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ABSTRACT

RADIO DIAGNOSTICS OF PARTICLES AND PLASMA
IN THE SOLAR CORONA

by
Sherry Chhabra

Radio diagnostics, in addition to their capabilities in exploring intense, impulsive

bursts, also provide a high sensitivity to much weaker events, which may not show

any substantial signature in other wavelengths.

The initial case study examines a complex event consisting of multiple radio

sources/bursts associated with a fast coronal mass ejection (CME) and an M 2.1

class solar flare (SOL2015-09-20). ‘First-light’ data from the Owens Valley Radio

Observatory–Long Wavelength Array is put in context with observations from

Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric

Observatory, along with the WAVES radio spectrograph onboard WIND, the

Expanded Owens Valley Solar Array, and the Air Force Radio Solar Telescope

Network. One burst source exhibiting an outward motion is focused upon indicating

movement associated with the core of the CME and is classified as type IVm burst.

The source height, smoothness of the emission in frequency and time, along with

a lower density in the region, indicate the likelihood of gyrosynchrotron as the

underlying mechanism over plasma emission. Spectral fitting techniques are used

to estimate the physical conditions during the outward movement of the source.

The second study investigates whether energy bursts from small breaks in

stressed magnetic fields (nanoflares) can accelerate particles like full-sized flares, and

if so, how efficiently? Since nanoflares may produce numerous ‘mildly energetic’

particles, at those energies, the emission in X-ray will be dominated by the thermal

component. Type III radio bursts generated by propagating energetic electrons are

best suited for the purpose. A model is created to simulate type III emission that may



be produced by thousands of nanoflares occurring per second and the novel time–lag

technique used to detect the motion of particles. The technique indeed detects the

signature of type IIIs despite the numerous overlapping bursts and added noise that

is expected in a radio instrument. Based on the findings of the model and associated

testing, data from the Very Large Array, Low Frequency Array, and Long Wavelength

Array are currently being looked at for signatures of such bursts in the corona. A

similar test is performed on data from the FIELDS instrument onboard Parker Solar

Probe to look for signatures of particle acceleration in the solar wind from small-scale

reconnection events.
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CHAPTER 1

INTRODUCTION

The nearest star to us, the Sun, along with making life possible on our planet, also

serves as a great laboratory to explore some of the most fundamental processes

observed in the universe. Solar emission is observed at all frequencies in the

electromagnetic spectrum. Most of the harmful radiation from the Sun, i.e.,

ultraviolet (UV), extreme-ultraviolet (EUV), and x-rays, is absorbed by the Earth’s

atmosphere, while the visible, infrared (IR), and some radio waves make it to the

surface. The measure of the energy output of the Sun as a function of wavelength is

known as solar spectral irradiance. On a macro scale, the irradiance evolves with the

11-year solar magnetic cycle. Additionally, it also exhibits variation on a timescale of

hours to days based on the magnetic activity on the Sun. Transient impulsive events

such as a large solar flare or a coronal mass ejection (CME) can drive enormous

amounts of energy into the interplanetary medium and toward Earth.

Spectral irradiance from EUV and x-rays plays a vital role in driving our

space weather. In the current age, with the deep dependence of society on

modern technology, such energetic events directed towards the Earth can prove

to be extremely harmful. Energetic particles from the Sun can damage satellite

electronics and prove fatal for the astronauts; x-rays from solar flares can damage

radio communication systems, and CMEs can cause geomagnetic storms, GPS failure,

and knock out the power grids. Therefore, gaining a better understanding of the

physics of such phenomena in order to predict them and to employ precautionary

measures has never been more critical.
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1.1 Solar Coronal Heating Problem

The corona is the tenuous outermost layer of the solar atmosphere. In visible light, It

is about six orders of magnitude fainter than the surface (photosphere), and therefore,

only visible during a total solar eclipse or through a coronagraph. For thousands of

years, total solar eclipses have been observed by humans; by the mid 19th century,

we started making photographic records of the corona and prominences. In the years

that followed, spectroscopic observations of the corona were made possible, by which

helium was discovered by Jules Janssen in 1868. However, it was not until the early

1940s that forbidden lines for highly ionized iron (e.g., Fe X) were identified in the

coronal spectra [84, 59]. Based on the new findings, Alfvén [1] concluded that the

solar corona must have extremely hot temperatures [see [144] for a historical review].

The effective temperature of the forbidden line Fe X is ≈ 1 MK, so the temperature

of the corona must be a few million degrees, three orders of magnitude higher than

the ≈ 5800 K at the photosphere (see Figure 1.1 for the density and temperature

profiles as a function of height above the photosphere). How is the corona heated

to a few million degrees, how is high temperature maintained and how is the energy

dissipated? That is the coronal heating problem.

A majority of energy losses from the corona are in the form of radiation (by

EUV and x-rays) and conductive losses. To account for these losses, an energy flux

input of ≈ 107 ergs cm−2 s−1 is required for the active region corona and that of

≈ 3 × 105 ergs cm−2 s−1 for the quiet Sun [203]. In the last few decades, many

theories have been proposed to explain the sustained energy source, two of which

are predominant. Both theories are driven by the random convective motions in the

photosphere that displace the footpoints of the coronal loops. If the motions are

slower than the characteristic Alfvén travel time, the field is stressed quasi-statically,

meaning that there is a slow build-up of stress. The dissipation of such stresses is

known as direct current (DC) heating. Conversely, disturbances faster than the
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Figure 1.1 Temperature (dashed line) and density (solid line) profile as a function
of height above the photosphere. Chromospheric model based on FAL-C [63], and
the transition region and lower corona model based on [67].
Source: [7]

3



Alfvénic travel time will propagate as waves along the field; accordingly, the energy

dissipation is referred to as alternate current (AC) heating. The Alfvén travel

time is defined as the time it takes for an Alfvén (or magneto acoustic) wave to travel

along the loop to the other footpoint and back while moving at the Alfvén velocity,

vA = B/
√
4πρo, where B, is the magnetic field strength, and ρo is the background

mass-density.

AC Heating The photospheric convective motions generate waves that

propagate upward into the chromosphere and the corona. It was initially suggested

that acoustic waves might be transporting energy into the corona [164]. Subsequent

modeling, however, showed that while acoustic waves might be heating the chromo-

sphere, they would form shocks at low heights and become highly damped before

they reach the corona. Alfvén waves, on the other hand, are incompressible and may

transfer their energy in the corona through turbulent dissipation or phase mixing

[2, 139, 138, 92]. In the last decade or so, high-resolution observations of the solar

atmosphere have shown that MHD waves are ubiquitous in the solar atmosphere [see

[45] and references therein] and that they may carry enough energy to heat the quiet

Sun and solar wind [46, 88]. However, evidence of energy transfer sufficient enough

to heat the corona is still lacking.

DC Heating Parker [140, 141] hypothesized that the same photospheric

motions as mentioned above also twist and entangle the magnetic fields. This is a

slow process that builds up the non-potential magnetic energy, which is then released

suddenly in the form of an impulsive burst. This process of release of magnetic

energy to thermal and kinetic energy is called magnetic reconnection. Parker referred

to such bursts as nanoflares and claimed that a ubiquitous presence of nanoflares can

collectively heat the corona [see also [97, 98] and references within]. For over a few

decades now, the definition of nanoflares has been adapted to represent a small-scale

impulsive release of energy irrespective of the underlying mechanism. In the Parker

4



picture, one can write the Poynting flux through the surface as:

F = − 1

4π
Bv(Bh.vh) (1.1)

where Bh and Bv are the horizontal and vertical components of the field and vh

is the velocity of the footpoint motions. The velocity of the footpoint motions is

measured to be vh ∼ 105 cm/s, and values for Bv can be obtained from high-resolution

magnetograms. The magnitude of the flux thus calculated, assuming Bh = Bv, is

sufficient to heat the quiet Sun and the active regions. A more significant question

is how the energy is converted. A promising idea is that a nanoflare occurs when the

angle between the braiding field lines reaches a critical value (critical shear angle);

however, an investigation to understand other conditions that are responsible for the

onset of reconnection is still ongoing [for details, see [106]].

Both mechanisms may play a role in heating the corona, although the dominance

of one mechanism over the other in different regions on the Sun remains unclear.

Irrespective of the underlying mechanism, heating in the corona is thought to be

impulsive [98], meaning that the time taken for energy release is much smaller than

the cooling time of the loop. Recent efforts to better understand coronal heating

have concentrated on its properties viz. magnitude, frequency, scaling with the

strength and length of magnetic strands, etc., without implying a specific underlying

mechanism. For the active corona, several observational studies have examined active

region cores, while others have employed hydrodynamic models of coronal loops to

investigate the slopes of emission measures (EM) in regards to the heating properties

[201, 177, 48, 21, 28]. Forward modeled active regions have also been generated,

to which a prescription of heating is applied, yielding EUV images and emission

measures, which are then compared to the observations [128, 10, 162].
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1.2 Impulsive Phenomena on the Sun

All energetic events on the Sun are a result of some disturbance destabilizing the

magnetic field on varying spatial scales. Some examples are nanoflares, spicules,

jets, prominences, solar flares, and CMEs. In this section, we discuss a few of the

large-scale impulsive events.

Solar Flares Solar flares are large explosive events on the Sun seen as

sudden brightenings with intense radiation observed at almost all wavelengths in

the electromagnetic spectrum, releasing up to 1032 ergs of energy, although only

the strongest flares show strong emission in white light. The very first record of a

solar flare was reported from white light observations made by Carrington [31] in

1859, during his daily monitoring of the sunspots. Magnetic reconnection is widely

accepted as the driver of a solar flare. Upon reconfiguration of magnetic fields, the

stored magnetic energy is dissipated, resulting in the acceleration of energetic particles

and thermal energy exuded along the field lines [145].

There are three phases recognized in the evolution of a flare [13]. In the preflare

phase, some rise in activity is observed at soft X-ray (SXR) and EUV wavelengths as

the plasma heats, followed by a sudden energy release and acceleration of energized

particles (electrons and ions) known as the impulsive phase. Bright, hard X-ray

(HXR) footpoints are seen at lower altitudes as the energized plasma propagates

downward into the chromosphere. Accelerated electrons escaping in an open field

produce type III bursts (Section 1.4). This is generally accompanied by bright

emission at radio frequencies that can come from high-energy particles trapped in

the field. The hot plasma appears as loop top sources in SXR. Most of the flare

energy is released during this impulsive phase lasting a few minutes. The gradual

decline in the SXR radiation marks the decay phase of the flare, where the coronal

plasma slowly cools down to preflare temperatures. Spike bursts and continuum

emission at metric frequencies may be observed at this time. Based on their peak
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X-ray flux, as observed by the Geostationary Operational Environmental Satellites

(GOES), the flares are classified as A, B, C, M, and X, with A-class flares having a

peak flux of < 10−7 W/m2. The flux increases by an order of magnitude with each

class ending at X-class with 10−4 W/m2. The subclasses within each class scale from

1-9, depicting the multiplicative factor for the peak flux, so an X6 flare has a peak

flux of 6× 10−4 W/m2.

The CSHKP model or the “standard” flare model [30, 170, 91, 104] shown in

Figure 1.2 is generally used to explain the flare dynamics. Reconnection takes place

high up, in the current sheet (top panel, Figure 1.2) and releases an enormous amount

of energy, accelerating particles and creating bulk flows in the upward and downward

direction. The lower loops respond to the downflows in multiple ways. The highly

energetic particles (mostly electrons) hit the loops below the current sheet producing

HXR emission at the loop-tops; those that reach the chromosphere “collide” with

the dense plasma to create HXR footpoints. Thermal conduction from the corona

rapidly increases the temperature and density in the upper chromosphere. As a

result, the material expands into the corona filling the post-flare (reconnected) loops

via chromospheric evaporation. On the other hand, the upflows aid the rise of the

flux rope that ejects outward in the form of a CME.

Coronal Mass Ejection A Coronal Mass Ejection is an eruption in the solar

atmosphere that transports plasma and magnetic fields across the interplanetary

medium. The first CME was observed in 1971 [176] using the coronagraph onboard

Orbiting Solar Observatory (OSO-7). Originally, CMEs were defined as white light

features of coronal structures exhibiting outward motion, as seen in coronagraphs.

However, further observations revealed that CMEs also show signatures at X-ray,

EUV, and radio wavelengths [99, 80, 49, 82]. Typically, a CME can have velocities

(projected radial velocity of the CME-front) ranging between 50 − 2000 km/s, with
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Figure 1.2 Top: Standard flare/CME model showing the current sheet with post-
flare loops underneath and erupting flux rope above. Bottom: Enlarged view of the
post-flare loops.
Source: [110, 64]
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an average of 300 km/s during the solar minimum and 500 km/s during solar maxima

[206] carrying an average mass of 1012 kg [79].

CMEs often accompany flares; however, many large flares (GOES class C, M, or

X) have been observed to show no association with CMEs [189, 205]. Although, just

like flares, they are also thought to be the manifestation of magnetic reconnection as

demonstrated in the standard flare model. A typical CME has a three-part structure

[93] that includes a bright front (also known as the leading edge), a dark cavity, and

a bright, dense core. Shocks may develop in front of the fast-moving leading edge

that can accelerate electrons to produce type II bursts or herringbone structures (see

Section 1.4) [134]; while the core of the CME can produce gyrosynchrotron emission

at metric frequencies [113, 179, 29].

1.3 Solar Radio Emission

Radio emission from the Sun can be produced via multiple mechanisms that involve

converting the energy of moving electrons of either thermal or non-thermal nature into

electromagnetic radiation. The two characteristic radio frequencies, plasma frequency,

νp and the gyro frequency, νB, have an intrinsic sensitivity to plasma parameters, viz.

ambient density, ne, and the field strength, B, thus opening up great diagnostic

opportunities to probe the magnetic field and the plasma in the corona and the

chromosphere. Radio emission allows us to explore not only strong, impulsive bursts,

but it also has the potential to reveal structures in the quiet Sun that may not show

any substantial signature at other wavelengths.

Following from the radiative transfer equation [52], for a homogeneous source,

the intensity, I at frequency ν is given by the Planck function under the Rayleigh-

Jeans limit (hν ≫ kT ):

Iν =
2kTbν

2

c2
[J m−2 Hz−1 sr−1] (1.2)
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where k is the Boltzmann constant, and Tb is the brightness temperature. The

brightness temperature, Tb is not always equivalent to the physical temperature of

the source and can be thought of as the temperature of an equivalent blackbody, to

emit the same brightness as that of the source. The expression for the same is given

by the radiative transfer equation:

Tb = To exp−τν +Tsource(1− e−τν ) [K] (1.3)

where the first term on the r.h.s. is the emission from an “external” source, τν

is the optical depth, and Tsource = Te i.e., the electron temperature in case of

thermal emission. For a non-thermal source, Tsource = Teff = ⟨E⟩/k i.e., the effective

temperature or kinetic temperature of the source with emitting particles of mean

energy ⟨E⟩. In the optically thick regime (τν ≫ 1) Equation (1.3) is reduced to

Tb = Tsource [K] (1.4)

and in the optically thin regime (τν ≪ 1) it is given as:

Tb = To(1− τν) + Tsourceτν [K] (1.5)

The flux density Sν is then expressed as the integral of the intensity over the

solid angle dΩ

Sν =

∫
2kBTbν

2

c2
dΩ [W m−2 Hz−1] (1.6)

The solid angle dΩ is given by the angle subtended by the source, or for an extended

source with an angular size that is bigger than the field of view of the instrument, dΩ

is equal to the beam size.
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The resulting radiation can be incoherent or coherent based on the underlying

mechanism.

1.3.1 Incoherent Emission

Incoherent emission comes from individual electrons that exhibit no phase association.

The total intensity of the emission is proportional to the number of radiating electrons.

The brightness temperature of incoherent emission is always less than or equal to the

effective temperature of the source, Teff, i.e., the physical temperature for a thermal

source and the kinetic temperature for a non-thermal source as mentioned above. The

shape of the Tb spectrum can be quite useful in estimating the plasma properties. At

radio wavelengths, the two most important categories of incoherent emission observed

from the Sun are: Bremsstrahlung or free-free emission and gyromagnetic emission

[see [135] for a detailed review].

1.3.1.1 Bremsstrahlung or Free-Free Emission. The German word

for “braking radiation”, bremsstrahlung, refers to emission produced by collisions

between charged particles (Coulomb collisions). In the highly ionized solar corona,

it is also referred to as free-free emission due to the collisions between free particles.

A slight deflection of electrons (small-angle approximation) from the Coulomb field

of the ambient ions produces emission at radio frequencies, while a head-on collision

between the two may cause an electron to lose most of its energy as it is reflected,

generating emission at x-ray frequencies. Bremsstrahlung dominates the quiet Sun

emission at radio wavelengths [74, 52] and contributes significantly to emission from

non-flaring active regions. For a simple two-layer model of the emission [52, 160],

where the optical depth for solar atmosphere is expressed as:

τ =

∫
κ dl (1.7)
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where

κ ≈ 1

3c

(
2

π

)1/2 ν2
p

ν2

∑
i

Z2
i ni

4πe4

m
1/2
e (kBT )3/2

π√
3
G(T, ν) (1.8)

is the absorption coefficient, l is the path length, νp is the plasma frequency, Zi and

ni are the ion charge and number density, me is the electron mass, and G is the gaunt

factor [52]. At low frequencies, the corona is optically thick to free-free emission and

slowly becomes optically thin as the frequency increases. Following from Equation

(1.3), the radiative transfer equation is then given as:

Tb = Tchr(e
−τcor) + Tcor(1− e−τcor) [K] (1.9)

where, Tchr is the electron temperature of the optically thick chromosphere, and Tcor

is the electron temperature of the corona. For the optically thin corona, τcor ≪ 1,

the above equation predicts an inverse dependence of Tb on ν2. Figure 1.3a shows

the universal spectra [70] for free-free emission. For a homogeneous source, the shape

of the spectra does not change with a change in density n or temperature T ; rather,

it just shifts in the directions shown by the arrows in Figure 1.3a. However, in the

case of an inhomogeneous source, the shape of the spectra may change contingent on

the variations along the line of sight [72]. Understanding the source spectrum allows

us to measure the temperature as a function of frequency (and therefore height) in

the optically thick regime. Alternatively, [159] have used the spectral gradient at

submillimeter wavelengths to get a diagnostic on optical depth. For a few decades

now, the index of the F10.7 cm (flux density at 2.8 GHz) has been used as a proxy

for EUV emission given the same dependence of optically thin bremsstrahlung flux

and EUV differential emission measures (DEMs) on the density of the plasma [39,

40, 65, 172, 163]. White White et al. [196] showed another example of using EUV

12



Figure 1.3 “Universal Spectra” shown in a) for thermal free-free brightness
temperature. The solid line show contribution from a corona at 1 MK and the
chromosphere at 104 K. The dashed line show the contribution from corona only;
b) for thermal gyroresonance emission from a homogeneous source c) for thermal
gyrosynchrotron emission from a homogeneous source and d) for gyrosynchrotron
emission from a non-thermal source. The solid lines in panels b, c, and d represent
the x-mode spectra and the dashed lines show the o-mode spectra.
Source: [72]

13



observations in combination with radio data to constrain the elemental abundance of

iron in the corona.

