

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

SEMANTIC, INTEGRATED KEYWORD SEARCH OVER
STRUCTURED AND LOOSELY STRUCTURED DATABASES

by
Xinge Lu

Keyword search has been seen in recent years as an attractive way for querying data

with some form of structure. Indeed, it allows simple users to extract information

from databases without mastering a complex structured query language and without

having knowledge of the schema of the data. It also allows for integrated search

of heterogeneous data sources. However, as keyword queries are ambiguous and

not expressive enough, keyword search cannot scale satisfactorily on big datasets

and the answers are, in general, of low accuracy. Therefore, flat keyword search

alone cannot efficiently return high quality results on large data with structure. In

this dissertation, the algorithm improve keyword search over databases by exploiting

semantic information of the data and by extending flat keyword queries with semantic

information.

First, it develop an algorithm for keyword search over graph databases which

exploits tree canonical forms and techniques developed for mining tree patterns.

The algorithm substantially reduces the number of redundant intermediate results

generated, which is the bottleneck of query evaluation algorithms. Our experiments

show that it outperforms previous algorithms by one to two orders of magnitude in

terms of efficiency and memory consumption and displays smooth scalability.

Furthermore, the algorithm leverages semantic information of the data to

address the aforementioned problems. The method follows a schema-based approach

for evaluating keyword queries on relational databases, which computes patterns

mapped onto the schema graph of the database. Pattern graphs are representatives

for clusters of query results. As such, they are much less numerous than the actual

query results and can be translated into SQL queries on the relational database which

can produce the results in the cluster. Our pattern graphs allow keywords to match

schema elements and capture key-foreign key relationships and inclusion relationships.

The the system employ information-retrieval-based and semantics-based techniques

for scoring query pattern graphs and design an efficient top-k algorithm for computing

the patterns graphs of a keyword query.

Finally, the dissertation study employing keyword queries enhanced with

cohesiveness constraints (cohesive keyword queries) to query relational databases.

Cohesive keyword queries bridge the gap between flat keyword queries and structured

queries. The dissertation formally define semantics for cohesive queries on relational

databases and design an efficient evaluation algorithm. The experimental results show

that cohesive keyword queries substantially improve the quality of the results of flat

keyword queries and the performance of their evaluation. Most importantly, these

improvements are attained without compromising the simplicity and convenience of

traditional keyword search.

SEMANTIC, INTEGRATED KEYWORD SEARCH OVER
STRUCTURED AND LOOSELY STRUCTURED DATABASES

by
Xinge Lu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology,
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science, NJIT

December 2020

Copyright © 2020 by Xinge Lu

ALL RIGHTS RESERVED

APPROVAL PAGE

SEMANTIC, INTEGRATED KEYWORD SEARCH OVER
STRUCTURED AND LOOSELY STRUCTURED DATABASES

Xinge Lu

Dr. Dimitri Theodoratos, Dissertation Advisor Date
Associate Professor of Computer Science, NJIT

Dr. Yi Chen, Committee Member Date
Professor of Computer Science, NJIT

Dr. James Geller, Committee Member Date
Professor of Computer Science , NJIT

Dr. Senjuti Basu Roy, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Vincent Oria, Committee Member Date
Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: Xinge Lu

Degree: Doctor of Philosophy

Date: December 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, NJ, 2020

• Master of Science in Computer Science,
Stevens Institute of Technology, Newark, NJ, 2015

• Bachelor of Science in Computer Science,
Shanghai University, Shanghai, China, 2013

Major: Computer Science

Presentations and Publications:

Personalized Keyword Search on Large RDF Graphs based on Pattern Graph
Similarity, Souvik Brata Sinha, Xinge Lu, and Dimitri Theodoratos,
Proceedings of the 22nd International Database Engineering Applications
Symposium, ACM, June 2018, Pages 12 - 21.

Leveraging Pattern Mining Techniques for Efficient Keyword Search on Data Graphs,
Lu Xinge, Theodoratos Dimitri, Dimitriou Aggeliki,
International Conference on Web Information Systems Engineering (WISE)
2019 Workshop, Hong Kong, China, Revised Selected Papers, Springer,
Communications in Computer and Information Science, Volume 1155, Pages
98-114.

Leveraging Schema Information for Semantic Keyword Search over Structured
Databases, Xinge Lu, Dimitri Theodoratos, Xiaoying Wu, Michael Lan,
Submitted.

Semantics and Evaluation of Cohesive Keyword Queries on Structured Databases,
Xinge Lu, Dimitri Theodoratos, Xiaoying Wu, Michael Lan, To be submitted

iv

v

ACKNOWLEDGMENT

Throughout the writing of this dissertation I have received a great deal of support

and assistance.

I would first like to thank my supervisor, Professor Dimitri Theodoratos, whose

expertise was invaluable in formulating the research questions and methodology. Your

insightful feedback pushed me to sharpen my thinking and brought my work to a

higher level.

Second, I would like to first thank my dissertation committee who have each

provided helpful feedback and have been great teachers who have prepared me to get

to this place in my academic life. This project would not be nearly as good without

their help.

Finally, I would like to thank my parents, and all my friends for their unwavering

support and encouragement throughout the years.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Contribution and Results . 4

1.3 Outline of the Dissertation . 7

2 STATE OF THE ART . 8

2.1 Background . 8

2.2 Keyword Search on Graphs . 10

2.3 Keyword Search on Tree Data . 10

2.3.1 Answer Ranking . 10

2.4 Keyword Search on Relational Data 12

2.4.1 Query Semantics . 13

2.4.2 Candidate Network Generation 13

2.4.3 Answer Ranking . 15

2.4.4 Top-k Strategies . 17

2.5 Do More with Keywords . 18

2.5.1 Semantic Matching Strategies 18

2.5.2 A Cohesive Keyword Query Language 20

3 AN ALGORITHM FOR KEYWORD SEARCH ON GRAPHS 24

3.1 Data Model, Queries and Answers . 24

3.2 A Canonical Form for Result Trees 26

3.3 The Algorithm . 29

3.4 Experimental Evaluation . 33

3.5 Conclusion . 41

4 LEVERAGING SCHEMA INFORMATION FOR SEMANTIC KEYWORD
SEARCH OVER STRUCTURED DATABASES 42

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.1 Semantic Search . 46

4.1.1 Data Model, Queries and Answers 46

4.1.2 Query Pattern Graph Ranking 50

4.2 The Semantic Keyword Search Algorithm 58

4.2.1 An Unconstrained Expansion Strategy 60

4.2.2 Exploiting a Canonical Form for Pattern Graphs 61

4.2.3 The Top-k Strategy . 64

4.2.4 The Algorithm . 66

4.3 Experimental Evaluation . 68

4.3.1 Databases, Queries, Metrics . 68

4.3.2 Efficiency Experiments . 69

4.3.3 Effectiveness Experiments . 74

5 SEMANTICS AND EVALUATION OF COHESIVE KEYWORD QUERIES
ON STRUCTURED DATABASES . 79

5.1 Introduction . 79

5.2 Keyword Queries with Cohesiveness Constraints 80

5.3 Algorithm . 82

5.4 Experimental Evaluation . 82

5.4.1 Experimental Setting . 84

5.4.2 Effectiveness Experiments . 84

5.4.3 Efficiency Experiments . 88

6 CONCLUSION . 97

BIBLIOGRAPHY . 100

viii

LIST OF TABLES

Table Page

3.1 Queries on the (a) IMDB and (b) TPC-H Database 35

3.2 Statistics for the Queries on the (a) IMDB and (b) TPC-H Database . . 36

4.1 Different Values of Parameter cm. 52

4.2 Statistics for Queries on the IMDB Dataset 69

4.3 Statistics for Queries on the Mondial Dataset 69

5.1 Keyword Queries on the IMDB Database 86

5.2 Statistics for the Queries on the IMDB Database 86

5.3 Keyword Queries on the Mondial Database 87

5.4 Statistics for the Queries on the Mondial Database 87

ix

LIST OF FIGURES

Figure Page

3.1 Data graph and result graphs. 25

3.2 Four isomorphic result trees. 27

3.3 Execution time for the queries on the (a) IMDB, and (b) TPC-H database. 37

3.4 Number of intermediate results produced for the queries on (a) the IMDB
database, and (b) the TPC-H database. 38

3.5 Memory consumption for the queries on the (a) IMDB and (b) TPC-H
database. 40

3.6 Average execution time vs. number of keywords and (b) Average
execution time vs. number of keyword instances. 40

4.1 The schema graph of the IMDB database annotated with the query Q =
{movie, Pompeii, legend, actor, name}. 47

4.2 A pattern graph for the query Q = {movie, Pompeii, legend, actor, name}
on the IMBD database. 48

4.3 A result graph for the query {movie, Pompeii, legend, actor, name}. . . 49

4.4 Pattern graph with schema node removed. 53

4.5 A pattern graph for the queryQ = {movie, Pompeii, Legend, actor, name}
on the IMBD database. 54

4.6 Part of the expanded schema graph constructed based on the annotated
schema graph of Figure 4.1. 59

4.7 Execution time for queries on the IMDB database. 70

4.8 Execution time for queries on the Mondial database. 71

4.9 Number of intermediate results produced by the queries on the IMDB
database. 71

4.10 Number of intermediate results produced by the queries on the Mondial
database. 72

4.11 Memory consumption for queries on the IMDB database. 73

4.12 Memory consumption for queries on Mondial the database. 73

4.13 Precision@5 for queries on the IMDB database. 75

x

LIST OF FIGURES
(Continued)

Figure Page

4.14 Precision@5 for queries on the Mondial database. 75

4.15 nDCG10 for queries on the IMDB database. 76

4.16 nDCG10 for queries on the Mondial database. 77

4.17 Kendall tau for queries on the IMDB database. 78

4.18 Kendall tau for queries on the Mondial database. 78

5.1 Result graphs. 81

5.2 Precision at top rank for the queries on the IMDB database 88

5.3 Precision at top rank for the queries on the Mondial database. 88

5.4 Execution time for the queries on the IMDB database. 89

5.5 Execution time for the queries on the Mondial database. 89

5.6 Number of intermediate results for the queries on the IMDB database. . 91

5.7 Number of intermediate results for the queries on the Mondial database. 91

5.8 Memory consumption for the queries on the IMDB database. 92

5.9 Memory consumption for the queries on the Mondial database. 93

5.10 Average execution time and average number of Intermediate results for
queries on the IMDB database increasing the number of cohesiveness
constrains from 0 to 4. 93

5.11 Average execution time and average number of Intermediate results for
queries on the Mondial database increasing the number of cohesiveness
constrains from 0 to 4. 94

5.12 Execution time and number of intermediate results a query on the IMDB
database increasing the total number of query keyword occurrences. . 94

5.13 Execution time and number of intermediate results a query on the Mondial
database increasing the total number of query keyword occurrences. . 95

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation

A significant amount of the world’s data is stored or exported in a form that exhibits

some kind of (lose or tight) structure. For instance, a large part of corporate data

resides in relational databases, popular NoSQL databases are organized as key-value

stores, publicly available datasets—including datasets from the US government—can

be downloaded in XML or JSON format, DBPedia is exported in RDF format, and

social media connections are represented as graphs.

The tremendous success of the internet search engines over flat documents has

triggered the last fifteen years intense research activity on searching with keywords

databases and datasets with some form of structure. The ambition is to allow users

to extract information deeply hidden in these data sources with the simplicity offered

by keyword search. The target datasets of this research involve different data models

including fully structured relational databases [86, 13, 45], tree structured databases

[59, 5, 31, 47], graph databases [50, 79], key-value stores [76], RDF data graphs

[78, 33, 25], entity databases [82] and spatial databases [34] among others. Having

foreseen this interest on keyword queries, vendors of DBMSs have long ago added

not only full text indexing capabilities to their products but also tools to support

keyword search [3].

Benefits of keyword search on databases with structure. There at least three

major reasons for this strong interest of the database and IR communities on keyword

search over data with some structure. First, the users can retrieve information without

mastering a complex structured query language (e.g., SQL, XQuery [51], SPARQL).

We call this benefit simple user emancipation. Second, they can issue queries against

1

the data without having full or even partial knowledge of the structure (schema) of

the data source. We call this second benefit data structure independence. Third,

they can query different data sources in an integrated way: the same query can be

issued against and extract information from multiple data sources which might not

all comply with the same data model (if at all). This is particularly important in

web and big data environments where the data sources are heterogeneous and even

if some of them adopt the same data model, they do not necessarily have the same

structure schema. We refer to this third benefit as data model independence.

The problems. There is a price to pay for the simplicity, convenience and flexibility

of keyword search. Keyword queries are imprecise and ambiguous in specifying the

query answer. They lack expressive power compared to structured query languages

[19]. Consequently, they generate a very large number of candidate results. This

is a typical problem in IR. However, it is exacerbated in the context of data with

some structure. Indeed, in this context the result to a keyword query is not a whole

document but a data fragment (e.g., a subtree, or a subgraph) and this exponentially

increases the number of results. This weakness incurs two major problems. The first

problem is that existing algorithms for keyword search are of high complexity and

they cannot scale satisfactorily when the number of keywords and the size of the

input dataset increase. We refer to this problem as performance scalability problem.

Note that top-k processing algorithms [41, 40, 61, 78, 38, 49, 83, 18, 35, 65, 31] do

not solve the performance scalability problem as they still generate, in most cases, a

large number of results (before identifying the top-k) or rely on specialized indexes

which cannot be assumed to be available in practice.

The second problem is that the correct identification of the relevant results

among a plethora of candidates becomes a very difficult task. Indeed, it is practically

impossible for a search system to “guess” the user intent from a keyword query and the

structure of the data source. Although previous approaches are intuitively reasonable,

2

they are sufficiently ad-hoc and they are frequently violated in practice resulting in

low quality results. We refer to this second problem as query answer quality problem.

These problems have hindered the widespread use of keyword queries over data with

some structure. Without additional information from the user, flat keyword search

cannot efficiently provide accurate answers on databases with structure.

Previous efforts. A plethora of previous work have attempted to mitigate these

problems by introducing query languages which bridge the gap between structured

query languages and keyword search [23, 52, 7, 6, 85, 51, 77, 75, 63, 69, 81, 48, 62, 56].

They proceed either by adding structural constraints and other constructs to keyword

queries or by introducing keywords as primitives to structured query languages.

These approaches not only do not succeed in offering fully the first and the

second benefit (simple user emancipation and independence from the data structure),

but they all fail to offer the third one (data model independence): each of them is

designed for a specific data model and they are not applicable to databases of different

types. For instance, schema-free XQuery [51] requires from the user to have some

knowledge of the schema in order to write a query which is not simply a flat keyword

query. Moreover, these queries are applicable only to XML tree-structured data.

Similarly, the approach in [69], is designed for knowledge bases involving entities,

concepts and relations. The user can identify in a query some keywords which will

be mapped to relations. In order to do so, she not only has to know the type of the

underlying knowledge base, but she also has to guess which concepts are modelled as

relations in the data.

Exploratory search. Another way to bridge the gap between structured query

languages and flat keyword queries on datasets with structure is exploratory search

[64, 80, 8, 20, 3]. This process requires interaction with the user which starts with

her issuing a keyword query. In its simplest form, the system returns a—sometimes

3

ranked—list of possible interpretations of the unstructured keyword query usually

represented by a structured query [55, 78, 12, 28, 5]. In its more involved form, it

directs the search of the users by, conceptually, browsing classification hierarchies.

The goal is to disambiguate the meaning of the keyword query and identify the user

intention. The interpretation of the keyword query is constructed in a sequence of

interaction steps [1, 27, 58, 57, 28, 25, 4, 10, 45, 26].

Exploratory search is particularly useful when the user does not know what

information is available in the database and, as a consequence, cannot correctly

express her information needs. As one can see, there is an abundance of contributions

in this direction too. Irrespectively of how successfully these interfaces can interact

with simple users, they all suffer from the same deficiency: they are all designed for

a specific data model. For instance, [28] guides the user through an unmaterialized

query hierarchy to construct a structured query reflecting the user’s intent. However,

the exploration system is designed for relational databases. In a similar way, [58, 57]

serve XML databases, while [25, 26] operate on RDF graph databases. Therefore,

these approaches cannot offer the data model independence benefit of flat keyword

search. As such, they are not appropriate for integrated search across heterogeneous

data sources.

1.2 Contribution and Results

Our goal in this dissertation is the developing of techniques and algorithms for

empowering efficient integrated search over databases with some form of structure.

Many keyword search problems over structured databases translate into keyword

search over graphs. For instance, we saw while working with relational databases

that keyword search over relational databases requires computing results of keyword

queries over graph-structured data. Graphs model complex relationships among

objects in a variety of web applications. Keyword search is a promising method

4

for extraction of data from data graphs and exploration. However, keyword search

faces the so called performance scalability problem which hinders its widespread use

on data graphs. We observed that existing algorithms over graph data generate

a large number of redundant intermediate results and this negatively affects their

performance. Our first task was to address the performance scalability problem

by leveraging techniques developed for mining tree patterns (keyword search results

over graphs are often trees). We focus on avoiding the generation of redundant

intermediate results when the keyword queries are evaluated. We define a canonical

form for the isomorphic representations of the intermediate results and we show how

it can be checked incrementally and efficiently. We devise rules that prune the search

space without sacrificing completeness and we integrate them in a query evaluation

algorithm. We implemented our algorithm and experimentally tested it and compared

it with previous algorithms on real and benchmark datasets. Our experiments show

that our algorithm outperforms previous algorithms by one to two orders of magnitude

in terms of efficiency and memory consumption and displays smooth scalability.

As keyword queries are ambiguous and not expressive enough, keyword search

cannot scale satisfactorily on big datasets and the answers are, in general, of low

accuracy. Therefore, we focused on exploiting semantic information to address the

problems above and improve the effectiveness and efficiency of keyword search on

relational databases. We follow a schema-based approach for evaluating keyword

queries on relational databases: our approach returns patterns which are graphs

casted on the schema graph of the database. Pattern graphs are representatives

for clusters of query results. As such they are much less numerous than the actual

query results. They can be translated into SQL queries on the relational database

to produce results for the query. We defined pattern graphs which include schema

components. They can distinguish between keywords matching schema elements

like attributes and relation names and capture key-foreign key relationships and

5

inclusion relationships. Our concept of pattern graph can record semantic information

from the relational database that previous approaches cannot extract. We employ

IR-based and semantics-based techniques for scoring query pattern graphs. We

further design an efficient top-k algorithm for computing the patterns graphs of

a keyword query. which exploits a normal form for pattern graphs to avoid the

computation of redundant intermediate results. Our algorithm exploits a canonical

form for pattern graphs to avoid the redundant generation of intermediate results

which is the bottleneck of query evaluation algorithms. An extensive experimental

evaluation on two real relational databases demonstrates the effectiveness of our

approach and the time and memory efficiency of our algorithm.

Finally, in order to cope with the problems of keyword search on structured

databases, we examined a technique which enhances keyword queries with constraints.

Our approach uses cohesive keyword queries for querying relational databases.

Cohesive keyword queries contain cohesiveness constraints which identify cohesive sets

of keywords in the query. Intuitively, the occurrences of the keywords of a cohesive

set in the result of a query form a cohesive whole which is not “penetrated” by the

occurrences of the rest of the keywords. Cohesive queries allow for term nesting.

They bridge the gap between flat keyword queries and structures queries. Although

more expressive, they are as simple and convenient for the näıve user as traditional

keyword queries. We formally defined semantics for cohesive queries on relational

databases and we design an efficient evaluation algorithm. We run experiments to

demonstrate the effectiveness of cohesive keyword queries and the efficiency of our

algorithm. Our experimental results show that cohesive keyword queries substantially

improve the quality of the results of flat keyword queries and their evaluation time,

memory consumption and scalability. Importantly, these improvements are attained

without compromising the simplicity of traditional keyword search.

6

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows: The next chapter reviews related

work on keyword search on structured and loosely structured databases. In Chapter

3, we present our results for efficiently computing the results of a keyword query

over graph databases. In Chapter 4, we discuss exploiting semantic information

for improving keyword search on relational databases. Chapter 5 elaborates on

the semantics and the evaluation of cohesive queries over relational databases. We

conclude in Section 6 and suggest future work.

7

CHAPTER 2

STATE OF THE ART

2.1 Background

With the ever expanding internet and the tens of millions of existing websites, the

amount of available data has been sharply increasing. Considering the difficulty

users face to find the needed information, keyword search is one of the most popular

information retrieval mechanisms.

