
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

TOWARDS PRACTICAL HOMOMORPHIC ENCRYPTION AND
EFFICIENT IMPLEMENTATION

by
Gyana R. Sahu

Cloud computing has gained significant traction over the past few years and its

application continues to soar as evident from its rapid adoption in various industries.

One of the major challenges involved in cloud computing services is the security

of sensitive information as cloud servers have been often found to be vulnerable to

snooping by malicious adversaries. Such data privacy concerns can be addressed to a

greater extent by enforcing cryptographic measures. Fully homomorphic encryption

(FHE), a special form of public key encryption has emerged as a primary tool in

deploying such cryptographic security assurances without sacrificing many of the

privileges of working with data in cleartext. In brief, a FHE scheme allows for

computation of arbitrary functions on encrypted data stored on cloud and retrieve

results in encrypted form.

In this dissertation, construction of various Proxy Re-encryption (PRE) schemes

based on FHE schemes are presented and their parameter selection leading to secure

instantiation discussed. PRE is a valuable cryptographic primitive that enables users

to exchange information in an untrusted environment via a proxy.

In the second line of work, bootstrapping algorithms for FHE schemes and

their efficient implementation in PALISADE lattice cryptography software library

is presented. Originally proposed by Gentry, bootstrapping plays a central role

in extending a somewhat homomorphic encryption (SHE) scheme towards full

homomorphism. Several novel techniques to extend bootstrapping algorithms for

larger secret key bounds, plaintext modulus and other FHE parameters are discussed.



Despite several advances and nearly a decade of research, efficiency of FHE

schemes still remains one of the primary concern in deploying them in real-life

applications. These concerns are addressed in the last line of work by demonstrating

practical implementation of PRE schemes and bootstrapping algorithms on various

heterogeneous GPGPU computing platforms. Since FHE schemes fall into the

category of “embarrassingly parallel” computing workloads, the massive computing

power of GPUs consisting of multiple processors can be leveraged to result in multiple

order of improvement in performance. To aid this effort, parallel NTT algorithms are

designed and various other optimizations suitable for GPU architectures discussed.



TOWARDS PRACTICAL HOMOMORPHIC ENCRYPTION AND
EFFICIENT IMPLEMENTATION

by
Gyana R. Sahu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2020



Copyright c© 2020 by Gyana R. Sahu

ALL RIGHTS RESERVED



APPROVAL PAGE

TOWARDS PRACTICAL HOMOMORPHIC ENCRYPTION AND
EFFICIENT IMPLEMENTATION

Gyana R. Sahu

Dr. Kurt Rohloff, Dissertation Advisor Date
Associate Professor of Computer Science, NJIT

Dr. Yuriy Polyakov, Committee Member Date
Associate Research Professor of Computer Science, NJIT

Dr. Qiang Tang, Committee Member Date
Assistant Professor of Computer Science, NJIT

Dr. Abdallah Khreishah, Committee Member Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Giovanni Di Crescenzo, Committee Member Date
Senior Research Scientist, Perspecta Labs, Basking Ridge, NJ



BIOGRAPHICAL SKETCH

Author: Gyana R. Sahu

Degree: Doctor of Philosophy

Date: August 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2020

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2015

• Bachelor of Technology in Electrical Engineering,
National Institute of Technology, Rourkela, 2010

Major: Computer Science

Presentations and Publications:

Polyakov, Y., Rohloff, K., Sahu, G., and Vaikuntanathan, V. (2017)., “Fast Proxy
Re-encryption for Publish/Subscribe Systems,”ACM Transactions on Privacy
and Security (TOPS), 20(4), 1-31.

Sahu, G., Rohloff, K., “Construction and Evaluation of Proxy Re-Encryption on
GSW FHE Scheme and other Primitives,” Submitted to IEEE Transactions
on Dependable and Secure Computing.

Sahu, G., Rohloff, K., “Accelerating Lattice based Proxy Re-Encryption Schemes on
GPUs,” Submitted to International Conference on Cryptology and Network
Security, 2020.

Sahu, G., Rohloff, K., “Efficient and Scalable Bootstrapping of BV-LWE FHE
Scheme,” Submitted to International Conference on Availability, Reliability
and Security, 2020.

iv



This dissertation is dedicated to my beloved parents,
Anupama and Kartikeswar Sahu for their endless love,
support and encouragement on this rollercoaster of a
journey.

To my late grandparents for instilling the value of
education and hard work in our family. Although they
are no longer in this world, their memories continue to
regulate my life.

v



ACKNOWLEDGMENT

Undertaking this PhD has been a truly life-changing experience for me and it would

not have been possible to do without the support and guidance that I received from

many people.

First of all, I want to thank my advisor, Professor Kurt Rohloff, for introducing

me to the exciting topic of FHE and most importantly, believing in me throughout

these years. Without his constant support and mentoring, this dissertation would

never be finished.

I would also like to thank Professor Yuriy Polyakov who has been a second

mentor to me and guided me in several aspects of my research. I am always surprised

by his intelligence and energy level and only wish I had more of his qualities. I am

really lucky to have the privilege to work with him.

I would like to thank late Professor Gerard Ryan who was also a fellow PhD

candidate of our research group. He always made himself available in helping me out

in software trouble shooting. On a serious note, your witty one liners and jokes will

always be missed.

I would also like to thank my dissertation committee members, Professor Qiang

Tang, Professor Abdallah Khreishah and Dr Giovanni Crescenzo for spending their

valuable time to read and improve my dissertation. I am grateful for their remarks

and suggestions.

I am also grateful to my friends and fellow research group members for

maintaining a friendly and cheerful atmosphere. In particular, I would like to thank

Hadi, Nishanth and Hammad for helping me out in preparing for qualifiers and other

helpful discussions.

Many thanks to multiple funding agencies in sponsoring my research. My

research was partially sponsored by the Defense Advanced Research Projects Agency

vi



(DARPA) and the Army Research Laboratory (ARL) under Contract Numbers

W911NF-15-C-0226, W911NF-15-C-0233, and W911NF-15-C-0236. Project also

partially sponsored by the National Security Agency under Grant H98230- 15-1-0274.

