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ABSTRACT

INVESTIGATION OF TOPOLOGICAL PHONONS IN DISCRETE
MECHANICAL METAMATERIALS

by
Kai Qian

The study of topological mechanical metamaterials is a new emerging field that focuses

on the topological properties of artificial mechanical structures. Inspired by topological

insulators, topological mechanism has attracted intensive attention in condensed matter

physics and successfully connected the quantum mechanical descriptions of electrons with

the classical descriptions of phonons. It has led to experiments of mechanical metamaterials

possessing topological characteristics, such as topologically protected conducting edges or

surfaces without back-scattering. This dissertation presents a new experimental approach

for mechanically engineering topological metamaterials based on patterning magnetically

coupled spinners in order to localize the propagation of vibrations and evaluate different

resonant modes. The topological properties of these metamaterials originate simply from

their structures regardless of their nature and require no fine tuning of parameters. Strong

excitation modes can also be observed through naked eyes, ideal for the exemplification of

abstract theories. In Chapter 2, robust edge modes only due to smart patterning are reported.

In Chapter 3, the analog of quantumvalleyHall effect (QVHE) is emulatedmechanically and

its suitability for metamaterial applications is also discussed. In Chapter 4, flat frequency

bands localized at open edges and antiphase boundary seams of topological mechanical

metamaterials are shown to be promising for other metamaterials and novel applications. In

Chapter 5, current work on classical Majorana edge modes of a ladder-like system, which is

a counterpart to the classic Kitaev chain, is presented. At last, in Chapter 6, contributions,

possible improvements, significant challenges, and potential applications are discussed.
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3.10 Predicted spectrum in the presence of a domain-wall. Simulations are shown for
increasing values of r = IA

IB
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3.11 Experimental observation of the domain wall modes. The fine line marks the
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black dots. The red disks mark the position of the motion sensors, which
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indicates edge [bulk] modes appearing in the bulk [edge] spectra due to the
short edge-to-edge distance. (k) Experimental and theoretical bulk and edge
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4.4 (a-d): Patterns of modes. Colors represent the oscillation amplitudes of the
spinners, estimated from slow motion movies by eyes. Stars mark actuated
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4.5 (a) Illustration of the SSH ring with fifteen spinners and a seam experimentally
studied. See the caption for Figure 4.1(b). The purple line represents the
extra coupling at a magnet distance of 6.5 mm for the chiral symmetry. (b)
Red [Blue] line: Edge [Bulk] mode spectrum experimentally obtained by
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CHAPTER 1

OVERVIEW

Metamaterials (meta means beyond in Greek) are artificially fabricated materials with

superior and unusual properties that do not exist in naturally occurring materials, such as

a negative electrical permittivity [Veselago, 1967]. These properties originate from their

periodically or randomly distributed structures [Wang et al., 2016]. The launch of this field

is marked by a famous paper published in 2000 by Pendry [Pendry, 2000], who discussed

a class of materials with a negative refractive index. As a result, metamaterials became

an explosive interest due to their potential for light manipulation and cloaking [Smith

et al., 2004, Schurig et al., 2006, Alù and Engheta, 2007, Alù and Engheta, 2008, Liu

et al., 2009]. The concept of metamaterials was soon introduced in phononic crystals and

acoustic systems [Lu et al., 2009]. With the same idea to control the wave propagation, from

electromagnetic to elastic waves, metamaterials meet conventional mechanics. Materials

with any counterintuitive mechanical properties originated from their distinctive structures

can be called mechanical metamaterials [Xin et al., 2020], for example, materials with a

negative compressibility [Nicolaou and Motter, 2012] or a negative Poisson’s ratio [Lakes,

2017]. Among these examples, a new class named topological mechanical metamaterials

[Süsstrunk and Huber, 2016], which are inspired by electronic topological insulators [König

et al., 2007,Hasan and Kane, 2010], has attracted intensive attentions over the past decade.

They have interesting topological properties that are difficult to achieve with ordinary

mechanical metamaterials. So, what is topological and why does it matter?

Topology, in mathematics, is about the study of geometric properties that are not

destroyed by continuous deformations. A coffee mug is equal to a donut for topologists

since the number of holes, which is a topological invariant, is always the same during

smooth transformations, as shown in Figure 1.1. The concept of topology was brought
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Figure 1.1 Example of the objects that differ in their genus, g, which counts the number
of holes. g = 0 for the muffin and the plate; g = 1 for the donut and the cup.

into the field of condensed matter physics in the 1980s thanks to Thouless, Haldane, and

Kosterlitz, who won the Nobel Prize in 2016 for their theoretical discoveries of topological

phase transitions and topological phases of matter. A topological phase is a system state

that certain physical properties depend on global topology instead of local details. In

1980, von Klitzing discovered the quantum Hall effect (or integer quantum Hall effect that,

when the electrons were confined into a two-dimensional (2D) gas form, the Hall resistance

became exactly quantized at h/(ne2), where n is a positive integer [Klitzing et al., 1980].

Afterwards, the whole condensed matter physics community started to realize that the

intrinsic relation between the integer quantum Hall effect and the band structure topology

can be adequately explained by a natural change of a topological invariant, namely theTKNN

number (or the first Chern number) [Thouless et al., 1982]. New topological phases such

as the quantum spin Hall effect [Kane and Mele, 2005a,Kane and Mele, 2005b,Bernevig

and Zhang, 2006,Bernevig et al., 2006] and the quantum anomalous Hall effect [Laughlin,

1983,Haldane, 1988,Chang et al., 2013] were later discovered and evaluated. As shown in

Figure 1.2, electrons can transport only along the dissipationless channels within the edges

of these 2D quantum Hall systems, with the bulk insulating. Characterized by such edge
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(or surface in three dimensions) states, topological insulators are classified as an entirely

new class of electronic materials, creating a surge of research activities after 2005. Similar

to a regular insulator, a topological insulator also has a bulk energy gap separating the

conduction band from the valence band. However, the interfaces (edges or surfaces) of

a topological insulator are filled with gapless chiral conducting states. These states are

insensitive to disorder since there is no state available for backscattering. Such amazing

electronic topological properties have hence inspired many physicists, chemists, materials

scientists, and engineers with different fields of interest. By considering the band theory and

Bloch’s theorem, one can easily see the similarity among electrons in crystals, photons in

photonic crystals, and phonons in phononic crystals. As a result, the concept of topological

phases have been naturally expanded from electronics to optics, acoustics and even further to

mechanical vibrations. In 2008, Raghu andHaldane theoretically proposed an optical analog

of the quantum Hall systems and established a unidirectional channel for electromagnetic

energy [Raghu and Haldane, 2008], which was experimentally realized [Wang et al., 2009].

In 2009, Prodans theoretically demonstrated how topological vibration modes are the key

to the dynamic instability of the microtubules [Prodan and Prodan, 2009]. In 2014, Fleury

et al. introduced an acoustic analog of the Zeeman effect by using a linear, magnetic-free

circulator tomimic amagnetic bias [Fleury et al., 2014]. With the influences of their creative

studies, various topological photonic and phononic metamaterials were later developed [Lu

et al., 2014, Zhang et al., 2018,Ma et al., 2019a,Ozawa et al., 2019]. Moreover, a natural

question has been asked: How do we realize topological phases with quantum mechanical

descriptions in classical mechanical systems where Newton’s equations of motion describe

phonons?

To realize this analogy, one can consider a generalized model consisting of coupled

oscillators. When considering the motion of the model as a Hermitian eigenvalue problem
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Figure 1.2 QuantumHall trio. Numbers in parentheses indicate the years of each discovery.
H is the external magnetic field, and M is the magnetization. For all three quantum Hall
effects, electrons flow through the lossless edge channels, with the rest of the system
insulating. When there is a net forward flow of electrons for Hall resistance measurement,
(left) those extra electrons occupy only the left edge channels in the quantum Hall system
regardless of their spins, (center) opposite-spin electrons occupy opposite sides in the
quantum spin Hall system, and (right) only spin-down electrons flow through the left edge
in the quantum anomalous Hall system. The locking schemes between spin and flow
direction, and the number of edge channels depend on the material details, and only the
simplest cases are illustrated here. Source: [Oh, 2013].
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for frequency ω, Newton’s equations can be rewritten as [Huber, 2016]:

i ∂
∂t


√
D
T
x

iẋ

 =

 0
√
D
T

√
D iA



√
D
T
x

iẋ

 , (1.1)

where D is the dynamic matrix that encodes forces between oscillators and A is a

skew-symmetric matrix that describes the conservatives couplings between positions and

velocities. Here, Equation (1.1) is similar to the Schrödinger’s equation. It also gives

the classical mechanical system a particle-hole symmetry, which is usually seen in the

studies of superconductivity. By taking advantage of the particle–hole symmetry, or

engineering the dynamical matrixD and the skew-symmetric matrixA, one can implement

zero-frequency properties or high-frequency properties of topological mechanical systems,

as shown in Figure 1.3. At this point, topology can be conveniently implemented in classical

mechanical systems. During the past years, researchers have been committed to discover

topological phases inmechanical metamaterials. In 2014, Kane and Lubensky implemented

zero-frequencymodes using isolated lattices [Kane andLubensky, 2014]. In 2017, Prodan et

al. demonstrated theMajorana edgemode in the coupled dimer systems [Prodan et al., 2017].

Numerous efforts were also made in other different metamaterials and various approaches

to realize topological phases in mechanical metamaterials were developed [Süsstrunk and

Huber, 2016,Huber, 2016,Rocklin et al., 2017,Xin et al., 2020].

In this dissertation, I will present our past and current studies on topologically

protected edge modes via smart patterning, QVHE, topological flat frequency bands, and

Majorana edgemodes through the exploitation of novel and versatile experimental platforms

consisting of magnetically coupled fidget spinners. Our results are scalable and can apply

to other metamaterials, such as photonic, electronic, acoustic, plasmonic, circuitry, optical

lattice, and microwave metamaterials, potentially leading to novel phenomena and device

applications.
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Figure 1.3 Overview of the two different families of topological acoustic metamaterials
(zero-frequency versus high-frequency). Left: frequency versus momentum for typical
band structures of an acoustic crystal. Black lines denote bulk excitations and coloured
lines or dots indicate localized boundary modes. Note that for active metamaterials one can
obtain a situation in which edge modes are truly unidirectional: that is, only the red or blue
edge modes are present. The gap for which the topological features are relevant is shaded in
red. Middle: the schematics show the generic set-up (‘hinges and rods’ versus ‘oscillating
masses’) for both families, together with examples of recent experiments. The red dashed
box in the Maxwell frames image indicates a boundary between two topological sectors.
Right: lists of potential applications. Source: [Huber, 2016].
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CHAPTER 2

TOPOLOGICAL EDGE MODES VIA SMART PATTERNING

In this chapter, we will demonstrate that topological edge modes can emerge solely from

a smart patterning of a metamaterial. The work was in collaboration with Dr. David J.

Apigo and Prof. Camelia Prodan from the Department of Physics at New Jersey Institute of

Technology, and Prof. Emil Prodan from the Department of Physics at Yeshiva University.

