beginning. Roughly 3 years ago, in the last renewal of the project, our funding has been 

cut and we were obliged to drop active maintainance of xxx. Since we are firm supporters 

of the rules set by xxx we are still supporting xxx, replying to requests and even adding 

new terms and updating if we have such a request. During this period I haven't received 
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any proposed term to be included in xxx, thus no updates are available. 

Response Sample 2: The evolution of the X2 and X3 ontologies, that have been developed 

by our organization (xxx), and for which I have the responsibility, depends very heavily on 

the human and financial resources that we invest in it.  

The first phase (2008-2011) mobilized about 50 researchers who invested themselves in 

time, folowing the request of our organization without special funding, which led to an 

already very rich first version. 

The following developments could only be achieved through major research programs. 

Thus, from 2011 to 2015, the enrichment of ontologies, in particular with xxx, could be 

carried out thanks to the financing provided by a major xxx". During this period, new 

versions of xxx and xxx were deposited on the bioportal site (we can also find downloadable 

versions on the xxx website: http://www. xxx /). 

Until the end of 2016, there was no more funding, which explains the lack of new 

developments in the two ontologies, which are already very complete.  

In 2017, we obtained funding from xxx to enrich xxx with xxx relating to the xxx. We are 

therefore working on this project which should allow to put online an upgraded version of 

xxx within 6 months.  

I hope that these few explanations will allow you to better understand the evolution of the 

life cycle of our ontologies. 

Response Sample 3: Simple reason for this - funding stopped, project ended. If someone 

wants to pick up the development, I am happy help. 

The email responses were constructive and informative. The shortest response 

consisted of only 11 words. The most elaborate response was a full 484 words long.  The 
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average response was 90 words long, counting URLs as single words. Overall, the response 

emails contained 17 URLs, typically referring to new ontology resources. None of the 

email responses expressed annoyance about the questions, and in nine cases respondents 

were thankful for the interest in their work. 

Table 6.1 Main Categories of Responses 

Groups Reason 
Number of 

Ontologies 
Ontologies 

Group 1 Incorporated into other 

ontologies/systems 

9 ICECI, DDO, PAE, TAO, 

CSEO, EHDA, MAT, 

AAO, EHDAA 

Group 2 Lack of funding, time and 

manpower, interruption in 

funding 

15 BIOMODELS, RH-MESH, 

TGMA, ONSTR, HFO, 

SDO, IDOMAL, CCONT, 

DERMO, APAONTO, 

ATOL, GALEN, GMO, 

MCCL, NPO 

Group 3 Updating in large time gaps 

/ slow development 

7 GEXO, RETO, REXO, 

ICNP, IDOBRU, HINO, 

CHMO 

Group 4 Organization / Project ended 6 OBI_BCGO, NIGO, 

GENE-CDS, TRAK, 

ONTOPNEUMO, DINTO 

Group 5 Paused for publication / 

redesigning 

3 ESSO, ROO, GMM 

Group 6 Concepts valid / Serves the 

purpose 

3 EHDAA2, 

ONTOLURGENCE, 

IMGT-ONTOLOGY 

Group 7 Not updating on BioPortal 3 OMIT, PMA, COGAT 

Unassigned  2 HUGO, NIFSUBCELL 

Total  48  

 

The inquiry to the owners of the 83 ontologies resulted in a varied set of responses. 

The seven major categories that explain the reasons behind the sparse updates of these 

ontologies are shown in Table 6.1. Two responses were hard to assign to any specific 
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category. One of the two responses is given below. 

xxx are not an ontology project, we are a project naming xxx, I suggest you look at 

our website www. xxx to find out more. The "ontology" was not created by us, it was created 

from our publicly available data by the BioPortal project. We have not been asked to 

submit any new data to the portal - we assumed if they wanted to update the data they 

would have an automated update process as all of our data is freely available from our 

website. Hence no update. I hope this answers your questions. 

The largest number of responses indicated a variation on the theme that there was 

a lack of funding or manpower. A total of 15 responses expressed this issue. The second 

largest group (9 responses) indicated that the ontology had been folded into another 

ontology or system that obviated the need for continued independent development. The 

third biggest group of responses claimed that development was ongoing, however, it 

continued at a slow pace or with unpredictable gaps. Seven responses were in this category. 

 

Figure 6.4 Total number of visits for the 11 most-visited ontologies not updated between 

January 1, 2016, and January 18, 2018. 
Source: [29] 

 



 

83 

The usage pattern of these 83 ontologies was analyzed to understand whether the 

lack of updates has prevented users from accessing these ontologies. Figure 6.4 shows the 

number of visits for the 11 most-visited ontologies in this category for the year 2017. 

Development of these ontologies had been discontinued at least a whole year prior. 

Secondary Analysis based on Publications: Out of the 83 ontologies under consideration, 

no corresponding publications were found in PubMed or Google Scholar for 26 ontologies. 

For seven ontologies their last update year coincided with their last publication year, while 

12 ontologies were last updated one year before their last publication and 15 ontologies 

were last updated one year after the final publication. To summarize, for 60% 

(7+12+15=34) of the 57 ontologies that had at least one corresponding publication, updates 

in BioPortal stopped within a year before or after the last publication about this ontology. 

The remaining 23 (= 57–34) ontologies had their last update two or more years before or 

after the last date of publication. 

 

6.3 Discussion 

The choice of an email message with questions as opposed to a questionnaire is currently 

unusual but is compatible with the phenomenological approach. There are disadvantages 

of this modus operandi. As answers were given in free text, major and minor categories of 

responses had to be deduced from the totality of replies, as opposed to having predefined 

answer choices and categories. In a questionnaire, the participants are usually forced to 

make choices, possibly leaving her/him with lingering doubts that cannot be expressed in 

the given form. For example, if a Likert scale allows only five choices and a participant 

feel that the right answer is between the top two choices, this is not expressible. On the 
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other hand, with the free format email, the evaluators have to assign answers to categories, 

ignoring any expressed doubts. 

The most important category of responses (15) focused on funding and staff size. 