Last, but not the least, I want to thank my family and friends. Thank you for

your love, support and relentless efforts to understand my passion for research. Your

prayers for me have sustained me this far and I only wish it will continue to do so in

the future.

vii



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Gentry’s FHE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Early Attempts and Evolution of FHE Scheme . . . . . . . . . . . . . 10

1.2.1 The First Generation of FHE Schemes . . . . . . . . . . . . . . 11

1.2.2 The Second Generation of FHE Schemes . . . . . . . . . . . . 12

1.2.3 The Third Generation of FHE Schemes . . . . . . . . . . . . . 20

1.3 Resistance to Quantum Computer Attacks . . . . . . . . . . . . . . . 22

1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Server Aided Computations . . . . . . . . . . . . . . . . . . . . 23

1.4.2 Private Information Retrieval . . . . . . . . . . . . . . . . . . . 25

1.4.3 Multiparty Computations . . . . . . . . . . . . . . . . . . . . . 25

1.5 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5.1 Proxy Re-encryption . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.2 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.3 Implementation on NVIDIA GPUs . . . . . . . . . . . . . . . . 27

2 BACKGROUND AND PRELIMINARIES . . . . . . . . . . . . . . . . . . 28

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Computational Problems . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Gaussian Distributions . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Learning with Errors (LWE) . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Ring LWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Cyclotomic Polynomials . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 Plaintext Slots and Embedding . . . . . . . . . . . . . . . . . . 37

viii



TABLE OF CONTENTS
(Continued)

Chapter Page

2.4.4 Automorphisms Transforms . . . . . . . . . . . . . . . . . . . . 38

2.5 Syntax of Cryptographic Primitives . . . . . . . . . . . . . . . . . . . 38

3 PROXY RE-ENCRYPTION . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Proxy Re-Encryption . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Key-Switching and Automorphism . . . . . . . . . . . . . . . . 51

3.2 Proxy Re-Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Syntax of Non-Interactive PRE . . . . . . . . . . . . . . . . . . 54

3.2.3 IND-CPA Security of PRE Schemes . . . . . . . . . . . . . . . 54

3.3 PRE Cryptosystem with NTRU Key Generation and RLWE Key
Switching (NTRU-ABD-PRE) . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 NTRU-RLWE Encryption Scheme . . . . . . . . . . . . . . . . 57

3.3.2 Security of NTRU-RLWE Encryption Scheme . . . . . . . . . . 60

3.3.3 Single-Hop Re-Encryption Scheme . . . . . . . . . . . . . . . . 61

3.3.4 Extension to Multiple Re-Encryption Hops . . . . . . . . . . . 64

3.3.5 IND-CPA Security . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 PRE Cryptosystem with RLWE Key Generation and Key Switching
(BV-PRE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.1 The Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . 70

3.4.2 Proxy Re-Encryption Scheme . . . . . . . . . . . . . . . . . . . 72

3.4.3 IND-CPA Security . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 PRE Cryptosystem with LWE Key Switching (GSW-PRE) . . . . . . 76

3.5.1 Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . 76

3.5.2 Proxy Re-Encryption Scheme . . . . . . . . . . . . . . . . . . . 77

3.5.3 Correctness Constraint and Run-time Analysis . . . . . . . . . 78

3.5.4 Multi-hop GSW PRE . . . . . . . . . . . . . . . . . . . . . . . 79

ix



TABLE OF CONTENTS
(Continued)

Chapter Page

3.6 PRE Cryptosystem with RLWE Key Generation and Key Switching
(Ring-GSW PRE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6.1 Ring-GSW Encryption Scheme . . . . . . . . . . . . . . . . . . 79

3.6.2 Ring-GSW PRE Scheme . . . . . . . . . . . . . . . . . . . . . 80

3.6.3 Correctness Constraint Analysis . . . . . . . . . . . . . . . . . 81

3.6.4 Key-Switching and Automorphism . . . . . . . . . . . . . . . . 82

3.7 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.8 Software Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.8.1 Software Library Design . . . . . . . . . . . . . . . . . . . . . . 88

3.9 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.9.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.9.2 Single-Hop Re-Encryption . . . . . . . . . . . . . . . . . . . . 94

3.9.3 Multi-Hop Re-Encryption . . . . . . . . . . . . . . . . . . . . . 99

3.10 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.10.1 Enterprise Security . . . . . . . . . . . . . . . . . . . . . . . . 101

3.10.2 Embedded Support . . . . . . . . . . . . . . . . . . . . . . . . 102

3.10.3 Hybrid Deployment with AES . . . . . . . . . . . . . . . . . . 103

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 EFFICIENT AND SCALABLE BOOTSTAPPING OF BV-LWE FHE
SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3.1 Syntax of a Fully Homomorphic Encryption Scheme . . . . . . 114

4.4 BV-GSW FHE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4.1 Correctness Constraints . . . . . . . . . . . . . . . . . . . . . . 116

4.4.2 Modulus Switching . . . . . . . . . . . . . . . . . . . . . . . . 116

x



TABLE OF CONTENTS
(Continued)

Chapter Page

4.4.3 Key-Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.5 Ring-GSW Bootstrapping Scheme . . . . . . . . . . . . . . . . . . . . 118

4.5.1 Key-Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6 RLWE Bootstrapping Procedure . . . . . . . . . . . . . . . . . . . . . 122

4.6.1 Message Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6.2 Homomorphic Decryption with Ring-GSW FHE Scheme . . . . 124

4.6.3 RLWE Coefficient Extraction Procedure . . . . . . . . . . . . . 130

4.7 Gridstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.7.1 Message Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.8.1 Parameter Selection and Results . . . . . . . . . . . . . . . . . 138

4.9 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . 138

5 ACCELERATING LATTICE BASED PRIMITIVES ON GPUS . . . . . . 140

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.1.1 Motivation for Accelerating PRE Schemes on GPUs . . . . . . 141

5.1.2 Motivation for Accelerating Bootstrapping Procedures for LWE
FHE Scheme on GPUs . . . . . . . . . . . . . . . . . . . . . 144

5.2 Number Theoretic Transform and Bit-Decomposition . . . . . . . . . 146

5.2.1 Number Theoretic Transform . . . . . . . . . . . . . . . . . . . 146

5.2.2 Parallel NTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2.3 Barrett Modulo Reduction and Arbitrary Precision Support . . 149