1.3.1.2 Gyroemission. Gyromagnetic emission is produced by free particles that

are accelerated in the presence of a magnetic field B. The Lorentz force alters the

direction/velocity of the electron, consequently providing it centripetal acceleration.

This causes the electron to gyrate around the field, with a frequency νB that is directly

proportional to the field strength B and is expressed as:

νB =
eB

2πmec
≈ 2.8× 106B [Hz] (1.10)

Different energy regimes invoke slightly different forms of gyromagnetic emis-

sions. At low energies (thermal distribution), the electrons exhibit mild beaming,

emitting at frequencies sνB, for small values of s where s = 1, 2, 3... is the harmonic

number. The emission is referred to as gyroresonance emission. Gyroresonance is

the dominant mechanism in the lower corona, over sunspots where the magnetic

field is stronger (> 100 G). The opacity τν for gyroresonance depends on multiple

parameters: density, ne, temperature T , and field B along the line of sight and angle

θ between B and the line of sight. The characteristic spectrum from gyroresonance

is shown in Figure 1.3b. The emission becomes optically thick in the x-mode at

higher harmonics compared to o-mode. Given the availability of multi-frequency

observations, one can identify the harmonics from the spectrum and estimate the

magnetic field in the region [see for example [70, 178]]. Variation in the parameters

above will shift the spectrum as marked by the arrows in Figure 1.3b. A detailed

review of the gyroresonance emission and observations can be found in Nindos

[136] and Gary & Keller [72] gives a comprehensive overview of the gyroresonance

diagnostics.
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At higher energies (< 1 MeV), the mildly relativistic electrons gyrating

around the field emit gyrosynchrotron radiation at microwave frequencies with s =

10–100. The electrons can have either thermal or non-thermal energy distributions.

Gyrosynchrotron is the dominant emission in flares. Occasionally, it is also observed

in association with CMEs and smaller transient brightenings. Dulk [52] gave the

empirical expressions for Teff, τ , νpeak etc., for an isotropic power-law electron

distribution.

Teff ≈ 2.2× 10910−0.31δ(sin θ)−0.36−0.06δ

(
ν

νB

)0.50+0.085δ

(1.11)

κνB

ne

≈ 1.4× 10−910−0.22δ(sin θ)−0.09−0.72δ

(
ν

νB

)−1.30+0.98δ

(1.12)

νpeak ≈ 2.72× 103100.27δ(sin θ)0.41+0.03δ(neL)
0.32−0.03δ (1.13)

where δ is the electron power-law index, and νpeak is the peak frequency for the

emission. The equations are more reliable for δ ≲ 6, and small θ values [55]. The

characteristic spectrum for both thermal and non-thermal energy distributions is

shown in Figure 1.3 (panels c and d). The emission is optically thick at lower

frequencies and peaks where τ ∼ 1 and falls at higher frequencies. Equation (1.11)

is relevant in the optically thick regime and reflects on the variations in the effective

energy E of the electrons [72] although Razin suppression [150] may change the shape

of the slope at lower frequencies. While Equation (1.13) is relevant for optical depth

unity exhibiting how the peak frequency will shift based on the column density

neL, Equation (1.12) is applicable to the optically thin part of the spectrum and

is influenced by the energy distribution of the electrons, though see Fleishman &

Melnikov [62] for effects of anisotropic pitch-angle distribution on the polarization
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and the slope of the spectrum at higher frequencies. Although approximations

given by Equations (1.11–1.13) are useful for rough estimates of gyrosynchrotron

emission, the far more exact and more widely applicable numerical fast codes

developed by Fleishman & Kuznetsov [61] have replaced them for estimating plasma

parameters from gyrosynchrotron spectral fitting. Multi-frequency observations of

gyrosynchrotron emission can prove instrumental in understanding the evolution of

magnetic field morphology during a flare [68].

1.3.2 Coherent Emission

Electrons that are accelerated in phase with each other can produce photons that are

also in phase. Such emission that is generated by the collective behavior of particles

is referred to as coherent emission. The brightness temperature, Tb in this case, can

be much greater than the thermal temperature Te of the source. The two classes of

coherent emission relevant to solar radio emission are plasma emission and electron

cyclotron maser emission (ECME).

1.3.2.1 Plasma Emission. The theory of plasma emission was initially developed

by Ginzburg & Zhelezniakov [75] to explain the observed properties of solar radio

bursts reported by Payne-Scott [142] and Wild & McCready [198]. The general

concept of their proposed theory remains the same, with certain upgrades that were

made over the years [208, 209, 123, 156, 126, and references within]. There are

three stages of the theory: generation of Langmuir waves/plasma waves, scattering

or coalescence of Langmuir waves to produce fundamental emission, and coalescence

of Langmuir waves to produce harmonic emission.

Impulsive bursts on the Sun can inject accelerated beams (∼ 0.1 − 0.5c) of

electrons along the field lines. As the beam propagates through the field, the faster

electrons outrun the slower ones, creating a two-stream instability (bump-on-tail
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Figure 1.4 Flow chart of the different stages in the production of fundamental (F)
and harmonic (H) plasma emission.
Source: [125]
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instability) which can be described as a positive slope in the tail (or high-energy

portion) of the electron energy distribution. The beam instability generates the

Langmuir waves, which are longitudinal electrostatic waves and can only be detected

in-situ. The conversion of energy in Langmuir waves (L) to transverse (T ) waves that

can escape as radiation requires complex non-linear interactions between Langmuir

waves and ions acoustic waves (S). Figure 1.4 shows a flow chart of all the interactions

involved in the generation of plasma emission. The interaction between L and S

produces electromagnetic emission at the fundamental plasma frequency, νp:

νp =

√
nee2

πme

≈ 8980
√
ne [Hz] (1.14)

A coalescence of L with a back-scattered Langmuir wave L′ generates emission at the

second harmonic, 2νp. The fundamental frequency νp lies below the cut-off frequency

for x-mode. This implies that the fundamental emission should be 100% polarized

in o-mode. Type I noise storms and a fraction of all type III bursts exhibit high

polarization in o-mode; however, a type III that is 100% polarized in o-mode has

not been observed. A plausible explanation is that propagation effects through an

inhomogeneous (fibrous) corona can cause depolarization, although it requires the

density gradients to be really steep at the edges of the fibers [see [193, 125] for details].

1.3.2.2 Electron-Cyclotron Maser Emission (ECME). ECME is commonly

observed from Jupiter (decametric radiation (DAM)) [23] and in Earth’s outer

atmosphere as auroral kilometer radiation (AKR) [87]. Solar ECME has also been

observed in the form of spike bursts [52], although it is not as common. An example

of ECME as the driving mechanism for a moving type IV burst can be found in
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Morosan et al. [131]. The radiation is emitted near the electron-cyclotron frequency

νB (Doppler shifted) for small harmonics expressed as:

ν = sνb +
k||v||
2π

(1.15)

where k|| and v|| are the parallel wave number and the parallel component of velocity

of the electrons respectively. As an energetic (mildly-relativistic) beam of electrons is

injected into the ambient plasma, if the density ne is low enough such that νp < νB,

cyclotron emission is favored over plasma emission. A loss-cone instability [204] is

believed to be the predominant mechanism that triggers ECME. In a magnetic bottle

geometry with a converging field on both ends, as the electrons move from low B to

high B, in order to conserve the magnetic moment µ, the parallel component of the

electron velocity v|| → 0 as B → Bmax. The electrons are trapped in the magnetic

bottle and mirror between the two ends for a θ > θm. Here θ is the initial pitch angle

of the moving electrons and θm is given as:

sin2(θm) =
B0

Bmax

(1.16)

The mirroring electrons then resonate to produce ECME at frequency ν (from

Equation (1.15)). Electrons with θ ≤ θm precipitate into the atmosphere or escape

into the loss-cone. The emission is dominantly polarized in x-mode.

1.4 Solar Radio Bursts

Solar radio bursts are produced by interactions between energetic particles and the

ambient plasma, and can be observed over a wide range of frequencies and in a variety

of forms. The first signatures of these “enhancements” above the solar background

emission were observed in the late 1940s at single frequencies and were referred to as

“outbursts” by Allen [3]. While Payne-Scott [142] divided them into two categories:
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bursts that exhibit circular polarization and bursts that do not, it was only in the

1950s that they were characterized according to their unique features, as seen in the

dynamic spectra [198]. Three classes of radio bursts were identified first: types I, II,

and III, based on how the frequency of the burst changes with time (also known as

the frequency drift rate). Two other spectral classes, type IV and V, were added in

the late 1950s [16, 200]. Each of these types may be classified into further subtypes

depending on their complexity, fine structure, etc. Bursts of types II, III, and IV

are usually associated with flares and CMEs and therefore are of particular interest.

Figure 1.5 shows a schematic diagram illustrating spectral features of each type. A

concise description of the characteristics and associated phenomena for each burst

type is given in Table 1.1.

1.4.1 Type I

Bursts of type I can be observed as singular spikes or in chains, although they are

most commonly observed as noise storms superimposed over continuum emission [76,

60]. Daigne [44] showed that these bursts were highly localized, and their position

coincided with that of the underlying continuum. Individual bursts are short-lived

and may last less than a second up to a few seconds, while the storms can go on for

days at a time.

They are typically observed at lower frequencies (∼ 50–500 MHz) [118]

characterized by their narrow bandwidth (∆ν/ν ∼ 0.02) [18] (shown in cyan in Figure

1.5) and were initially thought to exhibit no drift in frequencies. Although recently,

Yu et al. [207] presented evidence of frequency drifts in individual type Is using

high-resolution observations from the Very Large Array (VLA). Fundamental plasma

emission is the plausible underlying mechanism given the high circular polarization (≲

100%) seen in the bursts [125]; however, there is no clear consensus on what causes

the initial particle acceleration. While type I storms do not show any association
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Figure 1.5 Schematic diagram showing the classification of Solar Radio Bursts.
Source: https://sunbase.nict.go.jp/solar/denpa/hiras/types.html, accessed on

02/23/2021.
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with flaring activity, their presence has been linked to active regions. Several

studies suggest that reconnection (both, between closed field lines and interchange

reconnection) may be accelerating particles to produce noise storms that accompany

type Is [see, for example, [47, 114]].

1.4.2 Type II

Type II radio bursts are identified by their slow drifts (∼ 1 MHz s−1) in the dynamic

spectrum from high to low frequency. The emission is usually observed at the

fundamental plasma frequency with second harmonic structures seen in many cases

with little to no circular polarization [198]. Different features are commonly seen in

the spectra of type IIs, e.g., “split-band” feature where the fundamental or harmonic

structure may split itself into two parallel lanes [121, 188], and “herring-bone”

structure [25] showing spikes along the spine of the bursts moving in both directions

(from low to high and high to low frequencies).

Plasma emission excited from shock-accelerated electrons is the most prevalent

hypothesis for the generation of type II bursts [134, 180, 112, 78]; however, there have

been reports where the underlying mechanism was found to be synchrotron emission

[11]. Type IIs are observed in association with flares and CMEs, while CME-driven

shocks are responsible for deca-hectometric (DH) type IIs; it remains unclear what

creates the shocks for metric type IIs. There are two proposed sources: CME-driven

shocks [26, 38, 83] and flare blast-waves [107, 77].

1.4.3 Type III

Type III radio bursts are best characterized by their high frequency drift rate, marked

by solid black lines in Figure 1.5. Attributed to plasma emission, traditional type

IIIs are generated from beams of accelerated electrons moving at semi-relativistic

velocities (∼ 0.3 − 0.5c) along open field lines. Traditional interplanetary type III
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bursts may last for a few minutes up to tens of minutes, while coronal type IIIs

observed at high frequencies (> 500 MHz) may last a few milliseconds up to a few

seconds [32, 33]. Type III storms lasting hours or days can consist of thousands

of bursts per hour. When trapped in closed magnetic structures, they eventually

turn toward the Sun, resulting in inverted U or J-shaped bursts in the dynamic

spectra. Like bursts of type II, type IIIs also exhibit weak circular polarization [120]

(5−50%) [56]. However, it is not yet clear what causes the reduction in the degree of

polarization and why there have been no instances of type IIIs observed with 100%

circular polarization in the fundamental component [though see, [192, 124, 125]].

A clear association has been established between Type IIIs and hard x-ray

(HXR) flares. However, several studies have shown that not all flares are accompanied

by type IIIs [95, 6, 195, 154, 151, 24, and references within]. Additionally, the direct

dependence of the type III frequency on the local plasma density allows tracing

the burst locations in frequency and time, making them a great diagnostic tool

for investigating plasma properties and understanding other processes like particle

acceleration and magnetic reconnection that are observed in impulsive events on the

Sun as well as in astrophysical plasmas across the universe [33]. An extensive review

of the recent observations of type III bursts can be found in Reid [151].

1.4.4 Type IV

Identified by Boischot [16], spectral type IV burst radiation is characterized by radio

continua over a broad range of frequencies often associated with flares. The onset may

be triggered by the radiation of energetic electrons trapped within magnetic structures

and plasmoids. Type IV bursts are recorded in almost all frequency ranges, starting

from the microwaves as type IV� bursts and the decimetric range as type IVdm [12].

Weiss [190] characterized these bursts at metric wavelengths into moving

(type IVm) and stationary type IV bursts. Stationary type IVs are observed over
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long-durations (hours-days), displaying a variety of spectral structure superposed on

broad, continuous spectra with little or no source movement. They can constitute

multiple source locations, each with relatively small source diameter and strong

polarization (usually in o mode) [52]. The primary emission mechanism for these

bursts is thought to be gyrosynchrotron emission at high frequencies, and plasma

emission at low frequencies [52, 69, 29]. Moving type IV bursts are relatively

short-lived (tens of minutes to a few hours), with ill-defined spectral features, rapid

outward movement through the corona (of the order of hundreds to thousands

km s−1), and sometimes a polarization in x-mode. While type IV bursts have been

investigated extensively over the past few decades, the underlying mechanism remains

unclear. A more detailed review of recent results can be found in Section 2.1.

1.4.5 Type V

Bursts of type V are short-lived diffuse continuum emission frequently preceded by

type IIIs or group of type IIIs lasting just a few minutes (< 5 min) [200]. They are

observed at low frequencies with an upper limit of ∼200 MHz and exhibit little to no

circular polarization [53], usually with the sense opposite to that of the accompanying

type IIIs [202]. The source sizes of type V bursts have been observed to be larger than

those of type IIIs, with some displacement seen between their source heights [157, 53].

Wild [199] suggested that these bursts are caused by synchrotron radiation from

relativistic electrons. The theory was soon rejected by Weiss & Stewart [191], who

proposed plasma radiation as the emission mechanism suggesting that the coherent

plasma waves are excited by electrons trapped in coronal loops (see also, [157, 158]).

On the other hand, Winglee & Dulk [202] claimed that electron-cyclotron instability

from a loss-cone distribution can better explain the observed properties of type V

bursts [see also [171]].
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1.5 Motivation and Outline

The work presented in this thesis covers two different research studies. Radio

diagnostics are at the heart of both projects. As mentioned above, in addition to

variations in the solar magnetic activity due to the 11-year solar cycle, transient

large-scale energetic events from the Sun play a vital role in driving the day-to-day

space weather and the ionization state of Earth’s upper atmosphere. While these

phenomena are observed at a range of wavelengths, radio observations have the

capability of providing valuable context, by probing energetic particles and plasma

in the solar corona where X-rays or EUV may have limitations. Additionally, new

multi-frequency high-resolution observations from radio interferometers allow us to

investigate the magnetic topology at reconnection sites, something that has not been

done before [33, 68]. Taking advantage of this new era in solar radio astronomy, we

conduct our research.

We use one such instrument to conduct our first study that aims at investigating

radio emission from large-scale energetic events on the Sun, in order to understand

better the underlying physical mechanisms that trigger these bursts. In Chapter 2 we

explore a flare-CME event using radio observations from the Owens Valley Radio

Observatory-Long Wavelength Array (OVRO-LWA) that exhibits complex radio

phenomena. This work also explored the limitations of LWA for solar observations,

serving as the basis for an upgrade being performed on the array currently.

Another excellent example of the advantages of radio observations is that

of investigating fundamental processes such as particle acceleration and magnetic

reconnection at small-scales. While HXR emission is a primary tool to investigate

acceleration from energetic particles, the current instruments limit the detection of

numerous mildly-energetic particles that may be produced by nanoflares [89, 94,

and references therein]. The emission is believed to be dominated by the thermal

component at those energies. Radio emission does not suffer from such limitations.
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While both full-sized flares and nanoflares are claimed to be triggered by

reconnection, their magnetic configuration is different from one another. The

magnetic field geometry of a full-sized flare involves a weak component of the guide

field. On the contrary, a strong guide field may be operating in a nanoflare geometry.

A leading theory on particle acceleration from reconnection events predicts that the

presence of a strong guide field may not be efficient in accelerating particles [51, 43].

Which brings us to the goal of our second study: Do nanoflares accelerate particles

like full-sized flares? If so, how efficiently?

The first step to answer this question lies in modeling radio emission from

type III bursts produced by particles accelerated from nanoflares. Since nanoflares

are ubiquitous in the corona, we expect hundreds of overlapping bursts that are

difficult to detect by the naked eye. Chapter 3 presents the modeling of emission

from such bursts and testing whether such emission can be detected in the data using

the novel time-lag technique [183]. In Chapter 4, we move to the second step. We

analyze radio observations from the FIELDS experiment onboard the Parker Solar

Probe (PSP) to search for signatures of type III bursts from small-scale reconnection

events. Chapter 5 summarizes the important results from the studies presented and

discusses the current endeavors and future scope of the work.
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CHAPTER 2

IMAGING SPECTROSCOPY OF CME–ASSOCIATED
SOLAR RADIO BURSTS

2.1 Introduction and Motivation

Since their discovery in the 1950s [198], solar radio bursts have been the subject

of intense investigation. As discussed in Chapter 1, radio diagnostics hold great

importance for characterizing the space environment at the Sun, near Earth, and

elsewhere in the solar system. Therefore the study of these phenomena, both spatially

and spectrally, contributes significantly to our understanding of the properties of

the ambient medium, the instabilities that may cause them, and subsequently, the

underlying fundamental processes of electron acceleration and magnetic reconnection

involved in impulsive phenomena such as flares and coronal mass ejections (CMEs).

