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ABSTRACT

TOWARDS PRACTICAL HOMOMORPHIC ENCRYPTION AND
EFFICIENT IMPLEMENTATION

by
Gyana R. Sahu

Cloud computing has gained significant traction over the past few years and its
application continues to soar as evident from its rapid adoption in various industries.
One of the major challenges involved in cloud computing services is the security
of sensitive information as cloud servers have been often found to be vulnerable to
snooping by malicious adversaries. Such data privacy concerns can be addressed to a
greater extent by enforcing cryptographic measures. Fully homomorphic encryption
(FHE), a special form of public key encryption has emerged as a primary tool in
deploying such cryptographic security assurances without sacrificing many of the
privileges of working with data in cleartext. In brief, a FHE scheme allows for
computation of arbitrary functions on encrypted data stored on cloud and retrieve
results in encrypted form.

In this dissertation, construction of various Proxy Re-encryption (PRE) schemes
based on FHE schemes are presented and their parameter selection leading to secure
instantiation discussed. PRE is a valuable cryptographic primitive that enables users
to exchange information in an untrusted environment via a proxy.

In the second line of work, bootstrapping algorithms for FHE schemes and
their efficient implementation in PALISADE lattice cryptography software library
is presented. Originally proposed by Gentry, bootstrapping plays a central role
in extending a somewhat homomorphic encryption (SHE) scheme towards full
homomorphism. Several novel techniques to extend bootstrapping algorithms for

larger secret key bounds, plaintext modulus and other FHE parameters are discussed.



Despite several advances and nearly a decade of research, efficiency of FHE
schemes still remains one of the primary concern in deploying them in real-life
applications. These concerns are addressed in the last line of work by demonstrating
practical implementation of PRE schemes and bootstrapping algorithms on various
heterogeneous GPGPU computing platforms. Since FHE schemes fall into the
category of “embarrassingly parallel” computing workloads, the massive computing
power of GPUs consisting of multiple processors can be leveraged to result in multiple
order of improvement in performance. To aid this effort, parallel NTT algorithms are

designed and various other optimizations suitable for GPU architectures discussed.
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CHAPTER 1

INTRODUCTION

The field of cryptology revolves around the study of techniques for preserving the
privacy of sensitive information in the presence of adversaries. The early days
of cryptology primarily focused on confidentiality of information by converting a
message (or plaintext) into an “unintelligible” form by the process of encryption
and converting them back by decryption. While this was sufficient for establishing
secure communication links, researchers soon realized the need for other advanced
cryptographic primitives which could enable computation of functions on confidential
inputs between mutually distrusting parties while ensuring correctness of the outputs.
Among the many possible solutions to this problem, fully homomorphic encryption
is probably the simplest (conceptually) which can be applied to a wide variety of
applications.

The notion of fully homomorphic encryption (FHE) was introduced by Rivest et
al. [RADTT78| in 1978 under the name “privacy homomorphism”. It was postulated
that by using a special form of encryption one can outsource computations while
keeping the data secure under the security constraints governed by the underlying
encryption scheme. As an example, the authors considered a loan company interested
in storing encrypted records with a commercial time-sharing service. When required
to fetch some meaningful information the time-sharing system, using the properties
of privacy homomorphism, computes on encrypted data stored on private data banks
and sends back ciphertext which can only be decrypted by the loan company. This
flexible paradigm of computation restricts the time-sharing service from accessing
sensitive information while retaining the capability to extract desired information

via homomorphic computations. To support their hypothesis the authors provided



examples of privacy homomorphisms exhibited by basic RSA encryption scheme with
the caveat that instantiations of such scheme would be cryptographically weak and can
be easily broken by chosen plaintext attack. Since construction of such an encryption
scheme was not known at the time, its existence was left as an open problem.

In the following years, multiple encryption schemes have been presented which
were endowed with homomorphic properties to some extent or in other words were
partially homomorphic in nature however, achieving full homomorphism seemed to
be a much difficult problem. To understand the significance of homomorphisms
in cryptosystems and the role they play in cryptographic applications, we need
to look into the abstract definition of homomorphic encryption. More formally,
homomorphic encryption is a class of encryption scheme that allows elementary
operations of addition and multiplication on encrypted messages without the necessity
of decryption. Given such an encryption scheme (I1y ) with encryption represented as
a function F () then, using the homomorphic properties we can produce addition and
multiplication as fuqq (E (mo) , E (my)) — E (mg + my) and fue (E (mg) , E (my)) —
E (mg % my), respectively. Now, depending on availability and limitation on the
number of application of the operator, the encryption scheme (Ilgg) can be classified
as: partially, somewhat (SHE) or fully homomorphic encryption (FHE) scheme.

Since the early days of public key cryptography, most of the encryption
schemes were partially homomorphic in nature as they only allowed homomorphic
multiplication or only homomorphic addition and further in some cases, only a limited
number of homomorphic operations could potentially be applied. For example, the
well known (unpadded) RSA cryptosystem is partially homomorphic in nature as they
only support homomorphic multiplication of ciphertexts. ElGamal [EIG85] encryption
scheme is another cryptosystem which supports such homomorphic multiplications.
The first semantically secure additive homomorphic encryption scheme was proposed

by Goldwasser and Micali [GMS82] which enables addition over Zs or XOR operations.



Another example of additive homomorphic encryption scheme is the well known
Paillier cryptosystem [Pai99] which supports both addition of ciphertexts and
scalar multiplication on ciphertexts. It can be noted that even in the absence of
multiplication operator many privacy preserving applications have been developed
on Paillier cryptosystem such as biometrics with fingerprints and face recognition
[EHKMT11l, BBCT10, [EFGT09, [SSW09], medical data processing [YBGT15], and
different types of user matching applications [ZZZ713, [GR15]. The first scheme
to support both homomorphic addition and multiplication is the Boneh-Goh-Nissim
cryptosystem [BGNO5S| which allows an arbitrary number of additions along with a
single multiply without growing the ciphertext size.

A major limitation of these partially homomorphic encryption scheme is their
inability to take part in higher order polynomial functions. In some trivial cases
(e.g., computation of squared Euclidean distances using Paillier encryption scheme)
partially homomorphic encryption scheme can still be used at the expense of
pre-computing certain inputs however, such solutions require greater coordination
between the data providers and further efficiency can easily be degraded because
of bottlenecks in network communication. A better and more flexible choice in
such scenario is a somewhat homomorphic encryption scheme. In such encryption
schemes, a finite number of addition and multiplication operators can be applied
on encrypted inputs. A class of schemes known as “Polly Cracker” [LAVMPT09,
AFEP11] introduced in the early 1990s were the first to be considered as somewhat
homomorphic encryption scheme. These schemes are based on the hardness of
computing remainders modulo an ideal over multivariate polynomial rings and use
Grobner bases as trapdoor information. However, almost all of these schemes have
been broken and establishing security of these encryption schemes is a long-standing

open research problem. Furthermore, Polly Cracker encryption schemes suffered from



the problem of ciphertext expansion since homomorphic operations led to exponential
growth in ciphertext size.

In his breakthrough seminal work, Gentry [G™09] presented the first plausible
construction of a fully homomorphic encryption (FHE) scheme based on the ideal
coset problem over ideal lattices that supports the evaluation of an arbitrary number
of both additions and multiplications. Gentry’s construction initially begins with a
somewhat homomorphic encryption (SHE) scheme that works with a limited number
of homomorphic operations or in other words the scheme is capable of evaluating
low degree polynomials homomorphically. To achieve full homomorphism, Gentry’s
blueprint introduced an ingenious step of bootstrapping which entails running the
decryption circuit on ciphertext homomorphically using encrypted secret keys. In
the following section, we give an outline on the first Fully homomorphic encryption

scheme (FHE) introduced by Gentry.

1.1 Gentry’s FHE Scheme
Gentry’s construction of FHE scheme starts off with the key realization that the
scheme should have a decryption algorithm of low circuit complexity and further the
decryption algorithm should have circuit complexity in NC (problems that can be
efficiently solved in poly-logarithmic time on a parallel computer). The reason behind
this realization is that for a scheme to be bootstrappable homomorphic capacity
of the scheme should be higher than the depth of decryption circuit or in other
words the decryption algorithm should have a shallow depth. This immediately
rules out approaches taken by other traditional encryption schemes based on modular
exponentiation or pairing. In particular, the underlying mathematical object chosen
to create a SHE scheme are ideal lattices as they inherently possess additive and
multiplicative homomorphism properties. An ideal I is simply a subset of ring R

(algebraic objects closed under addition and multiplication). It is suffixed with the



term “lattices” to emphasize the fact that security of the SHE scheme is based on hard
problems over lattices. Concretely, in his construction Gentry used the polynomial
quotient ring R = Z[z|/ (f (x)) as ideal lattices where f (x) is a monic polynomial of
degree n.

Gentry’s scheme uses “good” basis B3¥ as secret keys which are relatively short
and nearly orthogonal vectors. Public key consists of some “bad” basis B?k of an
ideal lattice J along with a fixed basis B; of an ideal lattice I such that I and J
are relatively prime. To encrypt a message m in plaintext space P = {0,1}, the
encrypter first adds a random ideal ¢ € I and sends (m + i) mod ng as ciphertext.
A correctly formed ciphertext of the scheme has the form ¢ = m + i+ j for i € [
and j € J. Since ciphertext c¢ is an ideal lattice represented as a residue polynomial,
coefficients of ¢ can alternatively be represented as a coefficient vector (co, -+, ¢p_1).
The polynomial term m + ¢ is considered as a “noise” parameter and generated
from a narrow distribution D such that the ciphertext ¢ belongs to the ring R
(I + J) with respect to B5* and not to individual ideals I and J. Furthermore,
after the modulo reduction with the public basis B?k this polynomial term m + ¢ is
indistinguishable from random uniform distribution as per the ideal coset problem
(ICP). For decryption, one simply removes the ideal j with the help of secret key
B3k, In the concrete instantiation, the secret key is again a polynomial v5¢ € J~1 and
decryption is shown as m’' = ¢ — [v$" x ¢] mod By.

Homomorphic addition and multiplication defined on ciphertexts work correctly
as they do not change the essential form of ideals. To understand this further, we
fix the ideal lattice as even (I = 2) and now, ciphertext can be shown in a simple
form ¢ = m + 2i. Homomorphic addition of two ciphertexts, c¢q (= mg + 2ip) and
¢1 (= myq + 2iy) in this scheme is quite intuitive as the resultant ciphertext is in the
form cuqq = mo + mq + 2 (i + ¢1). Similarly, homomorphic multiplication of the two

ciphertexts results in a polynomial ¢,y = mg - my + 2 (igmy + iymg + 2igiy). We can



observe that the error term increases by small amounts in the case of homomorphic
addition however, for homomorphic multiplication the error increases quadratically.
Decryption of ciphertext still recovers the plaintext successfully as long as this error
is within the parallelepiped formed by the basis of secret key, i.e., P (Bﬁk) In
the absence of a bootstrapping procedure, this implies that a fixed depth function
(dominated by number of multiplications) can only be evaluated with this scheme so
that the decryption error always lies within some predetermined radius.

In a clever move, Gentry then transforms this scheme with limited homomorphism
into a fully homomorphic scheme by introducing a bootstrapping procedure. However,
running a bootstrapping procedure or homomorphic decryption of a ciphertext in the
initial scheme is not possible because of the requirement of a large circuit depth. This
problem specifically arises due to multiplication and rounding of two k bit integers
which take atleast O (logk) depth of computation. To bring down the decryption
complexity under the homomorphic capacity of the initial scheme, Gentry introduced
a squashing step of the decryption circuit. In this step, he places a hint 7 in the public
key which consists of a set of vectors that has a (secret) sparse subset of vectors which
adds up to the secret key, v3*. Secret key in the sparse vector is considered to be
secure under the computational hardness assumption of sparse subset sum problem
(SSSP). To re-encrypt a ciphertext, first it is expanded using the vectors from the
hint 7. Essentially, the expansion step pre-processes a ciphertext so that it can
be decrypted by a shallower circuit. This expanded ciphertext is finally decrypted
homomorphically in the squashed circuit simply by adding up appropriate indices of
expanded ciphertext. This refreshing procedure is considered successful if the noise
in the final ciphertext is lower than that in the initial ciphertext.

Implementations: Variants of Gentry’s theoretical FHE scheme were imple-

mented by Smart and Vercauteren [SVI10] and Gentry and Halevi [GHI1I]. In [SVI0]

Smart and Vercauteren present a simplified version of Gentry’s SHE scheme with



greatly reduced key sizes and ciphertext sizes. In their construction of SHE scheme,
they replace the ideal lattices with principal prime ideals or algebraic number fields.
These prime ideals can still be represented as n dimensional Z basis and hence, they
base the semantic security of their scheme on computational hardness of Polynomial
Coset Problem (PCP), a problem very similar to Ideal Coset Problem (ICP). Most
of the times these prime ideals are kept as pair of integers which allows to represent
the ciphertext and keys in a compact form. Secret key of the scheme consists of
an inverse of a small generator of the principal prime ideal while the public key
is an unique root of an integer polynomial corresponding to the generator ideal.
Encryption of an plaintext P € {0, 1} is simply the evaluation of sum polynomial of a
randomized low norm polynomial and binary encoded polynomial at the value given
by public key. Further, homomorphic addition and multiplication of ciphertexts are
associated with isomorphism properties of residue field resulting from factorization
of prime ideal irreducible polynomial. As a result, homomorphic operations simply
map to addition and multiplication of integers in finite field. Next, following Gentry’s
blueprint the authors describe a bootstrapping procedure on the squashed decryption
circuit. However, their estimate of depth of squashed decryption circuit for some
reported lattice dimension reveals that bootstrapabilty cannot be achieved because
of insufficient homomorphic capacity.

One of the drawback of this SHE scheme is that the key generation algorithm
is associated with a very large computational overhead because of the requirement
of primality testing on a large number of candidates. Further, the lattice dimensions
selected in their work estimates prime ideals with very high bit width modulus.
Because of these two reasons, they were unable to generate keys in dimensions
greater than 2048. Moreover, the impractical runtimes associated with key generation
prevents their scheme to support bootstrapping as their estimate suggests to use

lattices of dimension at least n = 227,



In a followup work |[GHI1], Gentry and Halevi describe a more practical variant
of Gentry’s fully homomorphic encryption scheme. A number of optimization steps
were proposed in their work to reduce the key-generation complexity thereby, making
it possible for the scheme to implement bootstrapping functionality. Similar to the
Smart and Vercauteren [SV10] approach, construction of this scheme retains the
usage of principal ideal lattices in the ring of polynomials, however they remove
the requirement of a prime determinant lattice. The key generation phase consists of
the following steps:

KeyGen: Sample a random vector ¢ of dimension n associated with a rotational
basis V' (rows of the basis are negacyclic rotations of #'). The vector ¢ is implicitly
associated with the polynomial v(z) mod f,(x) where f,(z) is a monic polynomial of
the form 2" +1. To compute the secret key a scaled inverse of v(x) mod f,(x) = w(x)
is computed such that w(z) x v(x) = d where d is the determinant of the lattice £ (V).
Although the polynomial w(z) can be found by extended Euclidean-GCD algorithm,
the authors describe a more efficient procedure for computing the inverse polynomial
via FFTs with O (nlogn) computational complexity. The secret key is considered to
be correctly formed if the Hermite normal form of V satisfies a special form, namely
all except the leftmost column equal to the identity matrix. This further implies
that the lattice £ (V) contains a vector of the form (—r,1,0,---,0). Secret key is
formed by the pair (U, @) however, it suffices to store only a single odd coefficient of
w. Similarly, the public is composed of the Hermite normal form V' but only a pair
of integers d, r are kept as its representative.

Encryption: To encrypt a single bit b € {0, 1}, we choose a random binary noise
vector @ and set @ = 2u + b - €;. The ciphertext is then formed by the evaluation
of polynomial a(x) at the point r. Since evaluation of polynomial is expensive,
the authors discuss a batching procedure where k plaintexts can be encrypted

simultaneously in time O <\/ k >



Decryption: To decrypt a ciphertext ¢ € Z; we compute the plaintext bit, b =
[c - w;]g mod 2.

Recryption: Recryption procedure refreshes a “dirty” ciphertext by reducing the
expanded noise incurred due to homomorphic computations. This procedure stems
from Gentry’s proposed squashing technique i.e., to modify the decryption circuit
of the SHE scheme so that bootstrapping can be performed with a shallower
depth. To facilitate bootstrapping, a hint is added to the public key which contains
an instance of the sparse subset sum problem. This set consists of elements
{z; €Zq:i=1,2,--- S} such that there exists a very sparse subset of x;’s that
sums up to the secret key w. The characteristic vector associated with the sparse
subset is a bit vector & = (o1, -+, 0g) such that ) . 0;z; = w mod d. To begin the
recryption procedure, a ciphertext ¢ € Z, is first combined with the z;’s to generate
y;’s such that y; = (cx;). Next, the homomorphic decryption is executed as per the

modified equation:

S
Dc7d = [Z 0iY;
=1

S S

=1

Implementation of the FHE scheme was carried out on a server grade platform
with lattice dimensions ranging from n = 512 to n = 32768. Since the parameter
selected for these dimensions estimated integers with bit size much larger than
64-bits, the implementation relied on GNU GMP library and Shoup’s NTL library.
Public key size for the select parameters and lattice dimensions is quite large on
account of large subset sum bootstrapping keys ranging from 70 MBs to 2.3 GBs.
Further, performance of the bootstrapping or recryption procedure is found to be
quite unsatisfactory with runtimes ranging from 30 second for small dimension to 30

minutes for large dimensions.



1.2 Early Attempts and Evolution of FHE Scheme
Gentry’s plausible construction of FHE scheme and it’s concrete implementations
galvanized the researchers of cryptology community to search for other efficient
constructions. Over the past decade a number of FHE schemes have been proposed
and considerable work has been done to make them practical. Starting from Gentry’s
work these FHE schemes are sometimes classified into three generations of literature.
The first generation comprises of FHE schemes that directly evolved from Gentry’s
theoretical construction of FHE scheme and ideal lattices. These schemes include the
already discussed Smart-Vercauteren implementation, Gentry-Halevi implementation
and the integer arithmetic based simpler FHE scheme of van Dijk et al. [DGHV10].
FHE schemes of first generation were found to be rather impractical for implemen-
tation owing to their larger bit lengths and rapidly growing noise. Nonetheless, these
schemes gave an insightful understanding into concrete construction of FHE schemes
and paved the way for creation of more efficient constructions and optimizations. The
second generation of FHE schemes [LTV13, BLLN13, BV11bl BVIiia, BGV14] were
based on improved algebraic structures and stronger hardness assumptions which
translated into better noise controlling techniques and higher efficiency. A common
feature of these schemes is that they deviated from Gentry’s squashing procedure
and eliminated the sparse subset sum assumption. The third generation is mostly
attributed to GSW [GSW13] FHE scheme and it’s RLWE variant Ring-GSW FHE
scheme [KGV16] which further improved the noise growth nature by reducing it to
a asymmetric nature. We further augment the third generation with a number of
subsequent LWE based FHE schemes [DM15, [GINX16, [CGGI16] which leveraged
the asymmetric noise growth property of GSW FHE scheme to enable bootstrapping
procedure in a pragmatic manner. In the next couple of subsections we present a

brief overview of FHE schemes of these three generations.
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1.2.1 The First Generation of FHE Schemes

In [DGHV10|, van Dijk et al. presented a FHE scheme over integers using elementary
modular arithmetic. The scheme was conceptually simpler, because it operated on
integers instead of ideal lattices over polynomial rings. It was shown that security
of the scheme can be reduced to hardness assumption of approximate-gcd problem,
a problem introduced by Howgrave-Graham [HGOI]. Informally, an instance of this
problem consists of ¢t random large integers {zy,---,x;} where x; = pg; + r; and
recovering the common multiple p is considered to be a hard problem. The scheme
was presented with a message space P = {0,1} but can be easily extended to
support a larger message space. For a security parameter \, the encryption scheme
is parameterized by integers 1 (\),v (A),p(A), 7 (A). The scheme is then composed
of the following algorithms:

KeyGen: An odd integer, p of n-bit is generated and set as the secret key. Public key
is generated by setting x; <—s pg; +1r; where ¢; and r; are sampled as ¢; s ZN[0,27/p)
and r; <—s7Z N (—2°,27). Public key, pk consists of the set of integers (zg, z1, -, Z;).
Encrypt: To encrypt a bit b € {0, 1}, we choose a random subset S C {1,2,--- ,7}
and a random integer r and set the encryption as ¢ < [b +2r 423 ¢ xl}
Decrypt: Decryptpion results in bit & = (¢mod p) mod 2 = (cmod 2) @
(Le/p] mod 2).

Homomorphic addition and multiplication of ciphertexts simply map to corre-
sponding integer addition and multiplication in modulo-zy. It was remarked that
multiplication of ciphertexts roughly doubles the bit length of noise and may result in
decryption error even after a single evaluation. To remedy this problem, an alternative
procedure was explained where noise grows in small amounts using a sequence of
modular reductions. Finally, following Gentry’s squashing strategy the public key

is expanded with subset sum secret key to reduce the decryption circuit depth. It
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was shown theoretically that this step allows to “post-process” or decrypt ciphertext

homomorphically thus achieving bootstrapability.

1.2.2 The Second Generation of FHE Schemes

FHE schemes of the second generation brought in some radical changes and introduced
many optimization techniques. These schemes were based on hardness assumption
of well established lattice problem, LWE [Reg09] and it’s variant RLWE [LPR10].
In addition, the second generation also comprises of FHE schemes such as LTV
[LTV13] and YASHE [BLLNI13] which were based on the NTRU problem [HPS9S]
and arithmetic of cyclotomic polynomials. In the next few subsections, we present a

brief overview of FHE schemes based on NTRU problem and LWE problem.

NTRU FHE Schemes NTRU public key cryptosystems came into existence with
the work of Hoffstein, Pipher and Silverman [HPS98]. The main advantages of
NTRU cryptosystem over other classical encryption schemes were it’s moderate
key sizes, excellent asymptotic performance owing to fast FFT based polynomial
operations in Z,[X]/(X™ —1) and conjectured resistance to quantum computers.
Stehlé and Steinfeld [SST1] later showed a modified NTRU encryption scheme that is
considered to be IND-CPA secure. Specifically, they replaced the polynomial ring with
R =7,X]/ (X 2 4 1) and suggested the secret key to be sampled from a discrete
Gaussian with very large standard deviation (= ¢'/?) so that public key distribution
is statistically close to uniform. However, such modification leaves their scheme with
little or no homomorphic capabilities. Lopez, Tromer and Vaikuntanathan [LTV13]
showed a transformation of Stehlé and Steinfeld NTRU scheme to obtain a fully
homomorphic encryption scheme by basing security on decisional small polynomial
ratio (DSPR) assumption in addition to the RLWE security assumption. Another
important property of this scheme is that the LTV FHE scheme can evaluate

homomorphic functions on ciphertexts encrypted under a number of different and
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independently generated keys making the scheme mutikey fully homomorphic. Other
notable optimizations shown in this work were the application of modulus switching
and key-switching techniques borrowed from previous literatures [BGV14, BV11b].
In a subsequent work, [BLLNT3| Bos et al. presented another NTRU modified scheme
dubbed as YASHE where the authors removed the non-standard DSPR security
assumption by adopting polynomial tensoring techniques. The polynomial tensoring
technique, first introduced in the work of Brakerski [Bral2], was used to construct a
scale invariant FHE scheme similar to BGV FHE scheme. In brief, scale variance is a
sort of noise management technique which allows to keep a single modulus as opposed
to a ladder of moduli found in the parameters of BGV [BGV14] FHE scheme. We
briefly summarize LTV [LTV13] and YASHE [BLLN13] FHE schemes as follows:
LTV FHE scheme The scheme differs from the original NTRU encryption scheme
[HPS9§] in the usage of polynomial rings of the form R = Z[X]/(X™ + 1), where n is
a power of two. The scheme is parameterized by a security factor A as follows:
e lattice dimension, n = n (\).

e plaintext modulus p.

e a prime ciphertext modulus ¢ = ¢ (\) such that p, ¢ are relatively prime.
e a B-bounded distribution x over R, B < gq.

LTV encryption scheme comprises of the following operations:

KeyGen: We sample polynomials f’, g <—sx and set f = pf’+1 so that f =1 mod p.
Polynomial f’ should be sampled in a way so that f~! exists and if this is not the
case then we re-sample f’. Finally we set secret key, sk and public key, pk as pk =
h=pgf~' € R,and sk=f € R.

Encrypt: Plaintext space of the scheme is P € R, which supports encryption of
integers in Z,. To encrypt a message m € R, we sample polynomials s,e < x and

output the ciphertext ¢ = hs + pe + m € R,,.
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Decrypt: To decrypt the ciphertext ¢ with secret key f we compute m’ as follows
m’ = (fe mod ¢) mod p.

Homomorphic evaluations of addition and multiplication directly map to
respective operations in cyclotomic polynomial domain. Since multiplication of
polynomials leads to quadratic growth in noise it is generally recommended to keep
a ladder of moduli (of length equal to depth D) and perform modulus switching
after each homomorphic evaluation or levels. Another problem associated with
multiplication is that the resulting ciphertext can no longer be decrypted with the

original secret key. This can be seen from the following equation.

<Cl78> ° <027S> - <Cl ® Co, S ® S> - <C’mult78 ® S>

From the above equation, it is the clear that the ciphertext resulting from homomorphic
multiplication can only be decrypted with the tensored secret key. To normalize the
ciphertext so that it can be decrypted with the original secret key an invocation of
key switching procedure is required. Key switching procedure is aided by augmenting
the public key with an evaluation key generated from original secret key and tensored
secret key. Further, in a leveled LTV FHE scheme these key switching hints should
be generated for each level separately.

YASHE FHE Scheme Construction of YASHE [BLLN13] FHE scheme is very
similar to LTV scheme but mainly differs by the usage of a wide discrete Gaussian
Xkey to avoid DSPR assumption and polynomial tensoring technique for homomorphic
multiplication. In the following, we present a brief overview of the construction of
YASHE scheme.

The scheme operates on a cyclotomic ring R = Z[X]/®,, (X), ciphertext

modulus ¢ and plaintext modulus p with 1 < p < q. The scheme use two different
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discrete Gaussians Xgey and X defined on ring R to generate keys and errors
respectively.

KeyGen: Key generation is very similar to the LTV KeyGen procedure and proceeds
as follows: We sample f', g as f', g <= xkey and set f = pf’ + 1. Polynomial f should
be invertible or else we resample polynomial f’. We compute f~' € R, and set
h = pgf~t. Set public key pk = h and secret key sk = f.

Encrypt: Encryption is a RLWE adaptation of Regev’s encryption scheme as shown
in [Bral2, [FV12]. To encrypt a message m € R, we sample polynomials s, € <= Xerr

and output the ciphertext ¢ as follows:

¢ = [la/p) (m+ ¢+ hs)

Decrypt: To recover message m’ we compute :

o[l ),

where |x] rounds = to the nearest integer.
Homomorphic addition of two ciphertexts ¢; and ¢y is given by cuqq = ¢1 + ¢o.
Homomorphic multiplication of ciphertexts is conducted with the help of evaluation

key, evk which is generated as follows:

w,q

3
Sample €,S <3 Xerr

Y = [ Purg (Dung () ® Dung () + e+ h 5] € R, Set evk =

Here, P,,(-) and D, ,(-) are the generalized base-w PowersOfT'wo and bit
decomposition functions respectively. More in detail, for a polynomial z € R, base-w
bit decomposition outputs a vector (xg, z1,- -, l‘gw,q_1> whereas PowersOfTwo on the

same polynomial returns a vector (zw?, zw!, - - 2%~ 1) such that (D, , (), Pug (y)) =
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xy mod ¢ and ¢, , = |log,, ¢] +2. Using these relinearization operators homomorphic

multiplication of ciphertexts ¢; and ¢y can be shown as follows:

t
Crult = H‘gpw,q (Cl> ® Pw,q (Cz)-H S Rlwa

q

The final step is to remove the tensored secret key by performing key-switching on

this intermediate ciphertext as follows:
Coutr = KeySwitch (¢, evk)

Indeed, the polynomial tensoring technique removes the additional DSPR
assumption by slowing down the noise growth however, this modified scheme ceases
to be multi-key homomorphic. Furthermore, the size of evaluation key is increased

by a polynomial factor when compared with key sizes of LTV FHE scheme.

RLWE FHE schemes Cryptographic schemes based on NTRU assumption were
considered to be provably secure until Cheon et al. [CJL16] and Albrecht et al.
[ABD16] showed that NTRUEncrypt can be attacked by subfield lattice attacks which
are exploited because of improper parameter set generation. Subfield lattice attack
work by repeatedly reducing the size of the ring and solve the Shortest Vector Problem
(SVP) for n = 512 and lower. It is further conjectured that the same subexponential
attack can break the security of other NTRU FHE schemes such as LTV [LTV13] and
YASHE [BLLN13] FHE schemes for weak choices of parameters. On the other hand
FHE schemes which are purely based on LWE/RLWE security assumption are still
considered to be secure and to the best of our knowledge no attack that breaks it in
subexponential time has been reported in literature.

The first public key encryption scheme based on the learning with errors (LWE)

assumption was introduced by Regev [Reg09]. It was shown from the worst-case
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to average-case reductions of Regev |[Reg09] and Peikert [Pei09] that solving LWE
problem is at least as hard as finding short vectors in any lattice. Soon after
Gentry’s breakthrough work on FHE, Brakerski and Vaikuntanathan in a series of
work showed the construction of simpler FHE schemes [BV1la, BV11Db] based on
the LWE assumption and it’s more efficient alternative, RLWE assumption. In
these works, many optimization techniques, such as dimension reduction, modulus
switching and most importantly relinearization operations, were discussed which
allows succint representation of ciphertext with smaller noise while also maintaining
the cryptographic strength. In another work, [BGV14] Brakerski et al. showed an
improvement of the BV [BV11b] FHE scheme by introducing a noise controlling
technique, namely, a leveled HE approach which allows to keep the noise level steady
by shedding down bit length of modulus. Typically, in a leveled SHE scheme with
a-priori bounded depth D instead of keeping a single ciphertext modulus g we store a
ladder of gradually decreasing moduli ¢; such that ¢ = H?:ll ¢;. After multiplication
of two mod-q ciphertexts we switch to a smaller modulus by an application of modulus
switching procedure and the resultant ciphertext c,,,;; is produced w.r.t ¢ = Hfil G,
i.e., we drop the largest modulus. When compared with the conventional BV [BV11b]
FHE scheme where the noise grows quadratically for each level (B2D, B- bounded
noise) the leveled approach keeps the noise magnitude roughly the same (= B)
assuming that we scale down by B after each homomorphic multiplication. In a
related work, Brakerski [Bral2] presented a scale invariant FHE scheme which further
removes the requirement of storing a ladder of moduli and hence, eliminates the need
of modulus switching. It turns out that in this scheme evaluation of a D-depth
function leads to a conservative noise growth of B - poly (n)”. We briefly summarize
the construction of these LWE based FHE schemes in the next few subsections.

BV-LWE FHE scheme: In [BV1lal, Brakerski and Vaikuntanathan presented a

FHE scheme solely based on LWE assumption. The encryption scheme is roughly
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similar to Regev’s [Reg09] scheme but uses additional tricks to obtain homomorphism
properties. In the symmetric-key scheme, a secret key is simply a n-dimensional
short vector 5 € Z7. To encrypt a bit m € {0,1}, we choose a random uniform
vector @ € Zy and a short error value e € Z and set the encryption as ¢ =
(@,b=(d,s) +2e+m) € Z; x Z,. Homomorphic addition of two ciphertexts c;
and ¢y is given by cuaq = (d1 + a3, by + by) .~ However, homomorphic multiplication
leads to quadratic expression on the secret key , 5. At this stage, we can relinearize
the quadratic expression by publishing roughly O (n?) encryptions of individual terms
of §vector. In summary, we can see that the [BV11a] scheme is a conceptually simple
scheme but suffers from inefficient quadratic runtimes and larger memory overheads
for storing the evaluation keys.

BGV FHE scheme: Similar to LTV FHE scheme, BGV [BV11b, BGV14] FHE
scheme uses a polynomial ring of the form R = Z,[X]/(®,, (X)) to define the
cryptosystem. For the most efficient implementations, a cyclotomic polynomial of
the form ®,, (X) = X2 4 1 is used where m is a power of two. However, arbitrary
cyclotomic polynomials (m is arbitrary) have also been used to define batching or
packing multiple messages in a ring polynomial. The basic parameters of the scheme
are as follows:

e ring dimension, n.

e plaintext modulus p.

e ciphertext modulus ¢ = HZL:JT q;.

e discrete Gaussian error distribution Y., with bound B,,,.

Message space for the scheme consists of M € R,,. The scheme consists of the

following operations:
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KeyGen: Sample polynomials a <—sUg, and s, € <=s X Compute b = a-s+pe € R,,.

Set the public key pk and private key sk:
sk =s € R, pk:(a,b)eRg

Encrypt: To encrypt a message m € R, we sample polynomials v, eg, €1 = Xerr-

Compute the ciphertext ¢ = (¢, ¢1) € R2 :
co=b-v+peg+me Ry ¢ =a-v+pe €R,

Decrypt: Compute the ciphertext error t = ¢y —s-¢; € R,. Output m’ = ¢ ( mod p).

