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ABSTRACT 

SELECTIVE NEURAL STIMULATION BY LEVERAGING 
ELECTROPHYSIOLOGICAL DIVERSITY AND USING ALTERNATIVE 

STIMULUS WAVEFORMS 
 

by 
Bemin Ghobreal 

Efforts on finding the principle mechanism for selective neural stimulation have 

concentrated on segregating the neurons based on their size and other geometric 

factors. However, neuronal subtypes found in different parts of the nervous system 

also differ in their electrophysiological properties. The primary objective of this 

study is to investigate the feasibility of selective activation of neurons by leveraging 

the diversity seen in passive and active membrane properties.  

Using both a local membrane model and an axon model based on the 

CRRSS, the diversity of electrophysiological properties is simulated by varying four 

model parameters (membrane leakage-Gleak and capacitance-Cm, temperature 

coefficient-Ktemp, and maximum sodium conductance-GNamax) by ±25% around 

their default value. Temperature coefficient is used as a means to alter the opening 

rate of the sodium channel. Three different stimulus waveforms are implemented 

to test the effects of hyperpolarizing pre-pulsing (HPP) and depolarizing pre-

pulsing (DPP) on selectivity in comparison to monophasic (Mono) waveform. 

The default value of Cm is found to play a critical role in amplifying or 

attenuating the sensitivity of the chronaxie time (Chr) and rheobase (Rhe) to 

variations in all the membrane parameters. The HPP waveform is able to 

selectively activate neurons diversified in Gleak only. Maximum selectivity indices 

are obtained when passive parameters (Cm & Gleak) are allowed to vary. The 



impact of dynamic parameter (Ktemp and GNamax) diversity increased slightly for the 

smallest value of Cm. In all cases, the HPP waveforms (with zero inter-phase gap) 

produce higher selectivity than the other two stimulus waveforms.  

These results reveal a novel mechanism of selectivity based on 

electrophysiological diversity, and it is particularly pronounced with the 

hyperpolarizing pre-pulsing stimulation waveform. The proposed method of 

selectivity may lead to a paradigm-shifting approach if the electrophysiological 

diversity can also segregate neurons into functional subtypes, as evidence 

suggests in reports from numerous sites in the central nervous systems. This basic 

concept of selectivity should generalize to more complex neural models, though 

probably to different extents, that include a voltage-gated fast sodium channel and 

a leakage current, as in the CRRSS model.  

 Furthermore, this study expanded the investigation of neural selectivity to 

include stimulus waveform. Historically, rectangular stimulus pulse has been used 

in various neural stimulation application, however several limitations reside when 

using the tradition rectangular pulse to achieve selectivity. Hence, the study 

investigated using seven different non-rectangular waveforms as the stimulus 

pulse proceeded with hyperpolarizing pre-pulsing stimulus as a method to improve 

selectivity. The seven non-rectangular pulses are Charge-discharge curve (Chr-

Dis), increasing and decreasing exponential (ExpInc and ExpDec) respectively, 

Gaussian (Gauss), KT2, Linear (Lin), and sinewave (Sine). Results revealed that 

𝐾𝑡2 maximized selectivity, followed by Gauss, ExpInc, and ExpDec stimulus, when 

proceeded by hyperpolarizing pre-puls. Furthermore, results showed with higher 

diversity in neural cells, specifically in GLeak & Ktemp or GLeak & GNamax using 

𝐾𝑡2 allows higher stimulation selectivity between neural cells. 



 Additionally, to get more realistic results that represents the behavior of 

neural cell in the human body we expanded the investigation to include a 

compartmental axon mode. We used a 10 µm myelinated axon that incorporated 

the CRRSS local model at the nodes of Ranvier that had widths of 1 µm and an 

inter-nodal distance of 1 mm. A monopolar point electrode was placed 1 mm away 

from the axon and aligned with its central node. Using all eight stimulus waveforms 

the SD curves and SIs were found with the same passive and active parameter 

ranges tested in the local membrane model. 

 The Axon model further confirmed the results obtained from the local model 

revealing that diversification in the membrane parameters leads to selective neural 

stimulation. Both model results indicate that the most selective stimulus waveform 

changes depending on the membrane parameter combination that is allowed to 

vary, and no single stimulus waveform is the best for all combinations. These 

simulation results warrant further investigation of the concept of “selectivity based 

on electrophysiological diversity” using experimental data from real neurons. 
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CHAPTER 1 

INTRODUCTION 

 

Neural diseases are one of the leading causes of disabilities in the world.  

According to the United Nation World Health Organization’s (WHO) report, about 

1 billion people, nearly one in sixth of the world’s population, suffer from 

neurological disorders like Alzheimer’s disease (AD), Parkinson’s disease, stroke, 

multiple sclerosis and epilepsy [4], causing roughly 6.8 million people to die every 

year [4]. In 2006, the U.S. National Institute for Neurological Disorders and Stroke 

(NINDS) estimated about 50,000 new cases of Parkinson’s disease are diagnosed 

in the U.S. every year [5]. Therefore, finding a treatment for neural disorders has 

been the research focus for decades. 

Electrical neural stimulation techniques have been used for decades 

showing a great impact on patients’ health. It remains one of the most critical brain 

disorder treatments known to be effective at low cost [6, 7]. Various clinical 

approaches, as oral medication and surgical procedure, may accomplish similar 

therapeutic results, nevertheless neural electrical stimulation has higher 

spatiotemporal precision compared to oral medication combined with low cost and 

reversibility that is not present in surgical procedures [7]. Currently, it is a widely 

used treatment for several brain diseases and has proved to be an effective tool 

for patients who suffer from neurological and neuropsychiatric disorders [8].  

Yet, neural electrical stimulation has several limitations and challenges that 

needed to be addressed. One of the most critical challenges, which we are 

addressing in this study, is neural stimulation selectivity [6, 7, 9]. Several 
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applications require the ability to selectively activate or inhibit a targeted population 

or neurons without activating neighboring neurons. Neural stimulation selectivity is 

a measure of the efficiency of the stimulus. Current electrical stimulation 

techniques stimulate a large area of the tissue, causing a nonlinear response [10], 

high rate of damaged tissue close to the stimulation electrode, loss of power and 

decrease in the stimulation efficiency [6, 7]. High power consumption increases 

the number of replacement surgeries for implanted pulse generators, since it 

reduces the battery lifetime [7, 10]. It is also important to acknowledge that, as a 

result the mechanism of action for neural electrical stimulation is still not well 

comprehended in addition to how neural network dynamics relate to single-cell 

dynamics remains poorly understood [7, 10]. Therefore, there is a high demand to 

develop more precise neural stimulation technique with the ability to target a 

specific group of neurons. 

 

1.1 Selectivity 

Neural electrical stimulation is an effective therapy for the majority of neural 

dysfunctions, however, there remains a clear clinical need to improve the 

technology [7, 8] to increase stimulation selectivity. Selectivity of a stimulus is the 

ability to stimulate a specific group of neurons without targeting other neurons 

within the same range. Improving neural stimulation selectivity increases the 

efficiency of the therapeutic effect and reduces the magnitude of the side effects 

[10]. Selectivity could be determined based on several neural cell properties, 

geometry properties, and stimulation properties, however, the two most studied 
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types of selectivity are diameter selectivity and spatial selectivity. Diameter 

selectivity indicates the capability to stimulate a specific population of neurons that 

have a common diameter, while simultaneously not including other neighboring 

populations [1, 10]. Spatial selectivity is the ability to excite or inhibit a specific 

group of neurons located from a specific distance from the stimulation electrode. 

For instance targeting neurons farther away from the stimulation electrode without 

targeting the neuron close to the electrode [1]. 

 

1.2  Selectivity Via Current-Diameter Relationship  

Several studies showed the possibility of selectively stimulating a group of neurons 

or nerve fibers that have the same diameter size. In 1991 Fang and Mortimer 

conducted a study to investigate the possibility of targeting fibers based on their 

diameter, using quasitrapezoidal current pulses  [11]. The study demonstrated that 

at lower current levels, the larger alpha motor axons could be blocked more than 

smaller alpha motor axons [11]. 

 In another study, DONALD R. MCNEAL plotted the relationship between 

Activation threshold current and fiber diameter as shown Figure 1.1. [12].  The 

study concluded that between (2<d< 25 μm) the activation threshold current 

increases as fiber diameter decreased, at larger diameters (d> 15 μm) the 

threshold inversely proportional to the square root of the fiber diameter, and at 

smaller diameters (d<2 μum) the activation threshold has an inverse square 

relationship with fiber diameter [12].  
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Moreover, Mortimer and Creasey were able to influence the action potential, 

on small diameter motor fibers serving the bladder, without affecting larger 

diameter motor fibers [1]. In another application, Kristen E I. and Deurloo, Jan 

investigated the influence of subthreshold of depolarizing prepulses on threshold-

diameter relationship, concluding that smaller fibers have a lower threshold current 

than the larger fibers up to a certain distance from stimulation electrode [13].  

In 2014, Kurt Qing and Mathew P. Ward proposed a novel technique to 

change the current diameter recruitment order. Using a Brust Modulated 

rectangular waveform they showed selective activation between A (larger 

diameter) and C (small diameter) fibers. They compared between the traditional 

rectangular pulse and the burst modulated pulse. The burst modulated waveform 

is created by replacing each pulse with a burst of narrow pulses “pulsons”. Each 

pulson burst has a defined pulse width (pWx), amplitude (ampx), interpulson 

interval (IpIx) and number of pulses (Nop) [14]. The results suggested that 

waveform with short PW or pWx more likely to be more selective to larger diameters 

than shorter fibers [14].  

 

 

 

 

 

 

  Figure 1.1  Threshold current as a function of fiber diameter. Current-Diameter 

relationship. 



 

5 
 

1.3  Stimulation Waveform  

Published data has shown that stimulation parameters play a critical role in 

increasing stimulation selectivity. Several parameters were investigated, including 

but are not limited to, stimulation waveform [15], electrode polarity [16, 17], 

electrode distance from the target (electrode location), and waveform pulse width 

[18]. A study lead by Sahin, Mesut, investigated the effect of various non-

rectangular waveforms on the stimulation efficiency, demonstrating that optimum 

pulse width changes as a function of the stimulus waveform, the study also showed 

that linearly and exponentntially decreasing and Gaussian waveforms are the most 

efficient pulse shapes, because the chronaxie time was longer compared to 

traditional rectangular pulse. The study showed that non-rectangular pulse shapes 

can move the chronaxie time to longer pulse duration. 

Lately, non-rectangular waveforms have been gaining more interest as a 

unique stimulus pulse that could perform better than the traditional rectangle pulse 

and improve neural stimulation. Previous research demonstrated the benefits of 

non-rectangular waveform as a mean to decrease energy consumption. For 

instance, the exponentially rising waveform was shown to be the optimal stimulus 

to decrease energy consumptions [19, 20]. Moreover, Exponentially increasing, 

Gaussian and Sinusoidal stimulus pulses reduced energy requirements depending 

on the stimulation pulse width (PW) [15]. Additionally, in 2010 a study by Grill using 

a genetic algorithm concluded that a waveform similar to Gaussian was optimal for 

peripheral nerve stimulation [21].  
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The type of stimulus waveform has been always tied to stimulation 

selectively, several studies tried to improve selectivity by manipulating the stimulus 

pulse parameters. As we discussed previously, in majority of cases the biphasic 

pulse is used to reach higher selectivity by introducing the cathodic pulse first then 

followed by the anodic pulse. Other studies investigated adding a small 

intermediate gap between the two phases. A study was done in 2014, concluded 

that using the anodic pulse immediately after the short cathodic phase immediately 

may abolish the activation of targeted fibers [22]. Moreover, they recommended 

adding a 100 µsec gap between the two phases to decrease the charge required 

for activating nerve fibers [22, 23]. However, they reported that adding the 100usec 

gap reduced the selectivity index (SI). Likewise, in a  previous paper of this series, 

we demonstrated that add a 200 µsec [22] gap between the two stimulus phases 

negates the effect using HPP – no inter-gap on selectivity Index.  

Although, all previous studies revealed that the advantage of the non-

rectangular pulse out weights the advantages of the rectangular pulse, yet more 

studies are required to better understand the specific details for the optimal 

stimulus pulse. Hence, we are extending the previous work and focusing on using 

non-rectangular waveform as a mean to improve electrical stimulation selectivity.   
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1.4  Selectivity Via Current-Distance Relationship  

Spatial selectivity requires that the stimulation electrode sets in a close distance to 

the targeted population of neurons [1, 24]. However, Deurloo, Jan. performed a 

modeling study presenting that in order to stimulate distant fibers without 

stimulating close fibers, one should use subthreshold depolarizing repulses [13], 

which is confirmed by Grill and Mortimer Figure 1.2. [3]. A recent study conducted 

by Lehto, L.J. and his team investigated the effect of implanted electrode 

orientation on the neural stimulation selectivity. The results showed that maximum 

selectivity achieved when axons are parallel to the electric field orientation [8]. 

Additionally, type of electrode influence the recruitment characteristics of the 

stimulus, data showed that monopolar electrodes have higher selectivity compared 

to ring electrodes [25].   

 Several other studies tried improving spatial selectivity by manipulating 

multipolar electrode configuration, and some other tried to reverse the recruitment 

order using prepulsed stimulus. Yet, a study by Melissa Dali and Olivier Rossel 

[26], combined both methods together to guarantee both spatial selectivity while 

reversing the diameter recruitment order using the CRRSS model. Using three 

different multipolar configurations in addition to pre-pulses stimulus they achieved 

both spatial selectivity while reversing the diameter current relation [26]. The first 

configuration was a single 300 µsec pulse duration with TT electrode configuration 

(TT: One cathode at 90° and two anodes at 0° and 180°). The second configuration 

was Four pre-pulses with TT electrode configuration, finally the third configuration 

(Conf 3) used four pre-pulses in addition to the activation pulse with LTR electrode 



 

8 
 

configuration (LTR: cathodes at 0°, 90°, 180°, 270°) Figure 1.3 [26]. The previous 

three configurations were used on four different fiber diameters 5µm, 10µm, 15µm, 

20µm. The pre-pulse parameters were set to reduce the activation of both 15µm 

and 20µm diameter fibers.  From the study results, the first configuration activated 

the closer and larger diameter fibers first, the 2nd configuration reversed the current 

distance relationship yet, still recruited the larger diameter before the smaller ones. 

Finally, the third configuration which was designed to inactivate 15µm and 20µm 

fibers over the whole nerve, activated the 10µm diameter fiber in addition to 

reversing the current distance relationship, Figure 1.4 [26]. 

  

Figure 1.2  The inversion of the current distance relationship, using a pre-

pulsed stimulus waveform. Smaller activation threshold at distant fibers. [3]  
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Figure 1.3 Pulse Waveform.  Conf 1: single pulse. Conf 2 and 3: 4 pre-

pulses, pp1 to pp4 followed by the activation pulse. 

 

Figure 1.4 Mean selectivity index for each configuration and various 

target size SI is the optimal fibers with 10µm diameter. 
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1.5  Neural Model  

1.5.1 Hodgkin-Huxley Model (H-H) 

One of the early developed neural models is the Hodgkin-Huxley (H-H) model 

which is based on experimental data collected with squid giant axon. H-H model 

successfully explain the behavior of the dynamic membrane parameters via 

serious of mathematical equations [27]. They also developed an electrical circuit 

model that mimics the behavior of the neural cell as seen in Figure 1.5. If the ion 

concentration and temperature is known then the total membrane current I as a 

function of time and voltage can be calculated using the following equation [27]: 

 

𝐼 =  𝐶𝑚

𝑑𝑉

𝑑𝑡
+  �̅�𝑘𝑛4(𝑉 − 𝐸𝑘) + �̅�𝑁𝑎𝑚3ℎ (𝑉 −  𝑉𝑁𝑎) + �̅�𝑙(𝑉 − 𝑉𝑙) 

(1.1) 

𝛼𝑛 =  
0.01 (𝑉 + 10)

𝑒𝑥𝑝
𝑉+10

10 − 1
 

(1.2) 

𝛽𝑛 = 0.125  𝑒𝑥𝑝
𝑉

80 
(1.3) 

𝛼𝑚 =  
0.1 (𝑉 + 25)

𝑒𝑥𝑝
𝑉+25

25 − 1
 

(1.4) 

𝛽𝑚 = 4  𝑒𝑥𝑝
𝑉

18 
(1.5) 

𝛼ℎ = 0.07  𝑒𝑥𝑝
𝑉

20 
(1.6) 

𝛽ℎ =  
1

𝑒𝑥𝑝
𝑉+30

10 + 1
 

(1.7) 
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1.5.2 CRRSS Model  

In 1987. Sweeney et al. published the first model based on one of the mammalian 

nerves, which uses data of Chiu et al. [15, 28, 29]. The model based of a voltage 

-clamp study was carried out on a single rabbit myelinated nerve fibers and it was 

fitted to the Hodgkin-Huxley (H-H) model. Data then altered to set the model 

temperature to 37° [29] [15] and the leakage conductance was adjusted to give 

action potential conduction velocity of 57 m/s (ref). The Chiu-Ritchie-Rogart-Stagg-

Sweeney (CRRSS) model has only voltage-gated sodium channel and a leakage 

current, and no potassium current, which fits well with the purpose of this study 

since there are almost no potassium currents in mammalian nodes of Ranvier. 

Hence, the CRRSS model was used in the simulation for both the local and the 

axon models. The Electrical circuit of the model shown in Figure 1.6 and the 

following mathematical equation are the representation of the model and they were 

used in the simulation [15, 29]. The change in Membrane potential is given by  

𝑑𝑉

𝑑𝑡
=  

𝑖𝑠𝑡 − 𝑖𝑁𝑎 − 𝑖𝐿  

𝐶𝑚
         

(1.8) 

𝑖𝑠𝑡 → 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡   

𝑖𝑁𝑎 → 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑦 𝑜𝑓 𝑠𝑜𝑑𝑖𝑢𝑚 𝑐𝑎𝑛𝑛𝑒𝑙 (µ𝐴 𝐶𝑚−2)   

𝑖𝐿 → 𝑖𝑠 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑦 𝑜𝑓 𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑐𝑎𝑛𝑛𝑒𝑙 (µ𝐴 𝐶𝑚−2)   

 𝑖𝑁𝑎 =  �̅�𝑁𝑎𝑚2ℎ(𝑉 − 𝐸𝑁𝑎)       (1.9) 

      𝑖𝐿 =  �̅�𝐿(𝑉 − 𝐸𝐿)                (1.10) 

 

Where m is the gating variable, which are gives as  
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𝑚(𝑡) = 𝑚0 − [(𝑚0 − 𝑚∞)(1 − 𝑒
−𝑡
Ʈ𝑚  ) 

(1.11) 

𝑚∞ =  
𝛼𝑚

𝛼𝑚 + 𝛽𝑚
 (1.12) 

𝛼𝑚 = 𝑘 
126 + 0.363 𝑉

1 + 𝑒−
𝑉+49

5.3

 
(1.13) 

𝛽𝑚 = 𝑘
𝛼𝑚

𝑒
𝑉+56.2

4.17

 (1.14) 

Ƭ𝑚 =  
1

𝛼𝑚 +  𝛽𝑚
 

(1.15) 

Then the equations for h, 𝛼ℎ and 𝛽ℎ are  

ℎ(𝑡) = ℎ0 − [(ℎ0 −  ℎ∞)(1 −  𝑒
−𝑡
Ƭℎ  ) 

(1.16) 

ℎ∞ =  
𝛼ℎ

𝛼ℎ +  𝛽ℎ
 (1.17) 

𝛽ℎ = 𝑘 
15.6

1 + 𝑒− 
𝑉+56

10

 
(1.18) 

𝛼ℎ = 𝑘
𝛽ℎ

𝑒
𝑉+74.5

5

 
(1.19) 

Ƭℎ =  
1

𝛼ℎ +  𝛽ℎ
 

(1.20) 

      

 

1.5.3 Inferior Olive Model  

Another well-known neural model is the inferior olive model which was developed 

by Torben-Nielsen, B., I. Segev, and Y. Yarom. Inferior Olive (IO) Is the major 

source input to the cerebellum, and it is a part of the medulla oblongata. It is formed 

from a gray folded layer opened in the middle by a hilum, where the olivocerebellar 
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fibers pass through. It is the only source of the climbing fibers to the Purkinje cells 

in the cerebellum and it projects to both the cortex and the deeper nuclei of the 

cerebellum [30]. Its function is not well known, however it is thought that it is 

responsible for learning and timing of movements, for example it transmits error 

signals during eye-blink conditioning or adaptation of the vestibulo-ocular reflex. 