At metric wavelengths, solar type II, type III, and type IV radio bursts are

often associated with impulsive events [161, 194, 78]. A detailed description of the

burst characteristics and their underlying emission mechanisms is presented in Section

1.4. Type III bursts are transient bursts known for their high rates of frequency

drift, believed to be associated with electron beams traveling through plasma with

a density gradient. Group type IIIs and complex type-III-like fast-drift bursts that

occur with coronal mass ejections (CMEs) have been claimed to originate variously

from shock-accelerated electrons, unspecified “shock-associated” acceleration, or

acceleration directly from the flare site [27, 105, 54, 155, 81]. This uncertainty may

be resolved with recently available high spatial, spectral, and temporal resolution

imaging of type III bursts, which provide key information about reconnection sites

and contribute to our understanding of particle acceleration [32, 33, 133].

Metric-decametric bursts of type IV present themselves as broadband contin-

uum emission in the dynamic spectrum, sometimes accompanied by fine structures
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like Zebra patterns, fiber bursts or broadband quasi-periodic pulsations [168].

Observations of moving type IV bursts associated with CMEs are rare–only 5% of

CMEs exhibit type IVm bursts according to Gergely [73]. To our knowledge only 4

studies have so far reported moving type IV bursts in solar cycle 24 [179, 8, 131, 182].

Although immense progress has been made in understanding these bursts over

the decades, the underlying mechanisms responsible for their production remain

uncertain. Bastian et al. [11] and Maia et al. [113] could clinch the case for

gyrosynchrotron emission in their events because smooth continuum emission could

be seen throughout the associated CME loops, although it should be noted that some

areas of gyrosynchrotron emission in the interior of the CMEs were far brighter. Only

this brighter interior emission, coincident with the core of the CME, could be seen

in the moving type IV events reported by Tun & Vourlidas [179] and Bain et al.

[8], but both argued for a gyrosynchrotron interpretation due to the smoothness of

the emission in frequency and time. However, a recent study by Morosan et al. [131]

found that a coherent emission mechanism (either plasma or electron cyclotron maser

emission) was responsible for the moving type IV burst in their event, while a

stationary component during an earlier time in the burst was found to be consistent

with gyrosynchrotron emission [29]. Therefore, it seems clear that some type IV

and IVm continuum may be due to either gyrosynchrotron emission or a coherent

mechanism or some combination [69, 131, 182]. Given these alternatives, some effort is

required to investigate the relative likelihood of gyrosynchrotron emission as the cause

of a given source. The recent advances in radio imaging-spectroscopy can provide

the spatial information required for investigating the emission mechanism while

also supplying the spectral diagnostics that can be exploited when gyrosynchrotron

emission is favored. In any case, the rare observations of type IVm associated with

CMEs are a powerful tool to investigate the densities and magnetic field strength in

these energetic events.
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In recent years, the new instruments that have come online that, while not

solar-dedicated, nevertheless can be used for occasional imaging spectroscopy of

the Sun at high temporal, spectral, and spatial resolution. Two in particular

have helped to renew interest in metric and decametric studies of the radio Sun,

the Low Frequency Array [181, LOFAR] and the Murchison Widefield Array [175,

MWA]. LOFAR operates in two frequency ranges, 10–90 MHz and 110–250 MHz,

while the Murchison Widefield Array (MWA) observes between 80–300 MHz. Both

provide imaging spectroscopy of the radio Sun at high temporal resolution on an

occasional basis. Several studies have been published in recent years that take

advantage of these novel instruments to investigate both active and quiet Sun

[116, 153, 166, 165, 211, 119, 129, 148].

In this chapter we report the first analysis of solar data from the OVRO-LWA,

located near Big Pine, CA. At the time of observation, the array consisted of 288 dual-

polarization dipole antennas which are optimized to minimize side-lobes; 256 residing

in a 200 m diameter core, and the remaining 32 extending to maximum baselines

of ≈ 1.6 km [4, 58], allowing it to spatially resolve the Sun in the frequency range

27–85 MHz with high spectral resolution. The spatial resolution is about 8.5arcmin

at 80 MHz. The total bandwidth of the array covers this frequency range with 22

subbands, each comprising 109 24-kHz-wide channels at an operational cadence of

either 9 or 13 s, although a 1-s snapshot mode is also available. The array uses the

512-input LEDA correlator [101], which allows imaging the whole visible hemisphere

at all times. Upon completion of an upgrade now underway, it will consist of 352

elements spanning a maximum baseline of ≈2.6 km, with a correspondingly improved

spatial resolution of 5arcmin at 80 MHz. The upgrade includes a dedicated solar

mode with full-spectrum imaging at 0.1-s cadence and measurement of the flux density

dynamic spectrum at 1-ms time resolution.
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These “first-light” solar data were recorded during commissioning in 2015 to

explore the capabilities of the array for solar radio observations, both at quiet

times and during energetic events. We present our investigation of a complex event

consisting of multiple bursts and sources, which occurred in association with a CME

and a GOES soft X-ray (SXR) class M2.1 flare. In Section 2.2 we present the

observations obtained from OVRO-LWA and the supplementary observations taken

from other instruments. In Section 2.3 we investigate the classification of each of

the major burst sources and analyze the various features to identify the emission

mechanism. We find that one of the sources, a moving type IV (IVm) is due to

gyrosynchrotron emission and use spectral fitting to estimate the evolving physical

parameters corresponding to the core of the CME. In Section 2.4 we discuss our

results and conclude with a discussion of what solar research will be possible with the

instrument upgrade now underway.

2.2 Observations

A GOES SXR class M2.1 flare and associated CME were observed on 2015 September

20 (SOL2015-09-20) in NOAA active region 12415, located at heliographic coordinates

S19W52, near the south-west limb. The flare onset was at 17:32 UT (Figure 2.1) and

the SXR peak was reached at 18:03 UT, accompanied by a rather complex radio

event recorded by OVRO-LWA also reaching peak emission around the same time as

the SXR flux. The SXR flux returned to GOES-class C1 (background) level several

hours later, around 21:00 UT. The first signature of the white light CME (WL-CME)

was detected at 18:12 UT in the field of view of the C2 coronagraph of the Large

Angle and Spectrometric COronagraph [22, LASCO] instrument onboard the Solar

and Heliospheric Observatory [50, SOHO].

The event recorded by OVRO-LWA coincided with the commissioning obser-

vations for expansion of the array to the current maximum baseline of ≈ 1.6 km.
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Figure 2.1 Radio and X-ray light curves showing the temporal development of
the M2.1 solar flare on 2015 September 20. a) GOES SXR. b) OVRO-LWA metric
flux density at two representative frequencies. c) EOVSA flux density at three
representative frequencies. d) Fermi/GBM HXR count rate accumulated over two
nonthermal energy ranges.
Source: [34].
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This early stage of operations had three major effects on the data collected: 1) the

observed bandwidth was reduced to a little less than 40% of the total available; 2)the

baseline frequencies were offset by 150 kHz, and 3) adequate understanding of the

circular polarization calibration was not yet available, hence we do not attempt to use

circular polarization information for the event. The first effect reduced the bandwidth

to two available windows between 41–55 MHz and 61–69 MHz as opposed to the full

bandwidth capability of 27–85 MHz and the second resulted in an offset in the position

of all sources present in the sky, which we corrected. The third problem limits us to

consideration of total intensity only. None of the above-mentioned drawbacks had

any impact on the spectral and temporal resolution of the instrument during the

event.

Observations from the LASCO C2 instrument covering 2.2–6 R⊙ (distance from

the solar disk center) were used to get context of the radio source with respect to the

WL-CME, and also to provide electron density diagnostics. We also use data from

the WAVES [19] radio spectrograph onboard the WIND spacecraft, where spectra

from both RAD1 and RAD2 receivers was obtained. The frequency ranges between

20–1040 kHz and 1.075–13.825 MHz are covered by RAD1 and RAD2 respectively;

the Expanded Owens Valley Solar Array [71, EOVSA] for microwave radio spectra

that covers 1–18 GHz; and the US Air Force Radio Solar Telescope Network (RSTN)

spanning between 25–180 MHz for meter-wave spectra to analyze the event and

provide context among multiple wavelengths.

2.2.1 Data Collection and Processing for OVRO-LWA

The flare-CME event was analyzed over a period of 120 min with images of 9-s

cadence. Images during this period were inspected to identify distinct sources, un-

derstand their spatial configuration and describe their temporal behavior. Additional

spectral analysis was done for certain times when the complexity of the burst was
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Figure 2.2 Measured and modeled flux density of radio galaxy Virgo A. The well-
established flux density model for low frequencies is taken from Vinyaikin et al. [187]
(solid line). The flux for Virgo A (asterisks) was measured at our 9-s cadence, averaged
over a few minutes and fit to a quadratic polynomial shown by the red line.

Source: [34].
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at minimum, to provide information on the emission mechanism of the burst. Since

OVRO-LWA observes the whole sky at all times, to obtain the images for our analysis

of the solar radio bursts, we first convert the data from the native output of the

correlator to the Measurement Set (MS) format [122] using an in-house tool called

“dada2ms”. The data are further processed in the following 4 steps:

1. Flagging and calibration: Once the Measurement Sets are corrected for the
aforementioned frequency offset, adopting the strategy outlined in Anderson et
al. [5], all identified bad antennas, channels and baselines are flagged and the
data are calibrated using bright sources in the sky, e.g., Cyg A and Cas A. To
minimize the presence of side-lobes, the bright sources are later removed from
the all-sky maps (using a process known as “peeling”) [127, 57].

2. Shifting the phase center of the sky maps to the nominal position of the center
of the Sun from the originally Zenith-centered calibrated maps.

3. Cleaning the sky maps and creating multi-frequency synthesis (MFS) FITS
images using WSClean [137] for each subband. The available bandwidth during
the time of the event consists of 9 subbands, each having 109 channels, 24 kHz
wide, which are merged together to create 9 band-averaged MFS images at each
time. All frequencies mentioned hereafter are the central frequencies of these
subbands.

4. Flux calibration and correction for position offsets caused by the ionosphere
and instrumental effects: The radio galaxy Virgo A happened to be within 15
degrees of the Sun. It is a strong source with a well-established flux density
model for low frequencies [187] and a precisely known position. We use this
source to calibrate solar flux density and position.

Figure 2.2 shows the measured, uncorrected flux density for Virgo A averaged

over a few minutes, represented by asterisks fitted to a second-degree polynomial,

along with the model flux density spectrum a factor of ≈2 higher. We use the model

flux density and the polynomial fit to the measured flux of Virgo A, to obtain a flux

factor as a function of frequency, which is then used to “bootstrap” the measured

solar flux density to the corrected values. Flux correction for residual primary beam

effects is also performed in this step.
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Large scale fluctuations in the ionosphere can cause a refractive offset in

position, which needs to be further corrected in order to measure the source centroid

position with accuracy. Ionospheric refraction is greater at lower frequencies and

falls quadratically with increasing frequency. It can be measured and corrected by

referring to a nearby point source with a known position. As noted earlier, Virgo A

is ≈15◦ from the Sun and so, is well-placed for use in correcting for refraction offsets.

The precisely known position of this source allows us to determine the offset in its

observed position with respect to its true position as a function of frequency. We

find a fairly small shift of 10′′–30′′ in right ascension (RA) increasing from the lowest

to highest frequencies, and a larger shift of 320′′–160′′ in declination (DEC), which

we correct. Temporal variations in the position of Virgo A were found to be within

±10′′ and have been ignored. The measured offsets are indeed found to follow the

expected quadratic pattern, which gives us confidence that the refraction due to the

ionosphere has been successfully corrected.

Representative images of the Sun are shown in Figure 2.3 at 62.85 MHz for

three different times during the event after the calibration, synthesis imaging, and

offset correction process is complete. The solar grid is superimposed for scale along

with a reference image from the Atmospheric Imaging Assembly (AIA) 171 Å channel

onboard the Solar Dynamic Observatory [109, 15, SDO]. Each LWA image includes

three contours representing 2%, 50% and 90% of the total brightness temperature Tb

demonstrating the wide dynamic range of the instrument.

2.2.2 Event Overview

As shown in Figure 2.1, the time profiles at a wide range of wavelengths and

energies are similar. The microwave flux density from EOVSA, which is due to

gyrosynchrotron emission, was strongest at lower microwave frequencies (3.4 GHz)

and shows nearly the same but weaker time profiles at higher frequencies. The
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(a)

AIA 171           17:36:11.000 UT 17:36:04.500 UT

19:39:58.500 UT

(c)

(b)

(d)

18:02:10.500 UT

Figure 2.3 Processed images of the Sun at different times during the event to show
the dynamic range of the instrument. a) AIA 171Å image overlaid with quiet-Sun
contours from panel b for comparison. b) A representative quiet Sun image (gray
scale) from a time before the event, with contour levels indicated in terms of Tb in
the box on the right. These represent 2%, 50% and 90% of the maximum brightness
temperature. c) Same as b, for a time near the peak of the burst. Now the 2%,
50% and 90% contours represent much higher Tb values. d) The quiet Sun after the
event, similar to the pre-event image in panel b, although the west limb Tb is slightly
elevated.
Source: [34].
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dynamic spectrum from EOVSA is shown in Figure 2.4 up to 18:05 UT, when

observations ended, compared with the OVRO-LWA dynamic spectrum over the same

time period. The overall pattern of flux density variations in Figure 2.1b,c suggests

three distinct episodes: i) a period of weak but growing emission in microwaves from

17:40–17:52 UT accompanied by sporadic type III bursts in LWA, ii) a moderate,

smoothly varying peak in microwave from 17:52–17:58 UT characterized by increasing

continuum emission in LWA, and iii) a second, slightly stronger, smoothly varying

peak in microwaves from 17:58 UT onward, accompanied by a strong increase in

emission in LWA. The emission mechanism in these widely separated frequency ranges

is different, with the EOVSA emission being a smooth continuum due to incoherent

gyrosynchrotron emission from flare-accelerated electrons [52] spiraling in a low-lying

coronal magnetic field while the OVRO-LWA emission during this time is dominated

by spiky, coherent plasma emission from instabilities associated with a population of

continuously accelerated electrons much higher in the corona. Any similarity in flux

density profiles is likely a reflection of the overall pattern of energy release in the event.

The two episodes of enhanced activity in microwaves, peaking at 17:55 UT and again

at 18:03 UT, are also seen in HXR emission by the Gamma-ray Burst Monitor aboard

Fermi (Fermi/GBM; Figure 2.1d), but the microwave times are delayed 1–2 minutes

relative to the peak times of nonthermal HXR emission, suggesting relatively strong

trapping of the microwave-emitting electrons. Note that gyrosynchrotron microwave

spectra typically peak between 5–10 GHz [86] while the peak microwave frequency for

this event seems to extend below the lowest observed frequency in EOVSA (2.9 GHz)

at the time. This suggests a relatively low magnetic field strength in the source, and

hence a greater height for the emission, than is typical for microwave bursts.

We extract dynamic spectra from the WIND/WAVES and RSTN radio

instruments, which cover frequencies both above and below the observing range of

OVRO-LWA, for contextual understanding of the observed radio bursts. RAD1 and
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Figure 2.4 LWA (bottom) dynamic spectrum in context with the corresponding
dynamic spectrum from EOVSA (top) obtained at some 2-orders-of-magnitude higher
frequency in microwaves.
Source: [34].
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RAD2 receiver bands from WAVES onboard the WIND spacecraft cover the frequency

range between 20–1040 kHz and 1.075–13.825 MHz with 256 channels each and a

bandwidth of 3 kHz and 20 kHz respectively. The RSTN spectrograph covers 25–180

MHz, overlapping with the OVRO-LWA range. Figure 2.5 shows a composite dynamic

spectrum with the lower frequencies from WIND/WAVES RAD1 and RAD2, and the

higher frequencies from RSTN. The available bands in OVRO-LWA, with their far

higher signal to noise ratio, are inserted to replace the RSTN spectrum in those bands.

The three vertical black lines mark times to be discussed in Subsection 2.3.3. The

peak of radio emission occurs at a similar time as the soft X-ray peak at 18:03 UT

and is associated with a dense group of type IIIs. Continuous emission is seen in

the decay phase consistent with a type IV burst. There is also a signature of a type

II burst at lower frequencies, seen in RSTN and extending into RAD2 frequencies

(whose leading edge is marked by dashed-line in Figure 2.5). We searched for an

OVRO-LWA counterpart by extrapolating the type II emission to higher frequencies

and earlier times, but did not find any clear signature despite OVRO-LWA’s high

sensitivity. This suggests that the type-II-burst-emitting shock had not formed until

later and at greater heights.

LASCO-C2 images with a 12-min cadence were obtained between 18:12–

19:12 UT and processed to enhance the CME features using monthly background

subtraction, median filtering, occulter masking and Normalized Radial Graded

Filtering [130]. The upper row of panels in Figure 2.6 show LASCO-C2 images at four

times during the event. In the first image at 18:00 UT, the CME had not yet reached

above the C2 occulter at 2.2 R⊙. Its first appearance was at 18:12 UT (see contours in

the left column of Figure 2.9). A height-time plot of the CME leading edge and core

is shown in Figure 2.7, which indicates a relatively constant velocity (1240 km s−1)

that extrapolates back to 1 R⊙ around 17:57 UT. This suggests an association with

the first of microwave and HXR peaks around 17:55 UT. No data were available for
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Figure 2.5 Composite dynamic spectrum from WIND/WAVES RAD1, RAD2,
RSTN with an overlay from OVRO-LWA.
Source: [34].
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this observation window from COR1 and COR2 coronagraphs onboard the STEREO

satellites. The closest in time STEREO-A COR2 image was at 19:26 UT, and because

the Earth–spacecraft angle was 170.6 degrees, its view was almost directly behind and

provides little additional information about the plane of the CME.