The scheme is correct as long as there is no wrap-around modulo ¢. To

2

err:

guarantee correct decryption of the ciphertext we should ensure ¢ > 6y/npB
Homomorphic addition is performed by addition of corresponding polynomials in
ciphertexts. Homomorphic multiplication operation is however more cumbersome
and increases the number of ring elements in a ciphertext. Specifically, result
of multiplication of two ciphertexts (co,c1) and (cp,c)) is given by the ciphertext
Coult = (Cmult,05 Cmult, 1, Cmult,2) WHeTe Cruito = CoChs Cruutt,t = CoCy + CGCL, Crnult,2 = C1C.
This ciphertext can be decrypted by computing (Cuir0 + Crmutr 1S + Cmuir2s*) mod p.
Alternatively, using relinearization we can reduce the ciphertext back to two ring

elements. To aid relinearization, we publish evaluation keys as follows:
hi = (a;,b; = — (a;s + pe;) + 2's%) fori=0,---,[logq] — 1

where a; s R, and e; =X are chosen independently for every 7. Finally,

relinearization proceeds as follows to transform a ciphertext ¢ = (co,c1,¢2) to
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— relin . relin.
Crnult = (C[) 61 )

[log q]—1 [logq]—1
relin relin
o =c+ E C2,iQ; , Co = Co+ g C2,ib;
i=0 i=0

where ¢, ; represents the i-th bit decomposition of polynomial ¢,

1.2.3 The Third Generation of FHE Schemes
FHE scheme of third generation mainly refers to the work by Gentry et al. [GSW13]
which describes another homomorphic encryption scheme based on the learning with
errors (LWE) problem. The greatest benefit of GSW FHE scheme is that the noise in
this scheme grows asymmetrically which removes the need for modulus-switching and
makes bootstrapping optional. To explain this further, in previously mentioned LWE
FHE schemes multiplication of ciphertexts with initial noise B expands quadratically
to B%. Evaluation of a D-depth circuit by these schemes is kept to a minimum B%"
where homomorphic multiplication is performed in a binary tree representation to
get a logarithmic depth. In contrast to this, noise growth in GSW FHE scheme
is asymmetric and homomorphic multiplication is performed sequentially. More
specifically, final noise level in the resultant ciphertext mainly depends on the noise
magnitude of only the left multiplicand ciphertext. The other important feature
of this scheme is that relinearization is performed implicitly and hence the need to
generate evaluation keys is eliminated. Next, we present a brief overview of the
construction of GSW FHE scheme.

The scheme is parameterized by a modulus ¢, lattice dimension n, m =
O (nlogq), error distribution x. We set £ = [logq] and N = (n+ 1) ¢.
KeyGen: Secret key is generated by sampling a short vector ¢ as ¢ <sy and set
sk = § < (1,—ty,---,—t,) € Z3". Further, we set a vector 7 = PowerOf2 (5).

Public key is set by sampling a uniform random matrix B <—sZ;"”" and an error
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vector €<—sx™. Public key is formed by concatenating the b vector and B matrix
resulting in a (m x n + 1) matrix A. Finally, we set pk = A. It can be observed that
the m rows of the public key matrix B can be interpreted as m independent instances
of the LWE problem such that A -5 = €.

Encrypt: Messages are restricted to bits, M € {0,1}. To encrypt a bit u we sample

a uniform binary matrix R <—s Z/{f\é X17}" and output the ciphertext C' given as :

C = Flatten (u - Iy + BitDecomp (R - A)) € Z)*N

Here, the flattening operation is simply a compounded bit decomposition

operation which keeps the ciphertext bounded with low Euclidean norm. Flattening
procedure on a vector @ returns the expanded vector such that Flatten (@) =
BitDecomp (BitDecomp ™ (@)).
Decrypt: Decryption recovers the ciphertext by using the approximate eigenvector
property of the scheme. As per this property, a ciphertext C' encrypts message pu if
the following holds true, C'- ¥ = pu - v+ €. It can be interpreted that the secret key
U is an approximate eigenvector of the ciphertext matrix C' and the message p is the
eigenvalue. Since the first £ coefficients of @ are simply powers of 2, i.e., (1,2,---,2¢1)
we can use any index ¢ of the vector u - U to recover the message. Specifically, to
differentiate from the error we use a index 7 such that v; = 2° € (¢/4, ¢/2]. Finally,
we compute z; < (C;, V) and set p' = |z;/v;].

Homomorphic operation are quite straightforward in this scheme as they simply
map to addition and multiplication of ciphertexts represented in LWE matrix form.
Further, these operations do not require any evaluation key as they implicitly store
the gadget matrix G.

Because of the steady noise growth property, GSW FHE scheme has been shown

to be very useful in executing the bootstrapping procedure of other FHE schemes. In
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these work [BV14b, [ASP14], secret key of a particular SHE scheme is encrypted with
GSW FHE scheme, decryption circuit is evaluated using the homomorphic operations
of GSW FHE scheme and finally a ciphertext of the SHE scheme is extracted from
the resultant GSW ciphertext. A major drawback of such GSW FHE scheme based
bootstrapping is that efficiency is severely affected due the sub-cubic O (n?377-3)
runtime of computing matrix products needed for homomorphic multiplication. For
practically feasible, bootstrapping using GSW scheme can be replaced with it’s
RLWE counterpart, Ring-GSW FHE scheme [KGV16]. Starting from the work of
Ducas and Micciancio [DM15] many LWE FHE schemes [BR15l, [CGGI16, BDF1S]
have been shown which make a greater use of Ring-GSW FHE scheme to achieve

bootstrapability. Next, we discuss the security aspects of lattice based cryptography

and some of it’s applications.

1.3 Resistance to Quantum Computer Attacks
Most of the primitives and encryption schemes in classical cryptography are based on
the intractability of the integer factorization problem and discrete logarithm problem
over a finite field. Examples of some of the well known schemes which base their
security on these hard problems are RSA encryption scheme, Elliptic curve digital
signature and encryption scheme etc.

In [Sho99], Peter Shor showed in his seminal work that a hypothetical
quantum computer can find solution to discrete logarithm and integer factorization
in polynomial time. This means if quantum computers some how come into existence
then most of the classical crypto systems will be broken. Furthermore, the existence
of Bitcoin and other crypto-currencies would suddenly come to a halt, causing wide
spread panic in financial markets.

With the recent advances in the field of quantum physics backed by many

reputable organizations and academia like Google, IBM, MIT etc, quantum computers

22



have finally transitioned from theory to reality. With these advances, there is an
immediate need to build efficient cryptographic schemes that can resist quantum
computer attacks.

One such solution is offered by lattice based cryptography which base their
security on the intractability of closest vector problem (CVP) and shortest vector
problems (SVP). Ajtai [Ajt98] showed that SVP is NP-hard for randomized reduction
of lattice basis. In another work, Micciancio [MicO1] proved that the approximate
variant of SVP known as 7-SVP is NP-hard for randomized reduction if v < /2.
Furthermore, some of the efficient lattice reduction algorithms like LLL and block-KZ
are known to solve approximate version of SVP and CVP in 2°(n) time complexity
where n is the lattice dimension. These result prove that lattice based cryptographic
schemes (based on hardness of ICP, LWE and RLWE problem) are indeed secure

against quantum computer attacks.

1.4 Applications
Fully homomorphic encryption is considered as a generic computing tool that has
numerous applications in the realm of secure computing. As envisoned by Rivest et
al. [RADT78|, FHE has the potential to play a huge role in outsourcing data and
enabling cloud services or applications on them. In other use cases, FHE can query
private databases, aid multi-party computations, support Zero-Knowledge proofs and
even execute other cryptographic schemes (such as AES, PRINCE etc). In the next

few subsections, we describe some of these applications.

1.4.1 Server Aided Computations
In recent years, cloud computing has been flourishing and many tech giants and
startups are offering commercial services for customers to store data and host

applications. While the pervasive use of cloud computing has eased the burden on

23



individual users and businesses to invest in expensive hardware, on the other hand
it has also raised the question on data privacy. The level of trust a user places on a
service provider varies from client to client and with the sensitivity of information.
Furthermore, servers are always vulnerable to security breach where adversaries are
constantly looking out to exploit any security flaws or improper firewall setup.

Fully homomorphic encryption presents an elegant solution to alleviate such
concerns on data privacy. In such a paradigm, the users of the cloud server outsources
the data in encrypted form. Once the data is present on the server, the user can
then specify the computation to be carried out. Finally, the computed data can
be retrieved from the server and decrypted at user end for further consumption. A
major advantage of using FHE in this paradigm is that the user can be offline in the
computation phase thus allowing low-power or resource constrained devices to save
power.

Lauter et al. [NLV1I] discussed some of the applications of homomorphic
encryptions pertaining to medical, financial and advertising sectors. They described
the computation of simple statistical functions such as mean, standard deviation
and logistical regression on outsourced encrypted data. In another work by Wu and
Haven [WHI12], an implementation of large scale statistical analysis on encrypted
data was presented. The crux of the work was to show that computation on large
scale encrypted data can be made practical in reasonable amount of time by the
application of ciphertext packing techniques [GHSI2¢]. Lastly, FHE can be used
to run predictive models such as medical or genomics predictions, spam detection,
face recognition, and financial predictions on user encrypted data with pre-trained
machine learning classifiers. Many efficient frameworks [JVCIg, I(GBDL™ 16, BPTGI5]

have been shown which support such machine learning modeling on encrypted data.
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1.4.2 Private Information Retrieval

A (single-database) private information retrieval (PIR) is a cryptographic scheme that
enables the client to retrieve records stored on the server without the server learning
which record was retrieved. Trivially, this can be achieved when the server sends
the entire database to the user and hence, doesn’t reveal the users access pattern.
However, such solutions are not practical for any realistic use case because of large
communication overheads. Implementing PIR protocols with single fetch query leads
to more efficient and secure design as they rely on computational security assumptions.
Among the many possible solutions, FHE is considered to be most practical in terms of
communication efficiency. In this approach, using the multiplicative homomorphism
property database indices are first matched with encrypted user query bits. Finally, a
sum of all query results are added and returned as the desired ciphertext. Some of the
notable FHE based PIRs were designed in [AMBFKI6, [ACLS18] which introduced

several compression techniques to amortize the computational cost further.

1.4.3 Multiparty Computations

Secure multiparty computation has been one of the significant research areas in the
field of cryptography. Initially proposed by Yao [Yao82, [Yao86] in the two-party
setting with honest-but-curious adversary model, the protocol was extended to
multiple parties interested in computing a joint function. Secure Multi-Party
Computation (MPC) protocols allows a group of mutually distrusting users to
compute a function jointly on their inputs without revealing any information beyond
the output. Many secure multi-party computation protocols have been proposed
such as privacy preserving data mining, privacy preserving database query targeting
specific application, however, most of them suffer from the bottleneck arising from

communication complexity during protocol execution.
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Alternatively, MPC protocols can be executed by a FHE scheme which supports
evaluation of functions on ciphertexts encrypted under different keys. Such FHE
schemes are commonly termed as multi-key FHE. Using server aided computation
strategy, participant of the MPC pool their data on an untrusted server and let the
server compute an arbitrary function without any participation from the users. The
server and the set of participants then interact in a decryption phase and retrieve
their corresponding outputs. Loépez et al. [LTVI13] introduced a multi-key FHE
scheme based on NTRU and DSPR assumption. The LTV multi-key FHE scheme is
dynamic in nature as it allows to compute arbitrary functions with an arbitrary choice
of participants chosen on the fly. Clear and McGoldrick [CM15], in another work
showed the construction of a multi-key FHE scheme based on a variant of GSW FHE
scheme. The [CM15] scheme was further simplified by Mukherjee and Wichs [MW16]
and extended to allow one round of distributed decryption of resultant multi-key

ciphertext.

1.5 Owur Contributions
In this dissertation, we demonstrate our results from three major areas related to
FHE and it’s application in secure computing. In the first set of work, we present
construction of Proxy Re-Encryption (PRE) schemes from various homomorphic
encryption schemes. Our unidirectional PRE schemes enable users to share and
read encrypted data without any prior exchange of decryption keys. PRE is
particularly helpful when the publisher and subscriber of messages are working in
an untrusted environment such as cloud servers. Our next contribution lies in
the construction of efficient bootstrapping techniques for BV-LWE [BV1la] and
it’s variant BV-GSW FHE scheme. Further, we present an extension of BV-LWE
bootstrapping technique to accommodate larger ciphertext modulus by running the

decryption circuit on multi-dimensional grids. Lastly, we tackle the efficiency aspects
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of our PRE schemes and bootstrapping algorithms by implementing them on NVIDIA

GPUs. We enumerate our key results as follows:

1.5.1 Proxy Re-encryption

e We develop two IND-CPA-secure multi-hop unidirectional Proxy Re-Encryption
(PRE) schemes on NTRU-RLWE [SS11] and BV [BV11b] homomorphic
encryption schemes.

e We develop PRE schemes for GSW [GSW13] FHE scheme and it’s RLWE
variant Ring-GSW |[KGV16] FHE scheme.
e We present an open-source C++ implementation of these PRE schemes in

PALISADE lattice crypto software library and discuss several algorithmic and
software optimizations.

1.5.2 Bootstrapping

e We introduce a new bootstrapping technique for symmetric key BV-LWE
scheme and it’s GSW analogue BV-GSW encryption scheme resulting in a fully
homomorphic symmetric key scheme.

e We extend these bootstrapping techniques to work with secret keys generated
from wider discrete Gaussian distributions without affecting the runtimes.
These requirement are sometimes deemed necessary for compliance with
Homomorphic Encryption standards [ACCT18].

e We introduce a new bootstrapping procedure, Gridstrapping which works on a
large finite field represented as a multi-dimensional grid.

1.5.3 Implementation on NVIDIA GPUs

e We present a GPU implementation of BV-PRE and Ring-GSW-PRE schemes
and design several other low level kernels for parallel execution. Our results
show upto 228x factors of improvement for BV-PRE scheme and upto 11x
improvement in performance for Ring-GSW-PRE scheme when compared with
CPU implementation.

e We accelerate the performance of BV-LWE bootstrapping algorithm by porting
over the critical operations to NVIDIA GPUs. Our results indicate a speedup

of 2-8 times for lower values of relinearization factor, r = 1 and ring dimension
n = 512, 1024.
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CHAPTER 2

BACKGROUND AND PRELIMINARIES

In this chapter, we introduce some of the mathematical notations, background on
lattices and the associated hard problems, algebra of polynomial rings and other
definitions. This chapter only aims at giving a general background on lattice based
cryptography and therefore compiled from several other prominent literatures [Pei09l

Peil6], Reg04, Reg09] in the area.

2.1 Notations
We denote the set of integers by Z, the set of non-negative integers by N, the set of
reals by R and the set of integers modulo some ¢ by Z,. We denote scalars in plain
(e.g., x) and vectors in bold lowercase (e.g., v), and matrices in bold uppercase (e.g.,
A). The i-th element of vector v is denoted by v[i] or v;. The ¢; norm of a vector
is denoted by |v||,. Infinite norm, f of a vector v is given as ||v||,, = max;|v;|.
The norm of a polynomial p (z) is the norm of its coefficient vector. Inner product
is denoted by (u,v) and can be interpreted as (u,v) = v’ - u. Unless explicitly
mentioned, all logarithms are assumed to be base 2. For a positive integer k, we let
[k] ={0,--- ,k—1}. Weuse |-| and [-] to denote respectively rounding down and up
to the nearest integer. We use |-| to denote rounding to the nearest integer, rounding
up in case of ambiguity. When these operations are applied to a polynomial, we apply

the respective rounding operation to individual coefficients of the polynomial.

2.2 Lattices
Lattices are regular arrangements of points in Euclidean space. A n-dimensional
lattice A of rank & < n is a discrete additive subgroup of R™. The lattice A

is concretely generated from all integer linear combinations of some basis B =
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{by,--- by} where the columns b;’s are linearly independent vectors.

A=L(B)={Bc=) ¢-b:ceZ}
iclk]

Here, we are only interested in full-rank lattices, i.e., those for which k = n. Every
lattice (of dimension n > 1) has an infinite number of lattice bases. If By and By
are two lattice bases of A, then there is some unimodular matrix U (that has integer
entries and det (U) = =£1) satisfying B; = U x By. To basis B of lattice A we
associate the half-open parallelepiped P (B) «— {> ., z;b; : @; € [-1/2,1/2)}. The
determinant of a lattice det (A) defines the n-dimensional volume of the fundamental
parallelepiped associated to B.

The dual lattice of A, denoted A* is defined as A* = {x € R": Vv € A, (x,v) € Z}.
It holds that det (A) - det (A*) = 1. Further, if B is a basis for the full-rank lattice A,
then the dual basis B* = (B_l)T is in fact a basis of A*. By symmetry, we can write

(A*)* = A.

Definition 2.2.1. (Minimum distance) The minimum distance of a lattice A is the
length of a shortest nonzero lattice vector:

A (A)= min |v

L(A) = min V]

2.2.1 Computational Problems
The geometrical properties of lattices allow us to define some hard combinatorial
problems. In [Ajt96], Ajtai showed the first construction of a cryptographic primitive
which can be based on worst-case to average-case reduction of lattice problems.
Specifically, Ajtai introduced the short integer solution (SIS) problem and proved

that solving it is at least as hard as approximating various lattice problems in the

worst case. In another work, Ajtai and Dwork [AD97] constructed a probabilistic
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public key cryptosystem and reduced the security of the scheme to intractability
of unique shortest vector problem (u-SVP). These computationally hard problems
on lattices along with others serve as fundamental basis for the design of some
powerful cryptographic primitives such as fully homomorphic encryption schemes,
digital signature schemes, identity-based encryption etc. In relation to FHE, the
lattice problems often used to establish the semantic security of the schemes are
mainly the approximate shortest vector problem and the shortest independent vector
problem (SIVP). We briefly present an overview of these hard problems and their

definitions.

Definition 2.2.2. (Shortest Vector Problem (SVP)). Given an arbitrary basis B of
some lattice A = L (B), find a shortest nonzero lattice vector, i.e., a vector v.e A

such that ||v] = A (A).

While several algorithms are known to solve SVP in exponential and even super
exponential time complexity, cryptosystems mostly rely on approximate variant of
the lattice problems to derive computational hardness. These approximations are

parameterized by a factor v > 1.

Definition 2.2.3. (Approzimate Shortest Vector Problem (SVP,)). Given an
arbitrary basis B of an n-dimensional lattice A = L (B), find a nonzero vector v e A

such that ||v] < - A1 (A).

The approximate SVP problem is known to be solved by family of lattice
basis reduction algorithms such as LLL [LLL82| algorithm which admits solution

in polynomial time when the approximation factor is very large, v = 29,

Definition 2.2.4. (Decisional Approxzimate Shortest Vector Problem (SVP,)). Given
an arbitrary basis B of an n-dimensional lattice A = L (B), where A\ (A) < 1 or

A1 (A) > vy, determine which is the case.
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Definition 2.2.5. (Approximate Shortest Independent Vector Problem (SIVP,)).
Given an arbitrary basis B of an n-dimensional lattice A = L (B), output a set S =

{v1,--+,vp} € A of n linearly independent lattice vectors such that ||v;|| < v - X (A)
for alli € [n].

Definition 2.2.6. (Approzimate Bounded Distance Decoding Problem (BDD,)).
Given an arbitrary basis B of an n-dimensional lattice A = L(B) and a target
vector t € R™ such that Dist(t,A) < v 1- X (A), find a vector v.€ A such that
|lv —t|| = Dist(t,A).

The BDD, problem is a slight variation of the approximate closest vector

problem (CVP) which searches for a vector v close to target point t € R™.

2.2.2 Gaussian Distributions

We review some Gaussian measures over lattices in this section. Gaussian properties
are mainly used to substantiate the claim of computational hardness of lattice
problems by generating noise vectors from Gaussian distributions with varying
parameters. For any s > 0, we define the Gaussian function on R" centered at c

with parameter s:
Vx €R", pye(x) = exp (=[x —c[* /s°)

Deviation s and center ¢ are taken to be 1 and 0 respectively when omitted.
For any ¢ € R", real s > 0, and n-dimensional lattice A, define the discrete

Gaussian distribution over A as:

pSC(X)
VxeEN Dpse(x)=—""F%
As.e (X) e (A)

Definition 2.2.7. (Addition of Gaussians). Let Dy and Dy be Gaussian distributions

with parameters s; and sy, respectively. Then distribution obtained by sampling
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Dy and Dy and summing them results in another Gaussian distribution D, with
parameter \/s? + s3.

Smoothing parameter: In [MRO7] Micciancio and Regev introduced an important
parameter termed as smoothing parameter which shows the uniformity of a vector
when generated from certain noise vector with radius at least as large as the smoothing

parameter. It is defined as follows:

Definition 2.2.8. For a n-dimensional lattice A, and positive real € > 0, smoothing

parameter, n. (A) is defined as the smallest s such that py/s (A*\ {0}) <.

2.3 Learning with Errors (LWE)

Construction of lattice based public-key encryption schemes were greatly simplified
by the introduction of learning with errors (LWE) problem by Regev in [Reg09]. The
LWE problem is seen as an extension of the learning from parity with error problem
with the modulus raised to higher values. In this work, Regev showed that if the
LWE problem can be solved by a polynomial time algorithm then, this implies the
existence of an efficient quantum algorithm which can solve the decision version of
shortest vector problem (GapSVP) and the shortest independent vectors problem
(SIVP) to within O (n/a) factor in the worst case. Here, o is the error rate such
that o € (0,1). In another work [Pei09], Peikert showed a classical reduction of the
LWE problem from GapSVP problem by relying on a BDD oracle that solves lattice
problem.

LWE is parameterized by positive integers n and ¢, and an error distribution y
over Z. The error distribution is usually a discrete Gaussian distribution with error

rate a with o < 1.

Definition 2.3.1. (LWE distribution). For a vector s € Zj called the secret, the
LWE distribution A, over Zy X Z, is sampled by choosing a € Z; uniformly at

random, choosing e <sx, and outputting (a,b = (s,a) + e mod q).
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Definition 2.3.2. (Search-LWE,, 4 m). Given m independent samples (a;, b;) € Zj X

ZLq drawn from LWE distribution LWE, 4., find s.

Definition 2.3.3. (Decision-LWE, ,\.m). Given independent samples (a;,b;) €
Ly X ZLq the problem is to decide whether the pair is sampled from LWE distribution

LWE, 4 or uniform distribution in Zy X Z,.

Regev further showed the construction of a public key encryption scheme and
proved the semantic security of the scheme on indistinguishably of LWE samples
(decision-LWE). In this scheme, secret key consists of a uniform vector s € Z; chosen
at random. Public key consists of m instances of the LWE problem given by (a;, b;)'",.
To encrypt a bit u, we choose a random binary set S € {0,1}™ and set encryption
as (Dies @i i 2] + X ,csbi). To decrypt ciphertext ¢ = (a,b), we compute ¢ =
b—(s,a). We output 0 if ¢ is closer to 0 otherwise 1 if ¢ is closer to | |. In subsequent
construction of LWE based FHE schemes, it is proved that generation of secret keys
from narrower distribution leads to higher homomorphic capacity while retaining the
quantum hardness of intractability of lattice problems.

In recent years, LWE has served as the basis for many other cryptosystems
such as CPA secure encryption schemes [PVWO0S, [LP11], oblivious transfer [PVWO0§],
identity-based encryption [GPV08, [CHKP10, [ABB10a, [ABB10b], fully homomorphic

encryption [BV14al (GSW13] and many more.

2.4 Ring LWE
Ciphertexts in the LWE form suffer from the problem of dimension expansion upon
homomorphic evaluation. This not only results in greater computational overhead
but adds significant noise growth. To accelerate cryptographic constructions based
on the learning with errors problem (LWE) Lyubashevsky, Peikert and Regev [LPR10]
introduced the ring learning with error (RLWE) problem. Lyubashevsky et al. first

showed a quantum reduction from approximate SVP (in the worst case) on ideal
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lattices in R to the search version of ring-LWE, where the goal is to recover the secret
s € R, (with high probability, for any s) from arbitrary number of noisy products.
They also gave a reduction from the search problem to the decision variant, which
shows that RLWE distribution is pseudo random assuming worst-case problems on
ideal lattices are hard for polynomial-time quantum algorithms.

Efficiency: The primary reason for adopting RLWE security assumption is because
of it’s efficiency which is attributed to the algebraic and embedding properties of ideal
lattices over ring. Moreover, RLWE can be viewed as n instances of LWE in a compact
representation and operate simultaneously. Using the Fast Fourier Transform (FFT)
or its variants like Number Theoretic Transforms (NTT), operations on polynomial

rings can be restricted to O (nlogn) scalar operations.

2.4.1 Definitions

RLWE is parameterized by a polynomial ring R such that R = Z[X]/®,, (X), where
®,, (X) is the m-th cyclotomic polynomial of degree n. Also, let ¢ > 2 be an
integer modulus, and let R, = R/qR be the quotient ring. Finally, let x be an

error distribution over R having an error rate a < 1.

Definition 2.4.1. (RLWE distribution). For a polynomial ring s € R, called the
secret, the RLWE distribution As, over R, x R, is sampled by choosing a € R,

uniformly at random, sampling e < x, and outputting (a,b = s-a+ e mod q).
Definition 2.4.2. (Search-RLWE, ;. m). Given m independent samples (a;,b;) €

R, x Ry drawn from RLWE distribution RLWE, 4., find secret polynomial s.

Definition 2.4.3. (Decision-RLWE, . ). Given independent samples (a;,b;) € Ry X
R, the problem is to decide whether the pair is sampled from RLWE distribution

RLWE, 4 or uniform distribution over Ry, X R,.

Lyubashevsky et al. [LPR10] further described a simple cryptosystem, a RLWE

analogue of Regev’s encryption scheme, which based the semantic security on the

34



pseudo randomness of RLWE (decision-RLWE). In this scheme, secret key, s is
generated from the error distribution y. To generate the public key, pk we choose a
uniformly random element a € R, and sample a error, e from error distribution Y.
Set the public key as RLWE pair, pk = (a,b=a-s+e) € Rg. The RLWE scheme is
capable of encrypting a n-bit message u € {0,1}" as opposed to a single bit in the
LWE scheme. The encryption algorithm then samples three random ring elements

r,e1, eo € R from the error distribution x and sets the ciphertext, ¢ as follows:

u=a-r+e mod qu=>b-r+ey+ u-|g/2] mod q

¢ = (u,v) € R

The decryption algorithm computes the noise term ¢ as follows:

t=v—u-s=(r-e—s-e;+e)+pu-|g/2] mod q.

To recover the bit vector, we proceed to round each coefficient of t to either 0 or
|¢/2], whichever is closest modulo g.

RLWE security assumption has been a huge success in construction of FHE
schemes and numerous variations of RLWE based FHE schemes have been proposed

in literature [BV11b, BGV14, [LTV13| Bral2].

2.4.2 Cyclotomic Polynomials

Cyclotomic polynomials, ®,, (X) in the definition of ring polynomials are mostly used
to embed integer coefficients in field extensions K — C".

Definition: For any positive integer m, the m-th cyclotomic polynomial ®,, (X) is
the minimal polynomial with integer coefficients such that X™ — 1 = 0 and is not a

divisor of (X k— 1) for any k < m. It is defined by
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XM —1

CI)m (X) = H1§d<n7d|n (I)d (l’)

(2.1)

When the field extension K ((,,) is a m-th order multiplicative group where (,,

is a primitive m-th root of unity, we can derive the cyclotomic polynomial as follows:

@, (X) =TT (X - ) (2:2)
i€z,

As per the above definition, degree of the cyclotomic polynomial is given by

n = ¢(m), the totient function of m. For prime m, cyclotomic polynomial is
reduced to @, (X) = X™ 1 4+ X™2 ...+ X2+ X +1. When m is a power of
two the cyclotomic polynomial is maximally sparse and given by ®,, (X) = X" + 1,
where n = ¢ (m) = m/2. Most of the RLWE based cryptosystems use a power
of two cyclotomics as polynomial multiplication can be performed efficiently by a
simple tweak of the classical n-dimensional FFT algorithm. FEven though power
of two cyclotomic polynomials are pervasive in RLWE cryptosystems, there are
special cases where arbitrary cyclotomic polynomial rings are deemed worthy. Most
notably, non-power-of-two cyclotomic rings are useful in obtaining more nimble
movement of plaintext in ciphertext slots as shown in [GHS12c|. However, it should
be noted that FFT algorithms tailored for non-power-of-two cyclotomic rings are
relatively inefficient because of large constants hidden factors and rather complex
and hard to implement. A toolkit of modular algorithms for designing applications
to work in arbitrary cyclotomic rings was described in [LPR13] and implemented in
PALISADE lattice crypto software library. Particularly in our implementation of
non-power-of-two cyclotomic rings we used the definition to generate and store

cyclotomic polynomials.
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2.4.3 Plaintext Slots and Embedding

It was first shown by Smart and Vercauteren [SV14] that by an application of the
Chinese Remainder Theorem to number fields the plaintext space in polynomial ring
can be partitioned into a vector of “plaintext slots”. Addition and multiplication of
polynomial rings in R correspond to component-wise operations on these plaintext
slots and hence it is sometimes referred as SIMD or batch operations. To understand
how this finite field splits and the homomorphisms between them, we let the plaintext
be a (X) € Ry. We assume the cyclotomic polynomial @, (X) of degree n to split

into exactly r distinct irreducible factors of degree d = n/r.
B, (X) = F(X) = [[ £ (x)
i=1

This implies that, algebra on the plaintext space a (X) now has a natural isomor-
phisms w.r.t. a number of plaintext slots a; (X) obtained by a direct application of
polynomial Chinese Remainder Theorem.

- a(X) a(X) a(X)
a(X) mod @, (X) = Fi(X) ®F2(X)m F. (X)

In practice, we replace the plaintext modulus 2 with a higher modulus p such
that p = 1 mod m and plaintext space R, splits into r isomorphic subfield. In
the simplest case, to encode or batch 7 integers in Z, in the plaintext space R, we
apply inverse nega-cyclic transform when working on power of two cyclotomics. To
summarize, the SIMD plaintext batching allows to amortize the cost of homomorphic
operations by a factor of » which in turn is a function of the security parameter n

and therefore leads to higher efficiency.
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2.4.4 Automorphisms Transforms
In general, automorphism transform define a set of permutations in the plaintext space
R,. In [LPRI10], the authors used the permutation properties of automorphism group
to prove the pseudo-randomness of RLWE. However, the automorphism transform is
more useful for obtaining flexible movement of data across the plaintext slots.

We denote the automorphism transform as 7., : K — K for a positive integer
k € Z;, acting on the m-th cyclotomic number field represented as field extension
K = Q(¢) having (,, as the primitive root of unity. The number field K has
n automorphisms where each transform acting on a polynomial ring, a € R is

represented as 7, (a (X)) — a(X") or simply 7, : @ — a”. Since, there exist a

*
m?

transform for every ¢ € Z} and j € Z;,, 3 ¢-j = 1 mod m, the set of transformations
forms a multiplicative group under composition. When automorphism transforms,
T, are applied to a plaintext a € R they act transitively on the plaintext slots.
Specifically, for a non-power-of-two cyclotomic ring these transforms shift the vector
of slots cyclically. For example, if the ring a encodes integers (ag, a1, - , ap—1), then
after a transformation we could get aring ' = (a,_1,ag, -+ , a,_2). Most importantly,
these set of automorphism transforms can be directly applied on a ciphertext without
affecting the norm of error. However, applying automorphism operations on cipertexts
have the downside of morphing the secret keys and therefore such operations are

generally followed with additional procedures to switch the secret key back to its

original form.

2.5 Syntax of Cryptographic Primitives
In this section, we describe the basic syntax of secret-key, public-key and homomorphic
encryption schemes and the security notions associated with them.

Definition 2.5.1. (Secret-key encryption scheme). A secret-key encryption scheme
consists of the following algorithms:
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° KeyGen(l’\) — (s,pp) It takes input security parameter X, outputs the key s
and some public parameters pp;

o Encrypt(s,m) — c It takes secret key s and a message m, and outputs a
ciphertext c;

e Decrypt(s,c) — m It takes secret key s and a ciphertext ¢, and oulputs a
message m;

A public-key (also known as asymmetric-key) encryption scheme consists of
separate keys for encryption and decryption, and defined as follows:

Definition 2.5.2. (Public-key encryption scheme). A public-key encryption scheme
consists of the following algorithms:

° KeyGen(l’\) — (sk,pk,pp) It takes input security parameter X\, outputs the
secret key sk, public key pk, and some public parameters pp;

o Encrypt(pk,m) — c It takes public key pk and a message m, and outputs a
ciphertext c;

e Decrypt(sk,c) — m It takes secret key sk and a ciphertext ¢, and outputs a
message m;

A homomorphic encryption can be described as a public-key encryption scheme
which can evaluate a certain class C of circuits. Formally, it is defined as follows:

Definition 2.5.3. (Homomorphic Encryption scheme). A C-Homomorphic encryption
scheme consists of the following algorithms:

° KeyGen(l’\) — (sk, pk, pp, ek) It takes input security parameter X, outputs a
secret key sk, a public key pk, a (public) evaluation key ek and some public
parameters pp;

e Encrypt(pk,m) — c It takes public key pk and a message m, and outputs a
ciphertext c;

e Decrypt(sk,c) — m It takes secret key sk and a ciphertext ¢, and outputs a

message m;

o FEval(ek,C ci,--- ,¢0) — ¢ Given a evaluation key ek, a (description of a)
circuit C and { ciphertexts cq,--- ,cp, it outputs a ciphertext c. For the
correctness of evaluation we require Decrypt(sk,c) = C(mq,--- ,my) where

¢; = Encrypt(pk, m;).