5.2.4 Bit Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.3.1 PRE Parameter Selection . . . . . . . . . . . . . . . . . . . . . 154

5.3.2 BV-LWE Bootstrapping Parameter Selection . . . . . . . . . . 154

5.4 GPU Implementation and Results . . . . . . . . . . . . . . . . . . . . 155

xi



TABLE OF CONTENTS
(Continued)

Chapter Page

5.4.1 Software Implementation . . . . . . . . . . . . . . . . . . . . . 155

5.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 159

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xii



LIST OF TABLES

Table Page

3.1 Parameter Configuration and Key Size Comparison of LWE-based IND-
CPA-Secure PRE Schemes for Normalized Conditions . . . . . . . . . 49

3.2 Theoretical Complexity Comparison of LWE-based IND-CPA-Secure
PRE Schemes for Normalized Conditions . . . . . . . . . . . . . . . . 51

3.3 Minimum Bits Required to Represent Modulus q for Selections of Ring
Dimension n and Multiple Re-encryption Depths d at p = 2 and r = 1 86

3.4 Minimum Bits Required to Represent Modulus q for Selections of Ring
Dimension n and Multiple Re-encryption Depths d at p = 2 and r = 1 86

3.5 Dependence of Minimum Values of Ring Dimension n and the Number of
Bits k Required to Represent the Ciphertext Modulus q, on Plaintext
Modulus p and Key Switching Window r for Re-encryption Depth d of
Unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Dependence of Minimum Values of Ring Dimension n and the Number
of Bits k Required to Represent the Ciphertext Modulus q, on Re-
encryption Depth d and Key Switching Window r for BV-PRE at p = 2 87

3.7 Experimental Runtime Performance of Encryption, Decryption, and Re-
encryption Operations for Ring Dimension n at r=1, p=2, and d=1 . 95

3.8 Experimental Runtime Performance of GSW Proxy Re-Encryption on
CPU and GPU for Different LWE Dimension and Modulus . . . . . . 95

3.9 Experimental Runtime Performance of Ring-GSW Proxy Re-Encryption
for Different Ring Dimension, Modulus Bits, p = 2 and r = 1 . . . . . 96

3.10 Experimental Runtime Performance of Encryption, Decryption, and Re-
encryption Operations on Key Switching Window Size r at p=2 and
d=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.11 Experimental Runtime Performance of Encryption, Decryption, and Re-
encryption Operations on Plaintext Modulus p at r=1 and d=1 . . . . 97

3.12 Dependence of Performance Metrics for BV-PRE Encryption, Decryption,
and Re-encryption Operations on the Number of Re-encryption Hops d
at r=1 and p=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.1 Experimental Results Showing Bootstrapping Runtimes for BV-LWE
Scheme using Different Algorithms and Parameters . . . . . . . . . . 139

xiii



LIST OF TABLES
(Continued)

Table Page

5.1 Minimum Modulus Bits that Satisfies 128-bits of Security for BV-PRE
scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Minimum Modulus Bits that Satisfies 128-bits of Security for Ring-GSW-
PRE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 Configuration and Features of GPU with their Corresponding CPU used
for Evaluation of PRE Schemes . . . . . . . . . . . . . . . . . . . . . . 156

5.4 Configuration and Features of GPU with their Corresponding CPU used
for Evaluation of BV-LWE Bootstrapping Procedure . . . . . . . . . . 156

5.5 Experimental Runtime Performance of Encryption, Decryption, and Re-
encryption Operation for Ring Dimension n at r = 1, p = 5, and
128-bits of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.6 Experimental Runtime Performance of Encryption, Decryption, and Re-
encryption Operation for Ring Dimension n at r = 1, p = 5, and
128-bits of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.7 Experimental Runtime Performance of BV-LWE Bootstrapping Algorithm
1 for Varying Ring Dimension, N , Relinearization Factor, r and GPUs 161

xiv



LIST OF FIGURES

Figure Page

2.1 Game describing IND-CPA security. . . . . . . . . . . . . . . . . . . . . 40

3.1 Proxy Re-Encryption functional key management and interaction workflow. 53

3.2 Comparison of BV-PRE and Ring-GSW-PRE scheme on multi-hop
capability, p = 5, r = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3 Comparison of BV-PRE and Ring-GSW-PRE scheme on depth of compu-
tation after re-encryption, p = 5, r = 1. . . . . . . . . . . . . . . . . . 100

4.1 Figure shows a multi dimensional grid representation of an integer, ζ = 3,
q = nζ . k0-ptr, k1-ptr and k2-ptr are ciphertexts capturing different
grid dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Figure demonstrating parallel implementation of the i-th stage of NTT
on GPU, N = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Comparison of CPU and GPU runtimes of NTT algorithm. . . . . . . . 148

5.3 GPU runtimes of NTT algorithm with varying ring dimension and moduli, t.150

5.4 GPU vs CPU runtimes of bit decomposing polynomial ring with varying
ring dimension, N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xv



CHAPTER 1

INTRODUCTION

The field of cryptology revolves around the study of techniques for preserving the

privacy of sensitive information in the presence of adversaries. The early days

of cryptology primarily focused on confidentiality of information by converting a

message (or plaintext) into an “unintelligible” form by the process of encryption

and converting them back by decryption. While this was sufficient for establishing

secure communication links, researchers soon realized the need for other advanced

cryptographic primitives which could enable computation of functions on confidential

inputs between mutually distrusting parties while ensuring correctness of the outputs.

Among the many possible solutions to this problem, fully homomorphic encryption

is probably the simplest (conceptually) which can be applied to a wide variety of

applications.

The notion of fully homomorphic encryption (FHE) was introduced by Rivest et

al. [RAD+78] in 1978 under the name “privacy homomorphism”. It was postulated

that by using a special form of encryption one can outsource computations while

keeping the data secure under the security constraints governed by the underlying

encryption scheme. As an example, the authors considered a loan company interested

in storing encrypted records with a commercial time-sharing service. When required

to fetch some meaningful information the time-sharing system, using the properties

of privacy homomorphism, computes on encrypted data stored on private data banks

and sends back ciphertext which can only be decrypted by the loan company. This

flexible paradigm of computation restricts the time-sharing service from accessing

sensitive information while retaining the capability to extract desired information

via homomorphic computations. To support their hypothesis the authors provided

1



examples of privacy homomorphisms exhibited by basic RSA encryption scheme with

the caveat that instantiations of such scheme would be cryptographically weak and can

be easily broken by chosen plaintext attack. Since construction of such an encryption

scheme was not known at the time, its existence was left as an open problem.