The relational and the XML databases are popular data types. Both of them

have a specific query language (SQL and XQuery [51], respectively) for retrieving

information. In order to use these query languages, a user needs to have a sufficient

understating of the data structure and of the language through practice. In relational

databases, the information is separated into multiple tables which are connected by

key-foreign key relations. The user has to locate the specific tables that contain data

of interest and use the key-foreign key relations to connect the tables in order to get

the result. In XML datasets, the schema is often complicated. The embedded XML

structures pose a lot of difficulty in expressing queries that requiring the traversal

of tree structures. Besides relational and XML databases, there are many graph

structured datasets which do not have an obvious schema and do not even have a

useful language associated with them for search. For graph databases, traditional

graph search algorithms [43, 71, 84] can be used.

Compared to other approaches, keyword search has the benefits that is easy to

use even by non-expert users and that the same query can be applied to databases with

different structure and data models. The users do not need to have full understanding

of the structure of the dataset to locate the information and the relationships between

the data objects. Both relational databases and the XML databases can be viewed as

8

graphs. Therefore, keyword search reduces to finding structural information among

the data graph components using a keyword query Q. The results are subgraphs or

trees which contain the keywords in Q and show the possible relationships between

the keywords. In some approaches, weights are assigned to the nodes and edges of

the data graph. The ranking method uses the weights to rank the final results. The

most relevant results appear in the top results for the user to check.

Keyword search over graph data is challenging. The first question is how to

associate the keywords in the query with the data components in the graphs. The

simplest way is to find the exact matches of the keywords and data component

labels. Exact matching is widely used in document information retrieval. The graph

data not only has textual information, but also contains structural information and

possibly a schema. Furthermore, a keyword query might be satisfied by a huge

number of the subgraphs while the user might only be interested in one or a few

of them. Top-k strategies effectively return the top relevant results. To improve the

search efficiency, many systems propose ways to prune the search space or change

the search strategies to reduce the generation of invalid results. Approaches to

keyword search over graphs which do not take into account any schema information

include the backward expanding search [14], the bidirectional search [44], the dynamic

programming technique DPBF [32], and BLINKS [40]. The work presented in [24]

focuses on finding the keyword search results in the external memory.

When doing the keyword search on XML Data, most of the approaches [39, 23,

52, 36, 46], will constrain the data to a tree structure.

The main research [42, 14, 3, 41, 61, 55] on the relational database focuses on

generating a labeled graph of the database. The relations in the database are mapped

to as nodes and the edges are based on the foreign-key relationships.

9

2.2 Keyword Search on Graphs

Graph data has widespread use in many applications. Most of them do not have

a schema to describe their data. Keyword search on XML takes advantage of the

hierarchical property of trees. Keyword search over a graph finds substructures of the

graph containing all or some of the input keywords. BLINKS [40] is an implementation

which focuses on schema-less node-label graphs. It uses an index to identify the tuples

that contain keywords, but it also exploits the indexes to provide graph connectivity

information which speeds up searches. BLINKS is based on cost-balanced expansion,

which is an improvement of the backward search strategy [14]. The approach combines

the search process with indexing. To reduce the search time in the shortest-path list,

BLINKS partitions a data graph into multiple subgraphs or blocks. It also uses a

bi-level index to keep a summary of the data which guides the search. The DPBF

approach [32] uses a dynamic programming algorithm. It proposes an incremental

method to get the top-k answers.

2.3 Keyword Search on Tree Data

XQuery [51] is usually used to query XML data. It provides flexible query facilities to

extract data from virtual documents. Even though XQuery is expressive, it requires

the users to be the experts in the language. The users also need to have full knowledge

of the data schema. For naive users, keyword search is a friendlier search option.

2.3.1 Answer Ranking

In XRank [39], there are two possible semantics for keyword search queries. Under

the conjunctive keyword query semantics, the result of the query is a data structure

which contains all the keywords. Under the disjunctive semantics, the result data

structure contains at least one of the keywords in the keyword query. Most existing

approaches focus on conjunctive semantics.

10

There are many potential results according to the query semantics. Due to the

difference of the XML structure, not all the answers are equally relevant. To rank

the results that contain all the keywords, many approaches assign a numerical score

to the result. First, the result with the more specific match should be ranked higher.

Second, the result where the keywords are closer to each other should also be ranked

higher. The tighter result structure means that the nodes in the answer are probably

more related to each other. Furthermore, the ranking method has to consider the

hyperlinks in the XML documents.

In XRANK, ElemRank(v) is a function expressing the object importance of an

XML element v computed using the underlying hyperlinked structure. ElemRank(v)

is similar to Google’s PageRank, but ElemRank(v) also takes the distance between

the elements and the nested structure into account. For a sequence of containment

edges (v1, v2), (v2, v3), . . . , (vt, vt + 1) such that vt + 1 is a value node that directly

contains the keywords ki. The rank of v1 with respect to a keyword ki is

ElemRank(vt) scaled appropriately to account for the specificity of the result:

r(v1, ki) = ElemRank(vt)×decayt−1. decay is a parameter that can be set to a value

in the range 0 to 1. This rank ensures that less specific results get lower ranks, and is

still related to ElemRank(v1) due to certain properties of containment edges. If there

are multiple relevant occurrences of ki, r̂(v1, ki) is the max rank. The overall ranking

R(v1, Q) is the sum of the ranks with respect to each query keyword, multiplied by a

measure of the keyword proximity p(v1, k1, k2, . . . , kn).

R(v1, Q) =
(∑
1≤i≤n

r̂(v1, ki)
)
× p(v1, k1, k2, . . . , kn) (2.1)

A function value equal to 0 means the keywords are very far apart in v1 and a function

value equal to 1 stands for the case where the keywords are next to each other in v1.

11

Even if the keywords appear in a small text window of the data structure, the

result can still be meaningless. To solve a problem like this, XSEarch [23] proposes

a semantic-based keyword proximity measure that takes into account the nested

structure of the XML documents. The standard tfidf formula is used to give weight

to leaf nodes with keywords. XSEarch returns to the user subtrees of a document.

The value that is given by the tfidf formula represents both the frequency of the

keywords in the leaf node document under consideration and the inverse frequency

of the keyword in all the documents of the leaf nodes. The final scores w(k, n1) are

the normalized tfidf value of the pair (k, n1). If w(k, n1) is equal to 0, k does not

appear in the node n1. To evaluate how the results match with the keyword query,

XSEarch uses the vector space model. Let L stand for the label set, and K stand for

the keyword set. Every node n is associated with a vector Vn of size |L×K|.

Vn[l, k] =


∑

n′∈Nleaf
w(k, n′) if label(n) = l

0 otherwise

(2.2)

If the node n does not match with the label, the score will be 0. If the node n matches

with the label l, the score will be the sum of the weights for keyword k in the node n′.

The measure of similarity between a query Q and an answer N , denoted sim(Q,N),

is the sum of the distances between the vectors associated with the nodes in N and

the vectors associated with Q.

2.4 Keyword Search on Relational Data

A huge amount of data has been stored in relational databases. The standard way to

get data from a relational database is using SQL. Even though the SQL language is

able to get all kinds of data that the user wants, it has the aforementioned problems

12

of structured query languages. Many recent works have designed approaches which

implement keyword search on relational databases.

2.4.1 Query Semantics

The traditional keyword search is on flat documents. It simply checks if the keyword

exists or not in the document. Relational databases store the data in tables which are

linked though key-foreign key relationships. A table is a set of tuples that have the

same attributes. It usually represents to a set of objects. The keywords in the query

might appear in different tuples in the tables of the database. In order to compute

the answer to a keyword query, one has to find not only the matching tuple set for the

keywords, but also the key-foreign key relationships between these tuple sets. The

result of a keyword query is commonly defined as a graph or a tree, such that the

nodes correspond to tuples that contain zero or more keywords of the query, and the

edges correspond to key-foreign key relationships between these tuples.

2.4.2 Candidate Network Generation

The connections between the tuples might be very numerous. There are two

approaches to keyword search on relational databases. The first one is the tuple-based

approach. The tuple-based approach actually links the matched tuples for each

keyword. The second approach is the schema-based approach. The schema is a

high level summarization of the database and shows the structure information for

the tables. In the tuple-based approach, a relational database is a large data graph.

The nodes are tuples and the edges are key-foreign key relationships. Given a query

Q = k1, . . . , kn, a query result is a connected subgraph of the database graph. This

subgraph contains all or some of the keywords of the query. The connections represent

joins between different tables or self-joins. In order to limit the number of results,

the size of the results is usually constrained to be below a given threshold. The

13

schema-based approach does not use the data graph with the tuples, but uses instead

the schema graph which contains relation schemas and key-foreign key relationships.

In the schema based keyword search, the results, called joining networks,

represent a cluster of one or more result graphs. Most of the schema-based approaches

require the result to be a minimal total joining network which means that it has to

satisfy minimality and completeness properties.

The first algorithm to generate all minimal candidate networks (CNs) was

proposed by the DISCOVER approach [42]. DISCOVER focuses on how to leverage

the physical database design to build compact data structures critical for efficient

keyword search over relational databases. According to DISCOVER, an association

exists between two keywords if they are contained in two associated tuples. In

candidate networks, this means that the two tuples are connected with each other

through a sequence of key-foreign key relationships, which potentially contain several

other tuples that do not contain a keyword. The minimality condition of DISCOVER

postulates that the removal of a tuple that contains a keyword does not result in a

graph which has all the keywords.

To generate the CNs, DISCOVER expands partial CNs to generate larger partial

CNs until all CNs are produced. The CNs are expressed as a joining sequence. Join

expressions are generated up to the size limit. DISCOVER prunes many of the

non-valid partial CNs by exploiting the properties of the schema of the database.

This reduction of the redundant intermediate results improves the efficiency of the

algorithm. Unlike DISCOVER, DBXplorer [3] maintains a symbol table which only

stores the list of the columns where the keywords occur. With this design, the

approach can reduce the space requirement and improve search performance. The

generation of CNs uses an enumeration strategy. After searching in the symbol table

to match the keywords, the algorithm enumerates all the join trees. For each tree, it

executes an SQL query to retrieve matching rows.

14

BANKS [14] is a tuple-based approach (which uses the tuple as nodes and cross-

references between them as edges). It not only allows the users to use the keywords

to search but also provides a rich interface to review the results. For generating

the results, BANKS uses backward expanding search. Starting with the matching

keyword nodes, it proceeds backwards to find a common root which connects the

whole result. The backward search algorithm can explore an unnecessarily large

number of the graph nodes, especially when there are frequently occurring keywords

in the query. In the algorithm, each keyword has an iterator. If a node has a very

large fan-in, the iterator may need to explore a large number of nodes. The algorithm

of the tuple-based approach presented in [44] starts from potential roots of the results.

The nodes on an iterator with small fringe would have a higher priority. Within a

single iterator, those subtrees which are less bushy have a higher priority. These two

methods avoid the wasteful expansion of CNs with large fringes.

2.4.3 Answer Ranking

The ranking method of DISCOVER [42] and DBXplorer [3] is pretty simple. These

papers assume that if the keywords are close to each other in the result, the result

is more relevant. Therefore, they rank the results in ascending order of the number

of joins involved in the tuple tree T . Suppose T is a result join tree. And size(T)

stands for the number of joins. The Score of T if T contains all the keywords in Q as

follows:

Score(T,Q) =


1

size(T)
T contains all keywords in Q

0 otherwise

(2.3)

In BANKS [14], the result ranking involved three kinds of scores: Node score Nscore,

Edge score Escore, and combination score. The node weights depend upon the

prestige of the node based on inlinks. In the implementation, it has been set to be

15

equal to the indegree of the node. The similarity between database relations depends

upon the type of the link between them. If there is no reference relation, it is set to

be equal to infinity. The edge score reflects the strength of the proximity relationship

between two tuples and is set to one by default. These two scores could be additively

combined using the formula (1 − λ)Escore + λNscore or multiplicatively combined

using the formula Escore ∗Nscoreλ. Both scores are normalized.

In DISCOVER II [41], the authors use a new IR style ranking method to rank

the results. For each textual attribute which belongs to the tuple set, there is a

single-attribute IR-style relevance score. This score is influenced by the keyword’s

appearance frequency in the attribute, and also by the number of the tuples in the

attribute. This score function also can be easily extended to incorporate PageRank-

style scoring. After the score for each of the attribute is obtained, all the scores are

combined and divided by the size of the result. Because the size of the results shows

how “tight” the whole result is, the smaller the better. Single-attribute IR-style

relevance score Score(ai, Q) for each attribute ai that belongs to T is defined as

follows:

Score(ai, Q) =
∑

ω∈Q∩ai

1 + ln(1 + ln(tf))

(1− s) + s dl
avdl

ln
N + 1

df
(2.4)

Where, for a word w, tf is the frequency of w in ai, df is the number of tuples in ai’s

relation with word w in this attribute; dl is the size of ai in characters, avdl is the

average attribute-value size, N is the total number of tuples in ai’s relation, and s is

a constant. The final score for T is the summary of all the ai scores in T divided by

the size of T .

The IR style model has an inherent problem. It might be overly rewarding

contributions of the same keyword in different tuples in a join tuple tree. Spark [61],

another relational database search approach, introduces a function that uses a new

16

ranking formula by adapting existing IR techniques based on the natural notion of

virtual document. It is more effective and matches better with human expectation. It

is used on a relational database which has a full-text index and inverted indexes. This

ranking approach models a join tuple tree as a virtual document. By adjusting the

model, it naturally computes the IR-style relevance scores without using an esoteric

score aggregation function.

score(T,Q) = scorea(T,Q) · scoreb(T,Q) · scorec(T,Q) (2.5)

Scorea(T,Q) is the same as in Discover II [41] and it is the IR style component

of the score. Scoreb(T,Q) is the score which reflects the completeness of the result as

this is derived from the extended Boolean model [70]. Scorec(T,Q) is the normalized

size factor score.

2.4.4 Top-k Strategies

In most applications, users are more interested in the first few results in the ranked

answer rather than the multitudinous totality of the results in the answer. Therefore,

top-k strategies make the algorithms more efficient. Similar strategies are applied in

the information retrieval domain [29] and in data mining [37].

The top-k strategies are based on a scoring function. The results are usually

evaluated by multiple scoring predicates that contribute to the total object score.

There are two main methods at the application level for top-k query processing. The

first method assumes that the scoring function has m components p1, . . . , pm and all

these components have a scoring range. If the score is over-estimated, which means

that the result will not satisfy the top-k scoring range, the result will be cut off. If

the number of results is over k in the final result, the exceeding results will also be

cut off. The approach of [16] consults the database histograms to map a top-k query

17

to a suitable multi-attribute range query. The region function reg(q, dq) contains all

the possible tuples within distance dq from point q. If there are less than k tuples in

reg(q, dq), it chooses a higher value for dq and restarts the process.

The other method uses indexes and materialized views. This approach uses more

storage space but improves the response time. For example, in the onion technique

[17], m dimension points are used to present the m components of scoring. The convex

hull of these points is the boundary of the smallest convex region that encloses them.

The onion technique will return the top results by searching the points of the out

most convex hull until all of the top-k results have been found.

2.5 Do More with Keywords

2.5.1 Semantic Matching Strategies

Keyword queries usually return multiple results. These results have different meanings

since the keywords in the query are associated with different nodes, or are combined

into different structures. If the role (meaning) for each keyword in the query was

known, it would be easier to match the user request and filter out irrelevant results.

In meaningful keyword search algorithm[45], it is observed that because of the

result minimality requirement of DISCOVER [42], some relevant results might be

missed. The authors address the problem by interacting with the user to identify the

meaning (role) of each keyword in the query. A keyword might appear in multiple

locations. In a relational database, the role of a keyword is related to the relations

and attributes. By identifying the role of the keywords, the accuracy of the results

is improved, and meaningful non-minimal results (which are missed by DISCOVER)

are returned to the user. One way to do the keyword role selection is to use a user

interface which allows the user to choose from the potential roles that the keywords

might have. A short natural language description for each of the attributes in the

relations is stored in the system. If the attribute contains a keyword in its values, the

18

system will return the attribute description along with the keyword so that the user

chooses the most relevant role for the specific keyword.

Another approach, introduced in metadata approach[12], assumes that the

meaning/role of each keyword depends on the other keywords in the query. The

authors observe that based on some known patterns of human behavior, we know that

the order of keywords in the query is important and correlated keywords are typically

placed closer to each other. This approach aims at finding the role of the keywords

without prior access to the data instance. The keyword queries are translated to

several SQL queries that show the possible semantic meaning of the keyword query.

The results from these SQL queries represent the results of the initial keyword query.

To give each keyword a quantitative semantic meaning, the approach uses a weight

table that gives a score to each pair of keyword and database term. There are two

weights: the intrinsic, and the contextual weights. The intrinsic weight is based on

syntactic, semantic and structural factors. The contextual weight is used to measure

the same factors albeit considering the mappings of the remaining query keywords.

Most of the approaches above require the results to contain all of the keywords

or relative entities in the query. This requirement guarantees the completeness of

the result, but it might also miss incomplete results which are closer to the meaning

of the query than complete ones. To remedy this problem, Keyword++ [82] maps

query keywords to matching predicates or ordering clauses. If one of the keywords

is guaranteed to belong to one attribute, the keyword and the attribute will map

to a predicate “Attribute value = 〈value〉”. If the keyword is a number, it will be

mapped to an ordering clause “order by 〈attribute〉 〈ASC|DESC〉”. This process

makes the keyword query matching more flexible. In order to automatically map

those keywords, the approach uses a baseline search interface which takes a query as

input, and produces a list of entities as output. These entities are used to map the

keywords. There are several entity search engines [2, 11, 21, 66] which return the

19

entities relevant to the user query even when not all the query keywords have been

matched.

2.5.2 A Cohesive Keyword Query Language

One of the goals of this dissertation is to use a novel keyword-based query language,

called cohesive query language [30], to extract integrated information from multiple,

heterogeneous, structured and semistructured data sources.

The cohesive keyword query language. In a cohesive keyword query, the user

can specify cohesiveness constraints among the keywords. Cohesiveness constraints

define a group of keywords and state that the instances of these keywords in the

dataset should form a cohesive whole, that is, a unit in which the instances of the

other keywords cannot occur. They partially relieve the system from guessing without

affecting the user who can specify them naturally and effortlessly.

For example, consider the keyword query {big data John Smith George

Brown} to be issued against a large bibliographic database. The user is looking

for publications on big data related to the authors John Smith and George Brown.

To express this request as a cohesive query she will write ((big data) (John Smith)

(George Brown)) where parentheses are used to specify the cohesive groups big data,

John Smith and George Brown. A cohesive group, say (John Smith), indicates that

John and Smith form a cohesive unit where the instances of the other keywords of

the query George, Brown, big and data cannot penetrate to form cohesive units with

either John or Smith. With a cohesive query the user will get more accurate results:

the system will be able to filter out publications on big data by John Brown and

George Smith. It will also filter out a publication which cites a paper authored by

John Davis, a report authored by George Brown, a book on big data authored by

Tom Smith, and an article on semistructured data authored by Ray Brown. These

“results” are irrelevant, but none of the previous keyword search approaches are able

20

to automatically exclude them from the answer of the query. Importantly, specifying

cohesiveness constraints frees the system from searching for a multitude of irrelevant

results and reduces, to a small fraction, the time needed to compute the query answer.

Cohesiveness constraints can be nested. For instance, the query (Hadoop

(John Smith) (citation (George Brown))) looks for a paper on Hadoop by John

Smith which cites a paper by George Brown. The cohesive keyword query language

conveniently allows also for keyword repetition. For instance, the query (Hadoop

(John Smith) (citation (John Brown))) looks for a paper on Hadoop by John

Smith which cites a paper by John Brown. More generally, the syntax of a query

Q is defined by the following grammar, where the non-terminal symbol G denotes a

cohesive group, and the terminal symbol k denotes a keyword:

Q → (k) | G

G → (S S)

S → S S | G | k

Expressivity vs. ease of use, data structure and data model indepenence.

The cohesive queries have higher expressiveness compared to flat keyword queries.

However, contrary to other keyword-based query languages which trade-off ease-of-use

for expressiveness, the cohesive query language increases the expressive power without

compromising on ease-of-use.

Cohesive semantics. The unique features of the cohesive query language arise

from the particular semantics assigned to cohesiveness constraints: contrary to other

query languages which extend flat keyword queries, cohesive semantics is not defined

in relation to constructs of the dataset but in relation to keywords of the query.