We now give a standard notion of security for an encryption scheme &£, namely

indistinguishably under chosen-plaintext attacks or IND-CPA security [GM84]. The
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Game IND-CPA¢

1:  (pk,sk,pp) <sKeyGen (1)‘>

2:  (mg,m1) <sA <1A, Pk,pp)
3: b<«s{0,1}

4: ¢+ E.Encrypt (pk,mp)

50 b — A (1*, pk, pp, C>

6: returnb=1"0

Figure 2.1 Game describing IND-CPA security.

IND-CPA notion guarantees that the encryption reveals nothing about encrypted

messages to a passive (eavesdropping) adversary.

Definition 2.5.4. (Indistinguishability under chosen-plaintezt attacks). For a public-
key encryption scheme &, we define IND-CPA security via the game depicted in figure
[2.1. Let the advantage of an adversary A when playing the game IND-CPAg be as
follows:

1

Advijd-Cpa (A) = |Pr[IND-CPA¢ ] — 2

We say that £ is IND-CPA secure if, for any PPT adversary A, it holds that
AdViEP* () = negl ().
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CHAPTER 3

PROXY RE-ENCRYPTION

Over the past decade, computing technologies such as mobile computing, cloud
computing, data analytic, machine learning, etc. have matured to accommodate
the needs and expectations of consumers. Today, a wide variety of services are
hosted on the web or cloud computing systems. This paradigm of cloud computing
has attracted small vendors and individual users to host their services on servers
of large tech corporations. This has resulted in spawning collections of consumer
data. Because of the sensitivity of consumer data, these cloud platforms are under
threat of attack. Cloud platforms enforce a wide range of network security solutions
to safeguard their computing infrastructure but in spite of counter measures and
network security techniques, a flurry of data breaches have been reported attracting
countless consumer lawsuits.

Traditional approaches to security are not sufficient to guarantee privacy and
confidentiality. Security constraints which enforce stronger threat models are needed
in practice. Under this new threat model we assume the cloud to be a malicious entity
and confidentiality is enforced by cryptographic solutions. A user should interact
with the cloud by publishing encrypted contents onto the cloud and only decrypt
the contents at its end. In this scenario, even in the event of a successful attack the
possibility of data breach is reduced. However, encrypting user data severely limits
the possibility of sharing it across other users or applications.

Proxy re-encryption is a cryptographic primitive that presents an elegant
solution to this problem. In a simple two user setting there are two parties, Alice and
Bob. Alice stores encrypted data on an untrusted cloud and can read the data when

decrypted with her secret key. When Bob needs to access the data, Alice generates a
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re-encryption key and gives it to the untrusted cloud. The cloud can now transform
the data encrypted by Alice into a ciphertext that can be decrypted by Bob’s secret
key. Moreover, the cloud doesn’t learn anything about the underlying data in this
process.

In the context of cloud computing, PRE scheme can be interpreted as an
access delegation mechanism which allows users to delegate rights to the cloud while
enforcing a stronger security notion of an untrusted cloud. It can be easily seen that
a PRE scheme is not just restricted to cloud computing environments but the same
idea can be extended to many such privacy concerning applications. PRE schemes
have been known to be used in digital rights management (DRM) system [TCGO6],
secure file storage system [AFGHO6], email list services [KHP06] and many other
applications.

Proxy Re-Encryption, as we have described it, is also called a unidirectional
PRE scheme, and was defined in [ID03, [AFGHO6]. Henceforth, when we refer
to proxy re-encryption, we mean a unidirectional scheme. In this chapter we
describe four new IND-CPA-secure Proxy Re-Encryption (PRE) schemes and their
implementations where the PRE functionality is provided using the LWE/RLWE key
switching procedure. The first scheme (NTRU-ABD-PRE) is based on the NTRU
encryption scheme with RLWE modifications [SS11] where the NTRU immunity
constraint against subfield lattice attacks is applied to set the distribution parameter
for NTRU key generation [ABD16]. The second scheme (BV-PRE) is based on the BV
homomorphic encryption scheme [BV11b] and relies only the RLWE assumption. Our
third scheme GSW-PRE is based on GSW [GSW13] homomorphic encryption scheme.
The security of GSW FHE scheme is based on the LWE [Reg09] assumption. Our last
PRE scheme, Ring-GSW-PRE is based on a Ring variant of GSW scheme, Ring-GSW
FHE scheme [KGV16] where security is based on RLWE [LPR10] assumption which

was introduced to speed up LWE based cryptosystems. Utilizing techniques from our
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RLWE based PRE scheme we introduce a key-switching procedure for Ring-GSW
FHE scheme. Further, we show that our key-switching procedure can be extended to
enable Automorphism operations over cyclotomic polynomials. Owing to asymmetric
noise growth property of Ring-GSW FHE scheme, this directly leads us to SIMD FHE
computations with reduced noise.

A unidirectional PRE scheme can be constructed from any fully homomorphic
encryption (FHE) scheme using the procedure based on double encryption of plaintext
and evaluation of decryption circuit [GT09]. However, this approach relies on
heavyweight tools generally used for bootstrapping. The goal of this work is to avoid
the use of these computationally expensive tools and study elementary and efficient
constructions of lattice-based proxy re-encryption schemes based on LWE or RLWE
key switching.

As opposed to other known approaches to PRE, lattice encryption approaches,
such as ours, are generally considered post-quantum [MR09, [Reg04], that is,
potentially secure against attacks even from adversaries with practical quantum
computing devices in addition to adversaries with classical computing devices. Our
goal is to provide a software PRE capability that can support high-throughput
pub-sub information sharing without direct interactions between publishers and
subscribers. We provide experimental evaluation of software implementations of our
PRE schemes to evaluate its security, scalability and performance. We further show
that our PRE schemes based on GSW FHE scheme have the added advantage of
asymmetric noise growth which permits evaluation of deeper circuits. We provide a
direct comparison of Ring-GSW-PRE scheme with BV-PRE [PRSV17] scheme and
highlight the difference in capabilities in terms of circuit depth and number of hops

for the same set of parameters.

Motivation for extending PRE scheme for GSW and Ring-GSW FHE

schemes: Before the advent of fully homomorphic encryption (FHE), PRE scheme’s
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only role was to transform the ciphertext while preserving the message as it arrived
from the producer. In other words, a PRE scheme dealt with read-only data.
Designing a PRE scheme that has homomorphic capabilities opens up the door for
many interesting applications. For example, consider the case of health care sector
where different organizations may be involved in running diagnostic inference on
patient health information collected from hospitals. However, due to sensitivity of
information, US laws and regulations (HIPAA) do not allow such direct outsourcing
of information. It is therefore more appropriate to encrypt patient information with
a FHE scheme and then send it to various diagnosing bodies who can run blind
evaluations on the data. Once the results are processed, it can be re-encrypted by a
proxy which in turn can be deciphered into meaningful information by the patient.
In other scenarios, we can form an information processing pipeline where each node
evaluates and forwards the information to next node after re-encryption in a multi-hop
manner.

Modern lattice based schemes require evaluating a re-encryption operation or
function on ciphertexts which always leads to increase in noise in them. Hence, our
goal is to design a robust and computationally efficient PRE scheme that is amenable
to larger depth of computation over multiple hops without bloating the parameters
too much. While BV-PRE and NTRU-ABD-PRE are PRE schemes which have
homomorphic capabilities, the nature of noise growth in these schemes is quadratic.
In order to achieve asymmetric nature of noise growth, it is highly pertinent to develop
PRE schemes based on GSW and Ring-GSW FHE schemes.

BV-PRE outperforms NTRU-ABD-PRE and other PRE schemes in both single-
hop and multi-hop settings, and is provably secure under the RLWE assumption,
in contrast to the NTRU variant which is proven secure under a less well-studied
variant of the so-called NTRU assumption. BV-PRE scales well with the number of

hops due to a relatively small additive noise growth provided by the BV scheme and
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RLWE key switching procedure. BV-PRE has small ciphertext modulus and ring
dimension requirements: successful decryption after re-encryption can be achieved
using a 17-bit ciphertext modulus and ring dimension of 512 (for at least 100 bits
of security). This translates to submillisecond encryption/decryption runtime and
re-encryption runtime of under 5 ms. When compared to the LWE-based PRE lattice
schemes recently proposed in [ABPWI13, Kirl4, [FL16a, PWA™16], our BV-PRE
scheme provides key sizes and ciphertext expansion factors as good as or better than
the key sizes of any other lattice-based PRE schemes, and lower time complexity than
any other LWE-based scheme.

A GPU implementation of GSW PRE shows 5x acceleration in key generation
time and more than 100x in encryption, re-encryption and re-encryption key
generation run times over CPU implementation. For Ring-GSW PRE scheme we

complete critical operations under 10 milliseconds.

Chapter Organization. In Section [3.1] we review related results on encrypted
computing and PRE. In Section we discuss the the high-level concept and
performance and security tradeoffs of PRE. In Sections [3.3] and we
describe the proposed lattice-based PRE cryptosystems. In Section we discuss
parameter selection for these schemes to provide practical secure computing on
commodity computing hardware. In Section we describe the overall software
architecture of the library to support the end-to-end encrypted application. In Section
3.9 we discuss experimentation and evaluation of our design and implementation. In
Section [3.10| we present practical use cases for the proposed PRE cryptosystem. We

conclude the paper with a discussion of our insights and future work in Section [3.11
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3.1 Related Work

3.1.1 Proxy Re-Encryption

The notion of Proxy Re-Encryption (PRE) was introduced in the work of Blaze,
Bleumer and Strauss [BBS98|, where they also presented a construction based on
the El-Gamal encryption scheme. Their construction was a bidirectional proxy re-
encryption scheme in that a re-encryption key can be used to translate encrypted
data from the publisher encryption to subscriber encryption but also in reverse, from
the subscriber encryption to publisher encryption. In contrast, in this work, we
focus on wunidirectional proxy re-encryption that provides tighter control on which
ciphertexts can be re-encrypted and to whom.

Unidirectional PRE schemes were first proposed in [ID03, [AFGHO6]. The
scheme in [AFGHOG] is based on the decisional bilinear Diffie-Hellman (DBDH)
assumption. The schemes in [ID03, [AFGHO06] are single-hop proxy re-encryption
schemes, meaning that a re-encrypted ciphertext cannot be re-encrypted further, to
a third party.

Also, related is the work in [CHO7] which provides a multi-hop bidirectional
scheme based on bilinear maps. Multi-hop re-encryption schemes are important in
applications where re-encryption needs to be applied multiple times, for example

where information needs to be brokered in multiple steps from publisher to subscriber.

We refer the reader to Sections [3.10.1| and [3.10.2| for a discussion of applications.

Our approach to PRE is based on two common ring variants of lattice-based
homomorphic encryption schemes, with the PRE functionality provided using the
LWE/RLWE key switching procedure of Brakerski and Vaikuntanathan [BVI1D].
The first scheme (NTRU-ABD-PRE) is built on top of the NTRU encryption scheme
[HPS98] with RLWE modifications [SS11] where the NTRU immunity constraint
against subfield lattice attacks is applied to set the distribution parameter for NTRU
key generation (c.f. [ABD16]). The second scheme (BV-PRE) is based on the BV
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homomorphic encryption scheme [BVI11b] and relies only on the RLWE assumption.
The third scheme (GSW-PRE) and fourth scheme (Ring-GSW-PRE) are based
on GSW [GSW13] homomorphic encryption scheme and rely on LWE and RLWE
assumptions respectively. FHE schemes are encryption schemes that allow anyone to
run computations over encrypted data without decrypting the data.

It is at times difficult to establish direct comparisons between encryption
schemes, even with similar computational hardness underpinnings. Following [CNT11]
LP11, MRO9 vdP12], we use the standard “root Hermite factor” ¢ as the primary
measure of the concrete security of RLWE-based encryption schemes, for a given set of
parameters, where a smaller 0 provides more security. Experimental evidence [CNT11]
suggests that § = 1.007 would require roughly 2%° core-years on recent Intel Xeon
processors to break. We set the configuration parameters to attain ¢ of just less than
1.006 for each of the schemes for our parameter and key size comparisons, and for
our later experimental analyses. The root Hermite factor parameter setting we use of
d < 1.006 arguably provides at least 100 bits of security [CN11l [LP11, MR09, vdP12].

Whereas our BV-PRE scheme provides sub-millisecond runtimes for optimal
parameter settings for encryption and decryption operations and millisecond-order
runtimes for re-encryption, the experimental results of [AFGHO6|] are in the ranges
of 3 to 9 ms (for 256 bits of security) and 8 to 27 (for 512 bits of security) for these
same operations. However, the experimental results of the non-lattice-based work in
[AFGHOG] are shown for 256 and 512 bits of security rather than approximately 100
bits in our case. Our estimates using equation (7) in |[GHS12c] show that § ~ 1.0034
and 0 ~ 1.002 correspond to 256 and 512 bits of securiy, respectively. These values
of 9 increase the minimum ring dimension for 256 bits of security to 1024 and for 512
bits of security to 2048, while keeping the bit width approximately the same. This

implies that the runtime is roughly doubled when one goes from 100 bits of security

47



to 256 and then doubles again when going from 256 to 512 bits of security, which
suggests that our runtimes are comparable to those reported in [AFGHOG].

An independent work of [NAL1S] proposes and implements a IND-CPA-secure
proxy re-encryption scheme based on the NTRU encryption scheme with RLWE
modifications [SS11], which they label as PS-NTRUReEncrypt. This PRE scheme
relies on a variant of NTRU assumption. The PS-NTRUReEncrypt construction
is a bidirectional PRE scheme, whereas ours is unidirectional (see Section for
why unidirectional schemes are critical to our applications). The runtimes reported
in [NAL15|] are of the order of one second. The authors [NALIS| also propose and
implement another bidirectional (more efficient but not IND-CPA-secure) scheme
called NTRUReEncrypt with runtimes of the order of one millisecond. However,
NTRUReEncrypt is not directly comparable to our schemes in security as its security
relies on an ad-hoc new assumption. It is therefore unclear how to set key-sizes
for this scheme, and hence, we will not discuss this scheme further in this paper.
We note, however, that our RLWE-based BV-PRE scheme achieves a comparable,
even better, performance with the added provable security guarantee based on the
relatively well-studied RLWE problem.

Several LWE-based PRE lattice schemes have recently been proposed in [ABPW13|
Kir14, [FL16b, PWAT16]. The schemes presented in [Kirl4, [FL16b] are based on a
Regev-style encryption, which can be regarded as an extension of the CCA-secure
public key encryption scheme developed in [MP12]. The schemes developed
in [ABPWI3, PWAT16, [FL16b] are based on a public key encryption scheme
formulated in [LP11]. [FL16b] shows an implementation of a IND-CPA-secure
multi-hop scheme. The most efficient implemented variant [PWAT16|, which we
label as IND-CPA-LWE, is similar to BV-PRE but relies on the LWE assumption
(instead of ideal lattices and RLWE assumption). This scheme is also unidirectional

and supports multiple hops of re-encryptions.
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Table 3.1 Parameter Configuration and Key Size Comparison of LWE-based
IND-CPA-Secure PRE Schemes for Normalized Conditions

Parameters for Key Sizes for Asymptotic
Scheme Secure Configuration Secure Operation, KB Key Sizes

1 n k sk rk rk sk pk rk
BV-PRE 1.0051 | 512 17 1.06 2.13 36.1 nk 2nk 2nk?
NTRU-ABD-PRE 1.0054 | 1024 | 35 4.38 4.38 153 nk nk nk?
GSW-PRE 1.0033 | 1023 | 22 | 2.74 | 1.23 x10° | 6.32 x107 | nk | 2n(n+ 1)k | (n+ 1)3k?
Ring-GSW-PRE 1.0033 | 1024 22 2.75 5.5 484 nk 2nk 8nk?
PS-NTRUReEncrypt [NALIS] || 1.0037 | 2048 | 47 11.8 11.8 11.8 nk nk nk
IND-CPA-LWE |PWA"16] 1.0042 | 450 14 346 692 9,690 n%k 2n2k 2n2k

Plaintext Modulus p = 2, Key Switching Window r = 1, Message Length | = n (in the LWE Scheme) with Comparable
Security (Root Hermite Factor ¢ is Under 1.006; Bound Corresponds to Approximately 100 Bits of Security).

Table shows the comparison of parameter selections, resulting concrete
secure key sizes and asymptotic key sizes for the following LWE-based IND-CPA-
secure PRE schemes: NTRU-ABD-PRE, BV-PRE, GSW-PRE, Ring-GSW-PRE,
PS-NTRUReEncrypt [NAL15], and the IND-CPA-secure LWE scheme [PWATI6].
We base these comparisons on roughly equivalent functionality and security config-
urations. For notational simplicity we define k& = |log, ¢ + 1], the number of bits
required to represent the ciphertext modulus ¢. For the concrete parameters in the
table, we set the ring dimension n (referred to as the lattice security parameter n
in the case of the LWE scheme) and ciphertext modulus ¢ for each of the schemes
for a single-hop use case for plaintext modulus p = 2 to ensure that the security
parameter 0 < 1.006. Note that for the PS-NTRUReEncrypt and IND-CPA-LWE
schemes we use a tighter bound on the root Hermite factor o due to the parameter
selection decisions made in the papers we cited for the schemes.

In comparison with prior lattice-based PRE schemes:

e The key sizes and ciphertext expansion factors of BV-PRE and NTRU-ABD-
PRE are as good as or better than the key sizes of the other lattice-based PRE
schemes.

e The ciphertext expansion factor of NTRU-ABD-PRE and PS-NTRUReEncrypt
is k and 2k for BV-PRE and CP-LWE. However, NTRU-ABD-PRE and
PS-NTRUReEncrypt require higher parameter values, which automatically
increases space requirements for the secret and public keys and encryption/decryption
execution time.
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e Noise grows multiplicatively with the number of re-encryption hops in the case
of NTRU-ABD-PRE (at most two hops are supported). BV-PRE, Ring-GSW-
PRE, IND-CPA-LWE, and PS-NTRUReEncrypt can support up to 100 hops
without significantly increasing the ring dimension (lattice security parameter)
and ciphertext bit length due to additive noise growth.

e Although the re-encryption space and time complexity for PS-NTRUReEncrypt
is lower, this scheme is bidirectional and does not support the same security use

cases as BV-PRE and IND-CPA-LWE.

e IND-CPA-LWE has much higher space requirements (an additional factor of n
in the size of all keys) as compared to BV-PRE, which limits its applicability
to embedded systems.

The above analysis implies that BV-PRE is more efficient for Pub/Sub systems than
all existing lattice-based PRE schemes.

We also provide a high-level theoretical evaluation of the performance of our
schemes in comparison with other identified recent lattice-based IND-CPA-secure
PRE schemes. Rather than base this initial comparison on experimental runtime
performance, we compare performance in terms of the computational operations
which are generally the lower-level computational building blocks provided by math
libraries and hardware accelerators which implementations are built from. In
particular, we couch our evaluation of theoretical performance in terms of the
number of slightly higher-level polynomial operations, inclusive of Number Theoretic
Transforms (NTT’s), Vector Products (VP’s), Matrix Vector Products (MVP’s)
and Bit-decomposed Matrix Vector Products (BMVP). This allows us to present
complexity comparisons independent of the specific differences in implementation
libraries that might be used to experimentally compare these schemes. A table with
comparisons for encryption, re-encryption and decryption operations of our schemes
and PS-NTRUReEncrypt [NALI5] and IND-CPA-LWE [PWAT16] schemes can be
seen in Table [3.2] In this table, the short-hand notation of (k+1) NTT + 2k VP for
the cell corresponding to the re-encryption complexity for BV-PRE is used to indicate
that the re-encryption operations requires (k+1) calls to an NTT operation and 2k

calls to a VP operation. As a matrix-vector product of n x n by n generally has a
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Table 3.2 Theoretical Complexity Comparison of LWE-based IND-CPA-Secure
PRE Schemes for Normalized Conditions

Runtime/Latency
Scheme Enc ReEnc Dec
BV-PRE INTT + 2 VP | (k+1) NTT + 2k VP | 1 NTT + 1 VP
NTRU-ABD-PRE INTT +1VP | (k+1) NTT+ k£ VP | 1NTT +1VP
PS-NTRUReEncrypt
INALTS) I NTT +1VP 1VP I NTT + 1 VP
IND-CPA-LWE
(PWAF16] 2 MVP 2 BMVP 1 MVP

Plaintext Modulus p = 2, Key Switching Window r = 1, Message Length [ = n
(in the LWE Scheme).
higher complexity than Number Theoretic Transform (NTT), which is O (nlogn), the
runtime of BV-PRE is expected to be smaller for comparable values of ring dimension
(lattice security parameter) and ciphertext modulus bit-width than IND-CPA-LWE.

In summary, the relation of our work to the prior work is as follows.

e Constructions of PRE based on bilinear maps are either single-hop unidi-
rectional [AFGHO6] or multi-hop bidirectional [CHO07|], whereas our scheme
is multi-hop unidirectional. As noted in [CHO7], constructing a multi-hop
unidirectional PRE scheme using bilinear maps is an open problem. The
practical execution times of our BV-PRE scheme (order of one millisecond),
which supports dozens of hops without significant performance degradation,
are comparable to those of bilinear map-based constructions.

e The BV-PRE scheme has a lower time and space complexity than existing
IND-CPA-secure lattice-based PRE schemes.

3.1.2 Key-Switching and Automorphism
The notion of key-switching was introduced first by Brakerski and Vaikuntanathan
[BV11b] as an optimization in the context of FHE. Specifically, a key-switching
operation is invoked to transform a ciphertext encrypted under squared-secret key
to a ciphertext encrypted under linear secret key.

Key-switching operations have also been shown to be very useful for performing
algebraic operations on encrypted ciphertexts where data is embedded in plaintext

slots [GHS12b, [GHS12¢|. Smart and Vercauteren [SV14] showed that in RLWE based
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FHE schemes the plaintext space can be split into a vector of “plaintext slots” by
an application of polynomial Chinese Remainder Theorem. Applying homomorphic
operations to the ciphertext has a natural isomorphism with the embedded plaintext
data. These operations are sometimes referred to as SIMD operations. One of
the limitations of these SIMD operation is that we cannot move data across the
slots of plaintext polynomial. This problem was resolved by Gentry, Halevi and
Smart [GHS12b, [(GHS12c¢] with the construction of an Automorphism operation on
ciphertext. By this tool of Automorphism transformation, the authors were able to
carry out an implementation of AES on FHE encrypted data.

One of the problems associated with this transformation is that after an
Automorphism operation, the ciphertext can only be decrypted by the transformed
secret key. At this stage, one needs to apply key-switching techniques to bring the
ciphertext into a form that can be decrypted by the original secret key. We present a
key-switching techniques native to Ring-GSW FHE scheme and utilize it further to

devise an Automorphism operation.

3.2 Proxy Re-Encryption

3.2.1 Workflow

The basic usage of Proxy Re-Encryption is shown in Figure We assume a slightly
more general model for PRE operations where a Policy Authority operates as a proxy
for Alice to generate Alice’s public key and generate re-encryption keys to control
who can decrypt information encrypted by Alice. It is also possible for Alice to be
her own Policy Authority. The high-level operational flow of this key management
infrastructure is as follows:

1. The policy authority generates public and secret key pairs for publishers such
as Alice. These keys are designated as pk, and sk,, respectively. This key
generation operation nominally occurs prior to deployment, or just as publishers
need to send information to a PRE server.

2. Prior to deployment, the policy authority sends the publisher Alice public key
pk,. The publisher (and possibly multiple publishers) uses this public key
to encrypt ciphertexts ¢4 = Enc(m, pk,) they send to the PRE server. The
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Figure 3.1 Proxy Re-Encryption functional key management and interaction
workflow.

policy authority retains the secret key sk, in case it needs to access information
encrypted by the publisher.

3. When a subscriber needs to receive information from the PRE server, the
subscriber Bob sends his public key (pkg) to the policy authority.

4. The policy authority uses the publisher secret key (sk4) and the subscriber
public key (pky) to generate a re-encryption key (rkap). This re-key generation
could occur prior to deployment or just as a subscriber needs to receive
information.

5. The policy authority sends the re-encryption key to the PRE server.
6. The PRE server re-encrypts ciphertext so it can be decrypted by Bob.

7. Bob receives ciphertext and decrypts it using its secret key skp.

An important aspect of this key management infrastructure is that PRE pushes trust
from the publisher to the policy authority and computational effort and bandwidth
requirements to the PRE server. The policy authority determines who can share
information and the PRE server uses information access policies to determine what
subset of information from the publisher should be sent to the subscriber. The

publisher and subscriber, who generally have the lowest computational capability in
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mobile applications, require the lowest computational effort and only need to maintain

single keys, thus simplifying mobile deployments.

3.2.2 Syntax of Non-Interactive PRE

The workflow depicted in Figure can only be supported by non-interactive PRE
schemes, which require that re-encryption keys are generated using Bob’s public key
and Alice’s private key. In this case, direct interaction between Bob and Alice can be

avoided.
A non-interactive scheme includes algorithms (ParamsGen, KeyGen, ReKeyGen,
Enc, ReEnc, Dec), described as follows:

e ParamsGen(\): returns public parameters pp corresponding to security parameter
A

KeyGen(pp, \): returns public-secret key pairs (pk, sk);

ReKeyGen(pp, sk;, pk;): returns the re-encryption key rk;_,;;

Enc(pp, pk,m): encrypts message m using pk and returns the ciphertext;

ReEnc(pp, rk;_j, ¢;): transforms a ciphertext ¢; of party i into a ciphertext ¢;
that party 7 can decrypt;

Dec(pp, sk, ¢): recovers message m.

3.2.3 IND-CPA Security of PRE Schemes

Our security definition is a variant of the one postulated by Ateniese, Fu, Green and
Hohenberger [AFGHO06]. While Ateniese et al. [AFGHOG] considered the notion of
single-hop PRE schemes, both us and [PWAT16| consider multi-hop PRE schemes.
We remark that the distinction between single-hop and multi-hop PRE is one of

correctness, not security. We state the definition below.

Definition 3.2.1 (IND-CPA Security). We consider the following game between an

adversary A and a challenger C which proceeds in two phases.

Phase 1:

e C generates public parameters pp <— ParamsGen(\) and gives them to A.
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e Uncorrupted key generation: C generates (pk,sk) <— KeyGen(pp, A) and gives pk
to A upon request. A can request polynomially many such pk. Let T'y be the
set of honest public keys (also called honest entities).

o Corrupted key generation: C generates (pk,sk) < KeyGen(pp, \) and gives

(pk,sk) to A upon request. A can request polynomially many such (pk,sk).
Let T be the set of corrupted public keys (also called corrupted entities).

The adversary can issue a polynomial number of these queries, in arbitrary order.

Phase 2:

e Re-encryption key generation: The adversary submits a directed acyclic re-
encryption graph G = (V, E) where the vertex set V is the set of all uncorrupted
keys the adversary requested in Phase 1. A is given all the re-encryption keys
rki; < ReKeyGen(pp, sk;, pk;) where (i,7) € E.

We remark that the adversary can generate by herself all re-encryption keys
rki_; where i € ', since she knows the secret keys sk;. On the other hand,
she is not allowed to obtain rk;,—,; where © € 'y and j € I'c as that could
allow her to decrypt the challenge ciphertext simply by performing a sequence
of re-encryptions.

We also note that this mechanism already allows the adversary to obtain re-
encryptions of any ciphertext that she wishes. To obtain the re-encryption of
an adversarially chosen string c¢; from the public key pk; to pk;, she simply uses
the re-encryption key rk;_.; that she obtained and runs the honest re-encryption
procedure. Thus, there is no need to handle a separate re-encryption query.

e Challenge: A submits (i*,mg, my). C chooses a random bit b € {0,1}, and then
returns c;« <— Enc(pp, pk;-,mp). This is done only once, and it is required that
i ely.

A finally outputs v’ € {0,1} as a guess of b. Define A’s advantage as
cpa / 1
Adi(\) = |Prly =] - 5|

The PRE scheme is IND-CPA-secure if this advantage is negligible for all poly-

time adversaries A.

A few remarks about this definition are in order.
First, assume that the proxy obtains a (unidirectional) re-encryption key from

user Alice to user Bob. The security definition above implies that even if the proxy
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(who has the re-encryption key) and Alice collude, they cannot break the security of
Bob’s encryption.

Second, note that if the proxy and Bob collude, they can decrypt Alice’s
ciphertexts, by definition. This is simply because the proxy can use the re-encryption
key to turn Alice’s ciphertext into Bob’s ciphertext (for the same message) and then
proceed to use Bob’s secret key to decrypt. In essence, this means that the proxy and
Bob together have a decryption circuit for Alice. (We do not attempt to define the
notion of allowing this collusion to obtain only a “weak secret key” as in [AFGHOG]).

Third, we note that stronger definitions are possible in that they can allow for
chosen ciphertext decryption queries as considered in the work of [CHO7]. One way
to capture such attacks in the framework of our definition is to allow the adversary
to request for re-encryption keys from uncorrupted public keys to corrupted ones,
except that he cannot ask for a path of re-encryption keys from the challenge public
key to a corrupted public key. We do not pursue this line of definitions in this work.

Fourth, we note that our IND-CPA definition does not explicitly handle re-
encryption queries by the adversary, namely where the adversary queries with a tuple
(1,7, ¢) and obtains the result of the re-encryption algorithm applied to rk;_,; and c.
The reason we do not do this explicitly is that the adversary can simulate by herself
the execution of such a query by first asking our re-encryption key generation oracle
for rk;_,; and using it to re-encrypt ¢ by herself. Since the pairs of keys for which the
adversary is permitted to make re-encryption queries is the same as the ones between
which she can obtain a re-encryption key, this omission is without loss of generality.

Finally, we note that the single-hop scheme of [AFGHO06] is secure in a stronger
IND-CPA sense than the above, since they can handle re-encryption graphs that
contain directed cycles. On the other hand, the security proof of [PWAT16| appears

to only handle our acyclic IND-CPA definition.
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3.3 PRE Cryptosystem with NTRU Key Generation and RLWE Key
Switching (NTRU-ABD-PRE)
The first PRE scheme proposed in this chapter is based on the NTRU encryption
scheme [HPS9§] with RLWE modifications [SS11]. The NTRU immunity constraint
against subfield lattice attacks is used to set the distribution parameter for NTRU
key generation [ABD16]. The subfield lattice attacks allow the adversary to reduce
the ring dimension of the affected cryptosystems for certain parameter regimes and

solve the Shortest Vector Problem for n = 512 or lower [ABD16| [CJL16].

3.3.1 NTRU-RLWE Encryption Scheme

The scheme is parameterized using the following quantities:
e sccurity parameter (root Hermite factor) ¢ [CN11],
e ciphertext modulus ¢,

e ring dimension n,

e Bji-bounded discrete Gaussian key distribution y; over the polynomial ring
R = Z[n]/ (™ + 1) with distribution parameter o) (subscript k refers to key
distribution),

e B.-bounded discrete Gaussian error distribution y,. with distribution parameter
oe (subscript e refers to error distribution),

e cmpirically selected assurance measure o to minimize the number of bits needed
to represent ¢ (introduced for better performance).

In this work, we focus on the case of power-of-2 cyclotomic polynomials where n
is a power of 2 for multiple reasons. For one, the case of power-of-2 cyclotomics leads
to much simpler and more efficient implementations of number theoretic transforms
used to support ring operations. Further, the computational hardness underlying
security assumptions for these cases is better understood as compared to the case of
arbitrary cyclotomics [SS11].

We support a plaintext space of M = {0,1,...,p—1}", where p > 2 is

the plaintext modulus. All operations on ciphertexts are performed in the ring
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R, = R/qR. Each coefficient in the polynomials is represented in the range
{— 4], 4]}
The scheme includes the following operations:

e ParamsGen(\): Choose positive integers ¢ and n. Return pp = (¢, n).

e KeyGen(pp, A): Sample polynomials f', g < xx and set f := pf’ + 1 to satisfy
f =1(modp). If f has no modular multiplicative inverse in R,, then re-sample
f'. Set the public key pk and private key sk:

sk:=f€R, pki=h=pgf'ER,
e Enc(pp,pk = h,m € M): Sample polynomials s,e < x.. Compute the

ciphertext:
c:=hs+pe+m e R,.

° Dec( pp,sk = f, ¢): Compute the ciphertext error b := f-c¢ € R,. Output
=b (modp)

The scheme is correct as long as there is no wrap-around modulo ¢. Indeed,
b=f-c=f(hs+pe+m)=pgs+pfe+ fm
and if the value of b does not wrap around modulo ¢, then
m' = pgs+ pfe+ fm = fm =m (modp).

To derive the correctness constraint for decryption, we note that the coefficients
in g, s cannot exceed By as they are generated by a Bj-bounded discrete Gaussian
distribution y;. Analogously, the coefficients in f cannot exceed pB, + 1 and

coefficients in e cannot exceed B,, yielding
18]l = llpgs + pfe + fmll,, < 2np*B;B..