In the following years, multiple encryption schemes have been presented which

were endowed with homomorphic properties to some extent or in other words were

partially homomorphic in nature however, achieving full homomorphism seemed to

be a much difficult problem. To understand the significance of homomorphisms

in cryptosystems and the role they play in cryptographic applications, we need

to look into the abstract definition of homomorphic encryption. More formally,

homomorphic encryption is a class of encryption scheme that allows elementary

operations of addition and multiplication on encrypted messages without the necessity

of decryption. Given such an encryption scheme (ΠHE) with encryption represented as

a function E (·) then, using the homomorphic properties we can produce addition and

multiplication as fadd (E (m0) , E (m1)) 7→ E (m0 +m1) and fmult (E (m0) , E (m1)) 7→

E (m0 ∗m1), respectively. Now, depending on availability and limitation on the

number of application of the operator, the encryption scheme (ΠHE) can be classified

as: partially, somewhat (SHE) or fully homomorphic encryption (FHE) scheme.

Since the early days of public key cryptography, most of the encryption

schemes were partially homomorphic in nature as they only allowed homomorphic

multiplication or only homomorphic addition and further in some cases, only a limited

number of homomorphic operations could potentially be applied. For example, the

well known (unpadded) RSA cryptosystem is partially homomorphic in nature as they

only support homomorphic multiplication of ciphertexts. ElGamal [ElG85] encryption

scheme is another cryptosystem which supports such homomorphic multiplications.

The first semantically secure additive homomorphic encryption scheme was proposed

by Goldwasser and Micali [GM82] which enables addition over Z2 or XOR operations.

2



Another example of additive homomorphic encryption scheme is the well known

Paillier cryptosystem [Pai99] which supports both addition of ciphertexts and

scalar multiplication on ciphertexts. It can be noted that even in the absence of

multiplication operator many privacy preserving applications have been developed

on Paillier cryptosystem such as biometrics with fingerprints and face recognition

[EHKM11, BBC+10, EFG+09, SSW09], medical data processing [YBG+15], and

different types of user matching applications [ZZZ+13, GR15]. The first scheme

to support both homomorphic addition and multiplication is the Boneh-Goh-Nissim

cryptosystem [BGN05] which allows an arbitrary number of additions along with a

single multiply without growing the ciphertext size.

A major limitation of these partially homomorphic encryption scheme is their

inability to take part in higher order polynomial functions. In some trivial cases

(e.g., computation of squared Euclidean distances using Paillier encryption scheme)

partially homomorphic encryption scheme can still be used at the expense of

pre-computing certain inputs however, such solutions require greater coordination

between the data providers and further efficiency can easily be degraded because

of bottlenecks in network communication. A better and more flexible choice in

such scenario is a somewhat homomorphic encryption scheme. In such encryption

schemes, a finite number of addition and multiplication operators can be applied

on encrypted inputs. A class of schemes known as “Polly Cracker” [LdVMPT09,

AFFP11] introduced in the early 1990s were the first to be considered as somewhat

homomorphic encryption scheme. These schemes are based on the hardness of

computing remainders modulo an ideal over multivariate polynomial rings and use

Gröbner bases as trapdoor information. However, almost all of these schemes have

been broken and establishing security of these encryption schemes is a long-standing

open research problem. Furthermore, Polly Cracker encryption schemes suffered from

3



the problem of ciphertext expansion since homomorphic operations led to exponential

growth in ciphertext size.

In his breakthrough seminal work, Gentry [G+09] presented the first plausible

construction of a fully homomorphic encryption (FHE) scheme based on the ideal

coset problem over ideal lattices that supports the evaluation of an arbitrary number

of both additions and multiplications. Gentry’s construction initially begins with a

somewhat homomorphic encryption (SHE) scheme that works with a limited number

of homomorphic operations or in other words the scheme is capable of evaluating

low degree polynomials homomorphically. To achieve full homomorphism, Gentry’s

blueprint introduced an ingenious step of bootstrapping which entails running the

decryption circuit on ciphertext homomorphically using encrypted secret keys. In

the following section, we give an outline on the first Fully homomorphic encryption

scheme (FHE) introduced by Gentry.

1.1 Gentry’s FHE Scheme

Gentry’s construction of FHE scheme starts off with the key realization that the

scheme should have a decryption algorithm of low circuit complexity and further the

decryption algorithm should have circuit complexity in NC (problems that can be

efficiently solved in poly-logarithmic time on a parallel computer). The reason behind

this realization is that for a scheme to be bootstrappable homomorphic capacity

of the scheme should be higher than the depth of decryption circuit or in other

words the decryption algorithm should have a shallow depth. This immediately

rules out approaches taken by other traditional encryption schemes based on modular

exponentiation or pairing. In particular, the underlying mathematical object chosen

to create a SHE scheme are ideal lattices as they inherently possess additive and

multiplicative homomorphism properties. An ideal I is simply a subset of ring R

(algebraic objects closed under addition and multiplication). It is suffixed with the

4



term “lattices” to emphasize the fact that security of the SHE scheme is based on hard

problems over lattices. Concretely, in his construction Gentry used the polynomial

quotient ring R = Z[x]/ (f (x)) as ideal lattices where f (x) is a monic polynomial of

degree n.

Gentry’s scheme uses “good” basis Bsk
J as secret keys which are relatively short

and nearly orthogonal vectors. Public key consists of some “bad” basis Bpk
J of an

ideal lattice J along with a fixed basis BI of an ideal lattice I such that I and J

are relatively prime. To encrypt a message m in plaintext space P = {0, 1}, the

encrypter first adds a random ideal i ∈ I and sends (m + i) mod Bpk
J as ciphertext.

A correctly formed ciphertext of the scheme has the form c = m + i + j for i ∈ I

and j ∈ J . Since ciphertext c is an ideal lattice represented as a residue polynomial,

coefficients of c can alternatively be represented as a coefficient vector (c0, · · · , cn−1).