This indicates that some ontology development projects are apparently conceived without 

either (a) a plan for sustaining and maintaining the ontology after the initial development 

period or (b) an underestimate of the resources in staff and budget that might be required 

to maintain an ontology over a longer period. Achieving the necessary funding levels might 

be difficult. In fact, as pointed out by Baker [137], federal funding agencies such as NIH 

are directing their funds to research and innovation as opposed to managing and 

maintaining large resource-oriented databases. This issue has been further explored, and 

the need for funding agencies to develop better mechanisms for supporting infrastructure-

related research has been pointed out in previous work [138]. One possibility would be to 

reincarnate funding programs such as "Data Ontologies for Biomedical Research" that 

were supported by NIH about a decade ago [139]. We are not aware of any other 

mechanism that can "do the job of ontologies," and the categorization of scientific classes 

connected by explicit relationships will remain important for the future of Medical 

Informatics. 

The results of the literature study supported the hypothesis that work on an ontology 

might be terminated after a concluding paper had been published in a journal or a major 

conference. Limitations of this part of the study include that not all publications appear in 

Google Scholar or PubMed. When the search was made for publications, the name of each 

ontology and the names of the contact persons listed on BioPortal were used as search keys. 
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It is entirely possible that a different author, not listed on BioPortal, has published a paper 

about a listed ontology and it was not discovered. 
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CHAPTER 7  

CONCEPT MINING FOR INTERFACE TERMINOLOGY  

FOR ANNOTATING EHRs 

 

Recent years have witnessed a major transformation in the field of health care, with the 

federal government taking the lead to encourage the use of Electronic Health Records 

(EHRs) [140]. With the wide use of EHRs, large volumes of discharge summaries, lab 

reports, progress notes, etc. have become available to the healthcare community. Such 

clinical notes, specifically progress notes, contain the most up-to-date relevant information 

per patient. While extremely valuable in describing the clinical conditions of a specific 

patient, the information is mostly recorded in unstructured text with highly specialized 

clinical phrases. To enable and augment interoperability and enhance healthcare quality by 

facilitating post hoc research studies, these records need to be annotated with concepts from 

a standard terminology. Without annotations, the text is often vague, ambiguous, and 

inadequate for automated processing. One of the main goals for converting paper records 

to EHRs was to support interoperability and research. This requires annotation of EHR 

notes with concepts from reference terminologies. In today’s EHRs, coded data entry is 

limited to specific segments, such as problem lists and quality measures.  

The vision of "Meaningful Use" (MU) [141] required the use of standardized 

ontologies. SNOMED CT, which was selected for clinical recording, is rarely utilized. Two 

major reasons are that currently there are no satisfactory off-the-shelf tools to enable 

clinical note annotation; and physicians record clinical notes with medical phrases, many 

of which are not contained in standard medical reference terminologies used for annotation. 

To provide an example from the cardiology domain, consider the cardiology concept 
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supraventricular tachycardia (SVT), which is a potentially dangerous fast heart rhythm 

arising from the upper part of the heart. Two important types of SVT are atrioventricular 

nodal reentrant tachycardia (AVNRT) and atrioventricular reentrant tachycardia 

(AVRT). SNOMED CT is the most comprehensive clinical reference terminology, 

nevertheless, it cannot represent this example. While SNOMED CT provides a code for 

SVT and AVRT, the latter is not classified as a child of SVT. SNOMED CT does not 

provide a code for AVNRT at all. This example illustrates that SNOMED CT lacks many 

fine granularity concepts. In fact, it lacks many such concepts. 

To provide a recent example of how important annotations are for biomedical 

research, consider the COVID-19 pandemic. COVID-19 has turned into the greatest 

healthcare challenge since the Spanish flu pandemic, causing millions of infections and 

over 2.5 million deaths [142]. At the early stages of this pandemic, doctors have been 

describing signs and symptoms in various organ systems, e.g., "COVID toes" and 

Multisystem Inflammatory Syndrome in Children (MIS-C). However, most of these terms 

could not be coded and were only recorded as free text, inhibiting interoperability, and the 

use of EHR notes for research on the disease. How can the research on "COVID toes" and 

other related COVID-19 rashes (for example) be supported, if such findings are not coded 

in the EHRs to make them easily discoverable, and doctors and clinical software are forced 

to search for them as free text instead of as concepts? 

To overcome these issues, two studies are described in this chapter that present how 

natural language processing-based concept mining techniques can be used to mine fine 

granularity concepts from text that are missing in reference ontologies/terminologies 

(discussed in Section 2.5). These concepts are added to an interface terminology (discussed 
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in Section 2.5) that can facilitate annotation of unstructured text in EHRs. In some cases, 

an initial reference ontology exists. If this is not the case, an initial ontology can be 

constructed from SNOMED CT concepts. Both these situations are demonstrated in two 

separate case studies. One study below presents the creation of a Cardiology Description 

Interface Terminology that can facilitate the annotation of EHRs of cardiology patients. 

The second study presents the creation of a COVID Interface Terminology that can be used 

to annotate the EHRs of COVID-19 patients.  

 

7.1 Creating Initial Interface Terminologies 

An interface terminology [92] is different from reference terminology. The former is 

designed to maximize utilization by end-users and is serving specific applications, while 

the latter provides a formal representation of concepts acting as a comprehensive reference 

resource for aggregating data about the entire healthcare enterprise. An example 

application facilitated by an interface terminology is to support clinicians’ entry of patient 

information into an EHR. Since interface terminologies are designed with user-specific 

applications in mind, they usually contain colloquial usages and common clinical phrases 

constituting a richer synonym content compared to reference terminologies. One of the 

recommendations for developing an interface terminology is to construct it from an 

existing ontology [93]. This section presents details on how this recommendation is 

followed to construct initial versions of both a Cardiology and a COVID Interface 

Terminology by starting from existing ontologies. 
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7.1.1 Initial Cardiology Description Interface Terminology 

To create an Initial Cardiology Description Interface Terminology (ICDIT), the 

cardiology-related concepts from SNOMED CT were used. SNOMED CT Concept is the 

root concept in SNOMED CT. Under this concept, all the 19 SNOMED CT hierarchies are 

arranged. Several hierarchies of SNOMED CT were identified that contain subhierarchies 

of cardiology-related concepts, e.g., Procedure on cardiovascular system and 

Cardiovascular finding. A program was developed that takes as input the SNOMED CT 

ID of a concept and extracts its entire subhierarchy. Along with the Fully Specified Names 

(FSNs) of the concepts, all the synonyms of all the extracted concepts were also collected 

since synonyms are critical for annotation of the clinical notes. This process was repeated 

for all the roots of the subhierarchies containing cardiology concepts. All these concepts 

together constituted the ICDIT. 