Additionally, it carries motor command signals beating on the rhythm of the 

oscillating and synchronous firing of ensembles of olivary neurons [30, 31]. The 

used IO model contains only a leak current and a low threshold (T-Type) Ca2+ 

current and there is no Sodium channel like the CRRSS model. The dynamics of 

the model are described by : 

𝑑𝑉

𝑑𝑡
=  −1 

1

𝐶𝑚
 (𝐼𝐿 + 𝐼𝐶𝑎) (1.21) 

𝐼𝐿 =  𝑔𝐿 (𝑉 − 𝐸1) (1.22) 

𝐼𝐶𝑎 =  𝑔̅
𝐶𝑎

𝑚∞
3 ℎ (𝑉 − 𝐸𝐶𝑎) (1.23) 

𝑚∞
3 = [1 + 𝑒𝑥𝑝(

−61−𝑉
4.2 ) ]

−3

  (1.24) 

𝑑ℎ

𝑑𝑡
=  

ℎ∞(𝑉) − ℎ

𝑡ℎ(𝑉)
 (1.25) 

ℎ∞ = [1 + 𝑒𝑥𝑝(
𝑉+85.5

8.6 ) ]
−1

  (1.26) 

𝑡ℎ(𝑉) = 40 + 30 [𝑒𝑥𝑝(
𝑉+84

8.3 )]
−1

 𝑒𝑥𝑝(
𝑉+160

30 )
 (1.27) 

 

In which the dynamic membrane parameters in this model are, the maximum 

conductance of calcium channels (𝑔𝐶𝑎), the maximum conductance of leakage 

channel (𝑔𝐿), and the gating coefficients are (m & h).  
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Figure. 1.5  Electrical circuit representing H-H model membrane 

parameters which are GNa, Gl, Gk, and Cm. 

Figure. 1.6 The CRRSS Local model is represented as an electrical circuit. 

The circuit showing both Leakage channel (gL) and sodium channel (gNa). 
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1.6 Dynamic Membrane Parameters 

Although there have been several studies focused on improving electrical 

stimulation selectivity, however, there is little attention paid to membrane 

parameters as a method to increase stimulation selectivity, even though it plays a 

critical role in determining cell activation threshold and in generating membrane 

action potential. Dynamic membrane properties were first explained in 1952 by 

Hodgkin and Huxley (H-H)  [27] when they successfully modeled the giant axon of 

the squid. They revealed that both sodium conductance (Gna) and potassium 

conductance (Gk) are functions of time and membrane potential, while the rest of 

parameters are constant [32].  

The original H-H model had three types of channels, sodium gated channel, 

leakage channels and potassium channels [27, 32]; in the purpose of this study, 

we will focus on the first two channels type Sodium channel and leak channel. 

Sodium channels are permeable to Na+ and the conductance depends on the 

voltage across the membrane [27] and it plays a vital role in generating action 

potential. The maximum conductance of the sodium channels (GNamax) is a function 

in the variable m & h gates, where m is the activation gating variable and h is the 

inactivation gating variable. In the H-H model, the assumption was, that the model 

contains three m gates and one H gate, therefore Gna = m3*h* GNamax  [27];  

however, in  the Chiu-Ritchie-Rogart-Stagg-Sweeney (CRRSS)  model, sodium 

channels have two m gates, therefore the conductance is modeled as, Gna = 

Gnamax* m2 * h, since it is a mammalian nerve fiber, as shown in Figure 1.7. [1, 2]. 

The values of m and h range from 0 to 1, causing the Gna to vary between 0 and 
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Gnamax [1]. Hence, changes in the value of Gnamax change the range for the sodium 

gate conductance causing a change in cell activation threshold. 

 Another two parameters of interest are α & β, which are the opening and 

closing rates for sodium channel gates. Alpha (α) is the number of time per second 

the gate will open, while beta (β) is the number of time per second that a gate will 

close [27, 32]. An increase in alpha increases the rate of opening for the gates 

causing higher probabilities to ions to flow in, conversely increasing beta will cause 

a higher closing rate lowering the probabilities for ions to flow through, causing a 

change in activation threshold. Therefore, we expect that membrane properties 

affect the activation threshold, and influence stimulation selectivity. Both Alpha and 

Beta can be altered simultaneously by changing the temperature coefficient of the 

model (Ktemp) Equation 0.1.  

 

 

 

𝛼 = Ktemp   
126 + 0.363 ∗ 𝑉

1 + 𝑒−(
𝑉+49

5.3 )
 

(1.28) 

  β  =  Ktemp

𝛼

𝑒(
𝑉+56.2

4.17 )
 (1.29) 
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Figure 1.7  Voltage gated sodium channel at rest. A) sodium channel pore 

opening is modeled by the activation variable m, while the inactivation gate is 

modeled by the inactivation variable, h. The conductance of the channel 

depends on the value of both gating variables. (B) the steady-state values of 

m and has a function of transmembrane voltage. (C) The steady state values 

of the time constant of the activation variables, 𝞃m, and the inactivation 

variable, 𝞃h, as a function of membrane voltage  [1, 2]. 
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1.7   Passive Membrane Parameters  

The Passive membrane parameters are leak conductance (Gleak) and membrane 

capacitance (Cm). Leakage channels has a low conductance Gleak  and it is mainly 

responsible for resting membrane potential (33). Leak current is calculate based 

on the value of Gleak. 

 

𝐼𝐿 =  𝑮𝑳 ̅̅ ̅̅ ( 𝑽 −  𝑬𝑳) 

 

Membrane capacitance is a fundamental parameter in modelling the 

electrophysiological properties of neurons [33, 34] . The specific membrane 

capacitance is determined by the thickness of the membrane, its lipid constituents 

of the cell and influenced by its protein content [33]. Cm is a crucial functional role 

in signal propagation, it is directly related to the membrane time constant 

 

𝑇𝑚  =  𝑅𝑚 ∗  𝐶𝑚 

 

where Rm is membrane resistance and Cm is membrane Capacitance. The direct 

relation between CM and tm plays an important role on influencing the chronaxie 

time of the Strength Duration curves. 
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1.8 CRRSS Action Potential  

The CRRSS model contains sodium channel and leakage channel, the sodium 

channel is responsible for generating an action potential. Sodium channel has 

three m gates and one h gates which are activation and inactivation gates, 

respectively. When neural cell is in the resting state the membrane potential stays 

around -80 mV. Once electrical pulse begins to excite the cell membrane, m gates 

(activation gates) start to open, and h gates start to close Figure (1.8). The opening 

of the m gate causes a graduate increase in the sodium Ions Na+ to enter the cell 

membrane changing the voltage gradient and depolarizing the cell membrane. 

Once the cell membrane voltage crosses the threshold value which is around -

55mV, all m gates are open, and all h gates are closed hence an influx of the 

sodium ions Na+ rush into the cell membrane. The influx of Na+ ions cause the cell 

membrane to further depolarize generating a large spike in the membrane potential 

reaching the action potential peak, Figure (1.8). In the depolarization state, m gates 

are fully opened, and h gates are fully closed and sodium conductance 𝐺𝑁𝑎at the 

maximum value. The sodium channel starts self-inactive by opening the h gate and 

closing m gates; hence cell membrane enters the repolarization state bringing the 

cell membrane potential back to resting potential, Figure (1.8).  

There is no refractory period in the AP generated in the CRRSS model 

because there is no potassium channel. The H-H model has a potassium channel, 

which mainly is slower than sodium channel. The slow opening of the potassium 

channel causes longer repolarization stage and slower discharge of the positive 
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ions. Additionally, it drives the cell to hyperpolarization state before going back to 

resting membrane potential.  

 

  

 

 

  

Figure 1.8  CRRSS Action Potential is generated when a rectangular pulse 

stimulates the nerve cell. Sodium conductance follows the action potential 

curve shape. Both m and h gate are showing, m gate is open during the 

peak of AP and h gate is close.  
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1.9   Strength-Duration Curve 

Is a well-defined method that is used to quantify stimulation selectivity. Strength-

duration (SD) curve has been used in several studies as a measure to stimulation 

selectivity [1, 35]. The two-dimensional curve, plots the stimulus strength as a 

function of pulse width (PW), as shown in Figure 1.8 [35]. Selectivity of stimulation 

is represented with a crossing between two curves on the SD curve. For instance 

on Figure 1.8. [35], shows an intersection between neuron B4 & B21, and a 

stimulus strength of 15 μA at PW 250 μs can activate B4 without activating B21, 

also a stimulus with amplitude of 5 uA at Pw = 2000 μs can activate B21 without 

activating B4 or any of the other neurons. The same measures can be used with 

neurons B25& B19. Accordingly, we can design a custom stimulus waveform that 

can be selective to neuron B4, but not to B21, B19 or B25.     

 

 

  

Figure 1.9  The strength–duration activation curves are plotted for four 

different neurons. Crossing found between B25 &B19, B4&B21. 
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CHAPTER 2 

SELECTIVE NEURAL STIMULATION BASED 
ON ELECTROPHYSIOLOGICAL DIVERSITY 

2.1   Objective / Background and Significance  

Stimulation of neurons by way of delivering small electric currents has led to 

treatment of numerous neurological disorders and injuries in the central and 

peripheral nervous system. One of the primary limitations of electrical nerve 

stimulation is the lack of specificity [6, 7]. In general, larger axons and somas have 

lower activation thresholds and are activated before the smaller ones, the opposite 

of the natural order of recruitment for motor neurons by volition. Also, due to fast 

decline of the electric field strength by distance from the stimulating electrode, the 

nearby neurons or axons are activated before the distant ones (current-distance 

relation). Both of these phenomena often emerge as major limitations in selectively 

activating neuronal subtypes defined by their electrophysiological properties or 

function rather than their size or distance from the electrode. 

Earlier efforts considered placing a depolarizing pre-pulse before the 

stimulating phase (pre-pulsing) [3, 13], in order to reduce the excitability of the 

nearby and large axons to reverse the recruitment order defined by either the size 

principle or current-distance relation. Introducing a short time gap between the two 

phases of the charge-balanced biphasic waveform removes the effect of the first 

phase on the excitation threshold [36]. Shorter pulse widths [37], biphasic 

waveforms as opposed to monophasic ones [37], and hyperpolarizing pre-pulses 

[38]; none of these reverses the recruitment order, but they allow a better control 

of muscle force by increasing the margin between the stimulus thresholds dictated 
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by fiber size or distance. Overall, the techniques proposed for selective activation 

usually make the assumption that the neurons share the same electrophysiological 

properties but only differ in their size and morphology [39], and sometimes the 

types of ionic channels and their density in different neuronal compartments. 

No study so far has tried to leverage the intrinsic variations in membrane 

properties that occur naturally between different neural subtypes as a means to 

achieve selective activation. Diversity in passive and dynamic membrane 

properties of neurons clearly exists as evidenced in many parts of the central 

nervous system (CNS). For instance, four different pyramidal neuron subtypes 

were found in layer V of the rat medial prefrontal cortex [40], classified based on 

their morphology and membrane resistance. Different neurons had significantly 

different membrane time constants and rheobase currents. It is difficult to study 

the threshold currents and chronaxie times independent of the cell size. However, 

the range of distribution in the action potential rise times and the sub-threshold 

time constants between the pyramidal cells of different layers as well as within 

layer V clearly indicates a great deal of diversity in electrophysiological properties 

[40, 41].  

Another well-known case of diversity is found in the motoneuron (MN) pools 

of the spinal cord. The MNs in the ventral horn present electrophysiological 

diversity in the cellular subtypes where each MN pool reflects the characteristics 

of the muscle fiber types that it controls [42, 43]. A MN pool is defined as a compact 

anatomical group of MNs sharing similar intrinsic characteristics and connecting to 
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a single type of extrafusal fibers in the skeletal muscle; mainly slow-twitch fatigue-

resistant, fast-twitch fatigue-resistant, or fast-twitch fatigable types [44].  

A third example can be found in Purkinje Cells (PCs) of the cerebellar cortex 

that have been studied extensively for their membrane dynamics. De Schutter and 

Bower developed a comprehensive model of the cerebellar PCs based on ten 

different types of voltage-gated membrane channels and matched the Hodgkin-

Huxley type model parameters to the voltage clamp data [45-47]. The diversity in 

the Na+ channel parameters was documented as the source of differentiation in 

the PC spiking patterns.  

Diversification of intrinsic membrane parameters is not random, but it is 

systematic and linked to function as seen in these examples. With more attention 

to intrinsic diversity, future studies will probably find more evidence associating the 

electrophysiological diversity to some form of functional specialization in other 

parts of the CNS as well. Such reports of experimental data are scarce perhaps 

due to methodological difficulties.  

“Selectivity based on diversity” of electrophysiological membrane properties 

can lead to functionally selective stimulation, and thus improve therapeutic effects 

and reduce the magnitude of side effects [10]. The list of applications includes 

many forms of deep brain stimulation, applications dealing with spinal cord 

stimulation, and various forms of sensory prostheses. The degree of selectivity will 

depend on how well the cells can be segregated into functionally distinct units as 

defined by their membrane properties.  
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In this chapter, we examined vertical and horizontal translations, introduced 

by variations in each membrane parameter, of the strength-duration curves using 

a local membrane model. The sensitivity of chronaxie time and rheobase to each 

of the membrane parameters was investigated individually and in pairs. We 

demonstrated that significant levels of selectivity can be achieved as the strength-

duration curves begin to cross as a result of these translations. Rectangular 

stimulation waveforms with hyperpolarizing and depolarizing pre-pulses were 

tested to investigate if the design of the stimulus waveform can further improve this 

form of selectivity.  

 

2.2   Methods 

2.2.1 Neuron Model 

In order to avoid geometry specific effects and maximize the potential for the 

results to generalize to many neuronal types in the CNS, a basic local membrane 

model with only one voltage-gated fast sodium channel was used in this study. The 

Chiu-Ritchie-Rogart-Stagg-Sweeney (CRRSS) model [2, 29, 48], based on 

myelinated rabbit nerve node data, was utilized as the local membrane model. The 

CRRSS model is built on gating mechanism similar to the Hodgkin-Huxley (H-H) 

model [27] and it was altered using a Q10 value to bring the model to 37°C and the 

leakage conductance (Gleak) was adjusted to give the action potential conduction 

velocity of 57 m/s by Sweeney et al. [29]. The original H-H model has two voltage-

gated currents, sodium and potassium, and a leakage current [27, 32]. The 

CRRSS model contains only the voltage-gated sodium and the leakage current, 
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since there are almost no potassium currents in mammalian nodes of Ranvier [2, 

48, 49].  

 

2.2.2 Sensitivity Analysis 

For sensitivity analysis, we varied both the passive and active membrane 

parameters by ±25% around their default value, first individually and then in pairs. 

The ±25% change in membrane parameters is representative of the natural 

diversity, for instance, observed in the reported values of the cell input resistance 

and the action potential rise times from the cortical pyramidal neurons [40, 41, 50]. 

These variations in input resistance and action potential rise time were simulated 

by changing the membrane leakage conductance (Gleak) and the temperature 

coefficient of the model (Ktemp), respectively. The other two parameters were the 

membrane capacitance (Cm) and the maximum sodium conductance (GNamax). We 

hypothesized that if the passive membrane properties impose a much shorter time 

constant than the active sodium kinetics, the dynamic parameters that control the latter 

(Ktemp and GNamax) would start making a stronger influence on the chronaxie time. To test 

this hypothesis, we set the default value of Cm (Cm-def) to three different numbers, 0.5, 2, 

and 4 μF/cm2 to adjust the passive time constant.  

 

2.2.3 Rectangular Stimulus Waveforms   

Three different variations of the rectangular waveform were defined for the 

(intracellular) stimulation current; a monophasic-anodic pulse (Mono), a biphasic 

waveform where the (cathodic) hyperpolarizing pre-pulse (HPP) precedes the 

anodic phase, and an anodic pulse with (anodic) depolarizing pre-pulse (DPP), 
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(Figure 2.1). The hyperpolarizing pre-pulse was identical to the anodic phase in 

amplitude and duration to make the waveform charge-balanced. The DPP pre-

pulse amplitude was set to 95% of the excitation threshold [38] at each pulse width 

independently. In order to determine the shortest duration for the depolarizing 

pulse, we investigated the effect of DPP duration on the selectivity index (SI) 

(Supplemental Figure A.1) and observed that selectivity index increased with DPP 

duration and reached 85% of its maximum effect at DPP duration of 1ms when two 

membrane parameters are varied simultaneously. So, we decided to use 1ms of 

fixed DPP duration in selectivity analysis. We also investigated the effect of adding 

a 200 µs gap between the two phases in the HPP waveform, as it is commonly 

used in neural stimulation applications [38]. 

 

2.2.4 Strength-Duration Curve 

The pulse-width (PW) of the primary stimulating (anodic) phase was varied from 

0.01 to 1 ms, in order to compute the strength-duration (SD) curve for each neuron 

designed with a unique set of membrane parameters. The strength-duration (SD) 

curve is defined by threshold level PW and pulse amplitude pairs that result in an 

action potential. The action potential threshold for each stimulation was determined 

by a quick search algorithm until the step size was smaller than 0.01 µA/cm2. An 

action potential was decided to occur if the m-gate variable exceeded the 0.98 

threshold. The rheobase (Rhe) and chronaxie time (Chr) were determined by fitting 

the Lapicque equation [51] to the simulated SD curve. 
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2.2.5 Selectivity Index (SI) 

Selectivity here is defined as the ability to stimulate a neuron in exclusion of others 

that differ in their membrane properties under the exact same stimulus waveform. 

Different neurons can be activated selectively by carefully choosing the stimulus 

parameters only if the strength-duration (SD) curves of those neurons cross. The 

neuron with the red strength-duration (SD) curve in Figure 2.2, for instance, can 

be activated selectively before the black one with appropriate selection of stimulus 

parameters on the right side of the crossing point. For selective stimulation of the 

neuron with black SD curve, another intensity-PW pair has to be chosen on the left 

side of the crossing point between the two SD curves. Thus, maximization of the 

separation between the SD curves implies maximization of the intensity range on 

both sides of the SD curve that can be utilized for selectivity.  

The passive (Cm and Gleak) and active (GNamax and Ktemp) membrane 

parameters were varied individually by ± 25% (Table 2.1), and produced three 

different neurons with the minimum, maximum and default value of each 

parameter. All possible parameter combinations were tested in pairs to produce 

nine different neurons and strength-duration (SD) curves were plotted for each. 

The MATLAB (MathWorks) algorithm found the crossing points between each SD 

curve pair and calculated a selectivity index (SI). The selectivity index was 

calculated at the PW where the ratio of the amplitude difference between the SD 

curves divided by the amplitude of the higher SD curve is maximum. The maximum 

SI was found on each side of the crossing point (𝑆𝐼1 = 𝐴1/(𝐴1 + 𝐵1) and 𝑆𝐼2 =

𝐴2/(𝐴2 + 𝐵2) as shown in Figure 2.2 ) and the smaller of the two was taken as a 
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conservative value for the final SI for that particular neuron pair. Note that the SI 

measure here will be somewhat dependent on the minimum and maximum PWs 

tested because in most cases the largest SI value occurs at the extreme ends of 

the PW range. Other measures, such as the SD crossing angle, were considered 

but the ratiometric measure defined here was chosen as the best representative 

metric for selectivity. 

  

Figure 2.1 Stimulus waveforms: Mono-phasic (Mono), Mono with 

hyperpolarizing pre-pulse (HPP), and Mono with depolarizing pre-pulse 

(DPP). Waveforms are shifted to show overlapping parts clearly. 
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Figure 2.2 Definition of Selectivity Index based on crossing of strength-

duration curves. 
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(a) 

(b) 

Figure 2.3  Sensitivity analysis of (a) chronaxie time (b) rheobase, repeated 

for three different stimulus waveforms shown in Figure 2.1 Mono in blue, DPP 

in Red, and HPP in Green, in addition to HPP with 200 μsec inter-phase gap 

in Purple. Default value of Cm is 2 µF/cm2. (a) Chronaxie time increases with 

Cm while Gleak and Ktemp have opposite effects for all three stimulation 

waveforms.  (b) Rheobase increases with Gleak, Ktemp, and Cm (except for 

HPP), and decreases with GNamax. 
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2.3   Results 

 

2.3.1 Sensitivity to Individual Membrane Parameters 

strength-duration (SD) curves will cross if one moves with respect to the other as 

the membrane parameters are varied. The horizontal and vertical translations of 

the SD curve can be captured by examining the chronaxie time (Chr) and the 

rheobase (Rhe). Any membrane parameter (by itself or in combination with others) 

that alters these two characteristics in such a way that the SD curve moves along 

the left-tilted diagonal (\), as opposed to moving along the other diagonal (/), can 

potentially make the SD curve cross with others and lead to selectivity. Thus, we 

first performed a sensitivity analysis for Chr and Rhe to the four membrane 

parameters individually (Figure 2.3 (a) & (b)). Interestingly, increases in both GLeak 

and Ktemp decreased Chr and increased Rhe, thus shifted the SD curve to the left 

and up on the chart. Cm primarily increased Chr and had small effect on Rhe. 