2.3 Burst Identification and Analysis

2.3.1 Burst Identification

OVRO-LWA images of the Sun are created at each time in the nine available

frequency-subbands to create a movie between 17:36-19:36 UT, beginning with the

onset of the flare and ending with the decay phase (See movie in Figure 2.6). Upon

carefully examining the complex event as seen by OVRO-LWA and LASCO-C2

(C2 hereafter) WL data, we identify distinct times and source-regions of interest

(TOIs and SRs hereafter) based upon important changes in burst position and/or

apparent motion. We use the term source-region (SR) and source interchangeably

hereafter. Figure 2.6 gives an overview of the event with WL images as recorded by

C2 in the top panels, and corresponding OVRO-LWA maps in the bottom panels.

OVRO-LWA brightness temperature contours at 62.86 MHz (one of the higher

frequencies available) are overlaid on the C2 maps. SRs 1, 2 and 3 are identified

with white arrows at those times when each becomes dominant at 62.86 MHz. The

identified SRs represent three different burst sources spatially distributed within

the erupting region with possibly different underlying mechanisms. The order of

appearance and dominance of burst emission in the SRs varies with frequency and

time in a complicated manner due to their different spectral and temporal behavior.

However, source 2, which is well aligned with the axis of the CME, shows an outward

motion at least during some of the time, as described further below.

A concise description of the dominant sources during the TOIs is noted in Table

2.1. There are signatures of numerous distinct bursts in SR 1, lasting less than our 9-s
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Figure 2.6 Top row: Evolution of the flare-CME event in WL recorded by LASCO-
C2 at four selected times constrained by LASCO’s 12-min cadence. The yellow arrow
in the left panel points to a pre-existing CME discussed in the text. OVRO-LWA
20%, 40%, 60% and 80% brightness temperature contours are overlaid for reference.
The third panel shows example locations of the leading edge of the CME and the
core used for height-time analysis. Bottom row: OVRO-LWA maps at 62.86 MHz,
at the corresponding times for comparison. White arrows mark three source-regions
of interest (SRs) described in the text. The white lines mark the slit along which
height-time measurements are made for Figure 2.7.
Source: [34].
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cadence, observed first in lower frequencies and later over the whole band, immediately

after the onset of the flare at 17:32 UT and continuing for about 15 minutes (associated

with a slowly increasing, but weak level of activity in microwaves visible in Figure 2.4).

Fairly continuous broadband emission, but fluctuating in brightness, comes mainly

from SR 2 until a few minutes before the peak of the emission at ≈18:03 UT. Relatively

stationary pulsations from SR 1 become dominant at lower frequencies during this

peak time, while at higher frequencies emission from both SR 1 and 2 are comparable.

Around 18:18 UT, SR 3 first appears. From 18:18–18:23 UT sources 1 and 3 fluctuate

but SR 2 exhibits steady emission smoothly varying both in frequency and time and

a distinct outward movement across the whole band, reaching as high as 3 R⊙.

2.3.2 Burst Analysis

SR 1: The examination of the movie alongside the dynamic spectrum suggests that

emission in SR 1 is likely associated with type III radio bursts. Several distinct type

IIIs are observed in the dynamic spectrum between the onset and the peak time of

the flare, and a dense group of type III bursts identified from the dynamic spectrum

appeared from both SR 1 and 2 during the peak. The SR 1 burst location spatially

aligns with the position angle of a previous, slow and narrow CME, first observed

with C2 at 15:48 UT. The remnant structure of this previous CME is shown by the

yellow arrow in Figure 2.6. The material from this previous CME has moved out

to ≈ 5.38 R⊙ by the time we observe type III activity in the region. One possible

explanation for the existence of type III bursts at this location is that there may

be some interaction between this pre-existing magnetic structure remnant from the

earlier CME and the initial stages of the M2.1 flare. Alternatively, Reiner et al. [155]

have shown that a class of hectometric type III bursts observed over an extended

duration and temporally associated with decimetric and metric radio emission may

44



Ta
bl

e
2.

1
O

ve
rv

ie
w

of
th

e
Ev

en
tw

ith
R

es
pe

ct
to

th
e

Id
en

tifi
ed

So
ur

ce
R

eg
io

ns
(S

R
s)

at
D

iff
er

en
tT

im
es

,a
nd

th
e

R
es

pe
ct

iv
e

Fe
at

ur
es

O
bs

er
ve

d T
im

e
of

in
te

re
st

D
om

in
at

in
g

SR
D

om
in

at
in

g
SR

.
D

om
in

an
t

Fe
at

ur
es

O
bs

er
ve

d

(U
T

)
(L

ow
ν
<

55
M

H
z)

(H
ig

h
ν
)

17
:3

9–
17

:4
7

1
1

Sp
or

ad
ic

sh
or

t-
du

ra
tio

n
bu

rs
ts

a

17
:4

9–
17

:5
4

2
2

C
on

tin
uo

us
Em

iss
io

n

18
:0

0–
18

:0
9

1
1,

2
St

at
io

na
ry

pu
lsa

tio
ns

18
:1

8–
18

:2
3

1,
2,

3
2,

3
O

ut
wa

rd
m

ov
em

en
t

in
2

a
M

ai
nl

y
ty

pe
II

Ib
ur

st
s

So
ur

ce
:

[ 3
4]

45



Figure 2.7 Composite height-time plot of the radio source SR 2 at two frequencies,
41.92 MHz (top) and 62.86 MHz (bottom) with WL CME leading edge (red) and
Core (blue), overlaid. The black symbols mark the position of 50% contour of the
radio source, and gray points show the source centroid estimated by subtracting the
beam half-width.
Source: [34]
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be produced by electron beams ejected primarily from the flare site itself. Such bursts

are classified as complex type III bursts due to their complex intensity profiles.

SR 2: Height-Time Analysis: As mentioned above, it is in SR 2 that we observe

a steady outward movement of the source. This motion is investigated in detail

by performing a manual height-time analysis of the radio source at all the available

frequencies to estimate the velocity of the source and then compare it with the speeds

of the CME leading edge and the core. For the purpose of height-time analysis of

the radio source, we chose a direction aligned with the observed outward motion

(shown by the white lines in the bottom row of Figure 2.6), which is only slightly

non-aligned with the direction of CME motion. To measure the outward motion of

the radio source, we do not use the peak or centroid locations, both of which were

affected by the intermittent brightenings of overlapping source SR 1, but rather we

use the position of the apparently more stable 50% contours of SR 2 (the intersection

of this contour with the axis line) at each time as a measure of this outward motion.

The 50% contour height is shown by the black symbols in Figure 2.7 at two different

frequencies. To obtain a rough proxy for the source centroid position, which cannot be

directly measured due to the above-mentioned confusion with SR 1 and 3, we subtract

the synthesized beam (point-spread-function) half-width at each frequency, under the

assumption that the source is unresolved. In cases where the source is resolved, this

proxy will slightly overestimate the height of the centroid, but it is sufficient for our

purposes here. This proxy for the centroid position is plotted in Figure 2.7 as gray

symbols. Heights of the outward moving leading edge and core of the WL CME are

also measured in a similar manner (one example is shown in the third panel of the

upper row of Figure 2.6). The positions are recorded where the outer edge of the

core (blue diamonds in Figure 2.7) and the leading edge (red diamonds) intersect

the axis at each time. The same points are plotted in both upper and lower panels

of Figure 2.7. The blue core points are fit with a constant velocity (775 km s−1).
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The first point (at 18:24 UT) was excluded while performing this fit, since the height

of the core at that time is uncertain due to its proximity to the occulter. The fit

is extrapolated backward to highlight that the CME core velocity matches the gray

radio centroid points quite well.

A smooth outward motion is evident at higher OVRO-LWA frequencies in Figure

2.7, while the lower frequencies show rather erratic changes, due to greater source

confusion, although also having an outward-moving trend. Although an apparent

motion is clear from the height-time plots, visible outward motion in the movie is

most apparent only for a short of period of time between 18:18–18:23 UT when only

SR 2 was visible and undisturbed by the other sources. Based on the outward motion

of the source, along with its clear match to the WL CME core position and speed,

we classify the SR 2 as a type IVm (moving type IV) source.

SR 3: SR 3 aligns well with the southern flank position of the CME, and

the source becomes dominant during the decay phase of the radio event, while

the source centroid over all observed frequencies appears to be spatially coincident.

Plausible mechanisms may include stationary type IV plasma emission from particles

accelerated in this southern flank region. However, due to the lack of stereoscopic

observations and polarization information from the OVRO-LWA, any additional

conjecture regarding the morphology and underlying mechanism is not justified.

2.3.3 Moving Type IV Emission Mechanism

Following from Section 2.1, a number of studies [11, 113, 179, 8] have shown that

continuum emission associated with CMEs can be due to gyrosynchrotron radiation.

While Maia et al. [113] and Bastian et al. [11] were able to rule out plasma

emission owing to the well defined radio–CME loop morphology that was spatially

coincident over multiple frequencies, we lack that advantage since our source is not

spatially resolved. Therefore, we must rely on other arguments similar to those by
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Figure 2.8 Left: Reference image of the C2 WL CME at 18:36 UT used to create a
CME model by the GCS reconstruction method. Right: Wire-frame CME in green.
Source: [34]
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Tun & Vourlidas [179] and Bain et al. [8]. The fact that the emission we observe

varies smoothly over frequency and time for the duration of the visible outward

motion, together with the rather large height of SR 2 (> 2.5R⊙ at 65 MHz), suggests

gyrosynchrotron emission for our event as well. To investigate further whether

plasma emission can be ruled out, we examine the density using constraints from

the LASCO-C2 observations. It is noted that the limited resolution along with the

source confusion restricts us to only average over the inhomogeneous structure. Any

physical parameters derived further are only used as representative values and apply

to the source only in an averaged–sense.

We start by performing a graduated cylindrical shell (GCS) reconstruction of

the CME [174]. The model assumes a self-similar expansion of the CME, integrated

with a flux-rope morphology. We note here that due to the lack of simultaneous

stereoscopic observations we get only one viewpoint from LASCO, so we lack a firm

measure of the plane-of-the-sky angle of the CME, on which the density depends.

However, fitting a single point of view can still offer a useful constraint on the density.

The free parameters in the model such as CME height, tilt-angle of the source-region

neutral line, angular width and aspect ratio are used to create a wire-frame model for

the CME, shown in Figure 2.8. For plane-of-the-sky angle, we take the initial values

of the heliographic coordinates for the source region from SDO/AIA measurements,

which are then adjusted to match the observations. Such adjustments are sometimes

necessary given the fact that CME deflections are commonly observed due to several

influencing factors like background coronal magnetic topology, streamers, and fast

solar wind from coronal holes [111, 42]. The model is then used to generate a synthetic

brightness image of the CME using a ray-tracing renderer, based on Thompson

scattering equations. This process is performed for C2 images recorded at 18:24

UT and 18:36 UT, and the density estimates for the leading edge of the CME are

then adjusted to give synthetic brightness that matches with the observed brightness.
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Figure 2.9 Overview of the outward moving radio source in SR 2 as seen by
OVRO-LWA. WL CME contours from C2 are overlaid in orange to show the relative
movement of the source with respect to the CME. Time is increasing as we move
from left to right and frequency increases as we move from top to bottom. The C2
contours in column 2 and 3 are the same (taken at 18:24 UT), the only frame closest
in time with respect to the OVRO-LWA images. C2 contours in column 1 are taken
at 18:12 UT. The white solid circle marks the C2 occulter at 2.2 R⊙.
Source: [34]
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Although the leading edge is a convenient place to use for scaling the GCS model,

the scaled model is interpreted as applying to the entire CME including its core

(represented by the inner fold of the croissant-shape) where the moving radio source

is located.

We exploit the fact that the core and the leading edge of the CME are

comparable in brightness (within a factor of 2) to get a proxy for density in the

core. Using this process we obtain the value of density for the leading edge of the

CME at 18:24 UT to be Ne ≈ 2.2× 106 cm−3 corresponding to a plasma frequency νp

of 13.32 MHz. The density obtained at 18:36 UT is ≈ 6.2× 105 cm−3 corresponding

to νp = 7.07 MHz. We use these estimates when discussing our spectral fitting results

below.

Spectral Fitting: Fast gyrosynchrotron codes [61] are used to calculate the

gyrosynchrotron emission based on a homogeneous source, which serves as the basis

for performing spectral fitting at three different times (shown by vertical black lines

in Figure 2.5) during the observed outward movement of the source, to estimate its

evolving physical conditions. We chose times when there is a clear dominance of

the source emission in SR 2 such that it can be clearly separated from bursts in

SR 1 and 3 at most of the available frequencies. Figure 2.9 shows an overview of

the outward moving source at three different frequencies and the chosen times, with

the WL CME contours from C2 overlaid (orange) for reference. The white solid

line marks the C2 occulter. Note that the C2 contours in columns 2 and 3 in the

figure are the same (taken at 18:24 UT), since that is the frame closest in time to

the OVRO-LWA images. C2 contours in column 1 are taken at 18:12 UT. The 50%

contours of the source are then used as a measure of the convolved source size. We

further deconvolve the source using the synthesized beam, to obtain an estimate of

the source area [197]. As mentioned above, we average over an inhomogeneous source

while estimating the physical conditions in the region. Consequently, we also assume
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Figure 2.10 Spectral fits for the moving source in SR 2 at three times during
the observed outward motion. From the ambient density used in the fits, the dashed
and dotted vertical lines show the corresponding plasma frequency, νp and its second
harmonic, 2νp respectively at each time, relative to the observed emission.
Source: [34]
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an isotropic electron distribution for the spectral fits. An extrapolation of the density

estimates made using the GCS reconstruction and the source area are fed into the

codes and the free parameters viz., Emin, the minimum energy of the electrons in

MeV, B, the magnetic field strength in G, ne,nth, the non-thermal electron density

in cm−3, and δ the power-law index are adjusted to match the observed spectra.

Spectral fits for these times are given in Figure 2.10, with text in each panel giving

the fit parameters, Emin, B, ne,nth, δ, source area and U , where U is the magnetic

energy density in erg cm−3. The dashed and dotted vertical lines show the plasma

frequency, νp and its second harmonic, 2νp respectively at each time. These are

slightly higher than, but close to the values we determined from the GCS fitting of

the CME brightness. The spectral peaks are well above these plasma-frequency limits,

further supporting the interpretation that the emission is due to the gyrosynchrotron

mechanism. The results of the fits suggest that both accelerated electron density and

magnetic field strength decline as the source expands outward, while the power-law

index of the electrons hardens.

2.4 Discussions

This study presents first-light observations recorded by the OVRO-LWA of a flare and

CME associated with a rather complex event at metric wavelengths. The observations

were made during the first 24 h of commissioning observations for the expansion of

the array, which compromised the frequency coverage and polarization capability,

but nevertheless provided sufficient imaging spectroscopy to allow new insights into

the rarely observed moving type IV (type IVm) phenomenon. A detailed analysis of

the event is performed to characterize the multiple burst types observed and isolate

the times when the emission was dominated by the moving source. We examined

the relationship of the radio emission to a WL CME observed with the LASCO-C2

instrument, with context radio data from RAD1 and RAD2 receivers on board the
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WIND spacecraft, RSTN and EOVSA. We identify three different source-regions of

interest in the complex radio event.

1. SR 1 appears to align well with a region associated with a previous CME,
observed at 15:48 UT. The type IIIs observed in this region during the peak
phase of the flare may have resulted from turbulent interaction between the
flare and some pre-existing magnetic structure from the earlier CME.

2. The broadband continuum emission in SR2 is classified as a moving type IVm
burst. There exists a clear agreement between the outward movement of the
source centroid in SR 2 and the corresponding movement of the WL CME
core that can be seen on comparing the OVRO-LWA and LASCO height-time
plots. The velocity of the CME leading edge from CME catalogues (maintained
by the Coordinated Data Analysis Workshops (CDAW) Data Center) is given
to be 1240 km/s. The position of the radio source from the height-time
plots of OVRO-LWA suggests a lower velocity of ≈775 km s−1, appropriate
to the expected lower speed of the CME core. We further perform a GCS
reconstruction of the CME to constrain its density in the volume. The
corresponding plasma frequency is somewhat lower than the frequency of the
observed emission, but given the uncertainties due to such issues as density
inhomogeneity, angle of the CME to the plane of the sky, and line-of-sight
depth, we cannot completely rule out the possibility of plasma emission as the
underlying mechanism based on density alone. However, the smooth variation
of SR2 in frequency and time strongly argue for gyrosynchrotron emission as the
preferred mechanism. Under this assumption, we fit gyrosynchrotron spectra
to the observations to obtain estimates of the physical parameters in the burst
as the source evolves. The EOVSA dynamic spectrum suggests a reservoir of
microwave-emitting electrons at an unusually large height early in the event,
which could potentially serve as a source of particles escaping into the CME
core region.
There have only been a few studies that attempted to estimate the physical
parameters of the plasma from type IV bursts using imaging-spectroscopy, most
of them reporting observations at higher frequencies [11, 113, 179, 8, 129]. See
the summary compiled by Mondal et al. [129], their table 3. The estimates for
the magnetic field vary widely, with several reporting B ≈ 10 G at similar
heights compared to our lower value of order 1–2 G. Only the Bastian et
al. [11] measurements are this low. This variability may be real, and simply
reflect different conditions in different events. Additionally, Bastian et al. [11]
and Maia et al. [113] report these values in radio–CME loops while the event
observed in the current study and the ones reported by Tun & Vourlidas [179]
and Bain et al. [8] are associated with the core of the CME. Conversely,
power-law index, δ, is found in a narrow range of 3.5–5 in the previous studies,
and our range of 3.7–4.5 is no exception. The nonthermal density, ne,nth is
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particularly variable in these studies, ranging from 2 × 102–2 × 106 cm−3, but
this depends greatly on the value of Emin used for the estimate. Our values of
5000–10000 cm−3 are well in line with these.

3. Although there is a signature of a type II burst at lower frequencies observed
in RSTN and WAVES Rad2 during the period of the outward motion, no such
feature is visible in the OVRO-LWA spectrum at the earlier time expected by
extrapolation to higher frequencies. It is interesting that the frequency range
of type II emission seen in the RSTN data, drifting from 35 to 20 MHz over
this time, closely matches the 2nd harmonic plasma frequency corresponding to
both our CME leading-edge density estimate (26.6 MHz at 18:24 UT) and the
thermal density used in our gyrosynchrotron fits (dotted lines in Figure 2.10).
If we had had the full frequency-coverage for this event that OVRO-LWA is
capable of, we would have been able to image both the gyrosynchrotron and
type II emission simultaneously.