The polynomial term m + i is considered as a “noise” parameter and generated

from a narrow distribution D such that the ciphertext c belongs to the ring R

(I + J) with respect to Bsk
J and not to individual ideals I and J . Furthermore,

after the modulo reduction with the public basis Bpk
J this polynomial term m + i is

indistinguishable from random uniform distribution as per the ideal coset problem

(ICP). For decryption, one simply removes the ideal j with the help of secret key

Bsk
J . In the concrete instantiation, the secret key is again a polynomial vskJ ∈ J−1 and

decryption is shown as m′ = c− bvskJ × ce mod BI .

Homomorphic addition and multiplication defined on ciphertexts work correctly

as they do not change the essential form of ideals. To understand this further, we

fix the ideal lattice as even (I = 2) and now, ciphertext can be shown in a simple

form c = m + 2i. Homomorphic addition of two ciphertexts, c0 (= m0 + 2i0) and

c1 (= m1 + 2i1) in this scheme is quite intuitive as the resultant ciphertext is in the

form cadd = m0 + m1 + 2 (i0 + i1). Similarly, homomorphic multiplication of the two

ciphertexts results in a polynomial cmult = m0 ·m1 + 2 (i0m1 + i1m0 + 2i0i1). We can

5



observe that the error term increases by small amounts in the case of homomorphic

addition however, for homomorphic multiplication the error increases quadratically.

Decryption of ciphertext still recovers the plaintext successfully as long as this error

is within the parallelepiped formed by the basis of secret key, i.e., P
(
Bsk
J

)
. In

the absence of a bootstrapping procedure, this implies that a fixed depth function

(dominated by number of multiplications) can only be evaluated with this scheme so

that the decryption error always lies within some predetermined radius.

In a clever move, Gentry then transforms this scheme with limited homomorphism

into a fully homomorphic scheme by introducing a bootstrapping procedure. However,

running a bootstrapping procedure or homomorphic decryption of a ciphertext in the

initial scheme is not possible because of the requirement of a large circuit depth. This

problem specifically arises due to multiplication and rounding of two k bit integers

which take atleast O (log k) depth of computation. To bring down the decryption

complexity under the homomorphic capacity of the initial scheme, Gentry introduced

a squashing step of the decryption circuit. In this step, he places a hint τ in the public

key which consists of a set of vectors that has a (secret) sparse subset of vectors which

adds up to the secret key, vskJ . Secret key in the sparse vector is considered to be

secure under the computational hardness assumption of sparse subset sum problem

(SSSP). To re-encrypt a ciphertext, first it is expanded using the vectors from the

hint τ . Essentially, the expansion step pre-processes a ciphertext so that it can

be decrypted by a shallower circuit. This expanded ciphertext is finally decrypted

homomorphically in the squashed circuit simply by adding up appropriate indices of

expanded ciphertext. This refreshing procedure is considered successful if the noise

in the final ciphertext is lower than that in the initial ciphertext.

Implementations: Variants of Gentry’s theoretical FHE scheme were imple-

mented by Smart and Vercauteren [SV10] and Gentry and Halevi [GH11]. In [SV10]

Smart and Vercauteren present a simplified version of Gentry’s SHE scheme with

6



greatly reduced key sizes and ciphertext sizes. In their construction of SHE scheme,

they replace the ideal lattices with principal prime ideals or algebraic number fields.

These prime ideals can still be represented as n dimensional Z basis and hence, they

base the semantic security of their scheme on computational hardness of Polynomial

Coset Problem (PCP), a problem very similar to Ideal Coset Problem (ICP). Most

of the times these prime ideals are kept as pair of integers which allows to represent

the ciphertext and keys in a compact form. Secret key of the scheme consists of

an inverse of a small generator of the principal prime ideal while the public key

is an unique root of an integer polynomial corresponding to the generator ideal.

Encryption of an plaintext P ∈ {0, 1} is simply the evaluation of sum polynomial of a

randomized low norm polynomial and binary encoded polynomial at the value given

by public key. Further, homomorphic addition and multiplication of ciphertexts are

associated with isomorphism properties of residue field resulting from factorization

of prime ideal irreducible polynomial. As a result, homomorphic operations simply

map to addition and multiplication of integers in finite field. Next, following Gentry’s

blueprint the authors describe a bootstrapping procedure on the squashed decryption

circuit. However, their estimate of depth of squashed decryption circuit for some

reported lattice dimension reveals that bootstrapabilty cannot be achieved because

of insufficient homomorphic capacity.

One of the drawback of this SHE scheme is that the key generation algorithm

is associated with a very large computational overhead because of the requirement

of primality testing on a large number of candidates. Further, the lattice dimensions

selected in their work estimates prime ideals with very high bit width modulus.

Because of these two reasons, they were unable to generate keys in dimensions

greater than 2048. Moreover, the impractical runtimes associated with key generation

prevents their scheme to support bootstrapping as their estimate suggests to use

lattices of dimension at least n = 227.

7



In a followup work [GH11], Gentry and Halevi describe a more practical variant

of Gentry’s fully homomorphic encryption scheme. A number of optimization steps

were proposed in their work to reduce the key-generation complexity thereby, making

it possible for the scheme to implement bootstrapping functionality. Similar to the

Smart and Vercauteren [SV10] approach, construction of this scheme retains the

usage of principal ideal lattices in the ring of polynomials, however they remove

the requirement of a prime determinant lattice. The key generation phase consists of

the following steps:

KeyGen: Sample a random vector ~v of dimension n associated with a rotational

basis V (rows of the basis are negacyclic rotations of ~v). The vector ~v is implicitly

associated with the polynomial v(x) mod fn(x) where fn(x) is a monic polynomial of

the form x2k+1. To compute the secret key a scaled inverse of v(x) mod fn(x) = w(x)

is computed such that w(x)×v(x) = d where d is the determinant of the lattice L (V ).

Although the polynomial w(x) can be found by extended Euclidean-GCD algorithm,

the authors describe a more efficient procedure for computing the inverse polynomial

via FFTs with O (n log n) computational complexity. The secret key is considered to

be correctly formed if the Hermite normal form of V satisfies a special form, namely

all except the leftmost column equal to the identity matrix. This further implies

that the lattice L (V ) contains a vector of the form 〈−r, 1, 0, · · · , 0〉. Secret key is

formed by the pair (~v, ~w) however, it suffices to store only a single odd coefficient of

~w. Similarly, the public is composed of the Hermite normal form V but only a pair

of integers d, r are kept as its representative.