7.1.2 Initial COVID Interface Terminology 

The Coronavirus Infectious Disease Ontology (CIDO) (discussed in Section 2.1.4) was 

used as the backbone for creating the Initial COVID Interface Terminology (ICIT). The 

concepts from five COVID-related ontologies in BioPortal were included into CIDO to 

create ICIT. A brief description of these ontologies is provided below. 

The COVID-19 ontology [143] (2268 concepts) predominantly covers concepts 

related to cell types, genes, and proteins involved in virus-host-interactions, as well as 

medical and epidemiological concepts relevant to COVID-19. This ontology is similar to 

CIDO, but includes more concepts related to diseases affecting various systems of the 

human body. The COVID-19 Infectious Disease Ontology (IDO-COVID-19) [144] (486 

concepts) extends the Infectious Disease Ontology (IDO) [145] and the Virus Infectious 
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Disease Ontology (VIDO) [146] to solely represent concepts related to the virus and 

diseases associated with COVID-19. The World Health Organization's (WHO) COVID-19 

Rapid Version CRF semantic data model (COVIDCRFRAPID) [147] (398 concepts) aims 

at capturing the semantic references to the questions and answers in the case report form. 

Apart from this, there are two small ontologies in BioPortal - the COviD-19 Ontology for 

Cases and Patient information (CODO) [148], and the COVID-19 Surveillance Ontology 

(COVID19) [149], both with 52 concepts and mainly dealing with concepts related to the 

surveillance, geography, treatment facilities and tracking of patients. The ACT COVID 

Ontology v3.0 is available on GitHub [150] as SQL files that can be loaded into a database 

and was created to support cohort identification and related research by incorporating terms 

related to diagnosis, procedure, and medication codes from ICD [151], LOINC [9], CPT 

[7] and NDC [152].  

About 2,446 concepts were extracted from the available files in this research and 

included in ICIT. In addition to these, UMLS, SNOMED CT [153], and LOINC have 

published lists of concepts related to COVID-19 on their respective websites that were also 

included. All the concepts were thoroughly examined, and duplicates were removed before 

adding them into ICIT. 

 

7.2 Extracting Auxiliary Concepts for Extending Initial Interface Terminology 

Apart from specific disease-related information and medications, EHRs also contain the 

anamnesis of a patient, which plays an important role in deciding the course of treatment 

for a patient. For example, the sentence "74 year old male with Phmx of nephrolithiasis, 

prostate ca s/p XRT presented to ED…" extracted from a clinical note describes the prior 



 

91 

history of kidney stones and prostate cancer in a COVID-19 patient. Similarly, concepts 

such as hypertension, cholesterol, and diabetes mellitus are frequently recognized and 

annotated in cardiology notes. Such concepts are not present in ICIT or ICDIT. However, 

they are essential for the annotation of EHRs of COVID-19 patients and cardiology patients. 

Thus, it is important to add such concepts to the initial interface terminologies under the 

appropriate auxiliary hierarchies. SNOMED CT is a good source for providing such 

concepts. This section describes the process of extracting auxiliary concepts for extending 

both ICDIT and ICIT. 

7.2.1 Auxiliary Concepts for Cardiology Description Interface Terminology 

The clinical notes from the MIMIC-III database (discussed in Section 2.3.1) were used to 

extract auxiliary concepts for Cardiology Description Interface Terminology (CDIT). To 

retrieve clinical notes of cardiology patients, the patients who stayed in the two ICUs 

associated with cardiology - the Coronary Care Unit (CCU) and the Cardiac Surgery 

Recovery Unit (CSRU) were identified. The Icustays table in MIMIC-III defines every 

ICU stay for every patient. From this table, the subject ids (unique to every patient) along 

with the unique hospital admission ids for every patient who was admitted either to the 

CCU or the CSRU were selected. Then the clinical notes (available in the Noteevents table) 

for the above filtered (subject_id, hospital_admission_id) pairs were extracted. The 

extraction was limited to the category 'discharge summary.' 

The text in the discharge summaries is organized under various section headers, 

such as the history of present illness, family history, discharge medications, etc. A review 

of the notes by a domain expert revealed that most of the cardiology-related concepts were 

found under the section headers related to the history of present illness, past medical history, 
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brief hospital course, and major surgical or invasive procedures. Hence, only the textual 

information under the above mentioned four section headers (and their variations) was 

extracted and retained. Out of the 18,901 discharge summaries of patients who stayed in a 

CCU or CSRU, 500 discharge summaries were randomly chosen for this study. These 500 

discharge summaries together constitute the dataset for mining concepts for a Cardiology 

Description Interface Terminology.  

In the next step, the NCBO Annotator [98] was used to annotate cardiology EHR 

notes with relevant terminology concepts. The rationales for the use of the NCBO 

Annotator are the following: 1) Cardiology-specific annotated datasets are not publicly 

available; 2) The NCBO Annotator allows to annotate text with concepts from any of the 

many ontologies/terminologies available in BioPortal, and 3) Terminologies can be 

uploaded to BioPortal and then its concepts can be used for annotation by NCBO Annotator. 

This property is important for annotating clinical notes, as the interface terminology is 

expanded in different stages by adding new concepts at each stage. 

To obtain the auxiliary concepts, the dataset is first annotated with concepts from 

SNOMED CT and then with concepts in ICDIT using the NCBO Annotator. A program 

that outputs only concepts annotated by SNOMED CT but not by ICDIT (i.e., it displays 

the difference in annotations) called DIFF was developed. An excerpt from one of the 

cardiology notes is shown in Figure 7.1, with concepts from ICDIT in yellow and concepts 

missing in ICDIT but present in SNOMED CT in pink. History of, bicuspid, female, etc. 

are examples of auxiliary concepts. 
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Figure 7.1 An excerpt from a cardiology EHR, annotated by ICDIT (in yellow) and the 

DIFF (in pink: Concepts in SNOMED CT, missing in the ICDIT).  

 

DIFF is applied to all cardiology notes in the dataset and the concepts obtained are 

added to separate auxiliary hierarchies and integrated with ICDIT to form the Cardiology 

Description Interface Terminology version 0 (CDIT_v0). 

7.2.2 Auxiliary Concepts for COVID Interface Terminology 

The construction of the COVID Interface Terminology version 0 (CIT_v0) follows similar 

steps. For extracting auxiliary concepts for the COVID Interface Terminology (CIT), we 

use the COVID-19 radiology case studies (discussed in Section 2.3.2). As previously 

discussed, DIFF is applied to the collection of 115 radiology case studies in the dataset to 

collect all auxiliary concepts and integrate them into ICIT to form a new interface 

terminology, the COVID Interface Terminology version 0 (CIT_v0). In this case, DIFF 

identifies all the concepts annotated with SNOMED CT that are not present in ICIT. Fig. 