Increasing GNamax caused a significant reduction in Rhe with virtually no change in 

Chr. This analysis suggested that Gleak and Ktemp are most likely to produce a 

crossing in the SD curves, followed by Cm and GNamax combination if they are varied 

together.  

In order to further expand the sensitivity analysis, we set the default value 

of Cm (Cm-def) to two other values, 0.5 and 4 µF/cm2, besides the original value of 

2 µF/cm2 (Figure 2.4). The rationale was to investigate the effects of the other 

membrane parameters on the strength-duration (SD) curve when the passive time 

constant of the membrane was substantially lower or higher than those dictated by 

sodium dynamics. The rise time of the action potential (from 10% to 90% of the 
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peak) with a very small Cm-def in the model (0.1 µF/cm2) was measured as 12.8 µs. 

The passive time constant for the same Cm, measured with a small amplitude long 

hyperpolarization pulse, was less than a microsecond, suggesting that the 

measured action potential rise time was primarily determined by the sodium 

channel kinetics for this small value of Cm-def. The passive time constant for Cm= 2 

µF/cm2 was around 16 µs, which was comparable to the rise time dictated by the 

sodium kinetics, and ~32 µs for Cm= 4 µF/cm2.  

Changing Cm-def, first and foremost, altered the sensitivity of Chr to 

perturbations of Cm around Cm-def (Figure 2.4 bottom right). Reducing Cm-def to 0.5 

µF∕𝑐𝑚2decreased the slope of the Chr vs. Gleak plot and increased the slopes of 

Chr vs. Ktemp and GNamax plots. In summary, reducing Cm-def reduced the effect of 

Gleak and increased the effects of Cm, Ktemp, and GNamax on Chr. On the other hand, 

Increasing the Cm-def to 4 µF∕𝑐𝑚2 had an opposite effect on the slopes of these 

plots, but to a much lesser extent (black lines). Moreover, varying Cm-def had no 

significant effect on the slopes of the plots for Rhe vs. other membrane parameters 

(Supplemental Figure A.2). This is understandable because Rhe is calculated for 

a long PW where Cm is completely charged, and the capacitive current is zero 

before the end of the stimulus.  
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Parameter Max Default Min 

Ktemp 1.25 1 0.75 

Gleak (𝒎𝑺/𝒄𝒎𝟐) 160 128 96 

GNamax (𝒎𝑺/𝒄𝒎𝟐) 1806 1445 1084 

 

Cm (μF/𝒄𝒎𝟐) 

0.625 0.5 0.375 

2.5 2 1.5 

5 4 3 

Figure 2.4  Sensitivity of chronaxie time, normalized to the default value, to the 

membrane parameters (Gleak, Gnamax, Ktemp, and Cm) as they are altered by 

±25% from the default value and evaluated at intermediate values. The analysis 

is repeated for three different default values of Cm; Cm-def=0.5 µF/cm2 (Red), 

Cm-def =2 µF/cm2 (Blue-Dash), and Cm-def =4 µF/cm2 (Black). Black dash lines 

show the default values. 

Table 2.1 The three different values used for each membrane parameter to 

represent diversity.  

 

Note: The min and max are ±25% deviations from the default. Three different 

default values of Cm are tested. 
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Figure 2.5  The effects of the four model parameters on the strength-duration 

curve as they are altered individually by ±25%. None of the perturbations 

produces SD curve crossings. Mono stimulus waveform is used. . Cm-def = 2 

µF∕𝑐𝑚2 . 

Figure 2.6  Varying Gleak and using hyperpolarization pulse (HPP) 

causes crossing between SD Curves.   
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Figure 2.7  Two of the four membrane parameters are altered 

simultaneously in each case by the same amount as in Fig.4, using HPP 

waveform. Different colors in each subplot indicate different values for the 

first parameter shown on top. Second parameter is not color coded for 

clarity. Red dash lines mark the points of SD crossings, some of which fall 

outside the figure window. 
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Figure 2.8A  Comparison of SI values with Mono (Blue), HPP (Green), and 

DPP (Red) stimulus waveforms and for each parameter combination. Default 

Cm=2µF∕𝑐𝑚2 . Each dot in the plot represents an SD crossing. Cm & Gleak 

combination produces the largest SI values with Mono and HPP stimulus 

waveforms. The plot highlights the mean value at the cross mark, the median at 

the line mark which divides the box into the 2nd and 3rd Quartiles and the max 

& min value at the top and bottom whiskers, respectively. 
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Figure 2.8B  Shows the crossing PW at the maximum selectivity index ratio 

for each parameter marked with “*” . Crossing PW is the point where both SD 

curves cross together. Diamond shape points “♦” are marking the PW where SI 

ration is maxima. Rectangular  “▲” and “Χ”  markers representing the two SI 

ratio at the left and right of the crossing point receptively, showing only for 

maximum SI. Dots ‘•’ marks all other crossing PW points. Mono in 

blue, HPP in Green DPP in Red 
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2.3.2 Selectivity with Single Parameter Variation 

The strength-duration (SD) curves are shown in Figure 2.5 as the four membrane 

parameters are altered individually by ±25% and using the traditional monophasic 

rectangular current pulse (Mono) for stimulation. Each parameter was tested for 

two extreme and the default values (Table 2.1). As mentioned, the Gleak and Ktemp 

shifted the SD curves most, although not enough to make them cross. When we 

added a hyperpolarizing pre-pulse (HPP) to the stimulus waveform, more radical 

shifts in the SD curve were observed leading to crossing for Gleak variations (Figure 

2.6 & Supplemental Figure A.3), as predicted by the sensitivity analysis in Figure 

2.3. However, the SD crossings were at the lower end of the PW range and the 

crossing angles were small. 

Next, we included a depolarizing pre-pulse (DPP) to the Mono waveform 

(Figure 2.1). The SD curves with DPP and single parameter diversity did not yield 

to SD crossings (Supplemental Data, Figure A.4).  

Finally, a short time interval of 200 µs between the two phases of the HPP 

waveform was inserted, giving a waveform commonly used in neural stimulation 

applications [38]. The effect of having a gap in the HPP waveform on the SD curve 

was to negate the effects produced by single parameter alterations in all cases 

(Supplemental Figure A.5).  

 

2.3.3 Selectivity with Dual Parameter Variation 

In order to maximize selectivity index (SI), two of the membrane parameters were 

altered in pairs for all three-stimulus waveform tested. Since each parameter was 

set to three different values; min, max, and default, the combinations produced 
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nine different SD curves and a maximum of 36 possible crossings between them. 

This time, multiple strength-duration (SD) curves crossed for different parameter 

combinations (Figure 2.7). Although most of the crossings occurred at the extreme 

pulse widths, there were many crossings in the middle of the PW range as well.  

The selectivity index (SI), as defined in Methods, was computed for each 

one of these SD curve crossings to quantify and compare the selectivity obtained 

for each stimulus waveform (Figure 2.8A). As expected, HPP (with no gap) 

stimulus had much higher selectivity values across all combinations compared to 

Mono and DPP waveforms. The largest selectivity index (SI) values were produced 

by diversifying GLeak & Cm combination followed by GLeak & GNamax , Ktemp & Cm 

and Ktemp & GLeak, respectively.  Contrarily, the DPP waveform produced smaller 

SI values especially when GLeak is one of the parameters varied. Interestingly, DPP 

did better than other waveforms only with the Ktemp & GNamax combination, the 

dynamic membrane parameters. Ktemp & Cm combination stood out among those 

SI where DPP is the stimulus waveform. 

For the SI values reported in Figure 2.8A, the PWs at which SD crossings 

occur and where the SIs are measured are depicted in Figure 2.8B. The crossing 

PWs are pushed to longer PWs by inclusion of the hyperpolarizing pre-pulse (HPP 

vs. Mono and DPP) for almost all membrane parameter combinations. The PWs 

where the maximum SI values occur are usually at the ends of the PW range tested 

(0.01ms and 1ms). Nonetheless, one can use PWs longer than 0.01ms by 

sacrificing some selectivity. The longer PWs are preferable for the design of 
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implantable stimulators where the current intensities are lower and electronic 

efficiencies are higher.  

Then, the selectivity analysis was repeated for three different default values 

of Cm (Cm-def = 0.5, 2, and 4 µF∕𝑐𝑚2 ), and for each default value, all membrane 

parameters, including Cm, were perturbed ±25% from their default value. As 

anticipated from sensitivity analysis (Figure 2.4), for Cm-def = 0.5 µF/cm2, the effect 

of Gleak was reduced. Thus, the SI for all parameter combinations that included 

Gleak was significantly lower (Figure 2.9), compared to the cases for Cm-def = 2 

µF/cm2. Although increasing Cm-def from 2 to 4 µF/cm2 did not produce appreciable 

changes in Chr (Figure 2.4), it produced significant differences in selectivity (Figure 

2.9). The dynamic membrane parameter combination, Ktemp & GNamax, generated 

the smallest selectivity for Cm-def = 4 µF/cm2. 

 

2.4  Discussion 

 

2.4.1 Sensitivity to Individual Membrane Parameters 

In this study, we investigated a potential mechanism of selective neural stimulation 

that leverages diversity in passive and active membrane parameters, which we 

refer to as diversity-based selectivity. The motivation for the current study comes 

from the correlation reported in literature that links the intrinsic variations in the 

passive and active membrane parameters to neuronal subtypes that serve 

different functions in the CNS, as mentioned in the Introduction. This correlation 

suggests that diversity-based selectivity may lead to functional selectivity, the 

ultimate objective in all previous efforts on selective neural stimulation.  
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The spatial selectivity in real neural tissue depends on many geometric 

factors, including the size and shape of the cell soma, the axon, and other neuronal 

compartments, and their orientation in the electric field. A 3D model would provide 

more realistic results, but a local membrane model was selected here to avoid 

geometry specific effects and maximize the potential for the results to generalize 

to many neuron types in the CNS. Nonetheless, maximizing the stimulation 

selectivity based on diversity of membrane parameters can also provide spatial 

and size selectivity if neurons with distinct membrane parameters also differ in size 

and localization, which are often linked to function. This step would require 3D 

neuron models to study if the predicted selectivity values can reverse the current-

distance relation and/or the large-to-small recruitment order. The ultimate levels of 

selectivity will be proportional to the degree by which the neurons can be separated 

by their membrane properties. Such a separation will have to be verified with 

electrophysiological experiments in neural tissue, and the selectivity figures would 

most likely be different in different parts of the CNS.  

 

2.4.2 Mechanisms of Selectivity 

2.4.2.1 Temperature Coefficient Effect 

Altering the temperature coefficient of the model is equivalent to scaling both α and 

β coefficients that determine the opening and closing rates of the membrane 

channels in the model [2, 27, 52]. This scalar, expressed as a function of Q10 

coefficient, is typically used to set the temperature of the model to values other 

than the temperature at which the experimental data were collected. Increasing 

temperature makes the model faster and shifts the SD curve to the left, (in the -X 
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direction), resulting in smaller chronaxie times (Figure 2.3-a)  [53, 54]. 

Furthermore, the initial values of the rate coefficients also affect the stimulus 

threshold. Particularly increasing α, the channel opening rate, makes the neuronal 

membrane more permeable to Na+ ions, which in turn increases the activation 

threshold (Supplemental Figure A.5) and moves the SD curve upward (in the +Y 

direction); Ktemp in Figure 2.3 (b) & Figure 2.5). Note that this result is in contrast 

with the temperature effect seen in another report with Frankenhaeuser-Huxley 

model [55], where, unlike the CRRSS model, a potassium current that has a 

negative Nernst potential below the resting membrane voltage, is included. Thus, 

the net effect of the temperature increase on rheobase could be in opposite 

directions in these two models. However, the effect on chronaxie, which is due 

sodium kinetics, should be same. 

 

2.4.2.2 Effect of Gleak 

Conductivity of the leakage channel is relatively low compared to the maximum 

conductivity of the sodium channel (GNamax), but it significantly influences two 

other parameters, the cell input resistance (Ri) and the resting membrane voltage. 

Because Gleak is a parallel current pathway, it directly contributes to the input 

conductance, the inverse of input resistance, and determines the passive time 

constant of the membrane together with Cm. Thus, an increase in Gleak reduces 

the differential depolarization in the transmembrane voltage as a response to the 

same stimulus current pulse. This increases the stimulus thresholds and moves 

the strength-duration (SD) curve in the (+Y) direction (Figure 2.3-b and Figure 2.5 

bottom left). On the other hand, the passive time constant of the cell also 
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determines how fast the transmembrane potential will move towards the activation 

threshold at sub-threshold voltages before the voltage-gated currents become 

significant. A larger Gleak results in a shorter time constant, and thus a shorter 

chronaxie time (Figure 2.3 (a)). Similar trends in Gleak effects on the strength-

duration SD curve were observed by Bostock  based on myelinated axon model 

by Goldman and Albus [56]. In sum, a reduction in the input resistance due to a 

Gleak increase moves the strength-duration SD curve up (+Y) and to the left (-X), 

hence potentially making the SD curves cross even without needing any other 

parameter to be modified (Supplemental Figure A.2 - Top right). 

 

2.4.2.3 Effect of Capacitance 

 

Cm determines the passive time constant of the cell and directly affects the 

chronaxie time, but does not influence the rheobase or the resting cell potential, 

as also confirmed by the Bostock study [57] . We repeated the analysis for three 

different default values of Cm  (Cm-def) in order to see how the sensitivites to other 

membrane parameters change for different values of the passive membrane time 

constant. No significant change was observed in the rheobase plots for ±25% 

variation of Cm around any of the Cm-def values. However, switching Cm-def  to lower 

and higher values (0.5 and 4 µF/cm2) influenced the sensitivity of Chr to all the 

other membrane parameters as well as to Cm itself. Decreasing Cm-def reduced the 

effect of GLeak, but amplified the effects of Ktemp, Cm, and GNamax on Chr. This 

confirms our hypothesis that a smaller passive time constant allows the temporal 

dynamics, imposed by sodium channels, to dominate the activation time. 

Consequently, it reduces the effect of  Gleak, the other passive membrane 
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parameter. Conversely, it increases the effects of the dynamic parameters, Ktemp 

and GNamax.The sensitivity of Chr to Cm itself seems to become larger for the 

smaller value of Cm-def because of the increase in slope (Figure 2.4), but in fact the 

total change in Chr is less for the smaller Cm-def (0.5 µF/cm2). The opposite trends 

should occur with the larger value of Cm-def (4 µF/cm2 ). Indeed, they do but only to 

a lesser extent because at 2 µF/cm2 the passive time constant (16 µs) is already 

quite dominant and increaseing it further provides only marginal effects. However, 

those small changes in Chr and Rhe result in substantial improvements in the SI 

values in the final plots when GLeak is one of the parameters allowed to vary 

(compare plots for Cm-def = 2 and 4 µF/cm2 in GLeak & GNamax and Ktemp & GLeak in 

Figure 1.8). 

 

2.4.2.4 Effect of GNamax 

GNamax defines the maximum conductance of the sodium channel [58, 59]. While 

at first sight, this may not seem directly related to the activation threshold, the small 

percent of change that GNamax introduces to the sodium current at the onset of 

sodium channel activation seems to be significant enough to make the SD curve 

move downward (in the -Y direction), by decreasing Rhe (Figure 2.3 (b)). Similarly, 

the Bostock study reported a 10% decrease in rheobase when GNamax was doubled 

and 10%  increase when GNamax  was reduced by 50% [57]. Nonetheless, GNamax 

effect on Chr was insignificant for Cm-def=2 µF/cm2 (Figure 2.3(a)) and very small 

for Cm-def=0.5 µF/cm2 (Figure 2.4). This is comparable to results of the  Bostock 

study where doubling the GNamax reduced the chronaxie time only by 3% [57].   

 



 

46 
 

2.4.2.5 Dual Parameter Effects 

When two membrane parameters are allowed to vary, the individual effects begin 

to add and make the SD curves move by larger amounts, thereby leading to higher 

selectivity. For instance, GLeak & Cm combination produces the largest number of 

crossings at mid-values of the PW with large angles, yielding the highest selectivity 

index (SI) values. Supporting evidence exists in literature that these variations in 

individual membrane parameters occur in the CNS neurons [44, 60-62]. However, 

it is not clear if we can realistically assume that two or more parameters can 

simultaneously differ by significant amounts in groups of CNS neurons that sub-

serve different functions. Literature reporting on such comprehensive set of 

measurements on neuronal properties is scarce.   

 

2.4.2.6 Rectangular Stimulus Waveform 

A study by Grill et al. [38] investigated the effect of depolarizing pre-pulsing (DPP) 

on the current-distance relationship and showed that it increases the activation 

threshold of fibers close to the electrode more than the fibers further away, 

whereas the HPP produces the opposite effect. In this study, HPP moves Rhe in 

(-Y) direction causing more strength-duration (SD) crossings and increases the SI, 

whereas DPP moves it in the (+Y) direction sending the SD curve away from the 

crossing region and reduces selectivity, as shown with larger Rhe in Figure 2.3 (b). 

This is interesting to note since DPP was proposed to reverse the current-distance 

relation by activating the distant (and smaller) fibers before the closer (and larger) 

ones [3], and HPP did not provide any selectivity. Contrarily, our results show that 
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HPP waveform in fact provides larger selectivity values than DPP. This suggests 

that the selectivity mechanism reported here is only possible if diversity of 

electrophysiological parameters is introduced to the model. In addition, our results 

showed that adding a 200 µsec gap between the phases in the HPP waveform 

eliminated the effect of hyperpolarizing pre-pulse, which confirms the earlier 

reports on the effects of pre-pulsing [36, 38].  

 

2.4.2.7 Reversing the size or distance rule 

 We can find out how much spatial or fiber size selectivity the computed diversity-

based SI values correspond to using some simple calculations. Let us assume that 

the proposed electrophysiological diversity exists among the axonal fibers of the 

same caliber at a few nodes of Ranvier nearest to the stimulation electrode. An 

activation function was formulated by Rattay [25, 63] for a myelinated fiber in an 

infinite homogeneous medium at a certain distance from a monopolar electrode. 

After all terms that do not depend on the fiber diameter, including the nodal lengths, 

are eliminated in the function, it can be shown that the second difference of the 

voltage along the axon is what determines if the stimulus current can generate an 

action potential: 

 

                                                                  𝑉𝑒,𝑛−1 − 2𝑉𝑒,𝑛+𝑉𝑒,𝑛+1                                   (2.1) 

 

where n is the index for the node of Ranvier. Thus, the activation function is 

different for different fiber sizes only because the inter-nodal distance increases 
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almost proportionally with the fiber dimeter. As the activation function is evaluated 

for a 10 µm fiber located at 1.0 mm and 1.25 mm from the stimulation electrode, 

we find a 40% difference in the threshold (Supplement Figure A.6). This implies 

that the SI values reported in this paper (Figure 2.8 (A)) can reverse the stimulation 

order for these two fibers in favor of the distant one. The 0.25 mm separation 

between these two fibers is a practically useful level of spatial selectivity for many 

neural stimulation applications. Note that the threshold difference would be larger 

for fiber pairs closer to the electrode with the same inter-fiber separation. 

A similar analysis can be conducted for fibers of different caliber but at the 

same distance from the electrode (Supplemental Figure A.7). As we compare a 10 

µm and 20 µm axons both at 1 mm from the electrode, we find that the threshold 

difference is 47%, which is also comparable to the best SI values reported here. 

This implies that the fiber size order can be reversed in favor of the smaller fiber 

by the selectivity gained by electrophysiological diversity together with the HPP 

waveform. 
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Figure 2.9  Comparison between three CRRSS model variations produced by 

setting the default value of Cm to 0.5µF∕𝒄𝒎𝟐, 2 µF∕𝒄𝒎𝟐, and 4 µF∕𝒄𝒎𝟐, 

represented in different shades of green. HPP is the stimulus waveform.  The 

smaller value of Cm provides superior SI values only with Temp & GNamax 

combination, both of which are dynamic membrane parameters. With all other 

parameter pairs where at least one of the parameters is a passive membrane 

parameter, the larger Cm values (2 and 4 µf/cm2) produce higher SI values. 
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CHAPTER 3 

DIVERSITY-BASED NEURAL SELECTIVITY USING  
ALTERATIVE STIMULUS WAVEFORMS 

 

3.1  Background and Significance 

Stimulation of neurons by way of delivering small electric currents has led to 

treatment of numerous neurological disorders and injuries in the central and 

peripheral nervous system. One of the primary limitations of electrical nerve 

stimulation is the lack of specificity [6, 7].  The techniques proposed for selective 

activation make the assumption that the neurons or axons share the same 

membrane properties but only differ in their size, morphology [39], or location in 

the electric field. 