2.1 Introduction

Over the past years, experimental demonstrations of topological effects in classical systems

abound [Prodan and Prodan, 2009,Berg et al., 2011,Zhang et al., 2011b,Kane and Lubensky,

2014, Chen et al., 2014, Khanikaev et al., 2015, Deymier et al., 2015, Mousavi et al.,

2015,Peano et al., 2015,Paulose et al., 2015a,Xiao et al., 2015a,Paulose et al., 2015b,Wang

et al., 2015,Xiao et al., 2015b,Mao et al., 2015,Kariyado and Hatsugai, 2015,Nash et al.,

2015,Süsstrunk and Huber, 2015,Süsstrunk and Huber, 2016,Deymier and Runge, 2016,Pal

et al., 2016, Salerno et al., 2016,Rocklin et al., 2016, Prodan et al., 2017] and this field is

rapidly moving towards the next stage where practical devices and concrete applications

should emerge. However, it is extremely difficult to maintain controls over the designs

as the systems are scaled down to meet certain practical constraints, especially on those

based on specific configurations and values of the couplings. We demonstrate a new route

to achieve robust edge modes only through patterning of the mechanical structures. More

precisely, metamaterials consisting of bundles or stacks of certain patterns have all their bulk

spectral gaps completely filled with topological edge spectrum when the system is halved.

This edge spectrum cannot be gapped by changing boundary condition or by any adiabatic

deformation of the metamaterials. This phenomenon is completely due to the patterning

itself and does not require any fine tuning of the couplings, except for the opening of the bulk

spectral gaps. We provide the experimental observation of such topological edge modes in
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a quasi-periodic mechanical system. Topological metamaterials with these principles can

be engineered at any scale, which provides a practical platform for applications and devices.

2.2 Magnetically Coupled Mechanical Spinners

In this section, we will take a close look at this versatile experimental platform based on

magnetically coupled mechanical spinners. Experimental platforms of this principle not

only enables the realization and characterization of a topological pattern of mechanical

resonators, but also helps with the formulation and exemplification of the theoretical

concepts. For simplicity, we use one-dimensional (1D) patterns, but generalizations

to higher dimensions can be easily achieved, as mentioned in the papers [Prodan and

Schulz-Baldes, 2016,Prodan and Shmalo, 2019].

2.2.1 Configurable Spinner

A configurable mechanical spinner is shown in Figure 2.1(a). It consists of a stainless

steel ball bearing mounted in a threaded brass encapsulation, which is fitted with six

grooved indentations for attaching additional arms. For experimentation, two of the arms

are attached with neodymium disk magnets, which provide the couplings between each

spinner when arranged in linear patterns. The centers of the spinners are pinned down,

resulting in one rotational degree of freedom, ϕ. By stacking and coupling such spinners,

extremely complex systems can be created one degree of freedom at a time (see the example

in Figure 2.1(b)). With the full control over the degrees of freedom and the couplings, any

quadratic discrete Hamiltonian can be implemented to drive the small oscillations of the

magnetically coupled spinners.
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Ball bearing

Magnetic disk

Brass arms

(a) (b)

Figure 2.1 (a) Example of the basic spinner configuration. The arms are detachable
such that the spinners can be easily refitted. (b) Exemplification of a relative complex
linear configuration of magnetically coupled spinners, with couplings in the front sideway
(shown) and in the back (not shown). Source: [Apigo et al., 2018].

2.2.2 Coupling and Dynamics

The magnetic couplings between the spinners can be measured by mapping the resonant

modes of a dimer, whose dynamics is governed by the Lagrangian:

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) = 1
2Iϕ̇

2
1 + 1

2Iϕ̇
2
2 − V (ϕ1, ϕ2), (2.1)

where I is the moment of inertia for a single spinner. In the regime of small oscillations

around the equilibrium configuration, ϕ1 = ϕ2 = 0, the potential can be approximated

quadratically in the form:

V (ϕ1, ϕ2) = 1
2α(ϕ2

1 + ϕ2
2) + βϕ1ϕ2, (2.2)
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where α and β represent the coupling coefficients. As a result, the pair of the two resonant

modes can be computed explicitly:

f± =
√
α± β
4π2I

. (2.3)

The experimentallymeasured resonant frequencies are reported in Figure 2.2(e) as functions

of the distance d between the magnets. Since Equations (2.3) can be inverted as:

α = 2π2I
(
f 2

+ + f 2
−

)
, β = 2π2I

(
f 2

+ − f 2
−

)
, (2.4)

together with the experimental data, it is easy to determine the coupling coefficientsα(d) and

β(d). The details of mapping are provided in Figure 2.2. In Figure 2.2(f), the experimental

coupling coefficients are well fitted by:

α(d) = −778.14√
d

+ 3439.81
d

+ 161.35
d2 ,

β(d) = −654.09√
d

+ 2763.66
d

+ 575.89
d2 .

(2.5)

When the centers of the spinners are pinned in a 1D pattern ω = {xn}n∈Z, the

Lagrangian of the system becomes:

L =
∑
n∈Z

[
1
2Iϕ̇

2
n −

(
α(dn−1) + α(dn)

)
ϕ2
n − β(dn)ϕnϕn+1

]
, (2.6)

where dn = xn+1 − xn −D and D is the diameter of a spinner. The equations of motion

read:

−Iϕ̈n =
(
α(dn−1) + α(dn)

)
ϕn + β(dn−1)ϕn−1 + β(dn)ϕn+1. (2.7)
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Actuator(a) (b)

(c) (d)

(e) (f)

Spacing (mm) Spacing (mm)

Figure 2.2 Mapping the coupling coefficients. (a) Illustration of a single spinner with the
locations of magnets indicated. (b) Experimental apparatus for measuring the interaction
potential of a dimer. Two spinners are placed on an aluminum track with variable distance,
d. The system is actuated and the response is recorded using accelerometers. (c), (d)
Response of the coupled spinner as the frequency is swept over the low/high resonances
of a dimer spaced 9 mm apart. The standard fits indicate a quality factors of Q = 40
and 53, respectively. (e) Map of the high (red) and low (blue) resonant frequencies as
functions of magnet spacing. (f) The coupling coefficients α (red dots) and β (blue dots), as
derived from Equation (2.4) and the data from panel (e), together with the fit functions from
Equations (2.5). The units of 2π2I×Hz2 are used for the coupling functions. Source: [Apigo
et al., 2018].
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The degrees of freedom can be encoded in the column vector:

|ϕ〉 = (. . . , ϕ−1, ϕ0, ϕ1, . . .)T , (2.8)

and let us denote |n〉 by the column vector with 1 at position n and zero in the rest. Then

|ϕ〉 = ∑
n ϕn|n〉 and, with the ansatz |ϕ(t)〉 = Re

[
ei2πft|ψ〉

]
and the units of 2π2I × Hz2

from Figure 2.2(f), the system of equations of motion becomes f 2|ψ〉 = H|ψ〉 with:

H =
∑
n∈Z

[(
α(dn−1) + α(dn)

)
|n〉〈n| (2.9)

+ β(dn−1)|n〉〈n− 1|+ β(dn)|n〉〈n+ 1|
]
.

At this point, it is a classical eigensystem for Hamiltonian, H , in the Hilbert space `2(Z).

The analysis above serves as a model for generically patterned resonators. It can be

implemented for other spinner configurations, for example, the other systems presented in

this dissertation, even for complex ones that include stacking and couplings beyond first

neighbors, such as the exemplification shown in Figure 2.1(b).

2.2.3 1D Quasi-Periodic Pattern

As mentioned by Apigo et al. [Apigo et al., 2018], the discrete set of patterns can

be topologically equivalent with the circles. The simplest 1D pattern is illustrated in

Figure 2.3(a) and its analytic expression is in the form:

xn = n l0 + r sin(nθ), r <
l0
2 , n ∈ Z, (2.10)
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where θ is an irrational fraction of 2π. Figure 2.3(b) explains the geometric algorithm of this

pattern. The point labeled by 0 is always fixed at the origin of the real axis and set the labels

to be consistent with the ordering . . . < x−1 < x0 = 0 < x1 < . . .. This implicitly assumes

that two points are never on top of each other. From topological point of view, any closed

loop is also a circle, hence more complex patterns can be generated by the same algorithm

but using a deformed circle. Although the algorithm is simple, the resulting patterns can be

extremely complex and irregular. We can actually allow not only continuous deformations

of the resonators but also of the patterns themselves [Apigo et al., 2018].

0-l0 l0 2l0 3l0

𝑥−1 𝑥0 𝑥1 𝑥2 𝑥3

2r

𝜃−𝜃 2𝜃 3𝜃

(a)

(b)

Figure 2.3 Example of a 1D quasi-periodic pattern topologically equivalent to the circles.
(a) Display of a finite number of points of a pattern generated by the algorithm xn =
n l0 + r sin(nθ), with the particular values l0 = 1, r = 0.4 and θ = 2π√

15 . (b) A geometric
algorithm to generate the same pattern. Source: [Apigo et al., 2018].

2.3 Spectral Analysis

2.3.1 Bulk Spectrum

The resonant frequency spectrum for Hamiltonian (2.9) over the pattern (2.10) is shown

in Figure 2.4 as function of θ. The calculation is performed on a finite pattern of length

L = 840 with periodic boundary condition for all commensurate values θn = 2nπ
L
, where

the empirical coupling coefficients α and β are used. The similarity between this spectrum

and the Hofstadter spectrum [Hofstadter, 1976] is remarkable. The main characteristic of
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the spectrum is the fractal network of spectral gaps, where each gap is topological, which

implies the emergence of topological edge modes.

Figure 2.4 Bulk spectrum as function of parameter θ. The parameters l0 and r have been
fixed to the experimental values: l0 = 76mm, r = 2mm. θ = 6π

32 is used in the experiments.
Source: [Apigo et al., 2018].

The bulk spectrum has been mapped experimentally for select values of θ. The setup

is shown in Figures 2.5(a) and 2.5(b). Throughout, the units of length are millimeters.

To accommodate for the diameter, D = 66 mm, of the spinners, their centers have been

arranged according to the algorithm xn = 76n + 2 sin(nθ), θ = 6π
32 , leading to a distance

between the magnets (see Equation (2.6)):

dn = 10 + 2 sin
(
(n+ 1)θ

)
− 2 sin

(
nθ
)
, n ∈ Z. (2.11)
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These are the inputs for Hamiltonian (2.9). The theoretically computed spectrum and the

experimentally measured one are reported in Figures 2.5(c) and 2.5(d), respectively. The

overall quantitative agreement is good, especially for the upper part of the spectrum. In

fact, a rigorous correspondence between the two was established (see the guiding shaded

regions in Figures 2.5(c) and 2.5(d)), by matching the experimental and theoretical profiles

of the normal modes.

Figure 2.5 Experimental bulk spectral characteristics. (a)A systemof 32 spinners arranged
in the pattern described by Equation (2.10). (b) Notations and experimental values: θ = 6π

32 ,
D = 66 mm, l0 = 76 mm, r = 2 mm. (c) Theoretically computed bulk spectrum for
θ = 2π√

117 = 6π
32 +O(10−3), together with the gap labels for the upper gaps. (d) Experimental

reading from an accelerometer placed in the bulk of the system. The correspondence
between theory and experiment is shown by the shaded regions. Source: [Apigo et al.,
2018].

2.3.2 Topological Edge Spectrum

The simulation in Figure 2.6(a) shows that the edge spectrum splits into chiral bands.

Since the computation was performed on a finite rather than a halved system, the chiral

bands appear always in pairs, one per edge. The experimental edge spectrum is shown in

Figure 2.6(b). In these experiments, the system shown in Figure 2.5(a) is actuated from

the first spinner between 14.0 and 21.0 Hz in steps of 0.1 Hz. One spinner is then moved

from the front to the back of the chain, effectively implementing the translation, and the

measurements are repeated. By cycling this whole process, one can shift the pattern 32

times and generate the experimental measure of the edge spectrum. Topological edgemodes
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are detected at proper frequencies inside the bulk spectral gaps as the frequency is swept.