7.2 shows an excerpt from a radiology case study of a COVID-19 patient, annotated with 

ICIT (in yellow) and the DIFF (in pink). The concepts such as old, reconstruction, and 

lower are examples of auxiliary concepts that are needed even though they are not COVID 

specific.  
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Figure 7.2 A snippet from a radiology case study of a COVID-19 patient, annotated with 

ICIT (in yellow) and the DIFF (in pink) based on SNOMED CT. 

 

7.3 Concept Mining Techniques 

Reference ontologies and terminologies often do not contain many of the fine granularity 

phrases that appear in EHR notes. Because of this, some critical information is lost during 

the annotation process. This issue can be addressed by mining concepts from the EHR itself. 

Thus, extracting high granularity concepts from EHR notes is one of the challenges to 

overcome for enriching interface terminologies with such essential concepts.  

For addressing this challenge, the techniques of concatenation and anchoring of 

existing concepts are used. Concatenation involves combining two or more existing 

concepts that appear next to each other into a fine granularity phrase. Stop words are 

allowed in between existing concepts. Anchoring extracts phrases by adding one or two 

words to the left, right, or both sides of an existing concept, and stop words are allowed to 

intervene. For example, consider w1, w2 as two words, sw as a stop word, and we define 

* to mean 0, 1, or more occurrences [Kleene Star, in the theory of Algorithms], then the 

candidate anchoring phrases can be represented using the following three rules. The "+" 

stands for string concatenation. 

1. w1 + sw* + [existing concept] 

2. [existing concept] + sw* + w1 

3. w1 + sw* + [existing concept] + sw* + w2 
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Both these techniques are illustrated in Figures 7.3 and 7.4 for cardiology and COVID-19, 

respectively. 

 

Figure 7.3 An excerpt from a cardiology note visualizing concatenation (overbars) and 

anchoring (underlines). 

 

Figure 7.3 shows examples from a cardiology note, with anchoring marked by 

underlines and concatenation indicated by bars above the component concepts. Aneurysm 

of the ascending aorta, aortic valve replacement, and elective aortic valve replacement are 

examples of concatenation. Aneurysm of the ascending aorta is obtained by concatenating 

existing concepts Aneurysm and ascending aorta allowing the stop words "of" and "the" in 

between. The phrase elective aortic valve replacement is formed by the concatenation of 

three existing concepts. The phrase splenic aneurysm is obtained by Rule 1 of anchoring 

as the word splenic is added to the left of an existing concept aneurysm, and bicuspid AV 

is obtained by Rule 2. 
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Figure 7.4 An excerpt from a synthetic EHR illustrating some example phrases obtained 

by concatenation and anchoring procedures. Overbars represent concatenation and 

underlines represent anchoring. 

 

An excerpt from a synthetic note of a COVID-19 patient annotated with CIT_v0 is 

shown in Figure 7.4. Concatenation is marked by overbars and anchoring is marked by 

underlines. For example, the existing concepts symptom and COVID can be concatenated 

to form the phrase symptom of COVID. The concept strep throat is obtained by anchoring 

"strep" to the existing concept throat. In the next step, this new concept can be concatenated 

with diagnosis providing the phrase strep throat diagnosis. Similarly, the phrase ill defined 

bilateral hazy opacities, is obtained by first applying anchoring to get ill defined and hazy 

opacities and then by concatenating these phrases with bilateral.  

Concept mining proceeds by applying the concatenation and anchoring procedures 

alternatingly on the dataset, annotating it with version 0 of the interface terminology 

(CDIT_v0 or CIT_v0). To be explicit, the dataset is first annotated with CIT_v0 (or 

CDIT_v0) concepts. Then concatenation is applied. Those phrases that are accepted by a 

human expert are then added to CIT_v0 (or CDIT_v0) to obtain CIT_v1.1 (or CDIT_v1.1).  

Next, the dataset is annotated with CIT_v1.1 (or CDIT_v1.1), and anchoring is applied to 

obtain more candidate phrases. The phrases accepted by the expert are added to CIT_v1.1 

(or CDIT_v1.1) to obtain CIT_v1.2 (or CDIT_v1.2). This process is continued, alternating 

between concatenation and anchoring. The advantage of alternating the concatenation and 
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anchoring steps is that the phrases obtained by concatenation can participate in anchoring 

in the next step and vice versa. For example, strep throat mentioned above is obtained as 

a concept in CIT_v1.2 by anchoring and is used in the subsequent concatenation phase with 

the concept diagnosis to obtain the phrase strep throat diagnosis as a concept in CIT_v2.1. 

Since concatenation and anchoring are brute-force techniques, human review is necessary. 

This review process and the metrics used for evaluation are discussed in the following 

section. 

 

7.4 Review Process and Evaluation Metrics 

After each application of concatenation and anchoring, the extracted phrases were 

reviewed in a two-step process. Concepts were first prescreened by the core team and then 

the accepted candidates were reviewed by a medical expert. Prescreening was possible, 

because most of the automatically generated phrases were parts of a larger phrase or 

spanned two partial phrases. For example, the obtained phrase "thickening of pulmonary" 

was a part of thickening of pulmonary interstitium, and "MRSA and port-a-cath" spanned 

two phrases, sepsis from MRSA and port-a-cath infection. All the phrases that passed both 

review steps were integrated into the version of the interface terminology that was current 

at that time.  

It should be noted that all the phrases that were rejected at any review step were 

automatically excluded from the candidate phrases list and never appeared again in the 

subsequent processing steps. Hence, each rejected phrase is reviewed only once, saving 

review time. Similarly, the accepted phrases were integrated into the interface terminology 

as concepts and used for annotation in the next iteration. Thus, they cannot appear again as 
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candidate phrases. Therefore, the number of extracted phrases decreases significantly after 

each application of concatenation and anchoring. After a few iterations, when the number 

of new phrases falls below a threshold, the processing is terminated. 

After the domain expert review, a synonym check was performed on the accepted 

phrases. Phrases that were synonyms were combined under a single concept ID. One phrase 

was chosen as the concept name and the other phrases as synonyms. This is exemplified 

by the two phrases history positive for contact with COVID-19 patient and positive history 

of contact with COVID-19 patient. 