4. The continuous but time-variable broadband emission observed during the
decay phase of the flare, associated largely with SR 3, shows a spatial alignment
with the CME southern flank position. Plasma emission from particles
associated with the flank of the CME is a plausible explanation. The CME
flank is the location of shocks causing metric type II bursts in some models
[37], but again we find no clear type II spectral feature in the OVRO-LWA
data. Recent studies have also shown evidence of “herringbones” observed at
the CME flanks [132], although the high cadence for this observation does not
allow us to see any fine structures that may be present in the dynamic spectrum.
Alternatively, this continuum source may be due to shock particles accelerated
elsewhere and transported to SR 3.
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CHAPTER 3

SIGNATURES OF TYPE III SOLAR RADIO BURSTS FROM
NANOFLARES: MODELING

3.1 Introduction and Motivation

Understanding the physics of the heating of the solar corona to several million K, three

orders of magnitude higher than the observed surface temperature, is a challenge that

has stirred solar research for decades. Section 1.1 discuses the plausible mechanisms

that may be responsible for this comprehensive phenomenon. Moving from large-scale

transient bursts discussed in Chapter 2, this Chapter discusses small-scale bursts in

the corona, and the associated radio emission.

Following from Parker’s [141] theory, nanoflares are believed to be ubiquitous

in the solar atmosphere. However, a major challenge we face is the lack of direct

detection of individual nanoflares, due in part to their small amplitude and in part to

the confusion from line-of-sight overlap of the optically-thin structures. Therefore, the

existence and properties of nanoflares must be inferred from their collective effects.

A variety of different methods have been used [100].

During a nanoflare life-cycle, the EUV emission from the heating phase is

much less than that from the slower cooling phase [20]. This property of nanoflares

leaves a unique signature in multi-wavelength observations. As the plasma cools,

the loop appears first in a hot channel, subsequently showing up in cooler channels

which, in turn, reach their peak intensities with some time delay. The powerful

technique developed by Viall & Klimchuk [183] can identify cooling patterns in large

ensembles of loops by detecting even the minutest variability in light curves. They

use high-cadence observations from the Atmospheric Imaging Assembly onboard

the Solar Dynamic Observatory [15, 109, SDO/AIA] spacecraft to measure the

time-lag between two coronal channels. This is accomplished by computing the cross
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correlation of the light curves with different amounts of imposed temporal offset and

determining which offset maximizes the correlation [see [183, 185]]. The technique

not only detects time lags that can be identified by eye in observationally distinct

loops, but also works well when there are countless overlapping coronal strands in

observations of the diffuse corona, where the time lags are not obvious to the eye.

Viall & Klimchuk [184] simulated the composite emission from 10,000 strands heated

randomly by nanoflares, as expected in a real solar observation. The light curves

exhibit only small fluctuations, yet the time-lag technique correctly identifies the

cooling that is known to be present in the simulations.

Full-sized flares are extremely efficient at accelerating particles to high energy.

Whether this is also true of nanoflares is unknown [186]. A leading theory of particle

acceleration involves collapsing plasmoids [51]. The theory predicts that the efficiency

of acceleration depends on the magnetic field geometry - in particular, whether

there is a strong guide field component [43]. Because nanoflares and flares have

different geometries, determining whether particle acceleration occurs in nanoflares

would be an important test of the theory. Instinctively, we turn to hard X-ray (HXR)

observations to answer this question. Such observations place a rather low upper limit

on the quantity of highly nonthermal electrons. However, large numbers of mildly

nonthermal electrons are not ruled out in active regions, because their emission would

be dominated by much brighter thermal emission in HXR rendering the nonthermal

component undetectable. For quiet Sun, although the temperatures are low enough

that no thermal emission is observed to dominate HXR energies, nonetheless, the

lack of sensitivity of the current instruments does not place meaningful limits on the

mildly energetic particles [90, 89, 94]. Therefore, understanding particle acceleration

from nanoflares requires a different approach.

Radio emission on the Sun is not constrained by these limitations. Type III radio

bursts (coronal and interplanetary) especially are an important tool for understanding
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Figure 3.1 Composite dynamic spectrum from the Bleien telescope, the Nancay
Decametre Array, WIND/WAVES RAD2, and RAD1 exhibiting traditional inter-
planetary type III radio bursts observed on January 28th, 2014 ([154], Figure 1).
Reprinted with permission from Research in Astronomy and Astrophysics.
Source: [35].
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accelerated electron beams given the characteristic frequency drift they show in the

radio dynamic spectrum [198, 154, and references therein]. Figure 3.1 shows an

example of traditional type III radio bursts as the particles move away from the Sun

into interplanetary space. The dynamic spectrum combines data from the Bleien

telescope covering the frequency range of 900–200 MHz [14], the Nancay Decametre

Array [108] covering the range of 80–15 MHz, and the RAD1 and RAD2 receivers

onboard the WIND spacecraft [19] covering 14–0.1 MHz. The frequency axis is

inverted (decreasing upward) to give the impression of the electron beam propagating

away from the Sun. As the electrons propagate outward along open field lines, they

encounter decreasing density, and the emission is first detected at a higher frequency,

followed by progressively lower frequencies. The time delay between the two defines

the frequency drift rate of the burst. As shown in Section 1.4 ‘U’ or ‘J’ shaped bursts

exhibit frequency drifts in both directions.

While these traditional type IIIs are observed as individual bursts, in groups

or sometimes as type III storms with hundreds of bursts occurring over a period of a

few hours, the ever-present nanoflares may produce hundreds or thousands of bursts

per second, which will not be identifiable as individual burst features in the dynamic

spectrum. Rather, they may present themselves as a quasi-continuous ‘radio haze.’

The collective emission from these small bursts will not be as intense, and small

but real fluctuations may be misinterpreted as mere noise. Moreover, the emission

from these bursts coming from the closed corona will exhibit frequency drifts in both

directions, similar to those seen in the stronger ‘U’ or ‘J’ bursts noted above.

In this study, we attempt to identify signatures of type III radio bursts that

may be produced by nanoflares using the time-lag technique. Similar to correlating

light curves in pairs of EUV channels, we will correlate light curves in pairs of

radio frequencies. The radio drift of overlapping type III bursts shows up like the

EUV cooling signature from overlapping magnetic strands, although on much shorter
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timescales. We construct a simple numerical model simulating emission produced

by these type III bursts at different frequencies, which are then cross-correlated to

measure time-lags for each frequency pair. We add increasing complexity to the model

to more closely approximate the real corona, and at each step we evaluate the efficacy

of the time-lag technique. Section 3.2 gives the detailed formalism for the loop model

along with the methodology used to populate loops with nanoflares and simulate

type III emission. We discuss our results in Section 3.3. The Appendix summarizes

various additional factors that may affect the cross-correlation results. Subsequent

studies are planned that apply these results to observations at these frequencies from

the FIELDS experiment on Parker Solar Probe, the Very Large Array (VLA), and

the Low-Frequency Array (LOFAR).

3.2 Modeling

3.2.1 Loop Model Formulation

The basic building block of our model is a symmetric loop in static equilibrium.

Following Martens [117], we obtain solutions to the one-dimensional energy equation:

d

ds

(
κoT

5/2dT

ds

)
+Q− P 2

o χoT
−(2+γ) = 0 (3.1)

where s is the spatial coordinate along the loop, κo(= 1.1× 10−6 erg cm−1 s−1 K−7/2)

is the coefficient of thermal conductivity, Q is the volumetric heating rate, Po is the

gas pressure, taken to be constant along the loop due to the large gravitational scale

height, and χo(=1012.41) & γ(= 0.5) are parameters of the optically-thin radiative loss

function in c.g.s. units. The heating function is taken to have a power-law dependence

on pressure and temperature:

Q = HP β
o T

α (3.2)
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which is further reduced to

Q = H (3.3)

assuming α = β = 0 for a uniformly heated loop, where H is a constant of

proportionality.

Although nanoflare heating is inherently impulsive, we believe it is reasonable

to assume steady heating and static equilibrium for this initial evaluation of the

feasibility of detecting overlapping type III bursts. Furthermore, nanoflares are

believed to recur on individual field lines with a range of repetition frequencies [100,

and references therein]. High-frequency nanoflares are effectively similar to steady

heating, and loops heated by low-frequency nanoflares spend much of their time in a

phase that is not greatly different from static equilibrium conditions.

Static equilibrium loops obey well-known scaling laws. With uniform heating,

we have [117, equations 28 & 30]:

PoL = T 3
a

(
κo

χo

)1/2 √
2

5
B

(
6

5
,
1

2

)
(3.4)

and

Q ≈ 1

2
κo

T
7/2
a

L
(3.5)

where L is the loop half-length, Ta is the temperature at loop apex, and B is the beta

function.

Magnetic strands become entangled and braided as they are churned by chaotic

photospheric motions. One promising idea is that nanoflares occur when the angle

between adjacent misaligned strands reaches a critical value. As discussed in Mandrini

et al. [115], this leads to a volumetric heating rate that scales with the loop length
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according to Q = cL−3, where c is a constant. Adopting this dependence in

the scaling laws above, and using the IDL routine BETALOOP.PRO developed by

Martens [117], we can construct density and temperature profiles for loops with a

variety of different lengths. An example density profile (electron density, n, vs.

distance, s, along the loop) is shown in Figure 3.2a. As is characteristic of all loops,

the gradients are shallow in the corona and steep in the transition region (TR) near

the base. The temperature profile has these same properties, being essentially the

inverse of the density profile due to the constant pressure.

3.2.2 Type III Logistics

As already noted, a beam of energetic electrons will generate radio emission at the

local plasma frequency, νp ∝ n1/2. This involves complex nonlinear interactions

among the ambient ions or ion-acoustic waves and Langmuir waves that are generated

by the beam. Detailed simulations of these processes have been performed in the

context of the magnetically open corona and solar wind [103, 149, 153]. We do

not attempt that here. Rather, we assume that the type III emission from a given

location turns on, maintains a constant brightness, and turns off during the time that

the beam is passing that spot. How the brightness may depend on parameters such

as the density and energy of the beam, the ambient density, or the strength of the

magnetic field are largely unknown [though see [169, 173, 102]]. We therefore assume

that the emissivity (emission rate per unit volume) is the same for all events and

all loop positions. This approach is consistent with our goal of demonstrating the

feasibility of the technique in this initial study.

Radio spectral observations usually sample the emission in frequency bins, or

channels, of equal size, ∆ν. We do the same when generating synthetic spectra from

our models. Because density varies along the loop, each frequency bin corresponds

to a small range of densities, ∆n, which in turn corresponds to a finite section of
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the loop, ∆s, as shown schematically in Figure 3.2d. We refer to this as a volume

element, under the assumption of constant cross-sectional area [96].

Depending on the beam duration and hence the beam length, volume elements

may be partially or fully filled by the beam. Longer elements near the apex tend to

be partially filled, while shorter elements in the lower legs tend to be fully filled. We

assign an intensity to frequency νi that is proportional to either the beam length Lb

or the length of the corresponding volume element ∆si for elements that are longer

and shorter than the beam, respectively. Elements are centered on si where the local

plasma frequency is νi. We also take into account the finite time required for the front

and back of the beam to traverse the element; the light curve at a given frequency

ramps up linearly as the beam enters the element, has a flat section, and ramps down

linearly as the beam exits. The frequency bin size ∆νi is the same for all frequency

bins (all i).

Note that for a sufficiently long beam length Lb, such that all volume elements

∆si along the loop are shorter than Lb, the intensity at all frequencies νi will be

directly proportional to their respective volume elements ∆si.

The size of a volume element and its associated intensity vary inversely with the

local density gradient, as shown in Appendix A. Gradients are very small near the loop

apex and increase steadily down the legs, becoming very large near the footpoints.

Consequently, the intensity is a strong function of frequency (Figure 3.2c). Lower

frequencies come from high in the loop and are bright, while higher frequencies come

from low in the loop and are faint. This is indicated in Figure 3.2b, c. Appendix

A shows that for a constant conductive flux, which is a crude approximation to an

equilibrium coronal loop, the intensity varies as n−4 and therefore as ν−8. The very

steep spectrum has important implications, as we discuss below. Keep in mind that

this is the spectrum of a single loop. The composite spectrum from many loops with

different density profiles is much more uniform.
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Figure 3.2 a) Density profile for a single loop as a function of distance. b) Relative
Intensity, I, in frequency bins of equal size as a function of distance along the loop
for a type III burst. c) Relative Intensity as function of local plasma frequency along
the loop. d) ∆νi bins of same width occupy a much larger volume of the loop in the
upper corona compared to the TR. e) Intensity variation for a burst vs. location in
the loop.
Source: [35].

65



Referring to Figure 3.2, consider two frequencies ν1 and ν2 occurring high and

low in the loop, respectively. The frequency bins ∆ν1 and ∆ν2 centered on ν1 and

ν2 have the same width, but the corresponding volume elements ∆s1 and ∆s2 are

different; ∆s1 > ∆s2 because of the smaller density gradient. The intensity is

therefore brighter at ν1. The shading in Figure 3.2e indicates the total emission

coming from each volume element. The differences are due entirely to the variations

in volume. Our model assumes that emissivity is uniform along the loop. Similarly,

the intensity plotted in Figure 3.2b is not the emission per unit volume at position s,

but rather the intensity of the volume element that is centered at s.

We now explore the light curves (intensity versus time) expected when a beam

of energetic electrons propagates along the loop. Different frequencies will light up at

different times. By cross correlating the light curves with different imposed temporal

offsets, we generate a Cross-COrrelation Power Spectrum (CCOPS) 1. We want to

know whether the CCOPS reveals a signature of the beam that might be used to

identify type III bursts from nanoflares. We start with very simple scenarios and add

increasing complexity to more closely mimic the actual Sun.

3.2.3 Single-Loop Model

Model 1: First consider a single loop with half-length L, as depicted in Figure 3.3.

Sample frequencies ν1, ν2, and ν3 correspond to the positions indicated. The loop

is symmetric, so each frequency is present in both legs. We now imagine that a

nanoflare occurs at three different locations, which we refer to as cases A, B and C.

These produce the light curves shown in Figure 3.4, ordered so frequency increases

from top to bottom to reflect the relative heights within the loop. The red ’stars’

indicate the position and timing of the three different nanoflares.

1The term “Power Spectrum” refers to the variation of the amplitude of the cross-correlation
coefficient as a function of time-offset and should not be confused with the Fourier transform
of the auto-correlation function.
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Figure 3.3 Case A: nanoflare at the loop top with particles moving downward to
the foot-point; Case B: nanoflare high in the loop leg with particles moving downward
only; Case C: nanoflare low in the loop leg with particles moving in both directions.
Source: [35].
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Case A: The nanoflare occurs at the loop apex ensuring all particles only

propagate downward (Figure 3.3a). The ejected beam of electrons is assumed to

be mildly non-thermal with a fixed energy of 2 keV, hence moving with a constant

velocity of 2.65×109 cm/s (∼ 0.1c). The duration of the beam is chosen to be 20 ms.

As the beam propagates along the field, we expect to see emission first at ν1 followed

by ν2 and then ν3. The features in the light curves joined by the blue arrows in

Figure 3.4 clearly demonstrate this systematic behavior.

Case B: Here we assume that the nanoflare occurs partway down the left leg and

that particles propagate downward only. Following from the sketch for case B (Figure

3.3b), it is evident that only ν2 and ν3 will show any emission (features joined by the

red arrows) since the nanoflare lies below ν1 and the downward moving particles never

pass that location. Emission appears in ν2 and ν3 with the same delay as in Case

A. We classify this as a positive delay, because the higher frequency occurs after the

lower frequency.

Case C : The nanoflare now occurs lower in the loop leg and particles propagate

in both directions (Figure 3.3c). Downward propagating particles produce no emission

at any of the three frequencies. Upward propagating particles produce emission in

ν3 followed by ν2 and then ν1 (green arrows in the figure) as they travel up the leg.

These are negative delays because the higher frequency occurs first. As the particles

pass the apex and travel down the opposite leg, they produce emission sequentially

in ν1, ν2, and ν3, the reverse order. These are positive delays. This reversing of the

frequency drift is the same effect observed in U-type bursts mentioned earlier.

The time-lag technique easily identifies the expected delays in these simulations

with each nanoflare corresponding to cases A, B, and C. The CCOPS has spikes at the

temporal offsets discussed above. However, in addition to finding correlations between

two frequencies occurring in the same leg, the technique also finds correlations with

longer delays when the burst arrives at the opposite leg. This is illustrated in the
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Figure 3.4 Light curves for the three chosen frequencies, showing time offsets as per
Cases A, B, and C. The ‘red star’ marks the relative position along the loop where
each nanoflare occurred.
Source: [35].
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example CCOPS in Figure 3.5 corresponding to case C from above. We consider

frequencies ν1 and ν2 that occur at higher altitudes. As indicated in the sketch on the

right, there are four combinations of ν1–ν2 positions. ν2 on the left side of the loop

pairs with both ν1 on the left and ν1 on the right. Both delays are negative, but the

first is shorter than the second. ν1 on the left pairs with ν2 on the right, producing

a long positive delay. Finally, ν1 on the right pairs with ν2 on the right, producing a

short positive delay. It is clear that the same pattern will hold for nanoflares occurring

near the right footpoint, with the beam traveling right to left. In general, we expect

the CCOPS to have peaks at four temporal offsets: positive and negative short delays

and, positive and negative long delays. This is exactly what we find in our simulation,

as shown on the left of Figure 3.5. There will always be peaks at ±∆t1 and ±∆t2

whenever some nanoflares occur at altitudes below the higher frequency, ν2.

The situation is modified if nanoflares occur only at higher altitudes in the

loop. There will be only positive delays, both short and long, if the nanoflares are

distributed at locations above the higher frequency, and only positive short delays if

they are restricted to the very top of the loop, above the lower frequency.