They manifest as extremely strong and well-defined resonances, visible to the naked eye.

A quantitative account of this phenomenon is reported in Figure 2.7, which displays the

reading from an accelerometer placed on the uncoupled arm of the second spinner from the

edge. The edge resonances appear as prominent peaks in these measurements. Figure 2.8

shows the spatial profile of an edge resonant mode detected in the last and most prominent

bulk gap, which confirms that the mode is extremely well localized near the edge.

(a)

(b)

w
w

Figure 2.6 Theoretical edge spectrum versus the measured one. (a) The predicted
theoretical spectrum of a chain of 32 spinners with free ends, mapped as function of
ω. (b) The resonant frequencies (dots) recorded at one end of the system, with the bulk
spectrum from Figure 2.5(d) indicated by vertical grey bars. Dotted lines have been added
to help indicate the chiral bands. In both panels, ω runs over the experimentally available
values ωn = nθ, n = 0, . . . , 31. Note that the theoretical plots include both (left and right)
edge modes and this is why the chiral bands come in pairs. Source: [Apigo et al., 2018].

2.4 Summary

This study shows that the collective dynamics of identical coupled mechanical resonators

are fully determined by the patterns in which they are arranged. In other words, topological

characteristics in mechanical systems can be induced solely through patterning in a manner

entirely independent of the structure of the resonators and the details of the couplings. Such
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Figure 2.7 Measurements of the edge resonances. The panels report the readings
from accelerometers placed on the second spinner from the edge for randomly rotated
configurations of the spinner chain. Source: [Apigo et al., 2018].
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Figure 2.8 Spatial profile of a resonant mode. The data shows the readings from four
accelerometers placed on the first four spinners from the edge, as the frequency was swept
over the last andmost prominent bulk gap. The amplitudes of these readings are proportional
with the size of the disks. For convenience, the full pattern of spinners is also shown.
Source: [Apigo et al., 2018].

17



systems require no fine tuning of parameters. For these topological systems, the boundary

resonant modes fully fill all existing spectral gaps whenever the system is halved and the

boundary spectrum cannot be removed or gapped by any boundary condition. Our results

are not bound to mechanical systems. Topological metamaterials based on these principles

can be easily engineered at any scale, which provides a practical platform for potential

applications and devices.
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CHAPTER 3

TOPOLOGY OF THE VALLEY-CHERN EFFECT

In this chapter, we will focus on our implementation of QVHE with a 2D honeycomb

spinner system and demonstrate the limitation of this effect for metamaterial applications.

The work was in collaboration with Dr. David J. Apigo and Prof. Camelia Prodan from

the Department of Physics at New Jersey Institute of Technology and Dr. Yafis Barlas and

Prof. Emil Prodan from the Department of Physics at Yeshiva University.

3.1 Introduction

Graphene and graphene-like honeycomb-lattice systems continue to be experimentally

studied for new ideas and sources of distinctive effects. With its low energy physics

determined by two small pockets of the Brillouin zone, it led scientists to realize that

a new effective observable, namely the valley, emerges in many physical situations. This

observable can be controlled andmanipulated like the spin [Gunawan et al., 2006b,Gunawan

et al., 2006a,Rycerz et al., 2007,Xiao et al., 2007,Yao et al., 2008]when the valley commutes

with the dynamics of the low energy degrees of freedom. If the spectrum is gapped by

breaking the inversion-symmetry of a honeycomb lattice, a unique topological effect named

the QVHE emerges [Islam and Benjamin, 2016, Ren et al., 2016, Xiao et al., 2007]. It

manifests in the emergence of counter-propagating quasi-chiral modes at the interface

between two mirrored samples. QVHE is quite appealing for engineering interface modes

because it does not require breaking of the time-reversal symmetry or the strong spin-orbit

couplings. It has been observed in many solid-state devices [Mak et al., 2014,Gorbachev

et al., 2014,Sui et al., 2015,Shimazaki et al., 2015,Ju et al., 2015] and the interest continues

to be strong, especially in the field of graphene bilayers [Martin et al., 2008, Zhang et al.,

2011a,Qiao et al., 2011,Wright and Hyart, 2011, Zhang et al., 2013, San-Jose and Prada,

2013, Vaezi et al., 2013, Huang et al., 2018]. It has been proposed in various photonic
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devices [Ma and Shvets, 2016, Dong et al., 2017, Chen et al., 2017, Bleu et al., 2017, Ni

et al., 2018] and it was observed recently in laboratories [Gao et al., 2017, Noh et al.,

2018,Kang et al., 2018]. QVHE has been enthusiastically embraced by the community of

topological mechanics, where there has been an explosion of laboratory demonstrations of

this effect [Lu et al., 2016, Lu et al., 2017, Pal and Ruzzene, 2017, Vila et al., 2017, Zhu

et al., 2018a, Jiang et al., 2018b, Gao et al., 2018, Liu and Semperlotti, 2018,Wu et al.,

2018,Chaunsali et al., 2018b,Chen et al., 2018]. We are particularly motivated by the work

of [Pal and Ruzzene, 2017,Vila et al., 2017], where the mechanical interface modes have

been recorded in real time, providing a dramatic visual demonstration of signal guiding

along the zigzagged interfaces.

The bulk-boundary principle responsible for the observed interface modes is well

understood in the regime where the valleys result from a slight splitting of graphene’s Dirac

cones [Qiao et al., 2011]. In such cases, the physics of low energy excitations can be

captured by effective Dirac models, where the domain walls and the perturbations occur at

small energy scales and over length scales much larger than that of the lattice parameters.

This regime, unfortunately, is quite far from what is needed for practical applications of

metamaterials, where the domain walls have to be sharp and the spectral gaps large in

order to ensure good localization of the interface modes. We show these aspects using

an experimental platform based on magnetically coupled spinners [Apigo et al., 2018].

Using the standard implementation of the QVHE based on nearest-neighbor couplings on

a honeycomb-lattice system, we discover a fundamental conflict that the QVHE becomes

weaker as the bulk energy gap increases. We experimentally demonstrate the existence of

the interface modes and investigate their localization, providing undeniable evidence that

practical constraints forces on the metamaterials scientists to exit the regime where Dirac

physics applies. We also reproduce the forward propagation along a zigzagged interface,

as observed in many studies before us, however, we, for the first time, demonstrate the
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backscattering of the interface modes under a lattice defect, which reveals that QVHE is a

trivial (weak) topological effect.

The theory based on the Dirac physics supplies the following safe working conditions:

the domain walls and the perturbations must occur at small energy scales and over length

scales much larger than that of the lattice parameters. This is clearly not very useful

for metamaterials applications. We discover a new regime that we name the valley-Chern

effect (VCE), where a robust bulk-boundary principle can be established through topological

arguments rather than effective models. This regime is characterized by large bulk spectral

gaps and Berry curvature distributions that are entirely concentrated around the valley

points. This requires Berry curvature engineering achievable only by turning on couplings

beyond the nearest-neighbor couplings.

3.2 Experimental Platform

In this section, we describe the experimental platform to investigate different QVHE regimes

obtained with the honeycomb-lattice platform.

3.2.1 Configurable Spinners

The configurable spinners in this work are shown in Figure 3.1. Three arms are fitted

with magnets which provide the coupling between the spinners. Four types of spinner

configurations are used in our study, displaying six, five, four and three arms, as shown in

Figure 3.1(c-f). These types are referred to as A, B, C, and D, respectively.

3.2.2 Mapping the Basic Couplings

First, we will concentrate on three basic couplings: A-A, B-B and A-B. These magnetic

couplings can be measured by mapping the resonant modes of the corresponding dimers.

Similar to the description in Subsection 2.2.1, the dynamics of a dimer is governed by the

Lagrangian:
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Figure 3.1 Configurable spinner with detachable arms. (a) Ball bearing with six inserts.
(b) Detachable arms with magnetic ends for coupling. (c-f) The four spinner configurations
used in our study, together with the labels used in the text. The quality factors of the coupled
spinners are measured to be around 50. Source: [Qian et al., 2018].

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) = 1
2I1ϕ̇

2
1 + 1

2I2ϕ̇
2
2 − V (ϕ1, ϕ2). (3.1)

In the regime of small oscillations around the equilibrium configuration, ϕ1 = ϕ2 = 0, the

potential can be replaced by its quadratic approximation:

V (ϕ1, ϕ2) = V0 + 1
2α(ϕ2

1 + ϕ2
2) + βϕ1ϕ2. (3.2)

The symmetry of the potential with respect to the exchange 1 ↔ 2 is made explicit in this

expansion. Here, for stability, |β| < α. Also, β is positive in our setup. The equations of

motion are straightforward:

Ijϕ̈j + αϕj + βϕj′ = 0, j = 1, 2, j′ = 2, 1. (3.3)

22



With the ansatz ϕj(t) = 1√
Ij
Aje

iωt, ω = 2πf , the equation for the resonant modes reads:

ω2

A1

A2

 =

 α
I1

β√
I1I2

β√
I1I2

α
I2


A1

A2

 . (3.4)

For I1 = I2 = IA or IB, it leads to the pairs of resonant frequencies:

fA−A± =
√
α± β
4π2IA

, fB−B± =
√
α± β
4π2IB

. (3.5)

The upper and lower frequency modes correspond to motions where the two angles are

locked as ϕ2 = ±ϕ1, respectively.

The resonant frequencies have been independently measured as functions of distance

d between the magnets and the data is reported in Figure 3.2(c-d). We have verified that

the coupling coefficients are not affect by the removal of the arms, by examining the ratios
fB−B
±
fA−A
±

. As one can see in Figure 3.2(e), these two ratios are more or less identical and

independent of d. From Equation (3.5), this constant value can be identified with the ratio√
IA

IB
, which comes to 1.235 from a fit. At this point, we obtained a quantitative measure of

r = IA

IB
= 1.525. Furthermore, it is possible to invert any of the relations in Equation (3.5),

e.g. A-A, and map the coupling coefficients:

α = 2π2IA
(
f 2

+ + f 2
−

)
, β = 2π2IA

(
f 2

+ − f 2
−

)
. (3.6)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2 Mapping the coupling coefficients. (a-b) The A-A and B-B dimmer
configurations, respectively. (c) The experimentally measured resonant frequencies fA−A±
(red/blue dots, respectively) of the A-A dimer as functions of separation d between the
magnets. (d) Same as (c) but for B-B dimer. (e) The ratios fB−B

+
fA−A

+
(red dots) and fB−B

−
fA−A
−

(blue dots) as function of separation. (f) The coupling coefficients α (solid red dots) and β
(solid blue dots), as derived from Equation (3.6) in units of 2π2IA ×Hz2, together with the
analytic fits Equation (3.7) (continuous lines). Source: [Qian et al., 2018].
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(a) (b)

     A-B dimer

   Separation

Figure 3.3 The A-B coupling. (a) The A-B dimer configuration. (b) The experimentally
measured resonant frequencies fA−B± as function of distance between the magnets.
Source: [Qian et al., 2018].

The resulting values are shown in Figure 3.2(f), in the units of 2π2IA × Hz2, together with

the theoretical fits:

α(d) = −778.14√
d

+ 3439.81
d

+ 161.35
d2 ,

β(d) = −654.09√
d

+ 2763.66
d

+ 575.89
d2 .