As a safeguard against false negatives at the first review step (by the core team), a 

sample of 200 phrases was created, selected randomly from the rejected phrases in all the 

iterations. This sample was then reviewed by the domain expert to check for cases of false 

negatives, i.e., acceptable phrases that were rejected. 

Evaluation metrics: The performance of the techniques was evaluated using two metrics 

– Coverage and Breadth. Coverage is the percentage of words being annotated. Breadth 

is the average number of words per annotated concept. As interface terminologies have 

more fine granularity phrases compared to concepts in reference terminologies the breadth 

increases.  

 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 
∗ 100 

(7.1) 

 

𝐵𝑟𝑒𝑎𝑑𝑡ℎ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠   
 

(7.2) 
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It should be noted that metrics such as precision, recall, etc. are not applicable for 

this study, due to the lack of gold standard annotations. One of the main goals of the study 

was to find an alternative way to reduce the expensive and time-consuming manual 

annotation process. A detailed discussion regarding this is provided in Section 7.5. As the 

interface terminologies will have more concepts and richer synonym content compared to 

reference ontologies/terminologies, using these interface terminologies as the basis for the 

annotation process would yield better efficacy. 

 

7.5 Results 

In the study mining concepts for CDIT, only a single iteration of concatenation and 

anchoring was performed. For mining concepts related to COVID-19, multiple iterations 

of the two techniques were performed, until convergence in terms of the number of phrases 

accepted was obtained, meaning that additional iterations increased the number of terms 

only minimally. This section describes the results for both CDIT and CIT. 

7.5.1 Results for Cardiology Description Interface Terminology 

To create ICDIT, root concepts of eleven subhierarchies in SNOMED CT with cardiology-

related concepts were identified. Each such root is listed below with the SNOMED CT 

hierarchy it belongs to (within parenthesis) and the number of concepts in the subhierarchy: 

Cardiovascular agent (substance) (533), Cardiovascular equipment (physical object) 

(343), Cardiovascular event (event) (1), Cardiovascular finding (finding) (7723), 

Cardiovascular material (substance) (30), Cardiovascular observable (observable entity) 

(536), Cardiovascular sample (specimen) (39), Procedure on cardiovascular system 

(procedure) (6208), Structure of cardiovascular system (body structure) (4418), 
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Cardiovascular implant (physical object) (135), and Finding present on electrocardiogram 

(finding) (269). In addition to these concepts, 3346 concepts were obtained by DIFF with 

SNOMED CT and placed into several auxiliary hierarchies. Thus, there are 23,517 

concepts in CDIT_v0. 

Table 7.1 Examples of High-Frequency Phrases Extracted by Concatenation (Annotated 

Concepts are Separated by ‘|’) and by Anchoring 

 Frequency Concatenation of phrases 

 

 

Cardiology 

Concepts 

112 Cardiac Care | Unit 

84 Ejection | Fraction of 

66 Chest | X-ray 

53 Cardioverter | Defibrillator 

51 Aortic valve | replacement 

 

 

General Concepts 

455 History of | Present | illness 

98 Postoperative | day 

76 Outside | hospital 

72 Stable | condition 

30 Emergency | medical service 

 Frequency Anchoring at phrases 

 

 

Cardiology 

Concepts 

57 implantable cardioverter defibrillator 

42 Beta blocker 

41 Stress test 

28 computerized tomography scan 

22 Heparin drip 

 

 

General Concepts 

493 Hospital course 

62 Emergency room 

58 Years ago 

41 Emergency department 

40 Neurologically intact 

 

To mine fine granularity concepts, concatenation was applied to concepts in 

CDIT_v0 and 6042 fine granularity phrases were obtained. Among these, 1044 phrases 

occurring multiple times were selected and reviewed by the domain experts. They accepted 

770 phrases out of which 116 phrases were synonyms of existing concepts. Thus, 654 new 

concepts and 116 synonyms were added to the CDIT_v0 to obtain CDIT_v1.1 Next, 
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anchoring was performed with this new version of CDIT containing 24,203 concepts.  This 

yielded a total of 21,083 new phrases. Among these, 3013 phrases with multiple 

occurrences were selected. The experts accepted 1409 phrases, 95 of which were synonyms 

of existing concepts. Thus, the CDIT-1.2, the version of CDIT after the first iteration of 

concatenation and anchoring contained 25,485 concepts. Table 7.1 shows examples of 

high-frequency phrases obtained by concatenation and anchoring. In Table 7.2, examples 

of accepted and rejected concepts obtained by concatenation and anchoring are shown. 

Table 7.2 Examples of Extracted Phrases Obtained by Concatenation and Anchoring 

Reviewed by the Experts 

 Frequency Accepted phrases 

 

 

Concepts created 

by concatenation 

26 aortic stenosis 

24 ST elevation myocardial infarction 

22 history of coronary artery disease 

17 mitral valve repair 

15 peripherally inserted central catheter line 

 

 

Concepts created 

by anchoring 

14 diastolic congestive heart failure 

13 epicardial pacing wires 

5 macular degeneration 

2 antitachycardia pacing 

2 coronary revascularization 

 Frequency Rejected phrases 

 

 

Concepts created 

by concatenation 

228 Major surgical 

14 left internal 

9 low dose beta 

8 left lower 

6 bilateral pleural 

 

 

Concepts created 

by anchoring 

25 hypertension hypercholesteremia 

13 saphenous vein graft to obtuse 

3 hemorrhoids Meckel 

8 wave myocardial infarction 

3 left with a thoracoacromial 

 

Figures 7.5 and 7.6 show the distribution of the phrases obtained by frequency. The 

bar chart in Figure 7.5 shows the number of extracted phrases (by concatenation), divided 
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into accepted and rejected, for different frequencies of occurrence. The average acceptance 

rate across all frequencies is about 74%.  

 

Figure 7.5 Number of phrases extracted for the reviewed frequency (or range), divided 

into accepted and rejected phrases for concatenation. 

 

 

Figure 7.6 Number of phrases extracted for the reviewed frequency (or range), divided 

into accepted and rejected phrases for anchoring. 
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The bar chart in Figure 7.6 shows the same data for anchoring. It shows an increase 

in the acceptance rate with the increase of frequency leveling off at about 65% for concepts 

occurring more than five times. The coverage and breadth were computed for SNOMED 

CT and CDIT-1.2. For the dataset of 500 cardiology notes, the total number of words was 

171,777. The coverage was 39.35% for SNOMED CT and 43.04% for CDIT-1.2. The 

breadth was 1.38 for SNOMED CT and 1.71 for CDIT-1.2. 