Consider, for instance, XSearch [23], which is one of the simplest keyword-based query

languages, and a slight extension of keyword search. Label keywords in an XQuery

query are to be mapped to internal nodes in the XML data tree, value keywords are

21

mapped to leaf nodes, and terms involving label and value keywords are mapped to

nodes related through an ancestor-descendant relationship.

Therefore, a query is interpreted in relation to dataset concepts: tree node

labels, tree node values, internal and leaf nodes, ancestor-descendant relationships

etc. This kills, of course, the independence of the query language from the data

model, as the queries are not meaningful in the context of any other data model.

Further, it requires from the user to know which keywords are expected to represent

internal node labels, which are expected to be leaf node values and how these might

be linked through descendant relationships. That is, the user needs to have a sense

of the structure of the data.

Clearly, formulating queries even in this elementary extension of flat keyword

search is not trivial and requires some understanding of tree organization—certainly

not a task expected for a naive user. Thus, the benefits of keyword search mentioned

above are substantially reduced or erased in older extended keyword query languages.

On the other hand, a cohesiveness constraint in a cohesive query states that in any

result of the query, the keywords of the corresponding cohesive keyword group form a

cohesive unit which is not “penetrated” by the other keywords of the query. In other

words, a keyword in a cohesive group of the query is semantically closer to the other

keywords in the group than to any other query keyword outside the group. This

interpretation of cohesive queries frees the user from having any knowledge of the

structure and the type of the underlying data sources and allows him to effortlessly

formulate his query in a natural way based on his intuition. Cohesive queries fully

enjoy all the benefits of flat keyword search.

In order to evaluate cohesive queries over a dataset of a certain type, the intuitive

semantics needs to be mapped to formal semantics for this type of data. This process

involves providing rules based on structural and semantic information for this data

type which allow the system to take decisions in the following triangular setting: given

22

three keyword instances i0, i1 and i2, in which one of i1 and i2 is semantically closer

to i0. It is important to note that this concept of semantic closeness is not equivalent

to, and usually contradicts, structural proximity. A goal of this project is to provide

semantics for the cohesive query language on relational databases.

23

CHAPTER 3

AN ALGORITHM FOR KEYWORD SEARCH ON GRAPHS

We present and experimentally evaluate in this chapter an algorithm for keyword

search on directed graphs. As we show in the experiments, this algorithms

improves substantially over previous ones by eliminating the generation of redundant

intermediate results.

3.1 Data Model, Queries and Answers

Data Model. We consider a data graph G = (V,E, l), where V is a set of nodes,

E is a set of directed edges and l is a labeling function assigning distinct labels to

all the nodes and edges in V ∪ E. Labels on edges are useful for distinguishing two

distinct edges between the same nodes. Set labels(V) denotes the set of the labels of

the nodes in V . Every node label l in labels(V) is associated with a set terms(l) of

keywords from a finite set of keywords K. The same keyword can appear in the sets

terms(l1) and terms(l2) for two distinct node labels l1, l2 ∈ labels(V). Figure 3.1(a)

shows a data graph with six nodes. The labels and their termsets are shown by the

nodes.

Queries and Query Semantics. A query is a set of keywords fromK. The answer of

a query is defined based on the concept of query result. As is usual [41, 14, 44, 40, 45],

we define the result of a query on a graph to be a tree.

Definition 3.1 (Query Result) Given a graph G, a result of a query Q on G is a

node and edge labeled undirected tree R such that:

(a) Every node of R is labeled with a label from labels(V). A function keys on the

nodes of R assigns to every node n in R a (possibly empty) set of keywords from

Q ∩ terms(label(n)). Function keys satisfies the following two conditions:

24

e2
e11

{c,d}

L8
L3

{e}

L1

e3

e4
L1

{e} {d}

{b,c}L5

L3

e8

e9

e2

e6

e1

e9

e10

e8
e5

L1

L3

L4

L5

L6
L8

{}

{a}

{}
e3 e4

{d, f}

{a,b,e,g} {b,c}

{a,c,e}{c,d,e,g}

e1

L6
L4

L4

{}

e11

e8

e10

e9

L6

{a,b}

{}

L5
{}

L6

{a,b, f}

(a) (b) (c)

Figure 3.1 (a) Data Graph, (b) and (c) Results for the keyword query {a, b, c, d, e}.

(i) for every two nodes n1, n2 ∈ R,

keywords(n1) ∩ keywords(n2) = ∅ (unambiguity), and

(ii)
⋃
n∈R keywords(n) = Q (completeness).

(b) If there is an l-labeled edge between nodes n1 and n2 in R, then there is also an

l-labeled edge between nodes labeled by label(n1) and label(n1) in G.

(c) There is no leaf node (i.e., a node with only one incident edge) n such that

keywords(n) = ∅ (minimality).

Figures 3.1(b) and (c) show two results for the keyword query {a, b, c, d, e} on

the data graph of Figure 3.1(a). The keyword set of every node is shown by the node.

Observe that label L4 appears twice in the result tree of Figure 3.1(b), and in one

occurrence the corresponding node has an empty keyword set.

We can now define the answer of a query.

Definition 3.2 The answer of a query Q on a data graph G is the set of results of

Q on G.

The results of a keyword query Q represent different interpretations of Q.

Function keywords assigns a meaning to a keyword in Q by associating it with a

result node whose label l contains this keyword in its term set term(l). A keyword

can appear in the keyword set of only one of a result to guarantee that only one

25

meaning is assigned to each query keyword in a query result. This is the unambiguity

property of a query result. We adopt AND semantics [42] for queries: all the keywords

of Q should appear in a result of Q. This is guaranteed by the completeness property

of a query result. The minimality property guarantees that a query result does not

have redundant nodes.

Note that this definition of a query result is general: the result does not need

to have an embedding to the data graph. That is, it does not need to be a subtree of

the data graph (though it can be restricted to be). As a consequence, the same label

can label multiple nodes in the result. A node n in a result which does not have any

keyword associated to it (that is, keywords(n) = ∅) is called empty node. Based on

the definition above, a query result cannot have empty nodes as leaf nodes.

A result tree can be of unrestricted size. Given a result tree R, size(R) denotes

the number of nodes in R. To constraint the number of results, it is common to

restrict the size of the result tree. This is a meaningful constraint since results which

bring the keywords closer are commonly assumed to be more relevant [42, 59, 31]. It

is also required for performance reasons since the number of results can be very large.

Other constraints can also be used for performance and/or results relevance reasons.

3.2 A Canonical Form for Result Trees

In this section, we leverage results obtained in the field of tree pattern mining to define

a canonical form for result trees and to check whether a result tree is in canonical

form.

Our algorithm for computing query answers constructs query result trees

starting from a root node. Therefore, query results are generated as rooted trees.

In the rest of the discussion in this section we focus on rooted trees.

Unordered and Ordered Trees. Rooted result trees are unordered trees.

However, the trees that are generated by all the algorithms are ordered since a

26

e4 e4

e2

L1

e3

e4
L1

{e} {d}

{b,c}L5

L3

e8

e9

{}

{a}

{}

e1

L6
L4

L4

{}

e2

L1

e3

e4
L1

{e}{d}

{b,c}L5

L3

e8

e9

{}

{a}

{}
e1

L6

L4

L4
{}

e2

L1

e3

L1

{e}
{d}

{b,c}
L5

L3

e8

e9

{}

{a}

{}

e1L6

L4

L4

{}

L1

e3

{a}

e2

{d}

e1

L4

L4

{}

{e}

{b,c}L5

e8

e9
{}
L6

L3 {}

L1

R3R1 R4R2

Figure 3.2 Four isomorphic result trees.

representation order is imposed to the nodes. Two labeled rooted trees R and S

are isomorphic to each other if there is a one-to-one mapping from the nodes of R

to the nodes of S that preserves node labels, edge labels, adjacency and the roots.

An automorphism is an isomorphism that maps a tree to the same unordered tree.

Figure 3.2 shows four isomorphic results trees R1, R2, R3 and R4 which form one

automorphic group.

To reduce the generation of isomorphic trees (which are redundant since they

represent the same unordered tree) and produce only one tree for every automorphic

group we use a canonical form for result trees. In the rest of this section, we consider

ordered trees. Given a node n in a tree R, let root(R) denote the root of R and

subtree(n) denote the subtree of R rooted at n.

An Order for Labels and Trees. We first define an order for trees. Let ≤ be

a linear order on the label set label(V). Abusing notation, we also denote as ≤ an

order on trees defined recursively as follows:

Definition 3.3 (Tree Order) Given two trees R and S, let r = root(R) and s =

root(S), respectively. Let also r1, . . . , rm and s1, . . . , sn denote the list of the children

of r and s, respectively. Then, R ≤ S iff either:

1. label(r) ≤ label(s), or

2. label(r) = label(s) and either:

(i) m ≥ n and ∀i ∈ [1, n], subtree(ri) = subtree(si), or

27

(ii) ∃k ∈ [1,min(m,n)] such that: ∀i ∈ [1, k − 1], subtree(ri) = subtree(si) and

subtree(rk) ≤ subtree(sk).

The tree order above is essentially the same as the one introduced in [67, 88].

In the context of result trees, in order to take into account the labels of the edges

in result trees, we view a labeled edge as two unlabeled edges incident to a node

which has the label of the edge. Further, in order to take into account the keyword

sets of the result tree nodes, we assume that the label of a result tree node n is the

concatenation of the label label(n) and of the keywords in keywords(n) (if any) in

alphabetical order. For instance, for the result trees of Figure 3.2, one can see that

R1 ≤ R2 ≤ R3 ≤ R4.

A Tree canonical Form. We can define now the canonical form adopted for a

tree [67, 22, 88].

Definition 3.4 (Tree Canonical Form) A tree R is in canonical form if for every

tree S which is automorphic to R, R ≤ S .

As an example, consider the four trees of Figure 3.2. These are all the

automorphic representations for the corresponding unordered tree. As R ≤ S, for

every tree S in the automorphic group, R is in canonical form.

To check whether a tree is in canonical form, the following proposition [67, 88]

can be used.

Proposition 1 A tree R is in canonical form iff for every node n in R, subtee(ni) ≤

subtree(ni+1), i ∈ [1,m− 1], where n1, . . . , nm is the ordered list of children of n.

Therefore, we can check whether a tree is in canonical form if we can decide

about the order of a given pair of trees.

Exploiting a String Representation for Trees. Checking the order of a pair of

trees can be done efficiently leveraging a string representation for trees. One such

28

representation can be produced through a depth-first preorder traversal of the tree

by adding the node label to the string at the first encounter and by adding a special

symbol, say $, whenever we backtrack from a child to a parent node [87, 22]. For

instance, the string representation for the tree of Figure 3.1(c) (ignoring, for simplicity,

edge labels and the node keyword sets) is L6L3$L8L5L6$$$. Let’s extend the linear

order ≤ defined on labels to include $ and let’s assume that every label precedes $ in

this order.

The string representation for the trees is useful for checking the order of trees

because of the following proposition [67, 88]:

Proposition 2 Given two trees R and S, R ≤ S iff string(R) ≤ string(S).

Therefore, well known string comparison algorithms and implementations can

be employed to efficiently check the order of two trees.

3.3 The Algorithm

Our algorithm for computing keyword query answers takes as input a data graph

G, a keyword query Q and a size threshold T for the query results. It starts by

choosing randomly a keyword k from the input keyword query Q and by constructing

intermediate result trees with a single node. For every node labeled by Ln in the data

graph which contains k in its term set one node n labeled by Ln is constructed. Node

n is associated with keyword sets and the resulting single node intermediate result

trees are pushed into a stack. The keyword sets keywords(n) associated with n: (a)

contain keyword k and (b) are subsets of the set of terms(Ln) of label Ln in the data

graph, and of the keyword query Q. The query results are constructed by expanding

these initial single node intermediate results.

Unconstrained expansion. In the absence of any expansion constraint, the

expansion process can be outlined as follows: a node n labeled by Ln is expanded

29

by adding an adjacent node m labeled by Lm if the node labeled by Lm in the data

graph is adjacent to the node labeled by Ln. The set of keywords of m is selected from

the set of terms of the node Lm of the data graph which: (a) appear in the keyword

query and (b) do not appear in the keyword set of other nodes of the intermediate

result tree. The set of keywords of a node can also be empty. All the nodes in

the intermediate result can be considered for expansion and a node is expanded in

all possible ways. Intermediate results which contain all the keywords of Q in the

keyword sets of their nodes are characterized as final results and are returned to the

user if they do not have empty leaf nodes (minimality condition of a query result).

If they do not satisfy the minimality condition, they are discarded. Intermediate

results whose size is equal to the given size limit and are not final are not expanded

anymore and they are discarded. Note that this process will generate duplicate results

(isomorphic ordered versions of unordered trees). Hence, the results will have to be

compared for isomorphism with previous results before returned to the user if an

answer without duplicates is sought.

The expansion process can be constrained without missing any results. We show

below how this can be achieved.

Considering only intermediate result trees in canonical form. For the result

trees, it is sufficient to have result trees in canonical form (the other isomorphic

versions of the result are redundant). It turns out that intermediate results which are

not in canonical form do not need to be considered in the expansion process. This is

shown by the next proposition.

Proposition 3 All the results of a query on a data graph can be computed by

considering, during the expansion process, only intermediate result trees in canonical

form.

30

Proof: For every result tree, only the ordered result tree from its automorphic group

which is canonical needs to be returned to the user. Based on the discussion of

Section 3.2 (Propositions 1 and 2), one can see that the prefix of any result tree in

canonical form is also canonical. Hence, any canonical result tree can be produced

by a sequence of expansions of an initial one-node intermediate result tree where all

the intermediate result trees are canonical.

Therefore, intermediate result trees which are not in canonical form can be

discarded. Clearly, eliminating non-canonical intermediate result trees from the

search space allows a significant reduction of the number of intermediate results

generated. Note that the expansion of intermediate result trees can generate trees

which are not in canonical form (even if the initial tree was in canonical form). We

have presented in the previous section a technique for efficiently checking result trees

for canonicity. We will show below how this technique can be further improved.

Empty node expansion. It can be further observed that if an intermediate result

tree has an empty leaf node, it can be chosen for expansion without missing any

results. This is shown by the next proposition.

Proposition 4 All the results of a query Q on a data graph G can be computed by

expanding only empty leaf nodes in the result trees under construction (if empty leaf

nodes exist).

Proof: Based on the minimality condition of Definition 3.1 a result tree cannot

have empty leaf nodes. Therefore, only by expanding these nodes a result can be

constructed.

Following this remark, if an empty node exists in an intermediate result, it

should be chosen for expansion.

Rightmost path node expansion. By default, in the absence of an empty leaf

node, all the nodes of intermediate result tree need to be expanded to guarantee the

31

computation of all the results. The next proposition shows that many intermediate

result tree nodes can be excluded from expansion without affecting the completeness

of the result set.

Proposition 5 All the results of a query Q on a data graph G can be computed by

expanding only the nodes on the rightmost path of the result trees under construction.

Proof: Certainly, any result tree can be constructed by adding nodes to the root

node in an order that corresponds to a depth first preorder traversal of the tree. This

sequence of expansions expands only nodes on the rightmost path of result tree under

construction.

If this expansion strategy is followed, in most cases, most of the intermediate

result tree nodes (those which are not on the rightmost path) are not expanded.

Checking the canonicity of result trees incrementally. In order to check

whether a tree is in canonical form we can use Proposition 1 (and also Proposition

2 to perform the comparisons of trees efficiently). However, as mentioned above:

(a) only trees which are in canonical form are expanded, and (b) only nodes in the

rightmost path of a intermediate result tree are expanded. These remarks allow for

an incremental checking of the canonicity of the newly generated intermediate result

tree: only the trees rooted at the rightmost child of the expanded node n and the trees

rooted at the rightmost child nodes of the ancestor nodes of n need to be compared

to the tree rooted at their immediate left sibling. No other comparisons are needed.

Correctness of the Algorithm. The pseudo code for our algorithm is shown in

Algorithm 1. This algorithm integrates in the unconstrained expansion described in

the beginning of this section the three expansion constraints described subsequently.

The algorithm is named CFS (for ‘Canonical Form-based Search’).

Theorem 1 Algorithm CFS correctly computes all the results of a keyword query Q

on a data graph G given a size threshold T .

32

The correctness of the theorem results from the correctness of the expansion

constraining Propositions 6, 7 and 8 and the fact that in the absence of expansion

constraints the algorithm exhaustively expands all intermediate results.

Checking the canonicity of an intermediate result tree R can be done in O(N),

where n is the number of nodes of R. Let m be the number of nodes in the data

graph G that contain the initially chosen keyword k in their term set, and d be

the average degree of the nodes in G (number of incident edges). Since Algorithm

CFS expands nodes in all possible ways through the incident edges of a node, its

worst case complexity is O(m(T − 1)!dT−1), where T is the size threshold. The worst

case complexity is of little help here: in practice, Algorithm CFS takes advantage

of the canonical form and the result expansion constraints to substantially reduce

the number of intermediate results and this feature allows for superior performance

compared to its competitors.

3.4 Experimental Evaluation

We run experiments to evaluate the efficiency, the memory consumption and the

scalability of our algorithm. We also compared with the techniques employed for

computing all the results by two previous keyword search algorithms on graphs

derived from relational databases. As mentioned in Chapter 2, these algorithms

compute similar types of results on the data graphs. To allow for a fair comparison,

given a keyword query, we generate a data graph to evaluate the query the way it is

generated in the context of the previous algorithms from relational schema graphs.

Our implementation was coded in Java. All the experiments reported here were

performed on a workstation having an Intel(R) Core(TM) i7-7500 CPU @ 2.70GHz

processor with 8GB memory.

Datasets. We used a benchmark and two relational databases to generate data

graphs: the TPC-H benchmark database and the IMDB database. The TPC-H

33

Algorithm 1 CFS

Input: data graph G, query Q, size limit T

Output: query results of Q on G of size up to T

1: E := ∅ /* E is a queue of query results */

2: Chose a keyword k in Q

3: for every node n in G s.t. k ∈ terms(n) do

4: for every set K ∈ P(terms(n) ∩Q) such that k ∈ K do

5: Construct a single-node result R labeled by label(n)

6: keywords(R) = K

7: enqueue(R,E)

8: while E 6= ∅ do

9: R := dequeue(E)

10: if R has an empty leaf node q then

11: ExpandList := {q}
12: else

13: ExpandList := { nodes in the rightmost path of R }
14: for every node l ∈ ExpandList do

15: for every node m adjacent to the node labeled by label(l) in G do

16: D := (Q ∩ terms(m))− keywords(R)

17: for every set K ∈ P(D) do

18: Add a node p with label(p) = label(m) and keywords(p) = K and an

edge (l, p) to R.

19: if R is in canonical form and satisfies the structural constraints then

20: if keywords(R) = Q then

21: output R

22: else

23: if size(R) < T then

24: enqueue(R,E)

benchmark is a decision support database. The data are chosen to have broad industry

wide relevance. The schema of the dataset1 used here comprises eight relation schemas

1http://www.tpc.org/tpch/

34

Table 3.1 Queries on the (a) IMDB and (b) TPC-H Database

(a)

Keywords
Q1 cuadro, Alex
Q2 cuadro, Alex, Rafael
Q3 cuadro, Alex, Rafael, 173
Q4 Musical, Anne, Bauman
Q5 17485, Anne, Bauman, David
Q6 Aabel, Steve, 352881, crime, Kodanda
Q7 Brown, grandfather, Tony, Musical
Q8 Anne, Adams, Rafael, Musical,

cuadro, 1664
Q9 Halloween, 2000, Musical, Comedy
Q10 2012, David, Musical, Grandfather,

Alex, Tony

(b)

Keywords
Q1 Supplier, clerk
Q2 carefully, express
Q3 truck, regular, customer
Q4 Morocco, packages, return
Q5 foxes, Brand, small
Q6 return, spring, yellow
Q7 Indian, Burnished, India, Brand
Q8 Manufacturer#3, Manufacturer#4,

large
Q9 special, France, Brand#22, India
Q10 yellow, green, Brand#23, ironic,

clerk

and eight foreign keys. Its tables contain 866,602 tuples. The IMDB database is

a repository of films, actors, reviews and related information. The schema of the

dataset2 used here comprises seven relation schemas and six foreign keys. Its tables

contain 5,694,919 tuples. The data graphs used in the experiments are generated

separately for each keyword query as explained below in the paragraph discussing the

queries.