Encryption: To encrypt a single bit b ∈ {0, 1}, we choose a random binary noise

vector ~u and set ~a = 2~u + b · ~e1. The ciphertext is then formed by the evaluation

of polynomial a(x) at the point r. Since evaluation of polynomial is expensive,

the authors discuss a batching procedure where k plaintexts can be encrypted

simultaneously in time O
(√

kn
)

.

8



Decryption: To decrypt a ciphertext c ∈ Zd we compute the plaintext bit, b =

[c · wi]d mod 2.

Recryption: Recryption procedure refreshes a “dirty” ciphertext by reducing the

expanded noise incurred due to homomorphic computations. This procedure stems

from Gentry’s proposed squashing technique i.e., to modify the decryption circuit

of the SHE scheme so that bootstrapping can be performed with a shallower

depth. To facilitate bootstrapping, a hint is added to the public key which contains

an instance of the sparse subset sum problem. This set consists of elements

{xi ∈ Zd : i = 1, 2, · · · , S} such that there exists a very sparse subset of xi’s that

sums up to the secret key w. The characteristic vector associated with the sparse

subset is a bit vector ~σ = 〈σ1, · · · , σS〉 such that
∑

i σixi = w mod d. To begin the

recryption procedure, a ciphertext c ∈ Zd is first combined with the xi’s to generate

yi’s such that yi = 〈cxi〉. Next, the homomorphic decryption is executed as per the

modified equation:

Dc,d =

[
S∑
i=1

σiyi

]
d

mod 2 =

(
S∑
i=1

σiyi

)
− d ·

⌈
S∑
i=1

σi
yi
d

⌋

Implementation of the FHE scheme was carried out on a server grade platform

with lattice dimensions ranging from n = 512 to n = 32768. Since the parameter

selected for these dimensions estimated integers with bit size much larger than

64-bits, the implementation relied on GNU GMP library and Shoup’s NTL library.

Public key size for the select parameters and lattice dimensions is quite large on

account of large subset sum bootstrapping keys ranging from 70 MBs to 2.3 GBs.

Further, performance of the bootstrapping or recryption procedure is found to be

quite unsatisfactory with runtimes ranging from 30 second for small dimension to 30

minutes for large dimensions.

9



1.2 Early Attempts and Evolution of FHE Scheme

Gentry’s plausible construction of FHE scheme and it’s concrete implementations

galvanized the researchers of cryptology community to search for other efficient

constructions. Over the past decade a number of FHE schemes have been proposed

and considerable work has been done to make them practical. Starting from Gentry’s

work these FHE schemes are sometimes classified into three generations of literature.

The first generation comprises of FHE schemes that directly evolved from Gentry’s

theoretical construction of FHE scheme and ideal lattices. These schemes include the

already discussed Smart-Vercauteren implementation, Gentry-Halevi implementation

and the integer arithmetic based simpler FHE scheme of van Dijk et al. [DGHV10].

FHE schemes of first generation were found to be rather impractical for implemen-

tation owing to their larger bit lengths and rapidly growing noise. Nonetheless, these

schemes gave an insightful understanding into concrete construction of FHE schemes

and paved the way for creation of more efficient constructions and optimizations. The

second generation of FHE schemes [LTV13, BLLN13, BV11b, BV11a, BGV14] were

based on improved algebraic structures and stronger hardness assumptions which

translated into better noise controlling techniques and higher efficiency. A common

feature of these schemes is that they deviated from Gentry’s squashing procedure

and eliminated the sparse subset sum assumption. The third generation is mostly

attributed to GSW [GSW13] FHE scheme and it’s RLWE variant Ring-GSW FHE

scheme [KGV16] which further improved the noise growth nature by reducing it to

a asymmetric nature. We further augment the third generation with a number of

subsequent LWE based FHE schemes [DM15, GINX16, CGGI16] which leveraged

the asymmetric noise growth property of GSW FHE scheme to enable bootstrapping

procedure in a pragmatic manner. In the next couple of subsections we present a

brief overview of FHE schemes of these three generations.

10



1.2.1 The First Generation of FHE Schemes

In [DGHV10], van Dijk et al. presented a FHE scheme over integers using elementary

modular arithmetic. The scheme was conceptually simpler, because it operated on

integers instead of ideal lattices over polynomial rings. It was shown that security

of the scheme can be reduced to hardness assumption of approximate-gcd problem,

a problem introduced by Howgrave-Graham [HG01]. Informally, an instance of this

problem consists of t random large integers {x1, · · · , xt} where xi = pqi + ri and

recovering the common multiple p is considered to be a hard problem. The scheme

was presented with a message space P = {0, 1} but can be easily extended to

support a larger message space. For a security parameter λ, the encryption scheme

is parameterized by integers η (λ) , γ (λ) , ρ (λ) , τ (λ). The scheme is then composed

of the following algorithms:

KeyGen: An odd integer, p of η-bit is generated and set as the secret key. Public key

is generated by setting xi←$ pqi+ ri where qi and ri are sampled as qi←$Z∩ [0, 2γ/p)

and ri←$Z∩ (−2ρ, 2ρ). Public key, pk consists of the set of integers 〈x0, x1, · · · , xτ 〉.

Encrypt: To encrypt a bit b ∈ {0, 1}, we choose a random subset S ⊆ {1, 2, · · · , τ}

and a random integer r and set the encryption as c←
[
b+ 2r + 2

∑
i∈S xi

]
.

Decrypt: Decryptpion results in bit b′ = (c mod p) mod 2 = (c mod 2) ⊕

(bc/pe mod 2).

Homomorphic addition and multiplication of ciphertexts simply map to corre-

sponding integer addition and multiplication in modulo-x0. It was remarked that

multiplication of ciphertexts roughly doubles the bit length of noise and may result in

decryption error even after a single evaluation. To remedy this problem, an alternative

procedure was explained where noise grows in small amounts using a sequence of

modular reductions. Finally, following Gentry’s squashing strategy the public key

is expanded with subset sum secret key to reduce the decryption circuit depth. It

11



was shown theoretically that this step allows to “post-process” or decrypt ciphertext

homomorphically thus achieving bootstrapability.