(3.7)

For completeness, the resonant frequencies for the A-B dimer are reported in Figure 3.3(b).

They agree well with the coupling coefficients Equation (3.7). Similar measurements have

been performed for the combinations A-C and A-D, for which the coupling coefficients

remain the same and r was found to be approximately 1.3 and 1.2, respectively.

3.3 QVHE with Coupled Spinners

We generate the QVHE with the classical honeycomb configuration. The fully assembled

spinner system in the A-B configuration is shown in Figure 3.4, together with the primitive

cell and primitive vectors. The centers of the primitive cells are located at Rn = n1a1 +

n2a2, hence we can label the cells by n = (n1, n2) ∈ Z2. The spinners can be easily

identified using the pair of indexes (n, A) or (n, B). The shift operations acting on the
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indices:

S1n = S1(n1, n2) = (n1 + 1, n2),

S2n = S2(n1, n2) = (n1, n2 + 1),
(3.8)

will prove to be convenient for the calculations below.

Figure 3.4 Bulk configuration. It is a finite bipartite honeycomb lattice populated with
A (red) and B (blue) type spinners. The actuator appears at the bottom of the illustration.
The inset shows the primitive cell (shaded region) and the primitive vectors a1 and a2 in
yellow. Source: [Qian et al., 2018].
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3.3.1 Mapping the Bulk Spectrum

The Lagrangian of the infinite lattice takes the form:

L =
∑
n∈Z2

(
1
2IAϕ̇

2
n,A + 1

2IBϕ̇
2
n,B − V (ϕn,A, ϕn,B) (3.9)

− V (ϕn,A, ϕS−1
1 S−1

2 n,B
)− V (ϕn,A, ϕS−1

2 n,B
)
)
,

and, using the quadratic approximation Equation (3.2), the equations of motions take the

form:

IAϕ̈n,A
IBϕ̈n,B

 =

−3αϕn,A − β(ϕn,B + ϕS−1
1 S−1

2 n,B
+ ϕS−1

2 n,B
)

−3αϕn,B − β(ϕn,A + ϕS1S2n,A + ϕS2n,A)

 . (3.10)

It is convenient to make the change of variables:

ϕn,A = 1√
IA
ψn,A, ϕn,B = 1√

IB
ψn,B, (3.11)

and bring the equations to the form:

ψ̈n,A
ψ̈n,B

 =

−3 α
IA
ψn,A − β√

IAIB
(ψn,B + ψS−1

1 S−1
2 n,B

+ ψS−1
2 n,B

)

−3 α
IB
ψn,B − β√

IAIB
(ψn,A + ψS1S2n,A + ψS2n,A)

 (3.12)
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We can encode the degrees of freedom in a single function:

ψ : Z2 → C2, ψ(n) =

ψn,A
ψn,B

, (3.13)

and use the ansatz ψ(t) → Re
[
eiωtψ

]
, ω = 2πf . Then, in the units used in Figure 3.2(f),

the equations of motions simplify to:

f 2ψ =
[

3
2α
(
1 + r + (1− r)σ3

)
+β
√
r
(
σ1 + σ−(S1S2 + S2) + σ+(S†1S†2 + S†2)

)]
ψ,

(3.14)

where the shift operators act as:

(Sjψ)(n) = ψ(Sjn), j = 1, 2, (3.15)

and σ’s are Pauli’s matrices. The shift operators commute with each other and also with

the dynamical matrix, and have common eigenvectors:

Sj e
ikn = eikjeikn, k = (k1, k2) ∈ [−π, π]2, j = 1, 2. (3.16)
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Hence, the normal modes will be sought in the formψ(n) = eikn ξ, ξ ∈ C2, in which case

the dispersion equation reduces further to:

f 2ξ =
(

3
2α
(
1 + r + (1− r)σ3

)
+ β
√
r

 0 γ(k)∗

γ(k) 0


)
ξ, (3.17)

with γ(k) = 1 + ei(k1+k2) + eik2 . The explicit dispersion equations of the resonant modes

then follow:

f± = 3α
2

[
(1 + r)±

√
(1− r)2 + 4rβ2

9α2 |γ(k)|2
] 1

2

. (3.18)

When r = 1, the system is inversion symmetric and two Dirac singularities are present in

the bulk band structure. The imbalance between IA and IB breaks the inversion symmetry,

hence the Dirac singularities split as soon as r > 1. The valleys are located at the points

where |γ(k)| = 0, which are K = −K ′ = (2π
3 ,−

2π
3 ).

A graphical representation of the dispersion equations (3.18) is reported in Figure 3.5

for a sequence of increasing values of r. For the value r = 1.525 corresponding to the A-B

configuration, a comparison between the theoretical spectrum and the experimental reading

from an induction coil sensor placed inside the structure is shown in Figure 3.6. Since the

structure is actuated from the edge, a non-zero reading from the sensor indicates that the

actuating frequency belongs to the bulk spectrum, while a zero reading indicates that it is in

a spectral gap. The predicted spectral gap in Figure 3.6(a) is confirmed by the experimental

result in Figure 3.6(b) within 1%.

There are several important observations about the bulk dynamics. First, in

Equations (3.18), the depth of the valleys is set by the ratio of β
α
, once r is fixed. The

larger this ratio the deeper the valleys, but note that β
α
< 1, so with nearest-neighbor
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Figure 3.5 Predicted bulk band spectra. Plots of the dispersion equations (3.18) for various
values of the ratio r = IA

IB
. The graphs are rendered as functions of (k1, k2) ∈ [−π, π]2

and the red dots indicate the position of the valleys points K and K ′. Source: [Qian et al.,
2018].
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Sensor Output-p pk1

Figure 3.6 Predicted versus measured bulk spectrum. (a) The theoretical data taken from
the last panel of Figure 3.5 (r = 1.525). The view point is chosen here such that k2 is into
the page and the red dots indicate the position of the valleys K and K ′. (b) The reading
from a sensor placed inside the spinner structure when the system is actuated from the edge.
The shaded region in beige marks the spectral gap, which is consistent between theoretical
and experimental results. Source: [Qian et al., 2018].
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couplings on the honeycomb lattice, there is an upper limit on the sharpness of the valleys.

For our experimental system, β
α

= 0.8, which can be placed among the most optimized

systems ever produced. Hence, the conclusions we draw based on our experimental setup

have quite a broad relevance. Second, while the dynamical matrix in Equation (3.17) can

be indeed approximated by a Dirac Hamiltonian around the valleys K and K ′, by a simple

linear expansion, the region on which this approximation holds reduces drastically with the

increase of r. This can be already seen by examining the spectra in Figure 3.5, from where

we conclude that treating QVHE with the effective Dirac approximation is questionable at

and beyond r = 1.2.

3.3.2 Berry Curvature

A graphical representation of Berry curvature is reported in Figure 3.7 for various values

of the parameter r. There are several important remarks here. First, as expected, if the

inversion symmetry is only slightly broken, such as when r = 1.05, we see that the Berry

curvature is strongly localized near the valleys. But as r is increased, this localization

becomes worse. This somewhat surprising rapid decrease is due to in part to the slow decay

at infinity of the Berry curvature supported by a split Dirac cone. This shows that one has

to be cautious when using Dirac effective models for and beyond r = 1.2. Furthermore,

it becomes quite apparent that robust QVHE, primed for applications, cannot be generated

via simple Dirac cone splittings and instead it will require sophisticated Berry curvature

engineering. The above warning signs apply to any model based on nearest-neighbor

couplings on honeycomb lattice.

3.3.3 Domain Walls

The experimental setup with a straight domain wall is shown in Figure 3.8. A schematic and

more geometrical data are shown in Figure 3.9. It is important to note that the previously

chosen primitive cell and vectors are consistent with the domain wall, in the sense that the
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Figure 3.7 Berry curvature. The theoretical calculations were performed with the
experimental values of the coupling constants α and β and for the specified values of
r = IA/IB. The last value r = 1.525 is used in the experimental demonstrations. The data
is rendered as function of (k1, k2) whose axes are not shown. Source: [Qian et al., 2018].

domain does not slices the unit cell and the primitive vector a1 is parallel to the domain

wall.

The resulting spectrum for the domain wall configuration of Figure 3.8 is reported in

Figure 3.10, which reproduces the well-known QVHE features. First thing to notice is that

the domain wall modes do not dive into the bulk spectrum but rather get connected at higher

and lower energies. This is one difference between this effect and a true topological effect.

Also, as r is increased, the bulk gap increases, strengthening the localization of the interface

modes along the domain wall. However, unfortunately, the domain wall bands move away

from the bulk spectrum and the system will eventually become gapped. Another important

aspect is the separation of the propagating and counter-propagating with respect to k, since

a better separation implies less backscattering. Recalling that k actually live on a circle,

then, ideally, one will like to pick a frequency where k = ±π
2 , and we can do that only with
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Figure 3.8 The experimental setup with a straight domain wall. The domain wall consists
of the zigzag chain of B type (blue) spinners. Note the actuator positioned at one end of the
domain wall. Source: [Qian et al., 2018].
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a1

a2

Figure 3.9 Schematic of the domain wall. Note that the domain wall does not cut any of
the primitive cells. Source: [Qian et al., 2018].

r = 1.525. The experiment confirms that the most robust QVHE is indeed obtained at the

mid-gap frequency of the A-B configured system.

3.3.4 Experimental Observation of the Domain Wall Modes

The domain wall has been actuated from one end, as shown in Figure 3.8, until a stationary

regime is established. In this setup, the counter-propagating domainwallmodes are scattered

into each other at the ends of the interface, leading to a standing wave. Pickup coils similar

to the ones found in electric guitars have been placed on top of the bonds and the standing

wave pattern is mapped out. Four magnetic bonds in the a2 direction have been probed,

starting from the domain wall, enough to assess the spatial localization of the modes.

The experimental results are reported in Figure 3.11. One can see that, for frequencies

up to 25.0 Hz, the sensors return only small motion amplitudes. These frequencies must

be within or very close to the bulk spectrum in which case the signal from the actuator

disperses throughout the entire lattice, hence explaining the small amplitudes. Beyond 25.0

34



k k k

Fr
eq

u
e

n
cy

 (
H

z)
Fr

eq
u

e
n

cy
 (

H
z) r = 1.4

r = 1 r = 1.1 r = 1.2

r = 1.3 r = 1.525

Figure 3.10 Predicted spectrum in the presence of a domain-wall. Simulations are shown
for increasing values of r = IA

IB
, ranging from 1 all the way to the experimental value of

1.525. The spectrum is computed on a strip with the domain-wall at the center. The doubly
degenerated flat band seen in all panels is located at the edges of the ribbon, hence it is
unrelated to the physics studied here. Source: [Qian et al., 2018].

Hz, the sensors pickup strong amplitudes near the interface and the amplitudes are seen

to fade away into the bulk. We are definitely witnessing a standing wave supported by

the interface channel. The strongest resonant patterns are observed within the range of

frequencies from 28.0 to 29.0 Hz. Above this range, the sensor readings fade away again

since the frequency approaches the upper part of the bulk spectrum.