Here, we assume that By, B. > 1, which is true for all practical scenarios of this

scheme. To guarantee correct decryption of the ciphertext, coefficients in b should
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not exceed ¢/2 leading to the following correctness constraint:

q > 4np* By, B,. (3.1)

When o > w (logn), the bound B; can be expressed as 0;4/n, where i € {k,e}
and 27! is the probability that a coefficient generated using discrete Gaussian
distribution exceeds the bound B; [MRO7, [LTV13]. To obtain less conservative
estimated bounds for noise, we introduce an assurance measure o < n corresponding
to the probability of 272*! that a coefficient of a discrete Gaussian polynomial exceeds
the bound B; (the choice of a specific practical value of « is validated using an
empirical analysis of decryption correctness for a large sample of plaintexts). In this
case, the bounds By and B, can be expressed as o/ and o.1/a, respectively.

The constraint was derived for the worst-case scenario where both B;-
bounded polynomials may simultaneously take the upper (or lower) bound values for
all coefficients in the polynomials of dimension n. As the coefficients of polynomials
generated by the discrete Gaussian distribution are taken from a relatively large
sample of size n (where n is at least 512), we can apply the Central Limit Theorem
(CLT) to derive a lower (average-case) bound for gq.

If we examine a product of two Bji-bounded polynomials ¢ and s in the ring
R,, we observe that each coefficient in ¢ is multiplied by the mean of coefficients
in s (followed by modulo reduction). This implies that each coefficient in ¢ - s is
bounded by nopop,a, where oy, is the standard deviation of the mean expressed as
O = opn~ /2. After simplification, the bound for g - s can be expressed as /noza
instead of the original worst-case bound noia. Therefore, this technique allows one
to replace each occurrence of n (corresponding to a polynomial multiplication) with

v/n. Applying this logic to the worst-case constraint for the encryption scheme, we
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obtain the following average-case correctness constraint:

q > 4y/np* By B.. (3.2)

It should be noted that the effective probability associated with assurance
measure «, i.e., 279" gets significantly reduced for a product of two discrete
Gaussians. This further justifies the use of an assurance measure much smaller than

n.

3.3.2 Security of NTRU-RLWE Encryption Scheme

This general NTRU-RLWE encryption scheme can be instantiated for three different
ranges of distribution parameter oy, giving us security from different computational
assumptions [SSTI, [LTV13, [ABDI16]. The scheme can be proven secure based on
the NTRU and RLWE assumptions for these different parameter regimes. Here, the
NTRU problem is to distinguish between the following two distributions: a polynomial
f/g with f and g sampled from distribution x;, (assuming g is invertible over R,) and
a polynomial A sampled uniformly at random over R,.

The first variant [SS11] is based on the RLWE assumption. The public key
(polynomial f/g) distribution was shown to be statistically indistinguishable from
uniform random distribution for @, (z) = 2™ + 1 when o}, = w (¢"/?) [SS11]. This
allowed the authors to rely solely on the RLWE assumption to prove semantic security
of the encryption scheme. This logic was applied to show that the Stehlé-Steinfeld
scheme defined by operations KeyGen, Enc, and Dec and constraint o, = w (ql/ 2) is
IND-CPA secure [SS11].

Though based solely on the RLWE assumption, the original Stehlé-Steinfeld
scheme is impractical for proxy re-encryption or any homomorphic encryption

scheme requiring at least one multiplication of two polynomials generated from the
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distribution yj. In this case, the correctness inequality for ¢ would never hold as we
would have B? o< 07 = w (q) on the right hand side of the expression, i.e., ¢ > w (q).

For practical reasons, the constraint o, = w (ql/ 2) was suggested to be replaced
with a smaller value corresponding to the error distribution y. by arguing that the
resulting Decisional Small Polynomial Ratio (DSPR) problem is secure against all
known practical attacks [LTV13]. This assumption was recently invalidated for some
parameter ranges by two subfield lattice attacks [ABD16] [CJL16], which are able to
reduce the ring dimension of the affected cryptosystems and solve the Shortest Vector
Problem for n = 512 or lower.

Albrecht et al. [ABD16] proposed a new practical constraint for o} based on the
immunity of NTRU to subfield lattice attacks, conjecturing that the Stehlé-Steinfeld

proof may be extended to this case:

of > (ﬁ)m. (3.3)

Our proxy re-encryption scheme, referred to as NTRU-ABD-PRE, uses this
constraint. In contrast to the original Stehlé-Steinfeld scheme, this scheme supports
ReKeyGen, ReEnc, and homomorphic indexing and multiplication operations.

To meet the RLWE security requirements of the encryption scheme, we use the

inequality derived in [GHS12¢], namely,

log, (q/0)
4log, (0)

3.3.3 Single-Hop Re-Encryption Scheme
The PRE scheme introduces a new configurable parameter, key switching window 7,

and two new operations (in addition to ParamsGen, KeyGen, Enc, and Dec):
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e ReKeyGen (pp,sk = f,pk = h*): For every i = 0,1,..,|log, (q) /r], sample
polynomials s; and e;, and compute ~;

Yo = hsi+pei+ [ (27) € Ry, =7 = (30,71, s Vtoga(a)/r) -

e ReEnc (pp,rk = 7, ¢): Compute the ciphertext

llogz(a)/7]
= > (a-w),
i=0
[logz(q) /7] 4
where ¢; :={h-s+pe+ m},c= > (2.
i=0

Here, rk = 7 is the re-encryption key. The key switching window r is used to
decompose the ciphertext coefficients into base-2" components ¢;, thus substantially
reducing the noise growth. Each ¢; is represented as a polynomial in R, with
coefficients in the range between 0 and 2" — 1.

The PRE scheme is devised using a generalized version of the RLWE key
switching (bit decomposition) technique originally introduced for reducing the
ciphertext error in homomorphic encryption [BVIIal [LTV13]. Consider a new set
of keys: private key f* and public key h* = pg* ( f*)fl. The goal is to re-encrypt the
ciphertext ¢ using the public key h* without decrypting the data.

To this end, we introduce a set of elements ~; as

Vi = h"s; +pe; + f - (2T)i € Ry,

where i = 0,1, .., |log, (¢) /r|. This set of elements, referred to as the re-encryption
key, represents an encryption of all powers-of-2" multiples of the secret key f under the
public key h*. The key switching window was set to unity in [BV11a, [LTV13]. In this
study, we consider a range of key switching window values (powers of 2) to achieve
a faster implementation of re-encryption. The vector v = (70,71, ooy Y |logsy (q) /1 J) is

public.
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The ciphertext ¢ is computed using the public key h:
c:=hs+pe+m e R,.

For each window ¢ of length r (in bits), we introduce ¢; :== {h-s+pe+ m},,

and the ciphertext ¢ can then be represented as

c= Zci -(27)"

The polynomial ¢ computed as

/
ng Ci " i
i

can be shown to represent an encryption of m under the new public key A*.

Indeed,

fred = Q) = Y e ) pzqmzcw (2’ —ch,Eﬂf fe

7

where E; = g*s; + [*e;.

It can be seen that

fred=f"fe=m(modp),

i.e., the decryption is correct, if the ciphertext error f*- ¢’ is not too large to wrap
around q.

Considering that ||| < 2" — 1, ||Eil|, < nBe (B + pBy + 1), and

1F*f ellog < n* (pBr + 1) {pBe (Bx + pBr + 1) + (pBx + 1) (0 — 1)},
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we have

1f*¢lloo < pn(llogy (¢) /7] +1) (2" = 1) {nB. (By, +pBr + 1)}
+n* (pBi + 1) (pBe (B, +pBi + 1) + (pBr, + 1) (p — 1)}

< 2p°n*B.Bi{(2" — 1) ([log, (¢) /r| +1) + pBy}.

To guarantee correct decryption of the ciphertext, f*-¢’ should not exceed ¢/2 leading

to the following worst-case correctness constraint:
q > 4p*n’ BB {pBy, + (2" — 1) ([logy (q) /r] + 1)} .

Similar to the case of the encryption scheme, we can apply CLT to obtain the following

average-case correctness constraint for the PRE scheme:
¢ > 4p*nBy.Be {pBy, + (2" — 1) (llogy (q) /r] + 1)} . (3.5)

3.3.4 Extension to Multiple Re-Encryption Hops

The presented re-encryption scheme can be generalized to support multiple re-
encryption hops. Consider a new set of keys: private key f** and public key
h** = pg™ (f **)_1. The goal is to re-encrypt the re-encrypted ciphertext ¢ devised
in Section |3.3.3| using the public key A** without decrypting the data.

Analogously to the case of single re-encryption, we introduce a set of elements
= hs e+ 1 (27)' € Ry,

where ¢ = 0,1, .., |log, (q) /r|]. The vector v/ = (7{)7%’“"7,Uog2(q)/rj> is the re-
encryption key to transform from {f* h*} to {f**, h**}.
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The polynomial ¢ computed as

"o / /
C—§ Ci i
i

can be shown to represent an encryption of m under the new public key h*™* as long
as there is no wrap-around modulo q.

Indeed,
P = S ) =y Y e B T (@) =p Y e B

o skk ) k% _f
where E! = g**s, + f**el.

It can be easily shown that

f**-cl/:f**f*-C/:f**f*f~czm(modp),

i.e., the decryption is correct, if the ciphertext error f**-¢” is not too large to wrap
around q.
Applying the same procedure as for the first re-encryption, the correctness

inequality after two re-encryptions can be expressed as
q > 4p*nB B {(2" — 1) (log, (q) /r] + 1)}
+4p*n B, B’ (pBy, + 1) {pBy + (2" — 1) ([log, (q) /7| +1)}.

Considering that the first summand is at least by a factor of n%® (pBy + 1) (this

value is larger than 2'° for all practical parameter ranges) smaller than the second
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summand, the correctness constraint can be rewritten as

0> 0% (pBy + 1) - 4p*nBuB pBi+ (2 — 1) (llogy (q) /r] + D)}, (36)

which implies that the second re-encryption increases the lower bound for ¢ by a
factor of n%5 (pBy + 1).

After two re-encryption hops, the expression on the right hand side of is
Q(B}) and B} o} oc ¢*/4¢, where € > 0. This implies that NTRU-ABD-PRE does
not support more than two re-encryption hops because in the case of three hops the
right-hand side expression of will reach ¢'*.

The effective value of assurance measure « corresponding to a given probability
can be decreased for each extra step of re-encryption as long as the empirical

evaluation of decryption correctness is performed.

3.3.5 IND-CPA Security
We will show that the NTRU-ABD-PRE scheme is IND-CPA secure in the sense of
Definition B.2.1]

As noted in Section [3.3.2, the NTRU-ABD-PRE scheme is based on the NTRU
and RLWE assumptions. Specifically, we use a variant of the NTRU assumption
formulated in [ABD16] to achieve the immunity of NTRU to subfield lattice attacks.

We refer to this variant as NTRU-ABD with the formal definition as follows:

Definition 3.3.1. The NTRU-ABD,,,,, problem is to distinguish between the
following two distributions over ring R, = Z,x]/ (z" 4+ 1): a polynomial g/f with
g and f sampled from distribution x with o > O(q'*) (assuming g is invertible

over R,) and a polynomial h sampled uniformly at random over R,.

For the RLWE assumption, we use the Hermite normal form [LTV13], which is

defined as follows:
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Definition 3.3.2. For all A € N, let ¢(z) = ¢x(x) € Z]z] be a cyclotomic polynomial
of degree n = n(\), let ¢ = q(\) € Z be a prime number, let the ring R = Z[x]/ (¢(z))
and R, = R/qR, and let x. denote an error distribution over the ring R.

The decision ring-LWE assumption RLWE, , .. states that for any ¢ = poly()),

{(ai,a; - s+ ei)}z‘e[e] ~ {(ai’ui>}i€[ﬂ ’

where s and “error polynomials” e; are sampled from the noise distribution x., and

a; and w; are uniformly random in R,.

Albrecht et al. [ABD16] conjectured that the Stehlé-Steinfeld IND-CPA proof [SS11],
which was provided for o, = w(q'/?), may be extended to this case assuming only
RLWE. However, as it stands, the security of this scheme is based on RLWE as well as
the NTRU-ABD assumption described above. We will assume that the NTRU-ABD
assumption is stronger than RLWE and set the key-sizes accordingly.

We showed that the NTRU-ABD PRE scheme maintains correctness for only
two hops, in the sense that once a ciphertext goes through more than two hops, it
cannot be decrypted to the correct message any more. It is important to note that
the “two-hopness” is a limitation on the correctness of the scheme, not its security.
In particular, we will show below that the scheme is IND-CPA-secure in the sense of
Definition which is a notion of security for general, multi-hop PRE schemes.

Our proof for NTRU-ABD-PRE is similar to that of the IND-CPA-secure LWE

scheme proposed in [PWA™T16].

Theorem 1 (IND-CPA security of NTRU-ABD-PRE). Under the NTRU-ABD,, 4,
and RLWEy 4. assumptions, NTRU-ABD-PRE is IND-CPA-secure. Specifically, for

a poly-time adversary A, there exists a poly-time distinguisher D such that
Adv}*(N) < (p- (Qri + Qre) + N +1)- max(Ad'vgmU'ABD"’C”X’c (A), AdngWE"”q*XE (A)
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where Q. and Q.. are the numbers of re-encryption key queries and re-encryption

queries, respectively; N is the number of honest entities; \ is the security parameter;
p =1+ [log,q/r].

Proof. We show that the NTRU-ABD-PRE scheme is IND-CPA-secure through a
sequence of games.

Let Gamey be an initial game between an adversary A and a challenger C
with their interactions governed by Definition [3.2.1] For notational convenience,
let us consider the case when I'y = {1,...,N} and I'c = {N +1,...,M} for
some polynomial M. Furthermore, without loss of generality, let 1,2,..., N be the
topological order dictated by the re-encryption graph, starting from the sinks to the

sources, namely there are no edges from 7 to k if 7 < k. In more detail:

e The i-th key pair is defined as sk; := f; € R, and pk; := h; = pg;f; ' € R,
where f; = pf; +1 and [, g; < xu-

e The re-encryption key from party ¢ to party k is written as

Tkisk = (P - Siku + Peiku + fr - (QT)u)ue{oyLmUO&(@/@} )

where S;ky, €k are generated by party <.

e The challenge ciphertext of message m, related to party i* is:
¢ =h"-s"+pe*+my € R,

where b € {0, 1} is the challenge bit, s*,e* «— x., and h* is the challenge public
key.

Let Gamey, (1 < k < N) be defined by considering the honest party k € I'y.
Gamey, is identical to Gamey_; except for the following changes:

e When generating the k-th key pair, hy, = p-r}, where r}, is a randomly generated
ring element rather than an NTRU-ABD sample.

e When answering the re-encryption key query (i,k): First, note that ¢ > k
because of the topological ordering. The re-encryption key is expressed as

rhisk = (P Yikw)ue o, logy @)/}

where 7, is freshly random.
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Each Gamey, is computationally indistinguishable from Game;_; because of the
NTRU-ABD and RLWE assumptions. First, & € I'y and therefore, there is no
re-encryption “edge” from user k to any user in I'c. Additionally, and crucially, all
the re-encryption keys (k, i) have already been replaced with uniformly random ring
elements in the prior games. Consequently, the secret key fi is used only in the form
of fresh NTRU-ABD samples in its public key and in the form of fresh RLWE samples
in the re-encryption keys (the latter assumes that the public key is indistinguishable
from a random sample based on the the NTRU-ABD assumption). Thus, all these
can be replaced by uniformly random ring elements by invoking the NTRU-ABD and
RLWE assumptions. The security loss is proportional to the number of re-encryption
key and re-encryption queries that user k was part of (an additional multiplicative
factor 1+ |log, ¢/r| is incurred in the security loss as each re-encryption key contains
that many RLWE samples).

Gameg,, is the same as Gamey except for the challenge ciphertext that is
expressed as

cfi=p-r 4+ my € R,

where r* is a freshly random ring element in R,. This is computationally indistin-
guishable from Gamey by the RLWE assumption (assuming that the public key is
indistinguishable from a random sample based on the the NTRU-ABD assumption).

The last change guarantees that the challenge bit b is information-theoretically
hidden from A, and therefore, the advantage of the adversary in Game; is 0.

Putting all this together, we see that

NTRU-ABD

Adv(N) < (p- (Quk + Qre) + N + 1)-max(Advy, e ()), AdVgLWEaﬁ,q,xe \)

where p := 1+ [log, ¢/r]. This finishes our proof. O
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3.4 PRE Cryptosystem with RLWE Key Generation and Key Switching
(BV-PRE)

The second PRE scheme proposed in this chapter, BV-PRE, is based on the

Brakerski-Vaikuntanathan (BV) homomorphic encryption scheme [BVI11D]. The

BV-PRE scheme relies only on the RLWE security assumption.

3.4.1 The Encryption Scheme
The basic encryption scheme comes from the work of Lyubashevsky, Peikert and
Regev [LPR10, LPR13] and Micciancio [Micl(]. The scheme is parameterized using

the following quantities:

e security parameter (root Hermite factor) 6 [CN11],
e ciphertext modulus g,
e ring dimension n,

e B.-bounded discrete Gaussian error distribution y, with distribution parameter
Oe,

e cmpirically selected assurance measure o to minimize the number of bits needed
to represent ¢ (introduced for better performance).

As in the case of NTRU-ABD-PRE, we work with the polynomial ring R, =
Z4[n]/ (™ + 1) and use a plaintext space of M = {0,1,...,p — 1}", where p > 2 is

the plaintext modulus. Each coefficient in the polynomials is represented in the range

{—14],..., |1]}. We also introduce U, as a discrete uniform random distribution over

R,

The scheme includes the following operations:

e ParamsGen(\): Choose positive integers ¢ and n. Return pp = (g, n).

o KeyGen(pp, A): Sample polynomials a < U, and s,e < x.. Compute b :=
a- s+ pe € R, Set the public key pk and private key sk:

sk:=s € R, pk:=(a,b) € R?].
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e Enc(pp,pk = (a,b),m € M): Sample polynomials v, ey, €1 < x.. Compute the
ciphertext ¢ = (co, ¢1) € R2:

co:=b-v+peg+me Ry c:=a-v+pe € R,

o Dec (pp,sk = s, ¢): Compute the ciphertext error ¢ := ¢y — s - ¢; € R;. Output
m’ :=t (modp).
The scheme is correct as long as there is no wrap-around modulo ¢. Indeed,

t=b-v+peg+m—s-(a-v+pe)=(a-s+pe)-v+pe+m—s-(a-v+pe)

=m+p(e-v+e—s-e).

where all computations are done mod ¢q. If the value of ¢ does not wrap around
modulo ¢, then

m'=m+pe-v+e —s-e)=m (modp).

To derive the correctness constraint for decryption, we note that the coefficients
in s, v, €, ey, e; cannot exceed B, as they are generated by a B.-bounded discrete
Gaussian distribution y.. Applying the same procedure as for the NTRU-RLWE

scheme followed by CLT, we obtain

I1t]l., < 3vnpBZ.

Here, we assume that B. > 1. To guarantee correct decryption of the ciphertext,

coefficients in ¢ should not exceed ¢/2, leading to the following correctness constraint:

q > 6y/npB2. (3.7)
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3.4.2 Proxy Re-Encryption Scheme

The PRE scheme introduces three new operations (in addition to ParamsGen, KeyGen,
Enc, and Dec) in contrast to two needed for the PRE functionality in NTRU-ABD-
PRE. In BV-PRE, the evaluation key generation is performed in two separate stages:
Preprocess and ReKeyGen. First, the owner of key s* generates a set of “public” keys
(Bi, Bi - s* + pe;) and then sends these keys to the policy authority, as displayed in
Figure [3.1 After that, the proxy authority computes ; to generate the complete
re-encryption key. This allows one to apply the same non-interactive PRE workflow

as discussed in Section [3.2

e Preprocess (pp, A\, sk* = s*): For every i =0, 1, .., |log, (¢) /7|, where r is the key
switching window, sample polynomials 3; <- U, and e; <~ x. and compute

0; = Bi-s" +pe; € Ry,
pk := (5, 9;)2‘6{0,1,..-L10g2(q)/7‘J} '

e ReKeyGen (pp, sk = s, pk = (5, 9;‘)246{0’1’.“UogQ(q)/TJ}>:
For every i = 0,1, .., [log, (¢) /7], compute ~; and store them in re-encryption
key rk

Vi =07 —s-(2) € Ry,rk := (51',%‘)ie{o,l,_,_UogQ(q)/TJ} :

e ReEnc (pp, rk = (8;, %')z'e{o,l,._,UogQ(q)/ﬂ} ,c>: Compute the ciphertext ¢ = (¢, ¢])
using the 2"-base decomposition of ciphertext element ¢; of original ciphertext

¢ = (co, 1)
logs(a)/r] logy(a)/r]
h=cot D () d= D (d) )
1=0 =0

where cgi) = {a- v+ pe}, is the iy, “digit” of the base-2" representation of ¢

and
[logo(q)/7]

¢ = Z ng‘) ) (2r)i'

=0
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The ciphertext ¢ = (¢, ¢}) can be shown to represent an encryption of m under

the new key s*. Indeed,

logz(a)/r] llogz(a)/r)
st > (- S (@8)
i=0 =0
[log(q)/7] . . [loga(a)/r]
=+ > (B e @) =5 Y ()
i=0 i=0

=cy—s-c+pE;,

loga@)/) /)
where E; = > (cl . ez-) :
i=0
It can be easily seen that

co— $-c1+ pE; (modp) = ¢y — s+ ¢y (modp) = m (modp) .

The above analysis implies that the ciphertext noise term grows only by a small

additive factor p || E;||, after each re-encryption. | E;|| can be expressed as

IEillo < vnBe (2" = 1) ([log, (q) /r] +1).

Therefore, the correctness constraint for d re-encryption hops can be written as
@ > 2v/ipB. {3B. +d- (2" — 1) (|log, () /r] + 1)} (3.8)

3.4.3 IND-CPA Security
We will show that the BV-PRE scheme is IND-CPA secure in the sense of
Definition B.2.11

Theorem 2 (IND-CPA security of BV-PRE). Under the RLWE, . assumption,
BV-PRE is IND-CPA-secure. Specifically, for a poly-time adversary A, there exists
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a poly-time distinguisher D such that
AdvT (V) < (p+ (Que+ Que) + N + 1) - Aduy 00 ()

where Q. and Q.. are the numbers of re-encryption key queries and re-encryption
queries, respectively; N is the number of honest entities; X is the security parameter; ¢

is the cyclotomic polynomial defining the ring R, = Z,[x]/ (¢) and p := 14 |log, q/7].

Proof. We show that the BV-PRE scheme is IND-CPA-secure through a sequence of
games.

Let Gamey be an initial game between an adversary A and a challenger C
with their interactions governed by Definition [3.2.1] For notational convenience,
let us consider the case when I'y = {1,...,N} and T'c = {N + 1,..., M} for
some polynomial M. Furthermore, without loss of generality, let 1,2,... N be the
topological order dictated by the re-encryption graph, starting from the sinks to the

sources, namely there are no edges from 7 to k if ¢« < k. In more detail:

e The i-th key pair is defined as sk := s; € R, and pk := (a;,a; - s; + pe;) € Rg,
where s;, €; < xe.

e The re-encryption key from party i to party k is written as

Tkisk = (Biku> Biku * Sk + DCiku — Si - (QT)u)ue{o,L...Uogg(q)/rJ} ’

where [k, €k are generated by party k.

e The challenge ciphertext related to party i* is ¢* = (cg, ¢}) € Ry
co=0b"-v" +pes+my € Ry, ¢] :=a"-v" + pe] € Ry,

where b € {0, 1} is the challenge bit, v*, e}, ] < x., and (a*, b*) is the challenge
public key.

Let Gameg, ¢ € {1 < k < N}, be defined by considering the honest party

k € I'y. Gamey, is identical to Gamey_; except for the following changes:

e When generating the k-th key pair, by is a randomly generated ring element
rather than a RLWE sample.

74



e When answering the re-encryption key query (i,k): First, note that ¢ > k
because of the topological ordering. The re-encryption key is expressed as

rki%k = <5iku7 fyiku)ue{o,l,...LlogQ(q)/Tj} )

where 7,1, is freshly random.

Each Game;, is computationally indistinguishable from Game,_; because of the
RLWE assumption. First, k& € I'y and therefore, there is no re-encryption “edge”
from user k to any user in I'c. Additionally, as before, all the re-encryption keys (k, 7)
have already been replaced with uniformly random ring elements in the prior games.
Consequently, the secret key s; is used only in the form of fresh RLWE samples in
its public key and in the re-encryption keys. Thus, all these can be replaced by
uniformly random ring elements by invoking the RLWE assumption. The security
loss is proportional to the number of re-encryption key and re-encryption queries
that user k was part of (an additional multiplicative factor 1 + |log, /7] is incurred
in the security loss as each re-encryption key contains that many RLWE samples).

Gamegy, is same as Gamey except for the challenge ciphertext that is expressed
as

* o, * ko, *
CO — 7“1 +mb E Rq, Cl = T2 G Rq,

where r},r; are freshly random ring elements in R,. This is computationally
indistinguishable from Gamey by the RLWE assumption as well.

The last change guarantees that the challenge bit b is information-theoretically
hidden from A, and therefore, the advantage of the adversary in Game; is 0.

Putting together, we see that
AV (V) < (0 (Quic + Qre) + N +1) - Advy 700 (3)
where p := 1+ |log, ¢/r]. This finishes our proof. O
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3.5 PRE Cryptosystem with LWE Key Switching (GSW-PRE)
We describe our third PRE scheme which is based on GSW |[GSW13] identity based

FHE scheme. Our construction relies only on LWE security assumption.

3.5.1 Encryption Scheme
GSW encryption scheme was introduced by Gentry, Shahai and Waters [GSW13].
Message space for the scheme is restricted to M € {0,1}. The scheme is broadly

parameterized by :

e Security parameter \.
e Working modulus ¢ of kK = (A, d) bits.
e d is the maximum depth of the circuit.

e Lattice dimension n and m = O (nlogq). It is sufficient to take m > 2nloggq.

e Bound B for generating error e from distribution x = xp ().

Encryption scheme is described by the following algorithms:

e ParamsGen(\): Choose appropriate ¢, n and m = 2nlogq. Set N = (n+1) -
[log q] and ¢ = [log ¢|. The public parameter pp consists of (¢, n,m, ¢, N).

o SecretKeyGen(\, pp): Sample t € Zy from distribution y, t+sx". We set
sk =8« (1, —1?) € 2y, Also, set Vv = PowersOf2 (§).

e PublicKeyGen(A, pp, sk): Public key consists of b and matrix B. Matrix B
is obtained by sampling uniformly from U;"*", B <=sU;"*". We generate error

vector as €<sx™ and set b = B -t + & Set public key as A = [B I B} €

Z;nx(n—i—l)'

e Encrypt(pp, pk, 1): For encrypting a message p € {0,1} we sample a uniform
matrix R € Uﬁgﬁ” and output the ciphertext C € Z)"*" as follows:

C = Flatten (i - Iy + BitDecomp (R - A))
e Decrypt(pp, sk, C): We recover i/ by performing the following two operations.

1. Compute w = C-v € Z}.
2. Recover p’ = |w;/2"| where 2 € (¢/4,q/2].
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3.5.2 Proxy Re-Encryption Scheme
GSW-PRE augments the above mentioned PKE scheme with two additional operations,
namely, ReKeyGen and ReEncrypt. The operations for Proxy Re-Encryptions are

described as follows:

e ReKeyGen(pp, \, ska, pkp): ReKeyGen generates the evaluation public key that
is required for a proxy to transform the ciphertext. In this scheme the re-
encryption key is a sequence of (n + 1) matrices where each matrix is represented
as EK [i] € Zflvx(nﬂ) . Each of the matrix is generated as follows:

Sample uniformly random matrix R; < U {]\éxl’}”

EK [i] = R; - Ag + (V4> i) (3.9)
rkasp = (EK[0],--- ,EK [n))

Where v > 1 represents the addition of v on the i-th column.

e ReEncrypt(pp, Ca, ks p): This operations transforms a ciphertext C, into
C4_.p. For this purpose we work only on the top ¢ row of ciphertext Cyg4,
represented as CQXN and build the resulting ciphertext C4_, 5 in blocks of Zf;XN .
Finally, we assemble the blocks by stacking them vertically which gives us a
ciphertext C € ZY*V.

C' = BitDecomp (C5" - EK[i]) , i € [0,n]

; (3.10)
CA—>B: [COHT ||TC ]

Ciphertext C4_, g can be shown to represent an encryption of u under the new
key skp as described below. For simplicity, let Cfp € ZgXN represent the top ¢

row block of ciphertext C4. Then, Cfp can be written as:
CY? = Flatten (11 - g + BitDecomp (R*" - A4))
Now, for ¢ = 0 we can see that,

C'? - EK[0] = C}* - [Ro - Ap + V4]
:Cfp'\_f»A—FCtAOp'Ro'AB:,u'g—l—RgOp'AB

In general, we can see that for any ¢+ < n we have,

CY? - EKJ[i] = CY - [R;- Ap + (V4 > i)]
=CY. (V4>i)+CY R;-Ap
=(n-g>i)+R"-Ap
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Finally, we can see that vertical stacking of these partial results leads us to the
final ciphertext C4_ 5.

Cap = [CHP-EK[0] [[T---[|T CY® - EK[n]]
=u-G+R'-Agp

3.5.3 Correctness Constraint and Run-time Analysis

For an analysis on the correctness constraint we determine the noise w as:
— — =
w=Cyu,p-Vp=pu-vg+Re

We can see that error in ciphertext mainly depends on norm of R’ or ||C - R|[;.
Assuming worst-case conditions we correctly decrypt the ciphertext for the following

condition:
|IRell; < q/8 or, ¢ > 8mN B [worst-case bounds]
Invoking central limit theorem we arrive at a more conservative bounds as:
q > 8V'mN B [average-case bounds] (3.11)

Run-time for performing the re-encryption procedure depends upon the size of
the matrices EK[i| and ciphertext C. Hence, run-time complexity to re-encrypt each
block is O (n2 - log? q). Repeating this for the entire n + 1 blocks we arrive at the

overall time complexity of the GSW-PRE scheme given by:

GSW-PRE runtime: O (n’log’q) .
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3.5.4 Multi-hop GSW PRE

In case of a multi-hop scenario, a proxy interacts with the next proxy, thus building a
chain of re-encryptions until the ciphertext reaches the final entity. Given A such hops
we expect the noise to grow by number exponential in A w.r.t to security parameter \.
Applying correctness constraints from single hop GSW-PRE to multi-hops we arrive

at the following bounds for ¢:

qg > 8V NhmB

3.6 PRE Cryptosystem with RLWE Key Generation and Key Switching
(Ring-GSW PRE)

In this section, we describe our last PRE scheme which is based on ring variant of

GSW FHE scheme. Similar to BV-PRE, the construction relies solely on RLWE

security assumption and underlying cyclotomic polynomial arithmetic.

3.6.1 Ring-GSW Encryption Scheme
Messages are restricted to plaintext space of M € R, where p > 2. Unlike our
previous scheme, we consider the coefficients of the polynomial to be in the range

[—q/2,q/2]. The following represents the parameters of the encryption scheme:

e security parameter A and ciphertext modulus q.
e plaintext modulus p < ¢ and ring dimension n.
e B- bounded discrete Gaussian distribution y .

e Ternary distribution 7 which generates a ring polynomial with coefficients
uniformly sampled from {—1,0,1}.

e depth d of the circuit for homomorphic evaluation.

The scheme encapsulates the following operations:
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° ParamsGen(l’\): Choose positive integers ¢ = ¢ (A, d) and n = n (A, d). Return
public parameter set pp = (¢, N, p,q,n) where ¢ = [logq| and N = 2(.

° SecretKeyGen(l’\,pp): Sample polynomial s <sxp g, and set sk = (1;—s) €
R2X1.
q

. PublicKeyGen(lA, p, sk): To generate public key pk sample polynomials a and
e from uniform and discrete Gaussian distributions respectively and proceed as
follows:

a<-sUg,, €<sXBR,, b=as+pe
Set the public key, pk = A% = [b q]

e Encrypt(pp, pk,p): To encrypt a message polynomial y € R, we sample a
random vector r € Rflv from uniform ternary distribution and an error matrix
E e Rflv *2 and set the encryption as follows:

(3.12)

C=u-G+r-A+pE, r<s é\q[, E<—$ng§q

e Decrypt(pp, sk, C): Given a ciphertext C, plaintext p is recovered by multi-
plying the first row of the ciphertext with sk. This is represented as follows:

1 = ((Cy x sk mod ¢q) mod p) = p mod p

3.6.2 Ring-GSW PRE Scheme
As in the case of GSW PRE scheme we introduce two more operations ReKeyGen
and ReEncrypt. For a proxy to gain access to the re-encryption key, party A retrieves
party B’s public key and proceeds with the ReKeyGen operation. The operations for
Ring-GSW PRE scheme are described as follows:

ReKeyGen(pp, ska, pkp): ReKeyGen evaluation key consists of two ring
polynomial matrices. To generate the matrices we first sample two uniformly random
matrices 1o, 71 € Rév . Next we sample two error matrices from discrete Gaussian

distribution xg, 5 and set the evaluation matrices EK (i) as follows:

i s 7}%7, E; < ngfé, ie{0,1}
EK][i] = r; - Ap + pE; + (PowerOf2 (sk4) > i)

rkasp = { EK[0], EK[1] }
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ReEncrypt(pp, Ca,rka—p): This operations results in a ciphertext Ca_,p
which can be decrypted under B’s secret key skp. We use the top ¢ rows of the
ciphertext C4 to perform re-encryption and denote this as Cffp. Next, we multiply
each of the matrices EK[i] with C'{? and reassemble the results into a Ring-GSW

ciphertext C4_,g. This is shown as follows:

‘. = BitDecomp (C%*) - EK[i] € R,
0 1
CAHB = [CA—>B HT CA—>B}
3.6.3 Correctness Constraint Analysis
To formulate the correctness constraint of the scheme we have to ensure that there

is no wrap around mod-q and coefficients of the noise term ¢ are indeed in the range

[—q/2,q/2]. Noise term ¢ is given by:

t=Caspo X skp=Caspoo—58CasB01

Let, a; = BitDecomp (Cff};o) and f; = BitDecomp (CZ’EJ) for (i,7) € [0,€). Then,

C4_ B, can be shown as:

Caspo = o Bi]f;é - |rjAp + pE; + PowerOf2 (sk,)]

where ¢ € [0,¢) and j € [0,2¢).