7.5.2 Results for COVID Interface Terminology 

To create the ICIT, concepts were integrated from other COVID ontologies into CIDO. 

After removing duplicates, 1780 concepts from the COVID-19 ontology were added into 

CIDO, as well as 352 concepts from IDO-COVID-19, 272 concepts from 

COVIDCRFRAPID, 46 concepts from CODO, and 50 concepts from the COVID-19 

Surveillance Ontology. From the ACT COVID ontology, a total of 2445 concepts were 

included. In addition to this, 113, 74, and 2 concepts from SNOMED, LOINC, and UMLS, 

respectively were incorporated. After identifying and accounting for synonyms, the total 

number of concepts in ICIT at this stage was 10,024. For creating the CIT_v0, auxiliary 

concepts from SNOMED CT were integrated into ICIT. Integrating 904 auxiliary concepts, 

the total number of concepts in CIT_v0 increased to 10,928. 

To mine new phrases for the CIT, the dataset was annotated with the NCBO 

Annotator and concatenation and anchoring were applied alternatingly. The numbers of 

extracted phrases, the numbers of phrases retained after the core team (1st) reviews and 

after the expert (2nd) reviews, and the corresponding percentages are shown in Table 7.3 

for all the versions of CIT created. The last column of the table shows the percentages of 
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phrases that were retained by the expert with respect to the percentages from the core team 

review. 

Table 7.3 Statistics of Extracted Phrases for all Versions of CIT 
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v1.1 Concatenation 1893 873 46.12% 781 41.25% 89.5% 

v1.2 Anchoring 3923 1590 40.53% 1351 34.44% 84.97% 

v2.1 Concatenation 1002 439 43.81% 389 38.82% 88.6% 

v2.2 Anchoring 969 295 30.44% 268 27.66% 90.86% 

v3.1 Concatenation 314 92 29.30% 83 26.43% 90.20% 

v3.2 Anchoring 185 34 18.37% 30 16.21% 88.24% 

v4.1 Concatenation 66 6 9.09% 6 9.09% 100% 

v4.2 Anchoring 69 6 8.69% 6 8.69% 100% 

 

In Table 7.4, some examples of phrases obtained as a result of concatenation during 

the creation of CIT_v1.1 are shown. The existing concepts that were combined to form the 

fine granularity phrases are shown between two '|' symbols. The phrase tested positive for 

COVID-19 was obtained by combining two existing concepts tested positive and COVID-

19, allowing for the stop word "for." Another example, history of contact with Covid-19 

patient is a combination of four existing concepts, as shown in the third row in Table 7.4. 

Some example phrases obtained by applying anchoring that were accepted for inclusion in 

CIT_v1.2 are also shown. The existing concept that was used as an anchor is marked in 

bold.  The phrase subpleural distribution is an example of the first rule of anchoring, where 

a left word was added to the existing concept distribution. The phrase, mediastinal 

lymphadenomegalies is the result of applying the second rule of anchoring, which adds a 

right word; ground glass areas demonstrate the third rule of combining both left and right 
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words with an existing concept. 

Table 7.4 Examples of Accepted Phrases from CIT_v1 

 

Version Accepted Phrases 

 

CIT_v1.1 

(concatenation) 

|tested positive| for |COVID-19| 

|history of| |contact with| |Covid-19| |patient| 

|peri|-|bronchial| |thickening| 

|limited| |lymphadenopathy| 

|spider| |web| |sign| 

 

CIT_v1.2 

(anchoring) 

subpleural distribution 

mediastinal lymphadenomegalies 

parenchymal thickening 

interstitial-alveolar pneumonia 

ground glass areas 

 

Examples of rejected phrases are shown in Table 7.5 for both concatenation and 

anchoring. As in Table 7.4, for concatenation, the existing concepts are between two '|' 

symbols, and for anchoring, they are marked in bold. As discussed in Section 7.3, there are 

phrases that are part of longer phrases (e.g., partial pleurogenic) or spanning two phrases 

(e.g., axis with Fogarty catheter). 

Table 7.5 Examples of Rejected Phrases 

 

Procedure Rejected Phrases 

 

 

Concatenation 

|hyperpyrexia| |refractory| 

|axis| with |Fogarty catheter| 

|thrombocytopenia| and |need for| 

|chest x-ray| with |multiple| 

|pneumonia| with |radiographic| 

 

 

Anchoring 

Multiple opacities a frosted 

increased density with a ground 

segment of the upper 

Partial pleurogenic 

reticular and interstitial 

 

Examples of longer phrases that were added to CIT_v2 and CIT_v3 are provided 

in Table 7.6. For example, the phrase extensive areas with crazy-paving patterns was 
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obtained for addition to CIT_v2.1 as a result of concatenating two phrases - extensive areas, 

and crazy-paving patterns that were already in CIT_v1.1. Similarly, the phrase subpleural 

distribution present in CIT_v1.2 was used as an anchor to extract predominantly subpleural 

distribution for inclusion in CIT_v2.2. 

Table 7.6 Examples of Accepted Longer Phrases 

 

Accepted Longer Phrases 

inter- and intra-lobular septal thickening 

extensive areas with crazy-paving patterns 

parenchymal consolidation area with subpleural distribution 

bilateral subpleural ground glass opacities 

widespread fibrotic-like reticular bands 

parenchymal consolidations in both upper lobes 

predominantly subpleural distribution 

centrolobular and subpleural paraseptal emphysema 

 

To check for false negatives among the phrases that were rejected by the core team, 

a random sample of 200 rejected phrases was created from all the iterations. This sample 

was reviewed by the domain expert. The domain expert found only eight out of the 200 

phrases to be false negatives. 