No study so far has tried to select an optimal stimulus waveform that would 

match the neuronal membrane properties of neuronal subtypes as a means to 

achieve selective activation. Diversity in passive and dynamic membrane 

properties of neurons clearly exists as evidenced in many parts of the central 

nervous system (CNS). For instance, four different pyramidal neuron subtypes 

were found in layer V of the rat medial prefrontal cortex [40], classified based on 

their morphology and membrane resistance. Different neurons had significantly 

different membrane time constants and rheobase currents. The range of 

distribution in the action potential rise times and the sub-threshold time constants 

between the pyramidal cells of different layers as well as within layer V clearly 

indicates a great deal of diversity in electrophysiological properties [40, 41].  
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Diversification of intrinsic membrane parameters is not random, but it is 

systematic and linked to function. With more attention to intrinsic diversity, future 

studies will probably find more evidence associating the electrophysiological 

diversity to some form of functional specialization in other parts of the CNS as well. 

Such reports of experimental data are scarce perhaps due to methodological 

difficulties.  

Selective activation of neurons by levering their differences in the 

electrophysiological membrane properties can lead to functional selective 

stimulation, and thus improve therapeutic effects and reduce the magnitude of side 

effects [10].  

Historically, rectangular waveform has been widely used for neural 

stimulation in most therapeutic applications. Offiner (1964) determined that an 

exponentially increasing stimulus can minimize the power required for stimulation, 

hence it reduces the neural damage caused by the generated heat [64]. In our lab, 

we investigated seven different non-rectangular waveforms for minimization of the 

stimulus energy, and showed that a linear ramp, exponential decrease (ExpDec), 

and Gaussian (Gauss) waveforms were most efficient [15]. They required the 

smallest electrode surface area to generate the strongest stimulation effect. 

Inspired by this original finding, several other reports looked at efficiency of non-

rectangular waveforms. Kajimoto et al (2004), Fishler (2000), and Jezernike & 

Morarii (2005) all agreed that an exponentially increasing (ExpInc) waveform is the 

most energy optimal waveform for current stimulation [20, 65, 66]. 
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A study by Grill et al investigated the effect of stimulus waveform on 

stimulus selectivity. The study compared between the traditional rectangular pulse 

and the depolarization pre-pulses (DPP), the study showed that DPP inverses the 

slope of the current-distance relationship allowing the stimulation on fibers further 

away from the electrode at lower current than for closer ones[38]. 

In the first chapter, we showed that selectivity could be achieved using the 

rectangular stimulus waveform preceded by a hyperpolarizing pulse (HPP) in a 

population of neurons with varying passive and active membrane parameters. In 

this chapter, we further investigate this topic by introducing non-rectangular 

waveforms for the main stimulation phase of the stimulus. The results suggest that 

non-rectangular waveform can significantly increase the level of selectivity when 

combined with hyperpolarization pre pulse (HPP).  

 

3.2  Methods 

 

3.2.1 Neuron Model 

The methodology used is similar to the method use in the first chapter . Briefly, the 

Chiu-Ritchie-Rogart-Stagg-Sweeney (CRRSS) model [2, 29, 48], based on 

myelinated rabbit nerve node experimental data and modified for body 

temperature, is utilized as a local membrane model in this study. The CRRSS 

model contains only the voltage-gated sodium and the leakage current, since there 

are almost no potassium currents in mammalian nodes of Ranvier [2, 48, 49]. The 

data produced using a basic model, like the CRRSS, may generalize across many 

file:///G:/My%20Drive/PhD%20Project/PaperWork/1st_PAPER/Rectangular%20Paper/Paper%20References%20PDF/7-%20Stimulus%20waveforms%20for%20selective%20neural%20stimulation.pdf
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neuronal subtypes since most excitable neurons have voltage-gated sodium 

channels and leakage. 

 

3.2.2 Sensitivity Analysis:  

As in chapter one, we varied all the membrane parameters by ±25% around their 

default value, first individually and then in pairs, to simulate the diversity and its 

effect on strength duration (SD) curve. The ±25% change in membrane 

parameters is taken as a representative value for the natural diversity reported for 

some of these parameters, such as the cell input resistance and the action 

potential rise times [40, 41, 50]. Unfortunately, there are no reported studies that 

looked into the diversity of all or most electrophysiological parameters in a specific 

neuronal subtype for us to adopt here. In the previous chapter, depolarizing and 

hyperpolarizing pre-pulsing options with rectangular stimulus waveform were 

tested for selectivity.  In this chapter, we introduced eight different stimulus 

waveforms [15, 19], with and without the hyperpolarization pre-pulse (HPP) [38], 

which was critical to maximize the selectivity. We hypothesized that using non-

rectangular stimulus waveforms may shift the SD curves in a way to achieve higher 

levels of selectivity than the classical rectangular waveform in the presence of 

electrophysiological diversity. 

 

3.2.3 Stimulus Waveforms 

Eight stimulus waveforms tested were (Table 1); Charge-discharge curve (Chr-

Dis), increasing and decreasing exponential (ExpInc and ExpDec) respectively, 

Gaussian (Gauss), KT2, Linear (Lin),  sinewave (Sine), and rectangular (Rect) as 
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defined and tested previously for minimization of stimulation energy [15]. All 

stimulus waveforms were applied either as a monophasic-anodic pulse (Mono) or 

a biphasic waveform where a rectangular hyperpolarizing pre-pulse (HPP), 

cathodic, preceded the anodic phase (Table 3.1). The hyperpolarizing pre-pulse 

had the same duration as the stimulus pulse and identical area to the anodic 

phase to make the waveform charge-balanced.  

Table 3.1 Eight monophasic stimulus waveforms tested. 
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3.2.4 Strength-Duration Curve (SD)  

The SD curve shows the threshold values for the pulse width (PW) and pulse 

amplitude that result in an action potential. The PW of the primary stimulating 

(anodic) phase was varied from 0.01 to 5 ms in order to compute the strength-

duration (SD) curve for each neuron designed with a unique set of membrane 

parameters. The threshold amplitude at each PW was determined by an adaptive 

search algorithm that finds the smallest step size that allows cell activation. An 

action potential was decided to occur if the m-gate variable exceeded the 0.98 

threshold. The rheobase current (Rhe) and chronaxie time (Chr) were determined 

by following the general accepted definitions from SD curve, i.e. the Chr is the 

pulse width at which the threshold is twice the Rhe. The idea of fitting the Lapicque-

Weiss [51] or Lapicque-Blair [67, 68] equations to the simulated SD curve for 

estimation of Rhe and Chr was abandoned because of poor curve fittings for the 

non-rectangular waveforms.  

 

3.2.5 Selectivity Index (SI) 

Selectivity here is defined as the ability to stimulate a group of neurons in exclusion 

of others that differ in their membrane properties under the same stimulus 

waveform. The passive (Cm and Gleak) and active (GNamax and Ktemp) membrane 

parameters were varied individually by ± 25%, and produced three different 

neurons with the minimum, maximum and default value of each parameter. Then, 

parameters were varied in pairs to produce nine different neurons (3x3). Crossing 

between SD curves implied selectivity. The MATLAB (MathWorks Inc., MA) 

algorithm found the crossing points between SD curve pairs and calculated a 
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selectivity index (SI). The selectivity index was calculated by dividing the largest 

amplitude difference between the SD curves on each side of the crossing point by 

the amplitude of the higher SD curve at that pulse width, e.g. 𝑆𝐼1 = 𝐴1/(𝐴1 + 𝐵1)  

and 𝑆𝐼2 = 𝐴2/(𝐴2 + 𝐵2). The smaller of SI1 and SI2 was taken as a conservative 

value for the final SI for that particular neuron pair.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1A  Sensitivity analysis showing the Rheobase data, each line 

represents the behavior of stimulus waveform. Eight stimulus waveforms are 

used with a hyperpolarization pulse (HPP) included. 
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Figure 3.1B  Sensitivity analysis showing the Chronaxie data, each line 

represents the behavior of stimulus waveform. Eight stimulus waveforms are 

used with a hyperpolarization pulse (HPP) included. 
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3.3  Results 

 

3.3.1 Sensitivity to Individual Membrane Parameters 

SD curve’s horizontal and vertical translations as the membrane parameters are 

varied can be captured by examining the Chr and the Rhe. Any stimulus waveform 

that alters these two characteristics in such a way to make the SD curves cross 

can lead to selectivity. Thus, we first performed a sensitivity analysis for Chr and 

Rhe to the four membrane parameters individually while each one of the eight 

different stimulus waveforms is being used for stimulation (Figure 3.1).  

Interestingly, the choice of the stimulus waveform played a critical role in 

augmenting the diversity effects of membrane parameters on the SD curve. 

However, this was true only when the HPP was included in the waveform. Without 

the HPP (i.e., Mono), the SD sensitivity plots for various membrane parameters 

did not deviate more than a few percent from that of the Rect (Supplementary 

Figure B.1). When HPP included, the parameter diversity introduced larger percent 

changes in Rhe with the non-rectangular waveforms than with the Rect (smaller 

slopes in Figure 3.1 A ). The most prominent baseline translations were observed 

with ExpDec and ExpInc. Moreover, ExpDec, ExpInc, and Kt2
 had smaller slopes 

in the Chr plots (Figure 3.1 B), i.e. stronger dependence on the membrane 

parameter compared to that of Rect. An increase in the Chr slope tends to spread 

the SD crossing points towards the center of the PW range. The Chr slope for Sine 

and Gauss were almost identical, small percent of change, to that of the Rect for 

all four parameters (Table 3.2). Consistently, rheobase analysis revealed that 
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ExpDec, ExpInc, and Kt2 slope had a decrease, shown by (-) sign, in the slope 

when varying GLeak and Ktemp. When Varying Cm all eight waveform had equal or 

greater slope, specially ExpDec and ExpInc have a high percent change compared 

to Rect, specially for Rhe. Additionally, for all four parameters the Chr and Rhe 

slope for Sine was almost identical to that of Rect. The effects of all eight stimulus 

waveforms were negligible on both Chr and Rhe when GNamax was diversified. 

 

 

 

Table 3.2. Percent of change in Chronaxie and Rheobase slopes for HPP 
stimulus waveforms compared to Rect waveform  
 

 GLeak GNamax Ktemp Cm 

Percent Change in Chr % 

Chrg-Dis -1.43 0.00 -3.60 1.09 

ExpDec -47.14 0.00 -61.60 -45.10 

ExpInc -40.00 0.00 -33.03 -37.31 

Gauss -4.29 0.00 -7.58 -3.69 

𝑲𝒕𝟐 -20.00 0.00 -5.24 -18.72 

Linear -8.57 0.00 11.54 -7.26 

Sine -1.43 0.00 -3.53 -1.32 

Rect 0.00 0.00 0.00 0.00 

Percent Change in Rheobase % 

Chrg-Dis 0.00 0.00 -8.94 -1.82 

ExpDec -20.65 0.00 -25.51 357.75 

ExpInc -14.13 0.00 -32.09 267.78 

Gauss -2.17 0.00 -9.52 26.44 

𝑲𝒕𝟐 -6.52 0.00 -19.33 132.83 

Linear -2.17 0.00 -9.44 54.71 

Sine -1.09 0.00 -7.72 5.47 

Rect 0.00 0.00 0.00 0.00 

 
Note: Change in slope were calculated using the following equation 100*(Sw-
SRect)/SRect). Sw is the slope for non-rectangular waveform, and SRect is the slope for 
rectangular waveform. 
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ExpInc and ExpDec waveforms stand out for having a higher change in 

slope than others in terms of sensitivity of both Chr and Rhe to changes in GLeak 

and Cm. Chr and Rhe sensitivities to Ktemp diversity are the highest with ExpDec 

waveform only (Chr and Rhe slopes are -0.12 and 0.38, respectively, compared to 

that of Rect: -0.31 and 0.508) with a 61.6 % change in Chr and 25.5 % change in 

Rhe. Furthermore, for Gnamax diversity, Rhe had a slope of 0.0002 for ExpDec while 

Chr slope was near zero for all other waveforms (Supplement Table B.2). 

Although, Rhe slopes with KT2 were in the same range as with other waveforms, 

KT2 imporved the effect of the parameters  to make the SD curves cross and lead 

to selectivity more so than other stimulus waveforms. 

 

3.3.2 Selectivity with Single Parameter Variation 

Varying a single parameter did not results in SD curve crossings except in the case 

of GLeak. In the first chapter we showed that using hyperpolarization pre-pulse with 

the Rect stimulus waveform in combination with GLeak diversity led to selectivity. In 

this paper, we investigated the effect of non-rectangular stimulus waveform. The 

results are similar for all non-rectangular stimulus waveforms with HPP and all 

introduced crossings when GLeak is varied. Only ExpInc produced crossings when 

Ktemp is varied as well (Supplementary. Figure B.5). 

 

3.3.3 Selectivity with Dual Parameter Variation 

The selectivity index (SI) was calculated as defined earlier at the PW where the 

ratio of the amplitude difference between the SD curves divided by the amplitude 

of the higher SD curve is maximum. The maximum SI was found on each side of 
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the crossing point (𝑆I1=𝐴1/(𝐴1+𝐵1) and 𝑆I2=𝐴2/(𝐴2+𝐵2 in and the smaller of the 

two was taken as the conservative value for the final SI for that particular neuron 

pair. In order to maximize the SI two of the membrane parameters were altered in 

pairs. Since each parameter in the pair was set to three different values; min, max, 

and default, the combinations produced 9 different SD curves (i.e. neurons) and a 

maximum of 36 possible crossings between the SD curves. This time, multiple SD 

curves crossed for all parameter combinations (Supplementary. Figures. B.2, B.3, 

and B.4). Each stimulus pulse was tested as a monophasic waveform (Mono, not 

shown) and with hyperpolarization pre-pulse (HPP) added. All crossings occurred 

at PWs shorter than the chronaxie times of the SD pairs.  

 To take a closer look at how the calculated SI value was dependent on the 

PW at which it is calculated, the SI was plotted as a function of PW for three of the 

six parameter pairs and for two of the waveforms (Lin and Rect) as examples in 

Figure 3.2. The SI values are zero at the points of SD crossings. Most SDs cross 

only once but others cross at two different PWs. The SI takes its maximum values 

mostly at the extreme ends of the PW range. However, there are cases where the 

maximum occurs in the mid-PW values especially when there are two crossings in 

the SD pair (see top right panel in Figure 3.2). In those case, three SI values; one 

to the left of the first crossing, one between the two crossings, and a third one to 

the right of the second crossing were calculated at the PWs that maximized the SI 

value, and that the second from the largest value was taken as the final SI 

measurement. The PWs where the final SI values are taken are shown in Figure 

3.4 for all membrane parameter pairs and different stimulus waveforms (with HPP). 
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The PWs for SI measurements distributed across the entire range for most 

waveforms, except for DecExp and IncExp where they were taken either at the 

smallest (10µs) or largest PW (5ms) in most cases. These plots show that for these 

two stimulus waveforms, the SI value was monotonously increasing as the PW 

moved from that of the crossing point. For all other waveforms, the SI had local 

peaks. 

The max SIs computed from multiple SDs obtained by diversifying each 

membrane parameter pair are plotted in Figure 3.5 for all stimulus waveforms. 

When GLeak is one of the diversified parameters (GLeak & Cm, GLeak & GNamax, and 

GLeak & Ktemp) the biphasic waveforms (with HPP) produced much higher selectivity 

values compared to that of Mono with all stimulus waveforms. (compare blue, 

purple and green bars in Figure. 3.5A and 5B). For all remaining three pairs (Ktemp 

& GNamax, Cm & GNamax, and Ktemp & Cm), the difference was less and not necessary 

in favor of the biphasic waveform. Diversifying GLeak & GNamax, and GLeak & Ktemp 

introduced a large increase in the SI for all non-rectangular stimulus waveforms 

compared to that of Rect but only when HPP included (purple and green bars in 

Figure 3.5 B). In fact, GLeak & Ktemp diversity did not even result in any SD crossings 

(zero selectivity) with Mono (purple bars in Figure 3.5 A). Furthermore, Kt2 stood 

out as the most selective waveform followed by ExpInc, Lin and Gauss (Figure 3.5 

B). Interestingly, in case of Mono, the SI was the largest with all waveforms when 

Cm was one of the parameters (blue, black, and red bars in Figure 3.7A).  Thus, 

GLeak & Cm combination was the best both for Mono and biphasic waveforms (blue 

bars in Figures 3.7 A and 3.7 B). 
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Figure 3.2  Percentage of all possible Selectivity Index  ratio (%SI) is plotted 

in the y-axis in relation to the PW(ms) in x-axis. The top three plots are for the 

linear stimulus waveform and the bottom three plots when using a rectangular 

waveform. Only three combinations are shown, KTEMP & CM, KTEMP & 

GLEAK and KTEMP & GNAMAX. 
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Figure 3.3  The Selectivity Index ratio is plotted in percentage (%SI). The 

graph is color coded to differentiate between different parameters 

companions. Bars are grouped by stimulus Type. A) For stimulus with 

hyperpolarization pre-pulse. B) For Using Monophasic stimulus pulse. 
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Figure 3.4  Pulse width (mSec) where the SI was selected is plotted. The 

graph is color coded to differentiate between different combinations as 

shown in the top right of the figure.  
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Figure 3.5A  the Selectivity Index ratio is plotted in percentage (%SI). The 

graph is color coded to differentiate between different parameters companions 

as shown in the top left of the figure. Bars are grouped by stimulus Type. A) 

For stimulus with hyperpolarization pre-pulse. 
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Figure 3.5B  the Selectivity Index ratio is plotted in percentage (%SI). The 

graph is color coded to differentiate between different parameters companions 

as shown in the top left of the figure. Bars are grouped by stimulus Type. B) 

For Using Monophasic stimulus pulse. 
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Figure 3.6  Pulse width (mSec) where the crossing occurred is plotted. The 

graph is color coded to differentiate between different combinations as 

shown in the top right of the figure.  
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3.4  Discussion 

 

In the first chapter sensitivity analysis reported the effect of each parameter on the 

chronaxie time (Chr) and the rheobase (Rhe). We showed that variance in two or 

more parameters have a large effect causing higher selectivity Index (SI). 

Additionally, we compared between different combinations and different variation 

of the rectangular stimulus pulse, showing the great impact that Hyperpolarization 

rectangular pulse on selectivity index especially if GLeak is different between two 

different neural cells.  

This chapter further investigates the effect of non-rectangular waveform on 

neural selectivity by studying seven different non-rectangular waveforms. We 

started by running sensitivity analysis for each waveform to quantify the effect of 

stimulus waveform on chronaxie time (Chr) and rheobsae (Rhe). Sensitivity 

analysis revealed that some of the nonrect angular waveforms have higher Chr 

slope compared to rectangular waveform, and a lower Rhe slope specifically 

ExpInc, ExpDec and KT2. The change in the sensitivity slope influence the SD 

curves movements introducing higher probability to cross. The nonrectangular 

waveform causes the SD curves to shift diagonally in the Chr and Rhe direction 

increasing the number of crossing between SD curves. The movements in the SD 

curves generated by ExpInc, ExpDec and KT2 stimulus waveform is large enough 

to allow more crossing between SD curves compared to rectangular waveform and 

other nonrectangular waveforms, hence it gives higher SI% values.  

Non-rectangular waveforms do not lead to selective activation of neurons 

per se unless the membrane parameters are allowed to vary from cell to cell. That 
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is, the SD curve moves in the same direction in different neurons when the 

electrophysiological parameters change together and do not cause the SD curves 

cross. Once we assume diversity of membrane parameters, however, the non-

rectangular waveforms tested here seem to produce higher levels of selectivity 

compared to the traditional rectangular current waveforms.    

Moreover, results revealed that crossing points occur at different PWs for 

different waveforms because the chronaxie time is different for each waveform fig 

(7). Therefore, designing an ideal stimulus needs to take in consideration both 

stimulus waveform and the neural properties of neural cells. To illustrate the 

importance of matching the stimulus with neural properties, one can investigate 

figure (7A) where rectangular stimulus waveform scored the lowest SI value 

percent for neural properties combination of GLeak & Ktemp (purple) and GLeak & 

Gnamax (green). Moreover, KT2 scored the highest SI index percentage followed 

by Linear, Gaussain ExpInc and ExpDec. With the assumption that two groups or 

neural cells diverse in GLeak & Ktemp or GLeak & Gnamax we suggest using a Kt2 

stimulus to achieve higher selectivity between neural cells.   
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CHAPTER 4 

COMPARTMENTAL AXON MODEL  

4.1  Background and Significance 

 

Nerve cell Is a major role player in transferring signal and information from the 

brain to all parts of the human body. It forms the electrical path that the brain uses 

to send signals efficiently to other locations in the human body. Nerve cells are 

categorized based on functionality three different groups:  motor neurons, sensory 

neurons, and interneurons. Motor neurons are neuronal cells located in the central 

nervous system (CNS), they connect the brain or spinal cord to muscles and 

glands. MNs are categorized to two groups: Cranial and spinal subsets. they carry 

signal from the brain and the sensory system to control voluntary and involuntary 

movements. spinal MNs (SPMNs) form an irreplaceable component of the 

neuronal circuity they convey the commands from the CNS to the effector muscles 

and their axons extending through several meters in mammals. Sensory neurons 

are part of the nervous system and they are activated by sensory inputs from the 

surrounding environment. Touch, smell, and taste all are managed by different 

sensory neurons. Some sensory neurons can response to external stimuli and 

activate motor neurons to achieve involuntary movements, for instance involuntary 

motor reflex and involuntary pain avoidance. Finally, the interneurons which are 

divided into two subgroups, local and relay. Local interneurons have short axons 

and connects with nearby neurons to form a local circuitry. Relay interneurons 

have long axons and form neuro circuitry between different brain regions.  
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Axons usually are wrapped with insulating layers called myelin. Myelin 

forming neurons are specialized cells transmits information between nerve cells, 

muscles, and gland cells. The basic structure of neuron is like other cells, it has a 

cell body which is called soma and it is where the nucleus of the neuron is found. 