The above examples concern a single loop. In reality, of course, many loops

with different density profiles are observed at the same time, and this adds enormous

complexity to the CCOPS. There are estimated to be ∼500,000 individual strands

(unresolved loops) in a typical AR [98]. The characteristic delay between successive

nanoflares in a given strand is ∼1000 s [100], implying an occurrence rate of

∼500 nanoflares/s across the AR. Even with high spatial resolution observations,

the line of sight passes through many loops of differing lengths, heating rates, and

density structures. We expect the CCOPS to contain a huge number of peaks, which

merge together to produce a smooth spectrum. Meaningful patterns in the envelope

may nonetheless persist, as we now discuss. We first consider the effect of multiple

loops and then consider the effect of the type III burst occurrence rate.
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Figure 3.5 Left: CCOPS for ν1−ν2 from light curves obtained using a generalization
of case C. Right side demonstrates the multiple time-lags that peak in the CCOPS.
Source: [35].
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Figure 3.6 a) Low-density (η = 1) distribution of loops generated for the chosen
loop-length range from frequencies ν1 and ν2. b) Loop distribution with three times
the lowest loop density (η = 3). c) CCOPS for loop density η = 1 with color-coded
dashed lines overlaid to represent the expected time-offsets for each loop. d) CCOPS
for loop density η = 3, with color coded dashed-lines representing expected time-
offsets for the additional loops as well.
Source: [35].
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3.2.4 Multiple Loops

Loop half-lengths in an AR typically vary between ∼10,000–150,000 km, giving a wide

range of density profiles and therefore a broad band of plasma frequencies that can be

observed. However, the precipitous fall in intensity as a function of frequency shown

in Figure 3.2c has important implications. Systematic time delays between any two

frequencies are only expected for the emissions coming from a single loop. Emissions

from different loops are physically uncorrelated and therefore have random delays.

The rapid drop in intensity for a single loop means that we expect an observable

signal from that loop only for frequencies that are closely spaced. If the spacing is

too great, at least one of the frequencies will be too weak to produce a meaningful

signal. Because we require a reasonable signal in both frequencies, we need concern

ourselves only with loops having a rather narrow range of apex densities (uniquely

determined by their lengths in our simplified model). All other loops will be faint at

these frequencies. This also shows that in order to consider emission from all loops

in an active region, multiple different pairs of frequencies will need to be considered.

3.2.4.1 Loop Distribution. Consider the spectra of several loops with equally

spaced lengths ∆L shown in Figure 3.6a. Note that the intensity scale is logarithmic.

Four of the loops are color coded and labeled L0 through L3. The ∆L increment of

loop lengths is determined by the following choice of frequencies. Frequency ν1 occurs

just below the apex of L1 (red), and frequency ν2 occurs a short distance down the

leg, where the intensity is reduced by a factor of 10. The plasma frequency at the

apex of L0 (brown) is slightly larger than ν2, so neither frequency occurs in that loop.

The longest loop shown (labeled Ln at the bottom) is approximately 100 times fainter

than L1 at frequency ν1. We assume that all loops longer than this are so faint that

they can be safely ignored in our simulations.
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Figure 3.7 Relative position of frequencies along loops of varied lengths. As the
loop become shorter from right to left, the density at the loop-top increases such that
only one of the frequencies, ν2 exists along the shortest loop. For a loop even shorter,
the density will increase further such that neither of the frequencies exist along the
loop anymore.
Source: [35].
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Figure 3.8 a) Cartoon showing multiple loops in an AR with different orientations
and lengths. (b-c) Corresponding plots for Relative Intensity as a function of distance
along the loop, I vs s for two cases, with short beam length b) and long beam length
c).
Source: [35].
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Figure 3.7 is a schematic representation of the loops. The middle loop is similar

to L1, with both frequencies being relatively bright. The long loop would correspond

to one of the unlabeled grey loops in Figure 3.6a, where both frequencies are relatively

faint. Finally, the short loop represents a loop falling between L1 and L0, for which

ν2 is bright, but ν1 does not occur in the loop.

Loops having a given range of lengths can occur at multiple locations within

an active region, and they need not have similar orientations. This is indicated

schematically in Figure 3.8a to emphasize that the loops need not be nested as in a

single, simple arcade.

The intensity as a function of distance along the loop for individual loops is

shown in Figure 3.8b & c for two extremes of relative beam length. Figure 3.8b shows

flattening of the intensity near the loop top for the case where the chosen beam length

is shorter than the volume elements, ∆si > Lb as mentioned in Subsection 3.2.2, so

the intensity near the loop apex is proportional to Lb. Figure 3.8c shows the same

plot for a beam length that is longer than the volume elements everywhere along the

loop i.e. ∆si < Lb with the intensities proportional to ∆si even near the loop apex.

The corona has a continuous distribution of loop lengths, but we imagine that

only a fraction of loops experience nanoflares. We consider three different population

densities of such loops. The loop length spacing is ∆L/η, where ∆L is the spacing in

Figure 3.6a.

Model 2.1 (Low Loop Population Density): We first examine the case η = 1,

corresponding to a low population density (Figure 3.6a). There are 23 loops in the

chosen range of loop lengths. Assuming 500 nanoflares/s in an entire active region,

we estimate 30 nanoflares/s over this range. All nanoflares are assumed to produce

electron beams lasting 20 ms. This is shorter than the typical travel time between

the two frequencies.
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The nanoflares occur at random times and random locations within the loops.

Electron beams are assumed to propagate in both directions. We run the simulation

for 1200 s, during which time 36,000 nanoflares are initiated. Figure 3.6c shows the

CCOPS for the frequency pair ν1 − ν2, where we have used all except the first and

last 10 s of the light curves. The dashed vertical lines indicate the expected time-lags

for loops L1, L2, and L3, color-coded to match the spectra in Figure 3.6a. There

are clear peaks at the expected locations, especially for L1 (red). It is not surprising

that this loop dominates, as it produces the brightest emission at both frequencies,

but especially ν1, which comes from near the apex. The CCOPS peaks are much

weaker for L2 (green) and L3 (blue), with L2 being somewhat stronger because it is

somewhat brighter.

All loops except L0 will produce four peaks in the CCOPS, since at least some

nanoflares occur below the location of ν2 in each case. Notice that the short delay,

±∆t1, is smaller for L2-Ln than for L1. Similarly, the long delay, ±∆t2, is bigger.

This is easily understood based on the sketches in Figure 3.7, where the intermediate

loop represents L1 and the long loop represents L2 and L3. The conjugate frequency

positions in the right legs are not shown.

There is a low level of “noise” in the CCOPS. This is not due to true noise in the

light curves, which will be discussed later. Rather, it is due to ν1 from one nanoflare

in one loop correlating with ν2 from a different nanoflare in a different loop. There

is no temporal relationship among the nanoflares, and so the power associated with

these “false” correlations is spread roughly evenly over the range of offsets. Note that

the power can be both positive and negative, as expected based on the definition of

the cross correlation (see Appendix B).

Model 2.2 (Moderate Loop Population Density): Now consider the situation

where the loop population density is three times greater: η = 3. This is shown in

Figure 3.6b and d. There are 69 loops in total, spanning the same range of lengths
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Figure 3.9 Left: Light curves for the three chosen frequencies, ν1, ν1a, ν2 for
high-density loop distribution with 30 nanoflares occurring per second all generating
type III bursts. Right: Corresponding CCOPS for each pair.
Source: [35].
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as before. New peaks appear in the CCOPS that were not present previously. We

expect three times as many, though most are not visible. The amplitudes of the peaks

that are common to both simulations are reduced (lower cross-correlation power), as

discussed in Appendix B.

Notice that the spectra for the two loops between L0 and L1 in Figure 3.6b do

not have meaningful peaks in the CCOPS because they only emit at frequency ν2.

That emission is quite strong, however, and exacerbates the problem with false peaks.

This is a primary reason why the amplitudes of the true peaks are reduced compared

to the first simulation.

Model 2.3 (High Loop Population Density): Our final example has a much higher

population density that approximates a truly continuous distribution of loop lengths:

η = 50, resulting in 1150 loops. This is essentially equivalent to every field line

experiencing nanoflares. We include a third frequency for the analysis, ν1a, that lies

between ν1 & ν2, marked by the dotted line in Figure 3.6a,b. For this simulation

we expect a forest of peaks in the CCOPS. Light curves for the three frequencies are

shown in Figure 3.9, left panel. The associated CCOPS for each pair are shown in the

right panel. We note that the power of the cross-correlation has reduced drastically.

Even so, a signature is visible above the 3σ level for at least the pair ν1–ν1a. There is

a noticeable dip at ‘zero’ lag that increases towards both positive and negative time

offsets, peaks at a certain lag, and then decreases again. This ‘M’ shaped pattern

is the result of a nest of peaks from multiple loops with very similar time-lags. The

peaks for longer delays corresponding to ± ∆t2 from Figure 3.5 are visible for a few

of the brightest loops only.

A similar pattern is also visible in the CCOPS for the other two pairs of

frequencies, but it is important to note here that the signal-to-noise ratio (SNR)

of the power is quite low.
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Figure 3.10 Left: Light curves for the three chosen frequencies, ν1, ν1a, ν2 for the
high loop density distribution with 30 nanoflares occurring per second but only a
tenth of them generating type III bursts (3 bursts/s). Right: Corresponding CCOPS
for each pair.
Source: [35].
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The distinctive dip in power at zero lag can be understood on the basis of

Figure 3.7. Small lags are produced in loops where both frequencies are close to the

footpoint. The intensity is greatly reduced at these locations, so the cross correlation

power is weak.

3.2.4.2 Burst-Frequency. The three simulations above assume that nanoflares

occur at a rate of 30 per second across the range of loop lengths considered, and that

every nanoflare produces a type III burst. It is certainly possible that only a fraction

of nanoflares accelerate energetic electrons, and so the rate of type III bursts could

be much less. We therefore repeat Model 2.3 above (high loop population density),

but with a ten times smaller type III burst rate: 3 bursts/sec. The light curves for

all three frequencies are shown on the left in Figure 3.10, and the CCOPS for three

frequency pairs are shown on the right. Note that the CCOPS here are not very

different from the ones shown in Figure 3.9. An ‘M’ shaped pattern and dip at zero

lag are still present.

The results from a still-further decrease in the burst frequency to one in every

hundred nanoflares (0.3 bursts/sec) is shown in Figure 3.11.

Figure 3.12 a) shows CCOPS from Figure 3.11 and b) shows CCOPS from

Figure 3.9 corresponding to 30 bursts/sec and 0.3 bursts/sec respectively with the

expected time-lags overlaid. The orange dot-dashed lines clearly show how the M-

shaped pattern arises from a clustering of expected peaks at the shorter time-lags ∆t1.

The longer time-lags ∆t2 are marked by the green dot-dashed lines. For a high burst

frequency (panel a), the longer lags have waned due to the sheer number of bursts,

however many of the individual peaks are prominent at the expected positions for the

low burst frequency (panel b).

An observation to make is that as we reduce the burst frequency to one-tenth

and then further to one-hundredth of the chosen nanoflare rate, there is an increase
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Figure 3.11 Left: Light curves for the three chosen frequencies, ν1, ν1a, ν2 for
high-density loop distribution with 30 nanoflares occurring per second but only a
hundredth of them generating type III bursts (0.3 bursts/sec). Right: Corresponding
CCOPS for each pair.
Source: [35].
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Figure 3.12 a) CCOPS for 30 bursts/s with expected time-lags overlaid. b) CCOPS
for 0.3 bursts/s with expected time-lags overlaid. The orange dashed lines mark the
expect time-lags ∆t1 and the green dashed lines mark the expected time-lags ∆t2

Source: [35].
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in power of the cross-correlation peaks. Note that we expect fewer ‘false’ correlations

within the range of offsets shown. The average interval between bursts is 3 seconds in

the lowest frequency simulation, which is outside the range of -2 to +2 s in the figure.

The overall level of “noise” is therefore reduced. Nonetheless, some of the distinctive

narrow peaks in the CCOPS are false peaks associated with pairs of closely spaced

events that occur near the apex of two different loops and are therefore relatively

bright at both frequencies.

3.2.4.3 Duration of the Bursts. Traditional type III bursts in the inner

heliosphere may last for a few tens of minutes [154], however for type IIIs occurring in

the closed corona, the observed durations are much shorter [33]. The burst duration

depends on both the lifetime of the acceleration process and the decay time of the

Langmuir waves generated in the volume. We present our model as though the beam

is an emitting object, but it is understood that the duration of emission from a given

point in space includes the decay of the Langmuir waves that are generated by the

high energy electrons, i.e., our ’beam’ is a column of emission that is longer than the

electron beam. The duration of the burst at each frequency νi then depends on the

time it takes for the beam to propagate through the ∆si volume element associated

with the central frequency νi. For all multi-loop models discussed above, the duration

of the beam was chosen to be 20 ms. Most of the expected time lags between the

frequency pairs are longer than this duration.

We now evaluate how well the technique performs when the beam duration is

comparable to or longer than the expected time lags. Figure 3.13 shows the CCOPS

for Model 2.3 (comparable to Figure 3.9) except with beam durations of 200 ms and

1 s. As the duration increases, the peaks in the CCOPS broaden and begin to merge.

The dip at zero lag fills in, and the ‘M’-shaped pattern disappears, though a hint

remains for frequency pair ν1a−ν2 at a duration of 200 ms. The individual peaks and
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Figure 3.13 Left: CCOPS for the three chosen pairs of frequencies for a burst
duration of 200 ms. Right: CCOPS for the same frequency-pairs for a burst duration
of 1 s.
Source: [35].
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‘M’-shaped pattern are broadened to produce a pronounced hump centered at zero

lag. Although this removes the direct delay signature of the type III bursts, because

such a hump could instead be a result of in-phase variability at the two frequencies,

the width and the shape of the hump may still provide evidence for drifting (type

III) bursts if its width is substantially greater than the combined durations of the

variations in the light curves, as discussed in Appendix B.

3.2.4.4 The Role of Noise. The final test is to model the technique with an

additional level of noise. For this purpose, we use Model 2.3 again. To add a realistic

level of noise to the light curves we need to understand the various factors that affect

the sensitivity of a radio interferometer. At frequency ν, the flux density associated

with a given antenna temperature2 is given as:

S =
2kTaν

2

c2
dΩ (3.6)

where k is the Boltzmann constant, Ta is the antenna temperature due to a hot source

filling the antenna primary beam (field of view), c is the speed of light, and dΩ is

the solid angle subtended by the beam (see Section 1.3 for a detailed derivation). If

a hot source of temperature T does not fill the beam, the antenna temperature is

reduced (Ta < T ) by the beam dilution factor (ratio of the angular area of the source

to the beam area). The noise associated with a radio antenna is a combination of

this antenna temperature due to the source and the noise generated internally by the

receiving system, Tsys. Crane & Napier [41] showed that the sensitivity for an array

of such antennas is given by:

∆T =

[
T 2
a + TaTsys + Tsys

2/2

∆ντN(N − 1)

]1/2
(3.7)

2This is not the antenna’s physical temperature but the temperature that a blackbody
would have in order to provide the equivalent power received by the antenna.
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Figure 3.14 a) Flux density for a brightness temperature T = 1012 K at frequencies
ν1, ν1a, ν2 for the high loop density case with 0.3 bursts/s. Random Gaussian
noise with an rms of 0.09 sfu is added to each of the light curves. b) The CCOPS
corresponding to the light curves in a). c) Same as (a) for a higher rate of 30 bursts/s.
d) The CCOPS corresponding to the light curves in (c).
Source: [35].
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where, ∆ν is the channel width of the instrument and τ is the cadence, and N(N−1) is

the number of baselines. For a bright source such as the Sun, Ta >> Tsys. Simplifying

Equation (3.7) and substituting in Equation (3.6), we have the noise associated with

a source of flux density S as

∆S =
S√

∆ντN(N − 1)
. (3.8)

Therefore, for a source with flux density S, the sensitivity has a direct

dependence on Ta and an inverse dependence on the frequency bandwidth, ∆ν,

integration time τ and the number of baselines.

Anticipating a future analysis of P -band (245–450 MHz) solar observations we

have in hand, taken with the Very Large Array (VLA) [143], we estimate a level

of noise as follows. The calibration procedure for P -band data from the period of

interest has not yet been finalized, so we adopt an average flux of 25 sfu at 245 MHz

based on values reported in the NOAA catalogue for times of similar activity. Using

numbers appropriate to our existing P -band observations, ∆ν = 125 kHz, τ = 0.01 s

and number of antennas in the subarray N = 14, Equation (3.8) gives an uncertainty

of ∆S = 0.0524 sfu.

An independent estimate of the uncertainty can be obtained from the data by

taking the root mean square (RMS) intensity difference between two frequencies that

are so closely spaced that any real differences in source flux density are likely to be

negligible, although fluctuations due to source confusion [210] may still be present.

Because of possible cross-talk between adjacent channels, we use channels separated

by one intervening channel. Lacking calibrated P -band data, we use data near 1 GHz

from the L-band, which are calibrated. The RMS difference is 3.5 times larger than

the uncertainty given by Equation (3.8) using the values appropriate to that band.

This suggests the presence of additional sources of random variations, perhaps akin
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Figure 3.15 Same as Figure 3.14 for bursts with an order of magnitude higher
brightness temperature, T = 1013.3 K.
Source: [35].
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Figure 3.16 Same as Figure 3.14 for bursts with three orders of magnitude higher
brightness temperature, T = 1014 K.
Source: [35].
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to those reported by Zirin et al. [210]. We assume that they are also present at about

the same level in the P -band data, so we multiply the 245 MHz uncertainty above by

the same factor of 3.5 to obtain ∆S = 0.186 sfu, which we apply to our models.

All intensities from Model 2.3 are first converted to a flux density using Equation

(3.6) above, where the solid angle dΩ is calculated for each nanoflare at frequency

ν with a volume element ∆s and assuming a width of ≈ 200 km for the magnetic

strand [98]. Since the brightness temperatures of these nanoflares are unknown, we

repeat the calculation for three temperatures, viz. 1012, 1013.3 and, 1014 K. Randomly

generated Gaussian noise with an rms of 0.186 sfu is then added to the light curves

of each frequency and the CCOPS computed.

Figures 3.14, 3.15 and 3.16 show flux densities computed at temperatures T =

1012, 1013.3 and 1014 K at all three frequencies for 0.3 bursts/s and 30 bursts/s in

panels a and c, respectively, with the noise added. The corresponding CCOPS for

each pair of frequencies are shown in panels b and d. Light curves in Figure 3.14

computed for temperature T = 1012 K are completely dominated by noise and show

no meaningful peaks in the CCOPS.

The rather specific value T = 1013.3 K was chosen as an example where there

are only minimal excursions above the noise in the light curves (Figure 3.15a), yet

the CCOPS (panel b) shows a hint of the ‘M’-shaped pattern. The flux densities of

the higher burst frequency case in panel c have a substantial increase in the signal

above the noise, and hence the CCOPS now look very similar to Figure 3.9 with a

very slight decrease in the power.

Any further increase in the brightness temperature significantly increases the

signal-to-noise ratio for both cases of burst frequencies and consequently resuscitates

the CCOPS to their former shapes with a slight reduction in the cross-correlation

amplitude that is caused by the noise. The light curves and corresponding CCOPS

for such a case with T = 1014 K are shown in Figure 3.16. Despite such an increase
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in the brightness of the bursts, the fraction of total flux density due to nanoflares is

only 0.055.