Queries. We generated different queries to evaluate on the datasets and we report on

10 of them for each dataset. They are displayed in Table 3.1. The queries have from

one to six keywords. Given a dataset and a keyword query, the data graph to evaluate

the query is an extension of the schema graph of the relational database generated as

follows: for every relation R in the schema of the relational database, additional nodes

are added to the schema graph for every combination of query keywords appearing

in a tuple of relation R which does not have other query keywords. Edges are added

between these nodes mirroring the key-foreign key edges between the corresponding

relations in the database schema.

2https://relational.fit.cvut.cz/dataset/IMDb

35

Statistics about the queries including the total number of keyword instances in the

generated graphs (#Ins) and the number of results (#Results) are provided in Tables 3.2.

The number of nodes and edges of the generated (extended schema) data graphs for every

query are also shown in these tables in the columns ‘#GNodes’ and #GEdges, respectively.

Algorithms in comparison. We compared our algorithm with the algorithm designed for

the DISCOV ER system [42] (adopted also in other systems [41, 55]). We also compared

with the meaningful keyword search algorithm used in [45]. We refer to them as DISC

and MEAN, respectively. Both of them search on graphs which are extended relational

schemas constructed, for every query, as described above in the paragraph “Queries”. The

DISCOVER approach imposes some additional constraints on the query results which are

ignored here to secure the computation of similar results by all three algorithms. Our

interest on these algorithms in on the way they guarantee result sets without duplicates

(that is, without isomorphic ordered result trees). Different approaches are followed by

these two algorithms. Algorithm DISC computes the results and removes duplicate results

at the end with a post-processing step to guarantee that there are not duplicates. Algorithm

MEAN is similar to DISC but excludes duplicates by comparing intermediate results, while

they are generated, with previously generated intermediate results. For the needs of the

Table 3.2 Statistics for the Queries on the (a) IMDB and (b) TPC-H Database

(a)

#GNodes #GEdges #Ins #Results
Q1 13 19 6 89
Q2 17 27 10 883
Q3 17 27 10 6695
Q4 20 30 13 1238
Q5 27 43 20 9147
Q6 24 46 14 411
Q7 26 45 19 8802
Q8 32 55 25 27837
Q9 31 54 24 12086
Q10 34 59 27 52515

(b)

#GNodes #GEdges #Ins #Results
Q1 10 12 2 14
Q2 30 54 22 618
Q3 20 32 12 267
Q4 19 31 11 45
Q5 18 26 10 47
Q6 12 13 4 19
Q7 13 15 5 12
Q8 29 51 21 1
Q9 30 56 22 2337
Q10 35 58 27 408

36

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07

Q₁ Q₂ Q₃ Q₄ Q₅ Q₆ Q₇ Q₈ Q₉ Q₁₀

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Queries

MEAN DISC CFS

(a)

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07

Q₁ Q₂ Q₃ Q₄ Q₅ Q₆ Q₇ Q₈ Q₉ Q₁₀

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Queries

MEAN DISC CFS

(b)

Figure 3.3 Execution time for the queries on the (a) IMDB, and (b) TPC-H database.

comparison, it assigns an ID to every generated tree based on tree isomorphism during the

execution of the algorithm. The ID of a tree is compared with the IDs of the trees that are

generated so far and the current tree is accepted only if it has not been generated previously.

Algorithm MEAN computes top-k results. Therefore, for the needs of the comparison we

assume that k is larger than the number of the query results so that all results are computed.

We refer to our algorithm as CFS.

Experiments on the execution time. In our first experiment we measured the efficiency

of our algorithm in terms of execution time and we compared these numbers with those

achieved by DISC and MEAN . The size limit was set to 6 edges. Figure 3.3 shows the

execution time of the algorithms on the IMDB and the TPC-H datasets, respectively. Note

that the scale of the y-axis is logarithmic.

One can see that Algorithm CFS is much faster than both DISC and MEAN.

Algorithm CFS outperforms DISC by at least one order of magnitude in all cases.

Algorithm MEAN is much slower than the other two. It is two orders of magnitude slower

than CFS in most cases and in several cases slower by more than three orders of magnitude.

Note than in several cases, MEAN could not finish within a reasonable amount of time and

37

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

Q₁ Q₂ Q₃ Q₄ Q₅ Q₆ Q₇ Q₈ Q₉ Q₁₀

In
te

rm
ed

ia
te

 R
es

u
lt

s

Queries

MEAN DISC CFS

(a)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

Q₁ Q₂ Q₃ Q₄ Q₅ Q₆ Q₇ Q₈ Q₉ Q₁₀

In
te

rm
ed

ia
te

 R
es

u
lt

s

Queries

MEAN DISC CFS

(b)

Figure 3.4 Number of intermediate results produced for the queries on (a) the IMDB
database, and (b) the TPC-H database.

therefore, no value is displayed in the plots for the corresponding queries (queries Q8, Q9

and Q10 on IMDB).

Experiments on the number of intermediate results. In this experiment we measured

the performance of the algorithms in terms of the number of intermediate results generated.

Figure 3.4 shows the number of intermediate results produced on the IMDB and TPC-H

databases, respectively. The intermediate results are the partial or complete result trees

generated by the algorithms. Algorithm DISC pushes all the intermediate results into the

queue maintained by the algorithm as long as they satisfy the size constraint. Algorithm

MEAN pushes intermediate results into the queue if they satisfy the size constraint and

no isomorphic intermediate result is found in the queue. Finally, algorithm CFS pushes

intermediate results into the queue if they are in canonical form and satisfy the size

restriction.

As one can see, algorithm CFS produces the smallest and DISC the largest number of

intermediate results in all cases on both datasets. Algorithm DISC produces at least one and

in most cases two orders of magnitude more intermediate results than CFS. The number

of intermediate results produced by MEAN falls between the numbers produced by the

38

other two algorithms. This is expected since DISC does not filter intermediate results and

eliminates duplicate results only at the end through a post-processing step. MEAN filters

intermediate results by comparing with other intermediate results stored in the queue while

CFS filters intermediate results by producing only trees in canonical form. However, DISC

and MEAN generate result trees by expanding all the nodes of a given intermediate result

tree while CFS expands preferably an empty node and nodes in the rightmost path of an

intermediate result tree. The sophisticated intermediate result expansion method of CFS

and its intermediate result pruning technique based on canonical form explain the superior

performance of CFS.

We can also observe that for a given algorithm, the execution time and the number

of intermediate results are very closely correlated metrics. However, the number of

intermediate results does not determine the execution time among different algorithms.

Algorithm CFS produces less intermediate results than DISC and it is also faster. On the

other hand, MEAN produces less intermediate results than DISC and it is much slower.

The reason is that MEAN has to compare every qualified intermediate result with all the

intermediate results currently stored in the queue. As the next experiment shows, there

can be many intermediate results in the queue and this comparison can take a lot of time.

This explains the inferior time performance of MEAN compared to DISC.

Experiments on memory consumption. We also measured the memory consumption

of the three algorithms in terms of the maximum number of intermediate results put in the

queue. Figure 3.5 shows the measured values. In order to minimize the memory footprint,

in every algorithm, every occurrence of the query keyword selected to initiate the algorithm

is added to the queue as a single node intermediate result only after all the intermediate

39

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

Q₁ Q₂ Q₃ Q₄ Q₅ Q₆ Q₇ Q₈ Q₉ Q₁₀

M
ax

q
u

u
e

Si
ze

Queries

MEAN DISC CFS

(a)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Q₁ Q₂ Q₃ Q₄ Q₅ Q₆ Q₇ Q₈ Q₉ Q₁₀

M
ax

q
u

u
e

Si
ze

Queries

MEAN DISC CFS

(b)

Figure 3.5 Memory consumption for the queries on the (a) IMDB and (b) TPC-H database.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

2 keywords 3 keywords 4 keywords 5 keywords

Ex
ec

u
ti

o
n

 T
im

e(
m

s)

MEAN DISC CFS

(a)

DISC MEAN

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

10 15 20 25

Ex
ec

u
ti

o
n

 T
im

e(
m

s)

MEAN DISC CFS

(b)

Figure 3.6 Average execution time vs. number of keywords and (b) Average execution
time vs. number of keyword instances.

results from the previous single node intermediate result have been processed and the queue

is emptied.

As we can see DISC consumes one to two orders of magnitude more memory on the

average than CFS. The difference between MEAN and CFS is not so pronounced. It is on

the average less than one order of magnitude in favor of CFS. This difference is not expected

since MEAN compares every produced intermediate result against all stored intermediate

results and discards it if is found there. Nevertheless, MEAN expands intermediate results

using all the nodes in the result tree as opposed to CFS which restricts this expansion to

40

the empty node or the nodes in the rightmost path of the tree. This is the reason of the

superior performance of CFS over MEAN.

Scalability Experiments. We also measured how the execution time evolves when

the number of query keywords and the number of keyword instances increases. For this

experiments we used a synthetic data set whose schema is similar to the IMDB data set.

We generated ten queries each with 2, 3, 4 and 5 keywords and measured the average

execution time when the number of keywords in the query increases. The results are shown

in Figure 3.6a. We also considered ten five-keyword queries and we increased the total

number of instances of each query from 10 to 25. The measured average execution time

when the total number of instance increases is shown in Figure 3.6b. It can be observed

that overall, CFS scales smoother than the other two approaches as it avoids the expensive

comparisons for removing isomorphic intermediate and final results.

3.5 Conclusion

We have addressed the problem of efficiently evaluating keyword queries on graph data.

We observed that existing algorithms generate numerous intermediate results and this

negatively affects their execution time and memory consumption. We defined a canonical

form for result trees and we showed how it can checked incrementally and efficiently.

We devised rules that prune the intermediate result search space without sacrificing

completeness. These rules were integrated in a query evaluation algorithm. Our

experimental results show that our approach largely outperforms previous ones in terms of

execution time and memory consumption and scales smoothly when the number of keywords

and the number of keyword instances increases.

41

CHAPTER 4

LEVERAGING SCHEMA INFORMATION FOR SEMANTIC KEYWORD

SEARCH OVER STRUCTURED DATABASES

A significant amount of the world’s data is stored or exported in a form that exhibits some

kind of (loose or tight) structure. For instance, a large part of corporate data resides in

relational databases, popular NoSQL databases are organized as key-value stores, publicly

available datasets can be downloaded in XML or JSON format, DBPedia is exported in

RDF format, and social media connections are represented as graphs.

In recent years, a lot of researcher has been done on keyword search over structured

data. There are different reasons for this strong interest of the database and IR communities

on this subject. First, the users can retrieve information without mastering a complex

structured query language (e.g., SQL, XQuery [15], SPARQL [68]). We call this benefit

simple user emancipation. Second, they can issue queries against the data without having

full or even partial knowledge of the structure (schema) of the data source. We call this

second benefit data structure independence. Third, they can query different data sources

in an integrated way: the same query can be issued against and extract information from

multiple data sources which might structure their data differently. This is particularly

important in web and big data environments where the data sources do not necessarily have

the same structure/schema. We refer to this third benefit as data structure independence.

The problems. There is a price to pay for the simplicity, convenience and flexibility

of keyword search. Keyword queries are imprecise and ambiguous in specifying the query

answer. They lack expressive power compared to structured query languages. Consequently,

42

they generate a very large number of candidate results. This is a typical problem in IR.

However, it is exacerbated in the context of structured data. Indeed, in this context the

result to a keyword query is not a whole document but a data fragment (e.g., a subtree, or

a subgraph) and this exponentially increases the number of results. This weakness incurs

two major problems.

The first problem is that the correct identification of the relevant results among a

plethora of candidates becomes a very difficult task. Indeed, it is practically impossible for

a search system to “guess” the user intent from a keyword query and the structure of the

data source. Although previous approaches are intuitively reasonable, they are sufficiently

ad-hoc and are frequently violated in practice resulting in low-quality results. We refer to

this problem as a query answer quality problem.

The second problem is that existing algorithms for keyword search are of high

complexity and cannot scale satisfactorily when the number of keywords and the size of the

input dataset increase. We refer to this problem as the performance scalability problem.

Note that top-k processing algorithms alone [41, 40, 61, 78, 38, 49, 83, 18, 35, 65, 31] do

not solve the performance scalability problem as they still generate, in most cases, a large

number of results (before identifying the top-k) or rely on specialized indexes which cannot

be assumed to be available in practice.

One way to address these problems by bridging the gap between structured query

languages and keyword search on datasets with structure is exploratory search [53, 54].

Though, this process requires interaction with the user.

43

These problems, which are inherent to keyword search have hindered the widespread

use of keyword queries over data with structure. Without additional information, a flat

keyword search cannot efficiently provide accurate answers on structured databases.

Contribution. In this chapter, we consider as a paradigm for structured databases the

relational model. We focus on addressing the problems mentioned above in order to

improve the efficiency and quality of keyword search on relational databases. We propose

to exploit schema information as semantic information in order to improve the quality

and efficiency of keyword search on relational databases. A novelty of our approach is

that contrary to traditional approaches, query results include schema information and can

involve relationships between schema components, between tuples of the same or different

relations and between schema components and tuples. We cluster the results of a keyword

query using the concept of “query pattern graph“. Query pattern graphs summarize a set

of query results which display the same structural and semantic information. They involve

schema and/or data components and represent a possible structured interpretation of the

flat keyword query on the structured database. The use of query pattern graphs scales

down the number of query results we have to deal with in the first place. As they can be

expressed as a structured query (e.g., an SQL query), all the machinery and optimization

techniques developed for relational query engines can be used to efficiently compute the

query results that a query pattern graph summarizes. We develop rules for scoring (and

therefore, ranking) query pattern graphs and we further develop techniques for efficiently

evaluating top-k query pattern graphs.

The main contributions are the following:

• We exploit semantic information to define the results of keyword queries on relational

databases as graphs that involve both schema and data components and relationships

44

between them. Using semantic information allows us to address the query answer

quality problem.

• We introduce query pattern graphs which cluster together query results with the same

structural and semantic characteristics. We focus on computing the query pattern

graphs of a query on a database which are much fewer than the results corresponding

to the matches of this query on the database.

• We provide rules for scoring the pattern graphs of a keyword query on a relational

database. The scoring exploits semantic information for assigning scores to the edges

of a query pattern graph and employs IR techniques for assigning scores to nodes.

• We design an efficient top-k algorithm for computing the pattern graphs of a

keyword query. Our algorithm uses a canonical form for pattern graphs to avoid

the computation of redundant intermediate results which are at the heart of the

performance scalability problem.

• We experimentally evaluated the effectiveness of our approach and the time performance,

memory consumption and scalability of our algorithm on two real datasets. The

experiments confirmed the quality of our answers and the feasibility of our system.

Outline. The rest of the chapter is structured as follows. In the next section, we present

the data and query model adopted and discuss the scoring of query pattern graphs. In

Section 4.2, we outline our top-k evaluation strategy of keyword queries. In Section 4.3, we

present and analyze our effectiveness and efficiency experimental results.

45

4.1 Semantic Search

We present now our approach for semantic keyword search by introducing query pattern

graphs and describe our techniques for ranking query pattern graphs.

4.1.1 Data Model, Queries and Answers

We assume that a relational database D with schema S is given. The schema S can comprise

key-foreign key relationships from a set of attributes of a relation to the primary key of

another or the same relation thus forming a graph where the nodes are the relation schemas

and the edges are the key-foreign key relationships. A keyword query on D is a set of

keywords. The keywords can match attribute values in the tuples of the relation instances

or schema elements (relation names and/or attribute names).

Figure 4.1 shows the schema graph of a simplified IMDB database that we use as

an example. The nodes of the schema graph are annotated with possible matches of the

keywords of the query Q = {movie, Pompeii, legend, actor, name}. For instance, we can

see that for the node Movie, the keywords of Q can match the relation name “Movie”, the

attribute “name”, the value “Pompei” of attribute Name in a tuple and the value “Legend”

of attribute Name in another tuple. Such an annotated schema graph can be used for

computing the query pattern graphs of query Q on the database D.

Query pattern graphs. In order to compute the results of a keyword query, we use the

concept of query pattern graph defined below.

Definition 4.1 A query pattern graph of a keyword query Q is a connected node and edge

labeled undirected graph Gq, such that:

(a) The nodes of Gq are partitioned into two types of nodes: schema nodes and tuple

nodes. Schema nodes are labeled by a relation name and schema. Tuple nodes are

46

MOVIE
Id,Name,Year,Rank

MOVIE,
Name,

(Name,Pompeii),
(Name,Legend)

MOVIE_DIRECTOR
Movie_Id,Director_Id

MOVIE

ROLE
Actor_Id,Movie_Id,role

MOVIE_GENRE
Movie_Id,Genre

MOVIE

ACTOR
Id,First_Name,Last_Name,Gender

ACTOR,
Name

DIRECTOR_GENRE
Director_Id,Genre,Prob

DIRECTOR
Id,First_Name,Last_Name

Name

MOVIE
Id,Name,Year,Rank

MOVIE,
Name,

(Name,Pompeii),
(Name,Legend)

MOVIE_DIRECTOR
Movie_Id,Director_Id

MOVIE

ROLE
Actor_Id,Movie_Id,role

MOVIE_GENRE
Movie_Id,Genre

MOVIE

ACTOR
Id,First_Name,Last_Name,Gender

ACTOR,
Name

DIRECTOR_GENRE
Director_Id,Genre,Prob

DIRECTOR
Id,First_Name,Last_Name

Name

Figure 4.1 The schema graph of the IMDB database annotated with the query Q = {movie,
Pompeii, legend, actor, name}.

labeled by a relation name and a tuple of that relation which might be full, partially

full or empty. The non-empty fields are filled by keywords. The empty fields act as

variables to be matched against values in the relation instance.

(b) There are two types of edges: inclusion edges and foreign key edges. Inclusion edges

are between a schema node and a tuple node of the same relation. Inclusion edges are

labeled by the symbol ∈. There is an inclusion edge between every schema node and a

tuple node of the same relation. Foreign key edges are between two tuple nodes of the

same or different relations. If the tuples come from different relations R and S, there

should be a primary key-foreign key relationship between R and S in the schema graph.

If the tuples come from the same relation R, there should be a recursive foreign key

on R in the schema graph. A foreign key edge is labeled by the corresponding primary

and foreign keys of the involved relations.

(c) For every keyword k in Q there is at least one term in Gq (relation name, attribute

name, or attribute value) which matches k. For every keyword k in Q exactly one

matching term in Gq is marked. Marked terms are shown in bold or underlined in the

figures.

47

MOVIE
Id,Name,Year,Rank

MOVIE
Name:Pompeii

MOVIE
Name:Legend

∈

∈
ROLES

ROLES

ACTOR

ACTOR
Id,First name,Last name,gender

∈

MOVIE
Id,Name,Year,Rank

MOVIE
Name:Pompeii

MOVIE
Name:Legend

∈

∈
ROLES

MOVIE_DIRECTORS

ACTOR

∈

ACTOR
Id,First name,Last name,gender

ACTOR
Id,First name,Last name,gender

DIRECTORS
Id,First name,Last name

DIRECTORS
Id,First name,Last name

DIRECTORS

∈

Figure 4.2 A pattern graph for the query Q = {movie, Pompeii, legend, actor, name} on
the IMBD database.

(d) Schema nodes appear in Gq only if they have at least one marked term. A schema

node for a relation can appear only once in Gq. If the schema nodes and their incident

edges are removed from a pattern graph, the resulting graph is a forest. A tuple node

without a marked term is called empty tuple node. Any external node in the trees

of the forest that is not connected to a schema node in Gq and any single-node tree

should be non-empty (minimality condition).

We adopt AND semantics for keyword queries. The presence of every keyword of Q

in a pattern graph guarantees the completeness of the results.

Figure 4.2 shows a pattern graph for the query Q = {movie, Pompeii, legend, actor, name}

on an IMDB database whose annotated schema is shown in Figure 4.1. A query pattern

graph represents an interpretation for the flat keyword query. For instance, this query

pattern asks for the names of authors who played some roles in the movies “Pompei” and

“Legend”. Note that it is possible that other terms in a query pattern graph besides the

marked terms can match a keyword. For example, keyword name in the pattern graph of

Figure 4.2 matches an attribute of relation Actor but it matches equally well the attribute

Name in relation Movie. The marked term indicates the interpretation this query keyword

has in this query pattern graph.