The domain wall modes in QVHE are known to be robust against spatially slow

deformations of the interface. However, it has been reported with many occasions [Lu

et al., 2016,Lu et al., 2017,Pal and Ruzzene, 2017,Vila et al., 2017,Zhu et al., 2018a,Jiang

et al., 2018b, Liu and Semperlotti, 2018,Wu et al., 2018, Chaunsali et al., 2018b, Chen

et al., 2018] that a signal can propagate along the domain wall channels with very little

backreflection even if the interface is bent sharply. To investigate this interesting and

potentially important effect, we reconfigured our A-B system in the L-shaped domain wall

configuration shown in Figure 3.12. The measurements have been repeated and the results
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Figure 3.11 Experimental observation of the domain wall modes. The fine line marks
the position of the interface relative to the honeycomb lattice, indicated by the black dots.
The red disks mark the position of the motion sensors, which are placed above bonds. The
size of a disk is proportional with the reading of the motion sensor at that location. The
frequencies, which are marked in each panel, sample the entire bulk gap. The measurement
are for the A-B system (r = 1.525). Source: [Qian et al., 2018].

are reported in Figure 3.13. As many before us, we find that, indeed, there is a healthy

transmission of the signal beyond the corner of the L-shaped domain wall. Judging by the

amplitudes seen along the two arms of the L-shaped (see especially the panels f = 28.5 Hz

and f = 29.0 Hz), we concluded that the transmission is only about 90%.

We also report a comparison between the most robust domain wall modes we could

generate with A-B (r = 1.525), A-C (r = 1.3), and A-D (r = 1.2) systems. Given that the

actuation was identical, their difference is striking. Indeed, for r = 1.525 case, the mode is

highly localized and the amplitude of the oscillations is substantial, while for the r = 1.3

and r = 1.2 cases, the mode is quite delocalized and, because of that, the amplitudes of

the oscillations are much smaller. In fact, with r = 1.2 it was difficult to observe the

domain wall mode. The inherent conclusion is that the regime r < 1.2, where the effective

Dirac models apply, is interesting for demonstration purposes but has little relevance for the

practical applications.
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Figure 3.12 The experimental setup with a L-shaped domain wall. The domain wall
consists of the zigzag chain of B type (blue) spinners. The actuator positioned at one end
of the domain wall. Source: [Qian et al., 2018].
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Figure 3.13 Experimental observation of the L-shaped domain wall modes. Except for
the shape of the interface, the rest of the details are shown in Figure 3.12. Source: [Qian
et al., 2018].

3.4 Summary

This study experimentally demonstrates how breaking inversion symmetry within the unit

cell can lead to topological band gaps in a discrete mechanical system. However, a

fundamental difficulty is uncovered in the current implementations of the QVHE. More

precisely, the designs based on nearest-neighbor couplings on a honeycomb lattice will

inherently fail one of the following tests: (1) Berry curvature localization around the valleys,

(2) localization of the domain wall modes along the interface, and (3) lack of back-scattering

of domain wall modes under lattice defects. To correct for these shortcomings, a certain

Berry curvature engineering through couplings beyond nearest-neighbor, for large bulk

spectral gaps and Berry curvature distributions localized near the valleys, is believed to be

a solution, which is a new regime that we name the valley-Chern effect [Qian et al., 2018].

For this regime, genuine chiral domain modes can be achieved by adjusting the domain wall

potential. As the program of Berry curvature engineering is yet to be developed, at this

point, we can only provide predictions and recommendations for implementations of the

true VCE.
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CHAPTER 4

TOPOLOGICAL FLAT BANDS IN MECHANICAL METAMATERIALS

In this chapter, we will demonstrate the realization of topological flat frequency bands in a

series of topological mechanical metamaterials based on a recently proposed 2D electronic

model. The work was in collaboration with Dr. Linghua Zhu, Prof. Keun Hyuk Ahn,

and Prof. Camelia Prodan from the Department of Physics at New Jersey Institute of

Technology.

4.1 Introduction

Flat energy bands have been the focus of intense research in photonic crystals, such as the

Lieb lattice, due to the possibility of trapping photons, which has technological significance

[Lieb, 1989,Wiersma, 2015, Vicencio et al., 2015,Mukherjee et al., 2015, Klembt et al.,

2017, Leykam and Flach, 2018, Leykam et al., 2018, Lazarides and Tsironis, 2019]. They

have also gained a lot of attention [Kariyado and Slager, 2019] following the discovery of

superconductivity in twisted bilayer graphenes [Bistritzer and MacDonald, 2011,Cao et al.,

2018a,Cao et al., 2018b,Po et al., 2018,Yankowitz et al., 2019] and the pursuit of nearly flat

bands in the fractional Chern insulators [Tang et al., 2011,Neupert et al., 2011, Sun et al.,

2011,Wang and Ran, 2011, Liu et al., 2012,Wang et al., 2012]. Recently, there has been

a theoretical proposal for flat energy bands of topological origin within antiphase and twin

boundaries and at open edges in a system described by a 2D electronic tight-binding model

Hamiltonian [Zhu et al., 2019]. Unlike the Lieb lattice, the flat band states occur only at

edges or domain boundaries, giving a unique controllability through patterning. Unlike

twisted bilayer graphenes or fractional Chern insulators, the flatness of the bands in the

entire projected reciprocal space does not require tuning of parameters. We experimentally

demonstrate the realization of the Hamiltonian and the flat bands in the metamaterials by

usingmechanical systemsmade of interacting spinners [Apigo et al., 2018,Qian et al., 2018].
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By examining how the width of the edge band narrows in frequency as the edge-to-edge

distance increases, we show the presence of the topological flat frequency bands at the

edges. It is revealed that the size of the localized excitations at the edges correlates with

the width of the edge band. The analog to electronic charge fractionalization [Asbóth et al.,

2016] is also found. Additionally, we experimentally verify the presence of a mid-gap mode

at the antiphase boundary seam of a ring-shaped spinner system, and computationally find

a flat antiphase boundary seam band for a tubular system.

Systems of magnetically coupled spinners are versatile experimental platforms for

various Hamiltonians [Apigo et al., 2018,Qian et al., 2018]. In mapping between electronic

tight-binding Hamiltonians and magnetically coupled spinner systems, the intersite electron

hopping corresponds to the interspinner magnetic interaction controlled by the distance

between the magnets. The electronic model Hamiltonians for the flat bands at open edges

and antiphase/twin boundaries [Zhu et al., 2019] are based on a particular 2D extension of

the SSH model [Su et al., 1979]. Unlike other 2D SSH models [Xie et al., 2018,Delplace

et al., 2011], SSH chains with alternating intersite hopping strengths are shifted and stacked

in the direction perpendicular to the chains. With only the first neighbor hoppings, the 2D

system preserves the chiral symmetry of the 1D SSH system. With the constant interchain

coupling weaker than the average intrachain coupling, a gap opens between two bulk bands

and the topology of the system is characterized by the winding number, which depends on

the direction of edges or boundaries. The bulk-boundary correspondence predicts flat zero

energy edge or boundary bands of bipartite states for the chiral 2D SSH system, similar to

the 1D SSH system.

4.2 Flat Frequency Bands at Open Edges

4.2.1 Configuration of Systems

One of the 2D spinner systems and its schematic diagram are shown in Figures 4.1(a) and

4.1(b). With magnets attached to the 0°, 60°, 180°, and 240°direction arms and the spinners
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arranged in quasi-triangular lattices, the systems are equivalent to the electronic systems of

quasi-square lattices [Zhu et al., 2019]with hoppings in the 0°, 90°, 180°, and 270°directions.

The systems are assembled with the edges in the 0°and 120°directions, equivalent to the

0°and 135°directions for the quasi-square systems. The spinners are indexed as (n1, n2)

with n1 = 1, ..., N1 and n2 = 1, ..., N2 (Figure 4.1(b)). The SSH chains run along the

0°direction with alternating intrachain couplings, represented by the red and the blue lines

in Figure 4.1(b). The chains are coupled along the 60°direction with a constant interchain

coupling, represented by the green lines. A unit cell is marked in purple. If the interchain

coupling is weaker than the average intrachain coupling, and the interaction within the unit

cell is weaker [stronger] than the interaction between the unit cells within the same chain, the

system becomes a topological [nontopological] insulator (see Section 4.5 Supplementary

Material for further information on theoretical analyses and adequacy of the chosen spinner

system sizes). For chiral symmetry, fixed spinners with necessary interactions are placed

around the edges, as shown in Figures 4.1(a) and 4.1(b). One of the spinners is driven by

the interaction between a magnet on either 120°or 300°direction arm and a magnet on the

actuator. The voltage from an attached accelerometer divided by the square of the frequency

is used as a quantity proportional to the oscillation amplitude of the spinner.

With parameters from our previous work [Apigo et al., 2018,Qian et al., 2018], the

spectra are calculated to decide which spinners to actuate and measure, so that the bulk

and edge band widths are well represented. Actuating and measuring at the (N1, 2) spinner

[(N1− 1, 1) spinner] gives the spectrum that represents the edge [bulk] band width well for

the topological systems. By choosing the intermagnet distances of 5.0, 8.0, and 9.0 mm for

red, blue, and green lines, respectively, as shown in Figure 4.1(b), we realize topological

systems with the winding numbers ν(120°) = 1 and ν(0°) = 0, where topological edges

in 120°direction, and by choosing 8.0, 5.0, and 9.0 mm, nontopological with ν(120°) =

ν(0°) = 0 [Zhu et al., 2019]. The theoretical analysis for the N1 ×N2 topological systems

with open boundary conditions (see Section 4.5 Supplementary Material) shows that the
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Figure 4.1 (a) 6 × 6 spinner system, where rotatable spinners and magnetically coupled
arms are highlighted and fixed spinners and arms without magnets are shaded. (b)
Illustration of the spinner system pictured in (a), where the orange [grey] balls represent
rotatable [fixed] spinners. The purple ellipse represents a unit cell. The blue [red] lines
indicate the couplings within [between] the unit cells within the 1D SSH chains along the
0°direction. The green lines indicate the constant interchain coupling, which is smaller than
the average intrachain coupling. Coordinates (n1, n2) describe the position of the spinners.
Source: [Qian et al., 2020].

edge states decay rapidly within a few spinner-to-spinner distances in the n1 direction and

the edge band widths for the systems withN2 = 6 are within 5−15% (0.12−0.03 Hz) from

those for the large N2 limit. Thus, small size systems from 4 × 6 to 12 × 6 are sufficient

to reveal the trend in the edge band width versus N1, the distance between the topological

edges.

4.2.2 Results for Topological Insulator Systems

Figure 4.2 shows the results for the topological systems. Spectra obtainedwith the (N1−1, 1)

spinner for the N1 × 6 systems with N1 = 4, 6, 8, 10, and 12 are shown in solid lines in

Figures 4.2(a)-4.2(e), respectively, each of which reveals upper and lower bulk bands,

marked by blue areas, and a gap in between. To reveal the modes at the top [bottom] of the

upper [lower] bulk bands better, we also actuate and measure at (N1/2 + 1, 5) spinners, as

shown in dotted lines in Figures 4.2(a)-4.2(e). Figures 4.2(f)-4.2(j) show spectra obtained

with the (N1, 2) spinner for the same systems as in Figures 4.2(a)-4.2(e), respectively. Edge

bands, marked by red areas, appear within the gaps of the bulk spectra. Figures 4.2(a)-4.2(j)
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show systematic changes in the bulk and edge band widths, which are plotted as solid

symbols in Figure 4.2(k), along with the theoretical results shown as open symbols. The

experimental results are in agreement with the theory and show both upper and lower

bulk band widths increase as the edge-to-edge distance N1 increases due to the finite size

effect, and start to saturate around N1 ∼ 8. In contrast, the edge band width from the

experiments narrows rapidly as the edge-to-edge distance increases, consistent with the

numerical results. Theoretical analysis for systems with a periodic boundary condition in

the n2 direction reveals that the edge states with the wave vector k2 have bipartite patterns

of zero amplitudes and exponentially decaying nonzero amplitudes with localization length

ξ(k2).1 This leads to the edge band width ∆f0 = CN1e
−N1/ξ0 in the large N1/ξ0 limit,

where C is a constant and ξ0 = ξ (k2 = 0) (see Section 4.5 Supplementary Material

for details.). Since N1/ξ0 is not large for N1 = 4 and the theoretical ξtheory0 = 3.1, the

experimental data for N1 = 6, 8, 10, and 12 are used to decide ξ0 experimentally as shown

in Figure 4.2(l). The line represents ln (∆f0) = lnC+lnN1−N1/ξ0 and shows agreement

with experimental data with ξ0 ≈ 3.2, close to ξtheory0 . The results in Figures 4.2(k) and

4.2(l) indicate that the edge band would be completely flat, as the edge-to-edge distanceN1

increases further, confirming the predictions [Zhu et al., 2019].