-1 1
Caspoo = b Z (cir; + Biresi) +p Z (a;Eio + BiEtip)
=0 =0
-1 -1
+ Z a;PowerOf2 (1) + Y  ;PowerOf2 (—s,4)
i=0 i=0

= bpry + pEj o+ a —saf
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Similarly,

—1 -1
CasBo1 = ap Z (i + Biresi) +p Z (0;Ei1 + BiEin)
i=0 i=0
=apry+ PE6,1

Therefore,

t =74 (bg —apsg) +p (Eyo — s5Ey,) + 1+ pe = p

For correct decryption ||t|| ., < ¢/2. By using central limit theorem on B-
bounded discrete Gaussian distribution we arrive at the final correctness constraint:

It <p- (4n[1og q|B + 2v/n[logq] + B) ~ bpnBllog q| (313

or, ¢ > 10pnBJlogq] | average case bounds |

3.6.4 Key-Switching and Automorphism
We introduce two new operations, KeySwitchGen and SwitchKey to aid the ciphertext
transformation process. Assuming we have a ciphertext C encrypted under secret key
sk we describe below the key-switching procedure which results in a ciphertext C*
which can be decrypted with secret key sk*:

KeySwitchGen(pp, sk, sk*): We generate an evaluation key which consists
of two RLWE matrices similar to ReKeyGen operation. First we generate a noise
free RLWE pair from s*. Next, to generate each of the RLWE matrix we generate

a random vector from ternary distribution 7g, and an error matrix from discrete
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Gaussian distribution and proceed as follows:

Sample a <sUp,; b= as"; Set A =1[bal € R;XQ
Sample 7; <= Tr ; Ej<sXxr, B
EK][i] = r;A + pE; + (PowerOf2(sk) > 1)

Set ek = {EK][0], EK[1]}

SwitchKey(pp, C,ek): This results in a ciphertext C* and is analogous to
ReKeyGen procedure of Ring-GSW-PRE scheme. We outline the procedure as

follows:
C*' = BitDecomp (Ct"p) -EK]i] € Rf;xz

C* — [0*70 HT C*,1:|

Next, we discuss the application of Automorphism transformation in conjunction
with key-switching operation. Automorphism transformation, denoted by o, has an
effect of rotating or permuting the plaintext slots. While plaintext slots can be easily
generated for power of two cyclotomic polynomials by an application of negacyclic
NTT, plaintext slots can be rotated only for special cyclotomic polynomials where
plaintext modulus satisfies p = 1( mod m) and R = Z[X]/®,, (X). Number of
slots that can be used is denoted by ¢ = ¢(m) where each slot element m; € Z,.
An Automorphism transformation o (R, 1), for i € p(m), permutes the coefficient of
the polynomial. Given a ciphertext C an Automorphism transformation produces a
ciphertext C' = ¢ (C, i) which can be decrypted by a secret key sk’ = o (sk,7). At
this stage, we need to key-switch the ciphertext C’ so that it can be decrypted by the

original secret key sk. This is shown as follows:

Generate ek; = KeySwitchGen (pp, sk;, sk), Vi € p(m)

Compute o (C,i), Output C' = SwitchKey (pp, o (C, 1), ek;)
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3.7 Parameter Selection
A general issue with lattice encryption schemes is that they are more complicated
to parameterize than other families of encryption schemes. Parameter selection is
governed largely by a correctness condition (which is specific to the scheme being
analyzed) and security conditions for the underlying security assumptions.

For NTRU-ABD-PRE, parameter selection is governed by the correctness
condition , the security condition accounting for the NTRU immunity
against subfield lattice attacks, and RLWE security condition (3.4]).

For BV-PRE, GSW-PRE and Ring-GSW-PRE parameter selection is governed
by their respective correctness conditions and LWE/RLWE security
condition .

We identify the parameter tradeoffs associated with the correctness constraint
and security constraints for PRE schemes in the experimental results section of this
paper. Of high importance are the ring dimension n and ciphertext modulus ¢ which
have the largest direct impact on the runtimes of the scheme. The value of n should be
kept as small as possible as runtime is at least linear in n for all operations. The value
of ¢ determines the sizes of integers that need to be manipulated computationally.
Ideally ¢ should be kept less than the threshold 232 or the less preferred threshold
264 to utilize native arithmetic operations supported with the processor word sizes in
modern processors.

The value of d, the number of hops that the re-encryption scheme supports, can
be thought of as an application-specific parameter determined by the number of PRE
hops needed.

We begin the process of parameter selection with the security parameter 9, also
known as the root Hermite factor. The root Hermite factor is discussed above in the

Related Work section with relevant references. A heuristic argument is presented in
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[CN1I] which suggests that a root Hermite factor of § = 1.006 could provide adequate
security. Therefore, we select to be as close as possible to the ceiling § < 1.006.

The bound for discrete Gaussian distribution x;(x), where ¢ € (k,e), is
expressed as B; = o;\/«, where o; is the standard deviation of the distribution
and « determines the effective probability that a coefficient generated using discrete
Gaussian distribution (or a product of discrete Gaussians) exceeds the bound B;
[LTV13].

The value of o, is usually chosen in the range from 3 to 6, and we set the value
of o, to 4 as in [GHS12c¢]. We set « to 9, which for the case of an integer generated
using discrete Gaussian distribution corresponds to the theoretic probability of at
most 2% of choosing a value that exceeds the upper bound B;.

We validated our selection of ; and a experimentally. Over 35,000 iterations of
encryption/decryption (using different keys) for ring dimensions in the range from 2°
to 215 (5,000 iterations for each value of ring dimension), we observed no decryption
errors. Note that when products of two discrete Gaussians (encryption scheme), three
discrete Gaussians (single-hop re-encryption in the case of NTRU-ABD-PRE), and
higher number of discrete Gaussians (multi-hop re-encryption in the case of NTRU-
ABD-PRE) are considered, the practical probability drops dramatically. This implies
that smaller practical values of & may be possible.

Subsequent to the selections of d, §, g., and «, we can choose n, ¢, and oy (only
in the case of NTRU-ABD-PRE) experimentally using appropriate correctness and
security constraints to minimize runtime/throughput for various values of the key
switching window r and plaintext modulus p.

Tables 3.3 and shows the minimum number of bits needed to represent the
ciphertext modulus ¢ (which we refer to as k = |log, ¢ + 1]), as a function of ring
dimension n and re-encryption depth d for the key switching window of unity assuming

the other parameters were selected as above. It can be seen that NTRU-ABD-PRE
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Table 3.3 Minimum Bits Required to Represent Modulus ¢ for Selections of Ring
Dimension n and Multiple Re-encryption Depths d at p =2 and r =1

Ring dimension n
512 | 1024 | 2048 | 4096 | 8192 | 16384
- 35 36 37 38 39
- 93 96 99

PRE Scheme d

NTRU-ABD-PRE

17 18 18 19 19 20
18 18 19 19 20 20
18 19 19 20 20 21

BV-PRE

W DN | W DN =

Table 3.4 Minimum Bits Required to Represent Modulus ¢ for Selections of Ring
Dimension n and Multiple Re-encryption Depths d at p=2 and r =1

PRE Scheme || d n k PRE Scheme | d n k
1 511 | 21 1 1024 | 22

1023 | 22 2048 | 23

511 | 22 . 1024 | 23

GSW-PRE 2 1093 93 Ring-GSW-PRE || 2 5048 | 24

3 511 | 22 3 1024 | 23

1023 | 23 2048 | 24

requires a ring dimension of at least 4096 and ciphertext modulus of approximately
100 bits to support two re-encryption hops in contrast to a ring dimension of 512
and 18-bit ciphertext modulus for BV-PRE, implying that NTRU-ABD-PRE can be
treated as a single-hop scheme for all practical purposes. It should also be noted that
all ciphertext moduli for BV-PRE require representations with less than 32 bits, thus
enabling efficient implementations based on native integer types (32-bit and 64-bit
integers). The growth of the number of ciphertext modulus bits k with increase in
ring dimension n for both schemes can be easily estimated from expressions and
: for NTRU-ABD-PRE the dependence of ¢ on n is n'*%? while for BV-PRE, it
is \/n.

Table illustrates the effect of increasing the key switching window r and
plaintext modulus p on the minimum values of ring dimension n and the number of
bits k required to represent the ciphertext modulus ¢ for both schemes. Increase in r

reduces the dimension of the re-encryption key (to |log (¢) /7] + 1) and the number of
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Table 3.5 Dependence of Minimum Values of Ring Dimension n and the Number of
Bits k Required to Represent the Ciphertext Modulus ¢, on Plaintext Modulus p
and Key Switching Window r for Re-encryption Depth d of Unity

r=1 r=2 r=4 r=28 r =16
PRE Scheme b n k n k n k n k n k
2 1024 | 35 | 1024 | 35 | 1024 | 35 | 1024 | 38 | 2048 | 48
16 2048 | 53 | 2048 | 53 | 2048 | 53 | 2048 | 53 | 2048 | 57
NTRU-ABD-PRE 256 | 4096 | 78 | 4096 | 78 | 4096 | 78 | 4096 | 78 | 4096 | 78
4096 | 4096 | 102 | 4096 | 102 | 4096 | 102 | 4096 | 102 | 4096 | 102
65536 | 4096 | 126 | 4096 | 126 | 4096 | 126 | 4096 | 126 | 4096 | 126
2 512 | 17 | 512 | 17 | 512 | 18 | 1024 | 22 | 1024 | 29
16 512 | 20 | 1024 | 21 | 1024 | 22 | 1024 | 25 | 1024 | 32
BV-PRE 256 | 1024 | 25 | 1024 | 25 | 1024 | 26 | 1024 | 29 | 1024 | 37
4096 | 1024 | 29 | 1024 | 29 | 1024 | 30 | 1024 | 33 | 2048 | 41
65536 | 1024 | 33 | 1024 | 33 | 1024 | 35 | 1024 | 37 | 2048 | 45

Table 3.6 Dependence of Minimum Values of Ring Dimension n and the Number of
Bits k Required to Represent the Ciphertext Modulus ¢, on Re-encryption Depth d
and Key Switching Window r for BV-PRE at p = 2

d r=1 r =2 r=4 r=2~8 r=16

n k n k n k n k n k
1 512 | 17| 512 | 17 | 512 | 18 | 1024 | 22 | 1024 | 29
2 512 | 18 | 512 | 18 | 512 | 19 | 1024 | 23 | 1024 | 30
) 512 | 19 | 512 | 19| 512 | 20 | 1024 | 24 | 1024 | 31
10 512 | 19 | 512 | 20 | 1024 | 22 | 1024 | 25 | 1024 | 32
20 512 | 20 | 1024 | 21 | 1024 | 23 | 1024 | 25 | 1024 | 33
50 || 1024 | 22 | 1024 | 23 | 1024 | 24 | 1024 | 28 | 1024 | 35
100 || 1024 | 23 | 1024 | 24 | 1024 | 25 | 1024 | 29 | 1024 | 36

NTT operations (performed for groups of r bits of each coefficient), which effectively

reduces the re-encryption runtime. Increase in p improves the plaintext throughput

of PRE and reduces the ciphertext expansion factor defined as k/|log, p + 1]. More

detailed information on these performance metrics is presented in Section

The results in Table [3.5{suggest that r can be used to reduce the re-encryption

runtime with negligible effect on the encryption/decryption runtimes. For instance,

the ring dimension and the number of bits k£ required to represent the ciphertext

modulus ¢ are essentially the same for BV-PRE at p = 2 when r is increased from 1

to 4. At the same time, this reduces the runtime of re-encryption by roughly a factor
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of 4. One can also observe for BV-PRE that increasing the plaintext modulus to
65536 (2 bytes per polynomial coefficient) raises the ring dimension requirement only
by a factor of 2 (to 1024), which implies that a much higher plaintext throughput can
be achieved for BV-PRE by using large values of plaintext modulus (in applications
where runtime/latency is not critical). It can also be seen that the ring dimension
/ ciphertext modulus requirements are substantially lower for BV-PRE as compared
to NTRU-ABD-PRE.

Table [3.6] shows the effect of increasing the re-encryption depth d for different
values of key switching window r on the minimum values of ring dimension n and the
number of bits k required to represent the ciphertext modulus ¢ for BV-PRE (results
for NTRU-ABD-PRE are not presented because the values of ring dimension and
ciphertext modulus are impractical for d = 2). It can be seen that BV-PRE supports
at least 20 re-encryption hops at n = 512 (the maximum number is 23 hops). One can
also observe that the number of bits k required to represent the ciphertext modulus
q changes slowly with increase in re-encryption depth because the noise growth is
additive (rather than multiplicative as in the case of NTRU-ABD-PRE), and 100

re-encryption hops can be supported without exceeding the ring dimension of 1024.

3.8 Software Implementation

3.8.1 Software Library Design
We implemented our PRE scheme in PALISADE, a general-purpose portable multi-
threaded C++ library designed to support and ease the development of lattice-based
encryption prototypes.

The main runtime performance bottleneck (in RLWE based PRE schemes) is
conversion between coefficient and evaluation representations. For the power-of-two
cyclotomic rings, the most efficient algorithm to perform this operation is the

Fermat-Theoretic Transform (FTT) [APS13]. We implemented FTT with NTT as
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a subroutine in PALISADE. For NTT, the iterative Cooley-Tukey algorithm with
optimized butterfly operations was applied. The two slowest sub-operations needed to
support NTT operations are multiplication and modulo reduction. For multiplication,
we used the standard shift-and-add multiplication algorithm as it performs well for
relatively small ciphertext moduli (up to multiple hundreds of bits, but in our case the
running bitwidths required to represent ciphertext moduli do not exceed 128 bits).
For modulo reduction, we used the generalized Barrett modulo reduction algorithm
[DQO0], which requires one pre-computation per NTT run and converts one modulo
reduction to roughly two multiplications. For discrete Gaussian sampling, we used
the inversion method from [Peil()].

The conventional key switching procedure works with the key switching window
r of unity, implying that every coefficient of the ciphertext polynomial c is decomposed
into bits. Although this technique dramatically reduces the noise growth (from ||c|
to 1), it significantly increases both computational and space complexities of re-
encryption. As there is no efficient method to extract bits from a polynomial in CRT
form, the ciphertext polynomial ¢ has to be first converted to the coefficient form, then
decomposed into polynomials over Zs, and finally all of these bit-level polynomials
need to be converted back to CRT form prior to performing the component-wise
multiplication with the elements of the re-encryption key. The total computational
cost of this operation is |log, (¢)]| + 2 FTT operations. The size of the re-encryption
key is approximately n - log, (q)* bits (or the double of that in the case of BV-PRE).

To reduce the number of FTT operations and size of the re-encryption key, we
consider a generalized key switching window of up to 16 bits. It can be seen that
in the case of r = 8, the number of FTT operations reduces to |log, (¢) /8] + 2 and
the re-encryption key size reduces by a factor of 8. At the same time, Table [3.5
suggests that the number of bits required to represent ¢, which is determined by the

correctness constraint, increases only by 3 bits compared to the case of r = 1 with
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the minimum ring dimension n staying at the same level (for NTRU-ABD-PRE at
p = 2). In view of the above, it can be expected that the re-encryption time for
this case will be significantly less than for » = 1, which is demonstrated in the next
section.

(CPU) Implementation of GSW PRE scheme is found to be rather impractical.
The main bottleneck in GSW PRE scheme arises in computations over matrices.
Because the parameter m is a function on LWE dimension n and [log¢] we end up
with huge matrix dimensions. We dealt with this issue to some extent by dropping
the factor of 2 from the computation of m. Furthermore, we kept all ciphertexts in
normal form rather than the bit decomposed form.

Given the impractical runtimes of GSW PRE, we opted for a GPGPU
implementation. Some of the key features of our GPU implementation are as follows:

Multiprecision Integer: NVIDIA GPU architectures are restricted to 32-bit
native integer data types. We implemented a multi precision integer class where large
integers are represented internally with an array of 32-bit unsigned integer datatype.

Fast Integer Arithmetic: We provided an implementation of modular
reduction using generalized Barrett reduction [DQ9§|. Barrett reduction requires
an additional constant term which we precompute and keep on the device memory.
Large integer multiplication are implemented using shift-and-multiply algorithm and
all device kernels make use of device intrinsic methods.

Fast Randomness Generation: Because of large dimensions generating
random elements on the fly is quite expensive. We remedy this problem by generating
random elements on device memory using cuRAND library. In particular our
implementation uses CURAND_RNG_PSEUDO_MTGP32 generators. It is 5x faster
than other random number generators of the same family and atleast 10x faster than

CPU random number generators.
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Minimal Memory Transfers: In our implementation we have eliminated
most of the data transfers between CPU. We generate all keys and ciphertexts on
device memory thereby eliminating calls to host-to-device and device-to-host data
transfers.

Matrix Vector Multiplication Kernel: We optimized the Matrix-Vector
multiplication by computing dot products for each row in parallel. Furthermore, we
compute the product of integers in parallel followed by a logarithmic reduction phase
to compute the final summation.

Matrix Multiplication Kernel: Our matrix multiplcation kernel closely
follows the approach presented in NVIDIA guide [Hocl2] with few modifications.
We divide the input matrices into smaller non-overlapping blocks and load them
into shared memory. At each stage, we compute a partial product from matrix
multiplication of smaller blocks and finally add them form an entry of resultant

matrix.

3.9 Experimental Evaluation

3.9.1 Methodology

We identify a set of standard metrics, including those used in related work
[AFGHO6, NAL15] with which we evaluate the performance of our PRE design and
implementation. These metrics include:

1. Runtime / Latency: How long it takes to perform the implemented Encryption,
Re-Encryption and Decryption operations for various parameter settings.

2. Throughput: How many plaintext bits per unit time can be processed by the
implemented operations for various settings.

3. Ciphertext Expansion: How many bits are required to represent ciphertext for
every bit in the plaintext.

4. Memory Usage: How much memory is required to run the implemented
operations for various settings.

We would normally also use security as a metric to evaluate the performance of our

PRE design and implementation, but we assume a ceiling on the security parameter

91



such that 6 < 1.006, and we would want § to be as close as possible to 1.006 to
provide as quick runtime performance as possible while providing adequate security.
For our experimental analyses, we varied the ring dimension n, key switching window
r, plaintext modulus p, and number of hops d to explore tradeoffs in runtime and
amortized throughput.

Because we perform all experiments in the single-threaded mode and our
implementation does not access disk or networking interfaces, we use latency as a
means of determining the temporal overhead of the implementation. Further, runtime
performance is useful, for example, when assessing fitness for real-time applications
when end-to-end latency is critical. We use the throughput metric to assess how much
plaintext data can be processed by the implementation per unit time.

Related to ciphertext expansion is memory usage. Memory intensive operations
may not be easily supported on resource-constrained devices, such as embedded
systems used for disposable sensor nodes. We therefore, differentiate between the
memory requirements of PRE clients (subscribers and publishers) from those of PRE
servers (brokers). Memory usage for PRE clients is governed primarily by the size
of public/private keys and ciphertext elements. At the same time, the memory
requirements for PRE servers are determined primarily by the size of re-encryption
keys and decomposed ciphertext ring elements.

We conducted experiments for our PRE implementation on a commodity
desktop/laptop computing environment. The evaluation environment for NTRU-
ABD-PRE and BV-PRE used an Intel Core i7-3770 CPU rated at 3.40GHz and
16GB of memory running CentOS 7. Our experiments for evaluation of Ring-GSW
PRE were run on a Dell Inspiron laptop with Intel Core i7-7700HQ running at 2.8
GHz, on an Ubuntu 18.04 operating system with 16 GB of physical memory, using
g++ compiler version 7.4.0. Our GPU experiments for evaluation of GSW PRE

were run on an university HPC with host as Intel Xeon Silver-R 4114 Core running
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at 2.2 GHz, on an Scientific Linux 6.10 operating system with 24 GB of physical
memory, using nvce compiler version 10.0. The GPU device consists of two NVIDIA
TITAN RTX processor each of which has 72 multiprocessors and 64 CUDA cores
per multiprocessors running at 1.77 GHz. All of our implementations were compiled
as single-threaded and used only one core despite our test environment providing
multiple cores.

We generated random plaintext samples using discrete uniform distribution from
0 to p — 1. We ran 100 iterations for a subset of parameter datasets listed in Tables
3.60| and evaluated the mean runtime of encryption, decryption, and re-encryption
operations, with decryption runtime measured before and after re-encryption, and
the runtime of multiple re-encryptions. The number of correct decryptions was also
recorded, and no decryption errors were observed.

In Tables through we present experimental results for the dependence
of runtime and throughputs of PRE (NTRU-PRE and BV-PRE) operations on
variations in key configuration parameters, including the ring dimension, key
switching window, plaintext modulus, and number of re-encryption hops. We
show throughputs in kilobits per second (Kbps) for encryption, re-encryption, and
decryption amortized in terms of the plaintext size.

The ciphertext expansion factor is equal to k = |log, ¢ + 1] in all tables except
for Although not directly related to the security provided, the key size in bits
is equal to the ring dimension n times the number of bits k in ciphertext modulus q.

We consider key generation to be an offline process which is run once for most
feasible applications of the PRE capability. For all (except for GSW-PRE) of our
experimental configurations we observed key generation and proxy key generation

runtime of less than 1 second.
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3.9.2 Single-Hop Re-Encryption

Table shows the effect of changes in ring dimension n on runtime, amortized
throughputs, and ciphertext expansion factors for single-hop re-encryption using both
NTRU-ABD-PRE and BV-PRE schemes with security parameter 6 < 1.006. The
highest encryption, re-encryption, and decryption throughputs and lowest runtime
are observed for the smallest ring dimension: 1024 and 512 for NTRU-ABD-PRE
and BV-PRE, respectively. The ciphertext expansion, which is proportional to the
number of bits k required to represent the ciphertext modulus ¢, and memory usage for
both PRE clients and servers, which is proportional to the product of ring dimension
and the number of bits k required to represent the ciphertext modulus ¢, are lowest
for the smallest value of ring dimension. This implies that one should always choose
the smallest ring dimension satisfying the desired security level.

Note that the runtimes for BV-PRE scheme operations are always lower
than for NTRU-ABD-PRE due to lower requirements on the ring dimension and
the number of bits required to represent the ciphertext modulus of the former.
For the same ring dimension, the runtime improvement factors observed from
Table are approximately 1.2 for encryption, 1.5 for decryption, and 2.5 for
re-encryption operations. Considering that the lowest ring dimension with security
parameter 0 < 1.006 for BV-PRE is 512, the improvement factors for throughputs
at smallest ring dimension are 1.3, 1.6, and 2.9 for encryption, decryption, and
re-encryption, respectively. The decryption times after regular encryption and proxy
re-encryption are approximately the same for all datasets, which also applies to all
other experimental results presented in this paper.

Table [3.10] shows the dependence of runtime and throughputs on variations
in the key switching window r for single-hop re-encryption with security parameter
0 < 1.006. The plaintext modulus is kept the same (p = 2). It can be seen that for

both schemes the highest encryption runtime and throughput are observed for r =1
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Table 3.7 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operations for Ring Dimension n at r=1, p=2, and d=1

Configuration Runtime Throughput
Enc | Dec ReEnc | Dec Enc ReEnc | Dec
PRE Scheme n k || (ms) | before | (ms) after (Kbps) | (Kbps) | after
ReEnc ReEnc ReEnc
(ms) (ms) (Kbps)

1024 | 35| 2.13 2.45 67.08 2.44 481.06 15.26 418.85
2048 | 36 || 4.62 5.27 150.95 5.26 443.27 13.57 389.71
NTRU-ABD-PRE | 4096 | 37 | 9.80 11.07 331.73 11.05 417.94 12.35 370.78
8192 | 38 || 20.69 | 23.35 724.80 23.29 395.95 11.30 351.70
16384 | 39 || 44.15 | 49.73 | 1597.81 | 49.41 371.14 10.25 331.58
512 | 17| 0.85 0.76 11.77 0.76 604.37 43.51 674.62
1024 | 18 || 1.81 1.64 27.48 1.63 567.03 37.26 628.04
2048 | 18 || 3.84 3.47 59.83 3.44 533.82 34.23 594.85
4096 | 19| 7.99 7.24 131.68 7.22 512.70 31.11 566.95
8192 | 19 || 17.00 15.80 296.63 15.33 481.85 27.62 534.30
16384 | 20 || 35.77 | 32.82 634.71 32.70 458.07 25.81 501.10

BV-PRE

Table 3.8 Experimental Runtime Performance of GSW Proxy Re-Encryption on
CPU and GPU for Different LWE Dimension and Modulus

PRE Configuration Runtime
Scheme k KeyGen Decrypt | ReKeyGen | ReEnc
. o (bits in q) N (ms) Encrypt (ms) per EK | per EK
GSW-PRE 511 10731 21 10752 | 288.23 >10 m 0.01 >10 m 5.45 s
(CPU) 15841 31 15872 | 476.25 >10 m 0.01 >10 m 12.24 s
511 10731 21 10752 | 57.66 444.5 ms 0.06 420.2 ms | 4.9 ms
GSW-PRE 15841 31 15872 95.2 1022.8 ms 0.09 990.5 ms | 15.3 ms
(GPU) 1023 22506 22 22528 | 234.8 3670 ms 0.11 3689 ms | 11.5 ms
38874 38 38912 | 409.6 | 12310.7 ms 0.13 12486.6 ms | 21.5 ms

For Memory Consideration m is Reduced to m = nlogq.

(which uses the smallest the number of bits required to represent the ciphertext
modulus.) As the key switching window r increases, the re-encryption time declines
until the ring dimension is forced to double by the security constraint. This lowest
re-encryption runtime occurs at r = 8 and r = 4 for NTRU-ABD-PRE and BV-PRE,
respectively. Note that the encryption and decryption runtimes for these values of r
are approximately the same as for » = 1, which implies that r = 8 and r = 4 are
optimal values for all operations of NTRU-ABD-PRE and BV-PRE, respectively, from
the runtime/latency perspective. At the same time, the re-encryption throughput
at r = 16 is highest for both schemes. This implies that in applications where

re-encryption througput needs to be maximized and latency requirements are low,
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Table 3.9 Experimental Runtime Performance of Ring-GSW Proxy Re-Encryption
for Different Ring Dimension, Modulus Bits, p =2 and r =1

PRE | Configuration Runtime Throughput
Scheme Dec Dec
N K KeyGen | Enc | before | ReKeyGen | ReEnc | after Enc | ReEnc | Dec
(ms) (ms) | ReEnc (ms) (ms) | ReEnc | (kbps) | (kbps) | (kbps)
(ms) (ms)
1024 22 0.38 17.32 | 0.12 34.28 120.02 | 0.11 59.12 8.53 9309
Ring- 41 0.42 31.56 | 0.13 61.41 422.86 | 0.08 32.43 2.42 12325
GSW 9048 23 0.93 37.24 | 0.29 72.27 275.5 0.19 54.99 7.43 | 10778
41 0.85 6291 | 0.27 125.37 864.02 | 0.16 32.55 2.37 12666

Table 3.10 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operations on Key Switching Window Size r at p=2 and d=1

Configuration Runtime Throughput
Enc | Dec ReEnc | Dec Enc ReEnc | Dec
PRE Scheme r n k || (ms) | before | (ms) after (Kbps) | (Kbps) | after

ReEnc ReEnc ReEnc

(ms) (ms) (Kbps)

11024 |35 || 2.13 2.45 67.08 2.44 481.06 15.26 418.85

2 11024 | 35 || 2.13 2.45 36.65 2.44 480.75 27.94 419.03

NTRU-ABD-PRE | 4 | 1024 | 35 | 2.13 2.45 21.27 2.44 480.09 48.15 418.86
8 | 1024 | 38 || 2.11 2.46 13.88 2.44 484.61 73.77 418.95

16 | 2048 | 48 || 4.72 5.45 19.97 5.42 434.23 102.57 377.71
512 | 17| 0.85 0.76 11.77 0.76 604.37 43.51 674.62
2 | 512 | 17| 0.83 0.74 6.38 0.74 615.12 80.21 691.43

—_

BV-PRE 4 | 512 |18 || 0.84 0.77 4.33 0.76 607.58 118.27 676.02
8 11024 | 22 || 1.78 1.60 6.23 1.60 576.85 164.25 639.50
16 | 1024 | 29 || 2.00 1.82 5.41 1.82 512.23 189.15 562.60

r = 16 could be the preferred choice. It should be noted that the ciphertext expansion
grows with 7, memory usage by PRE clients increases proportionally to the number
of bits required to represent the ciphertext modulus and ring dimension, and memory
usage by PRE servers declines as the re-encryption keys are composed of |log, (¢) /7]+
1 ring elements.

Table illustrates the effect of plaintext modulus p on performance metrics
of PRE operations for both schemes. The key switching window is kept constant
(r =1). One can see that runtime increases as p rises due to increased requirements
on the number of bits k required to represent the ciphertext modulus ¢ and the
ring dimension n. At the same time, plaintext throughputs increase until p = 4096
for both schemes. Ciphertext expansion factors, defined as k/log, p, are highest at

p = 65536. This suggests that larger plaintext moduli may be suggested when high
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Table 3.11 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operations on Plaintext Modulus p at r=1 and d=1

Configuration Runtime Throughput
Enc | Dec ReEnc | Dec Enc ReEnc | Dec
PRE Scheme P n k || (ms) | before | (ms) after (Kbps) | (Kbps) | after
ReEnc ReEnc ReEnc
(ms) (ms) (Kbps)

2 1024 | 35 || 2.13 2.45 67.08 2.44 481.06 15.26 418.85
16 | 2048 | 53 || 5.38 7.73 228.30 7.55 1523.62 35.88 1085.06
NTRU-ABD-PRE | 256 | 4096 | 78 || 16.20 | 23.05 | 1016.58 | 22.98 2022.23 | 32.23 1425.92
4096 | 4096 | 102 || 20.00 | 28.94 | 1642.66 | 28.88 2458.12 29.92 1701.95
65536 | 4096 | 126 || 21.24 | 33.66 | 2141.11 | 34.03 3085.50 | 30.61 1925.83

2 512 | 17 || 0.85 0.76 11.77 0.76 604.37 43.51 674.62

16 512 | 20 || 0.95 0.91 13.84 0.92 2156.82 | 147.93 | 2221.67
BV-PRE 256 | 1024 | 25 || 2.03 1.90 36.65 1.95 4028.96 | 223.53 | 4200.40
4096 | 1024 | 29 || 2.33 2.15 47.28 2.19 5269.21 | 259.90 | 5600.50
65536 | 1024 | 33 || 2.74 247 63.57 241 5989.05 | 257.73 | 6809.95

throughput and low ciphertext expansion are sought, and latency requirements are
secondary. One can also see that the memory usage of both PRE clients and servers
increases with p due to requiring more bits to represent the ciphertext modulus and
larger ring dimensions, which may be an issue for embedded systems (PRE clients).

All tables for single-hop re-encryption suggest that BV-PRE outperforms
NTRU-ABD-PRE for all performance metrics. The best BV-PRE re-encryption
runtime of 4.33 ms is almost two orders of magnitudes faster than the runtime reported
for comparable conditions (same ring dimension of 512) in the independent work of
INALI5]. Besides being faster than the scheme reported in [NALI5], BV-PRE is
unidirectional and is based strictly on the RLWE assumption.

We observed experimentally that as ring dimension n increases for our schemes,
the latency due to Encryption, Re-Encryption and Decryption increase, but the
ammortized cost and throughput decrease. Furthermore, ciphertext expansion and
memory requirements increase. The effect of increasing the key switching window 7 is
similar to the effect of increasing n, except that Re-Encryption latency decreases and
throughput increases. The effect of increasing plaintext modulus p is similar to the
effect of increasing ring dimension. These results may be used for selecting optimal

configuration of these three parameters in practical single-hop PRE applications.
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From the GSW-PRE experiments on CPU, we can see that encryption time
exceeds over 10 minutes because of the large dimension of matrices. Because of this
reason, we chose to generate a single matrix out of the n + 1 ReKeyGen matrices.
Consequently, we were able to report re-encryption times for a single matrix of the
ReKeyGen matrices. Complete runtime of ReKeyGen and ReEncrypt procedure can
be calculated by scaling the timings with LWE dimensions. From Table 3.8 we can
infer that ReEncryption timings are in the order of seconds and very far from being
practical.