1.2.2 The Second Generation of FHE Schemes

FHE schemes of the second generation brought in some radical changes and introduced

many optimization techniques. These schemes were based on hardness assumption

of well established lattice problem, LWE [Reg09] and it’s variant RLWE [LPR10].

In addition, the second generation also comprises of FHE schemes such as LTV

[LTV13] and YASHE [BLLN13] which were based on the NTRU problem [HPS98]

and arithmetic of cyclotomic polynomials. In the next few subsections, we present a

brief overview of FHE schemes based on NTRU problem and LWE problem.

NTRU FHE Schemes NTRU public key cryptosystems came into existence with

the work of Hoffstein, Pipher and Silverman [HPS98]. The main advantages of

NTRU cryptosystem over other classical encryption schemes were it’s moderate

key sizes, excellent asymptotic performance owing to fast FFT based polynomial

operations in Zq[X]/ (Xn − 1) and conjectured resistance to quantum computers.

Stehlé and Steinfeld [SS11] later showed a modified NTRU encryption scheme that is

considered to be IND-CPA secure. Specifically, they replaced the polynomial ring with

R = Zq[X]/
(
X2k + 1

)
and suggested the secret key to be sampled from a discrete

Gaussian with very large standard deviation (≈ q1/2) so that public key distribution

is statistically close to uniform. However, such modification leaves their scheme with

little or no homomorphic capabilities. López, Tromer and Vaikuntanathan [LTV13]

showed a transformation of Stehlé and Steinfeld NTRU scheme to obtain a fully

homomorphic encryption scheme by basing security on decisional small polynomial

ratio (DSPR) assumption in addition to the RLWE security assumption. Another

important property of this scheme is that the LTV FHE scheme can evaluate

homomorphic functions on ciphertexts encrypted under a number of different and

12



independently generated keys making the scheme mutikey fully homomorphic. Other

notable optimizations shown in this work were the application of modulus switching

and key-switching techniques borrowed from previous literatures [BGV14, BV11b].

In a subsequent work, [BLLN13] Bos et al. presented another NTRU modified scheme

dubbed as YASHE where the authors removed the non-standard DSPR security

assumption by adopting polynomial tensoring techniques. The polynomial tensoring

technique, first introduced in the work of Brakerski [Bra12], was used to construct a

scale invariant FHE scheme similar to BGV FHE scheme. In brief, scale variance is a

sort of noise management technique which allows to keep a single modulus as opposed

to a ladder of moduli found in the parameters of BGV [BGV14] FHE scheme. We

briefly summarize LTV [LTV13] and YASHE [BLLN13] FHE schemes as follows:

LTV FHE scheme The scheme differs from the original NTRU encryption scheme

[HPS98] in the usage of polynomial rings of the form R = Z[X]/〈Xn + 1〉, where n is

a power of two. The scheme is parameterized by a security factor λ as follows:

• lattice dimension, n = n (λ).

• plaintext modulus p.

• a prime ciphertext modulus q = q (λ) such that p, q are relatively prime.

• a B-bounded distribution χ over R, B � q.

LTV encryption scheme comprises of the following operations:

KeyGen: We sample polynomials f ′, g←$χ and set f = pf ′+1 so that f ≡ 1 mod p.

Polynomial f ′ should be sampled in a way so that f−1 exists and if this is not the

case then we re-sample f ′. Finally we set secret key, sk and public key, pk as pk =

h = pgf−1 ∈ Rq and sk = f ∈ R.

Encrypt: Plaintext space of the scheme is P ∈ Rp which supports encryption of

integers in Zp. To encrypt a message m ∈ Rp we sample polynomials s, e ← χ and

output the ciphertext c = hs+ pe+m ∈ Rq.

13



Decrypt: To decrypt the ciphertext c with secret key f we compute m′ as follows

m′ = (fc mod q) mod p.

Homomorphic evaluations of addition and multiplication directly map to

respective operations in cyclotomic polynomial domain. Since multiplication of

polynomials leads to quadratic growth in noise it is generally recommended to keep

a ladder of moduli (of length equal to depth D) and perform modulus switching

after each homomorphic evaluation or levels. Another problem associated with

multiplication is that the resulting ciphertext can no longer be decrypted with the

original secret key. This can be seen from the following equation.

〈c1, s〉 · 〈c2, s〉 = 〈c1 ⊗ c2, s⊗ s〉 = 〈cmult, s⊗ s〉

From the above equation, it is the clear that the ciphertext resulting from homomorphic

multiplication can only be decrypted with the tensored secret key. To normalize the

ciphertext so that it can be decrypted with the original secret key an invocation of

key switching procedure is required. Key switching procedure is aided by augmenting

the public key with an evaluation key generated from original secret key and tensored

secret key. Further, in a leveled LTV FHE scheme these key switching hints should

be generated for each level separately.

YASHE FHE Scheme Construction of YASHE [BLLN13] FHE scheme is very

similar to LTV scheme but mainly differs by the usage of a wide discrete Gaussian

χkey to avoid DSPR assumption and polynomial tensoring technique for homomorphic

multiplication. In the following, we present a brief overview of the construction of

YASHE scheme.

The scheme operates on a cyclotomic ring R = Z[X]/Φm (X), ciphertext

modulus q and plaintext modulus p with 1 < p < q. The scheme use two different

14



discrete Gaussians χkey and χerr defined on ring R to generate keys and errors

respectively.

KeyGen: Key generation is very similar to the LTV KeyGen procedure and proceeds

as follows: We sample f ′, g as f ′, g←$χkey and set f = pf ′ + 1. Polynomial f should

be invertible or else we resample polynomial f ′. We compute f−1 ∈ Rq and set

h = pgf−1. Set public key pk = h and secret key sk = f .

Encrypt: Encryption is a RLWE adaptation of Regev’s encryption scheme as shown

in [Bra12, FV12]. To encrypt a message m ∈ Rp we sample polynomials s, e←$χerr

and output the ciphertext c as follows:

c = [bq/pc (m+ e+ hs)]

Decrypt: To recover message m′ we compute :

m′ =

[⌊
p

q
· [fc]q

⌉]
p

where bxe rounds x to the nearest integer.