4.2.3 Topological and Nontopological Systems

By exchanging the strong and theweak intrachain couplings, the topological systems become

nontopological. The experimental results for 6× 6 topological and nontopological systems

are shown in Figures 4.3(a) and 4.3(b). For the topological system, the edge band is

prominent in the spectra obtained from the (6, 2) and (6, 1) spinners, located within the

gap in the spectrum from the (5, 1) spinner. For the nontopological system, the edge band

1The theoretical analysis leads to the localization length of the edge states with a wave vector k2,
ξ(k2) = 4/ ln[(β2

r + β2
g + 2βrβg cos k2)/(β2

b + β2
g + 2βbβg cos k2)]. Here, βr, βb, and βg are the

parameter β defined in the paper [Apigo et al., 2018] for the pairs connected by red, blue and green
lines in Figure 4.1(b) with values of 280.0 Hz2, 106.7 Hz2, and 83.4 Hz2, respectively, resulting in
ξ(k2) from 0.9 at k2 = ±π to 3.1 at k2 = 0.

43



Figure 4.2 Results for topological systems. (a-e) Solid lines: Bulk mode spectra
experimentally obtained by actuating and measuring at the (N1 − 1, 1) spinner for the
N1 × 6 systems with N1 = 4, 6, 8, 10, and 12, respectively. Dotted lines: Spectra
obtained with the (N1/2 + 1, 5) spinner to reveal the top [bottom] of the upper [lower]
bulk bands better. The blue areas indicate the lower and upper bulk bands. (f-j) Edge
mode spectra experimentally obtained with the (N1, 2) spinner for the same systems as in
(a-e), respectively. Red areas indicate the edge bands. A red arrow in (a) [blue arrows
in (f)] indicates edge [bulk] modes appearing in the bulk [edge] spectra due to the short
edge-to-edge distance. (k) Experimental and theoretical bulk and edge band widths versus
the system size N1 ×N2. (l) Logarithm of experimental edge band width, ln (∆f0), versus
N1 and fitting to the theory, resulting in the localization length at k2 = 0, ξ0 ≈ 3.2, close to
the theory value of 3.1 (see Section 4.5 Supplementary Material for details). Source: [Qian
et al., 2020].
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disappears from the gap, leaving only the bulk bands. The results show the difference

between the topological and nontopological systems and the topological origin of the edge

states [Zhu et al., 2019].

Figure 4.3 Spectra experimentally obtained by actuating andmeasuring at the (5, 1), (6, 2),
and (6, 1) spinners for the 6× 6 (a) topological and (b) nontopological systems. The edge
band is present in the bulk band gap in (a), but absent in (b). Source: [Qian et al., 2020].

4.2.4 Localization of Edge Modes

For topological systems, the presence of the edge modes depends on the direction of the

open edges, determined by the winding numbers ν(120°) = 1 and ν(0°) = 0. With ν = 0

outside the open edges, the edge modes should occur only along the 120°direction edges,

not along the 0°direction. To test these predictions, we build a topological system with the

same number of spinners along the 0°and 120°directions, and actuate the (N1, 1) spinner,

which belongs to both 0°and 120°direction edges, at a frequency within the edge band to

see along which direction the edge mode appears. We choose a small 4× 4 system, so that

all the spinners at the topological edges show large oscillations and bulk modes could be

excited by actuating the same spinner at a bulk mode frequency. The oscillation pattern at

an edge mode frequency is displayed in Figure 4.4(a), in which the colors approximately

represent the oscillation amplitudes of spinners, estimated from the slow motion movie by

eyes. The actuated spinners are marked by stars in Figure 4.4. The edge mode appears

along the edges in the 120°direction, not in the 0°direction, consistent with the topological

analysis. It confirms that the bands in the bulk band gap in Figures 4.2(f)-4.2(j), and

4.3(a) are edge bands. We excite bulk modes by actuating the (4, 1) spinner at a bulk
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band frequency, as shown in Figure 4.4(b), where the oscillations are concentrated on the

central two columns along the 120°direction, confirming the bands above and below the

gap in Figures 4.2(a)-4.2(e) and 4.3(a) are the bulk bands. As the edge-to-edge distanceN1

increases and the edge band becomes flatter, the excitation at the edges is more localized

along the edges. To verify this, the N1 × 4 systems with N1 = 6 and 8 are studied by

actuating (N1, 1) spinner at edge mode frequencies. The results shown in Figures 4.4(c)

and 4.4(d) reveal that edge modes decay much faster along the edges compared to the 4× 4

system in Figure 4.4(a), consistent with the enhanced localization as the edge band becomes

narrower. For the 8 × 4 system shown in Figure 4.4(d), only (1, 4) spinner, other than the

actuated (8, 1) spinner, shows a large oscillation, while the oscillations of all other spinners

are much smaller, which is the analog of the fractional charge state [Asbóth et al., 2016].

Figure 4.4 (a-d): Patterns of modes. Colors represent the oscillation amplitudes of the
spinners, estimated from slow motion movies by eyes. Stars mark actuated spinners. In (a)
[(b)], an edge [bulk] mode is revealed at 23.6 Hz [19.5 Hz] in the edge [bulk] band for the
4 × 4 topological system. In (c) [(d)], an edge mode is revealed at 23.7 Hz [24.5 Hz] for
the 6× 4 [8× 4] topological system. (e) Normalized oscillation amplitude of the (n1, n2)
spinner versus its distance from the right edge, 12 − n1, when a single (12, n2) spinner
(n2 = 1, ..., 6) at the right edge is actuated for the 12× 6 topological system. (f) Symbols:
semilogarithmic plot of (e) for even 12 − n1. Lines: linear fittings, leading to an average
localization length ξ = 1.5 ± 0.3, consistent with the theoretical range of ξ(k), 0.9 ∼ 3.1.
Source: [Qian et al., 2020].
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Asmentioned briefly, theoretical analysis leads to the amplitude of the right edgemode

with the wave vector k2 vanishes for odd n1, and decays as Bk2(n1, n2) = Be−(N1−n1)/ξ(k2)

for even n1, where ξ(k2) is the localization length (see Section 4.5 Supplementary Material

for details.) To verify this for the 12 × 6 system, we actuate a single (12, n2) spinner

(n2 = 1, ..., 6) at the central frequency of the edge band and measure the amplitudes for

the (n1, n2) spinners with 12-n1 = 0, ..., 7 by accelerometers. The results for each case of

n2 are shown in Figure 4.4(e), which reveals that the right edge modes have much smaller

amplitude for odd n1 than for even n1, consistent with the theory. Semilogarithmic plot for

the data with even n1 in Figure 4.4(f) shows exponentially decaying amplitudes, with the

average localization length ξ = 1.5± 0.3, which is within the range of the theoretical ξ(k2)

from 0.9 at k2 = ±π to 3.1 at k2 = 0, reflecting that the excited edge states are combinations

of edge states with different k2.

4.3 Flat Frequency Bands at Antiphase Boundaries

4.3.1 Ring-shaped System

Inhomogeneous systems could host flat bands at the antiphase or twin boundaries inside

the bulk [Zhu et al., 2019, Ahn et al., 2005]. The antiphase boundary of the 1D SSH

chain hosts the zero energy state in the gap, because it separates domains with different

winding numbers [Li et al., 2018, Asbóth et al., 2016]. To force the system to have an

antiphase boundary but no edges, a ring-shaped 1D SSH system with an odd number (15)

of spinners is built, as shown in Figure 4.5(a), where the red and the blue lines represent

the interactions between magnets separated by 5.0 and 8.0 mm, respectively. A fixed

spinner, shown as a grey ball, is placed just outside the seam for the chiral symmetry. By

actuating and measuring at the spinner #1 [#2], the antiphase boundary seam mode [bulk

mode] is revealed in the spectrum, as shown in the red [blue] line in Figure 4.5(b). The

seam mode peak is present in the gap, consistent with the theory [Zhu et al., 2019,Asbóth

et al., 2016]. The slow motion movie of the seam mode reveals an oscillation of every
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other spinners in both directions from the spinner #1 with decaying amplitudes, consistent

with the theory [Schomerus, 2013,Asbóth et al., 2016] and experiments for other 1D SSH

metamaterials [Li et al., 2018,Ota et al., 2018].

Figure 4.5 (a) Illustration of the SSH ring with fifteen spinners and a seam experimentally
studied. See the caption for Figure 4.1(b). The purple line represents the extra coupling at a
magnet distance of 6.5 mm for the chiral symmetry. (b) Red [Blue] line: Edge [Bulk] mode
spectrum experimentally obtained by actuating and measuring at the spinner #1 [#2] for
the SSH ring shown in (a). (c) Tubular model system with thirteen spinners in the azimuthal
direction and an antiphase boundary seam, obtained by joining the (1, n2) and (13, n2 + 1)
spinners of a planar system like Figure 4.1(b) with N1 = 13. The grey balls represent fixed
spinners interacting with the spinners at the seam. The magnification shows the antiphase
boundary seam with the weak azimuthal couplings on both sides (the blue lines), and the
couplings with the fixed spinners (the purple lines). (d) Band structure for the tubular
system in (c). The blue lines represent the bulk bands and the red line the flat antiphase
boundary seam band. Source: [Qian et al., 2020].

4.3.2 Theoretical Tubular Model

We theoretically consider tubular SSH systems with odd numbers of the spinners in the

azimuthal direction, so that the antiphase boundary seams are forced to be present as shown

in Figure 4.5(c). While this seam is locally equivalent to the 120°antiphase boundary [Zhu

et al., 2019], the odd number of spinners in the azimuthal direction prevents us from

defining a two-spinner unit cell or the topological winding number globally, unlike the

systems proposed in [Zhu et al., 2019]. With a periodic boundary condition along the tube

axis, the frequency versus k2 is calculated and shown in Figure 4.5(d), revealing an almost

flat seam band (red line) inside the gap between the bulk bands (blue lines). The flat band
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found in this system, where the winding number is undefinable, demonstrates the robustness

of the flat bands.

4.4 Summary

This study experimentally demonstrates the presence of the flat frequency bands of the

topological origin localized at open edges and antiphase boundary seams in discrete

mechanical metamaterials made of magnetically coupled spinners. The results presented

herein could apply to metamaterials in different fields of interest, potentially leading to

novel phenomena and device applications.