Extended from the cell body short branching processes called dendrites and longer 

ones which is called axon, Figure 4.1. The dendrites are where the incoming 

excitatory or inhibitory signals gets received and processed. The sum of all signals 

collected at the dendrites influence the excitation of the neurons. Then, when a 

neuron fires it sends an action potential along the axon to the receiving end. Axon 

travels for long distance allowing an efficient propagation of the action potential.  

 Axons arise from the cell body at the hillock and they travel for longer 

distance with the same diameter for most of the length.  They are enclosed inside 

an insulating material called myelin. Between each two-myelin located node of 

Node of Ranvier 

Internodal  Nucleus 

Figure 4.1 Anatomy of the neuron, the yellow parts is called Myelin 

(internodal). Node o Ranvier falls between two intermodals. 
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Ranvier, where action potential jumps from node to the next  across the axon. 

Axons usually have multi-node of Ranvier depending on the axon length and node 

size, Figure 4.1.  

Node of Ranvier contains a neural cell that allows the propagation of the 

action potential along the axon length. One of the well know neural cell model is 

H-H which we discussed in section 1.5. The H-H model is based on experimental 

data that was collected on a squid giant axon[27] and represented by mathematical 

equations to mimic the behavior of the neural cells in. Additionally, it was modeled 

as an electrical circuit that gives and approximation of an action potential voltage 

traveling along the axon, Figure 1.3.  However, to confirm our findings from the 

previous chapters we modeled node of Ranvier as a CRRSS model, same model 

used in the previous two chapters. 

 

4.2  Methods 

 

4.2.1 Axon Model  

To confirm our findings from the previous chapters we investigated selectivity in a 

compartmental axon model. A 10 µm myelinated axon was simulated by 

incorporating the CRRSS local model [2, 29, 48], at the nodes of Ranvier that had 

widths of 1 µm and an inter-nodal distance of 1 mm. Since, there are almost no 

potassium currents in mammalian nodes of Ranvier [2, 48, 49], the CRRSS model 

is a good fit for the purpose of this study, it contains only the voltage-gated sodium 

and the leakage current. A monopolar electrode was placed 1 mm away from the 
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axon and aligned with its central node in a homogeneous volume conductor with 

a specific conductivity of 1.8 S/cm Figure 4.2.  

  Axon with 25 nodes were found sufficiently long for accurate predictions of 

the stimulation thresholds since the extracellular voltage at the ends were less than 

4% of the maximum voltage in the center. The extracellular voltages generated by 

the monopolar current source at the nodes of Ranvier were computed and the SD 

curves and SIs were found with the same passive and active parameter ranges 

tested in the local membrane model. We selected 7 data points within the same 

range tested previously, that yields to 49 neurons and 1176 crossing possibility. 

The selected data points are ±5%, ± 15%, ±25%, that range gave us the ability to 

investigate the effect of the range on Selectivity.  

 

 

 

 

1 mm 
1 mm 

Center Node  

Figure 4.2 Placement of the electrode on the center node of the 

axon model.  
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4.2.2  Stimulus Waveform  

The same eight stimulus waveforms used (Table 1); Charge-discharge curve (Chr-

Dis), increasing and decreasing exponential (ExpInc and ExpDec) respectively, 

Gaussian (Gauss), KT2, Linear (Lin),  sinewave (Sine), and rectangular (Rect) as 

defined and tested previously for minimization of stimulation energy [15]. Results 

from previous simulation showed that HPP performed the best hence, all stimulus 

waveforms were applied as a biphasic waveform where a rectangular 

hyperpolarizing pre-pulse (HPP), cathodic, preceded the anodic phase (Table 3.1). 

The hyperpolarizing pre-pulse had the same duration as the stimulus pulse and 

identical area to the anodic phase to make the waveform charge-balanced.  

 

4.2.3 Strength Duration Curve  

As discussed previously the strength duration curve was calculated by sweeping 

over the whole range of the PW (0.01 to 5 msec) to find the stimulation threshold 

at each pulse width. The threshold was determined using an adaptive search 

algorithm to find the smallest current to activate the neural cell. An action potential 

was decided to occur if the m-gate variable exceeded the 0.98 threshold. Both 

Lapicque-Weiss [51] or Lapicque-Blair [67, 68] equations showed a poor fitting 

profile to the non-rectangular stimulus SD curve hence, the chronaxie time (Chr) 

and rheobase (Rhe) were computed using the traditional definitions. The Chr is the 

pulse width at which the threshold is twice the Rhe and the Rhe is the lowest 

intensity required to stimulate neuron within indefinite period.  
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4.2.4 Selectivity Index  

Several selectivity measurements were proposed i.e angle measurements 

between Crossed SD curves and percent of number of crossings (NOC) however, 

the ratiometric selectivity index (rSI) used in the previous chapters showed the best 

representation for selectivity. All four membrane parameters, the passive (Cm and 

Gleak) and the active (GNamax and Ktemp) parameters were varied in pairs by ± 25%. 

Seven data points were taking in between the maximum and minimum values, as 

±5%, ±15% and ±25%, the three proposed ranges were used later for investigating 

the effect of range on selectivity index (SI). The variation produced 49 different 

neurons (7X7) with 1176 possibilities of crossing. Selectivity Index ration was 

computed in the same way discussed in section 2.2.5. 

 

4.3  Results 

 

4.3.1 Selectivity - Rectangular Waveform 

The feasibility of selectivity by diversity of electrophysiological parameters was 

confirmed in a compartmental axon model that incorporated the CRRSS local 

model for the nodes of Ranvier. With seven different values that each parameter 

was set to within the ±25% range, the combinations produced 49 different neurons 

with different SD curves and a maximum of 1176 possible crossings. Once more 

Cm & Gleak combination outperformed the rest with a maximum SI value of 19.2%, 

followed by Ktemp & Cm, Ktemp & GNamax, and Gleak & Ktemp at 18.2%, 16.11%, 
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15.24%, respectively (Figure 4.3). The Cm & GNamax combination performed the 

least with 9.3 % selectivity. 

One unique characteristic that the compartmental axon model revealed was 

that most of the crossing points occurred between 0.2 and 0.4 msec (Figure 4.4) 

compared to ~0.01 and ~0.1 ms in the local model (Figure 2.7 B). The PWs where 

the SIs were maximum also spread across the entire PW range compared to PWs 

less than 1ms in Figure 2.7 B. 

Finally, we examined how the SI values changed as the range within which 

the membrane parameters were allowed to vary. This analysis showed that the 

selectivity increased with increasing range of diversity (Figure 4.5). The SI 

increased as the range of each parameter was increased individually for Gleak & 

Cm, Cm & GNamax and Gleak & GNamax combinations (Figure 4.5 - Top).  However, 

Ktemp dominated the SI effect regardless of the other parameter that it is paired 

with (Figure 4.5, bottom row). In all three combinations with Ktemp, the maximum 

SI depended on Ktemp only, suggesting the importance of diversity in sodium 

kinetics to achieve selectivity. 
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Figure 4.3  Percent selectivity index generated from crossing SD curves in 

the compartmental axon model. Diversity range is ±25% and the waveform 

is HPP. Each bar represents the combination of parameters that were 

diversified. 
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Figure 4.4  PWs at which the SDs cross are shown (“+”) for the 

compartmental axon model. Parameter diversity is ±25% and the waveform 

is HPP.  
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Figure 4.5  Selectivity Index plotted against the varied membrane 

parameters in pairs. In the top three figures, maximum SI achieved when 

both parameters are varied maximally (±25%). Selectivity is determined 

primarily by Ktemp only when it is one of the parameters tested (bottom 

plots). 
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4.3.2 Selectivity with Non-Rectangular Waveform  

To be able to draw a conclusion from the results obtained from the local model, we 

ran a similar simulation in the compartmental axon model. Using eight stimulus 

waveforms, while membrane parameters were altered in pairs. Although, the 

results were similar yet there were few divergences. The axon model yet confirmed 

that KT2 is the most selective waveform followed by Lin, Gauss when HPP is 

included Figure 4.6. Conversely, the axon model showed that the sine waveform 

more selective compared to ExpInc Figure 4.6. This could be due to the increasing 

contributions made to the activation threshold from the neighboring nodes in the 

axonal model as the PW is increasing [69]. This difference between the local and 

compartmental model would certainly affect the SD curve and thereby the SI 

values.  

The axon model revealed that combinations where Cm is one of the varying 

parameters generated higher selectivity Index value, this is true for Cm & GNamax 

(black), Cm & Ktemp (red) and Cm & Gleak (blue) Figure 4.6. In the controversy 

parameters when Gleak is varying, then selectivity index values were reduced Gleak 

& GNamax (green) and Gleak & Ktemp (purple) Figure 4.6. Nevertheless, we still can 

draw the same conclusion from both simulation models which is, in most cases the 

hyperpolarization non-rectangular pulse is more selective than the rectangular one 

regardless to which parameters are varying.  

Interestingly, when we run the simulation on the compartmental axon model, 

we observed that crossing PWs (the PW where crossing occurred) were more 

scattered over the whole range of the stimulus period (0.01 top 5 mses) except for 
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ExpInc Figure 4.7. which contributes to the small SI value. Comparing between the 

crossing PWs, we can observe that in the axon model, ExpInc has less crossing 

scattered compared to Sinewave Figure 4.7. Additionally, percentage of number 

of crossing in the Sine Waveform is higher than ExpInc supplementary Figure 4.8. 

Thus, translates to a higher SI values in Sinewave compared to ExpInc pulse. The 

contrary happened in the local axon model. 
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Figure 4.6  SI values for all waveforms, in the Compartmental Axon 

Model are represented with a “+” sign. The graph is color coded for each 

combination and the bars are grouped based on the waveform.  
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Figure 4.7 Crossing Locations (PW) in the Axon Model, are represented 

with a “+” sign. The graph is color coded for each combination and the bars 

are grouped based on the waveform. 
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Figure 4.8  Percent of Number of crossing (NOC), in the axon model is plotted 

to compare between different waveforms. The graph is color coded for each 

combination bars are grouped based on the waveform.  
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4.4  Discussion 

 

Comparing between the axon model and the local model results while using the 

rectangular stimulus pulse, one can notice similarity in the SI values. Gleak & Ktemp 

combination produces SI values near 20% and the Cm & GNamax combination 

around 10% in both models (Figure 2.7A vs. Figure 4.3). Nevertheless, the 

maximum SI of ~45% achieved with Cm & Gleak combination in the local model was 

limited to 19.2% in the axon model. This could be due to the increasing 

contributions made to the activation threshold from the neighboring nodes in the 

axonal model as the PW is increasing [69]. This difference between the local and 

compartmental model would certainly affect the SD curve and thereby the SI 

values.  

 It was crucial to run the simulation for a compartmental axon model to 

confirm that the same phenomena happen when introducing the nodes of Ranvier, 

while using non-rectangular stimulus pulse. Although, adding 25 nodes shifted the 

selectivity away from ExpInc and more towards Sinewave, yet it confirmed the 

main vital finding which is Rec is the least selective stimulus pulse. Also, it 

confirmed that KT2 is the most selective waveform followed by Lin, Gauss when 

HPP is included Figure 4.6. Adding 25 nodes of Ranvier add a more realistic 

simulation to the model taking in consideration the contribution made from each 

node to the activation threshold which certainly affect the SD curve and thereby 

the SI values.   
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The compartmental axon model simulation results showed that no one 

stimulus waveform generated the absolute highest selectivity index value for all 

combinations, hence combinations complement stimulus waveform. In other 

words, we can select the stimulus waveform based on neurons properties and the 

variation found in a specific cluster of neurons. For instance, If one group of 

neurons are different in GLeak & Ktemp then using Sinewave or Gauss as the 

stimulus pulse achieves higher selectivity index. On the contrary, if the cluster of 

neurons are different in Ktemp & GNamax then Linear or Gauss stimulus pulse 

should be used to achieve better Selectivity.  Furthermore, if the neurons are 

varied in Cm & GLeak then using KT2 stimulus pulse allows higher selectivity 

between the neurons. Yet, more work is essential to further investigate the 

phenomena using experimental data in addition to quantifying neurons based on 

their functionality and properties. Then the proposed technique can be used to 

select a stimulus pulse that best fit the targeted group of neurons to achieve neural 

selectivity.  

 

 

 

 

 

 

 

 

 



 

88 
 

CHAPTER 5 

CONCLUSION AND FUTURE WORK  

 

Both the local and the axon model results of this study suggest that intrinsic 

variations that naturally occur in the passive and dynamic membrane properties of 

neurons can lead to substantial levels of stimulation selectivity when the biphasic 

waveform is used for stimulation where the hyperpolarizing pulse precedes the 

depolarizing pulse. The passive membrane parameters (GLeak and Cm) seem to be 

more influential on producing a diverse set of SD curves that can be leveraged for 

selectivity. The impact of diversity in dynamic parameters (Ktemp and GNamax) 

increase but not supersede the effect of passive parameters for smaller values of 

the membrane time constant. Results produced from the axon model further 

confirmed our main hypothesis, that the intersect variation in neuron properties 

combined with the non-rectangular waveform leads to high level of selectivity.  The 

predicted levels of selectivity may lead to substantial improvemens and a paradigm 

shifting approach in functional neural stimulation provided that assumed 

electrophysiological diversity can be demonstrated between neuronal subtypes 

serving different functions in the CNS. We expect these results to generalize to 

other neuron models that include a fast voltage-gated sodium channel, which is 

the only kinematic variable in the basic model used in this study. It should be noted 

however that the diversity in other ionic channel kinematics that are not included 

in this study (e.g. slow sodium and potassium channels) may influence the 

rheobase and thereby the levels of selectivity that can be achieved.  

 



 

89 
 

APPEDNIX A 

ELECTROPHYSIOLOGICAL DIVERSITY- SUPPLEMENTARY FIGURES   
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Figure A.1  Selectivity Index reaches 85% of its max at 1ms and plateaus at 

2ms for increasing durations of depolarizing phase in the DPP waveform. 



 

90 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2  Sensitivity of rheobase to the membrane parameters (GLeak, Gnamax, Temp. 

Coef-KTemp, and Cm) as they are altered by ±25% from the nominal value and evaluated 

at many intermediate values. The analysis is repeated for three different default values 

of Cm; Cm-def=0.5 µF/cm2 (Red), Cm-def=2 µF/cm2 (Blue), and Cm-def=4 µF/cm2 (Black) 

. Dash lines show the nominal values. 
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Figure A.3  Only Gleak variations, shown on top right panel, produce a few 

crossings (red dash lines) between the SD curves when using HPP stimulus 

waveform.  
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Figure A.4  The effects of the four model parameters (GLeak, Gnamax, Temp. 

Coef-Ktemp, and Cm) on the strength-duration curve when DPP stimulus 

waveform is used. No SD crossings occur. 
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Figure A.5  Adding a 200 µs gap in the HPP waveform on the SD curve. It 

reverses the HPP effects for all parameter variations. Only the Gleak results 

are shown here. The SD crossings seen for Gleak diversity in Supplemental 

Figure A.4 are eliminated. 
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 Figure A.6  The magnitude of the second spatial difference of the 

extracellular voltage due a monopolar electrode is plotted as a function of 

electrode-fiber distance for a 10µm myelinated axon assuming that intermodal 

distance is 100 times the fiber diameter. The differential voltage (and thus the 

activating function) decreases 40% when the fiber is moved from 1mm (red 

dash lines) to 1.25mm (blue dash). Electrode current=1mA, medium specific 

conductance=57 mho/m. 
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 Figure A.7The magnitude of the second spatial difference of the extracellular 

voltage at 1mm from a monopolar electrode as a function of axon diameter. 

The differential voltage (and thus the activating function) decreases 47% when 

a 20µm fiber (blue dash lines) is replaced by a 10µm axon (red dash). Other 

parameters are same as in Supplemental Figure 6. 
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APPENDIX B 

ALTERATIVE STIMULUS WAVEFORMS-SUPPLEMENTARY FIGURES   

 

      

     

 

Figure B.1  Sensitivity analysis for monophasic waveforms. Both rheobase and chronaxie time 

slope differed small percentage from rectangular waveform slope. 
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Figure B.2  GNAMAX & GLEAK are altered simultaneously in each case by the same 

amount, using eight different  waveform. Different colors legend indicates different 

values for Cm parameter shown on top right of the figure. Second parameter is not color 

coded for clarity. The SD curves cross multiple times usually at extreme pulse widths 

(PW), but in mid-PWs as well in some cases.  X-scale is divided for clarity, from 0 to 

0.2/0.3 then from 1 to 5 mSec. The area between (0.2/0.3 to 1) ms is not shown. 
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Figure B.3  KTEMP  & GLEAK are altered simultaneously in each case by the same 

amount, using eight different  waveform. Different colors legend indicates different values 

for Ktemp parameter shown on top right of the figure. Second parameter is not color coded 

for clarity. The SD curves cross multiple times usually at extreme pulse widths (PW), but in 

mid-PWs as well in some cases.  X-scale is divided for clarity, from 0 to 0.2 then from 1 to 

5 mSec. The area between (0.2 to 1) ms is not shown. 
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Figure B.4  GLEAK & CM are altered simultaneously in each case by the same amount, 

using eight different  waveform. Different colors in each subplot indicate different 

values for Cm parameter shown on top right. Second parameter is not color coded for 

clarity. The SD curves cross multiple times usually at extreme pulse widths (PW), but 

in mid-PWs as well in some cases.  X-scale is divided for clarity, from 0 to 0.2 then 

from 1 to 5 mSec. The area between (0.2 to 1) ms is not shown. 
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Table B.1. Percent of change in Chronaxie and Rheobase slopes for 
mono stimulus waveforms compared to Rect waveform. 
 

 GLeak GNamax Ktemp Cm 

Percent Change in Chr % 

Chrg-Dis 4.761905 0 -0.539 9.777424 

ExpDec -30.1587 0 -54.8827 -26.974 

ExpInc -19.0476 0 -13.6652 -14.8119 

Gauss 4.761905 0 6.341154 6.783254 

𝑲𝒕𝟐 0 0 10.68484 1.139375 

Linear 4.761905 0 11.44578 3.471118 

Sine 1.587302 0 12.77743 6.465289 

Rect 0 0 0 0 

Percent Change in Rheobase % 

Chrg-Dis 0 0 0.134078 10.23891 

ExpDec -13.0435 0 -12.8492 261.0922 

ExpInc -7.6087 0 -14.4134 185.6655 

Gauss -1.08696 0 0.692737 21.843 

𝑲𝒕𝟐 -2.17391 0 -2.86034 74.06143 

Linear -1.08696 0 0.916201 55.9727 

Sine 0 0 0.558659 15.69966 

Rect 0 0 0 0 

Note: . Change in slope were calculated using the following equation 100*(Sw-

SRect)/SRect). Sw is the slope for non-rectangular waveform , and SRect is the slope for 

rectangular waveform.  
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Table B.2. Chronaxie and Rheobase slopes for HPP stimulus waveforms. 

Waveform/Parameter Gleak Gnamax ktemp CM 

Chronaxie time 

Chrg-Dis -0.0069 0.0000 -0.3000 0.4357 

ExpDec -0.0037 0.0000 -0.1195 0.2366 

ExpInc -0.0042 0.0000 -0.2084 0.2702 

Gauss -0.0067 0.0000 -0.2876 0.4151 

KT -0.0056 0.0000 -0.2949 0.3503 

Linear -0.0064 0.0000 -0.3471 0.3997 

Sine -0.0069 0.0000 -0.3002 0.4253 

Rect -0.0070 0.0000 -0.3112 0.4310 

Rheobase 

Chrg-Dis 0.0092 -0.0002 0.4622 0.0323 

ExpDec 0.0073 -0.0002 0.3781 0.1506 

ExpInc 0.0079 -0.0002 0.3447 0.1210 

Gauss 0.0090 -0.0002 0.4593 0.0416 

KT 0.0086 -0.0002 0.4095 0.0766 

Linear 0.0090 -0.0002 0.4597 0.0509 

Sine 0.0091 -0.0002 0.4684 0.0347 

Rect 0.0092 -0.0002 0.5076 0.0329 
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Table B.3. Chronaxie and Rheobase slopes for Mono stimulus waveforms. 
 