Implementation of GSW-PRE on GPU yields significant order of boost in
performance. From Table |3.8, we can observe that because of matrix-vector
multiplication parallelization, we achieve a speedup of more than 5x on an average.
A major performance acceleration is achieved in encryption and re-encryption key
generation procedures where the runtimes improve by more than 100x. Furthermore,
the actual re-encryption procedure is now reduced to a few milliseconds. We remark
that the entire re-encryption procedure can now be completed under a second
assuming single threaded host processor.

As compared to GSW-PRE, Ring-GSW-PRE possesses the capability to encrypt
and re-encrypt a large number of bits/digits in a single ciphertext and consequently
we expect higher throughput per operation. Most of the cases of key generation and
decryption are very fast only taking sub-milliseconds. Re-encryption key generation
takes nearly twice the amount of time of encryption for a particular ring dimension.
This is because of the fact that re-encryption key consists of two matrices which
individually consists of an encryption of secret key. Comparing two different ring
dimensions we can also infer that as the ring dimension doubles we expect encryption,
re-encryption key generation and re-encryption to scale by the same factor. As
described earlier, we can benefit further by reducing the size of the ciphertext matrix

by using a relinearization window higher than 1. When compared with BV-PRE and

98



NTRU-ABD-PRE, Ring-GSW-PRE runtimes are significantly higher because of the

matrix structure of ciphertext.

3.9.3 Multi-Hop Re-Encryption

Table illustrates the dependence of runtime, throughputs, and ciphertext
expansion factors on the number of re-encryption hops for PRE-BV with security
parameter 0 < 1.006. The results for NTRU-ABD-PRE are not listed because
the scheme supports only two re-encryption hops with the second hop requiring
more bits k to represent the ciphertext modulus ¢, as seen in Table 3.3] It can
be seen that PRE-BV scales well with re-encryption depth. For the first 20 hops,
the runtime and throughput metrics are approximately the same for encryption
and decryption operations, and degrade by at most 20% for the re-encryption
operation. For larger re-encryption depths (up to 100), the encryption/decryption
throughputs degrade only by at mosty 20% as compared to the single-hop case while
re-encryption throughput declines by 40%. It should be noted that the observed
enryption/decryption times are still under 2 ms, which may be adequate for many
practical applications.

The runtimes for first re-encryption hop and last re-encryption hop are
essentially the same for all re-encryption depths, with the latter being slightly lower
due to local caching effects of the implementation. The decryption times after regular
encryption and proxy re-encryption are approximately the same.

We compared the number of hops of re-encryption and depth of computation
after re-encryption of Ring-GSW PRE with BV-PRE [PRSV17] scheme instantiated
with same set of parameters. From Figure[3.2] we can see that both the PRE schemes
have the ability to perform multiple re-encryptions with Ring-GSW PRE scheme
exceeding the number of hops by a large margin. In the next Figure 3.3, we can

observe that after a re-encryption operation Ring-GSW scheme still has the ability
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Table 3.12 Dependence of Performance Metrics for BV-PRE Encryption,
Decryption, and Re-encryption Operations on the Number of Re-encryption Hops d
at r=1 and p=2

Configuration Runtime Throughput
Enc | Dec First Last Dec Enc ReEnc | Dec
d n k || (ms) | before | ReEnc | ReEnc | after (Kbps) | (Kbps) | after last
ReEnc | (ms) (ms) ReEnc ReEnc
(ms) (ms) (Kbps)

1 512 | 17 || 0.85 0.76 11.77 - 0.76 604.37 43.51 674.62
2 512 | 18 || 0.86 0.77 12.84 12.82 0.77 597.52 39.88 667.48
5 512 | 19 || 0.85 0.76 13.74 13.43 0.76 604.31 37.27 672.78
10 | 512 | 19| 0.85 0.77 13.56 13.57 0.76 602.13 37.75 670.37
20 | 512 | 20| 0.84 0.76 13.69 13.69 0.75 611.51 37.40 681.35
o0 | 1024 | 22 || 1.83 1.67 33.98 33.60 1.67 560.44 30.13 613.60
100 | 1024 | 23 || 2.00 1.87 39.45 39.38 1.86 512.11 25.96 550.19
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Figure 3.3 Comparison of BV-PRE
and Ring-GSW-PRE scheme on
depth of computation after
re-encryption, p =95, r = 1.
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Figure 3.2 Comparison of BV-PRE
and Ring-GSW-PRE scheme on
multi-hop capability, p =5, r = 1.

to perform a large number of computations owing to its asymmetric noise growth
property. In comparison, BV FHE scheme can only perform a single homomorphic
multiplication for the bit lengths shown in the figure. This shows robustness of
Ring-GSW scheme and viability in practical applications where computations maybe

be needed along with re-encryptions.
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3.10 Application

A major security challenge for Pub/Sub systems is confidentiality of information
which is distributed by the Pub/Sub broker. FExisting Pub/Sub systems protect
information payloads via encryption that requires either: 1) the publisher and
subscriber coordinate to establish the encryption and decryption keys or 2) the
Pub/Sub broker decrypts the information payloads from the publishers and then
encrypts this information payload again for re-transmission to the subscribers. The
first solution contradicts one of the goals of Pub/Sub systems, i.e., the decoupling of
publishers and subscribers. The second solution solves this issue, but gives the broker
access to the unprotected information. Thus, it makes the broker a ripe target for
adversaries to compromise and steal sensitive information.

PRE is a natural fit to support publish-subscribe because PRE maintains data
confidentiality even when the broker is compromised and an adversary obtains all
re-encryption keys and observes all communications between the publisher, broker and
subscriber. These features reduce the need for special, difficult to use security-enabled
hardware and software for high-assurance applications, such as in military settings. A
compromised PRE-enabled broker would at most allow the adversary to learn which
subscribers are allowed to receive information from which publishers based on the
existence of re-encryption keys.

In this section, we are particularly interested in understanding how to parame-
terize the PRE schemes for three application use cases to illustrate the adaptability

of our design and implementation.

3.10.1 Enterprise Security
PRE could be very useful in enterprise-style computing environments such as for
medical file sharing. Enterprise environments are characterized by high resource

availability - both computational power at the publishers, subscribers and PRE
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servers, but also bandwidth availability. The primary concern would be overall
throughput.

For single-hop applications, the goal is to maximize re-encryption throughput.

As Tables [3.10] and [3.11] suggest, re-encryption throughput can be maximized by

increasing the key swtching window r or increasing the plaintext modulus p (up
to certain limits, until the ciphertext modulus bit length and ring dimension start
to significantly slow down the runtime). In the case of the BV-PRE scheme, the
plaintext throughputs can reach 250 Kbps. The combined effect of increased plaintext
modulus and key switching window can produce even higher plaintext outputs but
this analysis should be performed based on the requirements of a specific application.
The BV-PRE scheme can also provide a multi-hop capability without significantly

increasing parameter requirements if the value of key switching window r in expression

(3.8) does not exceed 8.

3.10.2 Embedded Support

At the opposite end of the resource availability spectrum is the use case of embedded
sensors that collect, encrypt and publish data to a PRE server. To set up the
environment, point-to-point communication approvals need to be established, namely
that:

e The sensors would need to have appropriate encryption keys.

e The sensors would need to be paired with the PRE server.

e The approval for subscribers to receive data would need to be received to
approve the generation of a re-encryption key hosted at the PRE server.

PRE addresses the above measures to encrypt data at the sensor, transmit the
data to a cloud storage environment where processing is done, and the encrypted
results shared with intended recipients, without ever decrypting the data or sharing
decryption keys. Recent results [LSSRT15, BGGT16] show that it is possible to

implement public key lattice encryption schemes, very similar to our PRE schemes,
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and run them on very resource-limited devices, inlcuding devices using 8-bit AVR
processors [LSSRT15]. These results also provide general design guidelines to port
our designs into limited hardware.

Because embedded use cases require computationally intense operations at
low-powered sensor nodes, encryption throughput is paramount. It is feasible
that multi-hop encryption would be needed so that the encrypted information can
aggregate from the sensors to local PRE servers which send data to a centralized
encrypted information clearinghouse. In this situation, the use of BV-PRE with r = 1
and a large plaintext modulus, for example, p = 65536, would maximize encryption
throughput.

An alternative formulation of this use-case for especially low-powered sensor
devices might rely on processors with 32-bit words, or less. In this scenario it is
generally important for modulus bit-widths to be within a power-of-2 rather than
without for increased performance. If the modulus bit-width is larger than bit-width
of the processor, then extra shuffling of data and at least a factor-of-2 decrease in
performance is likely to result. Selecting BV-PRE at n = 512, r € (1,2,4), and a
ciphertext modulus bit-width of 17-18 bits is recommended to maximize encryption
throughput. It should be noted that the ciphertext bit-width of up to 20 and ring
dimension of 512 can support up to 23 re-encryption hops of BV-PRE at p = 2 and
r =1, as can be seen from Tables and

3.10.3 Hybrid Deployment with AES

This work is motivated by the problem of sharing data across coalition partners
who do not interact directly, including across administrative boundaries, yet want to
control data access within each coalition partner by policy. While encryption and
policy enforcement solutions are available, a major challenge is the lack of suitable

techniques to generate or share encryption keys. For example, streaming video,
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images and text data are often transmitted when encrypted by AES, because AES is
considered both secure and highly efficient. PRE can be used in these scenarios as
an AES key distribution mechanism.

Single-hop application operation of PRE would provide the most control for
users to limit the spread of restricted data. Based on the RLWE security constraint
and PRE correctness constraint, we should keep ¢ as small as possible to guarantee

correctness and use the lowest value of n that satisfies the security requirements.

3.11 Conclusion
In this chapter, we present four new lattice-based PRE schemes. We experimentally
evaluate the performance of the PRE schemes. Our lattice encryption library is
an important aspect of our implementation performance in that its modularity
and extensibility enables us to further improve performance with either improved
mathematical libraries or even hardware acceleration as these technologies become
available.

A benefit of our PRE approach is that it supports applications on commodity
computing hardware and improves the overall security of information sharing in
practical pub/sub systems. Taken together, this could greatly reduce the opera-
tional costs of highly regulated industries such as health-care where regulatory
compliance restricts the ability to outsource computation to low cost cloud computing
environments.

Although we have focused our discussion on PRE for situations with one
producer (Alice) and one consumer (Bob), there is no theoretical limit to the number
of producers and subscribers that can be used for PRE operations. With PRE we
can support general many-to-many operations where data from many producers is
securely shared with many consumers through the PRE prototype, by generating

multiple re-encryption keys, one for every permitted publisher-subscriber information
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sharing pair. A possible approach to address scalability is to distribute the operations
of the PRE servers across many computation nodes, and we seek to address this in

follow-on research.
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CHAPTER 4

EFFICIENT AND SCALABLE BOOTSTAPPING OF BV-LWE FHE
SCHEME

4.1 Introduction

In his breakthrough seminal work, Gentry [Gen09] showed the first theoretical
construction of a fully homomorphic encryption (FHE) scheme. The idea first
introduced as “privacy homomorphism” by Rivest et al. [RAD™78] had the capability
to outsource computation and get back encrypted results without revealing any
information to the outsourcing party. In recent years it has been shown through
a series of work that FHE can be pragmatically deployed for a wide variety of
applications such as large scale statistical analysis [WH12|, spam filtering [KGV16],
machine learning [BLN14, BHHH19, ICGH™18] etc.

Gentry’s initial construction of FHE scheme was based on ideal lattices however,
initial implementation of the scheme [GHI1] revealed an impractical runtime in the
order of seconds to minutes. Since then many FHE schemes have been developed
[DGHV10, [SV10, BV14a, BV14b, BGV14, [GSW13] which are much efficient, have
shorter memory footprints and based on hardness assumption of worst case lattice
problems.

Almost all of the above mentioned schemes are based on the “noisy” encryption
technique as they base security on hardness assumption of LWE and its variant
RLWE. In other words, a small amount of noise or error is added to the ciphertexts
for the security of the scheme. Evaluation of functions on ciphertexts of these
schemes leads to asymptotic noise growth. Furthermore, noise growth of the
ciphertexts is directly proportional to the depth of computation. Once the noise

contained in ciphertext reaches a certain threshold there is no room for further

106



homomorphic evaluation. Any homomorphic operation beyond this point amounts to
incorrect result upon decryption. Such encryption schemes are said to be "somewhat
homomorphic” (SHE) encryption schemes, a choice by design. Following Gentry’s
blueprint, these schemes can be then converted into a fully homomorphic scheme by
Bootstrapping. In a nutshell, Bootstrapping implies evaluating the decryption circuit
of the scheme via homomorphic operations. As a result, Bootstrapping is possible if
and only if the homomorphic capacity is higher than the depth of decryption circuit
of the scheme.

Bootstrapping algorithms demonstrated in cryptology literature can be broadly
classified into two body of work. In the first line of work, bootstrapping algorithms
[GHS12al [HST5] [CH18| are applicable to FHE schemes where multiple messages can
be potentially packed into a ciphertext. Such bootstrapping algorithms are often
associated with very large runtimes, typically in the order of minutes, however their
amortized runtime is quite comparable to other LWE based bootstrapping approaches.
In the second line of work, bootstrapping algorithms [DM15, BR15, [(CGGI16, BDF18|
MP20] work on FHEW-like cryptosystems where ciphertexts are in present in LWE
form, typically encrypt single bit messages and homomorphic decryption is performed
via Ring-GSW FHE scheme. In practice, this family of bootstrapping algorithm
performs much faster than the former with runtimes in the order of milliseconds.

In this work, our goal is to bridge this gap between the two family of
bootstrapping algorithms by supporting larger plaintext modulus and arbitrary depth
of computation before the need to bootstrap. We present techniques for bootstrapping
BV-LWE [BV14a] and BV-GSW FHE scheme in a symmetric key setting. To
begin with, BV-LWE FHE scheme allows elementary operations of addition and
multiplication on encrypted data. Security of the scheme is based on learning with
errors (LWE) assumption which is known to be reducible to solving hard problems in

general lattices. A message m € Z, can be encrypted in the scheme where p (> 2) is a
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relatively small plaintext modulus. This work advances on other LWE cryptosystems
such as FHEW [DM15] and TFHE [CGGI16] that can only encrypt binary messages
and evaluate arbitrary boolean circuits. One of the similarity found in both these
schemes is that the noise and plaintext modulus evolve after evaluation of a boolean
gate. Bootstrapping the ciphertext then restores it back to original plaintext modulus
and noise levels. In contrast to this, plaintext modulus in BV-LWE scheme remains
unaffected by homomorphic operations and consequently we can evaluate circuits till
the depth of instantiated parameters allow.

One of the drawbacks of BV-LWE scheme is that multiplication of ciphertexts
leads to quadratic blow up in ciphertext size (n + 1 to n?/2 roughly). Application
of re-linearization technique then reduces the ciphertext size back to n + 1 however,
at the cost of publishing encryptions of all the quadratic terms as well as individual
terms of the secret key. We remedy this problem in a simple and effective way
by adding GSW extensions to the original BV-LWE ciphertext of the form ¢ =
(a,b=(a,s) +pe+m) € Z} x Z,. The outcome of this modification leads to BV-
GSW FHE scheme where noise grows asymmetrically instead of quadratically in
LWE dimension and hence larger depth of computations can be evaluated. Naturally,
BV-GSW FHE scheme inherits all the advantages of GSW[GSW13] FHE scheme.
We summarize our contributions as follows:

e Larger plaintext modulus: Following approaches presented in [ASP14]
DM15], [CGGI16] we demonstrate bootstrapping algorithms that are applicable to
BV-LWE and BV-GSW FHE schemes and work with plaintext modulus, p > 2. In
these set of algorithms we retain the usage of ternary or root of unity encoding where
an integer (mod-q) is represented as a polynomial in {—1,0,1}. The core of our
BV-GSW bootstrapping technique relies on a RLWE coefficient extraction procedure

on polynomial rings. We show an efficient implementation of this extraction procedure
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which uses log, (n) Automorphism operations without introducing any significant
noise growth.

e Arbitrary secret key: In addition to secret keys generated from binary
(B) distributions, we extend our bootstrapping algorithms to work efficiently with
secret keys generated from ternary (7)) or discrete Gaussian (x.) distributions. In
other words, our bootstrapping algorithms meets the specification of Homomorphic
Encryption standardization document [ACCT 18| which suggests the usage of Gaussian
distribution over the interval {+8} for generation of secret key. To work with
arbitrary secret key distributions our bootstrapping algorithms uses Automorphism
maps instead of Galois field isomorphisms which preclude the necessity of generating
lookup tables and lead to efficient generation of bootstrapping keys. Lastly, we discuss
memory trade-offs in bootstrapping key generation that can reduce the bootstrapping
key size further.

e Arbitrary ciphertext modulus and Gridstrapping: We introduce a
new bootstrapping procedure which works on a large finite field without increasing
the ring dimension of Ring-GSW FHE scheme. The finite field is described as a
multi-dimensional grid or matrix where the position of “1” indicates the integer value.
Contrary to our first bootstrapping procedure we encode integers as binary {0, 1}
polynomial and represent grid pointers as ciphertexts. This finite field can be scaled
further by increasing the grid-dimension parameter ¢ ( for a two dimensional grid or
matrix ¢ = 2).

Chapter Organization: We start by describing some of the earlier works
done on Bootstrapping in Section 4.2} In Section we present BV-GSW scheme
in symmetric key setting. Section outlines the Ring-GSW scheme along with
an analysis on noise growth of homomorphic operations. We use Ring-GSW FHE

scheme as well as BV FHE scheme as primary tools for bootstrapping BV-LWE and
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BV-GSW FHE schemes. In Section we present our bootstrapping procedures

while Section shows extension of bootstrapping technique to large modulus sizes.

4.2 Related Work

In [BV14b], Brakerski and Vaikuntanathan describe a generalized bootstrapping
procedure for LWE based cryptosystems. The central idea in their construction rests
on the application of Barrington’s [Bar89] circuit sequentialization theorem which
allows to transform any depth d circuit into a polynomial length, width-5 permutation
branching program. Evaluation of the circuit translates to sequential homomorphic
multiplication of ¢ 5-by-5 encrypted permutation matrices where ¢ is the length of
the branching program. Next, to show that such evaluations can be performed
within polynomially bounded noise in security factor the authors describe a new LWE
based FHE scheme roughly similar to GSW FHE scheme. Finally, they reduce the
ciphertext with successive application of dimension-modulus reduction technique and
prove that the bootstapping technique meets the optimal approximation factor for
lattice problems under quantum reductions. This theoretical bootstrapping technique
appears to be satisfactory but its implementation would lead to very large runtimes
because of the hidden constant factor in run-time complexity and O (n?®) complexity
of GSW FHE operations.

To reduce the time complexity and approximation factor of [BV14b], Sheriff and
Peikert introduced a new bootstrapping algorithm [ASP14] which works on injective
homomorphism of permutation matrices and removes the necessity to transform
decryption circuit into boolean circuit. More specifically, their bootstrapping
algorithm generalizes the LWE decryption circuit as a rounded inner product between
secret key vector and binary ciphertext. The bootstrapping key consists of encryption
of each coordinate of the secret key vector after mapping it to a binary indicator

vector. To evaluate the decryption circuit as an arithmetic function, the authors used
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the additive embedding property of permutation matrices to a finite field element
in Zy. To evaluate an addition, the indicator vector needs to be expanded into
a permutation matrix and then multiplied with another indicator vector leading to
O (¢*) homomorphic operations, ¢ being the ciphertext modulus. After the evaluation
of inner product, rounding function is performed through a homomorphic equality
test. For ciphertext evaluations the authors use GSW FHE scheme because of its
quasi-additive error growth property and show the total number of homomorphic
computations to be O(\) where X is the security factor. However, no direct
implementation of this algorithm has been reported in literature.

Building upon the work of [ASP14], Ducas and Micciancio [DM15] demonstrated
the first concrete implementation of a bootstrapping technique on a LWE based
FHE scheme capable of evaluating boolean functions. In their work, the authors
eliminated the need to map integers to permutation matrices by utilizing the
finite field properties of cyclotomic polynomials. A major outcome of their work
is in demonstrating that cyclic groups can be directly embedded into cyclotomic
polynomials by encoding the cyclic group Z, into the group of roots of unity: i — X".
Further the isomorphic operations of bootstrapping can be directly evaluated using
the appropriate homomorphic operations of a RLWE based FHE scheme. In their
implementation, they instantiated the RLWE scheme with Ring-GSW FHE scheme
and reported a bootstrapping runtime under a second for a small parameter set. A
major bottleneck in their implementation is the updating procedure of homomorphic
accumulator which stores the intermediate ciphertext during bootstrapping. To
accelerate this updating procedure bootstrapping key needs to be represented as
a lookup table with a base, b > 2 which increases the size of bootstrapping key
roughly by a factor b/log, b and ¢/log, ¢ in the extreme case. In contrast to this,
our bootstrapping procedure doesn’t incur such memory overheads as homomorphic

accumulator is always updated in a single step via Automorphism transforms.
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In another arithmetic bootstrapping technique, TFHE, Chillotti et al. [CGGI16]
takes a different approach. In particular, the authors follow the generalized
bootstrapping approach based on mux gates discussed in [GINX16]. In their
implementation, the underlying arithmetic element is Torus, defined over real numbers
modulo 1. Further, the FHE schemes used in their work are scale invariant Torus
analogues of LWE, BV FHE [BV11b] and Ring-GSW FHE [KGV16] schemes. In
comparison to FHEW, TFHE bootstrapping runtime and bootstrapping key size is
significantly reduced. This is mainly because two reasons: 1. Use of binary mux
gates for updating the FHEW accumulator. 2. Use of matrix-vector multiplications
(external product) of ciphertexts instead of matrix multiplication of polynomial
ciphertexts (internal product). One of the drawbacks of TFHE scheme is that the
usage of binary mux gates places a constraint on generation of secret keys from a
binary distribution. TFHE bootstrapping can still be adapted to arbitrary secret
keys as shown in [MP20] however, this approach scales the bootstrapping runtime
and evaluation key size linearly with the number of bits in secret keys.

A more rigorous and practical comparison between FHEW and TFHE bootstrapping
procedures was presented in [MP20]. For direct comparison between both the
schemes, the authors chose a unified approach by implementing them in PALISADE
crypto software library using modular arithmetic. Further, the TFHE scheme was
extended to support ternary and arbitrary secrets. It was found that TFHE is faster
than FHEW roughly by a factor 2 when working with binary secret keys. For ternary
secret keys, performance of both the bootstrapping procedures are nearly equivalent.
However, for the case of arbitrary secret keys FHEW bootstrapping outperforms
TFHE in terms of running time. In these evaluations, it can be noted that a large base
(b = q) is used resulting in larger bootstrapping key. Our bootstrapping procedure is
a variation of the FHEW scheme however works without any dependence on a base

decomposition parameter b. As such, when working with ternary and arbitrary secret
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keys we achieve similar or better performance in runtimes when compared with TFHE
scheme. Further, we achieve these results without any expansion in bootstrapping
key size.

In a separate work, [BR15|] presented a generalization of FHEW bootstrapping
procedure by extending it to larger plaintext modulus ¢ > 2. It should be noted that
here the underlying LWE scheme is same as that used in FHEW and ciphertexts are
encryption of binary messages. The extended modulo ¢ allows the computation of
multiple gates or gates with several inputs and outputs, and hence, amortizes the
cost of single gate FHEW bootstrapping. The number of gates that can be evaluated
before bootstrapping is roughly equal to the parameter t. One of the drawbacks of this
scheme is usage of power-of-p cyclotomics that is required in accumulator operations.
As non power of 2 cyclotomics are known to incur extra overhead in computation
of FFTs, bootstrapping runtime of [BR15] is significantly higher. In comparison to
[BR15], our bootstrapping procedures work on a LWE scheme which directly supports
encryption of integer rather than binary messages and still retain the usage of power of
2 cyclotomics. Additionally, finite field arithmetic are supported by our schemes and
have the ability to amortize cost of bootstrapping by instantiating larger ciphertext
modulus.

In other related work, improvement of FHEW bootstrapping scheme has been
pursued in [MS18] to reduce the amortized runtime by packing multiple bits in a
ciphertext, extension of FHEW scheme to larger gates has been shown in [BDEIS)]

by CRT polynomial tensoring techniques.
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4.3 Design
4.3.1 Syntax of a Fully Homomorphic Encryption Scheme
A non-interactive FHE scheme is an ensemble of PPT algorithms II = (ParamsGen,
KeyGen, Encrypt, EvalAdd, EvalMult, Decrypt, BootstrapKeyGen and Bootstrap)

described as follows:

° ParamsGen(l’\): It takes in the security parameter A and returns the
corresponding public parameters pp.

° KeyGen(pp, 1’\): KeyGen takes the public parameters pp and returns the
public key and secret key pair (pk, sk).

e Encrypt(pp, pk, m): Given public key pk, public parameters pp and message
m € M, it encrypts the message m and returns a ciphertext c.

e EvalAdd(pp, co,c1): Given two ciphertexts ¢y and ¢; encrypting messages
mo, mp € M, EvalAdd produces a ciphertext c,qq encrypting message mg +m;.

e EvalMult(pp, cy,c1): Given two ciphertexts ¢y and ¢; encrypting messages
mg, m; € M, EvalMult produces a ciphertext ¢,,,;; which encrypts the message
mo - M.

e Decrypt(pp, sk, c) Decrypt recovers the message m from the ciphertext c.

e BootstrapKeyGen(ppr, ppr, pkiv, skn): Given a FHE scheme II' where IT'
may or may not be equal to II, BootstrapKeyGen generates an evaluation key,

bk which consists of encryptions of secret key sk under the public key of scheme
IT.

e Bootstrap(ppr, bk, c) Given a bootstrapping key bk and ciphertext ¢ € II,
Bootstrap generates a ciphertext ¢ € Il with reduced noise that c.

4.4 BV-GSW FHE Scheme
BV-GSW [BV14a] is a symmetric-key encryption scheme and its security is based on
standard LWE [Reg09] assumption. To circumvent the generation of O (A\?) keys and
quadratic noise growth, we present a modified encryption scheme by adding GSW
[GSW13] extensions. The scheme has a message space of M € Z, where p is the
plaintext modulus. The scheme is parameterized by:

e Security parameter A and dimension n = n ().

e Working modulus ¢ of kK = k (A, d) bits and plaintext modulus p.
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maximum depth of evaluation, d.

Discrete random uniform noise generator x <—sif; and B-bounded discrete
Gaussian noise generator y < x%, | X € Ly,y € Zf;.

The scheme is an ensemble of following operations:

ParamsGen(lA): Choose positive integers ¢, n and p such that p > 2,
ged(p,q) =1, ¢ > pand n = (\). Set N = (n+1)¢ and ¢ = [logq]|. Return
public parameter set pp = (p, q,n, ¢, N).

SecretKeyGen(pp): Generate s < x'; from discrete Gaussian distribution and
set sk =t = (1,—s) € Z)".

Encrypt(pp, m, sk): To produce an encryption of message m € Z, we produce
a LWE matrix, A and simply add m- G to it. To generate LWE matrix A first
we sample uniformly random matrix B, binary random matrix R and discrete
Gaussian noise vector e and set b = Bs+p-e. LWE matrix A is a concatenation
of b and B. This procedure is shown as:

B U, ", ResUpy)y, e<sxy, b=Bs+p-e, A=[b| B]

C=m-G+RA ez} ¢+ C

EvalAdd(cy,c;): Homomorphic addition is given by addition of the input
matrices represented by ¢y and c¢;.

Coda = Co + C1, caaa + Coad
Coda = (mo+m1) - G + RoggAvad, RadaAada = RoAo + RiA4

EvalMult(cy, ¢1): Homomorphic multiplication of ciphertexts is achieved by
first bit decomposing the first ciphertext and then we proceed to multiply it
with the second ciphertext. It is shown as:

Chrut =G 1 (Cy)-C, =G (Cp) - (MG +RyA))
=my - Cy+ G (Cy) R1A,;
=mom; - G + (mlRvo + G (Cp) R1A1)
=momy - G+ A

Decrypt(sk,c): We recover message m’ by performing the following two
operations:

1. Compute w = Ct € Z[, Note that,
w=m-gRt+p-e.

2. Since, the first £ rows of g ® t are powers of two we output m’ = wy mod p
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4.4.1 Correctness Constraints

In order to correctly recover the message, we have to ensure that there in no wrap

around mod-g. Since, our working modulus range is [—%, g}, noise has to be strictly

within this bound. We derive noise bounds as follow:
[[woll < q/2, or |lm + pel| < q/2
In case of homomorphic multiplication, we derive noise bound as follows:

W = Cmultt = Mynult * Gt + Amultt
= Mypatt - § Xt + miAgt + G (Cp) Ast

= Myt - & X t + pmyeg + pG~' (Co) e

Using central limit heuristics on noise bounds, we can correctly decrypt for the

following condition:

lwoll = p (m lleoll.o + VA lleal.. ) < a/2

or, q > 2pB\/N

where B is bound for B-bounded discrete Gaussian generator.

4.4.2 Modulus Switching

(Adapted from [DM15]) We use modulus switching operation not only as a noise
reduction technique but also to align the current parameters with the Bootstrapping
scheme. Given a ciphertext ¢ with modulus ¢ we can transform the ciphertext into ¢/

with modulus ¢’. To switch modulus we use the following rounding function [x],_,
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which is defined as:

[x]q—>q’ = B—i_/% B = [q,x/Q]a Y= ("L‘ _6) HlOdp

We apply this scaled rounding function to every entry of the ciphertext matrix to

complete the modulus switching procedure.

ModSwitch (¢) = [C, ] i€[0,N), je€0,n]

q—q'

Since, v € [0,p — 1] and integer rounding is uniformly distributed in [}, 3] the

rounding error is a Gaussian distribution with a variance of o2 = ’%.
More specifically, we use modulus switching prior to initiating Bootstrapping
procedure with modulus parameter ¢ = 2!°89) Furthermore, we use only the first

row of ciphertext matrix to “align” with Bootstrapping parameters.

4.4.3 Key-Switching
Key-switching operations transform a LWE ciphertext C encrypted under a key s €
Zq to be transformed into another ciphertext C* which can be decrypted under a
new key s*. To facilitate this transformation process, we generate an evaluation key,
ek which consists of a sequence of (n + 1) matrices, EK[i|, ¢ € [0,n]. These matrices
are then used in the re-encryption phase to complete the transformation process. We
segregate the key-switching process into KeySwitchGen and SwitchKey procedures
which are described as follows:

KeySwitchGen(pp, sk, sk*): To generate the matrices EK[i], first we generate

B, from discrete uniform distribution L{év *" and set b; using the new secret key s*.
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Next, we add a shifted column matrix of the old secret key. This is described as:

Sample B; < Uévm, e s Xy

EK[i] = A; + (g®t > i), ek = {EK[0],-- ,EK[n]}

SwitchKey (pp, C, ek): This results in a ciphertext C* and the procedure is

described as follows:

C*,i — G—l (Ctop) . EK[Z] c Z(l;Xn—i—l

* *,0 *, Nxn+1
C—[C ||T---||TC”}EZQ "
Here C%P represent the top-¢ rows of the ciphertext matrix C.

4.5 Ring-GSW Bootstrapping Scheme

Ring-GSW encryption scheme is a RLWE [LPR10, [KGV16] adaptation of the GSW
[GSW13] FHE scheme based on LWE security assumption. We primarily use it for
bootstrapping or evaluating the decryption circuit of BV-LWE or BV-GSW scheme.
However, it can be noted that leveled BGV [BGV14] FHE scheme can also be used
instead but at a greater expense of noise growth and larger modulii.

The scheme has a message space of M € R, where p > 2. Construction of the
scheme is based on underlying cyclotomic polynomial arithmetic and parameterized

by:

Security paramter A and ciphertext modulus q.

Plaintext modulus p such that 2 < p < ¢ and ring dimension n.

B-bounded discrete Gaussian distribution xp.

Ternary distribution 7 which generates a ring polynomial with coefficients
uniformly sampled from {—1,0,1}.
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Discrete uniform distribution Ug, .

Maximum depth of homomorphic evaluation d.

Ring-GSW scheme encapsulates the following operations:

ParamsGen (1%): Choose positive integers ¢ = ¢ (X, d) and n = n (\). Return
parameter set pp = (¢, N, p, q,n) where ¢ = [logq] and N = 2¢.