3.3 Conclusion

We perform numerical modeling to simulate idealized emission from type III radio

bursts that may be generated by particle acceleration from nanoflares. For the sake

of simplification, our model makes the following assumptions: (i) our model loops

are symmetric; (ii) all bursts produce electrons of the same velocity, which remains

constant as the beams propagate along the loops; (iii) the burst emission is generated

instantaneously as the beam is ejected from the nanoflare site; (iv) the emissivity for

all bursts is taken to be the same at all loop positions; (v) the decay time of the

Langmuir waves is independent of frequency.

Relaxing assumption (i), loop symmetry, would affect the time delay symmetry

shown in Figure 3.5. Regarding assumption (ii), modeling of type IIIs by Reid &

Kontar [153] shows that the velocity of the bursts eventually decreases as the beam

moves away from the Sun, however the evolution of beam speeds in closed loops is

unknown. Assumption (iii) ignores the fact that it may take time for the beam to

develop a two-stream instability and hence produce Langmuir waves, but this should

not affect our results unless nanoflares occur strongly preferentially at the apex of

loops, since we have shown that emission on closed loops is expected to be dominated

by loop-top emission from beams originating at any location. Assumption (iv) would

alter the intensity curves of Figure 3.2, but the intensity dependence is so strong that

only extreme violations of this assumption in favor of loop leg emission would make

much difference. Assumption (v) should not be significant unless the decay time has

a strong dependence on frequency, since only closely spaced frequencies contribute

significantly to the CCOPS. Some aspects of assumption (v) were explored in our

study by showing how different durations of bursts will affect the CCOPS.
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Once the light curves are obtained from our model, the simulated light curves

at chosen radio frequencies are then cross-correlated to identify time-lags between

different pairs, using a novel application of the time-lag technique [183]. We find

that the signature of the bursts depends very much on the rate and duration of

nanoflares and on the fraction of loops that are involved. Individual peaks dominate

the CCOPS when only a small subset of loops experience nanoflares that accelerate

energetic particles. When many loops experience such nanoflares, the signature varies

depending on whether the beam duration is short or long compared to the particle

travel time associated with the two frequencies. Short durations produce a quasi-

continuous ‘M’-shaped pattern with a distinctive dip at zero lag. Long durations

produce a broad hump centered at zero lag. These differences can be exploited to

determine the likelihood of particle acceleration and the properties of the beam, and

therefore better understand the acceleration mechanism.

In general, the signatures are stronger for pairs of frequencies that are closely

spaced, indicating that high frequency resolution observations must be used. This is

due to the extremely steep slope of the type III spectrum of an individual loop, which

is related to the highly nonuniform density gradient along the loop. In order for the

intensities to be reasonably strong, both frequencies must occur relatively high in the

loop. Emission from the lower leg and transition region is comparatively negligible.

False peaks can appear in the CCOPS, especially if the burst rate is high. These

are due to correlations between different nanoflares occurring in different loops. The

value of the time lag of such peaks is not meaningful, but their mere existence would be

indicative of radio bursts and therefore would be an important observational feature.

Whether type III bursts from nanoflares are detectable depends on the SNR.

Our noise tests based on estimates of noise for VLA data reveal that for type IIIs with

a low brightness temperature, the noise will completely wash out any emission and

the CCOPS will show no correlation. Given a high enough brightness temperature for
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the events, the emission does rise above the noise level and although the power of the

cross-correlation peaks in the CCOPS remains small, the change in the widths of the

peaks in comparison to the CCOPS computed for a noise-dominated simulation itself

is an indication of the presence of bursts. We note that for an instrument with higher

sensitivity compared to VLA, the power of the peaks in the CCOPS will improve.

A possible criticism of the central idea of this study, that nanoflares may produce

type III emission on closed loops, lies in the apparent fact that observations provide

little evidence for type III emission on closed loops beyond relatively rare ‘U’ or

‘J’ bursts. However, our analysis of the expected emission from equilibrium loops

reveals that such emission should be extremely strongly concentrated at the loop

apex (Figure 3.2c). Remarkably, this predicts that the observational signature of

type III bursts in closed loops is a bright, narrow-band feature with perhaps a faint

high-frequency tail, which fits the description of the very commonly observed type I

bursts. The narrow spread is expected if the burst occurs in a single loop or several

adjacent loops with similar apex densities, and the emission frequency would directly

provide the loop apex density. Thus, our model suggests a possible origin of type I

bursts as a natural consequence of type III emission in a closed-loop geometry. We

emphasize that the extreme variation in brightness is a consequence of the closed-loop

geometry. In contrast, a type III burst on an open field line, or a very large closed

loop with a lower density gradient, would show the classic type III, ‘U’, and ‘J’ burst

characteristics. Del Zanna et al. [47] have suggested that both distinguishable type

III bursts and noise storms can be produced together by interchange reconnection at

the boundary between open and closed field lines. To our knowledge, we have offered

the first explanation for why the noise storms have a narrow frequency spread.

We have begun to apply the knowledge gained from these simulations to actual

observations. Results from ground-based radio observatories are currently under
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investigation. Work based on the the FIELDS instrument on Parker Solar Probe

to look for signatures of type IIIs in the solar wind is discussed in the next chapter.
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CHAPTER 4

SIGNATURES OF TYPE III RADIO BURSTS IN THE SOLAR WIND
FROM SMALL-SCALE RECONNECTION EVENTS

4.1 Introduction

Type III bursts, as mentioned in Chapters 1 and 3 can be produced by interactions

between energetic beams of electrons and the ambient plasma. Until now, we

concerned ourselves with the type III emission from energetic particles that nanoflares

may produce in the closed corona. However, in the context of the solar wind,

these energetic beams can originate from several small-scale processes. For example,

interchange reconnection from the nanoflares or turbulence reconnection in the lower

corona can produce beams that escape along the open field. Similarly, reconnection

at the streamer tips can also have the same effect. Furthermore, Borovsky [17] argued

that the solar wind is suffused with flux tubes and that these flux tubes, although

aligned with the Parker spiral, exhibit a spread of orientations which may result from

misalignments in the field lines. Reconnection from the current sheets formed as

the plasma in the solar wind reconfigures to achieve a low energy state may also be

a source of such energetic beams. A more pertinent question, however, is whether

these processes are efficient at accelerating particles?

The work presented in this chapter is an extension of the study reviewed in

Chapter 3 to look at radio observations from the Parker Solar Probe spacecraft [66].

Chapter 3 presented modeling of type III emission from nanoflares in closed coronal

flux tubes (MCL henceforth); the purpose of this study is to analyze radio emission

in the solar wind (i.e., the open field) that may come from small-scale reconnection

events. We discuss the preliminary results from our initial modeling and compare

them with radio observations from the Parker Solar Probe. Details of the observations

used for the analysis are given in Section 4.2. Section 4.3 describes the simple model
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we build to predict the signatures that would be visible in the data from the solar

wind. The findings from the model are then compared with the data in Section 4.4.

Finally, we summarize the results in Section 4.5 and discuss the next steps.

4.2 Data from the Parker Solar Probe

Parker Solar Probe (PSP) was launched in August 2018, and as of this writing,

it has completed four Venus flybys (and seven solar encounters/perihelia) to assist

its trajectory toward the Sun. The spacecraft moves closer to the Sun with each

encounter and is planned to eventually make observations at a distance of ∼ 10R⊙

from the Sun. The mission’s primary goal is to study the physics of the inner

heliosphere using a combination of four instruments. For the purpose of this study, we

use radio observations from the FIELDS instrument [9], which makes measurements

of the electric and magnetic fields, waves, and plasma density in the solar wind. We

concern ourselves with the Radio Frequency Spectrometer (RFS) [147], which consists

of a dual-channel receiver that uses the four monopole antennas (V1-V4) and the

search-coil magnetometer (SCM) to measure the electric and magnetic fields. The

spectrometer observes at two radio frequency bands; the low-frequency receiver spans

the frequency range between 10.5 kHz - 1.7 MHz, and the high-frequency receiver,

between 1.3− 19.2 MHz.

Observations from encounters one to five (E01-E05) at both LFR and HFR

frequency bands were analyzed for this study during the days when the spacecraft took

high-rate observations. Figure 4.1 shows HFR spectrograms from E01-E05 (panels

a-e) for ±3 days from the perihelion for each orbit to show a comparison in the

activity observed. While E01 and E03 showed little to no visible activity in the

spectrograms, E02 shows extensive activity and a myriad of bright type III bursts. A

detailed discussion of the statistics and polarization of the type III bursts observed

during E01 and E02 can be found in Pulupa et al. [146]. Numerous intense type IIIs
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Figure 4.1 High-frequency (RFS-HFR) dynamic spectra for ±3 days from the
perihelion for encounters E01-E05 (a-e) showing difference in activity observed during
each encounter.
Source: [36]
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are also present during E04 and E05, although they may be difficult to distinguish

due to the bright emission dominating the low frequencies. We discuss selective

time-periods from the different encounters in Section 4.4 and compare them with

comparable models to verify that their respective cross-correlation power spectra

(CCOPS) show similar signatures.

4.3 Preliminary Modeling

The model discussed in Chapter 3, MCL, simulates radio emission from nanoflares

in the closed corona. However, the frequency drifts from type III bursts in the open

field are unidirectional, meaning the beam moves outward only and produces type

III emission, first at high frequencies and then at low frequencies with some time

delay. Thus a separate model is needed to look for signatures of particle acceleration

from small-scale reconnection in the solar wind. At this initial stage, we first analyze

the bursts that are obvious in the spectrum. The model aims to simply verify and

understand the patterns/signatures in the CCOPS based on the different properties

exhibited by type III bursts in the open field. Therefore, for the time being, we

restrict ourselves to a simple model. Findings from our initial tests of the CCOPS

will aid the identification of real signatures of type IIIs in quiet periods.

We create a single type of magnetic flux tube that is rooted in the photosphere at

one end and expanding into the interplanetary medium. A power-law density profile

is chosen for the flux tube, such that it lies partway between the observed densities of

a low-density coronal hole and a high-density streamer as shown in Figure 4.2a (solid

black line) and is expressed by the following equation:

n = 8.57× 106(r−3.1) [cm−3] (4.1)

where r is the distance measured from the surface. The empirical density models

created using polarized brightness measurements from white-light observations are
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Figure 4.2 a) Density profile chosen for the flux tube model (solid black line)
compared to the empirical densities of a coronal hole (orange dashed line) and helmet
streamers in edge-on orientation (dashed purple line) and averaged (dotted purple
line) [85]. b) Non-uniform ∆νi bins corresponding to volume elements ∆si in the
open field compared with the beam length Lb.
Source: [36]
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plotted for comparison. The coronal hole densities are shown by the orange dashed

line. In contrast, the dotted and dashed purple lines represent the average densities

and densities measured for edge-on orientation for helmet streamers, respectively

[85]. Since the densities obtained from Equation (4.1) above do not agree well with

the compared models at lower heights, we only consider density values for distances

greater than 1 R⊙ above the surface up to ≈ 40 R⊙. This region is shown by the gray

shaded area in Figure 4.2a. The plasma frequency, νp, is then determined as a function

of distance r and interpolated to match the frequency grid sampled by LFR and HFR.

Based on the chosen density model, only a subset of high frequencies (1.27− 9 MHz)

are included. Frequencies corresponding to LFR are sampled between 0.084 − 1.27

MHz and combined with the former to make a unified grid. Given the non-uniform

grid of RFS frequencies, the ∆νi bins centered at frequency νi corresponding to volume

∆si are also unequal along the modeled flux tube (see Figure 4.2b).

To simulate type III emission, some of the idealizations are adapted from MCL

viz. the type III emission is generated instantaneously as the beam is expelled from

the reconnection site and all electrons beams injected into the flux tube are assumed

to have the same velocity. A detailed discussion of these assumptions is given in

Chapter 3. Additionally, we assume that the flux tube expands between 1 − 40 R⊙,

with an expansion factor proportional to the distance r and that the emissivity turns

on, stays constant, then turns off, with the turnoff time being frequency dependent.

Moreover, to mimic Langmuir wave decay, we implement a duration in the bursts that

vary as a function of frequency. The empirical values of the duration Td are obtained

from a sample burst observed during encounter E02, that we fit to an exponential

equation:

Td = 1.153× 1010(ν−1.264) [s] (4.2)
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As the flux tube expands radially, based on the initial duration of acceleration

from the reconnection site (with a beam length Lb), the upward propagating beam

either completely fills the volume elements (∆si < Lb, lower down in the flux tube)

or partially fills them (∆si > Lb), as seen in Figure 4.2b. Similar to MCL, from the

time the beam enters the volume element until the time the front of the beam exits,

the intensity of the type III burst is proportional to the volume occupied by the beam

within the volume element. From then on, based on the duration of the bursts at

frequency νi, the intensity is proportional to the complete volume of the element.

This is the time during which the emission persists due to Langmuir wave decay. A

linear ramp up as the beam fills the volume and a ramp down as the Langmuir waves

slowly decay is accounted for. Therefore, I ∝ ∆si for volume segments lower down

in the flux tube where ∆si < Lb, and higher up where ∆si > Lb, I ∝ Lb until the

front of the beam exits the volume and I ∝ ∆si for the remaining duration. The

derivation of intensity dependence on the volume is shown in Appendix A; although,

unlike MCL, the intensity in this model does not have a steep reliance on the density

because of much smaller density gradients. In the next section, we will discuss some

examples of features observed in the CCOPS computed for bright type IIIs as seen in

the data in comparison with the CCOPS features from the model. This will help us

build a better understanding of what shapes/patterns to look for during the analysis

of the quiet periods.

Now, for a quantitative comparison between the data and the model, we require

the intensity to be converted to flux density S as a function of frequency ν. Although

there have been multiple studies that have performed sophisticated modeling to

simulate type III bursts, to understand their observed properties better [see, for

example, [149, 152, 153]]; all of these works invoke the energy density of the Langmuir

waves to estimate the brightness temperature, Tb. Taking a more modest tack instead,

we compute Tb for an isolated type III burst observed by the RFS, based on the
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measured flux density, and use these estimates as the basis to determine the flux

densities in the modeled bursts. The power P of the observed burst can be converted

to flux density using the following expression:

Sν =
P −N

Z0(ΓLeff )2
[W m−2 Hz−1] (4.3)

where N = 2.2× 10−17 V2 Hz−1 is the background noise that is subtracted from the

measured power, Z0 = 377 ohms is the impedance of free space, ΓLeff = 1.17 m is

the product of the capacitive gain factor and the antenna effective length [147].

Based on the radiative transfer equation, the expression for flux density S at

frequency ν from a source is given as:

Sν =
2kTbν

2

c2
dΩ [W m−2 Hz−1] (4.4)

where k is the Boltzmann constant and dΩ is the solid angle. It is reasonable to

assume that a small-scale reconnection event on the Sun will have a size smaller than

the beam-width of the instrument, and hence dΩ is the solid angle subtended by the

source. Thus dΩ at each frequency bin ∆νi is calculated based on the volume occupied

by the electron beam and the width of the flux tube. Note that this approximation

is more reliable for a flux tube observed at the limb; estimates for flux tubes on the

disk will vary based on projection effects and line of sight integration. Finally, we

calculate the flux density for an isolated burst observed during E02 from April 5,

2019, and obtain an estimate of the brightness temperature Tb using Equations (4.3),

and 4.4 respectively. These estimates can then be employed to create a realistic flux

density spectrum for the simulation. One limitation of using this approach when

modeling multiple bursts is that any variations in the flux density as a function of

frequency will always have the same intrinsic Tb profile with a frequency-independent

multiplicative factor applied to match the observed flux density.
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4.4 Results

With all the logistics for the model in place, we start by verifying the CCOPS

signatures from the simulated emission for a single burst.

Single Burst Figure 4.3b shows the type III burst used to determine the Tb

estimates produced by the HFR; panel a shows the modeled type III at frequencies

sampled for HFR.

The corresponding CCOPS computed using the time-lag technique [183] are

shown in panels c and d for the modeled and observed type III, respectively. The white

solid lines overplotted on the dynamic spectra represent the pairs of frequencies for

which the CCOPS are shown in panels c and d. As expected, the CCOPS predicted by

the technique and the ones obtained from the observed burst show similar signatures.

A broader peak for the frequency-pair ν3−ν4 is expected due to the burst’s increased

duration. The plateau in the CCOPS for the pair ν3 − ν4 seen in panel c is just an

effect of shorter ramp up and ramp down in the light curves than those in the data.

Paired Burst An interesting feature noticed in the observations from E02 is

the presence of double bursts, i.e., two bursts occurring close together in time such

that they show distinct spikes in the dynamic spectrum at higher frequencies but get

blended together and appear as a single burst as their durations increase at lower

frequencies. A comparison of the modeled bursts and the observations exhibiting

such a feature and their corresponding CCOPS is shown in Figure 4.4.

Again, the CCOPS for frequency pair ν3 − ν4 in panels c and d are the same

as seen in Figure 4.3. For the pair ν1 − ν2, we do see the main peak at the expected

time-lag between the pair. The two additional peaks on the left and right are simply

a manifestation of burst1 cross-correlating with burst2 peaking first at a negative

offset and then at a positive offset. Their distance from the center of the main peak

is defined by the time difference between the occurrence of the two bursts.
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Type III storm We now look for patterns/signatures that may emerge in the

CCOPS for a type III storm. The simulated emission, in this case, is based on the

observations of the type III storm recorded during E02. Numerous type IIIs exhibiting

the double-burst behavior discussed in the last example are observed during this time,

along with some single bursts. Figure 4.5 shows the modeled and observed emission

(panels a and b) along with the computed CCOPS. The model has been composed to

include randomly generated bursts in time, but some have the double-burst behavior.

The shapes of the CCOPS from the observations and the predicted CCOPS seen in

panels c and d of Figure 4.5 again show similar trends. The additional tertiary and

higher order peaks visible at very low power for the pair ν1 − ν2 can be explained by

a more complex variant of the above example with multiple bursts cross-correlating

with each other. The amplitude/power of these tertiary peaks will depend on the

repetition frequency of such double/triple burst behavior.