Table 7.7 Coverage and Breadth for Different Versions of CIT 

 

Version 
Number of 

concepts 
Coverage  Breadth 

CIT_v1.1 11,644 41.30% 1.55 

CIT_v1.2 12,984 53.66% 2.16 

CIT_v2.1 13,364 53.97% 2.47 

CIT_v2.2 13,628 58.09% 2.65 

CIT_v3.1 13,711 58.19% 2.73 

CIT_v3.2 13,741 58.41% 2.74 

CIT_v4.1 13,747 58.42% 2.74 

CIT_v4.2 13,753 58.46% 2.74 

 

The dataset was annotated with CIDO, ICIT, and CIT_v0, obtaining coverages of 

6%, 13.55%, and 40.84%, respectively. The breadths were 1.18, 1.22, and 1.21, 
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respectively. The coverage and breadth for different versions of CIT are shown in Table 

7.7. The number of concepts in each version is also shown. 

 

7.6 Discussion 

By demonstrating the iterative terminology construction approach for two domains it may 

be expected that this approach would work for any medical subspecialty. The approach 

presented in both studies is based on several assumptions. The first assumption is that by 

mining concepts from clinical notes of cardiology and COVID-19 patients and including 

them in the interface terminology, many concepts that correspond to fine granularity 

concepts recorded by healthcare professionals can be obtained. Numerous such concepts 

do not appear in reference terminologies. However, most of the multi-word names of such 

concepts tend to contain shorter concepts that do appear in the reference terminologies. 

Thus, the operations of anchoring and concatenation of existing concepts in the interface 

terminology can be used to obtain fine granularity concepts. 

The only manual step that requires a domain expert is reviewing which of the 

generated phrases obtained by concatenation or anchoring are valid for inclusion in the 

interface terminology. As was previously discussed, each phrase is reviewed only once 

during the life cycle of creating the interface terminology. Hence, despite the manual 

review required, the creation of the interface terminology is efficient. Once the interface 

terminology has been created, it can be used for annotation of an unlimited number of 

clinical notes of cardiology and COVID-19 patients. 

The second assumption is that the described process will converge. That means that 

on average later steps will find fewer and fewer new phrases than those preceding them. 
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Although individual doctors write free text in individualized ways, the number of possible 

concepts used in a specific discipline is fundamentally limited and is growing slower as the 

field matures. Different healthcare professionals will use similar, but not identical, phrases 

to express the same concept. One of those will be designated the name of the concept and 

all the others will be synonyms of the concept in the interface terminology. When 

annotating text with the interface terminology, the synonyms are also identified and 

annotated. A second reason for assuming a limited number of phrases in each discipline is 

that the length of the phrases is limited to a few words. Thus, exponential growth in the 

number of new terms is less likely than a polynomial increase, which is considered as 

manageable growth in the theory of computing. 

One argument by the ontology curators for not including new concepts is that they 

have no known use case, are too fine-grained, would "clutter up the ontology," and make 

maintenance more difficult. This may be true in the case of some reference ontologies, 

which represent knowledge about an entire biomedical domain. But the "damage" for a 

medical user not finding a desired concept in an interface terminology is bigger than for 

another user having to ignore an additional concept. 

As mentioned before, the results of concatenation and anchoring need to be 

reviewed by a human expert. The time of domain experts is a limited and expensive 

resource. To minimize the use of this resource, a preliminary review was performed by 

members of the SABOC research team [154], after having gone through training based on 

samples that were previously reviewed by domain experts. The main purpose of this 

preliminary review was to exclude phrases that obviously should not be part of the CIT. 

Only the phrases accepted by the core team in the preliminary review were passed on to 
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the domain expert for validation. According to Table 7.3, for the first six versions of CIT, 

on average about 88% of the phrases accepted by the core team were also validated by the 

domain expert. Hence it is safe to say that an initial review by the core team helped to 

eliminate a large number of phrases that were not corresponding to concepts, thereby 

minimizing the time and effort expended by the domain expert. 

The concatenation and anchoring operations have a different impact on the 

evaluation metrics. Concatenation provides a minimum contribution to the coverage of the 

dataset. This is because concatenation combines already existing annotated concepts and 

hence does not add new words to the annotated word list, except for the stop words that 

bridge the gaps between existing concepts. There is only a 0.31% change in coverage 

obtained by concatenation in CIT_v2.1 compared to the coverage of the previous version 

CIT_v1.2. Similarly, the change in coverage is only 0.10% when moving from version 

CIT_v2.2 to CIT_v3.1. Concatenation favors the breadth metric, since breadth increases 

with the length of the phrases, and combining existing phrases creates longer phrases. 

Anchoring tends to increase both coverage and breadth. During anchoring 

"unannotated" words are added to the left, right, or on both sides of a concept, and hence 

accepted phrases resulting from anchoring capture words that were previously not 

annotated and contribute to increasing the number of annotated words, thereby increasing 

coverage. Anchoring also increases breadth, as the newly added words increase the length 

of the phrases annotated by specific concepts. The increases in coverage obtained by the 

first three anchoring iterations are 12.36%, 4.12%, and 0.22%. The corresponding increases 

in breadth are 0.61, 0.18, and 0.01. 

As noted above, the methodology described for designing an interface terminology 
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to support annotation of EHR notes is applicable to other medical specialties, allowing the 

design of a dedicated interface terminology for each individual specialty, as there will be 

some SNOMED CT terms for every specialty (as in the cardiology case study). If a 

dedicated reference terminology exists as in the COVID-19 case study the task becomes 

easier. 
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CHAPTER 8  

FUTURE WORK 

 

In the studies based on density differences between identical concepts in pairs or triples of 

terminologies, the Concept Unique Identifier (CUI) of the concepts in the UMLS 

Metathesaurus was used to determine whether the concepts are identical. This has a 

limitation that only vocabularies in the UMLS could be used as source and target 

terminologies for the study. Several ontologies and terminologies that have a hierarchical 

IS-A backbone exist that are not included in the UMLS.  

In future, the density studies can be extended to include those ontologies and 

terminologies. The challenge for studies based on horizontal density differences would be 

to identify identical parent concepts in two different terminologies. Techniques based on 

lexical and semantic similarity need to be explored to identify overlapping concepts in 

different ontologies. 

The fire ladder pattern has scope for further expansion. In the pattern explored in 

the study described in Chapter 5 in Figure 5.1, Concept B2 is an immediate child of 

Concept B1. But there always exists a possibility that there can be one or more intermediate 

concepts between B1 and B2. This opens up the possibility of importing more concepts 

into Terminology A. Also, since Concept B1 is not present in Terminology C, theoretically 

B1 can be imported into Terminology C as a parent of Concept C2. But further extensive 

studies need to be performed regarding the existing parent of C2 and how this concept 

relates to B1.  

All studies discussed in Chapters 3-5 utilize the parent-child hierarchical 
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relationship. Even though the most studied relationships in terminologies are IS-A 

relationships, several lateral relationships exist. IS-A relationships are hierarchical. 