SecretKeyGen(pp): Secret key is a low norm polynomial sampled randomly
from discrete Gaussian distribution xg,. However, it has been shown that
generating secret key from sparse distributions such as binary (B € {0,1} )
[GKPV10, BLP™13| or ternary distributions, 7 [Micl8] still leads to instan-
tiation of LWE problem that are as hard as standard LWE and hence we show
secret key generation using ternary distribution, 7 as follows:

s<sTpr,, sk=[1;—s] € R

e PublicKeyGen(pp, sk): Public key, pk is a RLWE pair (b, a) represented as
a matrix A. To generate b, we sample polynomials a and e from uniform and
discrete Gaussian distributions respectively and proceed as follows:

a<-sUp,,e<sXxBRr, b=as+pe
Set public key, pk = AY* = [b q]

e Encrypt(pp, pk, m): For encryption we sample a random matrix R from
uniform ternary distribution 7z’ and an error matrix E € R}*? from discrete
Gaussian distribution. Encryption of message polynomial m € R, is then set

as follows: Nl Nxo
X X
R: (7’077”17~'- 7TN_1) %SS,]'RQ y E%SBXB’RQ

C=m-G+R®A+pE, Set c<+ C

e Decrypt(pp, sk,c): Message m' is recovered by multiplying the first row of
ciphertext C by secret key sk. This is shown as:

m’ = (Cy x sk mod ¢) mod p

Message m' is recovered correctly as long as the coefficients of the noise

polynomial ¢ are within modulus ¢ (: [-2, %]) where t is given as:

t = Cy x sk mod q
For correct decryption, ||t||, < q/2, or, ¢ >2-||t]|,
Next, we discuss the homomorphic operations of the scheme, namely, EvalAdd

and EvalMult and analyze their noise growth.
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EvalAdd(cy, c;): Ciphertext addition is quite straightforward. To produce 444
we simply add each polynomial entry of ¢y with corresponding entry of ¢;. This is

shown as:
Cada = Co + Cy, Set cagqg < Caad

EvalMult(cy, ¢1): Homomorphic multiplication is a two step procedure. In the
first step we use the bit decomposition subroutine to expand the first operand matrix.
In the next step we multiply this expanded matrix with the second operand. This is

shown as:

C' = BitDecomp (Cy) € R}""

/ N X2
Cmult =C- Cl € Rq x y Coult < Cmult

To determine correctness of decryption after homomorphic multiplication, we
have to ensure that the noise term ¢ is within the modulus bounds. Noise after

homomorphic multiplication is given as:
= Cmult,O X sk = Cmult70,0 — S Cmult,071

Breaking it down further, C,,ui1,00 and C,u0.1 are given by:

{—1

Cruuit 00 = Z (a; - Ciio+ Bi - Ciiteo)

=0

)

-1

o (Tib + 2'my + pEi,O) + Bi (Tiyeb + PEit00)

0
1

~

b (ric; + ricefBi) + p (0B + BiEiye0)] + amy

s
Il
=)
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where «; and (; are given by:
a; = BitDecomp (Cy ), 8 = BitDecomp (Cy 1)

where ¢ € [0, ¢). Similarly,

1
Cruito,1 = Z (; - Cirin+ Bi- Crligen)

=0
/-1

= Z a; (ria + pEq1) + B (Ti+£a +pEieq + 2im1)
=0

-1
= Z la (riog +1i400:) + 0 (0B 1+ BiBiye1)] + B
=0

The noise term, ¢ can then be shown as follows:

-1
t=(b—as)- (ric; + rivels) + (B — sa) my+

=0
-1
> pl(@iEig + BiEiyeo) — s (iBiy + BiBire1)]
1=0
~ Mmopma

Using central limit heuristics, we finally arrive at the following noise bound and

correctness constraint:

||t]| = 6pnBlog, q

..q > 12pnBlog, q, average case bounds

4.5.1 Key-Switching

As defined in Section key switching procedure allows one to transform the

ciphertext so that it can be decrypted by a more desirable secret key sk*. The

procedure is divided into two phases, a static phase called KeySwitchGen where we

121



generate roughly an encryption of the secret key and a dynamic phase SwitchKey
which is responsible for the ciphertext transformation. Given a Ring-GSW ciphertext
C encrypted under a secret key sk we describe the key-switching procedure as follows:

KeySwitchGen(pp, sk, sk*): : We generate an evaluation key which consists
of two RLWE matrices. First, we generate a noise free RLWE pair from sk*. Next,
to generate each of the matrix we generate a random vector from ternary distribution

Tr, and an error matrix from discrete Gaussian distribution and proceed as follows:

Sample a <sUp,, b=as*, Set A =[ba] € Réxz
Sample r; <—s 7}]\5 , E; s ngfé
EK[i| =1; ® A + pE; + (PowersOf2(sk) > 1)

Set ek = {EK[0], EK[1]}

SwitchKey (pp, C,ek): This procedure is similar to homomorphic multipli-
cation however only considers the upper f-rows of the input ciphertext for bit

decomposition and represented as C*P. We outline the procedure as follows:

C*' = BitDecomp (C'?) - EK[i] € R,

C* _ [C*’O HT C*’l} c RéVXQ

Noise growth in a ciphertext after key-switching is comparatively lower when

compared to that in homomorphic multiplication.

4.6 RLWE Bootstrapping Procedure
In this section, we describe the complete mechanics of bootstrapping BV-LWE or
BV-GSW ciphertexts. For simplicity, we represent the BV-LWE and BV-GSW
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ciphertexts in the following form:
¢ = (a,b) € Zi*" where b = (a,s) + pe + m

We assume that the noise in ciphertext is in the form pe € [—¢/2, ¢/2] and large
in magnitude. Our goal is to homomorphically decrypt this ciphertext and output a
BV-GSW ciphertext in modified (LWE matrix) form or original LWE form. Recall
that the decryption circuit is represented as b — (a,s) mod ¢. This arithmetic circuit
can then be transformed in terms of homomorphic encryption F(-) of a scheme II" as

follows:
n—1
A, =E(b) — Zai - E (s;) mod q
i=0

It can be noted that A, may or may not be the final refreshed ciphertext. Further,
we need to publish the encryption of the secret key’s individual entries s; as F (s;).
A collection of such encryption of secret key is referred to as bootstrapping key and is
considered to be secure under hardness assumption of the underlying scheme II'.

Next, we can observe that such homomorphic decryption can be performed
trivially by instantiating an encryption scheme II" with a large plaintext modulus,
priwe such that priwe = ¢ev.we. This automatically leads to a very large ciphertext
modulus griwg given the condition priwe < qriwr. Furthermore, to maintain a
particular security level RLWE dimension needs to be increased accordingly which
can have detrimental effects on overall efficiency. Nonetheless, in a different line
of work [GHS12al, [HS15] such large parameters were proven useful to evaluate the
decryption formula homomorphically.

To avoid such “parameter bloating”, we represent an integer (in mod ¢) using

a low norm encoding technique derived from the work of [DM15].
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4.6.1 Message Encoding

We can observe that the cyclotomic polynomial R, = Z,[X]/ (X" + 1) acts as a finite
field where a small integer ¢ can be encoded simply as a monomial X* € R,. This
encoding technique works for any two integers a,b < n/2 and addition of a and b
simply maps to multiplication of cyclotomic polynomials as (a +b) — X . X =
X+b In group theory this is also referred to as embedding an additive group Z,
into a multiplicative group G of some order |G|. Because of the negacyclic nature of
cylotomic polynomials this multiplicative group changes sign when (a + b) > n. To
account for this negative cycle, the first n integers are mapped to X while the next
n integers are mapped to —X*. In summary, a cyclotomic polynomial R, acts a finite

field of order 2n and shown as follows:
ZQn — g<X> = {17X7 e >Xn717 _17 _Xa T ,_anl}

It is not much difficult to prove that G(X) obeys the group properties as it has an
identity element, e = 1, every element has an inverse, X* — X~ € R, and lastly a
group action defined as X|X?" = ¢ = 1. Further, the group is also Abelian because

of the commutative nature of multiplication.

4.6.2 Homomorphic Decryption with Ring-GSW FHE Scheme
In this section, we describe four different variants of our bootstrapping algorithm.
The first two are applicable to BV-LWE ciphertext and the next two are applicable
to BV-GSW ciphertext in LWE matrix form. We start with a brief overview of
[DM15] and [CGGI16] bootstrapping procedure.

One of the key differences in bootstrapping procedure of both schemes lies in
computation of the product term a; - s; € Z,, (ai,s; € Z,) required for updating the
homomorphic accumulator. In [DMI5], to compute the product term the authors

resorted to bit decomposition of a; followed by homomorphic multiplication with
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corresponding powers of 2 of s;. Such an approach is chosen due to the fact that scalar
multiplications in Z, map to homomorphic exponentiation in cyclotomic polynomials.
This results in a total cost of O (log,¢) homomorphic multiplications to produce a
single product a; - s;. It was shown that by moving to a larger base b > 2 the number
of homomorphic multiplications can be reduced further at the cost of generating a
larger bootstrapping key. Using this generalized base b the entire bootstrapping key,

bk in closed form can be shown as follows:
bk = E (k-s27) Vi€ [0,n), j€l0,[log,q]), k €[0,b)

Applying the [DM15] technique, homomorphic decryption of BV-LWE ciphertext

along with the above mentioned bootstrapping key, bk can be expressed as follows:

D= B )+ Y (a) E(s)

=E )+ > Y bk(ai;,i,j) = E (m+ pe)

i=0 j=0

To compute the product a; - s; efficiently, the authors in [CGGI16] place a
stronger security assumption on generation of secret keys from binary distributions
(B). Because of this assumption, the product simply reduces to (0, ;) for s; = (0, 1).
In this case the product can be evaluated by picking appropriate values using a binary
homomorphic multiplexer where the control bit is given by the secret key s;. The

product can be expressed using homomorphic computations as follows:
E(CLZS,L) :G—F(Xal —1>E(Sz)

Bootstrapping key, bk here is simply a collection of encryptions of individual

secret key terms, s; € {0,1}. We can observe that the bootstrapping key generated
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here is smaller than that of [DM15] by a factor of blog, (¢). Applying the [CGGI16]
technique, homomorphic decryption of BV-LWE ciphertext can be expressed as

follows:

n—1

Ay=ED)+Y (G+ (X 1) E(s;)) = E(m+pe)
i=0

We can observe that for secret keys generated from ternary distributions (7)
or Be-bounded discrete Gaussian distributions (x.) computation of each product
term would scale linearly by a factor of 2log, (B.) in number of homomorphic
multiplexer operations. To circumvent such inefficiency we introduce a new technique
for computing the product term by homomorphic exponentiation in cyclotomic rings
or scalar multiplication in finite field space. More specifically, we rely on Frobenius
automorphisms for achieving such scalar multiplications.

Particularly for a power of 2 cyclotomic polynomial with unpacked coefficients,
Automorphism transformation with an index & maps a polynomial z (X) € Rg
to a RLWE polynomial z (X*) ( mod ®,,_on—, (X)) € Rqg. These Automorphism
maps, denoted by 7, : Rg + Rg, are however only defined for odd indices k
which are relative primes of 2N (= ¢). It is now known that the complete set of
transformation maps form a group under composition and isomorphic to (Z/2NZ)*
[LPR10, [GHS12¢]. With regards to our monomial encoding for an integer i € Z, or
X' € Rg Automorphism map 74 produces another mononomial X** € Ry which
is equivalent to scalar multiplication in finite field Z,. To apply Automorphism
on a ciphertext, ¢ we apply the transformation maps on individual elements of the
ciphertext after which the cphertext 74 (¢) can be decrypted by the transformed secret
key 7 (sk). To get back the ciphertext in native form, we key-switch the ciphertext

w.r.t a pre-computed evaluation key.
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Extending scalar multiplication to Z/2NZ and trade-off in bootstrapping
key size: Since, the scalar multiplications are not defined for even valued indices we
apply the following simple tweaks to cover the scalar multiplication over the entire

range of Z/2NZ.

e For a; = 2kr,a; > 2 we apply Automorphism (7% (s;)) with index k = a; — 1
followed by a multiplication with null (noise less) ciphertext encrypting X.

e For a; = 2k, a; > 1 we apply Automorphism (73 (27s;)) with index k = a;/2’

where j is the rightmost bit set in a;.

The first approach is nearly as efficient as the second one however, memory
overhead of bootstrapping key is very different. In the first approach bootstrapping
key consists of encryptions of individual components of secret key whereas in the
second one we generate all powers of 2 of secret key components. Additionally,
in both approaches we also populate the bootstrapping key with evaluation keys
ks; + KeySwitchGen (7; (sk),sk) Vi € (Z/2NZ)" to transform the intermediate
ciphertexts to native form. We remark that in our implementation we used the second
approach for the sake of efficiency. Applying this technique, homomorphic decryption

of BV-LWE ciphertext can be expressed as follows:

n—1
A, =E(b)+ ) KeySwitch [r; (E (si;) , ks;)]

=0

= E (m+ pe), where j = log, (a; A —a;)

Testing polynomial and Post processing: At this stage, if homomorphic
decryption is correct then A, decrypts to X™™ € R,. To extract a BV-LWE or
BV-GSW ciphertext deterministically from the constant term of RLWE ciphertext

we have to sum up the coefficients in A, ciphertext. This is done by multiplying A,
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with a special polynomial called testing polynomial, ¢ and shown as follows:

to=1+Q@-DX+ - +(Q-1)X""€eRg
t=1+X+ -+ X" eRg,

y=0mod p, |y > q/4, t = ylots, A, = Ayt

As noted in [CGGI16], we apply the testing polynomial in the beginning to
avoid an additional factor of v/N in final noise term. The factor of 7 is introduced to
pin down the noise in the range [0, ¢/2) resulting in a positive coefficient polynomial.
Consequently noise limit in BV-LWE scheme is reduced to |¢/4|. Now, A{ can be
shown to be a ciphertext encrypting the plaintext message N —2 (m + pe) in constant
term. With additional linear transformations, the message is finally transformed
to m + pe. At this stage, ciphertext A/ is in a more desirable form, however, it
can’t be decrypted with original secret key. Assuming LWE dimension is less than
RLWE dimension, n < N, we generate the key switching evaluation key ksg,z» and

key-switch the ciphertext.

RLWE secret key sk € Rq, BV-LWE secret key z € Zy
Z* = {ZO7 —RZn—1,""", _Zl} € Zg

ksp,zn < KeySwitchGen (sk, z*)

Finally, we run a mod-switch procedure to reduce the ciphertext modulus @
in A, € Ré to a very small value ¢ and get back a ciphertext w = (wp, w;) € Ré.
Bootstrapped BV-SLWE ciphertext is given by Crefresn = (wp[0], w1[0], wy[1], -+ ,wqi[n — 1)) €
Zy.

BV-LWE [B] Bootstrapping Using the above described techniques, we proceed

to describe our first bootstrapping Algorithm [I] applicable to BV-LWE scheme in

128



LWE form with binary secret keys. For this specific case, we retain the usage of
homomorphic multiplexer for computing the product terms a;s;. Further, we keep

the accumulator in BV [BV11b] ciphertext form.

Algorithm 1: BV-LWE [z <—s B] Bootstrapping procedure
Input : Ciphertext ¢ = (a,b) € Z*', bk; s.t.
bk; +— RGSW.Enc (z;,pk), i € n.
Output: Refreshed ¢iet = (Arer, brer) € ZJH.
ACC + X"-t, ACC € R ;
fort=0ton—1do
E<—G+(X_a‘—1)bl{7@ ;
ACC « ACC x ¢
end for
ACC < 2 negate (ACC — N);
wg = (wp, wy) < KeySwitch (ACC, ksgp—z+) ;
w, = ModReduceg_,, (wq) ;
return c,,; = LWE-FExtract(w,)

© 0 N O N W N -

BV-LWE [T or x. | Bootstrapping Our next bootstrapping Algorithm [2] is
applicable to BV-LWE scheme in LWE form with secret keys generated from ternary,
T or discrete Gaussian distributions y.. Again, we keep the intermediate accumulator
as BV scheme ciphertext however, at the greater cost of 2 key-switching operations

per iteration.

BV-GSW Bootstrapping Bootstrapping BV-GSW ciphertext in LWE matrix
form is a little more involved and needs more operations to refresh the ciphertext.
From the construction of BV-GSW ciphertext, we can see that the top £ rows of the
LWE matrix can be trivially obtained by applying LWE extraction procedure on the
top £ rows of a Ring-GSW ciphertext. This even applies to the next ¢ rows but only
for the cases when the message is a constant term, i.e., remaining coefficients must be
0. Similarly, remaining (n — 1)¢ rows of LWE matrix can be formed by multiplication
with X € R, followed by LWE extraction. However, as shown in Algorithms [1} and

our accumulator, ACC stores random values in all coefficients except for the constant
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Algorithm 2: BV-LWE [ z+<+sT or x.| Bootstrapping procedure
Input : Ciphertext ¢ = (a,b) € ZJ*!, bk;j s.t.
bki j + RGSW.Enc (27z;,pk), i € n,j € logy(2N).
ks_,;, = BV.KeySwitchGen (sk, 7; (sk)) and
ks. ; = BV.KeySwitchGen (7; (sk) , sk)Vi € (Z/2NZ)"
Output: Refreshed cef = (ayer, bret) € Zp™
ACC + X' -t, ACCe R? ;
fori=0ton—1do
a < q—a;, j<logy(a' N —d);
k< (a > j);
CL < Tk (bk@j);
ACCy, + KeySwitch (ACC, ks_, ) ;
ACCk — ACCk X Cp;
ACC < KeySwitch (ACCy, ks ) ;
end for
ACC « 2 'negate (ACC — N);
wg = (wp, wy) < KeySwitch (ACC, ksgp—zr) ;
w, = ModReduceg_,, (wg) ;
return c,.; = LWE-Ezxtract(w,)

© 0w N A W N

e e e
W N = O

term. To resolve this issue, we rely on a RLWE coefficient extraction (RCE, discussed
in Section procedure which nullifies these random coefficients. As an aftermath
of RCE procedure, the value of constant term increases by a factor equal to RLWE
dimension. This factor can be canceled out by simply scaling the testing polynomial
appropriately. We remark that the intermediate accumulator ACC can no longer be
kept as a BV ciphertext because of the limitation in multiplication properties of BV
FHE scheme. Further, accumulator (in Ring-GSW form) can only be multiplied by
powers of 2 right after the RCE procedure to obtain the ¢ rows of BV-GSW ciphertext.
Algorithm [3| and [ outlines the bootstrapping procedure for different modes of secret

key generation.

4.6.3 RLWE Coefficient Extraction Procedure
RLWE coefficient extraction (RCE) procedure discussed in this section allows us

4

to selectively filter out the “garbage” values from the RLWE polynomial that is

accrued during the bootstrapping procedure. Specifically, given a RLWE ciphertext
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Algorithm 3: BV-GSW [z <—s B] Bootstrapping procedure

© 000 N O AN W N

=R e e
w N = O

Input : Ciphertext C € ng(nﬂ), b=Cpp,a=(Cy;-

bk; +— RGSW.Enc (z;, pk), i € n.

Output: Refreshed C,t € Zqox("ﬂ).
ACC+ Xt (N*% Q) ;
fori=0ton—1do
c— G+ (X% —1)-bk;;
ACC + ACC x ¢
end for
ACC + RCE (ACC) ;
fori=0to/—1do
ACC; <+ ACC x 2¢, ACC, € R? ;
ACC; + 2 'negate (ACC; — 2'N) ;

Wo.i < KeySwitch (ACC;, kSg—yz+) ;

W,. = ModReduceq_,, (Wg.) ;
end for

return C,.; = GSW-Extract(W o, --- , W ;1)

N CO,n+l)7 bkl s.t.

Algorithm 4: BV-GSW [z <sT or x.] Bootstrapping procedure

© 0 N o w ok W N
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Input : Ciphertext C € Z*™™ b= Cyg, a=(Coy -+ Coni1), bki,
s.t. bk;j + RGSW.Enc (2z;,pk), i € n,j € logy(2N).
ks. ; = RGSW.KeySwitchGen (7; (sk) , sk)Vi € (Z/2NZ)"

Output: Refreshed C, € Zqox(nﬂ).
ACC+ XP-t- (N1 % Q) ;
for:=0ton—1do
a' «q—a;, j<logy(a' A —a');
k <+ (CL, > j), Cp < Tk (bk’ZJ),
¢ < KeySwitch (¢, ks ) ;
ACC «+ ACC x ¢
end for

ACC «+ RCE (ACC) ;
fori=0to/—1do

ACC; + ACC x 2¢, ACC, € R ;
ACC; « 27 'negate (ACC; — 2'N) ;

W, < KeySwitch (ACC;, kSg—yz+) ;

W,. = ModReduceq_,, (Wg,) ;
end for

return C,.; = GSW-Extract(W,, - -

) Wq,@—l)
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¢ = Encrypt (m) where m = (mg, ¢1,- -+ , gn—1) the RCE procedure on ¢ results in a
ciphertext ¢ = Encrypt (m’) where m = (nmy,0, - -- ,0) and n is the ring dimension.

Coefficient extraction procedure shown in [DMI5] is very efficient but only
results in a LWE ciphertext which cannot be converted to RLWE form. Alternatively,
after extraction of coefficient in LWE form one can decrypt it using O (n) homomorphic
operations, however, such method is accompanied with significant noise growth.
We describe an efficient RCE procedure which requires O (log, (n)) homomorphic
operations with very little noise growth.

Our RCE procedure mainly comprises of Automorphism operations on RLWE
polynomials with unpacked coeflicients. Automorphism (7, : R, — R,) with an index

k € (Z/2nZ)" produces a transformation on polynomial m as follows:

T (Mm(X)) —» m (Xk) =m(x)

The effect of Automorphism is that the j-th coefficent of m is now related to the i-th
coefficient of the original polynomial by the equation (25 — 1) = (2¢ — 1) k mod 2n for
any i, j € [n]. It was observed in[GHS12c, [GHS12b] that coefficients embedded in slots
of m shift cyclically when the cyclotomic (not a power of 2) polynomial is in packed
form. However, in the case of power of 2 cyclotomic polynomials all the coefficients
except for the constant term permute in a particular order depending upon the value
of k. Another interesting property of Automorphism is that we can selectively negate
coefficients of m by choosing appropriate k& values. Using the idempotentcy and
negation property of Automorphism, we can filter out half of the original coefficients
of m. However, after each Automorphism we need to key-switch the transformed
ciphertext to bring it back to original form so that it can be added to the original
ciphertext ¢. Repeating this process log, (n) times gives us the required ciphertext.

RCE procedure is outlined in Algorithm [5]
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Algorithm 5: RLWE Coefficient Extraction (RCE) Procedure

Input : A ciphertext ¢ = Encrypt (m),m € R, of dimension n and
cyclotomic order 2n. m = (mg, g1, -+ , gn_1). Evaluation keys,
ks; such that ks; + KeySwitchGen (7; (sk), sk) Vi € (Z/2nZ)".

Output: Ciphertext ¢ = Encrypt (m’) ,m’ € R,. m’ = (nmy,0,---,0).

b+ log, (n) ;

d <+ c;

fori=0tob—1do

ETK(SK’) < Tw (C/) ;
csk — KeySwitch (ém(sk), ksn) :
d—d+ecy
end for
10 return ¢
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4.7 Gridstrapping

In this section, we describe the work on bootstrapping that builds on the above work
and other common FHE tools and techniques. Our starting point is the additive group
structure Z, mentioned in the work by Sheriff and Pikert [ASP14] on bootstrapping.
Recall that the additive group is defined as an embedding of Z, into the symmetric
group S, of permutation matrices. Such an embedding allows us to express an integer
x € Zq as a ¢-by-q permutation matrix. Alternatively, the permutation matrix can be
represented succinctly by an indicator vector {0, 1}? where the position of 1 denotes
the integer value. Given such a multiplicative group represented by permutation
matrices, each addition translates to O (¢*) homomorphic operations.

We forgo many other details and focus on this multiplicative group .5,. In order
to extend this field over a large modulus ¢, the authors [ASP14] split the modulus
into many small terms by a direct application of Chinese Remainder Transform. Since
arithmetic on Z, is isomorphic to ¢ = [[; Z,, an integer is now expressed in terms
of a group of indicator vectors {0,1}"". As a natural consequence the number of

homomorphic operation reduces to O (r?) for each integer addition. However, it is
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not clear how to compute an inverse CRT on these ensemble of homomorphically

encrypted indicator vectors.

4.7.1 Message Encoding

Building further on the above mentioned idea of indicator vectors, we express an
integer & € Z, as a tuple of indicator vectors {0,1}? where ( is the grid dimension
parameter. Collectively, integer = can be shown as an indicator vector {0, 1}qC where
the position of 1 denotes its value. For the simple case of ( = 2, integer x is represented
by a sparse grid or matrix. In this case, position of 1 is indicated by a row pointer
and a column pointer. Figure 4.1 shows a multi dimensional grid where the position
of 1 is shown by ko, k; and ke pointers. Integer x can be shown to be equal to
x=ky-q®>+ky-q+ ko. Generalizing this over a multi dimensional grid with a grid

dimension parameter ¢ an integer in the grid is represented as follows:
x:krc_l-q<_1+k<_2-qc_2+---+ko EZqC

The above equation is reminiscent of representation of a large number in base-q
and indeed this idea converges with our goal to bootstrap ciphertexts with large
modulus. We represent each of the indicator vector k; = {0,1}? as cyclotomic
polynomial with RLWE dimension n = ¢q. Now, it only remains to show the addition
of integers using grid representation.

Grid Addition: Addition of grid integers quickly lands us in problems because
of the negacyclic nature of cyclotomic polynomials. Concretely, for two integers 7o and
11 addition of grid integers translates to homomorphic multiplication of ciphertexts,
E (ip) and E (iy). If the sum is greater than n, then the resultant polynomial attains
a negative sign and falls out of encoding domain. To resolve this issue, we need to
evaluate absolute value of the resultant polynomial. For this purpose, we extract the

sign (sgn € {—1,+1}) after every ciphertext multiplication and again multiply the
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ko-ptl’

T ]‘Cl —ptr
Figure 4.1 Figure shows a multi dimensional grid representation of an integer,
¢ =3, qg=nC. ko-ptr, ki-ptr and ko-ptr are ciphertexts capturing different grid
dimensions.
ciphertext with the sign. Pseudocode for grid addition is outlined in Algorithm [6]
For sign extraction, we apply the RCE procedure on the product term, R;’s after

multiplying it with the testing polynomial ¢, however, this step can be omitted if the

message polynomial is already present in a rotated form (by a multiplication with ¢;).

Carryover Next, we have to generate and propagate a carry-over for each of
the indicator ciphertexts. We define a homomorphic carry-over generation circuit,

EvalCarry as a map from sign, sgn to {1, X'}, defined in the following equation:

EvalCarry : sgn — {1, X'}

carry = {(1 — X) x sgn + (1+ X)} x 27'G

Bootsrapping keys: We assume BV-LWE secret keys are generated from

binary (B) distributions but it can be extended to other distributions at the expense of
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Algorithm 6: Grid Add procedure

Input : Grid ciphertexts, P = (Pr_y,--- , ) and Q = (Q¢—1,- -+ , Qo),
grid dimension, (.
Output: Grid ciphertexts, R = (R¢_1,- -+ , Rp).
carry < XY ;
fori:=0to(—1do
R; < P, x (); X carry;
sgn <— RCE (R; X ty);
carry <— EvalCarry (sgn) ;
R; <+ R; X sgn ;
end for
return R = (Rc_1,--- , Ro).

® N o Ak W

more number of evaluations. Bootstrapping keys are simply published as encryption
of individual secret key components so that the product term (a;s;) remains as a
positive coefficient indicator vector. We use homomorphic multiplexer function for

generating grid product terms. Gridstrapping procedure is described in Algorithm

4.8 Experimental Results
We evaluated our bootstrapping Algorithms on open source C++ lattice crypto
library PALISADE ﬂ Our testing platform consist of a 64-bit quad core (i7-7700HQ)
processor clocked at 2.80GHz. Further, we remark that our implementations were
run entirely on a single thread with no hardware optimizations.

Unlike previous works [DM15, [CGGI16, [CGGI17] which worked on complex
FFTs for switching between RLWE polynomial representation, our work relies
on finite field FFT or NTT with mod-g reductions done with optimized Barrett
reductions. Further, we believe that our runtimes will improve by a factor of 4 or
more by using AVX vectorized instructions in FFT implementation as demonstrated
by these previous works. We treat hardware optimization as an independent topic
and reserve it for future works. Since runtime of bootstrapping algorithms are mostly

dominated by the relinearization factor, r and N'T'T operations we kept most of the

1. PALISADE homomorphic encryption software library is currently in version 1.9.1 and

available to download from https://palisadecrypto.org
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Algorithm 7: BV-LWE [B] Gridstrapping procedure
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Input : Ciphertext ¢ = (a,b) € Z!*!, bk; s.t. ¢ = N¢,
bk; < RGSW.Enc (z;,pk), i € [0,n — 1].
Output: Refreshed o = (Qyef, bref) € ZZL“.

ACCyiqg = (ACC(q, -+ ,ACCy) + GridEncode (b) ;
ACC,pig ¢ ACCypig- N7' -ty ;
for:=0ton—1do

a; < N¢ — a; ,

a;; < GridEncode (a;), j € [0,{ — 1] ;

for j=0to (—1do

| pi e G+ (X% —1)- E(sy) ;

end for

P (pc—1,-++ ,po) ;

ACCiq + GridAdd (P,ACC,.4) ;
end for
ACC <+ 0 ;
fori=0to (—1do

ACC; «+ ACC; x tg ;
ACC; + 27 'negate (ACC; — N) ;
ACC + ACC + ACC; x (N* mod p);
end for
wg + KeySwitch (ACC, ksgp—yz+) ;
w, = ModReduceg_,, (wg) ;
return c,.; = LWE-Eztract (w,)
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RLWE elements in evaluation form and r considerably large. For the same reason,
we performed Automorphism operations in evaluation representation making the

generalized secret key bootstrapping very efficient.

4.8.1 Parameter Selection and Results

In our experiments, we used a static parameter set from [DMI5] to fix the parameters
for BV-LWE FHE and BV-GSW FHE schemes. Parameters for RLWE cryptosystems
are usually set from security and correctness constraints. However, in our experiments
we chose standard RLWE dimensions of N = 512, 1024 and then determine
correctness empirically.  While security level (bits of security) for some of the
parameters have been set to a relatively low value, we remark that these runtimes
help in ease of comparison with other bootstrapping techniques and can be easily
extended for more secure parameter settings.

BV-LWE/GSW Parameters: LWE dimension, n = 500, ciphertext modulus,
q = 512, plaintext modulus, p = 5.

From the results, we observe that we get the fastest bootstrapping runtime
from Algorithm [I| where the secret keys are generated from binary distribution.
Algorithm 2| has a runtime roughly twice that of Algorithm [If but has the added
benefit that it can work with arbitrary distribution secret keys. Lastly, Algorithm
has a relatively higher runtime because of the fact that the ciphertext is in LWE
matrix form. Moreover, the runtimes of these algorithms grow proportionately as the

RLWE dimension is increased.

4.9 Conclusion and Future Directions
In this chapter, we presented an improved variant of BV-LWFE scheme and discussed
several novel techniques for refreshing a ciphertext of the scheme. Building on prior

works we have shown that a LWE homomorphic scheme capable of computing on
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Table 4.1 Experimental Results Showing Bootstrapping Runtimes for BV-LWFE
Scheme using Different Algorithms and Parameters

Bootstrapping | Bootstrapping
Algorithm | N r | Q bits KeyGen Runtime

(ms) (ms)
11 32 308 133
8 31 410 166
11 32 2820 233
o12 8 31 3680 295
14 41 310 721
11 43 412 1187
13 37 675 282
11 43 852 362
1024 | 13 37 6250 495
11 43 8310 615
I 11 43 832 2477

RLWE plaintext modulus p =5, 0 = 4.

integers can be bootstrapped efficiently resulting in a fully homomorphic scheme. In
contrast to prior work. which convert arithmetic functions to binary circuits, our
LWE FHE scheme can be applied directly resulting in several orders of improvement
in performance.

In the future, we plan to improve our bootstrapping algorithm runtimes by
porting over to heterogeneous execution platforms such as GPUs and FPGAs. We
also plan to bring in other FHE tools such as RLWE Field switching which can
decouple the LWE and RLWE parameters more effectively. Lastly, we believe our
techniques will benefit the most if they can be extended to bootstrap RLWE FHE

schemes.
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CHAPTER 5

ACCELERATING LATTICE BASED PRIMITIVES ON GPUS

5.1 Introduction

Over the last decade, lattice based cryptography has revolutionized the field of
cryptology by introducing many powerful cryptographic primitives such as Fully
Homomorphic Encryption (FHE) schemes, Proxy Re-Encryption (PRE) schemes,
digital signature, functional encryption and many more. In theory, many of these
lattice based primitives are considered to be more efficient than other traditional
cryptosystems which rely on modular exponentiation. This is mainly because
evaluating modular exponentiation of very large integers (depending on security
factor) is a time consuming operation and further the most optimized algorithms
for exponentiation are not amenable to parallelization. On the other hand, it is also
evident from numerous implementation of lattice-based cryptographic schemes on
modern computing platforms that they still suffer from inefficiencies incurred due to
intensive computational workloads. Some of the inefficiencies can still be mitigated by
careful design choices and other trade-off in parameters however such choices often
come with a limitation on improvement in performance. A large number of these
implementations can be efficiently realized in practice by mapping the schemes to
appropriate hardware platform or synthesizing, part or all of a scheme, on special
purpose hardware. Additionally, performance of the system is boosted tremendously
if the computational workload can be split up into parallel constructs and mapped to
individual hardware units.