4.5 Supplementary Material

4.5.1 Theoretical Analysis

In this subsection, further details of the theoretical analysis are provided. As described in

previous chapters [Apigo et al., 2018,Qian et al., 2018], the normalized Lagrangian for two

magnetically coupled spinners is approximately given by

L(ϕ1,ϕ2,ϕ̇1,ϕ̇2)
2π2I

= 1
4π2 ϕ̇

2
1 + 1

4π2 ϕ̇
2
2 − 1

2α(ϕ2
1 + ϕ2

2)− βϕ1ϕ2, (4.1)

where I represents themoment of inertia of each spinner,ϕ1 andϕ2 the rotation angles of the

two spinners from the equilibrium states. The parameters α and β represent the coefficients

in potential energy terms and depend on the strengths of the magnets attached at the end of

spinner arms and the distance between the magnets. If we represent the parameter β for the

spinner pairs connected by the blue, red, and green lines in Figure 4.1(b) in the main text

as βb, βr, and βg, the condition for the gap opening is βg < (βb + βr)/2, under which the

system becomes topological if βb < βr and nontopological if βb > βr. For the topological

insulator spinner systems, the parameter values are βb = 106.7 Hz2, βr = 280.0 Hz2, and

βg = 83.4 Hz2.
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Applying periodic boundary conditions in the n2 direction, the localization length

ξ(k2) for the edge states with the wave vector k2 is found to be

ξ(k2) = 4

ln
β2

r +β2
g+2βrβg cos k2

β2
b

+β2
g+2βbβg cos k2

, (4.2)

similar to the localization length for the 1DSSH system [Asbóth et al., 2016]. The amplitude

of the oscillation for the left-edge state with the wave vector k2 decays as

Ak2(n1, n2) =


Ae−(n1−1)/ξ(k2) for odd n1

0 for even n1

(4.3)

and for the right-edge state as

Bk2(n1, n2) =


0 for odd n1

Be−(N1−n1)/ξ(k2) for even n1

(4.4)

in the limit of the large edge-to-edge distance, N1 . With the parameter values given above

for the topological spinner systems, we obtain the localization length ξ(k2) versus k2 as

shown in Figure 4.6, with ξ(k2) ranging between 0.9 at k2 = ±π and 3.1 at k2 = 0 in the

unit of the spinner-to-spinner distance. The above theoretical results are used to analyze the

experimental results shown in Figures 4.4(e) and 4.4(f) in the main text.

The frequency splitting ∆f(k2) between the two edge modes with the wave vector k2

is ∆f(k2) = CN1e
−N1/ξ(k2) in the limit of large N1/ξ(k2). Since the localization length

ξ(k2) is largest at k2 = 0, the edge band width ∆f0 is given by

∆f0 = CN1e
−N1/ξ0 (4.5)
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Figure 4.6 Localization length ξ(k2) versus the edge state wave vector k2 in the limit of the
large edge-to-edge distance N1 for the topological spinner systems. ξ(k2) varies between
0.9 at k2 = ±π and 3.1 at k2 = 0. Source: [Qian et al., 2020].

in the limit of largeN1/ξ0, where ξ0 = ξ(k2 = 0), the localization length at k2 = 0. The plot

of ln (∆f0) versus N1 for experimental data is fitted into ln (∆f0) = lnC + lnN1 −N1/ξ0

to estimate ξ0, as shown in Figure 4.2(l).

4.5.2 Adequacy of the Chosen Spinner System Sizes

In this subsection, the sizes experimentally chosen for the spinner systems are shown to be

adequate to demonstrate the flatness of the edge bands. Since Figure 4.2(k) demonstrates

that experimental results agree well with numerical simulations for the edge band width,

numerical simulations with open boundary conditions are used for the analysis.

First, for the N1 × N2 spinner system, we fix N1 to 4, 6, 8, 10, and 12, the values

chosen for the experiments, and variesN2 up to 1, 000 to see how the edge band width ∆f0

depends on N2. The results in Figure 4.7(a) show that the edge band width ∆f0 increases

as N2 increases. The values of ∆f0 at N2 = 1, 000, which could be considered as the large

N2 limit, are shown as horizontal lines. The results show that the edge band widths ∆f0

at N2 = 6 (vertical dashed line), the size chosen for experimental setups for the results in

Figure 4.2, are only about 0.12 ∼ 0.03 Hz, or 5 ∼ 15% smaller than the corresponding

largeN2 limits for the systems withN1 = 4, 6, 8, 10, and 12, which indicates that the choice
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N2 = 6 is adequate. Relatively quick saturation of ∆f0 forN2 as small as 6 in Figure 4.7(a)

is consistent with the edge band width being determined at k2 = 0 [See Equation (4.5)],

which is insensitive to the number of k2-points.

Next, withN2 fixed at 6, we examine how adequate the experimental choice ofN1 = 4,

6, 8, 10, 12 is to represent the trend in the edge band width ∆f0 versus N1. The results in

Figure 4.7(b) show that the edge band width ∆f0 continues to decrease as the edge-to-edge

distance N1 increases further up to 30, and becomes below the experimental resolution,

shown in gray area, beyond around N1 = 12. Rapid decrease of the edge band width

with the increase in N1 from N1 = 4 to 12 reflects the relatively short localization length,

ξ(k2) = 0.9 ∼ 3.1 in the unit of spinner-to-spinner distance for the chosen experimental

parameters. The experimental results for N1 = 6, 8, 10, and 12 also allow us to reveal

exponential decrease of the edge band width ∆f0 with respect to N1, consistent with the

theoretical predictions, as shown in Figure 4.2(l). Therefore, our choice of N1 = 4, 6, 8,

10, 12 and N2 = 6 for experimental setups is adequate to show that the edge band would

have a vanishing width and become flat in the whole projected reciprocal space in the limit

of large edge-to-edge distance.
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Figure 4.7 (a) Symbols: Edge band width ∆f0 versusN2, calculated forN1×N2 systems
with N1 = 4, 6, 8, 10, and 12 and open boundary conditions. Horizontal solid lines: ∆f0
calculated for N2 = 1, 000 as a large N2 limit for each case of N1. Vertical dashed line:
N2 = 6 chosen for experimental setups. (b) Edge band width ∆f0 versusN1, calculated for
theN1×6 systems with open boundary conditions. The gray area approximately represents
the experimental resolution, below which the edge band width cannot be measured reliably.
Source: [Qian et al., 2020].
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CHAPTER 5

MAJORANA EDGE MODES IN A SU-SCHRIEFFER-HEEGER LADDER

In this chapter, we will experimentally demonstrate Majorana edge modes and topological

phase transitions in a mechanical Kitaev chain system based on a previously proposed

SSH ladder model. The manuscript of this study is still in preparation. The work is in

collaboration with Dr. David J. Apigo and Prof. Camelia Prodan from the Department

of Physics at New Jersey Institute of Technology, Drs. Karmela Padavić, Suraj S. Hedge,

and Prof. Smitha Vishveshwara from University of Illinois, Urbana-Champaign, and Prof.

Emil Prodan from the Department of Physics from Yeshiva University.

5.1 Introduction

Localized Majorana fermions or Majorana bound states, supported by the Kitaev chain

(Majorana wire) [Kitaev, 2001], have attracted much interest in the rapidly growing

research field of topological superconductors [Hughes, 2011, Hosur et al., 2011, Leĳnse

and Flensberg, 2012, Teo and Hughes, 2013, DeGottardi et al., 2013, Nadj-Perge et al.,

2014, Benalcazar et al., 2014, Sato and Fujimoto, 2016, Kozii et al., 2016, Hu and Kane,

2018, Yan et al., 2019, Li et al., 2020, Wang et al., 2020]. Remarkably, due to the

intrinsic immunity to decoherence, they can be used as qubits for quantum computations

[Kitaev, 2001,Nayak et al., 2008,Hyart et al., 2013,Kauffman and Lomonaco, 2018, Lian

et al., 2018, Tutschku et al., 2020]. Recently, there has been a theoretical study for

investigating physical properties for the Kitaev chain and its localized bound edge states

in an electronic system described by a quasi-one-dimensional (quasi-1D) ladder model

Hamiltonian [Padavić et al., 2018] based on the SSH model [Su et al., 1979]. In the

topological phase, this SSH ladder model acts as an analog of the Kitaev chain [Padavić

et al., 2018]. The close relationship between the two model systems gives rise to a

clear correspondence between their respective topological phases. Here, we emphasize
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that the bound edge states of the SSH ladder model are not Majorana fermions but

number-conserving fermionic states. Previous studies have shown that topological phases

of the SSH ladder model host edge modes with wave functions having spatial profiles that

match those of the localized Majorana modes of the Kitaev chain [Padavić et al., 2018].

Presently, we discuss its realization, and therefore, a realization of the Majorana wire, in a

system of magnetically coupled spinners [Apigo et al., 2018,Qian et al., 2018,Qian et al.,

2020]. We focus on zero energy states as they are meant to reflect the spatial wave function

structure of the dispersionless edge modes present in the Kitaev chain and the SSH ladder

model. Experimentally confirming the presence of these modes amounts to establishing the

mechanical resonator system to be in a topologically non-trivial phase that is a counterpart

to the topological phases of the Kitaev chain.

5.2 SSH Ladder System

Systems of magnetically coupled spinners have been shown to be a versatile experimental

platform for various model Hamiltonians [Apigo et al., 2018,Qian et al., 2018,Qian et al.,

2020]. In the mapping between electronic tight-binding Hamiltonians and magnetically

coupled spinner systems, the intersite electron hopping corresponds to the interspinner

magnetic interaction, which is controlled by the distance between the magnets. The

electronic model Hamiltonians studied in [Padavić et al., 2018] are based on a quasi-1D

model consisting of two coupled SSH chains - an SSH ladder - which possesses the same

edge mode localization properties as theMajorana wire. By calculation, the SSH ladder can

be realized with magnetically coupled spinners. By simply varying the interchain coupling

distance, the spinner ladder system can be transformed between a topological insulator and

a topologically trivial insulator. Slow motion movies are analyzed for the pattern of modes.
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5.2.1 Configuration

The setup of the SSH spinner ladder system and its schematic diagram are shown in

Figures 5.1(a) and 5.1(b). The system is composed of two horizontal SSH chains with

alternating intrachain couplings, shifted and stacked along the 60°direction with a constant

interchain coupling distance. As shown in Figure 5.1(a), with magnets attached to the

0°, 60°(for lower chain), 180°, and 240°(for upper chain) direction arms and the spinners

arranged in the quasi-triangular lattice, the system is equivalent to the quasi-1D electronic

model of square lattice with electron hopping in the 0°, 90°(for lower chain), 180°, and

270°(for upper chain) directions shown in the paper [Padavić et al., 2018]. The spinners

are indexed as (n1, n2) with n1 = 1 (upper chain), 2 (lower chain) and n2 = 1, 2, ..., 13. As

shown in Figure 5.1(b), di for i = 1, 2 and i = 12 denote the couplings between individual

spinners along the 0°and 60°directions, respectively. A purple plaquette represents a unit

cell. The chiral symmetry is preserved by providing fixed spinners with the necessary

interactions placed at the edges. For experimentation, one of the spinners is driven to

oscillate by an actuator through the interaction between a magnet on the 60°direction arm of

the spinner and a magnet on the actuator arm. The voltage from an attached accelerometer

divided by the square of the frequency is used as a quantity proportional to the oscillation

amplitude of the spinner.