48

MOVIE
Id, Name, Year, Rank

MOVIE
Id:207

Name:Pompeii
Year:2014

Rank:7

MOVIE
Id:442

Name:Legend
Year:2015
Rank:null

∈

∈

ROLE
Actor_Id:565065

Moive_Id:207
Role:Cassia

ROLE
Actor_Id:565065

Movie_Id:442
Role:Frances

Shea

ACTOR
Id:565065

First_Name:Emily
Last_Name:Browning

Gender:D

ACTOR
Id, First_Name, Last_Name,

gender

∈

Figure 4.3 A result graph for the query {movie, Pompeii, legend, actor, name}.

A query can have multiple pattern graphs. SQL queries can be used to produce the

corresponding result graphs. All the machinery developed over the years for optimizing

SQL queries can be used for producing the results of patterns graphs when the data are

stored in a relational database. For instance, the result graph of Figure 4.3 can be produced

from the pattern graph of Figure 4.2. The pattern graphs of a query cluster the results of a

query. Our goal is to return to the user the pattern graphs instead of the individual results

as there are far fewer pattern graphs than individual results.

Traditional keyword approaches on relational databases cannot handle effectively

queries which contain keywords matching schema elements and keywords matching data

elements. The approach in [12] aims at viewing keywords which match schema elements

as role descriptions of other elements but assumes that the instance of the database is

not available and only guesses keyword-to-data matches. In our approach, we capture

associations of value keyword matches with relation name and attribute keyword matches

in a query pattern graph with inclusion edges.

Our goal is to design scoring functions to rank the pattern graphs instead of ranking

the individual results. A scoring function will select the most promising among them.

49

4.1.2 Query Pattern Graph Ranking

In order to rank the query pattern graphs of a query on a database, we use semantics-based

techniques to assign scores to the connections between the nodes that contain matching

keywords. We take into account both the structure and the nature of these connections

(e.g., whether a keyword matching an attribute in a schema node is connected to a keyword

matching a value of this attribute in a tuple node, or whether a keyword matching a relation

name in a schema node is connected to an empty tuple node). We refer to this type of

scoring as edge scoring. For the ranking, we also assign a score to a pattern graph, by

considering its nodes. We refer to this type of scoring as node scoring. For this process we

employ Information Retrieval (IR) techniques [9] adapted to the relational model. IR-based

techniques adapted in different ways to the relational model have been used frequently in the

past for ranking the results of keywords on relational databases [41, 55, 40, 61, 50]. We argue

that this is not sufficient for effective keyword search on relational databases and, although

we leverage also IR style techniques, we focus on exploiting semantic information as this is

expressed by the connections between different relational schema and data components in

query pattern graphs. The pattern graphs of a query are ranked based on their edge score.

If there is a tie, the node score is used to rank the pattern graphs with the same edge scores.

Edge Scoring In order to compute the edge score ES(Gq) of the pattern graph Gq of a

query Q we proceed by gradually removing schema nodes and the incident inclusion edges

from Gq and by merging tuple nodes and foreign key edges. The process starts by removing

schema nodes and terminates when one node (or a collection of disconnected nodes) is

left. At every step (removal of a schema node) a score is computed which is added to the

edge score. At the beginning, the edge score ES(Gq) of Gq is initialized to 0. Some steps

50

might add a zero score to the edge score but entail the computation of some parameters

which ultimately affect the overall edge score. At every moment in the process, a number

of nodes in the pattern graph are characterized as keyword nodes. All the nodes in the

query pattern graph that contain a marked term (matched keyword) are keyword nodes.

Some empty tuple nodes become (virtual) keyword nodes in the process (specifically those

that are neighbors of a schema node). The different phases of the edge scoring process are

described below.

Phase 1: Removal of schema nodes. In this phase all the schema nodes and their

incident inclusion edges are removed from the query pattern graph. Note that if a schema

node is present in a query pattern graph, it has at least one marked term (matching

keyword). As mentioned in Definition 4.1, the graph resulting from the removal of schema

nodes is a forest which contains only tuple nodes.

Given a schema node s, with neighbouring non-empty tuple nodes t1, . . . , tn and

corresponding inclusion edges e1, . . . , en a score score(ti) is assigned to every tuple node ti

and a score score(ei) is assigned to every edge ei which are computed as follows: score(ti)

is equal to m−1 where m is the number of marked terms in ti. This score privileges pattern

graphs where multiple keywords of the query are matched to terms in the same tuple. The

value of score(ei) is the sum of the values of the parameter cm for every marked term m in

ti, where cm is determined by Table 4.1.

Note that the last case corresponds to the situation where the schema node s has a

marked term which is an attribute and the tuple node has a marked term which is a value

of a different attribute. The intuition behind the values of cm is that a connection between

a keyword which matches an attribute and a keyword that matches a value of this attribute

is very strong and gets the highest possible score. A connection between a keyword which

51

Table 4.1 Different Values of Parameter cm.

Condition for marked term m in schema node s and cm
tuple node ti

s has a marked term which is an attribute name and 1
m is a value for this attribute

s has a marked term which is a relation name 0.5

None of the above 0.2

matches a relation name and a keyword that matches a value of an attribute of this relation

is less strong. The connection between a keyword which matches an attribute of a relation

and a keyword that matches a value of another attribute of the same relation is weak but

not insignificant.

A score score(s) is also assigned to the schema node s which is equal to m− 1 where

m is the number of marked terms in s. This score again privileges pattern graphs where

multiple keywords of the query are matched to components (relation name and attributes)

of the same schema node.

For every schema node s in Gq with non-empty tuple nodes t1, . . . , tn and corre-

sponding inclusion edges e1, . . . , en, the sum

score(s) +
n∑
i=1

score(ti) +

n∑
i=1

score(ei) (4.1)

is added to the edge score ES(Gq) of Gq. If s does not have any non-empty tuple nodes,

only score(s) is added to ES(Gq).

Example 1 Consider the query pattern graph Gq of Figure 4.2. After the removal of the

non-empty tuple nodes MOVIE, only the two corresponding inclusion edges contribute to the

edge score of Gq by 0.5 each, and thus ES(Gq) = 1.

52

MOVIE
Name:Pompeii

MOVIE
Name:Legend

ROLES

ROLES

ACTOR

fACTOR=1

Figure 4.4 Pattern graph with schema node removed.

Given a schema node s, with neighbouring empty tuple nodes t′1, . . . , t
′
n no score is

assigned to the empty nodes because of the removal of s from Gq in this phase. Instead, all

the empty tuple nodes t′1, . . . , t
′
n become virtual keyword nodes and a factor fi, i = 1, . . . , n,

is associated with each one of them. Factor fi is equal to 1/m, where m is the number of

neighbouring (empty and non-empty) tuple nodes of the schema node s. This factor will be

used to adjust the score the connection of this keyword node to another keyword node gets

in the next phase of the edge scoring process. The empty tuple nodes are characterized as

virtual keyword nodes because, even though they do not have a keyword, they are assumed

to inherit the keyword of the neighboring schema node (which has at least one keyword)

after the removal of the latter from the query pattern graph.

Example 2 Consider again the query pattern graph Gq of Figure 4.2. After the removal

of the empty tuple nodes ACTOR, the edge score of Gq is not modified (ES(Gq) = 1). The

empty tuple node ACTOR becomes a virtual keyword node and the resulting tree is shown in

Figure 4.4. The keyword nodes (regular and virtual) in the figure are shown in gray. The

empty tuple node ACTOR is associated with the factor f = 1 since the ACTOR schema node

has only one neighbouring node.

Phase 2: Merging of keyword nodes. In this phase, we gradually merge keyword nodes

(both regular and virtual) with other neighbouring keyword nodes along with all the edges

in the path between them. After every merger, the edge score is increased accordingly.

53

MOVIE
Id,Name,Year,Rank

MOVIE
Name:Pompeii

MOVIE
Name:Legend

∈

∈
ROLES

ROLES

ACTOR

ACTOR
Id,First name,Last name,gender

∈

MOVIE
Id,Name,Year,Rank

MOVIE
Name:Pompeii

MOVIE
Name:Legend

∈

∈
ROLES

MOVIE_DIRECTORS

ACTOR

∈

ACTOR
Id,First name,Last name,gender

ACTOR
Id,First name,Last name,gender

DIRECTORS
Id,First name,Last name

DIRECTORS
Id,First name,Last name

DIRECTORS

∈

Figure 4.5 A pattern graph for the query Q = {movie, Pompeii, Legend, actor, name} on
the IMBD database.

We start by choosing a leaf node t (all leaf nodes are keyword nodes) with the smallest

distance from another keyword node t′. All the nodes in the path from t to t′ are collapsed

into node t and all their edges become incident to node t. The edge score ES(Gq) is

increased by 1/p, where p is the length of the path from t to t′ in term of number of edges.

If there are multiple edges t′ in the same distance from node t, one of them is randomly

chosen for merging. This process ends when there is only one node (or a set of disconnected

nodes) left.

Example 3 In our running example with the query pattern graph Gq of Figure 4.2, we can

chose the node MOVIE with the marked term Pompeii and merge it with the virtual keyword

node ACTOR which adds 1/2 to ES(Gq), and then chose the node MOVIE with the marked

term legend and merge it with the virtual keyword node ACTOR which also adds 1/2 to

ES(Gq). At that point the resulting graph has only one node ACTOR and the final edge score

ES(Gq) = 3.

Example 4 As another example, consider the query pattern graph G′q of Figure 4.5.

This is another pattern graph for the same keyword query Q = {movie, Pompeii,

legend, actor, name} on the schema graph of Figure 4.1 which produced the pattern graph

of Figure 4.2. After the two phases of the edge scoring process, one can see that the edge

54

score of G′q, ES(G′q) = 2. This score is lower than the score of the query pattern graph Gq

of Figure 4.2 and, therefore, G′q will be ranked below Gq by our system.

Node Scoring Several query pattern graphs may get the same edge score. To distinguish

between these ties, we use IR-style scoring techniques to assign a score to pattern graphs.

As this type of scoring assigns a score to the keywords which are associated with nodes,

we call this type of scoring node scoring. IR systems assume a collection of documents

and estimate the relevance of a document to a keyword query by assigning a score. An

extensively used formalization for modelling queries and documents is the vector space

model wherein documents and queries are represented by a vector of terms. The term space

is defined by all the terms in the document collection (or at least those that can be of interest

to a specific application) and each term is a dimension in this term space. Each item in a

document or query vector has a non-negative value which represents the importance of the

corresponding term in the document or query. A score measures the similarity between a

document vector and the query vector. This score can be computed as the inner product

of the two vectors (the query vector QV of the query Q and the document vector V D of

the document D). That is,

score(Q,D) =
∑
k∈Q,D

QV (k) ∗DV (k) (4.2)

Determining the items in QV (k) is quite simple: QV (k) can be the frequency of a keyword k

in Q. In the case where there are no repetitions in the keyword query Q, this is the reciprocal

of the size of Q: QV (k) = 1/|Q|. Deciding the items in DV (k) is decisive in determining

the quality of the similarity metric. The best known technique in IR for defining the

items in DV (k) is the document frequency-inverse document frequency technique (tf*idf).

55

There are different variations of this technique. One of the most widely used is the pivoted

normalization document length technique [74, 73, 72] which defines DV (k) as follows:

DV (k) =
ntf

ndl
∗ nidf (4.3)

where ntf , nidf and ndl are the normalized term frequency, inverted document frequency

and document length, respectively:

ntf = 1 + ln(1 + ln(tf)) (4.4)

nidf = ln
N + 1

df
(4.5)

ndl = (1− s) + s ∗ dl

avgdl
(4.6)

The symbol s, the slope, in Equation (4.6) is a parameter which is usually set equal to

0.2. Symbol N in Equation (4.5) is the number of documents in the document. avgdl in

Equation (4.6) is the average length of the documents in the document collection. These

normalizations substantially improved the performance of keyword search on documents.

We adapt these formulas to our context of keyword search over relational databases

and query pattern graphs for keyword queries. Query keywords can match relation names,

attributes, and attribute values in tuples. When a keyword matches an attribute value in

a tuple, we define tf , df , and dl as follows:

In Equation (4.4), term frequency tf for a keyword k which is a value of an attribute

A is the frequency (number of occurrences) of k in the column A. The intuition is that the

higher the frequency of a keyword in a column, the higher the contribution of the keyword

to the score of the pattern graph. Research in IR has concluded that if the score is linearly

56

dependent on tf , then the contribution of tf is exaggerated. For the normalized frequency

ntf , a log function is applied twice to tf to blunt the contribution of tf .

In Equation (4.5), df is the number of attribute values in the database which are

matched by keyword k, while N is the number of non-null textual attribute values in the

database. Intuitively, the more frequent a keyword is in the database, the less important

the contribution of tf should be to the score. In the normalized version nidf of idf , N + 1

is divided by df and is then dampened by applying a log function.

In Equation (4.6), for a keyword k which is a value of an attribute A, dl is the

number of non-null attribute values in column A. avgdl is the average number of non-null

attribute values in the textual columns of the database tables. Intuitively, larger columns

will have larger values for dl and consequently smaller values for the overall score of a

pattern graph. When attribute A has many k values, the normalized version ndl of dl

reduces the contribution of ntf to DV (k) by dividing dl by avgdl. The slope, s is set to

0.2.

Example 5 Consider the keyword query {legend} against an IMDB database whose schema

is shown in Figure 4.1. Two matches for legend in this database are a value of attribute

Name in Table MOVIE and a value of attribute Last name in table ACTOR. legend is more

frequent in column Name of table MOVIE than in column Last name. The first pattern graph

gets a node score of 31.84 (ndf = 2.90, nidf = 9.81, ndl = 0.90) while the second one gets

a node score of 17.02 (ndf = 1.74, nidf = 9.89, ndl = 1.01). Therefore, the system ranks

the first pattern graph higher.

When a keyword k matches an attribute A in the database schema, DV (k) is

computed as the maximum DV (ki) among all the terms ki of interest in column A.

57

When a keyword k matches a relation name R in the database schema, DV (k) is

computed as the maximum DV (ki) that can be obtained from the terms ki of interest in

columns of relation R. The value of DV (k) is precomputed and stored in the database for

every term k which is an attribute or relation name in the database schema.

4.2 The Semantic Keyword Search Algorithm

We present now a top-K algorithm for computing the pattern graphs of a query on a

relational database. We first present the techniques we use to reduce the number of

redundant intermediate results, which is the bottleneck of keyword search algorithms on

databases with structure. We then elaborate on the techniques we use to compute the

top-K results without computing and ranking all the results.

Annotated schema graph. Given a keyword query Q on a database with schema S, an

annotated schema graph is a schema graph where each node/relation is annotated with all

the query keywords in Q which match an attribute value in the instance of this relation,

or an attribute in the schema of this relation or the name of this relation, along with the

type of this match. Figure 4.1 provides an example of an annotated schema graph for

the keyword query Q = {movie, Pompeii, legend, actor, name} on an IMDB database. If

multiple keywords match attribute values in the same tuple of a relation, this information

is also recorded in the annotated schema graph.

Expanded schema graph. From the annotated schema graph we construct an expanded

schema graph G which is a n-partite graph, where n is at least the number of nodes/relations

in the database schema S and at most twice this number. For every node/relation R in the

annotated graph, G has two independent sets of nodes V R and SR. Each node V Ri in V R

is annotated by an annotation of R referring to an attribute value matching keyword and

58

∈ ∈

MOVIE
Id, Name, Year, Rank

MOVIE
Id, Name, Year, Rank

MOVIE
(Name, Pompeii)

MOVIE
(Name, Pompeii)

MOVIE
Id, Name, Year, Rank

MOVIE
Id, Name, Year, Rank

MOVIE
Id, Name, Year, Rank

MOVIE
Id, Name, Year, Rank

MOVIE
(Name, Legend)

MOVIE
(Name, Legend)

MOVIE

∅

MOVIE

∅

ROLE

∅

ROLE

∅

MOVIE_GENRE

∅

MOVIE_GENRE

∅
MOVIE_GENRE

Movie_Id,Director_Id
MOVIE_GENRE

Movie_Id,Director_Id

∈ ∈ ∈ ∈∈∈

∈

Figure 4.6 Part of the expanded schema graph constructed based on the annotated schema
graph of Figure 4.1.

.

one of them is annotated by the empty subset. Each node SRi in SR is annotated by a

non-empty subset of the annotations of R referring to schema element matching keywords

so that no two annotations referring to the same keyword are included in the subset more

than once. If there are no annotations of R in the annotated graph referring to schema

element matching keywords, SR is empty and is omitted. There are inclusion edges in G

between every node in SR and every node in V R. There is a key-foreign key edge between

every node V Ri in V R and every node VWi in the independent node set VW for another

relation W in the schema S if there is a key-foreign key relationship between R and W .

Example 6 Figure 4.6 shows part of the expanded schema graph constructed from the

annotated schema graph shown in Figure 4.1 involving the independent node sets for the

schema nodes MOVIE, ROLE and MOVIE GENRE (and the corresponding inclusion and

key-foreign key edges). There are two independent node sets of three nodes each for the

annotated schema graph node MOVIE, which has annotations referring to schema elements

and annotations referring to attribute values. There are two singleton independent node

sets for the annotated schema graph node MOVIE GENRE. Finally, there is one singleton

59

independent node set for the annotated schema graph node ROLE and its node is annotated

by the empty set.

Our algorithm for computing patterns graphs for a keyword query takes as input a

keyword query Q, an expanded schema graph G, a size threshold T for the query pattern

graphs, and a threshold K on the number of query pattern graphs to be returned.

4.2.1 An Unconstrained Expansion Strategy

The algorithm constructs query pattern graphs which are trees and which are transformed

into graphs with cycles at the end of the process by adding inclusion edges if needed. It starts

by choosing randomly a keyword k from the input keyword query Q and by constructing

intermediate pattern graphs with a single node. For every node Ri in the expanded schema

graph whose annotation contains keyword k, one node n labeled by R and annotated by

the annotation of Ri is constructed and pushed into a stack. The query pattern graphs of

Q are constructed by expanding these initial single node query pattern graphs.

In the absence of any expansion constraint, the expansion process can be outlined as

follows: consider a node n labeled by Ri in an intermediate query pattern graph P built

upon the node Ri in G. For every adjacent node Wj to node Ri in G, P is expanded by

adding an adjacent node m to n labeled by Wj and annotated by the annotation of Wj in

G. For each one of these expansions to be possible, the keywords in the annotation of m

should not appear in the annotation of any other node in P . Note that the annotation of

a new node in P can be empty. All the nodes in the intermediate pattern graph can be

considered for expansion. Intermediate results which contain all the keywords of Q in the

keyword sets of their nodes are characterized as final query pattern graphs and are returned

to the user if they do not have empty tuple leaf nodes (minimality condition of query pattern

60

graphs). If they do not satisfy the minimality condition, they are discarded. Intermediate

query pattern graphs whose size is equal to the given size threshold and are not final are

not expanded anymore and they are discarded. This process will generate duplicate results

(isomorphic ordered versions of unordered trees). Hence, the pattern graphs will have to be

compared for isomorphism with previous pattern graphs if duplicates are unwanted. At the

end of the process, inclusion edges are added in any pattern graph between schema nodes

and tuple nodes of the corresponding relation.

The expansion process can be constrained without missing any results. One technique

we are using for this is to leverage a canonical form for pattern graphs. .

4.2.2 Exploiting a Canonical Form for Pattern Graphs

Our algorithm for computing query pattern graphs initially constructs trees starting from

a root node. Therefore, initially query pattern graphs are generated as rooted trees.

Two labeled rooted trees R and S are isomorphic to each other if there is a one-to-one

mapping from the nodes of R to the nodes of S that preserves node labels, edge labels,

adjacency and roots. An automorphism is an isomorphism that maps a tree to the same

unordered tree.

To reduce the generation of isomorphic trees (which are redundant since they represent

the same unordered tree) and produce only one tree for every automorphic group, we use a

canonical form for the trees initially generated by our algorithm for query pattern graphs.

61

Given a node n in a tree R, let root(R) denote the root of R and subtree(n) denote the

subtree of R rooted at n.

An Order for Labels and Trees. We first define an order for trees. Let ≤ be a linear

order on the set of labels that can appear on the nodes of trees. Abusing notation, we also

denote as ≤ an order on trees defined recursively as follows:

Definition 4.2 (Tree Order) Given two trees R and S, let r = root(R) and s = root(S),

respectively. Let also r1, . . . , rm and s1, . . . , sn denote the list of the children of r and s,

respectively. Then, R ≤ S iff either:

1. label(r) ≤ label(s), or

2. label(r) = label(s) and either:

(i) m ≥ n and ∀i ∈ [1, n], subtree(ri) = subtree(si), or

(ii) ∃k ∈ [1,min(m,n)] such that: ∀i ∈ [1, k − 1], subtree(ri) = subtree(si) and

subtree(rk) ≤ subtree(sk).