4.4.1 Search for Type IIIs in Quiet Periods

Finally, we apply the findings from the previous examples to analyze data from a time

where no activity is identified in the dynamic spectrum. This set of observations is

chosen from E05. Figure 4.6a shows the HFR dynamic spectrum with six frequencies

marked using solid black and white lines. The CCOPS between frequency pairs

marked by the solid black lines are shown in the upper panel of the two plots in panel

b. Although the signal is weaker here (likely due to high noise), compared to the

previous examples, there is a nice succession in the CCOPS peaks as the separation

between the frequency pairs increases. In contrast, the bottom panel showing the

CCOPS between the pair ν5 − ν6 in the spectrum shows no correlation. This may be

an indication of bursts present in the “haze” at lower frequencies. The emission from

these bursts could so weak at higher frequencies that the noise completely dominates,

resulting in the CCOPS with no correlation.
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Figure 4.6 a) HFR dynamic spectrum from a quiet period during E05. b) CCOPS
for four pairs of frequencies from the quiet time. Top panel shows three CCOPS
for frequencies shown by solid black lines in the HFR dynamic spectrum exhibiting
a successive increase in time-lag with an increase in frequency separation, and the
bottom panel shows the CCOPS at higher frequencies marked by the solid white
lines in the dynamic spectrum exhibiting no signs of cross-correlation. The successive
delays at lower frequencies may be a plausible signature of type III emission embedded
in the noise.
Source: [36]
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4.5 Discussions

We look for evidence of energetic particles in the solar wind that could be produced

by small-scale reconnection in the solar wind itself or reconnection in the lower

corona, where particle beams escape on open field lines, for example, from interchange

reconnection. It is claimed that there is a pervasive presence of current sheets in the

solar wind [167, 17]. We expect reconnection to be common at these current sheets

that separate the thin magnetic strands that make up the corona and solar wind, but

whether it is efficient at accelerating particles is an open question.

To answer this question, we create a simple model that helps us identify the

signatures of type III bursts in the solar wind that can be identified in the CCOPS

created using the novel time-lag technique [183]. We then apply these findings to

quiet-time data. Along with the idealized assumptions mentioned in Section 4.3, a

limitation of this model is that we use a single density profile for all the flux tubes

considered, resulting in all type IIIs having the same intensities as the beams escape

along the open field. If beams propagate in tubes with different density profiles,

the CCOPS will have peaks at multiple delays, just as is the case for loops in the

magnetically closed corona. One important difference is that all the real peaks will

be at negative delays. False peaks will occur equally at positive and negative delays.

This opens the possibility of distinguishing between real and false peaks, which we

will explore.

We present our preliminary analysis of radio observations recorded by the

FIELDS instrument onboard the Parker Solar Probe during encounters E01-E05 that

are compared with the features seen in the CCOPS created using our model. Since this

is an ongoing investigation, most of the results presented here comprise the examples

of bright type IIIs that are analyzed to learn what signatures can be used to confirm

the presence of much weaker bursts in the quiet-times.
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Interestingly, our analysis conducted during the “quiet” periods shows plausible

signatures of type III bursts in the radio haze at lower frequencies sampled by the

HFR. Although, the emission at higher frequencies appears to be dominated by noise.

This could be an exciting catch, although we proceed further with caution. The

obvious next step is to verify whether these signatures are real or produced by some

artifact present in the data. We will divide the observed period into smaller parts

and repeat the analysis. We also plan to look at multiple other quiet periods from

the collected data to check what fraction of data returns positive outcomes.

Additionally, an effort to build a model that can replicate such emission is

currently underway to corroborate the presence of such signatures in the CCOPS. If

these signatures are seldom seen in the data, then getting a reliable measure of noise

from the calibrated observations would be valuable. The estimated noise, added

to the simulated emission, can be used to obtain a lower limit on the fraction of

emission contribution from reconnection events required to show some signatures in

the CCOPS.
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CHAPTER 5

SUMMARY

This dissertation encompasses two sets of investigations: the first to understand the

physical mechanisms responsible for radio emission in large-scale eruptive events; and

the second to investigate fundamental processes such as particle acceleration and

magnetic reconnection in small-scale impulsive events using radio emission that they

may produce on the Sun and in the solar wind.

In Chapter 2 we present the first study which analyzes a complex radio event

observed in association with a flare-CME from September 20, 2015. The flare-CME

was recorded by OVRO-LWA during the first 24 hrs of commissioning observations

taken during the expansion of the array in September 2015. This presented some

limitations to the observations, such as the availability of a limited bandwidth

(reduced to a little over 30% of the total), position offsets caused by a shift in

the frequency channels, and unavailability of the polarization measurements. In

addition to the radio observations from OVRO-LWA, data from LASCO-C2, EOVSA,

WIND/WAVES, and RSTN were also utilized to place the radio emission in context

with the emission seen at multiple wavelengths.

We find that the radio event was composed of multiple bursts, one of which

exhibited outward motion which we classified as a type IVm burst. A comparison

with LASCO observations of the WL-CME revealed that the outward motion was

associated with the core of the CME, implying that particles trapped within the core

emit radio emission as they are dragged outward with the CME. We performed a

GCS reconstruction of the CME to constrain the density in the volume; however, our

estimates were not low enough to rule plasma emission as the underlying mechanism

for the type IVm. The smoothness of the emission in frequency and time and the

source’s lower height help us conclude that gyrosynchrotron may be the plausible
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mechanism. Spectral fitting techniques were then employed to fit gyrosynchrotron

spectrum to the data and obtain the estimates of magnetic field strength, B that

were found to be between 1-2 G and the power-law index δ exhibiting a range of

3.7-4.5. As the source expands with the outward moving CME, the field strength

B decreases as would be expected. A comparison with the other studies that have

attempted to estimate physical conditions in the plasma using similar techniques

reveals that a wide range of B is observed, which may result from different conditions

in the different observed events. Our estimates of δ lie well within the range of 3.5-5

reported by the other studies.

We also observed sporadic type III during the prephase and group type III bursts

associated with the peak of the SXR flare. We believe the electrons may be excited

during turbulent interactions between the flare and the remanant magnetic structure

of a pre-existing CME. Despite the limitations, the observations from OVRO-LWA

provided sufficient information for us to investigate a rarely-seen moving type IV

burst and understand the physical conditions of the plasma during emission.

In the second study, we transition to investigating small-scale events. This

work addresses the question of whether nanoflares accelerate energetic particles like

full-sized flares. And if so, how efficiently? The goal demands a multifaceted approach

that includes both modeling and analysis of radio observations from various high-

resolution instruments. Chapter 3 presents the modeling effort that simulates radio

emission in the form of type III bursts that may be produced by nanoflares. We expect

that if present, type IIIs produced by the ubiquitous nanoflares will manifest as ‘radio

haze’ in the dynamic spectra. Additionally, they will exhibit frequency drifts in both

directions while propagating along closed loops. Utilizing the time-lag technique, our

simple model examines the signatures of such type III bursts that can be identified

in the CCOPS in the presence of numerous overlapping events.
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We find that in the case of closed loops, the frequency spectrum of type III bursts

is expected to be extremely steep such that significant emission is produced at a given

frequency only for a rather narrow range of loop lengths. An important implication

of this steep spectrum is that data from a wide bandwidth of frequencies need to

be analyzed to understand the contribution of the type IIIs from different ranges of

loop-lengths. We also find that the signature of bursts in the CCOPS diminishes as

(1) the variety of participating loops within that range increases; (2) the occurrence

rate of bursts increases; (3) the duration of bursts increases; and (4) the brightness of

bursts decreases relative to noise. Nonetheless, we are able to identify an ‘M’- shaped

pattern that appears in the CCOPS as a result of nested peaks at time-lags from

different loops and is best visible for closely separated frequencies. In addition, our

model suggests a possible origin of type I bursts as a natural consequence of type III

emission in a closed-loop geometry.

To look for similar signatures of type IIIs in the solar wind, we analyze radio

observations from FIELDS/PSP, as discussed in Chapter 4. Observations from

encounters E01-E05 are carefully examined, and a select few time-periods exhibiting

different features are presented in our preliminary analysis. We build a simplistic

model to replicate the features seen in the dynamic spectra during the five encounters

and compare the computed CCOPS with those from the observations. Indeed, the

patterns seen in the CCOPS are predicted well by our model and reveal different

properties of the observed emission such as a presence of multiple collated bursts.

We also show one example from encounter E05 where no activity can be identified

in the spectrum by eye. The time-lag analysis of the time-period reveals plausible

signatures of successive time-lags at lower frequencies which may come from type III
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bursts. Although, we proceed with caution to verify whether the observed signature

is real or not.

5.1 Current Endeavors and Future Scope

This new era of advanced radio instruments capable of high-resolution imaging

spectroscopy brings ample opportunities to investigate different physical mechanisms

that conspire to produce radio emission on the Sun and in the inner heliosphere.

Although the acquired data from OVRO-LWA presented in Chapter 2 limited

our investigation of the different bursts identified in the complex radio event, a

second round of expansion of the OVRO-LWA instrument is now underway that

will provide a 50% improvement in spatial resolution and include solar-dedicated

observing modes specifically designed for solar science. This includes a solar-dedicated

beam synthesized from its 256 core antennas to provide full spectral coverage of the

total flux from the Sun at 1 ms time resolution, and a solar-dedicated pipeline-imaging

mode that will correlate data from 48 more distant of its 352 antennas at a 100 ms

cadence for high-resolution imaging spectroscopy in Stokes I and V. Slated for

completion by 2021, this upgraded OVRO-LWA instrument will provide a powerful

new tool to study meter-wavelength emission of both bursts and the quiet Sun during

the coming solar cycle.

Based on the positive findings of the modeling effort from Chapter 3, the obvious

next step is to look at high-resolution radio observations from ground-based radio

interferometers. We are currently collecting data from VLA, LOFAR, and LWA to

ensure coverage over a wide bandwidth and different periods. The idea is to look for

the presence of patterns in CCOPS identified from the model or lack thereof at a wide

band of radio frequencies. We have explored multiple scenarios in the model, but of

course, we expect that any number of variations in the signatures identified can be

present in the data. A positive outcome in any capacity will give us an idea about the

efficiency of particle acceleration from nanoflares. It will be interesting to see if the
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activity identified by the technique shows any association with the presence/absence

of active regions on the disk or the age of active regions. A negative outcome could

be due to a high level of noise in the instruments that dominates the highly sensitive

emission from type IIIs produced by mildly-energetic bursts. In this case, it would be

useful to get a lower limit on the brightness of nanoflares that may produce type III

emission above the noise level. Another explanation for a negative outcome is that

nanoflares are not efficient at accelerating particles, in which case it will be a step

forward in confirming the role of the guide field in the theory of particle acceleration.

Eventually, we plan to hone the technique to create an automated process for detecting

type III activity during quiet as well as active periods.

The work presented in Chapter 4 is ongoing, looking for signatures of type IIIs

during quiet times. Only a fraction of the collected data has been analyzed so far.

We plan to go through observations from all the PSP encounters and systematically

analyze them using the time-lag technique. Some of the capabilities that we would

particularly like to explore include: testing whether the CCOPS can shed light on

the energy(velocity) of the particles from different bursts, i.e., whether two different

bursts have different energies based on their measured frequency drifts, the range of

these energies, etc. The automation of the technique mentioned above will also be

used to build statistics from type III activity in the solar wind.
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Appendix A

TYPE III INTENSITY VARIATION

Under the assumption that the intensity, I for a constant frequency bin ∆ν along the

loop is directly proportional to the volume ∆s that the particles traverse, we have:

I ∝ ∆s =
∆n

dn/ds
(A.1)

where ∆n is the density bin corresponding to the frequency bin ∆ν.

The plasma frequency, ν ∝ n1/2, which gives us:

∆ν =
dν

dn
∆n (A.2)

∝ 1

2
n−1/2∆n

∝ 1

2
ν−1∆n

⇒ ∆n ∝ 2ν∆ν (A.3)

I ∝ 2ν

(
dn

ds

)−1

∆ν (A.4)

Note that, as mentioned in Subsection 3.2.2, this relation is true for all frequencies

νi for which their respective volume element is smaller than the beam length, i.e.

∆si < Lb. For any element ∆si > Lb, the intensity, I is directly proportional to the

beam length, Lb. The intensity thus calculated is used to create the light curves for

each frequency based on their position along the loop. To visualize the above relation

better, let us look at it in terms of temperature, T along the loop. From Equation
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(A.4) we have,

I ∝ ν

(
dn

ds

)−1

(A.5)

∝ n1/2

(
dn

ds

)−1

For a static loop with constant conduction flux Fc

Fc ∝ T 5/2

(
dT

ds

)
(A.6)

∝ T 5/2 d

ds

(
P

n

)
∝ T 5/2

(
− 1

n2

)
dn

ds

assuming constant pressure along the loop.

⇒ dn

ds
∝ T−5/2n2 (A.7)

Substituting this back in Equation (A.5), we get

I ∝ T 5/2 n−2 n1/2 (A.8)

∝ T 5/2 T 2 T−1/2

⇒ I ∝ T 4 ∝ n−4 ∝ ν−8 (A.9)

The above equations clearly exhibits the precipitous fall in intensity I as the

density n increases downward along the loop and the T decreases.
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Appendix B

FACTORS AFFECTING THE CCOP

The basis of the time-lag technique [183, 185] is to compute the cross-correlation

between a pair of light curves for two different channels as a function of imposed

temporal offset, l. For some studies, such as the cooling of nanoflare-heated loops,

only the lag of maximum correlation is important. For the purpose of this study,

we are interested in the complete spectrum of cross-correlation power. The Equation

used to calculate the cross-correlation power, P for a negative lag is given as:

P (l < 0) =

∑N−|l|−1
k=0 (xk+|l| − x̄)(yk − ȳ)√∑N−1
k=0 (xk − x̄)2

∑N−1
k=0 (yk − ȳ)2

(B.1)

For a positive lag,

P (l > 0) =

∑N−l−1
k=0 (xk − x̄)(yk+l − ȳ)√∑N−1

k=0 (xk − x̄)2
∑N−1

k=0 (yk − ȳ)2
(B.2)

where xk and yk are the intensities in the chosen frequencies at time k, x̄ and ȳ are

the means of the intensity light curves for x and y respectively, and N is the number

of data points in the light curves.

Now, following from Equations (B.1) and (B.2) note that the product of

deviations from the mean, i.e. (xi − x̄)(yi − ȳ) will be positive only when xi and

yi both lie on the same side of their respective means. Therefore, if xi and yi are

simultaneously greater or less than their respective means, the cross-correlation power

P (l) will be positive, and if one is greater while the other is less, the power will be

negative. While summing over the product for all data points, the negative products

will contribute in reducing the power of the cross-correlation. This effect is quite
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Figure B.1 a) Light curves for two frequencies x and y overlaid on one plot
for three different scenarios; Top: The event has the same duration but differs in
intensity for the two frequencies, Middle: the event has same intensities but different
durations and, Bottom: Both intensities and durations differ, but now two peaks
are present at each frequency as the particles move in both directions (same as
Case C in Subsection 3.2.3). b) CCOPS corresponding to each scenario from a).
c) Light curves for frequencies x and y overlaid on one plot showing two events,
Event 1 and Event 2, on different loops (with electron beams moving downward
only). d) CCOPS corresponding to then scenario from c). The overlaid dashed line
shows individual CCOPS for Event 1 in the absence of Event 2 and vice versa.
Source: [35].

apparent from the Equations above. However, additional factors such as the duration

and number of the bursts also affect the power of the cross-correlation.
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Let us consider example light-curves for x and y as shown in Figure B.1a. Each

panel in the plot represents a key difference between the light curves. In the top-most

panel, the two light curves vary in intensity but the duration of the bursts is exactly

the same. In the middle panel, the duration varies but intensities are the same, and

in the bottom panel, along with the variation in intensity and duration, we introduce

emission in two places. The last case is very similar to the one seen in Case C

from Subsection 3.2.3 (particles moving in both directions). To compute the CCOP,

imagine moving one of the light curves with respect to the other until their centers

are perfectly aligned and then moving away in the opposite direction. As the peaks in

the light-curves start overlapping, the power of the cross-correlation increases until it

reaches a maximum when their centers are perfectly aligned and then reduces again.

Figure B.1b shows the CCOPS corresponding to each panel in B.1a. For the

top panel, the maximum power of the cross-correlation is unity at the time-difference

required to perfectly align the two light-curves. Their difference in intensity does

not affect the CCOP. To see this, imagine that one of the peaks becomes enhanced.

The deviation from the mean is then larger throughout the light curve. It is positive

and substantially larger at the location of the peak, and it is negative and minimally

larger outside the peak. The net effect is no change in the CCOP.

In the middle panel, the maximum power never reaches one. This is simply

due to the different durations of bursts in the two light curves, even when they are

centered one above the other. Also note that the width of the cross correlation curve

is equal to the sum of the burst durations in the two frequencies. Finally, in the

bottom panel, the maximum power for each time-lag has become much smaller. As

one intensity peak in x is centered above one of the peaks on y, the misalignment

in the other peaks of the light-curves further reduces the power in addition to the

different durations.
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Lastly, panel B.1c shows light curves for frequencies x and y for two events.

Each event occurs in a different loop and the particles only move downward. The

physically interesting correlations are those between peaks of the same event, i.e. B1

with R1, and B2 with R2. Correlations of one burst with another, i.e. B1 with R2

and B2 with R1, also exist but are what we term “false” peaks. The corresponding

CCOPS (solid line) in panel d also have the dashed line overlaid showing individual

CCOPS for Event 1 (cyan) in the absence of Event 2 and vice versa (orange). The

CCOPS (solid line) show two important implications of the presence of multiple bursts

in the light curves:

1. Contrary to the first example (top panel) in panel a), the high intensity from
event 1 in x will shift the mean x̄ such that the faint peak B2 in x will have a
smaller positive deviation from the mean. Consequently, the CCOPS will now
be affected by the difference in intensity between the two events. The CCOPS
peak at ∼ 0.31 s with the highest power corresponds to a cross-correlation
between B1 and R1. Note that its magnitude is lower than it would have
been in the absence of Event 2. Also note that the power of cross-correlation
betweenB2 and R2 at an offset of ∼ 0.22 s is far smaller than its unity value in
the absence of Event 1.

2. The second brightest peak in the CCOP, at a time offset of ∼ 1.2 s, corresponds
to a cross-correlation between B1 and R2, i.e. events from two different loops,
and hence is a “false” peak. The second false peak at the offset of ∼ −0.75
s from R1 and B2 also has a small power due to the reason mentioned in the
previous point.

This tells us that the CCOP in the presence of multiple bursts will be affected

by the dominant intensity peaks in the light curves as they skew the value of mean;

and that the same dominant peaks are also responsible for a high CCOP at false

time–lags. This effect is enhanced with an increase in the burst frequency.
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