Waveform/Parameter Gleak Gnamax ktemp CM 

Chronaxie time 

Chrg-Dis -0.0066 0.0000 -0.3137 0.4143 

ExpDec -0.0044 0.0000 -0.1423 0.2756 

ExpInc -0.0051 0.0000 -0.2723 0.3215 

Gauss -0.0066 0.0000 -0.3354 0.4030 

KT -0.0063 0.0000 -0.3491 0.3817 

Linear -0.0066 0.0000 -0.3515 0.3905 

Sine -0.0064 0.0000 -0.3557 0.4018 

Rect -0.0063 0.0000 -0.3154 0.3774 

Rheobase 

Chrg-Dis 0.009185 -0.000171 0.448081 0.032345 

ExpDec 0.007979 -0.000164 0.390040 0.105780 

ExpInc 0.008473 -0.000179 0.382965 0.083724 

Gauss 0.009138 -0.000172 0.450570 0.035748 

KT 0.009029 -0.000184 0.434742 0.050986 

Linear 0.009103 -0.000182 0.451593 0.045664 

Sine 0.009158 -0.000171 0.450015 0.033944 

Rect 0.009214 -0.000170 0.447520 0.029269 
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APPENDIX C 

MATLAB CODE AND FUNCTIONS FOR THE MODEL 

 

%Update  bY: B.Ghobreal          Date: 09/25/2018 

% Version 12 is the last stable version release on 10/17/2017. 

% Version 012 in this version  

% it is going back to the original and repeating everything and replotting  

% changing the K value for both of them or indvidually  

%PLOTS THE Action potential  

% Problem that mentioned by Dr. Sahin is fix , where the plotting was not 

% correct and I fixed the plotting and the threshold porblem 

% we plot the SUB threshold Vs THe PW  

% I discovered an issue on the 11/11/2019 that cm is define as parm_array 

% and it should of been difeind as parm_array2.. 

% I fixed the issue and it didn't effect the results because CM was always 

% pram1 11/29/2019 

 

close all; 

clear all 

 

current_directry = pwd; 

v0=-80;%mv  Resting memebrane voltage 

duration=5;%ms 

KQM_alpha = 1; 

KQM_Beta=1; 

KQH_alpha = 1; 

KQH_Beta = 1; 

Temp_Cofe = 1; 

 

Next =0 ; 

signal_used = 0; 

%PW=[0.02,0.04,0.06,0.08,0.1,0.2,0.3,0.5]; % Creathinga Pulsh Width Array to cycle 

throught and find the best K 

% PW = 0.01:.01:duration; 

% PW =[ 0.01:.01:1 1.1:0.1:5 ] ; 

% PW =[ 0.01:.01:1 1.1:0.5: 5 ] ;   

PW =[ 0.01:.01:0.25 0.3:0.05:0.95  1:1: 5 ] ; 

%PW_half=PW/2; % I divided the PW to  two halfs, each ahlf willhave  part of the signal. 

for example if PW =.2 --> PW1 =.1 for the cathodic part andPW2 = .1 for the Anodic part 

of the signal  

Q=length(PW); % length of Puls Width array 

dt=10^(-3); %10^(-3);%ms    Delta t 

M=duration/dt;   % length of time change array to 

IS=zeros(1,M); % the simulation current, unit: microAmpere, 0.1 msec duration. 

Paramter_chng = []; 

output1=zeros(1,Q); 

output11=zeros(1,Q); 

output12=zeros(1,Q); 

output2=zeros(1,Q); 

output21=zeros(1,Q); 

output22=zeros(1,Q); 

output3=zeros(1,Q); 

output31=zeros(1,Q); 

output32=zeros(1,Q); 

output4=zeros(1,Q); 

output41=zeros(1,Q); 

output42=zeros(1,Q); 

output5=zeros(1,Q); 

output51=zeros(1,Q); 

output52=zeros(1,Q); 

output6=zeros(1,Q); 

output61=zeros(1,Q); 

output62=zeros(1,Q); 
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output7=zeros(1,Q); 

output71=zeros(1,Q); 

output72=zeros(1,Q); 

output8=zeros(1,Q); 

output81=zeros(1,Q); 

output82=zeros(1,Q); 

 

gnamax=1445; % mmho/(cm*cm) [K/ ( Ohm* CM*CM)2.5 

gleak=128; % mmho/(cm*cm) 

%Ek=-84;%mV  ????? 

Ena= 35.64; %mV 

Eleak=-80.01;%mV 

Cm=2;%uF/(cm*cm) 

% Cm=0.25 

 

i=1; 

m=1; 

n=1; 

k=0; 

k1=0; 

AM=zeros(1,M); 

BM=zeros(1,M); 

 

AH=zeros(1,M); 

BH=zeros(1,M); 

 

HINF=zeros(1,M); 

 

MGATE=zeros(1,M); 

HGATE=zeros(1,M); 

 

GNA=zeros(1,M); 

 

INA=zeros(1,M); 

ILEAK=zeros(1,M); 

Signal_names = {' INcreasing Expotential' , ' Rectangular Waveform' ' Linear Waveform' 

'KT^2 Waveform' ' Decaying Expotential' ' Charge Dis-Charge waveform ' ' Gaussian 

Waveform' ' Sine Waveform',... 

                ' Cathodic Puls and INcreasing Expotential' , ' Cathodic Puls and 

Rectangular Waveform' ' Cathodic Puls and Linear Waveform'  'Cathodic Puls and KT^2 

Waveform' ' ' ' Cathodic Puls and Decaying Expotential'    ' Cathodic Puls and Charge 

Dis-Charge waveform ' ' Cathodic Puls and Gaussian Waveform' ' Cathodic Puls and Sine 

Waveform' '' ''  ' Cathodic + 200uS gap + Rectangular'};  

 

% Prectage_bar = waitbar(0, 'Precentage completead ....'); 

%% Choosing variable you wanna change 

NumOFParameters=0; 

 

NumOFParameters = str2num( questdlg ('How many Parameters Of Interest for this Cell ?', 

'Number of Parameters Of Interest' ,'1', '2' ,'3' ));% uiwait(NumOFParameters_MSGBOX) ; 

% num_of_parm = str2num(NumOFParameters); 

  

%% Choosing variable you wanna change 

Exit = 0; 

Min=0; 

Max=0; 

step=0; 

Max_P2 =0; 

Min_P2=0; 

step_P2=0; 

Skip =5; 

sensitivity=0; 

DefinedPrecentage = 0;  

Paramter_chng=0; 

Paramter2_chng=0; 

Paramter_VAl=1; 

Paramter_VAl2=1; 

Paramters_Of_Interest = {'Gnamax','Gleak','Alpha','Beta','Temp. Coef', 'Cm'}; 

switch NumOFParameters 

    case 1 

        while Exit <1 
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            figure(1) 

            clf 

            %    scrsz = get(0,'ScreenSize'); 

            position_default = [650 250 600 300]; 

            set(gcf,'position',position_default) 

            set(gcf,'ToolBar','none') 

            set(gcf,'MenuBar','none') 

             

             

            popup = uicontrol(gcf,'Style', 'popup','String', 

{'gnamax','gleak','KQM_alpha','KQM_Beta','Tempreature Coef' , 

'Cm'},'Value',Paramter_VAl,'units','normalized','Position',[.125 .8 .35 

.1],'Callback','if popup.Value == 1;Paramter_chng = gnamax ; elseif popup.Value == 2; 

Paramter_chng = gleak;elseif popup.Value ==3; Paramter_chng = KQM_alpha ;elseif 

popup.Value ==4;Paramter_chng = KQM_Beta; elseif popup.Value ==5;Paramter_chng = 

Temp_Cofe;elseif popup.Value ==6;Paramter_chng = Cm;else; end; uiresume;'); 

            pbStr = 

uicontrol(gcf,'Style','edit','String',Paramter_chng,'units','normalized','Position',[.60 

.8 .25 .1],'Callback',' uiresume;'); 

            pbStr = 

uicontrol(gcf,'Style','text','String','Current','units','normalized','Position',[.60 .90 

.25 .05],'Callback','uiresume;'); 

            pbStrMIN = 

uicontrol(gcf,'Style','edit','Value',Min,'units','normalized','Position',[.10 .40 .25 

.15],'Callback', 'Min = str2num(pbStrMIN.String);'); 

            pbStr = 

uicontrol(gcf,'Style','text','String','Min','units','normalized','Position',[.10 .60 .25 

.05],'Callback',' '); 

            pbStrMax = 

uicontrol(gcf,'Style','edit','Value',Max,'units','normalized','Position',[.40 .40 .25 

.15],'Callback','     Max = str2num(pbStrMax.String) ;'); 

            pbStr = 

uicontrol(gcf,'Style','text','String','MAx','units','normalized','Position',[.40 .60 .25 

.05],'Callback',' uiresume;'); 

            pbStrStep = 

uicontrol(gcf,'Style','edit','Value',step,'units','normalized','Position',[.70 .40 .25 

.15],'Callback','     step = str2num(pbStrStep.String);'); 

            pbStr = 

uicontrol(gcf,'Style','text','String','Step','units','normalized','Position',[.70 .60 .25 

.05],'Callback','uiresume;'); 

            pbexit = 

uicontrol(gcf,'Style','pushbutton','String','Skip','units','normalized','Position',[.65 

.10 .15 .15],'Callback','Skip=0;Exit = 5; uiresume;'); 

            pbexit = 

uicontrol(gcf,'Style','pushbutton','String','Sensitivity','units','normalized','Position'

,[.45 .10 .15 .15],'Callback','sensitivity = 5; Exit = 5; uiresume;'); 

 

            pbexit = 

uicontrol(gcf,'Style','pushbutton','String','Next','units','normalized','Position',[.25 

.10 .15 .15],'Callback','Exit = 5; uiresume;'); 

             

            uiwait(gcf) 

            Paramter_VAl =  popup.Value; 

             

        end 

         

         

        if Skip >0 

            if (sensitivity >0) 

                switch(Paramter_VAl) 

                    case 1 

                      Pram_Array = 1084:2*36.1:1806;   

                    case 2 

                      Pram_Array = 96:2*3.2:160;   

                    case 5  

                        Pram_Array = 0.75:2*0.025:1.25;  

                    case 6 

                        Pram_Array =  1.5:2*0.05:2.5;   

                end 

            else 

                Pram_Array=Min:step:Max; 
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            end 

        else 

            Pram_Array =0; 

        end 

        LBL =  popup.String(Paramter_VAl); 

        Pram_Array2 = [ 1445]; % Array for the second paramter (gnamax now) 

        Paramter_VAl2 = 1 ; 

 

   

         

    case 2 

        while Exit <1 

            figure(1) 

            clf 

            %    scrsz = get(0,'ScreenSize'); 

            position_default = [650 250 600 300]; 

            set(gcf,'position',position_default) 

            set(gcf,'ToolBar','none') 

            set(gcf,'MenuBar','none') 

             

            % first paramter contorl panel 

            Frame = 

uicontrol(gcf,'Style','frame','String','','units','normalized','Position',[.65 .1 .32 

.72],'Callback',' uiresume;'); 

            Fram_text = uicontrol(gcf,'Style','text','String','Parameter # 

1','FontSize',11.0,'units','normalized','Position',[.65 .85 .25 

.05],'Callback','uiresume;'); 

            popup = uicontrol(gcf,'Style', 'popup','String', 

{'gnamax','gleak','KQM_alpha','KQM_Beta','Tempreature 

Coef','Cm'},'Value',Paramter_VAl,'units','normalized','Position',[.7 .7 .25 

.1],'Callback','if popup.Value == 1;Paramter_chng = gnamax; elseif popup.Value == 2; 

Paramter_chng = gleak;elseif popup.Value ==3; Paramter_chng = KQM_alpha ;elseif 

popup.Value ==4;Paramter_chng = KQM_Beta ; elseif popup.Value ==5;Paramter_chng = 

Temp_Cofe ;elseif popup.Value ==6; Paramter_chng = Cm;else; end; uiresume;'); 

            pbStr = 

uicontrol(gcf,'Style','edit','String',Paramter_chng,'units','normalized','Position',[.80 

.6 .1 .1],'Callback',' uiresume;'); 

            pbStr = 

uicontrol(gcf,'Style','text','String','Current','units','normalized','Position',[.70 .6 

.1 .05],'Callback','uiresume;'); 

            pbStrMax = 

uicontrol(gcf,'Style','edit','Value',Max,'units','normalized','Position',[.80 .45 .1 

.1],'Callback','     Max = str2num(pbStrMax.String) ;'); 

            pbStr = 

uicontrol(gcf,'Style','text','String','MAx','units','normalized','Position',[.70 .45 .1 

.05],'Callback',' uiresume;') 

            pbStrMIN = 

uicontrol(gcf,'Style','edit','Value',Min,'units','normalized','Position',[.80 .3 .1 

.1],'Callback', 'Min = str2num(pbStrMIN.String);'); 

            pbStr = 

uicontrol(gcf,'Style','text','String','Min','units','normalized','Position',[.70 .3 .1 

.05],'Callback',' '); 

            pbStrStep = 

uicontrol(gcf,'Style','edit','Value',step,'units','normalized','Position',[.80 .15 .1 

.1],'Callback','     step = str2num(pbStrStep.String);'); 

            pbStr = 

uicontrol(gcf,'Style','text','String','Step','units','normalized','Position',[.70 .15 .1 

.05],'Callback','uiresume;'); 

             

             

             

            % second Parameter control panel 

            Frame = 

uicontrol(gcf,'Style','frame','String','','units','normalized','Position',[.05 .1 .32 

.72],'Callback',' uiresume;'); 

            Fram_text = uicontrol(gcf,'Style','text','String','Parameter # 

2','FontSize',11.0,'units','normalized','Position',[.05 .85 .25 

.05],'Callback','uiresume;'); 

            popup_Par2 = uicontrol(gcf,'Style', 'popup','String', 

{'gnamax','gleak','KQM_alpha','KQM_Beta','Tempreature 

Coef','Cm'},'Value',Paramter_VAl2,'units','normalized','Position',[.1 .7 .25 
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.1],'Callback','if popup_Par2.Value == 1;Paramter2_chng = gnamax; elseif popup_Par2.Value 

== 2; Paramter2_chng = gleak;elseif popup_Par2.Value ==3; Paramter2_chng = KQM_alpha 

;elseif popup_Par2.Value ==4;Paramter2_chng = KQM_Beta; elseif popup_Par2.Value 

==5;Paramter2_chng = Temp_Cofe;elseif popup_Par2.Value ==6; Paramter2_chng = Cm ;else; 

end; uiresume;'); 

            pbStr_Par2 = 

uicontrol(gcf,'Style','edit','String',Paramter2_chng,'units','normalized','Position',[.2 

.6 .1 .1],'Callback',' uiresume;'); 

            pbStr_Par2 = 

uicontrol(gcf,'Style','text','String','Current','units','normalized','Position',[.1 .6 .1 

.05],'Callback','uiresume;'); 

            pbStrMax_Par2 = 

uicontrol(gcf,'Style','edit','Value',Max_P2,'units','normalized','Position',[.2 .45 .1 

.1],'Callback','     Max_P2 = str2num(pbStrMax_Par2.String) ;'); 

            pbStr_Par2 = 

uicontrol(gcf,'Style','text','String','MAx','units','normalized','Position',[.1 .45 .1 

.05],'Callback',' uiresume;'); 

            pbStrMIN_Par2 = 

uicontrol(gcf,'Style','edit','Value',Min_P2,'units','normalized','Position',[.2 .3 .1 

.1],'Callback', 'Min_P2 = str2num(pbStrMIN_Par2.String);'); 

            pbStr_par2 = 

uicontrol(gcf,'Style','text','String','Min','units','normalized','Position',[.1 .3 .1 

.05],'Callback',' '); 

            pbStrStep_par2 = 

uicontrol(gcf,'Style','edit','Value',step_P2,'units','normalized','Position',[.2 .15 .1 

.1],'Callback','     step_P2 = str2num(pbStrStep_par2.String);'); 

            pbStr_par2 = 

uicontrol(gcf,'Style','text','String','Step','units','normalized','Position',[.1 .15 .1 

.05],'Callback','uiresume;'); 

             

             

             

             

             

            pbexit = 

uicontrol(gcf,'Style','pushbutton','String','Skip','units','normalized','Position',[.425 

.2 .15 .15],'Callback','Skip=0;Exit = 5; uiresume;'); 

            pbexit = 

uicontrol(gcf,'Style','pushbutton','String','Next','units','normalized','Position',[.425 

.6 .15 .15],'Callback','Exit = 5; uiresume;'); 

             pbexit = uicontrol(gcf,'Style','pushbutton','String','Use defined Percentage 

" +-25 %" ','units','normalized','Position',[.330 .84 .35 

.15],'Callback','DefinedPrecentage=5;Exit = 5; uiresume;'); 

             

            uiwait(gcf) 

            Paramter_VAl =  popup.Value; 

            Paramter_VAl2= popup_Par2.Value; 

             

        end 

         

        if Skip >0 

            if DefinedPrecentage > 0 

                if Paramter_VAl2 == 1 %gnamax 

                    Pram_Array2 = round(([-.25 -.15 -.05 0 0.05 0.15 0.25 ] 

*1445+1445));% 1084:120.33333:1806;% 1084:180.5:1806 ; %1011.5:144.5:1878.5; % 

1084:144.5:1878.5; %1084:361:1806 

                elseif Paramter_VAl2 == 2 %gleak 

                    Pram_Array2= round(([-.25 -.15 -.05 0 0.05 0.15 0.25 ] *128+128)) 

;%96:10.666666:160;  %96:16:160;% 89.6:12.8:166.4; %96:32:160; 

                elseif Paramter_VAl2 ==3 

                    Pram_Array2 = KQM_alpha *Pram_Array2; 

                elseif Paramter_VAl2 ==4 

                    Pram_Array2 =  KQM_Beta * Pram_Array2; 

                elseif Paramter_VAl2 ==5 % Change in Tempreature chznges both K for alpha 

and Beta H and M gates  

                       Pram_Array2=([-.25 -.15 -.05 0 0.05 0.15 0.25 ] *1+1); %  

0.75:0.08333:1.25; % 0.75:0.125:1.25 ;% 0.7:0.1:1.3;% 0.75:0.25:1.25; 

                elseif Paramter_VAl2 ==6  % Change in Cm 

                       Pram_Array2 =([-.25 -.15 -.05 0 0.05 0.15 0.25 ] *2+2); % 

1.5:0.16666:2.5 ;%1.5:0.25:2.5;%  1.4:0.2:2.6;%1.5:0.5:2.5; 

                end 
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                if Paramter_VAl == 1 %gnamax 

                   Pram_Array = round(([-.25 -.15 -.05 0 0.05 0.15 0.25 ] *1445+1445));% 

1084:120.33333:1806; % 1084:180.5:1806 ;% 1084:180.5:1806 ;% 1084:120.33333:1806  

;%1011.5:144.5:1878.5; %  1084:361:1806; 1084:361:1806 ;% 

                elseif Paramter_VAl == 2 

                   Pram_Array= round(([-.25 -.15 -.05 0 0.05 0.15 0.25 ] *128+128)) ; 

%96:10.666666:160; %89.6:12.8:166.4; % 96:32:160; 

                elseif Paramter_VAl ==3 

                   Pram_Array = KQM_alpha * Pram_Array; 

                elseif Paramter_VAl ==4 

                   Pram_Array =  KQM_Beta * Pram_Array; 

                elseif Paramter_VAl ==5 % Change in Tempreature chznges both K for alpha 

and Beta H and M gates  

                   Pram_Array=  ([-.25 -.15 -.05 0 0.05 0.15 0.25 ] *1+1); 

%0.75:0.08333:1.25; %0.7:0.1:1.3;% 0.75:0.25:1.25; 

                elseif Paramter_VAl ==6  % Change in Cm 

                       Pram_Array =([-.25 -.15 -.05 0 0.05 0.15 0.25 ] *2+2)  ;% 

1.5:0.16666:2.5 ;%1.4:0.2:2.6;% 1.5:0.5:2.5; 

                end 

            else 

                Pram_Array=Min:step:Max; 

                Pram_Array2=Min_P2:step_P2:Max_P2; 

            end 

        else 

            Pram_Array2 = 0; 

            Pram_Array = 0; 

        end 

        LBL =  popup.String(Paramter_VAl); 

        LBL_2 =  popup_Par2.String(Paramter_VAl2);         

end 

 