The tree order above is essentially the same as the one introduced in [67, 88].

A Tree Canonical Form. We can define now the canonical form adopted for a tree

Definition 4.3 (Tree Canonical Form) A tree R is in canonical form if for every tree

S which is automorphic to R, R ≤ S .

To check whether a tree is in canonical form in an efficient way, a string representation

for trees and the results presented in [60] can be leveraged.

Exclusive expansion of pattern graphs in canonical form. For the pattern graphs,

it is sufficient to have trees in canonical form (the other isomorphic versions of the pattern

graphs are redundant). It turns out that intermediate pattern graphs which are not in

62

canonical form do not need to be considered in the expansion process. This is shown by the

next proposition.

Proposition 6 All the pattern graphs of a query on a database can be computed by

considering, during the expansion process, only intermediate pattern graphs in canonical

form.

Therefore, intermediate pattern graphs which are not in canonical form can be

discarded. Clearly, eliminating non-canonical intermediate pattern graphs from the search

space allows a significant reduction of the number of pattern graphs generated.

Empty node expansion. It can be further observed that if an intermediate result tree

has an empty leaf node, it can be chosen for expansion without missing any results. This

is shown by the next proposition.

Proposition 7 Given an expanded schema graph G, all the pattern graphs of a query Q can

be computed by expanding only empty leaf nodes in the pattern graph trees under construction

(if empty leaf nodes exist).

Following this remark, if an empty node exists in an intermediate result, it should be

chosen for expansion.

Rightmost path node expansion. In the absence of an empty leaf node, all the nodes of

intermediate pattern graphs need to be expanded to guarantee the computation of all the

pattern graphs. The next proposition shows that many intermediate pattern graphs nodes

can be excluded from expansion without affecting the completeness of the pattern graph

set computed.

63

Proposition 8 Given an expanded schema graph G, all the pattern graphs of a query Q

can be computed by expanding only the nodes on the rightmost path of the pattern graphs

trees under construction.

If this expansion strategy is applied, the intermediate pattern graph tree nodes which

are not on the rightmost path are not expanded. These nodes represent in most cases the

majority of the nodes.

Checking the canonicity of pattern graph trees incrementally. In order to check

whether a pattern graph tree is in canonical form we can use previous results on tree

canonical forms and a string representation for trees to perform the comparisons of trees

efficiently. However, as mentioned above: (a) only trees which are in canonical form are

expanded, and (b) only nodes in the rightmost path of an intermediate pattern graph tree

are expanded. These remarks allow for an incremental checking of the canonicity of the

newly generated intermediate pattern graph tree. Details on how these techniques can be

implemented are presented in [60].

Exploiting the techniques presented in this section can reduce dramatically the

number of redundant intermediate pattern graphs computed and can directly benefit the

performance of the pattern graph computation algorithm since it is the large number of

intermediate results that constitutes the bottleneck of keyword query evaluation algorithms

on structured databases.

4.2.3 The Top-k Strategy

The goal of a top-K strategy is to find the top-K pattern graphs (the K pattern graphs such

that there are no other pattern graphs with higher score) without necessarily computing

and ranking all of them. As mentioned above, we use edge scoring to initially rank the

64

pattern graphs while node scoring is used to break the ties. Therefore, our top-K strategy

focuses on computing top-K pattern graphs based on their edge score. Node scoring can be

employed to further rank these pattern graphs if there are pattern graphs with the same

edge score among the top-K.

Our approach computes patterns graphs by expanding intermediate pattern graphs.

The basic idea of our top-K strategy is to predict an upper bound B for the score of each

pattern graph derived by expanding the current intermediate pattern graph P during the

computation of the pattern graphs. If B is lower than the score of the Kth pattern graph in

the ranked list of pattern graphs computed so far (ranked in descending score order), then

P does not need to be expanded anymore and the computation moves to consider another

intermediate pattern graph for expansion. This can substantially improve the performance

of the pattern graph computation algorithm in terms of both execution time and memory

consumption.

Recall that each intermediate pattern graph P is derived from another pattern graph

P ′ by adding an adjacent node n to a node n′ in P ′ and node n becomes the rightmost

leaf node of P (we called this expansion of P). Based on our expansion strategy (Section

4.2.2) node n′ in P ′ has to be on the rightmost path of P ′ and can be either an empty

or non-empty node of P ′. If the rightmost leaf node of P ′ is an empty node, this is the

only node of P ′ that can be expanded. Assume that the missing keywords (those keywords

of Q which are not already marked in P ′) have exclusively matches on tuple values in the

annotated schema graph and the corresponding relations do not have any schema nodes in

P ′. We claim that the score of the pattern graph P constitutes an upper bound to the score

of all the pattern graphs that can be derived by expanding P ′ assuming that all the missing

keywords in P ′ are marked terms on the newly added node n.

65

To further explain this, observe that if m missing keywords are marked terms in the

tuple node n, they contribute a co-occurrence score of m− 1 to the edge score of the final

pattern graph. If these m keywords are distributed in other tuple nodes, their contribution

to the edge score of the final pattern graph due to the co-occurrence score and because of

the merging of keyword nodes can never exceed m− 1.

4.2.4 The Algorithm

Our algorithm proceeds as described in Section 4.2.1. It computes only intermediate and

final query pattern graphs in canonical form and follows the expansion rules described in

Section 4.2.2. This reduces substantially the generation of intermediate pattern graphs

and eliminates the generation of redundant intermediate tree pattern graphs in the pattern

graph generation process. It further implements the top-K strategy presented in Section

4.2.3. The pseudo code for the algorithm, named topK-QPGC (for top-K Query Pattern

Graph in Canonical form computation) is presented in Algorithm 2. The algorithm returns

a list L of top-K query pattern graphs ranked in descending order on their edge score.

Function mterms(R) denotes the marked terms in a pattern graph/pattern graph node

R. Function predictScore(R) returns an upper bound for the edge scores of the pattern

graphs that can be generated by expanding the intermediate pattern graph R. Procedure

insertRanked(R,L) inserts the query pattern R in the right position in the ranked list L.

If L is already full, it discards the last pattern graph in L.

As described in Section 4.2.1, Algorithm topK-QPGC exhaustively expands the

intermediate pattern graphs of a keyword query Q starting with nodes that contain a

randomly selected query keyword. It avoids expanding pattern graphs which are not in

canonical form and expends nodes in a pattern graph from the rightmost path or just the

66

Algorithm 2 Algorithm topK-QPGC

Input: expanded schema graph G, keyword query Q, pattern graph size threshold T ,

number of pattern graphs threshold K

Output: a ranked list L of top-K query pattern graphs of Q of size up to T

1: L := ∅
2: E := ∅ /* E is a queue of pattern graphs under construction

3: KThreshold := 0

4: Let k be a keyword in Q

5: for every node n in G s.t. k ∈ annotation(n) do

6: Let R be a new node labeled by n /* R is a new pattern graph in construction

7: mterms(R) = annotation(n)

8: enqueue(R,E)

9: while E 6= ∅ do
10: R := dequeue(E)

11: if R has an empty leaf node q then

12: ExpandList := {q}
13: else

14: ExpandList := { nodes in the rightmost path of R }
15: for every node l ∈ ExpandList do

16: for every node m adjacent to the node label(l) in G do

17: if annotation(m) ∩mterms(R) = ∅ then
18: Add a node p with label(p) = label(m) and mterms(p) = annotations(m)

and an edge (l, p) to R.

19: if R is in canonical form and satisfies the structural constraints then

20: if mterms(R) = Q & ES(R) > KThreshold then

21: insertRanked(R,L)

22: if size(L) = K then

23: KThreshold := ES(lastPattern.L)

24: else

25: if size(R) < (T − 1) then

26: if predictScore(R) ≤ KThreshold then

27: drop R

28: else

29: enqueue(R,E)

67

rightmost empty leaf node if there are any. As we showed in Section 4.2.2, these expansion

restrictions do not prevent the computation of any pattern graph of Q.

Proposition 9 Given the expanded schema graph G of a schema S based on a keyword

query Q, Algorithm topK-QPGC correctly computes the top-K pattern graphs of Q.

4.3 Experimental Evaluation

We run experiments to assess the efficiency of the algorithm in terms of execution time,

memory consumption and the effectiveness of the approach.

4.3.1 Databases, Queries, Metrics

Databases. We used both a version of the IMDB database1 and a version of the Mondial

database2 in our experiments. The IMDB database contains actor, director and role

information for movies. Its schema comprises seven tables which are connected with six

foreign keys. The Mondial database contains geographic and demographic information.

The schema of this database contains thirty-three tables and forty-eight foreign keys. Note

that the number of nodes and edges in the expanded schema graph for a given query is

usually a multiple of the respective numbers in the database schema graph.

Query Sets. We use a set of 10 queries for each database for evaluation. The

queries have from two to six keywords. Most queries contain keywords which match both

schema elements (attributes and/or relation names) and tuple values. Tables 5.2 and 5.4

show statistics for the queries. Column #kws displays the number of keywords of each

query. Column #nodes (resp. #edges) shows the number of nodes (resp. edges) in the

1https://relational.fit.cvut.cz/dataset/IMDb
2https://www.dbis.informatik.uni-goettipeii ngen.de/Mondial/

68

Table 4.2 Statistics for Queries on the IMDB Dataset

IMDB

Query# #keywords #nodes #edges #pat. graphs

Q1 3 19 53 3353

Q2 3 24 86 5281

Q3 4 24 81 28226

Q4 3 20 53 3496

Q5 4 27 95 38028

Q6 5 24 72 3609

Q7 4 26 107 31862

Q8 6 32 151 362274

Q9 4 31 145 43401

Q10 6 24 85 6960

Table 4.3 Statistics for Queries on the Mondial Dataset

Mondial

Query# #keywords #nodes #edges #pat. graphs

Q1 5 69 272 158588

Q2 3 50 141 14043

Q3 2 57 169 76617

Q4 2 55 220 97214

Q5 3 51 204 2744

Q6 3 47 156 60094

Q7 2 43 109 15202

Q8 5 55 190 16636

Q9 4 57 231 264675

Q10 6 68 293 1676

expanded schema graph generated for each query. Column #pat. graphs shows the total

number of pattern graphs generated for each query on the expanded schema graph.

Metrics. For the effectiveness experiments, we measured precision@N, Normalized

Cumulative Gain (nDCG) at position N and Kendall rank correlation coefficient which we

further describe in Section 4.3.3.

4.3.2 Efficiency Experiments

In these experiments, we measured the efficiency of our algorithm, topK-QPGC, in terms

of execution time, number of intermediate results generated, and memory consumption.

69

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

QPGC topK-QPGC

Figure 4.7 Execution time for queries on the IMDB database.

“Results” refers here to pattern graphs. Intermediate results are the partial or complete

pattern graph that are generated during the execution of the algorithm. Memory

consumption is expressed by the maximum number of intermediate results ever kept in

memory. We also compared the measurements with those of an algorithm which computes

the query pattern graphs leveraging the canonical form of pattern graphs but without using

the top-k strategy. We refer to this latter algorithm as QPGC.

Figures 4.7 and 4.8 show the execution time of the algorithms on the IMDB and

the Mondial databases, respectively. The scale of the y-axis is logarithmic. One can see

that algorithm topK-QPGC is much faster than QPGC which does not leverage the top-K

strategy and therefore generates first all the pattern graphs, and uses the scoring functions

to score them and rank them. The top-K strategy improves the execution time by least

one order of magnitude in most of the cases. For Query 10 on the Mondial database, the

execution times between the two algorithms do not display much difference. This is because

Query 10 does not produce many pattern graphs. For a case like that one the top-K strategy

does not improve the execution time significantly.

70

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

QPGC topK-QPGC

Figure 4.8 Execution time for queries on the Mondial database.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

In

te
rm

ed
ia

te
 R

es
u

lt
s

QPGC topK-QPGC

Figure 4.9 Number of intermediate results produced by the queries on the IMDB database.

Figures 4.9 and 4.10 show the performance of the two algorithms in terms of the

number of intermediate results produced on the IMDB and Mondial databases, respectively.

As described in Section 4.2.3, Algorithm topK-QPGC avoids generating subsequent results

from the intermediate result under consideration if their score is predicted to be lower than

the score of the Kth pattern graph in the ranked list of pattern graphs computed that far.

71

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

1E+09

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

In

te
rm

ed
ia

te
 R

es
u

lt
s

QPGC topK-QPGC

Figure 4.10 Number of intermediate results produced by the queries on the Mondial
database.

This reduces the total number of intermediate results generated by topK-QPGC compared

to QPGC. As one can see in the figures, topK-QPGC produces far fewer intermediate results

than QPGC in all cases on both datasets. The number of intermediate results produced by

Algorithm QPGC is at least one order of magnitude larger than those of topK-QPGC in

most of the cases.

As one can also observe in the plots, the execution time and the number of the

intermediate results produced are strongly correlated. Despite the fact that topK-QPGC

spends time on almost every intermediate result predicting the maximum score of the

pattern graphs that can be generated from the pattern graph under consideration by the

algorithm, this delay is not large enough to counter the benefit in execution time obtained

from the reduction in the number of intermediate results generated.

Figures 4.11 and 4.12 show the memory consumption of the algorithms on the IMDB

and the Mondial databases, respectively. We measured the memory consumption in terms of

the maximum number of intermediate results stored in the queue that keeps the intermediate

72

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

M
ax

 #
 o

f
In

te
rm

ed
ia

te
 R

es
u

lt
s

QPGC topK-QPGC

Figure 4.11 Memory consumption for queries on the IMDB database.

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

M
ax

 #
 o

f
In

te
rm

ed
ia

te
 R

es
u

lt
s

QPGC topK-QPGC

Figure 4.12 Memory consumption for queries on Mondial the database.

results (Section 5.3) at a specific moment in time. The scale of the y-axis is logarithmic.

In all cases, the memory consumption of topK-QPGC is smaller than that of QPGC. More

specifically, in most of the cases, the memory consumption of QPGC is ten times bigger

than the memory consumption of topK-QPGC. This memory footprint difference is expected

73

since the top-K strategy prevents the generation of intermediate results which will not yield

high enough scores.

4.3.3 Effectiveness Experiments

We also run experiments to assess the quality of our approach. Our algorithm returns a

list of K results ranked (based on their computed scores). To measure the quality of the

results we used Precision@N and to measure the quality of the ranking we used nDCG and

Kendall tau.

The ground truth for the query results was determined as follows: for each of the

queries, a user not related to this project got the unordered result sets and assigned to the

computed pattern graphs a score from 0 to 3, with 3 meaning very relevant and 0 meaning

completely irrelevant. To characterize a pattern graph simply as relevant or irrelevant, the

scores 3 and 2 defined a relevant pattern graph and the scores 1 and 0 an irrelevant pattern

graph. The user also produced a strict ranking of the pattern graphs consistent with the

scores.

Presicion@N. Precision@N is the ratio of the number of relevant pattern graphs in

the first N positions in a ranking of results returned by the system, to N. The relevance

(or irrelevance) of a pattern graph at any position is determined as described above.

Precision@N ranges between 0 and 1 with 1 meaning that all the first N pattern graphs

are relevant and 0 meaning that all of them are irrelevant. We measured presicion@N for

N = 5. Figures 4.13 and 4.14 show presicion@5 for all the queries on the IMDB and the

Mondial databases, respectively. The measurements show satisfactory precision@5, with all

the values but two being above 60%.

74

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

P
re
ci
si
o
n
@
5

Figure 4.13 Precision@5 for queries on the IMDB database.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

P
re
ci
si
o
n
@
5

Figure 4.14 Precision@5 for queries on the Mondial database.

Normalized Discounted Cumulative Gain. Discounted Cumulative Gain (DCG)

is used often in information retrieval to measure the ranking quality of web search engine

algorithms. It is based on the assumptions that highly relevant results are considered to

be more useful when appearing earlier in the ranked list returned by the system, and that

they are also more useful than less relevant results. Hence, a discounting function is used

75

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

n
D
C
G
1
0

Figure 4.15 nDCG10 for queries on the IMDB database.

over cumulative gain to measure DCG at position N (nDCGN), which is defined as the

sum of the relevance scores (determined by the user) of all the items at positions 1 to N

in the ranked list produced by the system, each divided by the logarithm of its respective

position in the ranked list. nDCGN is the result of normalizing DCGN with the DCGN

of the list that is ranked based on the ground truth scores; it is computed by dividing the

DCGN value of the system’s ranked list by the DCGN value of the correctly ranked list.

Clearly, nDCGN favors a ranked list which is similar to the correct ranked list. Its values

range between 0 and 1.

We measured DCGN with N = 10. Figures 4.15 and 4.16 show the nDCG10 for each

query of the IMDB and the Mondial database, respectively. As one can see, nDCG10 is

over 0.9 in most of the cases and in some cases very close to 1.0.

Kendall tau. The Kendall tau rank correlation coefficient is used to measure the

association between two different rankings of the same set of items. In our setting, we have

the list of k pattern graphs computed and ranked by our system and the same list ranked

based on the ground truth. We want to see if the comparison of the ranked list produced

76

0.7

0.75

0.8

0.85

0.9

0.95

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

n
D
C
G
10

Figure 4.16 nDCG10 for queries on the Mondial database.

by our system with the correctly ranked list which is produced by the user suggests that

the former possesses a reliable judgment of the relevance of the pattern graphs produced

by the latter. If two items have the same (resp. different) relative rank order in the two

lists, then the pair is said to be concordant (resp. discordant) pair. The value of Kendall

tau is normalized to range values from -1 to 1. If the number of concordant pairs is much

larger than the number of discordant pairs, then the two lists are positively correlated (the

coefficient is close to 1). If the number of concordant pairs is much less than the discordant

pairs, then the two lists are negatively correlated (the coefficient is close to -1). Finally, if

the number of discordant and concordant pairs are about the same, then the two lists are

weakly correlated (the coefficient is close to 0). In this case, the two lists are independent.

Figures 4.17 and 4.18 show the Kendall rank correlation coefficient for the top 10

ranked results returned by our system for each query on the IMDB and the Mondial

databases, respectively. As one can see, the Kendall tau coefficient is over 0.5 in most

of the cases on both databases. Only for query Q10 in the Mondial database the value of

Kendall tau is 0.6, as the pattern graph ranked at position eight by the system was found to

be more semantically meaningful by the user and was placed first in the ground truth list.

77

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

K
en

d
al

l t
au

Figure 4.17 Kendall tau for queries on the IMDB database.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

K
en

d
al

l t
au

Figure 4.18 Kendall tau for queries on the Mondial database.

Overall, the ranking of the pattern graphs produced by the system was highly correlated

with the ground truth ranking given by the user.

78

CHAPTER 5

SEMANTICS AND EVALUATION OF COHESIVE KEYWORD QUERIES

ON STRUCTURED DATABASES

5.1 Introduction

We leverage in this chapter keyword queries with cohesiveness constraints (called cohesive

queries) to address the problems related to keyword search on structured databases.

A cohesive group G in a keyword query Q is a proper subset of Q. A cohesive group

G defines a cohesiveness constraint in Q which states that the keywords in G constitute a

cohesive whole. In other words, the instances of the keywords of G in a pattern graph of Q

should be closer to each other than to the instance of any other keyword in Q outside G.

We specify cohesive groups in cohesive queries by enclosing their keywords between

parentheses. For example, (SQL (James Smith) (John Johnson)) is a cohesive keyword

query against a bibliographic database. The user is searching with this cohesive keyword

query for publications on SQL related to the authors James Smith and John Johnson. This

query indicates that (James Smith) and (John Johnson) are cohesive groups and therefore,

the system can use this information to return more accurate results. For instance, it

will be able to filter out publications on SQL by John Smith and James Johnson. The

early exclusion of irrelevant results also allows for substantial improvements in the query

evaluation time during the computation.

Cohesive groups can be nested. For instance with the query (SQL (James

Smith)(citation (John Johnson))) the user looks for a paper on SQL written by James

79

Smith which cites a paper by John Johnson. Additional examples are included in the

related work section of the dissertation.

5.2 Keyword Queries with Cohesiveness Constraints

We provide semantics for cohesive keyword queries by identifying below the cases where

the keyword matches in a pattern graph of the flat keyword query violate the cohesiveness

constraints (and, therefore, this pattern graph is not part of the answer to the cohesive

keyword query).