5.3 Experimental Results

5.3.1 Bulk and Edge Spectra

Figure 5.2 shows the results for the spinner ladder system with various interchain coupling

distances d12. Spectra obtained by actuating and measuring at the (1, 6) and (1, 7) spinners

are shown as black solid dots in Figure 5.2(a), which reveals bulk bands, marked by grey

areas. When d12 is small and close to zero, a gap emerges in the bulk spectra. As d12

increases, the gap narrows rapidly from its initial wide open state and disappears. As d12

increases further, the gap reopens but with a distinct edge mode emerging within it, shown
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Figure 5.1 (a) Spinner ladder system with the length of 13 rotatable spinners, where
rotatable spinners and magnetically coupled arms are highlighted and fixed spinners and
arms without magnets are shaded. (b) Illustration of the spinner ladder system pictured in
(a), where rotatable spinners are colored white and blue and fixed spinners at both ends are
colored grey. A purple plaquette represents a unit cell. di for i = 1, 2 and i = 12 denote the
intrachain and interchain coupling distances between spinners in the 0°and 60°directions,
respectively.

as red solid dots in Figure 5.2. We can conclude that the spinner ladder system changes

phases from without edge modes to containing edge modes, i.e. the finite-size equivalent

of a topologically trivial phase to a topological phase. The width of the spectra range also

decreases exponentially as d12 increases shown in Figure 5.2. Both are in consistent with the

theoretical computations shown in Figure 5.2(b). The results indicate that the topological

phase of the spinner ladder system can be controlled by varying the interchain coupling

distance, confirming the predictions in [Padavić et al., 2018].

5.3.2 Edge Modes

While the ladder system can hold topological edge states, the localization of the edge mode

only emerges at the strong coupled site within the open edges. To verify it, we choose the

ladder system with the interchain coupling distance d12 = 8.0 mm and actuate at the (1, 1)

spinner at a frequency of 26.6 Hz to bring out the edge mode and to observe along which

chain the edge mode appears. Figure 5.3(a) shows the spectra obtained by measuring at all

the rotatable spinners in the system and confirms the resonance mode within the topological

gap in Figure 5.2 is indeed the edge mode. Oscillation patterns of different states are
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Figure 5.2 (a) Experimental and (b) theoretical resonance modes versus the interchain
coupling distance d12. In (a), the bulk modes are obtained by actuating and measuring at
the (1, 6) and (1, 7) spinners and the edge modes at the (1, 1) spinner in the ladder system.
The grey areas indicate the bulk bands.

shown in Figure 5.3(b-e), where colors represent the normalized oscillation amplitudes.

Figure 5.3(c) reveals an oscillation confined at the strong coupled site within left open edge,

i.e. the (1, 1) spinner. The oscillation decays in amplitude every other spinners within the

upper SSH chain along the 0°direction, consistent with the theory [Padavić et al., 2018].

5.3.3 Phase Transition

As mentioned previously, the ladder system can be switched between a topologically

trivial insulator and a topological insulator by varying the interchain coupling distance d12.

Experimental results for topologically trivial (d = 1.0 mm) and topological (d = 7.0 mm)

spinner ladder systems are shown in Figures 5.4(a) and 5.4(c), respectively. In Figure 5.4(c),

when the spinner ladder system becomes a topological insulator, the edgemode is prominent

located within the gap in the bulk spectra. In contrast, Figure 5.4(a), when the spinner ladder

system becomes topologically trivial, the edge mode is absent from the gap, leaving only

the lower and upper bulk bands. Figure 5.4(b) shows the results measured from the ladder

system with d12 = 4.0 mm and demonstrate the transition between topologically trivial and

topological phases, where no gap and edge mode emerges. In Figures 5.4(a)-(c), in spite of

58



Figure 5.3 (a) Experimental spectra obtained by actuating at the (1, 1) spinner and
measuring at all the rotatable spinners in the ladder system with the interchain coupling
distance d12 = 8.0 mm. Grey areas represent the lower and upper bulk bands. One spectral
gap, which contains a strong edgemode at the frequency of 22.6Hz, can be clearly identified.
(b)-(e) Patterns of oscillations measured at the frequencies of (b) 14.3 Hz, (c) 21.0 Hz, (d)
22.6 Hz, and (e) 25.0 Hz, respectively. Colors represent the oscillation amplitudes of the
rotatable spinners. Stars mark actuated spinners.
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different amplitude scales, the data are obtained at the same experimental setup condition.

The results show the difference between topologically trivial and topological systems and

the topological origin of the spinner ladder system.

Figure 5.4 Spectra experimentally obtained by actuating andmeasuring at the (1, 1), (1, 6),
and (1, 7) spinners of the ladder systems with interchain coupling distances (a) d12 = 1.0
mm, (b) d12 = 4.0 mm and (c) d12 = 7.0 mm, respectively. The edge band is prominent in
the bulk band gap in (c), but absent in (a) and (b). The bulk band gap is absent in (b).

5.4 Summary

This study experimentally demonstrated classical Majorana edge modes at the boundary

of a ladder-shaped mechanical metamaterial. The topological phase of the system can

be controlled by adjusting the interchain interaction, consistent with previous theoretical

analysis [Padavić et al., 2018].
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CHAPTER 6

CONCLUSIONS

To recap briefly, we clearly demonstrate that mechanical metamaterials made of

magnetically coupled spinners can be novel and versatile experimental platforms for

investigation of topological phonons and their phase transitions. Localized excitationmodes

along the boundaries or interfaces within the bulk spectral gaps are their characteristics.

These topological properties originate from the structures solely. Our results can apply to

any coupled resonator systems regardless of their nature. In addition, our approach can also

offer one a chance to observe topological excitation modes by naked eyes, helping with the

exemplification of theoretical concepts that may appear quite abstract.

Recently, the principle of our 1D quasi-periodic pattern has been theoretically

expanded to quasi-periodic continuous elastic beams [Pal et al., 2019] and 2D quasi-

crystalline structures [Zhou et al., 2019]. Experimental studies also demonstrate the

feasibility of generating topological edge or interface modes out of patterning in different

systems, such as in quasi-periodic acoustic crystals [Apigo et al., 2019,Ni et al., 2019] and

radio-frequency resonator arrays [Voss and Ballon, 2020]. For QVHE regime, Chaunsali

et al. report that the preference of the topological wave propagation around sharp bends

depends on the excitation frequency [Chaunsali et al., 2018a], which deserves a close

look. Our proposal for second couplings inspires the numerical simulation of geometrically

designed interfacial wave networks that contain splitters, which partition energy along

more than two directions, ideal for applications such as beam-splitters, switches, and

filters [Makwana and Craster, 2018]. Furthermore, QVHE has been theoretically emulated

in a new kagome-like photonic topological insulator where highly efficient photonic edge

mode propagates unidirectionally depending on its termination [Wong et al., 2020, Saba

et al., 2020]. Similar structure has also been proposed using plasmonic lattices [Proctor
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et al., 2020, Proctor et al., 2021]. These creative studies offer us an opportunity to review

QVHE from a new perspective. The experimental results presented in Chapter 4 and 5 have

implications for other metamaterials experimentally shown to realize the 1D SSH model. It

includes photonic [Han et al., 2019,Chen et al., 2019,Xie et al., 2019,Xie et al., 2018,Ota

et al., 2018,Bello et al., 2019], electronic [Belopolski et al., 2017], acoustic [Li et al., 2018],

plasmonic [Bleckmann et al., 2017], circuitry [Lee et al., 2018,Liu et al., 2019,Imhof et al.,

2018, Serra-Garcia et al., 2019, Jiang et al., 2018a], optical lattice [Meier et al., 2016],

and microwave [Zhu et al., 2018b] metamaterials. Especially for flat bands, realization of

the chiral 2D SSH Hamiltonian in photonic crystals [Henriques et al., 2020] could lead

to photons guided slowly along designed paths for pulse buffering [Leykam and Flach,

2018,Leykam et al., 2018]. In electronic metamaterials, the effects of correlations would be

enhanced for flat bands, resulting in strongly correlated phenomena [Mesaros et al., 2010].

Dynamic tunability in optical lattices may be used to switch the system between topological

and nontopological phases [Leykam et al., 2018]. Extension to three-dimensional (3D)

systems would reveal the effects of polarization [Leykam and Flach, 2018, Leykam et al.,

2018].

A few thoughts for improvements of current experimental setups are discussed here.

First, the spinners can be customized using metal additive manufacturing techniques for

achieving more complex coupled arms, such as the proposed setting in Figure 2.1(b).

Second, the concept of programmable mechanical metamaterials inspire us to adjust the

coupling by electrically controlled electromagnetic interaction for reversible and real-time

control of topological phases and topological transitions rather than rearrange the inter-

magnet distances, which often causes the offset coupling problems, such as the systems

in Figures 4.1 and 5.1. The strength of inter-spinner couplings, which are sensitive to

the inter-magnet distances, can hence be set more accurate and precise for experimental

needs as well. A recent and interesting study has shown electromagnets as a promising and

effective way of achieving enhanced static and dynamic efficiency [Haghpanah et al., 2016].
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A significant hurdle will be reducing the size of these electromagnets while avoiding serious

reduction of coupling strength. Nevertheless, our results can lead to studies of programable

mechanical metamaterials with controllable topological properties, which might apply in

expandable biomedical devices and soft robotics. Except for electromagnets, manipulating

the locations of the spinners can be another choice for changing topological phase. However,

due to the offset coupling problems mentioned previously, this method may only be suitable

for 1D or quasi-1D systems.

To date, we mainly investigate 1D and 2D topological mechanical systems. The

realization of 3D topological metamaterials, which are more complex but appealing, still

remains challenging. Essentially, ball bearings we use possess only one rotational degree of

freedom and spinners are coupled horizontally only through nearest-neighbor interaction.

Although we have realized couplings between adjacent planes in layered lattices, as shown

in Figure 6.1, it is still difficult for us to fully realize the whole system in a short time.

Fortunately, there have been a few recent studies that we can learn and use for reference,

such as 3D topological node lines [Xiong et al., 2018] and 3D elastic phononic topological

insulators [Huo et al., 2020]. Future challenges would also include the nonlinearities. Our

current studies are bound to fixed lattices and small oscillations. The emerging of nonlinear

topological phases, such as nonlinear quantum hall effect [Ma et al., 2019b] and topological

laser [Zeng et al., 2020], has already become a new focus of research. However, in

mechanical systems, the bulk-boundary correspondence involved in the nonlinear process

and the inherent connections between the nonlinear output of the system and the global

topological invariant are still ambiguous. Vila et al. have reported the lack of topological

protections due to the presence of nonlinearities using a 1D spinner system inspired by our

work [Vila et al., 2019]. The control of localization and the transition to bulk propagation

with topological protection along with nonlinear interactions are still difficult to realize for

now.
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Figure 6.1 Example of the unit cell as our approach for going beyond 2D metamaterials,
which is inspired by (d) the body centered cubic lattices. (a-c) The configurations of a
single spinner for eight couplings. (e) Prototype of the unit cell for 3D mechanical lattice.

Our results are also applicable in a number of engineering fields, including

waveguiding, vibration isolation, sensing, energy harvesting, smart materials, and quantum

information. For practical uses, mechanical metamaterials tend to be smaller and lighter.

The rapid development of additive manufacturing and nanoelectromechanical systems

has provided scientist unprecedented chances to manufacture topological mechanical

metamaterials. Indeed, in the real world, the systems, especially continuous systems,

are much more complex and certainly have additional degrees of freedom. However, the

significance of our work lies in the implementation and observation of topological excitation

modes originating solely from the structure of the materials. We hope our efforts would

inspire others to design more fascinating topological metamaterials based on the same

principles. Although our recent works have been reported, there are still a number of

unknown phenomena and mechanisms still waited for being explored.
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