%% 

K_DPP=0; 

Answer =  questdlg ('What type of stimulation ?','Stimulation Type!','DPP', 'Gap', 

'Non','Skip' );% uiwait(NumOFParameters_MSGBOX) ; 

if (strcmp(Answer,'DPP')) 

      DPP_PW=1; 

    M=M+DPP_PW/dt; 

    PW =(PW(1)+DPP_PW):.01:(duration+DPP_PW); 

 

 

elseif (strcmp(Answer,'Gap')) 

    PW_Gap=200/1000; 

end 

 

 

%% 

Exit = 0; 

while Exit <1 

     

    while Next < 1 

        cd (current_directry);         

        figure(2) 

        clf 

        scrsz = get(0,'ScreenSize'); 

        position_default = [0.01*scrsz(3) 0.07*scrsz(4) 0.98*scrsz(3) 0.85*scrsz(4)]; 

        set(gcf,'position',position_default) 

         

        Frame = 

uicontrol(gcf,'Style','frame','String','','units','normalized','Position',[.922 .14 .057 

.77],'Callback',' uiresume;'); 

        Fram_text = uicontrol(gcf,'Style','text','String','Anodic 

Signal','FontSize',11.0,'units','normalized','Position',[.9255 .85 .05 

.1],'Callback','uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','Increasing 

EXP','units','normalized','Position',[.925 .85 .05 .05],'Callback','signal_used = 1; 

uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','rectangular 

waveform','units','normalized','Position',[.925 .75 .05 .05],'Callback','signal_used = 2; 

uiresume;'); 
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        pbexit = uicontrol(gcf,'Style','pushbutton','String','linear 

waveform','units','normalized','Position',[.925 .65 .05 .05],'Callback','signal_used = 3; 

uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','KT^2 wave 

form','units','normalized','Position',[.925 .55 .05 .05],'Callback','signal_used = 4; 

uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String',' Decaying 

exponential','units','normalized','Position',[.925 .45 .05 .05],'Callback','signal_used = 

5; uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','Charge-Discharge 

Curve','units','normalized','Position',[.925 .35 .05 .05],'Callback','signal_used = 6; 

uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','Gaussian 

Stimulus','units','normalized','Position',[.925 .25 .05 .05],'Callback','signal_used = 7; 

uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','Sinusoidal 

Stimulus','units','normalized','Position',[.925 .15 .05 .05],'Callback','signal_used = 8; 

uiresume;');    

%         pbexit = uicontrol(gcf,'Style','pushbutton','String','ALL Signals 

','units','normalized','Position',[.925 .95 .05 .05],'Callback','All_Signals = 1; 

uiresume;'); 

 

 

        Frame = 

uicontrol(gcf,'Style','frame','String','','units','normalized','Position',[.122 .14 .057 

.77],'Callback',' uiresume;'); 

        Fram_text = uicontrol(gcf,'Style','text','String','Cathodic + Anodic 

Signal','FontSize',11.0,'units','normalized','Position',[.1255 .85 .05 

.1],'Callback','uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','Increasing 

EXP','units','normalized','Position',[.125 .85 .05 .05],'Callback','signal_used = 9; 

uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','rectangular 

waveform','units','normalized','Position',[.125 .75 .05 .05],'Callback','signal_used = 

10; uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','linear 

waveform','units','normalized','Position',[.125 .65 .05 .05],'Callback','signal_used = 

11; uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','KT^2 wave 

form','units','normalized','Position',[.125 .55 .05 .05],'Callback','signal_used = 12; 

uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String',' Decaying 

exponential','units','normalized','Position',[.125 .45 .05 .05],'Callback','signal_used = 

14; uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','Charge-Discharge 

Curve','units','normalized','Position',[.125 .35 .05 .05],'Callback','signal_used = 15; 

uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','Gaussian 

Stimulus','units','normalized','Position',[.125 .25 .05 .05],'Callback','signal_used = 

16; uiresume;'); 

        pbexit = uicontrol(gcf,'Style','pushbutton','String','Sinusoidal 

Stimulus','units','normalized','Position',[.125 .15 .05 .05],'Callback','signal_used = 

17; uiresume;');  

                

 

       % adding the Gap between the cathodic and anodic  

       pbexit = uicontrol(gcf,'Style','pushbutton','String','200uS + 

Rec','units','normalized','Position',[.180 .75 .06 .05],'Callback','signal_used = 20; 

uiresume;'); 

 

         

         

         

        pbexit = 

uicontrol(gcf,'Style','pushbutton','String','Next','units','normalized','Position',[.925 

.05 .05 .05],'Callback','Next = 5; uiresume;'); 

        uiwait(gcf) 

         

    end 
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   %%       

    

   for Pram2 = 1:length(Pram_Array2) 

        

       if Paramter_VAl2 == 1 

           gnamax=Pram_Array2(Pram2); 

       elseif Paramter_VAl2 == 2 

           gleak=Pram_Array2(Pram2); 

       elseif Paramter_VAl2 ==3 

           KQM_alpha = Pram_Array2(Pram2); 

           KQH_alpha = Pram_Array2(Pram2); 

       elseif Paramter_VAl2 ==4 

           KQM_Beta = Pram_Array2(Pram2); 

           KQH_Beta = Pram_Array2(Pram2); 

       elseif Paramter_VAl2 ==5 % Change in Tempreature chznges both K for alpha and Beta 

H and M gates  

           KQM_alpha = Pram_Array2(Pram2); 

           KQH_alpha = Pram_Array2(Pram2); 

           KQM_Beta = Pram_Array2(Pram2); 

           KQH_Beta = Pram_Array2(Pram2); 

       elseif Paramter_VAl2 ==6  % Change in Cm 

               Cm = Pram_Array2(Pram2); 

       end 

        

        

       for P=1:length(Pram_Array) 

 

            

           clear HGATE_Array_at_eah_K GNA_array_at_each_K  Minfinite_array_at_each_K 

Tm_array_at_each_K Hinfinite_array_at_each_K Th_array_at_each_K AM_array_At_each_K 

BM_Array_At_each_K AH_array_At_each_K BH_Array_At_each_K    V_Action_potential  

MGATE_Array_at_each_K 

           clear K  mgate   V2   MGATE  MGATE_AP   HGATE  HGATE_AP    GNA  GNA_AP     

Minfinite  Minfinite_AP     Tm  Tm_AP   Hinfinite  Hinfinite_AP Th  Th_AP AM  AM_AP BM  

BM_AP  AH  AH_AP  BH  BH_AP  Is1_AP 

           clear am   bm bh ah m0 h0 minfinite tm hinfinite th mgate hgate gna Slope 

deltav V V_plotting V2 T_plotting Current deltav_array slope_Array 

           clear AM BM AH BH HINF Hinfinite Th  Minfinite tm MGATE HGATE GNA INA ILEAK 

            

           if Paramter_VAl == 1 

               gnamax=Pram_Array(P); 

           elseif Paramter_VAl == 2 

               gleak=Pram_Array(P); 

           elseif Paramter_VAl ==3 

               KQM_alpha = Pram_Array(P); 

               KQH_alpha = Pram_Array(P); 

           elseif Paramter_VAl ==4 

               KQM_Beta = Pram_Array(P); 

               KQH_Beta = Pram_Array(P); 

           elseif Paramter_VAl ==5 % Change in Tempreature chznges both K for alpha and 

Beta H and M gates  

               KQM_alpha = Pram_Array(P); 

               KQH_alpha = Pram_Array(P); 

               KQM_Beta = Pram_Array(P); 

               KQH_Beta = Pram_Array(P); 

           elseif Paramter_VAl ==6  % Change in Cm 

               Cm = Pram_Array(P); 

           end 

            

           % increasing exponential waveform 

           IS=zeros(1,M); 

           T_plotting=zeros(1,M); 

           i=1; 

           m=1; 

           n=1; 

           klow = 0; 

           khigh = 8.8897e+007;%uA/cm^2 

           Kstart=khigh; 

           K_AP = 0; 

           AP = 1; 
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           for n=1:Q, % changing the PW for The current it is clear when changing T and 

calculaes a new Is (stimulation current) every cycle based on PW 

              if (PW(n) ==5 && P == 2 && Pram2==3) 

                   Pram_Array2(3) 

                    Pram_Array(P) 

                    PW(n) 

                   

              end 

               n; 

               T1=dt:dt:PW(n); 

               klow = 0; 

               khigh = 8.8897e+007; 

               K_AP = 0; 

               V_AP=0; 

               if strcmp(Answer,'Non') 

                   [ K_AP  V_AP]  =  

FIndIdealThreshold(v0,M,T1,PW,n,dt,signal_used,KQM_alpha,KQM_Beta,KQH_Beta,KQH_alpha,gnam

ax,gleak,Ena,Eleak,Cm); 

                    

               elseif (strcmp(Answer,'DPP')) 

                   [ K_AP  V_AP]  =  

FIndIdealThreshold(v0,M,T1,DPP_PW,1,dt,signal_used,KQM_alpha,KQM_Beta,KQH_Beta,KQH_alpha,

gnamax,gleak,Ena,Eleak,Cm); 

                   K_DPP = 0.95* K_AP ; 

                   % construct the DPP  Waveform 

                   [ K_AP  V_AP]  =  

FIndIdealThreshold(v0,M,T1,PW,n,dt,signal_used,KQM_alpha,KQM_Beta,KQH_Beta,KQH_alpha,gnam

ax,gleak,Ena,Eleak,Cm,Answer,DPP_PW,K_DPP); 

               elseif (strcmp(Answer,'Gap')) 

                   [ K_AP  V_AP]  =  

FIndIdealThreshold(v0,M,T1,PW,n,dt,signal_used,KQM_alpha,KQM_Beta,KQH_Beta,KQH_alpha,gnam

ax,gleak,Ena,Eleak,Cm,Answer,PW_Gap); 

               end 

                

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

               

               if (length(V_AP)> 1) 

                   V2=0; 

                   K=0; 

                   k=K_AP ; 

                   V2= V_AP ; 

%                elseif(~exist('V_AP')) 

%                    break; 

%                end 

%                klow = 0; 

%                khigh = 2*k; 

               a(n)=k; 

               %                         figure(900);plot(V_AP,'r'); 

               

               %%%%  this loop is to generrate the full action potential at the selected 

K , 

               %%%%  IT usese the selected K values and 

               %%%%  recalcualte the current at this value and 

               %%%%  recalcualte the Full cycle of the AP and all 

               %%%%  other variables 

               %%% in order to replot V as a full scale we have to 

               %%% recalcualte all Other varaibles,  this will 

               %%% save the variables at the selected K only 

               if (strcmp(Answer,'Non')) 

                 IS(1:round(PW(n)/dt))=SimulationCurrent( k,T1,PW , n , dt , signal_used 

);   % Current at selected k 

                elseif (strcmp(Answer,'DPP')) 

                   IS(1:round(PW(n)/dt))=ReconstructDPP( k,T1,PW , n , dt , 

signal_used,K_DPP,DPP_PW ); 

               elseif (strcmp(Answer,'Gap')) 

%                  IS(1:round(PW(n)/dt)+2000)=SimulationCurrent( k,T1,PW , n , dt , 

signal_used );   % Current at selected k 

                 IS(1:round(PW(n)/dt) + round(PW_Gap/dt))=SimulationCurrent( k,T1,PW , n 

, dt , signal_used ,Answer, K_DPP,PW_Gap); 

                    if length(IS)>M 

                       IS(M+1:end)=[]; 
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                    end 

               end 

               V=-80; 

               am= KQM_alpha * ((126+0.363*V)/(1+exp(-(49+V)/53))); 

               bm= KQM_Beta * (am/(exp((V+56.2)/4.17))); 

                

               bh= KQH_Beta * (15.6/(1+exp(-(V+56)/10))); 

               ah=KQH_alpha *  (bh/(exp((V+74.5)/5))); 

               % 

               mgate=am/(am+bm); 

               hgate=ah/(ah+bh); 

                

               Current=[]; 

               deltav_array=[]; 

               slope_Array=[]; 

               V2=[]; 

               T_plotting =[]; 

               V2(1)  = v0; 

                

               for i=1:M 

                   i; 

                   am= KQM_alpha * ((126+0.363*V)/(1+exp(-(49+V)/53))); 

                   bm= KQM_Beta * (am/(exp((V+56.2)/4.17))); 

                   bh= KQH_Beta *(15.6/(1+exp(-(V+56)/10))); 

                   ah= KQH_alpha * (bh/(exp((V+74.5)/5))); 

                   m0=mgate; 

                   h0=hgate; 

                   minfinite=am/(am+bm); 

                   tm=1/(am+bm); 

                   hinfinite=ah/(ah+bh); 

                   th=1/(ah+bh); 

                   mgate=m0-(m0-minfinite)*(1-exp(-dt/tm)) ; 

                   hgate=h0-(h0-hinfinite)*(1-exp(-dt/th)) ; 

                   gna=gnamax*(mgate^2)*hgate; 

                    

                   slope=(IS(i)-gna*(V-Ena)-gleak*(V-Eleak))/Cm; 

                   deltav=slope*dt; 

                   V=deltav+V; 

                   V_plotting(i) = V; 

                   V2(i)=V; 

                   T_plotting(i)= i*dt; %(ms) (Micro Seconds ) 

                   Current(i) = IS(i); 

                   deltav_array (i) = deltav; 

                   slope_Array (i) =slope; 

                   AM(i)=am; 

                   BM(i)=bm; 

                   AH(i)=ah; 

                   BH(i)=bh; 

                   HINF(i)=hinfinite; 

                   Hinfinite (i) = hinfinite; 

                   Th(i) =th; 

                   Minfinite(i) = minfinite; 

                   Tm(i) = tm; 

                   MGATE(i)=mgate; 

                   HGATE(i)=hgate; 

                   GNA(i)=gna; 

                   INA(i)=gna*(V-Ena); 

                   ILEAK(i)=gleak*(V-Eleak); 

                    

               end 

                

               %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                

                

                

               % IS(1:round(PW(n)/dt))=[ -k*100*ones(1,round(PW_half(n)/dt)) 

k*(exp(5*T1/PW_half(n))-1)]; % the simulation current array in time 

               %                        IS(1:round(PW(n)/dt))=k*(exp(5*T1/PW(n))-1); 

               % WE only save data at the fitted/ selected K value 

               % at each Is(n) which is generated at PW(n) 

               % K is printed on the screen as well. All the 
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               % following array represents what happens at PW(n) 

               % all is saved in terms of (n) so if size of PW is 

               % 50 then all the below array should be size of 50 

               % as well, 

               %                        output1=zeros(1,Q); 

               if (signal_used ==1) 

                   output1(n)=k*(exp(5)-1); 

                    

               elseif (signal_used == 2) 

                   output1(n)=k; 

                    

               elseif (signal_used == 3 ) 

                    

                   output1(n)= k*PW(n); 

                    

               elseif (signal_used==4) 

                    

                   output1(n)=k*PW(n)^2; 

                    

               elseif (signal_used==5) 

                    

                   output1(n)=k; 

               elseif (signal_used==6) 

                   A=5; 

                   output1(n)=k*(1-exp(-A)); 

                    

               elseif (signal_used== 7) 

                   A=5; 

                   output1(n)=k*normpdf(PW(n)/2,PW(n)/2,PW(n)/A); 

                    

               elseif (signal_used== 8) 

                   output1(n)=k; 

               elseif (signal_used== 9 ) 

                   output1(n)=k*(exp(5)-1); 

                    

               elseif (signal_used == 10) 

                   output1(n)=k; 

                    

               elseif (signal_used == 11 ) 

                    

                   output1(n)= k*PW(n); 

                    

               elseif (signal_used== 12 ) 

                    

                   output1(n)=k*PW(n)^2; 

               elseif(signal_used== 13 ) 

                    

               elseif (signal_used== 14) 

                    

                   output1(n)=k; 

               elseif (signal_used==15) 

                   A=5; 

                   output1(n)=k*(1-exp(-A)); 

                    

               elseif (signal_used== 16) 

                   A=5; 

                   output1(n)=k*normpdf(PW(n)/2,PW(n)/2,PW(n)/A); 

                    

               elseif (signal_used== 17) 

                    

                   output1(n)=k; 

               elseif (signal_used== 20) 

                    

                   output1(n)=k; 

                    

               end 

                

               V_Action_potential(n) = {V2}; 

               PW_Action_potential(n) = PW(n) ; % the same as PW 

               K_Action_potentail(n) = k; % actuaal K values  the same as  K_Array_INCEXP 

when K = output 1 
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               c(n) = output1(n);% the plotted k values K_Array_INCEXP 

               V_Action_potential_plotting{n} ={V_plotting}; 

               MGATE_Array_at_each_K(n) = {MGATE}; 

               HGATE_Array_at_eah_K(n) = {HGATE}; 

               GNA_array_at_each_K (n) = {GNA}; 

               Minfinite_array_at_each_K(n) = { Minfinite}; 

               Tm_array_at_each_K(n)= {Tm }; 

               Hinfinite_array_at_each_K(n)= {Hinfinite}; 

               Th_array_at_each_K(n)= {Th}; 

               AM_array_At_each_K(n)= {AM}; 

               BM_Array_At_each_K(n)= {BM}; 

               AH_array_At_each_K(n)= {AH}; 

               BH_Array_At_each_K(n)= {BH}; 

                

               k 

                

               for m=1:M, 

                   output11(n)=output11(n)+IS(m)^2*dt; 

                   output12(n)=output12(n)+IS(m)*dt; 

               end 

                

               figure(121) 

               clf 

               scrsz = get(0,'ScreenSize'); 

               position_default = [0.01*scrsz(3) 0.07*scrsz(4) 0.98*scrsz(3) 

0.85*scrsz(4)]; 

               set(gcf,'position',position_default) 

                

               subplot(331) 

               plot(T_plotting , V2) 

               xlabel ('Time (ms) ') 

               title('Action Potential ') 

               subplot(332) 

               plot(T_plotting,MGATE) 

               xlabel ('Time (ms) ') 

               title('Mgate') 

               subplot(333) 

               plot(T_plotting,HGATE) 

               xlabel ('Time (ms) ') 

               title('Hgate') 

               subplot(334) 

               plot(T_plotting,GNA) 

               xlabel ('Time (ms) ') 

               title('GNA') 

               subplot(335) 

               %                                    plot(Tm,Minfinite) 

               plot(T_plotting,Minfinite) 

               xlabel ('Time (ms) ') 

               ylabel ('Minfinitea (am/(am+bm)) '); 

               %                                    xlabel ('Tm (1/am+bm)') 

               subplot(336) 

               %                                    plot(Th,Hinfinite) 

               plot(T_plotting,Hinfinite) 

               xlabel ('Time (ms) ') 

               ylabel('Hinifinite   (ah/(ah+bh))') 

               %                                    xlabel ('Th (1/ah+bh)') 

               subplot(337) 

               plot(T_plotting,AM) 

               hold on 

               plot(T_plotting,BM,'r') 

               xlabel('AM  && BM') 

               legend ('AM','BM') 

               subplot(338) 

               plot(T_plotting,AH) 

               hold on 

               plot(T_plotting,BH,'r') 

               xlabel('AH && BH') 

               legend ('AH','BH') 

               subplot(339) 

               plot(T_plotting,IS) 

%                hold on 
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%                plot(T_plotting,Current,'r') 

               xlabel ('Time (ms) ') 

               pause(0) 

               annotation('textbox',[ 0.4 0.9 0.50 .10 ],'LineStyle','none','String',['PW 

= ' num2str(PW(n))  Paramters_Of_Interest{Paramter_VAl} ' = ' num2str(Pram_Array(P)) ' & 

' Paramters_Of_Interest{Paramter_VAl2} ' = ' 

num2str(Pram_Array2(Pram2))],'FitBoxToText','on','FontSize',12,'FontWeight','bold','FontN

ame','Times New Roman','FontAngle','italic','Color','r'); 

 

                

                

%               elseif(~exist('V_AP')) 

%                    break; 

                 

%                 end   

               PW(n) 

               else  

%              The reason I added the nan is that sometimes at a specific PW we can't 

generate an AP  

%              So I but a nan instead as a markler that at this pulse wedith no action 

potential was generate 

               output11(n) = NaN; 

               output1(n) = NaN; 

                    

           end 

           end 

           [Val,Index] = min(output11); 

           figure(2) 

           subplot(221) 

           plot(PW,output1); 

           hold on ; 

           plot(PW(Index),output1(Index),'r*');hold off; 

           title('Exponential'); 

           set(gcf,'color',[1,1,1]); 

           subplot(222) 

           plot(PW,output11,'r') 

           hold on; 

           plot(PW(Index),output11(Index),'k*');hold off; 

           title('Energy: red-exponential - Outpit 1') 

           subplot(223) 

           plot(PW,output12,'r') 

           hold on 

           plot(PW(Index),output12(Index),'r*');hold off; 

           title('Charge: red-exponential - output 2') 

           subplot(224) 

           plot(IS) 

           title('Simulation signal') 