Fortunately, most of the lattice based primitives belong to the category of
problems which are in NC. Particularly, the class NC' captures the set of problems

for which there are efficient parallel algorithms or in other words problems that are
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massively parallelizable. Therefore, in theory many lattice based schemes can be
efficiently implemented in parallel using a parallel computer with n®®) processors
and in time logo(l)(n) where n is the size of input and assuming availability of
infinite number of processors. For example, many operations on matrices such as
computation of product, rank and determinant have been shown to be computable
in parallel as the depth of circuits corresponds to a parallel time. Furthermore, the
trend in semiconductor industries is continuously shifting focus on high performance
multi-core architectures instead of building power hungry single-core processors
running at significantly higher clock speeds. This strongly suggests and justifies
the need to investigate the implementation of lattice based primitives on high
performance computational platforms such as ASICS, FPGAs, GPUs etc. In this
chapter, we describe the acceleration of RLWE based Proxy Re-Encryption schemes
and bootstrapping procedure by implementing them on heterogeneous computing

platforms such as GPUs.

5.1.1 Motivation for Accelerating PRE Schemes on GPUs
First introduced in the work of Blaze, Bleumer and Strauss [BBS9§|, Proxy Re-
Encryption (PRE) is a powerful cryptographic primitive that allows a subscriber
(Bob) to exchange and interpret encrypted data received from a publisher (Alice)
without ever exchanging any secret key. To interpret the messages, Alice creates
and gives to Proxy (Polly) a re-encryption key which then allows Polly to transform
messages encrypted with Alice’s public key into an encrypted message that can be
decrypted by Bob’s secret key. Furthermore, semantic security of proxy re-encryption
guarantees that the proxy, Polly doesn’t learn anything about Alice’s secret key or
messages.

Proxy re-encryption can be immensely useful in brokering information exchanges

in untrusted environments such as cloud computing platforms. Users can choose to
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store contents in encrypted form on cloud and then register re-encryption keys of other
users they want to interact with. Now, the cloud acting as a proxy, can re-encrypt
messages on the fly and deliver encrypted messages that can be read by the desired
users. Even if the cloud is corrupted by a malicious adversary and all data stored on
cloud is compromised, the adversary cannot retrieve meaningful information out of it.
Further, the adversary in possession of re-encryption keys cannot deduce secret keys
of either the producer or consumer. Additionally, if the PRE scheme in deployment
is key private secure then the adversary cannot even trace the identities of Alice and
Bob.

Building PRE primitive with FHE schemes presents a simple yet powerful
approach for extending them for information exchanges in untrusted environment.
Further these PRE schemes mitigate some of the problems associated with traditional
PRE schemes as they are inherently endowed with wuni-directional and multi-hop
nature. Construction of a PRE scheme based on BV [BV11b] FHE scheme was
presented in [PRSV17] where the authors exploited the key-switching procedure
for achieving the re-encryption functionality. Similarly, in [SR20] the authors
presented two PRE schemes based on GSW [GSW13] FHE scheme and it’s RLWE
variant Ring-GSW [KGV16] FHE scheme. Evaluation of the both BV-PRE and
Ring-GSW-PRE (with » = 1) with standard parameter set and security factor
(100-bits) shows that re-encryption procedure can be completed in the order of
10 — 100 milliseconds.

Nowadays, owing to the ever increasing computational power and network
efficiency most of the applications hosted on cloud are expected to work in real
time. An application involving a PRE primitive is no different to this. Being a
low level key primitive, the PRE scheme in deployment is expected to deliver least
possible latency. The above mentioned PRE schemes share the similarity of using the

algebraic structure of ideal lattices as polynomial rings (RLWE) or finite field vectors
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(LWE). As a result, many of the computational bottlenecks in implementation of these
PRE schemes arise due to large ring dimensions, arbitrary precision multiplications,
polynomial tensor, number theoretic transforms, matrix multiplication etc. Over
the years many of these problems have been remedied by switching over to better
algorithms or optimizations. However, in order to provide additional speedups better
hardware architectures have to be considered. In a heterogeneous computing model,
these hardware accelerators acting as co-processors can be orchestrated by CPUs to
achieve the desired levels of throughput. Among the common hardware accelerators
such as FPGAs, ASICs and GPUs the most common and readily available solution is
provided by GPUs. Modern GPUs consist of streaming multi-core processors which
can be utilized to accelerate parts of computations that can be processed in parallel.

Lattice based cryptography and more specifically RLWE based FHE schemes
being amenable to such parallelism have shown significant folds of improvement in
performance when implemented on GPUs. For example, in [DDSI4] the authors
presented an implementation of NTRU FHE scheme on GPUs and evaluated AES and
Prince block ciphers resulting in 2.5-7.6x factors of speedup over CPUs. Similarly,
[DS15] present a homomorphic encryption accelerator library, caHE targeting LTV
[LATV12], BGV [BGV14] and DHS [DHS14] FHE schemes. Speedups of 12-41x were
reported by the authors for homomorphic sorting of ciphertexts. In another work
[KGV16] leveraged the power of GPUs towards construction of homomorphic Bayesian
spam filter, secure multiple keyword search, and evaluation of binary decision trees
based on Ring-GSW FHE scheme. For the same security settings [KGV16] reported
a factor of 10x improvement in performance when compared with IBM HeLib [HS14]
software library. Continuing in this line work, we present an implementation of PRE

schemes based on BV and Ring-GSW FHE schemes.
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5.1.2 Motivation for Accelerating Bootstrapping Procedures for LWE
FHE Scheme on GPUs

Nearly a decade ago, Gentry proposed the first Fully Homomorphic Encryption
(FHE) scheme, a powerful cryptographic primitive that enables computations on
encrypted data. FHE is the most versatile tool that can be directly applied to
outsource storage and computation to a remote server, enable private queries on
a database or a search engine and other secure two-party computations. Because of
its wide spectrum of application and strong security guarantees, fully homomorphic
encryption is sometimes dubbed as the “holy grail of cryptography”. Although for all
practical purposes a fixed depth homomorphic encryption scheme or SHE can be used
however, such instantiations are rather found to be inefficient due to the requirement
of very large modulus to contain the noise and satisfy the correctness constraints. In
the FHE approach, noise in the ciphertext is allowed to grow during computation
phase and once it reaches a certain threshold the ciphertext is refreshed by applying
a bootstrapping procedure. First described by Gentry [Gen09, IGT09], a repeated
application of this bootstrapping procedure converts a fixed depth HE scheme to
FHE in all currently known schemes.

In all practical implementations [HS15 (GHT11], bootstrapping procedure is often
found to be computationally expensive because of homomorphic evaluation of the
decryption circuit which in turn can bring down the efficiency of the entire FHE
scheme or the application depending on it. To circumvent such inefficiency, it is much
desirable to offload the entire bootstrapping procedure to a hardware accelerator such
as GPU. In this chapter, we explore hardware acceleration of BV-LWE like FHE
schemes using NVIDIA GPUs interfaced on devices ranging from high end HPCs
to resource constrained embedded systems (NVIDIA Jetson AGX Xavier). A key
advantage of using BV-LWE FHE scheme over FHEW -like [DM15] cryptosystem is

that messages other than bits (m > 2) can be encrypted and operated on. Further,
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we remark that our GPU implementation can be easily extended for implementation
of FHEW [DM15] or TFHE [CGGI16, [CGGILT7] FHE schemes.
Our Contributions: We enumerate our main contributions and scope of the

chapter as follows.

e We present a GPU implementation of number theoretic transforms (NTT) based
on finite field arithmetic where butterfly operations are performed in parallel.
In order to extend the finite field over large numbers we keep integers in CRT
representation. Our NTT implementation targets both small (n < 1024) and
large (n > 1024) polynomial dimensions.

e Armed with a parallel implementation of NTT operation, next we target
parallelization of bit decomposition procedure. Relinearization operation along
with bit/digit decomposition is considered to be the most critical procedure in
many homomorphic encryption schemes and accelerating this operation imparts
overall efficiency to the FHE scheme.

e Utilizing the above implementations we demonstrate acceleration of BV-PRE
and Ring-GSW PRE schemes. In our implementation we have reduced number
of memory transfers between host and device to a minimum by storing most
of the dynamic elements on GPU memory. Another key feature of our
implementation is the use of cuda streams which allow concurrent execution
of kernels thereby minimizing latency.

e Similarly, we present an implementation of bootstrapping procedure [1| for BV-
LWE FHE scheme on NVIDIA GPUs. To minimize the latency of bootstrapping
procedure we execute the optimized SHE operations of Ring-GSW FHE scheme
on GPUs directly. Furthermore, to reduce the number of memory transfers we
generate and store the bootstrapping keys on GPU memory.

Chapter Organization: Section[5.2]discusses the implementation of underlying
arithmetic layer, number theoretic transforms and bit decomposition procedures on
GPU along with other optimizations. We omit the description of PRE schemes and
bootstrapping procedure [1| for BV-LWE FHE scheme as they have been discussed
in previous chapters [3] and [} In Section [5.3] we provide the parameters selected for

implementation. Section [0.4]discusses the evaluation platforms, salient features of our

software implementation and overall speedups achieved for these implementations.
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5.2 Number Theoretic Transform and Bit-Decomposition
5.2.1 Number Theoretic Transform
Cryptosystems based on RLWE security assumption are defined over a polynomial
ring R = Z [X] /®,, (X) where ®,, (X) is an irreducible monic polynomial, typically
a cyclotomic polynomial of order m. This notation is extended to a polynomial
R, modulo an integer ¢ where the coefficients of the polynomial are in the interval
(—q/2,q/2]. Alternatively, an element a € R, is simply considered to be a coefficient

(™) While addition of these polynomials is quite efficient, multiplication

vector & € Zg
leads to quadratic time complexity. To circumvent this inefficiency we represent
polynomial rings in the so called “Evaluation” representation. For a polynomial
a € Ry, the coeflicients can be converted to evaluation domain a by evaluating a (X)
at each of the m-th primitive roots of unity modulo ¢q. Coefficients of a are related to
polynomial a through the relation @; = a (w') mod ¢ where (i,m) = 1 and w is m-th
primitive root of unity modulo gq.

This back and forth conversion of a polynomial can be achieved efficiently by
using number theoretic transforms (NTT) which is roughly similar to the classical
n-dimensional fast fourier transform where finite field is used instead of complex
numbers. Concretely, in our implementation we use power of two cyclotomics (m =
2F) where ®,, (X) is maximally sparse and ring dimension n = ¢ (m) = m/2 is also
a power of two. Power of two cyclotomics along with NTT have become so pervasive
in lattice based cryptography that overall efficiency of the cryptosystem depends
upon latency of NTT procedure. For this reason, we chose to implement NTT as
iterative Cooley-Tukey algorithm. More specifically, we implemented NTT routine
with Fermat-Theoretic Transform (FTT) optimization which eliminates the need for
interleaved zero padding when using the conventional NT'T procedure. The pseudo-
code describing the NTT decimation in time procedure targeting CPU platforms is
shown in Algorithm

146



5.2.2 Parallel NTT

Exploiting NVIDIA GPU architecture we reduce the NTT latency further by mapping
the butterfly computations of each of the logn stages to an independently processing
thread of a thread block. In NVIDIA CUDA architecture, each kernel can be
potentially divided into a 3-dimensional array of blocks where a block further consists
of a number of threads. CUDA runtime schedules these threads in groups of 32
threads (called warps) which execute concurrently on a streaming-multiprocessor
(SM). Because of hardware restrictions, a maximum of 1024 threads can be assigned
to a block. Further, these threads within a block have the capability to share data
and more importantly synchronize with each other. In our implementation, for small
polynomials (n < 1024) we map the coefficients entirely to a thread block and
synchronize the thread block after completion of a stage as shown in Figure [5.1
We use shared memory for storing the intermittent results as latency associated with
data retrieval for global memory is higher than that of shared memory which reside
on chip. After completion of the entire NTT procedure, we transfer data back to the
global memory. For larger polynomial rings (n > 1024) we use a combination of block
level synchronization and stream level synchronization to avoid data race conditions.
Because stream level synchronization avoids data race conditions via global memory
synchronization, we pay the penalty of using slower memory but only for a fraction
of the NTT procedure call.

Evaluation of the proposed NTT procedure on GPU platforms and CPU
platforms is shown in Figure [5.2l From the figure, we can see that CPU platform
running on single thread achieves slightly better performance for smaller ring
dimensions. As the ring dimensions grow higher, we can see that the GPU platform

start showing significant improvement in performance.
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Figure 5.2 Comparison of CPU and GPU runtimes of NTT algorithm.
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5.2.3 Barrett Modulo Reduction and Arbitrary Precision Support

For modulo reduction we used a variation of the generalized Barrett modulo reduction
presented in [Bar86, [DQI8], outlined in Algorithm [10] Barrett modulo reduction
requires a pre-computation term p = |2%/q| for a particular modulus ¢ and it’s bit
width, b = [log, ¢]. We pre-compute these terms and transfer them to GPU global
memory for read only access to any kernel. NVIDIA GPUs are restricted to 32-
bit architecture however 64-bit arithmetic is supported by assembly code emulation.
Because of this reason, we limit our modulus to 32-bits and prefer modulus with
bit width closer to 32-bits so that the precomputation term, p fits into word size.
Concretely, we used 29 — 30 bit width modulus in our implementation.

Lattice based cryptosystems, and particularly those related to homomorphic
encryption employ the addition of low norm noise terms to base their security on
Ring-LWE and LWE assumptions. As a result, noise term in ciphertexts grow upon
homomorphic evaluation such as addition, multiplication and other operations. For
preserving the correctness constraints so that ciphertexts are decrypted correctly, the
modulus ¢ should be chosen large enough such that the the final accumulated error
terms do not “wrap around” modulo ¢. To extend support for larger modulus, we store
a set of increasing prime moduli ¢; by an application of Chinese Remainder Theorem
(CRT). We only reconstruct back the coefficients into larger terms, for the purpose
of decryption or bit-decomposition where the polynomial needs to be represented in
terms of the larger modulus, ¢ = HE;(l) Q.-

Evaluation of the NTT procedure on GPU with varying number of moduli, ¢
and ring dimension, n can be seen in Figure [5.3] It can be seen from the figure
that for most of the ring dimensions the runtimes vary a little. This is due to the
fact that GPUs have the capability to improve throughput by hiding latency with

concurrent execution of NT'T procedure on different polynomials. On a CPU platform
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Figure 5.3 GPU runtimes of NTT algorithm with varying ring dimension and
moduli, ¢.
the runtimes is estimated to scale linearly with the number of moduli assuming a single

thread execution environment.

5.2.4 Bit Decomposition

Bit decomposition along with relinearization procedure forms the backbone of lattice
based cryptography. Relinearization procedure has proved to be a crucial primitive for
many cryptographic operations such as key-switching, re-encryption, homomorphic
multiplication and ciphertext length reduction. While bit decomposing elements
is a simple procedure in finite field arithmetic, it is accompanied with additional
computational overhead in Ring-LWE based cryptosystems. In Ring-LWE based
cryptosystems, ciphertexts and other key elements are mostly present in evaluation
representation. In order to bit decompose polynomial ring elements, it needs to
switched back to coefficient representation by an application of inverse NTT. At
this stage, bit decomposition of the polynomial results in a vector of b polynomials,
where b is the bit length of the modulus ¢q. To perform further computations, these
polynomials needs to be converted back to evaluation representation by a series of

NTT calls.
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Algorithm 8: NTT DIT Procedure

Input : A polynomial a € R, of dimension n and cyclotomic order m.
Modulus ¢, m-th primitive root of unity, w mod q.
Output: Polynomial a of dimension n in evaluation representation.
1 for i< 0ton—1do

2 | a; ¢+ a;-w' mod g;

3 end for

4 a < BitReversal(a);

5 for i =1 to logn do

6 0 2%

7 for )=0ton—1by (do

8 for k=0to ¢/2—1do

9 p=(m/2") k;

10 ¢ =wP%q ;

11 tdrEven = j + k ;

12 idrOdd = idxEven + (/2 ;

13 QidsEven = (aidrEven + C : aidded) % q;
14 idrodd = (QidzEven — € * Qidz0dd) 70 G;
15 end for

16 end for

17 end for

18 return a

Algorithm 9: INTT DIT Procedure

Input : A polynomial @ € R, of dimension n and cyclotomic order m.
Modulus ¢, m-th primitive root of unity, w mod gq.
Output: Polynomial a of dimension n in coefficient representation.
a < BitReversal(a);
a <+ NTT(a, w™, q);
for i< 0ton—1do
| a; + a; - w™" mod g;
end for
return a

S TN W N -
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Algorithm 10: Mod Barrett Reduction

Input : z € [O,(q—l)z],modulus q, bit-width b = [logq|, § =2 ¢ and
n=12"/q|.

Output: z < 2% g

24— x>b;

24—z

24— >b;

24— 2-q;

24T — 2

if 2z >= ¢ then

|z 2

end if

if 2z >= ¢ then

| 2+ 2—q;

end if

return z

© 000 O bk W N

= e
N = O

Since the bit decomposed polynomials are independent of each other, we
can apply NTT procedures on them in parallel. For this purpose, in our GPU
implementation we map the three dimensional CUDA grid as follows:

e grid.X — mapped to individual bit of decomposed polynomial with grid
dimension set to bit length b of modulus ¢.

e grid.Y — mapped to individual modulus ¢; with grid dimension set to number
of moduli, ¢.

e grid.Z — mapped to polynomial coefficients in excess of the maximum number
of threads allowed to exist in a block.

In order to avoid race conditions in NTT procedure, we provide the kernel
with appropriate synchronization. From Figure [5.4, we can observe that GPU
implementation of bit decomposition outperforms runtimes of CPU platform for all
ring dimensions and further the speedups are more pronounced in case of higher ring

dimensions.

5.3 Parameter Selection
Estimating parameters for LIWE or RLWE based encryption schemes is a significantly
challenging task. On one hand, we have to ensure that the chosen parameters generate
an underlying RLWE instance that is hard to solve as per known attacks while on the

other hand we have to also meet the correctness constraint. Correctness constraint
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Figure 5.4 GPU vs CPU runtimes of bit decomposing polynomial ring with
varying ring dimension, N.

can be trivially achieved by choosing an arbitrarily large modulus q. However, such a
strategy is not suitable for efficient implementation and further leads to insecure LWE
instances. It was shown in [LL15] when the modulus is exponential in LWE dimension,
g > 29 and error distribution is narrow enough, secret key can be recovered
in polynomial time using standard lattice basis reduction algorithms such as LLL
[LLL82] and Babai’s nearest planes method [Bab86|]. These LWE attacking algorithms
which work by reducing the lattice basis (LLL and BKZ), are often quantified by a
parameter called root Hermite factor, o which represents the quality of resultant basis.
A smaller 9 factor leads to better lattice basis and improved security. In order to lay
out concrete parameter, Lindner and Peikert [LP11] gave a heuristic relation that
computes runtime of BKZ lattice reduction algorithm for a particular root Hermite

factor. This is shown as:

1.8

> — — — 110
~ log,(9)

log, (tBxz)

Further, Gentry et al. [GHS12c] gave a relation which computes minimum LWE

dimension secure for a particular modulus ¢, standard deviation of error distribution
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0. and root Hermite factor, 9. Combining the two we can express the minimum LWE

dimension to support k-bits of security as follows:

_ logy (q/0) (5 +110)
- 7.2
In particular, we used the runtime of BKZ2.0 [ACET15|] (considered to be a

improved version of BKZ algorithm) given by the relation

0.009

log, (t > —— — 27
g2< BKzz.o) = logg S

Again, combining this with minimum LWE dimension relation from [GHS12c| we

arrive at our final security constraint as follows:

. log, (q/0e)V K + 27
- 0.379

5.3.1 PRE Parameter Selection
In our implementation, we targeted for k = 128-bits of security for both BV-PRE
and Ring-GSW-PRE scheme. Using the correctness constraint from the respective

schemes, we generated the working modulus for various ring dimensions as shown in

Tables 5.1 and 5.2

5.3.2 BV-LWE Bootstrapping Parameter Selection

In this case, we need to set parameters for both BV-LWE and Ring-GSW schemes
separately. We fix the parameters for BV-LWE scheme as follows:

BV-LWE Parameters: LWE dimension, n = 500, ciphertext modulus, ¢ = 512,

plaintext modulus, p = 5.
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Table 5.1 Minimum Modulus Bits that Satisfies 128-bits of Security for BV-PRE
scheme

PRE Scheme n log(q) based on
average case error bounds

512 18

1024 18

2048 19

BV-PRE 4096 19
8192 20

16384 20

B =15 and o = 4.

Table 5.2 Minimum Modulus Bits that Satisfies 128-bits of Security for
Ring-GSW-PRE Scheme

PRE Scheme n log(q) based on
average case error bounds
1024 25
2048 26
4096 27
Ring-GSW-PRE | 8192 28
16384 29

B =15 and o = 4.

For Ring-GSW FHE scheme, we set the ring dimension to N = {512,1024},
use small relinearization factor » and increment them gradually. We set the modulus

values ((Q-bits) empirically by verifying the correctness of decryption.

5.4 GPU Implementation and Results
5.4.1 Software Implementation
We evaluated both BV-PRE and Ring-GSW-PRE scheme on two NVIDIA GPU
devices, namely, GeForce GTX-1050 and Titan-RTX as shown in Table While
GPU1 is a commodity grade notebook GPU, GPU2 is a much more powerful GPU
targeted towards compute intensive applications. Our software implementation [

follows the modular structure of PALISADE [ homomorphic encryption library

'PRE scheme implementations available to download from https://git.njit.edu/grs22/
pre-on-gpu

“PALISADE homomorphic encryption software library is currently in version 1.9.1 and
available to download from https://palisade-crypto.org
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Table 5.3 Configuration and Features of GPU with their Corresponding CPU used
for Evaluation of PRE Schemes

Feature CPU1 CPU2 GPU1 GPU2

Model Intel i7-7700HQ | Intel Silver 4114 | NVIDIA GeForce GTX 1050 | NVIDIA Titan RTX
Cores 4 10 640 4608

Clock Rate 2.8 GHz 2.2 GHz 1.49 GHz 1.77 GHz
Multiprocessors - - ) 72

RAM Memory 16 GBytes 181 GBytes 4042 MBytes 24190 MBytes
CUDA Capability - - 6.1 7.5

Table 5.4 Configuration and Features of GPU with their Corresponding CPU used
for Evaluation of BV-LWE Bootstrapping Procedure

Feature CPU1 CPU2 CPU3 GPU1 GPU2 GPU3
Model Intel i7-7700HQ | Intel Silver 4114 | ARM v8 | NVIDIA GeForce GTX 1050 | NVIDIA Titan RTX | NVIDIA Volta
Cores 4 10 8 640 4608 512
Clock Rate 2.8 GHz 2.2 GHz 2.26 GHz 1.49 GHz 1.77 GHz 1.38 GHz
Multiprocessors - - - 5 72 8

RAM Memory 16 GBytes 181 GBytes | 32 GBytes 4042 MBytes 24190 MBytes | 15823 MBytes
CUDA Capability - - - 6.1 75 7.2

separating crypto implementations from lower level math layers. Our implementation
is compiled with CUDA 10.0 NVCC compiler along with C++14 support. Our
execution environment consist of 64-bit x86 architecture with operating system
for GPU1l and GPU2 as Ubuntu 18.04 and Scientific Linux 6.10 (available on
university HPC). Further, we remark that we strictly focus on a single threaded CPU
implementation with no hardware optimization. Additionally, on the GPU side our
implementations make use of a single GPU device in spite of availability of multiple
GPU devices on GPU2.

In the evaluation of Algorithm for bootstrapping of BV-LWE scheme
with binary secret keys, we used both GPU1l and GPU2. In addition, we used
GPU3, NVIDIA Jetson AGX Xavier GPU to investigate the performance on a
embedded systems platform. The embedded system is a heterogeneous platform
which is interfaced with a ARMvS8 processor. The device works on three different
pre-configured power modes. We note that our evaluation used the highest power

mode for better performance. Complete details of devices are shown in Table [5.4]

156



In our implementation, we primarily aimed to improve the runtimes of
operations pertaining to encryption scheme, PRE scheme and homomorphic operations.
To do so, we identified the critical operations in encryption, re-encryption, decryption,
re-keygen, addition and multiplication and switched them to CUDA kernel calls. We
outline the main aspects of our GPU optimizations as follows:

e Optimized pre-computation phase: Our implementation consists of an
optimized pre-computation phase wherein we compute most of the cryptosystem
parameters and N'T'T related parameters on CPU and transfer them to GPU global
memory. For faster memory transfers, we used coalesced memory spaces which require
fewer memory transfer calls. On the CPU side we mostly used memory allocation
using pinned host memory. Memory transfer using pinned memory is generally faster
than pageable host memory because GPU can directly access such memory spaces.
Finally, we remark that we do not make use of constant or texture memory as it
reported little or no improvement in performance. Moreover, such memory spaces
are available in very limited number and not scalable for higher ring dimensions.

e Memory related optimizations: Being a heterogeneous platform, one should
expect a significant amount of data transfers between CPU and GPU memory.
However, it is known that such data transfers are generally slower (because of lower
bandwidth PCle) and can sometimes degrade the overall performance of application.
To get a more realistic performance estimate of various operations, we eliminated most
of the data transfers by allocating memory for most of the cryptosystem elements on
GPU memory directly.

e Fast Random Generators: Our implementation relies on CUDA random
number generation library cuRAND for generating random polynomials. The
distributions targeted in our application are uniform random distribution U, discrete
Gaussian distribution y. with standard deviation o., binary and ternary uniform

distributions. Except for uniform distribution, all other distributions were generated
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using continuous Gaussian distribution on pre-allocated memory and then launching
appropriate kernels to reduce them in a particular range. More specifically, we used
the CURAND RNG PSEUDO MTGP32 set of generators which is 5x faster than
other random number generators of the same family and atleast 10x faster than CPU
random number generators.

e Relinearization As described in Section [5.2.4] we benefit significantly by mapping
the bit-decomposed polynomials to a three dimensional CUDA kernel wherein NTT
procedure can be invoked in parallel. Once the polynomials are evaluated they need to
be reduced back into a single polynomial. To do this efficiently, we launch a parallel
reduction kernel with grid dimension roughly equal to number of bit-decomposed
polynomials.  After each kernel call, we obtain the partial results in half the
polynomials than we start with. Repeating this process until we reach a single reduced
polynomial makes the relinearization process very efficient with only O (log (log (¢)))
reduction kernel calls.

e Streams: On GPUs we can increase the throughput of kernels by launching
them simultaneously on independent streams. For example, NVIDIA K20 has
the ability to support upto 32 concurrent kernels launched on a separate stream.
In our implementation, we use streams mainly for parallel generation of noise,
synchronizing NTTs, asynchronous memory transfers and kernel parallelization.
For taking advantage of stream APIs, we always keep the ciphertext components
independent; for example in Ring-GSW PRE scheme we keep ciphertext as a vector
of column polynomials in row major order.

e Cache optimized multiplication: We optimized the homomorphic multiplication
of a Ring-GSW ciphertext with a BV ciphertext by storing the intermediate results
on shared memory. These shared memories are on-chip memory spaces with very fast

access time and hence reduce the evaluation runtime considerably.
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Table 5.5 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operation for Ring Dimension n at » = 1, p = 5, and 128-bits of

Security
Parameters Runtime Throughput
PRE Scheme n b Enc | Dec | ReEnc Enc Dec ReEnc
(ms) | (ms) | (ms) | (Kbps) | (Kbps) | (Kbps)
512 18 | 2.14 | 0.46 0.29 239.25 | 1113.04 | 1765.51
1024 | 18 | 2.18 | 0.52 0.45 469.72 | 1969.23 | 2275.55
BV-PRE 2048 | 19 | 2.21 | 0.55 0.85 926.69 | 3723.63 | 2409.41
4096 | 19 | 2.28 | 0.66 1.26 1796.49 | 6206.06 | 3250.79
8192 | 20 | 2.76 | 1.18 2.76 2968.11 | 6942.37 | 2968.11
1024 | 25 | 3.92 0.6 39.75 261.22 | 1706.66 25.76
2048 | 26 | 5.34 | 0.55 61.18 383.52 | 3723.63 33.47
Ring-GSW-PRE | 4096 | 27 | 9.85 | 0.63 | 118.86 | 415.83 | 6501.58 34.46
8192 | 28 | 19.89 | 1.08 | 259.02 | 411.86 | 7585.18 31.62

Evaluation Data Reported for GPUL.

Table 5.6 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operation for Ring Dimension n at » = 1, p = 5, and 128-bits of

Security
Parameters Runtime Throughput

PRE Scheme N b Enc | Dec | ReEnc Enc Dec ReEnc
(ms) | (ms) | (ms) | (Kbps) | (Kbps) | (Kbps)
512 | 18 | 4.16 | 047 0.31 123.07 | 1089.36 | 1651.61

1024 | 18 | 4.04 | 0.57 0.4 253.46 | 1796.49 2560
BV-PRE 2048 | 19 | 4.24 | 0.61 0.69 483.02 | 3357.37 | 2968.11
4096 | 19 4.3 | 0.63 0.72 952.55 | 6501.58 | 5688.88
8192 | 20 | 4.99 | 0.68 1.3 1641.68 | 12047.05 | 6301.53

1024 | 25 | 4.75 | 0.62 35.46 215.57 | 1651.61 28.87

2048 | 26 | 5.22 | 0.67 49.5 392.33 | 3056.71 41.38

Ring-GSW-PRE | 4096 | 27 | 7.98 | 0.71 87.24 513.28 | 5769.01 46.95

8192 | 28 | 12.2 | 0.71 | 166.67 | 671.47 | 11538.03 | 49.15

Evaluation Data Reported for GPU2.

5.4.2 Experimental Results

For experimental analysis of our PRE schemes, we use latency and throughput as
primary yardsticks. A PRE scheme can be divided into a static and dynamic phase.
Static phase takes into account all sorts of key generation, pre-computations and
parameter setup. Performance of any real time system that uses PRE scheme is largely
determined by this dynamic phase where encryption, re-encryption and decryption

operations are performed on the fly. Therefore, we only report the runtimes and
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throughput for dynamic phase operations by varying the ring dimension, n and
modulus bit length, b determined as per 128-bit security setting. For recording
throughput, we consider messages as binary string with length equal to the ring
dimension.

From Tables and [p.6] we can observe that encryption and decryption
runtimes for BV-PRE scheme vary in very small amount with increasing ring
dimensions. We remark that encryption runtimes for smaller ring dimensions are
still slower with break even occuring for n = 2048 and hence encryption for smaller
ring dimensions are more suitable for CPU platforms. Re-encryption runtimes for
BV-PRE scheme increases linearly with ring dimensions but still doesn’t grow more
than twice as observed on CPU implementations. Comparing our results with Table
6 [PRSV17] for re-encryption runtimes, we get a performance improvement by a
factor of 39x to 228x. Similarly, we get a peak throughput of 6.3 Mbps for BV-PRE
re-encryption procedure from GPU2. We remark that the actual runtimes of BV-PRE
in the current release of PALISADE has been improved since the publication of
[PRSV1T].

For Ring-GSW PRE scheme, decryption runtimes are slightly higher than
that of BV PRE scheme because of relatively large modulus bit lengths. Further,
decryption runtimes vary very little and can be treated as constant for all practical
purposes. Re-encryption runtimes are drastically higher and consequently throughput
reduced when compared to BV PRE re-encryption runtimes and throughput. This
is due to the fact that relinearization procedure is performed over multiple rows of
ciphertext matrix. However, when compared to CPU implementation we still get
performance improvement of 3.5x to 11x. Runtimes of both BV PRE and Ring-GSW
PRE schemes can be further brought down by considering a larger relinearization

window but is accompanied with larger noise growth and error bounds.
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Table 5.7 Experimental Runtime Performance of BV-LWE Bootstrapping
Algorithm [1} for Varying Ring Dimension, N, Relinearization Factor, » and GPUs

Bootstrapping KeyGen | Bootstrapping Runtime
N | r| Q bits (in s) (in s)
GPU1 | GPU2 | GPU3 | GPU1 | GPU2 | GPU3

1 30 1.75 1.35 3.36 0.57 0.25 2.25
012 | 2 30 1.43 1.32 3.32 0.41 0.22 1.97
4 30 1.27 1.32 2.67 0.32 0.21 1.21
1 32 2.58 1.44 5.9 0.93 0.32 2.65
1024 | 2 32 1.94 1.42 3.52 0.65 0.28 1.66
4 32 1.57 1.42 2.62 0.48 0.26 1.24

In the evaluation of bootstrapping algorithm for BV-LWE scheme, we used
very low relinearization values, r = {1,2,4}. These small relinearization factors
use relatively low base 2" to decompose polynomials and hence the noise growth is
considerably less. The overall impact is that a lower ciphertext modulus (within
machine word size) can be used however the runtimes is increased. In such cases, a
hardware accelerator such as GPU can be more useful. From Table[5.7], we can observe
that for GPU1 and GPU2 the overall runtimes stay under a second. In case of the
embedded GPU platform, GPU3, we get reduced performance on account of power
and architecture constraints. For these small relinearization factors, the runtimes
are faster than CPU runtimes by a factor of 4x or more. Further, with very high
relinearization factors (r > 9) CPU implementation are slightly faster but use higher

ciphertext modulus values.

5.5 Conclusion
In this work, we explored GPU acceleration of BV-PRE, Ring-GSW PRE schemes
and bootstrapping algorithm for BV-LWE schemes and showed that GPUs are indeed
capable of improving performance by more than an order of magnitude. Moreover,
from our experiments we found that GPUs are more effective in working with

larger ring dimensions. In future we would like to explore hardware acceleration of
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other FHE applications and primitives through our optimized and parallel software

library.
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