Another hierarchical relationship is the part-of (part-whole) relationship. It would be 

interesting to explore the structural differences in this relationship between terminologies 

in similar domains, especially in anatomy. 

The creation of a cardiology description interface terminology was performed to 

demonstrate how to start the process based only on SNOMED CT. Hence, only one 

iteration was performed. The study on the COVID interface terminology had a relatively 

small dataset due to the non-availability of large public COVID-related EHR datasets. In 

the future, an extensive study will be conducted that will test the assumption that after a 

few iterations the process will converge even for larger datasets. Only a few new concepts 

will be added in later iterations. For this, the dataset will be randomly divided into two 

parts, the "training" set, and the test set (80-20 split). The interface terminology will be 

created based on the training set and then it will be used to annotate the test set.  

The hypothesis is that the coverage and breadth values for the test dataset will be 

marginally smaller than that for the training set, but almost on par, which would provide 

one data point to demonstrate the generalizability of the approach.  

For the study with a larger dataset, only phrases that appear multiple times in the 

dataset will be reviewed. These phrases are more likely to appear in the test dataset than 

those that appear only a few times. Another hypothesis to be tested is that the phrases with 

higher frequency in the dataset will have higher rates of acceptance by the expert. To test 

this hypothesis, a study of the correlation between frequency and acceptance rate will be 

performed in future work. 
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CHAPTER 9  

CONCLUSIONS 

 

With the exponential growth of knowledge in the life sciences and the technological 

advancements in all aspects of the biomedical sciences, biomedical ontologies and 

terminologies have grown rapidly to facilitate the systematic storage and retrieval of this 

knowledge. Even though the benefits of extending biomedical ontologies appear evident, 

it has been argued by some in the biomedical ontology community that bigger is not 

necessarily better. However, many major ontologies and terminologies have been growing 

monotonically for the past several years. That means that every release in recent years has 

contained more concepts than the previous release. This has been the case for the 

SNOMED CT, with more than 50,000 concepts added in the past five years [155]. Similarly, 

more than 40,000 concepts have been added to NCIt [156].  

If ontologies are demonstrably extended "anyway," they should be extended in a 

systematic process that leads to more harmonization between major, widely used 

ontologies in the field. The studies described in Chapters 3-5 of this dissertation focused 

on methodologies that identify missing concepts in an ontology in a way that leads to better 

harmonization among ontologies. This was done by identifying structural and domain 

similarities among ontologies and creating topological patterns that leverage these 

structural properties for identical concepts (based on the UMLS Concept Unique Identifiers) 

in pairs of ontologies or triples of ontologies. 

The second part of this dissertation (Chapter 7), extended ontologies by mining fine 

granularity phrases from unstructured text in EHRs assigning them to concepts or 



 

114 

synonyms and creating an interface terminology that improves annotation of EHRs in a 

medical specialty. This approach has been particularly successful for the COVID Interface 

Terminology identifying several important concepts that were neither present in a reference 

ontology nor in several COVID-specific ontologies. 

Chapter 3 presented an algorithm to identify missing child concepts in SNOMED 

CT and NCIt, based on a set of other sources in the UMLS. A quantitative analysis of the 

identified concepts was performed, and the results were verified by a domain expert. The 

hypothesis that algorithmically proposed new children are distinguishable from cousins 

was supported with statistical significance for both SNOMED CT and NCIt. 

In Chapter 4, a detailed analysis of alternative classifications and the EFI (Evidence 

for Import) metric to indicate when concepts with a common parent should be imported 

into a target terminology was presented. When EFI becomes zero, it provides good 

evidence that the occurrences of the same concept in two terminologies define an 

alternative classification. In 72% of the cases, the domain expert agreed that the child 

concepts in the source and target terminologies are alternative classifications of the same 

parent concept. In contrast, for EFI values in the range of 0.10 – 0.35, it was found that 

direct import was the most likely choice, with statistical significance, when compared to a 

control sample. As the domain expert agreed with 80% of the algorithmically 

recommended imports, the proposed metric outperformed the approach in Chapter 3 where 

only 56% of imports were recommended by the domain expert. 

Chapter 5 demonstrated a novel topological pattern called fire ladder and an 

algorithm to discover such patterns in triples of terminologies to help identify potentially 

missing concepts in 10 UMLS terminologies. This pattern consists of two source 
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terminologies used in tandem and one target terminology. A total of 55 instances of fire 

ladder patterns were identified, out of which two experts agreed on 39 instances of concept 

imports. For 48 (=39+9; 87%) instances at least one expert agreed that the algorithm 

reported a viable import. Furthermore, the import of 98 additional concepts out of 105 

algorithmically discovered candidate concepts was recommended, based on only one 

source terminology and one target terminology. 

A supplementary study performed to identify reasons for not maintaining 

ontologies and ensuring that the ontologies and terminologies analyzed in this study do not 

fall under this category are presented in Chapter 6. Out of 83 ontologies of a minimum size 

with a defined period of no updates, a response to an email inquiry was received from 48 

curators. Of these, 46 could be assigned to seven categories that were created a posteriori. 

Half (24) of these responses fit into two categories: Either there was a lack of funding or 

manpower that precluded continuation of maintenance (15), or the ontology had been 

folded into another ontology or system (9) and was not developed by itself anymore. With 

15 out of 48 projects (31.25%) being discontinued due to budget or manpower problems, 

the limited availability of federal funding for sustaining these projects might have been a 

decisive issue. 

Chapter 7 presented two studies describing an alternative semiautomatic approach 

for creating two interface terminologies (CDIT and CIT) for annotation of cardiology EHR 

notes and EHRs of COVID-19 patients. Repeated alternating applications of the two 

operations, concatenation, and anchoring applied to a sample of 500 notes from MIMIC III 

was used to enrich the initial CDIT extracted from SNOMED CT. A preliminary study for 

CDIT achieved in the first iteration about 10% and 24% higher annotation coverage and 
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breadth, respectively, relative to annotation with SNOMED CT. By choosing a larger 

sample and iterating over the process, substantial improvements can be expected in 

subsequent iterations. CIT was initialized with concepts from several COVID ontologies 

and with existing general-purpose concepts (non-COVID concepts) from SNOMED CT 

encountered in the dataset. Its content was significantly extended by mining fine 

granularity concepts from the radiological studies in the available dataset. Version 4.2 of 

the CIT (CIT_v4.2) achieved a 43% increase in coverage compared to CIT_v0. 
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