Let a, b and c denote keywords of a cohesive keyword query Q such that a and b

belong to a cohesive group G in Q and c does not. Let also P be a pattern graph for

keyword query Q without any cohesiveness constraints.

Case 1: Keyword a matches an attribute in the schema node of a relation R and

keyword c matches a value for attribute a in a tuple node of relation R. If b matches any

other term in P , c is considered to be closer to a than b is to a (that is, the cohesiveness of

group G is breached and the cohesiveness constraint is violated). This case is depicted in

Figures 5.1(a) and (b).

Case 2: Keywords a and c match values in a tuple node and keyword b matches

any term other than the attribute whose value is matched by keyword a. The relationship

of keywords a and c appearing in the same tuple node is stronger than other possible

relationships between a and b in P . This case is depicted in Figure 5.1(c) and (d).

Case 3: Keyword c matches an attribute of relation R in the schema node for R, a

matches a value of attribute c in a tuple node of R, and b matches any other term in the

pattern graph. The attribute/attribute value relationship between c and a is stronger than

80

a

∈

b

R

c

∈

b

c a

c

∈

b

R

a

b

a c

b

c

...

a

...

(a) (c)

(f)

(d)

(h)

c

∈

R

a

(e)

b

∈

c

∈

R

a b

(g)

a

∈

R

c

(b)

b

c

b

...

a

...

(i)

x

y

Figure 5.1 Result graphs.

any other relationship between a and b and the cohesiveness constraint is violated. This

case is depicted in the Figures 5.1(e), (f) and (g).

Case 4: Keywords a, b and c match values in different tuple nodes ta, tb and tc,

respectively, in P and there is a path of key-foreign key relationships between ta and tc

and a path of key-foreign key relationships between tb and tc and no path of key-foreign

key relationships between ta and tb. Clearly, here, a and c are closer than a and b and the

cohesiveness constraint is violated. This case is depicted in Figure 5.1(h).

Case 5: Keywords a, b and c match values in different tuple nodes ta, tb and tc,

respectively, in P and there is a path of key-foreign key relationships between tb and tc of

length x and a path of key-foreign key relationships between tb and ta of length x and no

path of key-foreign key relationships between ta and tc, and x, y. Clearly, here, b and c are

closer to each other than a and b and the cohesiveness constraint is again violated. This

case is depicted in Figure 5.1(i).

81

5.3 Algorithm

Our algorithm for computing the answer of cohesive keyword queries on relational

databases is called CKER (for Cohesive Keyword query Evaluation algorithm on Relational

databases) and is shown in Algorithm 3. The algorithm takes as input a cohesive query Q,

the expanded schema graph of the relational database and a pattern graph size limit T .

Algorithm CKER starts by generating all the atomic cohesiveness constraints in Q.

This is done by avoiding the redundant generation of atomic constraints defined by nested

cohesive groups. The atomic cohesiveness constraints are stored into a checklist AC. The

algorithm proceeds for generating patterns graphs the same way Algorithm 2 does. The

cohesiveness constraints are checked for violations incrementally: for each new intermediate

or final result generated during the evaluation of the query, if a new keyword is introduced,

the algorithm checks whether a new atomic cohesiveness constraint is also introduced,

in which case it checks this constraint for violation. If the atomic constraint is violated

the (intermediate) result is discarded and its expansion is discontinued. Otherwise, the

expansion continues until all the keywords are collected or the size limit is reached.

5.4 Experimental Evaluation

We implemented the cohesive query evaluation algorithm and we run experiments to assess

the effectiveness of the approach and the efficiency of the algorithm in terms of execution

time, number of intermediate results, memory consumption and scalability.

82

Algorithm 3 Algorithm CQER

Input: cohesive query Q, schema graph G, pattern graph size Limit T

Output: a ranked list L of query pattern graphs of Q of size up to T

1: AC = AtomicConhesivenessConstraints(Q)

2: RQ := ∅ /* RQ is a queue of intermediate results each associated with a Boolean

list indexed by the atomic constraints in AC.

3: Choose a keyword k in Q

4: for every node n in G containing k do

5: M is initialized to false everywhere /* false indicates that the corresponding

atomic constraint has not been checked yet.

6: if n contains occurrences of the keywords of a constraint in AC then

7: if no atomic constraint is violated by the keyword occurrences in n then

8: for every atomic constraint A satisfied by the keyword occurrences in n do

9: M(A) := true

10: enqueue(RQ, (n,M))

11: while RQ 6= ∅ do
12: (CR,CM) := dequeue(RQ)

13: for every node cn in G linked to some node in CR do

14: construct a new pattern result graph NR by adding cn and its connecting edge to

CR

15: NM := CM

16: if NR satisfies all the restrictions imposed on pattern graphs including the size

restriction then

17: if NR contains occurrences of the keywords of an atomic constraint A in AC

s.t. NM(A) = false then

18: if no atomic constraint A in NR s.t. NM(A) = false is violated by the

keyword occurrences in NR then

19: for every atomic constraint A s.t. NM(A) = false satisfied by the keyword

occurrences in NR do

20: NM(A) := true

21: if NR contains all the keywords in Q then

22: put NR in the right rank in L

23: else

24: enqueue(RQ, (NR,NM))

83

5.4.1 Experimental Setting

Databases. We used both a version of the IMDB database1 and a version of the Mondial

database2 in our experiments. The IMDB database contains actor, director and role

information for movies. Its schema comprises seven tables which are connected with six

foreign keys. The Mondial database contains geographic and demographic information.

The schema of this database contains thirty-three tables and forty-nine foreign keys. Note

that the number of nodes and edges in the expanded schema graph for a given query is

usually a multiple of the respective numbers in the database schema graph.

Queries. For the effectiveness and performance evaluation experiments, we generated

10 cohesive queries with different characteristics for each one of the databases. For the

scalability experiments we varied the number of constraints in a number of cohesive (and

flat keyword) queries and the number of keyword instances on the databases. And for the

effectiveness experiences, each of the databases has ten queries which are chosen by the

users with the semantic meaning cohesive constraints.

5.4.2 Effectiveness Experiments

We run experiments to assess the quality of our approach. Our algorithm returns, for a

given cohesive query Q and a database D, the patterns graphs for Q on D ranked based

on the ranking criteria presented in Section 5.3. To measure the quality of the results

of a query we collected the pattern graphs in the top rank of the ranked list of pattern

graphs and we measured precision in this set of pattern graphs. Precision indicates the

percentage of relevant pattern graphs in the set of pattern graphs considered. In case the

top rank had too few pattern graphs, more than one top ranks in the returned ranked

1https://relational.fit.cvut.cz/dataset/IMDb
2https://www.dbis.informatik.uni-goettipeii ngen.de/Mondial/

84

list were considered. The ground truth for the query results (that is, the relevant pattern

graphs) were determined by a user not related to this project. We denote this metric as

precision@TopRank.

For every cohesive keyword query considered, we also measured the precision@TopRank

of the corresponding flat keyword query and we compared the two measurements. In case

the cohesive query did not have any pattern graphs in the top rank of the flat keyword

query (for instance because all the pattern graphs of the flat keyword query in this rank

violated the cohesiveness constraints of the corresponding cohesive query) the top rank of

the cohesive query was used for this query and all the top ranks above and including this

one were used for the flat keyword query.

We used a set of 10 queries for each database for evaluation. The queries have from

four to seven keywords. The queries may contain keywords which match both schema

elements (attributes and/or relation names) and tuple values. Tables 5.1 and 5.3 show

the queries used in the experiments and Tables 5.2 and 5.4 show statistics for them on

the IMDB and the Mondial databases, respectively. Column #kws records the number

of keywords in the query. Column #ccs records the number of cohesiveness constraints

and column #accs the number of atomic cohesiveness constraints in the query. Columns

#nodes and #edges records the number of nodes and edges on the expanded schema graph.

Column #ccpgs denotes the number of pattern graphs of the cohesive keyword query on the

database and column #pgs denotes the number of pattern graphs of the corresponding flat

keyword query (the flat keyword query obtained by removing the cohesiveness constraints)

on the database. As expected, the cohesive queries have less pattern graphs than their

corresponding flat keyword queries, and in some cases, orders of magnitude less pattern

85

Table 5.1 Keyword Queries on the IMDB Database

Query# Cohesive keyword query

Q1 (Movie Musical) Grandfather Tony

Q2 (Movie 2000) Halloween Rafael Adams

Q3 Reunion (actors cuadro) Comedy

Q4 (Anne Brown movies) (actors cuadro)

Q5 (actors (Aabel Steve)) 352881 Crime Kodanda

Q6 (2012 David) (actors Musical movies)

Q7 (Aagaard Valentine) actors roles movies

Q8 17485 (movie Musical) actors

Q9 movie home (Flamenco Antonio) cuadro

Q10 ((Anne Adams) Rafael) (movies Musical) (cuadro 1664)

Table 5.2 Statistics for the Queries on the IMDB Database

Query# #kws #ccs #accs #nodes #edges #pgs #ccpgs

Q1 4 1 2 24 97 2956 1969

Q2 5 1 3 32 169 30665 5757

Q3 4 1 2 19 57 1266 733

Q4 5 2 9 24 90 9795 453

Q5 6 2 10 27 96 808 40

Q6 6 2 9 27 105 16314 3752

Q7 5 1 3 24 85 13405 13405

Q8 4 1 2 25 88 2939 1892

Q9 5 1 3 24 100 8570 75

Q10 7 4 23 35 185 89346 3368

graphs. The missing pattern graphs are those that violate some cohesiveness constraint of

the cohesive query.

Figures 5.2 and 5.3 show the precision at top rank for the queries of Tables 5.2 and

5.4 on two databases. As one can see, the precision@TopRank for the cohesive queries

is at least 81% on the IMDB database and at least 75% on the Mondial database. The

precision@TopRank for the flat keyword queries is much smaller, sometimes only a small

fraction of the precision@TopRank of the flat keyword queries. This is expected since the

cohesiveness constraints capture part of the intention of the user and are used to filter a

good number of irrelevant pattern graphs.

86

Table 5.3 Keyword Queries on the Mondial Database

Query# Cohesive keyword query

Q1 (Ammersee Ammer) ((Baffin Island)1.478

Q2 (Nordrhein (Sibirian Baffin)) (transitional government politics)

Q3 ((Limmat 1110) 45095300) ((parliamentary democracy) country)

Q4 (Nordrhein Westfalen) (Ammersee Ammer) (Baffin Island)

Q5 (1.478 Limmat) ((parliamentary democracy) Aberconwy)

Q6 (parliamentary democracy) ((transitional Sibirian) 1110)

Q7 (American Canada mountain)(Gannett rocky)

Q8 (republic Government) (politics country)(Atlantic Ocean)

Q9 (Nordrhein Westfalen) Limmat (Baffin Island) Amazonas

Q10 Norwegian (((Colwyn river) Amazonas) lake borders)

Table 5.4 Statistics for the Queries on the Mondial Database

Query# #kws #ccs #accs #nodes #edges #pgs #ccpgs

Q1 5 3 7 74 332 15110 4400

Q2 6 3 10 50 123 67 37

Q3 6 4 11 50 107 128 44

Q4 6 3 12 63 229 9962 9962

Q5 5 3 7 60 202 31468 9788

Q6 5 3 7 44 80 68 23

Q7 5 2 6 50 187 13899 2079

Q8 6 3 12 70 282 85201 3398

Q9 6 2 8 69 296 76439 2489

Q10 5 3 17 77 235 61468 2145

87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

P
re

ci
si

o
n

@
To

p
R

an
k

Cohesive Keyword Query Flat Keyword Query

Figure 5.2 Precision at top rank for the queries on the IMDB database

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

P
re

ci
si

o
n

@
To

p
R

an
k

Cohesive Keyword Query Flat Keyword Query

Figure 5.3 Precision at top rank for the queries on the Mondial database.

5.4.3 Efficiency Experiments

We run experiments to measure the execution time of the algorithm on cohesive and flat

keywords queries, the number of intermediate results produced, the memory consumption,

and its scalability.

Execution time. Figures 5.4 and 5.5 show the execution time for the queries shown

in Tables 5.1 and 5.3 on the IMDB and Mondial databases, respectively. We measured

88

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Cohesive Keyword Query Flat Keyword Query

Figure 5.4 Execution time for the queries on the IMDB database.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Cohesive Keyword Query Flat Keyword Query

Figure 5.5 Execution time for the queries on the Mondial database.

and displayed both the execution time of the cohesive queries and the execution time of the

corresponding flat keyword queries. The scale of the y-axis is logarithmic. For evaluating the

cohesive queries we employed Algorithm 3. For evaluating flat keyword queries, we used the

same algorithm modified so that it does not check the intermediate results for cohesiveness

89

constraint violations. As one can see, the cohesive keyword queries are substantially faster

than the flat keyword queries. This can be explained from the fact that the evaluation

algorithm discontinues the expansion of intermediate pattern graphs as soon as they are

discovered to violate an atomic cohesiveness constraint. This prunes the search space of

intermediate results of the flat keyword queries and substantially reduces its size. The only

exceptions are queries Q7 on the IMDB database and Q4 on the Mondial database which

are slightly slower than their corresponding flat keyword queries, and this is explained in

the next paragraph.

Number of intermediate results. Figures 5.6 and 5.7 show the number of intermediate

pattern graphs produced during the execution of the algorithm on the two databases both

for the cohesive queries and their flat keyword query versions. The scale of the y-axis

is logarithmic. The cohesive queries produce much fewer intermediate results than the

corresponding flat keyword queries. One can see that the number of intermediate pattern

graphs produced is strongly correlated with the execution time of the queries shown in

Figures 5.4 and 5.5 for both types of queries. The reason is that the execution time

is determined mainly by the number of intermediate results that need to be produced.

The pruning of the search space of flat keyword queries achieved using the cohesiveness

constraints equally affects the execution time of cohesive queries. Cohesive query Q7 on the

IMDB and Q4 on the Mondial database produce the same number of intermediate pattern

graphs as the corresponding flat keyword query. This is so as no pattern graph for the flat

keyword query violates any of the cohesiveness constraints of the cohesive query. However,

as shown in Figure 5.5 the execution times of Q7 and Q4 are slightly higher. This is due to

the overhead the checking of the cohesiveness constraints inflicts on the evaluation of the

cohesive pattern graphs.

90

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

In

te
rm

ed
ia

te
 R

es
u

lt
s

Cohesive Keyword Query Flat Keyword Query

Figure 5.6 Number of intermediate results for the queries on the IMDB database.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

In

te
rm

ed
ia

te
 R

es
u

lt
s

Cohesive Keyword Query Flat Keyword Query

Figure 5.7 Number of intermediate results for the queries on the Mondial database.

Memory consumption. We measured the memory consumption of our algorithm. As

this depends on the maximum number of intermediate pattern graphs stored at any moment

in time during the execution of the algorithm, we measured the memory consumption in

terms of the maximum size of the queue RQ of intermediate pattern graphs in Algorithm

91

CKER (Algorithm 3). We compare the memory consumption of Algorithm CKER to that

of the algorithm that computes flat keyword queries. Figures 5.8 and 5.9 show the memory

consumption of the cohesive queries shown above and their flat counterparts on the IMDB

and the Mondial databases, respectively. The scale of the y-axis is logarithmic. As one

can see, the reduction in the search space of intermediate pattern graphs for flat keyword

queries inflicted by the cohesiveness constraints also reflects on the memory footprint which

is substantially reduced for cohesive queries compared to flat keyword queries.

Scalability varying the number of cohesiveness constraints. We also run exper-

iments to measure how the query execution time and the number of intermediate results

scale when the number of cohesiveness constraints in a query increases. For this experiment,

we considered a cohesive keyword query with six keywords and four cohesiveness constraints

for each one of the two databases and we gradually produced multiple (relaxed) versions of

the query which have less cohesiveness constraints, including the corresponding flat keyword

query (which has 0 constraints). We measured the execution time of all these queries and

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

M
ax

 Q
u

eu
e

Si
ze

 (
#t

re
es

)

Cohesive Keyword Query Flat Keyword Query

Figure 5.8 Memory consumption for the queries on the IMDB database.

92

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

M
ax

 Q
u

eu
e

Si
ze

 (
#T

re
es

)

Cohesive Keyword Query Flat Keyword Query

Figure 5.9 Memory consumption for the queries on the Mondial database.

the number of intermediate pattern graphs they produce and averaged the measurements

for the queries with the same number of constraints for each one of the databases.

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

3.E+04

3.E+04

4.E+04

0 1 2 3 4

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

1.E+06

1.E+06

2.E+06

2.E+06

0 1 2 3 4

In

te
rm

ed
ia

te
 R

es
u

lt
s

Figure 5.10 Average execution time and average number of Intermediate results for queries
on the IMDB database increasing the number of cohesiveness constrains from 0 to 4.

Figures 5.10 and 5.11 display the average execution time and the average number

of intermediate pattern graphs when the number of cohesiveness constraints in the queries

increases from 0 to 4 in the two databases. One can see that both the average execution

time and the average number of intermediate results decreases, in most cases sharply, when

the number of cohesiveness constraints increases. This is expected since the additional

constraints prune intermediate results early on in the keyword query evaluation process.

93

0.E+00

5.E+05

1.E+06

2.E+06

2.E+06

3.E+06

0 1 2 3 4

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

0.E+00

2.E+07

4.E+07

6.E+07

8.E+07

1.E+08

1.E+08

1.E+08

2.E+08

0 1 2 3 4

In

te
rm

e
d

ia
te

 R
es

u
lt

s

Figure 5.11 Average execution time and average number of Intermediate results for queries
on the Mondial database increasing the number of cohesiveness constrains from 0 to 4.

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

5.E+04

6.E+04

9 14 20 26

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Cohesive Keyword Query Flat Keyword Query

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

9 14 20 26

In

te
rm

ed
ia

te
 R

es
u

lt
s

Cohesive Keyword Query Flat Keyword Query

Figure 5.12 Execution time and number of intermediate results a query on the IMDB
database increasing the total number of query keyword occurrences.

The only exception is the average execution time of the queries on the IMDB database

when the number of cohesiveness constraints increases from 3 to 4. In this case, the average

execution time increases instead of decreasing. This can be explained by the fact that even

though there is a slight decrease in the number of intermediate results in this case, the

increase in the overhead for checking the satisfaction of the atomic cohesiveness constraints

(which are now more numerous) in each intermediate pattern graph exceeds the benefit

from the reduction of the number of intermediate pattern graphs.

Scalability varying the total number of keyword occurrences of the cohesive

query in the database. Finally, we run experiments to measure how the query execution

time and the number of intermediate results scale when the total number of keyword

94

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

10 20 30 40

Ex
ec

u
ti

o
n

 T
im

e
(m

s)

Cohesive Keyword Query Flat Keyword Query

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

10 20 30 40

In

te
rm

ed
ia

te
 R

es
u

lt
s

Cohesive Keyword Query Flat Keyword Query

Figure 5.13 Execution time and number of intermediate results a query on the Mondial
database increasing the total number of query keyword occurrences.

occurrences of the cohesive query in the database varies. In this last experiment we also

compared the results with those of the corresponding flat keyword query.

Figures 5.12 and 5.13 show the execution time and the number of intermediate pattern

graphs of query on the two databases when the total number of occurrences of the query

increases from 9 to 26 in the IMDB database and from 10 to 40 in the Mondial database.

The scale of the y-axis in the plots that display the number of intermediate pattern graphs

increases is logarithmic. As one can see, both metrics scale smoothly with the cohesive

query, much smoother than with the corresponding flat keyword query.

95

Conclusion. In summary, cohesive keyword queries execute much faster than the

corresponding flat keyword queries as they produce far fewer intermediate pattern graphs.

They also consume substantially less memory space and they scale much smoother than flat

keyword queries on larger expanded schema graphs.

96

CHAPTER 6

CONCLUSION

Keyword search has been seen for several years as an attractive way for querying data with

some form of structure. Indeed, it allows simple users to extract information from databases

without mastering a complex structured query language and without having knowledge of

the schema of the data. It also allows for the integrated search of heterogeneous data

sources. However, as keyword queries are ambiguous and not expressive enough, keyword

search cannot scale satisfactorily on big datasets (performance scalability problem) and

the answers are, in general, of low accuracy (query answer quality problem). Therefore,

flat keyword search alone cannot efficiently return high-quality results on large data with

structure. In this dissertation, we improved keyword search over databases by designing

efficient keyword query evaluation algorithms, by exploiting semantic information of the

data, and by extending flat keyword queries with semantic information.