            

            

%            if(exist('V_AP')) 

           % Saving Data 

           IdeaL_K_Array_INCEXP(Pram2,P) =  output1(Index); % THis is the mimum K at each 

gnamax or gleak.Minmum K represnts the best values to consume power 

           IdeaL_Energey_Array_INCEXP(Pram2,P) = output11(Index); % Energy value at the 

K_min for each gnamax or gleak 

           IdeaL_Charge_Array_INCEXP (Pram2,P)= output12(Index); % Charge required at 

k_min for each gnamax or gleak 

           Ideal_PW_Array_INCEXP(Pram2,P) = PW(Index);    %% the Pw at K_min 

           %          Energy_array_INCEXP(P,1:length(PW))= output11; 

           %          Energy_array_INCEXP(P,1:length(PW))= output11; 

           Energy_array_INCEXP(Pram2,P)= {output11}; 

           %          K_Array_INCEXP(P,1:length(PW)) =  output1; 

           %          K_Array_INCEXP(Pram2,P,1:length(PW)) =  output1; 

           K_Array_INCEXP(Pram2,P) =  {output1}; 

           %          Stimulation_Amplitude_INCEXP(P,1:length(IS)) = IS; 

           %          Stimulation_Amplitude_INCEXP(Pram2,P,1:length(IS)) = IS; 

           Stimulation_Current(Pram2,P) = {IS}; 

            

           Ideal_V_Action_potential(Pram2,P)  = V_Action_potential(Index); 

           Ideal_MGATE_Array(Pram2,P)  = MGATE_Array_at_each_K(Index); 

           Ideal_HGATE_Array(Pram2,P)  = HGATE_Array_at_eah_K(Index); 
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           Ideal_GNA_array (Pram2,P)  = GNA_array_at_each_K(Index); 

           Ideal_Minfinite_array(Pram2,P)  =  Minfinite_array_at_each_K(Index); 

           Ideal_Tm_array (Pram2,P)  = Tm_array_at_each_K(Index); 

           Ideal_Hinfinite(Pram2,P) =Hinfinite_array_at_each_K(Index); 

           Ideal_Th_array (Pram2,P) = Th_array_at_each_K(Index); 

           Ideal_AM_array (Pram2,P) = AM_array_At_each_K(Index); 

           Ideal_BM_Array(Pram2,P) = BM_Array_At_each_K(Index); 

           Ideal_AH_array(Pram2,P) = AH_array_At_each_K(Index); 

           Ideal_BH_Array(Pram2,P) = BH_Array_At_each_K(Index); 

           All__V_Action_potential{Pram2,P} = V_Action_potential; 

%            end 

            

            

            

           P 

           pause(.001); 

       end 

   end 

   

     

 

  %% plotting when more than variable is changing  

   

  gcf1 = figure(8); 

  fig_num = 1; 

  Prameter1_array_L = length(Pram_Array) ; 

  Prameter2_array_L = length(Pram_Array2) ; 

   

  for Parm2 = 1 :length(Pram_Array2) 

      if length(Pram_Array2)>1 

          subplot(round(Prameter2_array_L/2),2,Parm2) 

      end 

      for P = 1 : length(Pram_Array) 

           

          plot(PW, K_Array_INCEXP {Parm2,P}) 

          hold on 

          xlabel ('PW') 

          ylabel (' K-Array' ) 

          if length(Pram_Array2)>1 

              legendinfo{P} = [ num2str(Paramters_Of_Interest{Paramter_VAl2}) '= ' 

num2str(Pram_Array2(Parm2)) ' '  num2str(Paramters_Of_Interest{Paramter_VAl}) '= '   

num2str(Pram_Array(P))]; 

              title(['Waveform is '   cell2mat(Signal_names(signal_used))  ':'     

num2str(Paramters_Of_Interest{Paramter_VAl2})  ' = '  num2str(Pram_Array2(Parm2)) ]); 

          else 

              legendinfo{P} = [   num2str(Paramters_Of_Interest{Paramter_VAl}) '= '   

num2str(Pram_Array(P))]; 

              title(['Waveform is '  cell2mat(Signal_names(signal_used)) ':'  

num2str(Paramters_Of_Interest{Paramter_VAl})]) 

               

          end 

           

           

          %legendinfo{P} = [    'gnamax = '   num2str(Pram_Array(P))]; 

           

      end 

      legend(legendinfo) 

       

       

  end 

%% 

for Pram2 = 1:length(Pram_Array2) 

     

     

    for P = 1:length(Pram_Array) 

         

        if length(Pram_Array2)>1 

          title_fig = (['Waveform is '   cell2mat(Signal_names(signal_used)) ': @ PW = ' 

num2str(PW(1)) ' '    num2str(Paramters_Of_Interest{Paramter_VAl2})  ' =' 

num2str(Pram_Array2(Pram2))      num2str(Paramters_Of_Interest{Paramter_VAl}) ' = '  

num2str(Pram_Array(P))  '( a-> alpha  & b-> beta)']) ; 
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        else  

          title_fig = (['Waveform is  '    cell2mat(Signal_names(signal_used)) ':'    

num2str(Paramters_Of_Interest{Paramter_VAl}) ' = '  num2str(Pram_Array(P))  '( a-> alpha  

& B-> beta)']) ; 

 

        end 

        figure(fig_num+ 100) 

         

        suptitle(title_fig) 

        subplot(331) 

        plot(T_plotting,Ideal_V_Action_potential{Pram2,P}) 

        ylabel('Action Potential ') 

        subplot(332) 

        plot( T_plotting,Ideal_MGATE_Array{Pram2,P}) 

        ylabel('Mgate') 

        subplot(333) 

        plot( T_plotting,Ideal_HGATE_Array{Pram2,P}) 

        ylabel('Hgate') 

        subplot(334) 

        plot( T_plotting, Ideal_GNA_array {Pram2,P}) 

        ylabel('GNA') 

        subplot(335) 

        %                                    plot(Ideal_Tm_array {Pram2,P}, 

Ideal_Minfinite_array{Pram2,P}) 

        plot(T_plotting,Ideal_Minfinite_array{Pram2,P}) 

        ylabel ('Minfinitea (am/(am+bm)) '); 

        %                                    xlabel ('Tm (1/am+bm)') 

        subplot(336) 

        %plot(Ideal_Th_array {Pram2,P}, Ideal_Hinfinite{Pram2,P}) 

        plot(T_plotting, Ideal_Hinfinite{Pram2,P}) 

        ylabel('Hinifinite   (ah/(ah+bh))') 

        %xlabel ('Th (1/ah+bh)') 

        subplot(337) 

        plot(T_plotting, Ideal_AM_array {Pram2,P}) 

        hold on  

         plot(T_plotting,Ideal_BM_Array{Pram2,P}) 

        ylabel('Alpha M & Beta M') 

        subplot(338) 

        %plot(T_plotting,Ideal_Tm_array{Pram2,P}) 

       plot(T_plotting,Stimulation_Current{Pram2,P}) 

        ylabel('Stimulation Current') 

        ylim([0 nanmax(Stimulation_Current{Pram2,P})]) 

        subplot(339) 

        plot(T_plotting,Ideal_AH_array{Pram2,P}) 

        hold on 

        plot(T_plotting,Ideal_BH_Array{Pram2,P},'r') 

        ylabel('Alpha H && Beta H') 

        legend ('AH','BH') 

        pause(0) 

        POI_Value_plotted (Pram2,P ) = fig_num ; 

         

        fig_num = fig_num+1; 

 

         

         

         

    end 

     

end 

 

%% Automatically Count number of corssing Between ALl neurons update 9/25/2018 

{Selectivity Index based on angle between STD curves) 

%%This is the most updated way to calculate number fo crossing, it doesn't allow  

%%curve to be crossed with its self, and it doesn't allow duplicated crossing  

% AUtomatically find number of crossings usign the interscection function  

 % When adding the Catrhodic part I noticed that all the signals crossed @ 

 % specific PW and a specific Threshold  seems like they all starting from 

 % the same point so to count the correct number of crossing I search for 

 % the crossing after that point  

 figure(18); 

%   subplot(224)   
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LG=1; 

Start =1; 

  for Parm2 = 1 :length(Pram_Array2) 

      if length(Pram_Array2)>1 

%            subplot(round(Prameter2_array_L/2),2,Parm2) 

           

      end 

      for P = 1 : length(Pram_Array) 

          Neuron_SD_curve =K_Array_INCEXP {Parm2,P} ;  

          plot(PW(Start:end), Neuron_SD_curve(Start:end)) 

          hold on 

          xlabel ('PW') 

          ylabel (' K-Array' ) 

          if length(Pram_Array2)>1 

              ALLlegendinfo{LG} = [ num2str(Paramters_Of_Interest{Paramter_VAl2}) '= ' 

num2str(Pram_Array2(Parm2)) ' '  num2str(Paramters_Of_Interest{Paramter_VAl}) '= '   

num2str(Pram_Array(P))]; 

              title(['Waveform is '   cell2mat(Signal_names(signal_used))  ':'     

num2str(Paramters_Of_Interest{Paramter_VAl2})  ' = '   num2str(Pram_Array2(1)) ':' 

num2str(Pram_Array2(end)) ]); 

          else 

              ALLlegendinfo{LG} = [   num2str(Paramters_Of_Interest{Paramter_VAl}) '= '   

num2str(Pram_Array(P))]; 

              title(['Waveform is '  cell2mat(Signal_names(signal_used)) ':'  

num2str(Paramters_Of_Interest{Paramter_VAl})])  

          end 

          LG=LG+1; 

      end 

      legend(ALLlegendinfo) 

       

       

  end 

% AUtomatically find number of crossings usign the interscection function  

 

NOC = 0; 

count=1; 

c=1; 

UC=1; 

used_crossing=zeros(0,1); 

N2_Ind_array=zeros(0,1); 

for I = 1 :Parm2 

    for L= 1 :P 

        SD_Curve_Neuron1 = K_Array_INCEXP {I,L}; 

        for ISearch = 1:Parm2 

            for LSearch =L :P  

                SD_Curve_Neuron2 = K_Array_INCEXP{ISearch,LSearch} ; 

%                    to make usre crossing counts only once number of 

%                    crossing = n!/r!-(n-r)! --r=2 (pairs) 

                     N1_IND =  I*10+L; 

                     N2_Ind = ISearch*10+LSearch; 

                     comb1 =N1_IND*100+N2_Ind; 

                     Comb2 = N2_Ind*100+N1_IND; 

                      

                  if(SD_Curve_Neuron1~=SD_Curve_Neuron2) 

                  if (isempty(find (ismember(used_crossing,comb1 )==1) ) && isempty(find 

(ismember(used_crossing,Comb2 )==1) )) 

                          

                      crossing{c} = [ I L ; ISearch LSearch]; 

                      c=c+1; 

                      used_crossing (UC) = comb1; 

                      used_crossing(UC+1) = Comb2; 

                      UC=UC+2;     

                  if ~isempty( 

intersections(PW(Start:end),SD_Curve_Neuron1(Start:end),PW(Start:end),SD_Curve_Neuron2(St

art:end),0)) 

                    [x0,y0,iout,jout] = 

intersections(PW(Start:end),SD_Curve_Neuron1(Start:end),PW(Start:end),SD_Curve_Neuron2(St

art:end),0); 

                  

                    if(~isempty(x0) && (~isempty(y0))) 

                        NOC = NOC+1; 
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                         figure(18); 

                        hold on; 

                        for NumX =1:length(x0) 

                            x =x0(NumX);y=y0(NumX); 

                            plot([0 x],[y y],'r--') 

                            plot([x x],[0 y],'r--') 

                        end 

                        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                        % Angle ANalysis  

                        [Great_array_rows Great_array]= find(PW> x);   P1 = 

(Great_array(1)); 

                        [Less_array_rows Less_array]  = find(PW< x);  P2=Less_array(end); 

                        Slope_Neuron1 = (SD_Curve_Neuron1(P2)-

SD_Curve_Neuron1(P1))/((PW(P2)-PW(P1))); 

                        Slope_Neuron2 = (SD_Curve_Neuron2(P2)-

SD_Curve_Neuron2(P1))/((PW(P2)-PW(P1))); 

                         

                        Inclination_angle_neuron1 = atand(Slope_Neuron1); 

                        Inclination_angle_neuron2 = atand(Slope_Neuron2); 

                        Inclination_angle_Difference = abs( Inclination_angle_neuron2 - 

Inclination_angle_neuron1); 

                         

                        % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                        % ratiometric Analysis  

                         

                         A1 = abs( SD_Curve_Neuron2-SD_Curve_Neuron1); 

                        if ( nanmean(SD_Curve_Neuron2(1:P2)) 

<nanmean(SD_Curve_Neuron1(1:P2))) 

                            B1 =  SD_Curve_Neuron2(1:P2); 

                        elseif ( nanmean(SD_Curve_Neuron1(1:P2)) 

<nanmean(SD_Curve_Neuron2(1:P2))) 

                            B1 =  SD_Curve_Neuron1(1:P2); 

                        end 

                        if ( nanmean(SD_Curve_Neuron2(P1:end)) 

<nanmean(SD_Curve_Neuron1(P1:end))) 

                            B2 =  SD_Curve_Neuron2(P1:end); 

                        elseif ( nanmean(SD_Curve_Neuron1(P1:end)) 

<nanmean(SD_Curve_Neuron2(P1:end))) 

                            B2 =  SD_Curve_Neuron1(P1:end); 

                        end 

                        Ratio1 = A1(1:length(B1))./(A1(1:length(B1))+B1); 

                        Ratio2 = (A1(end-length(B2)+1:end))./(A1(end-

length(B2)+1:end)+B2); 

                        [Value1 Indx1 ] = max(Ratio1); 

                        [Value2 Indx2 ] = max(Ratio2); 

                        Actual_Indx2 = Indx2 + length(B1);  

                         

                        PW_max_ratio1 = PW(Indx1); 

                        PW_max_ratio_2 = PW(Actual_Indx2); 

                         

                        plot(PW(Indx1),SD_Curve_Neuron1(Indx1),'rh') 

                        plot(PW(Indx1),SD_Curve_Neuron2(Indx1),'rh') 

                         

                        plot(PW(Actual_Indx2),SD_Curve_Neuron1(Actual_Indx2),'rh') 

                        plot(PW(Actual_Indx2),SD_Curve_Neuron2(Actual_Indx2),'rh') 

                         

 

                         

                        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                         

                        

                         

                        Slope_Neuron1_array(count) = Slope_Neuron1 ;  

                        Slope_Neuron2_array (count) = Slope_Neuron2 ;  

                        Inclination_angle_neuron1_array (count) 

=Inclination_angle_neuron1;  

                        Inclination_angle_neuron2_array (count)  = 

Inclination_angle_neuron2; 

                        Inclination_angle_Difference_array(count)  

=Inclination_angle_Difference; 

                        Ratio_array(count)= min(Value1 ,Value2); 
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                        count =count +1;  

                         

                         

                    end 

                  end 

                 end 

                end 

            end 

        end 

         

    end 

end 

Total_Number_of_Crossing = NOC 

if(NOC~=0) 

Avrage_Angle = nanmean(Inclination_angle_Difference_array) 

Avrage_Std = nanstd(Inclination_angle_Difference_array) 

Total_Number_of_Neurons = length(Pram_Array) *length(Pram_Array2) 

Avrage_Ratio = nanmean(Ratio_array)  

STD_Ratio = nanstd(Ratio_array) 

 

Total_Number_of_possibilities = factorial(Total_Number_of_Neurons) /(factorial(2)* 

factorial(Total_Number_of_Neurons-2)) 

Crossing_Percentage= ((Total_Number_of_Crossing*100)/Total_Number_of_possibilities) % 

Precentage Analysis  

  

if length(Pram_Array2)>1 

    title(['Waveform is '   cell2mat(Signal_names(signal_used))  '; POI :- '    

num2str(Paramters_Of_Interest{Paramter_VAl})   ' & '  

num2str(Paramters_Of_Interest{Paramter_VAl2})  ' ; Avrage Angle = ' num2str( 

nanmean(Inclination_angle_Difference_array))  ' ^o ; STD Angle = ' 

num2str(nanstd(Inclination_angle_Difference_array)) ' ; NOC = ' num2str(NOC) ' ; 

%Crossing  = ' num2str((Total_Number_of_Crossing*100)/Total_Number_of_possibilities) '%' 

, ' ; Avrage Ratio = ' num2str(Avrage_Ratio ) ' ; STD_Ratio = ' num2str(STD_Ratio)]); 

else 

    title(['Waveform is '  cell2mat(Signal_names(signal_used)) ':'  

num2str(Paramters_Of_Interest{Paramter_VAl})    ' ; Avrage Angle = ' num2str( 

mean(Inclination_angle_Difference_array)) ' ^o ; STD Angle = ' 

num2str(std(Inclination_angle_Difference_array)) ' ; Crossing % = ' 

num2str((Total_Number_of_Crossing*100)/Total_Number_of_possibilities) '%',' ; Avrage 

Ratio = ' num2str(Avrage_Ratio ) ' ; STD Ratio = ' num2str(STD_Ratio)]); 

end 

 

end 

 

%% 

if length(Pram_Array2)>1 

folder_name = ['Waveform' cell2mat( Signal_names(signal_used)) '  POI ' 

Paramters_Of_Interest{Paramter_VAl2} ' && ' Paramters_Of_Interest{Paramter_VAl}];  

else 

folder_name = ['Waveform' cell2mat( Signal_names(signal_used)) '  POI '  

Paramters_Of_Interest{Paramter_VAl}];      

end 

New_folder = [current_directry  '\' folder_name]; 

mkdir(New_folder) 

cd (New_folder );  

%% 

 

n =Min:step:Max ; 

FigArray= 101:1:100+fig_num; 

 for FigIdx = 1:fig_num-1 

     [ Rparm2 , CP] = find(POI_Value_plotted == FigIdx); 

    if length(Pram_Array2)>1 

     Figname =[ 'Parameters plotted when ' Paramters_Of_Interest{Paramter_VAl} '='  

num2str(Pram_Array(CP)) ' & ' Paramters_Of_Interest{Paramter_VAl2} '='  

num2str(Pram_Array2(Rparm2)) '.fig'] ; 

    else 

      Figname =[ 'Parameters plotted when ' Paramters_Of_Interest{Paramter_VAl} '='  

num2str(Pram_Array(CP)) '.fig'] ; 

    end 

     saveas(figure(FigArray(FigIdx)),Figname) 
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 end 

 %% 

 if  length(Pram_Array2)>1 

   Figname  = ['SD_Curve ' 'POI_' Paramters_Of_Interest{Paramter_VAl2} '_' 

Paramters_Of_Interest{Paramter_VAl} ' Wavefrom_' cell2mat(Signal_names(signal_used)) ' 

Min_' num2str(Min) '_MAX_' num2str(Max) '_Step=' num2str(step)]; 

   Crossing_Figname  = ['Crossing_for_SD_Curve ' 'POI_' 

Paramters_Of_Interest{Paramter_VAl2} '_' Paramters_Of_Interest{Paramter_VAl} ' Wavefrom_' 

cell2mat(Signal_names(signal_used)) ' Min_' num2str(Min) '_MAX_' num2str(Max) '_Step=' 

num2str(step)]; 

 

 else  

   Figname  = ['SD_Curve ' 'POI_'  '_' Paramters_Of_Interest{Paramter_VAl} ' Wavefrom_' 

cell2mat(Signal_names(signal_used)) ' Min_' num2str(Min) '_MAX_' num2str(Max) '_Step=' 

num2str(step)];        

   Crossing_Figname  = ['Crossing_For_SD_Curve ' 'POI_'  '_' 

Paramters_Of_Interest{Paramter_VAl} ' Wavefrom_' cell2mat(Signal_names(signal_used)) ' 

Min_' num2str(Min) '_MAX_' num2str(Max) '_Step=' num2str(step)];        

 

 end 

 saveas(figure(8),[Figname '.fig']) 

  saveas(figure(18),[Crossing_Figname '.fig']) 

 

 Mfilename = [Figname '.mat' ];  

  

save(Mfilename); 

 

 SAvingMSGBOX = msgbox ('please select a nother waveform or exit ?', 'End Of Saving' ); 

uiwait(SAvingMSGBOX) ; 

 %MSfilename =  cell2mat(Signal_names(signal_used)) ; 

   %save(MSfilename,'K_Array_INCEXP','PW','Pram2','Pram_Array2','Pram_Array'); 

     

        gcf = figure(2); 

    pbexit = 

uicontrol(gcf,'Style','pushbutton','String','Exit','units','normalized','Position',[.225 

.05 .05 .05],'Callback','Exit = 5; uiresume;'); 

    uiwait(gcf) 

     

end 

 

 

%% End OF MAIN CODE 
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