We designed an algorithm for keyword search over graph databases which exploits

techniques developed for mining tree patterns. We focused on avoiding the generation

of redundant intermediate results when the keyword queries are evaluated, which is

the bottleneck of query evaluation algorithms. We defined a canonical form for the

isomorphic representations of the intermediate results and we showed how it can be

checked incrementally and efficiently. We devised rules that prune the search space without

sacrificing completeness and we integrated them in a query evaluation algorithm. Our

experiments show that our algorithm outperforms previous algorithms by one to two

orders of magnitude in terms of efficiency and memory consumption and displays smooth

scalability.

97

Furthermore, we leveraged semantic information of the data to address the afore-

mentioned problems and improve the effectiveness and efficiency of keyword search on

relational databases. We follow a schema-based approach for evaluating keyword queries

on relational databases, which computes patterns mapped onto the schema graph of the

database. Pattern graphs summarize and cluster query results. They are representatives

for clusters of query results. As such, they are much fewer than the actual query results

and can be translated into SQL queries on the relational database which can produce the

results in the cluster. Contrary to traditional methods, our novel approach introduces

schema components in the pattern graphs, which also capture key-foreign key relationships

and inclusion relationships. We employed information-retrieval-based and semantics-based

techniques for scoring query pattern graphs and design an efficient top-k algorithm for

computing the patterns graphs of a keyword query. An extensive experimental evaluation

demonstrates the effectiveness of our approach and the time and memory efficiency of our

algorithm.

Finally, we studied employing keyword queries enhanced with cohesiveness constraints

(cohesive keyword queries) to query relational databases. Cohesive keyword queries bridge

the gap between flat keyword queries and structured queries. Cohesive queries allow the user

to flexibly and effortlessly convey her intention using cohesive keyword groups. A cohesive

group of keywords in a query indicates that the keywords of the group should form a cohesive

whole in the query results. We formally defined semantics for cohesive queries on relational

databases and designed an efficient evaluation algorithm which relies on the extended

database schema to generate pattern graphs that satisfy the cohesiveness constraints. Our

experiments demonstrate the efficiency of our algorithm and the effectiveness of cohesive

keyword queries in improving the result quality and in pruning the space of pattern graphs

98

compared to flat keyword queries. Most importantly, these improvements are attained

without compromising the simplicity and convenience of traditional keyword search.

The work presented in this dissertation can be extended by considering and leveraging

additional semantic information from the relational database. New algorithms will

be then needed for efficiently computing the new pattern graphs. Another research

direction would leverage cohesiveness constraints for exploratory search. The system would

extract and suggest cohesive groups until a cohesive query that best represents the user’s

intention is constructed from an initial flat keyword query. As cohesive queries are data

model independent, this technique can be used for integrated exploratory search of the

heterogeneous data sources.

99

BIBLIOGRAPHY

[1] Hilit Achiezra, Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Exploratory
keyword search on data graphs. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2010, Indianapolis, Indiana, USA,
June 6-10, 2010, pages 1163–1166, 2010.

[2] Sanjay Agrawal, Kaushik Chakrabarti, Surajit Chaudhuri, Venkatesh Ganti, Arnd Christian
Konig, and Dong Xin. Exploiting web search engines to search structured databases.
In Proceedings of the 18th international conference on World wide web, pages 501–
510. ACM, 2009.

[3] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. Dbxplorer: A system for keyword-
based search over relational databases. In Data Engineering, 2002. Proceedings.
18th International Conference on, pages 5–16. IEEE, 2002.

[4] Cem Aksoy, Ananya Dass, Dimitri Theodoratos, and Xiaoying Wu. Clustering query results
to support keyword search on tree data. In Web-Age Information Management
- 15th International Conference, WAIM 2014, Macau, China, June 16-18, 2014.
Proceedings, pages 213–224, 2014.

[5] Cem Aksoy, Aggeliki Dimitriou, and Dimitri Theodoratos. Reasoning with patterns to
effectively answer XML keyword queries. VLDB J., 24(3):441–465, 2015.

[6] Sihem Amer-Yahia, Emiran Curtmola, and Alin Deutsch. Flexible and efficient XML
search with complex full-text predicates. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Chicago, Illinois, USA, June
27-29, 2006, pages 575–586, 2006.

[7] Sihem Amer-Yahia, Laks V. S. Lakshmanan, and Shashank Pandit. Flexpath: Flexible
structure and full-text querying for XML. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Paris, France, June 13-18, 2004,
pages 83–94, 2004.

[8] Sihem Amer-Yahia and Senjuti Basu Roy. Interactive exploration of composite items.
In Michael H. Böhlen, Reinhard Pichler, Norman May, Erhard Rahm, Shan-Hung
Wu, and Katja Hose, editors, Proceedings of the 21st International Conference on
Extending Database Technology, EDBT 2018, Vienna, Austria, March 26-29, 2018,
pages 513–516. OpenProceedings.org, 2018.

[9] Ricardo Baeza-Yates and Berthier A. Ribeiro-Neto. Modern Information Retrieval - the
concepts and technology behind search, Second edition. Pearson Education Ltd.,
Harlow, England, 2011.

[10] Zhifeng Bao, Yong Zeng, H. V. Jagadish, and Tok Wang Ling. Exploratory keyword search
with interactive input. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015, pages 871–876, 2015.

100

[11] Mikhail Bautin and Steven Skiena. Concordance-based entity-oriented search. Web
Intelligence and Agent Systems: An International Journal, 7(4):303–319, 2009.

[12] Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo Lado, and Yannis
Velegrakis. Keyword search over relational databases: a metadata approach. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data, pages 565–576. ACM, 2011.

[13] Sonia Bergamaschi, Francesco Guerra, and Giovanni Simonini. Keyword search over
relational databases: Issues, approaches and open challenges. In Bridging Between
Information Retrieval and Databases - PROMISE Winter School 2013, Bressanone,
Italy, February 4-8, 2013. Revised Tutorial Lectures, pages 54–73, 2013.

[14] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and Shashank
Sudarshan. Keyword searching and browsing in databases using banks. In Data
Engineering, 2002. Proceedings. 18th International Conference on, pages 431–440.
IEEE, 2002.

[15] Scott Boag, Don Chamberlin, Mary F Fernández, Daniela Florescu, Jonathan Robie, Jérôme
Siméon, and Mugur Stefanescu. Xquery 1.0: An xml query language. 2002.

[16] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Top-k selection queries over relational
databases: Mapping strategies and performance evaluation. ACM Transactions on
Database Systems (TODS), 27(2):153–187, 2002.

[17] Yuan-Chi Chang, Lawrence Bergman, Vittorio Castelli, Chung-Sheng Li, Ming-Ling Lo,
and John R Smith. The onion technique: indexing for linear optimization queries.
In ACM Sigmod Record, volume 29, pages 391–402. ACM, 2000.

[18] Liang Jeff Chen and Yannis Papakonstantinou. Supporting top-k keyword search in xml
databases. In 2010 IEEE 26th International Conference on Data Engineering (ICDE
2010), pages 689–700. IEEE, 2010.

[19] Yi Chen, Wei Wang 0011, Ziyang Liu, and Xuemin Lin. Keyword search on structured and
semi-structured data. In SIGMOD Conference, pages 1005–1010, 2009.

[20] Yi Chen, Wei Wang, and Ziyang Liu. Keyword-based search and exploration on databases.
In 2011 IEEE 27th International Conference on Data Engineering, pages 1380–1383.
IEEE, 2011.

[21] Tao Cheng, Kevin Chen-Chuan Chang, et al. Entity Search Engine: Towards Agile Best-
Effort Information Integration over the Web. PhD thesis, University of Illinois at
Urbana-Champaign, 2007.

[22] Yun Chi, Yirong Yang, Yi Xia, and Richard R. Muntz. Cmtreeminer: Mining both closed
and maximal frequent subtrees. In Advances in Knowledge Discovery and Data
Mining, 8th Pacific-Asia Conference, PAKDD 2004, Sydney, Australia, May 26-28,
2004, Proceedings, pages 63–73, 2004.

[23] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv. Xsearch: A semantic
search engine for xml. In Proceedings of the 29th international conference on Very
Large Databases-Volume 29, pages 45–56. VLDB Endowment, 2003.

101

[24] Bhavana Bharat Dalvi, Meghana Kshirsagar, and S Sudarshan. Keyword search on external
memory data graphs. Proceedings of the VLDB Endowment, 1(1):1189–1204, 2008.

[25] Ananya Dass, Cem Aksoy, Aggeliki Dimitriou, and Dimitri Theodoratos. Exploiting
semantic result clustering to support keyword search on linked data. In Web
Information Systems Engineering - WISE 2014 - 15th International Conference,
Thessaloniki, Greece, October 12-14, 2014, Proceedings, Part I, pages 448–463, 2014.

[26] Ananya Dass, Cem Aksoy, Aggeliki Dimitriou, and Dimitri Theodoratos. Relaxation of
keyword pattern graphs on RDF data. J. Web Eng., 16(5&6):363–398, 2017.

[27] Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. Iqp: Incremental query construction,
a probabilistic approach. In Proceedings of the 26th International Conference on
Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, California, USA,
pages 349–352, 2010.

[28] Elena Demidova, Xuan Zhou, and Wolfgang Nejdl. A probabilistic scheme for keyword-based
incremental query construction. IEEE Trans. Knowl. Data Eng., 24(3):426–439,
2012.

[29] Martin Dillon. Introduction to modern information retrieval. Pergamon, 1983.

[30] Aggeliki Dimitriou, Ananya Dass, Dimitri Theodoratos, and Yannis Vassiliou. Cohesive
keyword search on tree data. In Proceedings of the 19th International Conference
on Extending Database Technology, EDBT, pages 137–148, 2016.

[31] Aggeliki Dimitriou, Dimitri Theodoratos, and Timos Sellis. Top-k-size keyword search on
tree structured data. Information Systems, 47:178–193, 2015.

[32] Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao Zhang, and Xuemin Lin. Finding
top-k min-cost connected trees in databases. In Data Engineering, 2007. ICDE
2007. IEEE 23rd International Conference on, pages 836–845. IEEE, 2007.

[33] Shady Elbassuoni and Roi Blanco. Keyword search over RDF graphs. In Proceedings of the
20th ACM Conference on Information and Knowledge Management, CIKM 2011,
Glasgow, United Kingdom, October 24-28, 2011, pages 237–242, 2011.

[34] Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword search on spatial databases.
In Proceedings of the 24th International Conference on Data Engineering, ICDE
2008, April 7-12, 2008, Cancún, México, pages 656–665, 2008.

[35] Jianhua Feng, Guoliang Li, and Jianyong Wang. Finding top-k answers in keyword search
over relational databases using tuple units. IEEE Transactions on Knowledge and
Data Engineering, 23(12):1781–1794, 2011.

[36] Daniela Florescu, Donald Kossmann, and Ioana Manolescu. Integrating keyword search
into xml query processing. Computer Networks, 33(1-6):119–135, 2000.

[37] Lise Getoor and Christopher P Diehl. Link mining: a survey. Acm Sigkdd Explorations
Newsletter, 7(2):3–12, 2005.

102

[38] Konstantin Golenberg, Benny Kimelfeld, and Yehoshua Sagiv. Keyword proximity search
in complex data graphs. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 927–940, 2008.

[39] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram. Xrank: Ranked
keyword search over xml documents. In Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 16–27. ACM, 2003.

[40] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. Blinks: ranked keyword searches
on graphs. In Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 305–316. ACM, 2007.

[41] Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou. Efficient ir-style keyword
search over relational databases. In Proceedings of the 29th international conference
on Very Large Databases-Volume 29, pages 850–861. VLDB Endowment, 2003.

[42] Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in relational
databases. In VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases, pages 670–681. Elsevier, 2002.

[43] Haoliang Jiang, Haixun Wang, S Yu Philip, and Shuigeng Zhou. Gstring: A novel approach
for efficient search in graph databases. In Data Engineering, 2007. ICDE 2007.
IEEE 23rd International Conference on, pages 566–575. IEEE, 2007.

[44] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S Sudarshan, Rushi Desai, and
Hrishikesh Karambelkar. Bidirectional expansion for keyword search on graph
databases. In Proceedings of the 31st international conference on Very Large
Databases, pages 505–516. VLDB Endowment, 2005.

[45] Mehdi Kargar, Aijun An, Nick Cercone, Parke Godfrey, Jaroslaw Szlichta, and Xiaohui Yu.
Meaningful keyword search in relational databases with large and complex schema.
In Data Engineering (ICDE), 2015 IEEE 31st International Conference on, pages
411–422. IEEE, 2015.

[46] Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F Naughton, and Raghu Ramakrishnan.
On the integration of structure indexes and inverted lists. In Proceedings of the 2004
ACM SIGMOD international conference on Management of data, pages 779–790.
ACM, 2004.

[47] Thuy Ngoc Le and Tok Wang Ling. Survey on keyword search over XML documents.
SIGMOD Record, 45(3):17–28, 2016.

[48] Fei Li, Tianyin Pan, and Hosagrahar Visvesvaraya Jagadish. Schema-free SQL. In
International Conference on Management of Data, SIGMOD 2014, Snowbird, UT,
USA, June 22-27, 2014, pages 1051–1062, 2014.

[49] Guoliang Li, Chen Li, Jianhua Feng, and Lizhu Zhou. SAIL: structure-aware indexing for
effective and progressive top-k keyword search over XML documents. Information
Sciences, 179(21):3745–3762, 2009.

[50] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. EASE:
an effective 3-in-1 keyword search method for unstructured, semi-structured and

103

structured data. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
pages 903–914, 2008.

[51] Yunyao Li, Cong Yu, and H. V. Jagadish. Enabling schema-free xquery with meaningful
query focus. VLDB J., 17(3):355–377, 2008.

[52] Yunyao Li, Cong Yu, and HV Jagadish. Schema-free xquery. In Proceedings of the Thirtieth
international conference on Very Large Databases-Volume 30, pages 72–83. VLDB
Endowment, 2004.

[53] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis. Data
Exploration Using Example-Based Methods. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2018.

[54] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis. Example-
based search: a new frontier for exploratory search. In Proceedings of the 42nd
International ACM SIGIR Conference, pages 1411–1412, 2019.

[55] Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury. Effective keyword search
in relational databases. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 563–574. ACM, 2006.

[56] Jian Liu and D. L. Yan. Answering approximate queries over XML data. IEEE Trans.
Fuzzy Systems, 24(2):288–305, 2016.

[57] Xiping Liu, Changxuan Wan, and Lei Chen. Returning clustered results for keyword search
on XML documents. IEEE Trans. Knowl. Data Eng., 23(12):1811–1825, 2011.

[58] Ziyang Liu and Yi Chen. Return specification inference and result clustering for keyword
search on XML. ACM Trans. Database Syst., 35(2):10:1–10:47, 2010.

[59] Ziyang Liu and Yi Chen. Processing keyword search on XML: a survey. World Wide Web,
14(5-6):671–707, 2011.

[60] Xinge Lu, Dimitri Theodoratos, and Aggeliki Dimitriou. Leveraging pattern mining
techniques for efficient keyword search on data graphs. In International Conference
on Web Information Systems Engineering, pages 98–114. Springer, 2020.

[61] Yi Luo, Xuemin Lin, Wei Wang, and Xiaofang Zhou. Spark: top-k keyword query in
relational databases. In Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 115–126. ACM, 2007.

[62] Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo. Approximating expressive
queries on graph-modeled data: The gex approach. Journal of Systems and Software,
109:106–123, 2015.

[63] Federica Mandreoli, Riccardo Martoglia, Giorgio Villani, and Wilma Penzo. Flexible query
answering on graph-modeled data. In EDBT 2009, 12th International Conference
on Extending Database Technology, Saint Petersburg, Russia, March 24-26, 2009,
Proceedings, pages 216–227, 2009.

104

[64] Gary Marchionini. Exploratory search: from finding to understanding. Communications of
the ACM, 49(4):41–46, 2006.

[65] Khanh Nguyen and Jinli Cao. Top-k Answers for XML Keyword Queries. WWW, 15(5-
6):485–515, 2012.

[66] Zaiqing Nie, Ji-Rong Wen, and Wei-Ying Ma. Object-level vertical search. In CIDR, pages
235–246, 2007.

[67] Siegfried Nijssen and Joost N. Kok. Efficient discovery of frequent unordered trees. In
1st International Workshop on Mining Graphs, Trees and Sequences, pages 55–64,
2003.

[68] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql.
In International semantic web conference, pages 30–43. Springer, 2006.

[69] Jeffrey Pound, Ihab F. Ilyas, and Grant E. Weddell. Expressive and flexible access to
web-extracted data: a keyword-based structured query language. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, June 6-10, 2010, pages 423–434, 2010.

[70] Gerard Salton, Edward A Fox, and Harry Wu. Extended boolean information retrieval.
Technical report, Cornell University, 1982.

[71] Dennis Shasha, Jason TL Wang, and Rosalba Giugno. Algorithmics and applications of tree
and graph searching. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 39–52. ACM, 2002.

[72] Amit Singhal, Chris Buckley, and Manclar Mitra. Pivoted document length normalization.
In Acm sigir forum, volume 51, pages 176–184. ACM New York, NY, USA, 2017.

[73] Amit Singhal et al. Modern information retrieval: A brief overview. IEEE Data Engineering
Bulletin, 24(4):35–43, 2001.

[74] Amit Singhal, Gerard Salton, Mandar Mitra, and Chris Buckley. Document length
normalization. Information Processing & Management, 32(5):619–633, 1996.

[75] Sandeep Tata and Guy M. Lohman. SQAK: doing more with keywords. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008, pages 889–902, 2008.

[76] Arash Termehchy and Marianne Winslett. Keyword search over key-value stores. In
Proceedings of the 19th International Conference on World Wide Web, WWW 2010,
pages 1193–1194, 2010.

[77] Dimitri Theodoratos and Xiaoying Wu. Assigning semantics to partial tree-pattern queries.
Data & Knowledge Engineering, 64(1):242–265, 2008.

[78] Thanh Tran, Haofen Wang, Sebastian Rudolph, and Philipp Cimiano. Top-k exploration
of query candidates for efficient keyword search on graph-shaped (RDF) data. In
Proceedings of the 25th International Conference on Data Engineering, ICDE 2009,
March 29 2009 - April 2 2009, Shanghai, China, pages 405–416, 2009.

105

[79] Haixun Wang and Charu C Aggarwal. A survey of algorithms for keyword search on graph
data. In Managing and Mining Graph Data, pages 249–273. Springer, 2010.

[80] Ryen W. White and Resa A. Roth. Exploratory Search: Beyond the Query-Response
Paradigm. Synthesis Lectures on Information Concepts, Retrieval, and Services.
Morgan & Claypool Publishers, 2009.

[81] Xiaoying Wu, Stefanos Souldatos, Dimitri Theodoratos, Theodore Dalamagas, Yannis
Vassiliou, and Timos K. Sellis. Processing and evaluating partial tree pattern queries
on XML data. IEEE Trans. Knowl. Data Eng., 24(12):2244–2259, 2012.

[82] Dong Xin, Yeye He, and Venkatesh Ganti. Keyword++: A framework to improve keyword
search over entity databases. PVLDB, 3:711–722, 2010.

[83] Yanwei Xu, Yoshiharu Ishikawa, and Jihong Guan. Effective top-k keyword search in
relational databases considering query semantics. In Advances in Web and Network
Technologies, and Information Management, pages 172–184. Springer, 2009.

[84] Xifeng Yan, Philip S Yu, and Jiawei Han. Substructure similarity search in graph databases.
In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data, pages 766–777. ACM, 2005.

[85] Cong Yu and H. V. Jagadish. Querying complex structured databases. In Proceedings of
the 33rd International Conference on Very Large Databases, University of Vienna,
Austria, September 23-27, 2007, pages 1010–1021, 2007.

[86] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword search in relational databases: A survey.
IEEE Data Engineering Bulletin, 33(1):67–78, 2010.

[87] Mohammed Javeed Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the
Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, July 23-26, 2002, Edmonton, Alberta, Canada, pages 71–80, 2002.

[88] Mohammed Javeed Zaki. Efficiently mining frequent embedded unordered trees.
Fundamenta Informaticae, 66(1-2):33–52, 2005.

106

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: State of the Art
	Chapter 3: An Algorithm for Keyword Search on Graphs
	Chapter 4: Leveraging Schema Information for Semantic Keyword Search Over Structured Databases
	Chapter 5: Semantics and Evaluation of Cohesive Keyword Queries On Structured Databases
	Chapter 6: Conclusion
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