Homomorphic addition of two ciphertexts c1 and c2 is given by cadd = c1 + c2.

Homomorphic multiplication of ciphertexts is conducted with the help of evaluation

key, evk which is generated as follows:

Sample e, s←$χ
`3w,q
err

γ =
[
f−1Pw,q (Dw,q (f)⊗Dw,q (f)) + e+ h · s

]
q
∈ R`3w,q , Set evk = γ

Here, Pw,q (·) and Dw,q (·) are the generalized base-w PowersOfTwo and bit

decomposition functions respectively. More in detail, for a polynomial x ∈ Rq base-w

bit decomposition outputs a vector 〈x0, x1, · · · , x`w,q−1〉 whereas PowersOfTwo on the

same polynomial returns a vector 〈xw0, xw1, · · · , x`w,q−1〉 such that 〈Dw,q (x) , Pw,q (y)〉 =

15



xy mod q and `w,q = blogw qc+2. Using these relinearization operators homomorphic

multiplication of ciphertexts c1 and c2 can be shown as follows:

cmult =

[⌊
t

q
Pw,q (c1)⊗ Pw,q (c2)

⌉]
q

∈ R`w,q

The final step is to remove the tensored secret key by performing key-switching on

this intermediate ciphertext as follows:

cmult = KeySwitch (cmult, evk)

Indeed, the polynomial tensoring technique removes the additional DSPR

assumption by slowing down the noise growth however, this modified scheme ceases

to be multi-key homomorphic. Furthermore, the size of evaluation key is increased

by a polynomial factor when compared with key sizes of LTV FHE scheme.

RLWE FHE schemes Cryptographic schemes based on NTRU assumption were

considered to be provably secure until Cheon et al. [CJL16] and Albrecht et al.

[ABD16] showed that NTRUEncrypt can be attacked by subfield lattice attacks which

are exploited because of improper parameter set generation. Subfield lattice attack

work by repeatedly reducing the size of the ring and solve the Shortest Vector Problem

(SVP) for n = 512 and lower. It is further conjectured that the same subexponential

attack can break the security of other NTRU FHE schemes such as LTV [LTV13] and

YASHE [BLLN13] FHE schemes for weak choices of parameters. On the other hand

FHE schemes which are purely based on LWE/RLWE security assumption are still

considered to be secure and to the best of our knowledge no attack that breaks it in

subexponential time has been reported in literature.

The first public key encryption scheme based on the learning with errors (LWE)

assumption was introduced by Regev [Reg09]. It was shown from the worst-case

16



to average-case reductions of Regev [Reg09] and Peikert [Pei09] that solving LWE

problem is at least as hard as finding short vectors in any lattice. Soon after

Gentry’s breakthrough work on FHE, Brakerski and Vaikuntanathan in a series of

work showed the construction of simpler FHE schemes [BV11a, BV11b] based on

the LWE assumption and it’s more efficient alternative, RLWE assumption. In

these works, many optimization techniques, such as dimension reduction, modulus

switching and most importantly relinearization operations, were discussed which

allows succint representation of ciphertext with smaller noise while also maintaining

the cryptographic strength. In another work, [BGV14] Brakerski et al. showed an

improvement of the BV [BV11b] FHE scheme by introducing a noise controlling

technique, namely, a leveled HE approach which allows to keep the noise level steady

by shedding down bit length of modulus. Typically, in a leveled SHE scheme with

a-priori bounded depth D instead of keeping a single ciphertext modulus q we store a

ladder of gradually decreasing moduli qi such that q =
∏D+1

i=1 qi. After multiplication

of two mod-q ciphertexts we switch to a smaller modulus by an application of modulus

switching procedure and the resultant ciphertext cmult is produced w.r.t q =
∏D

i=1 qi,

i.e., we drop the largest modulus. When compared with the conventional BV [BV11b]

FHE scheme where the noise grows quadratically for each level (B2D , B- bounded

noise) the leveled approach keeps the noise magnitude roughly the same (≈ B)

assuming that we scale down by B after each homomorphic multiplication. In a

related work, Brakerski [Bra12] presented a scale invariant FHE scheme which further

removes the requirement of storing a ladder of moduli and hence, eliminates the need

of modulus switching. It turns out that in this scheme evaluation of a D-depth

function leads to a conservative noise growth of B · poly (n)D. We briefly summarize

the construction of these LWE based FHE schemes in the next few subsections.

BV-LWE FHE scheme: In [BV11a], Brakerski and Vaikuntanathan presented a

FHE scheme solely based on LWE assumption. The encryption scheme is roughly

17



similar to Regev’s [Reg09] scheme but uses additional tricks to obtain homomorphism

properties. In the symmetric-key scheme, a secret key is simply a n-dimensional

short vector ~s ∈ Znq . To encrypt a bit m ∈ {0, 1}, we choose a random uniform

vector ~a ∈ Znq and a short error value e ∈ Z and set the encryption as c =

(~a, b = 〈~a,~s〉+ 2e+m) ∈ Znq × Zq. Homomorphic addition of two ciphertexts c1

and c2 is given by cadd = (~a1 + ~a2, b1 + b2)q. However, homomorphic multiplication

leads to quadratic expression on the secret key , ~s. At this stage, we can relinearize

the quadratic expression by publishing roughly O (n2) encryptions of individual terms

of ~s vector. In summary, we can see that the [BV11a] scheme is a conceptually simple

scheme but suffers from inefficient quadratic runtimes and larger memory overheads

for storing the evaluation keys.

BGV FHE scheme: Similar to LTV FHE scheme, BGV [BV11b, BGV14] FHE

scheme uses a polynomial ring of the form R = Zq[X]/〈Φm (X)〉 to define the

cryptosystem. For the most efficient implementations, a cyclotomic polynomial of

the form Φm (X) = Xm/2 + 1 is used where m is a power of two. However, arbitrary

cyclotomic polynomials (m is arbitrary) have also been used to define batching or

packing multiple messages in a ring polynomial. The basic parameters of the scheme

are as follows:

• ring dimension, n.

• plaintext modulus p.

• ciphertext modulus q =
∏L+1

i=1 qi.

• discrete Gaussian error distribution χerr with bound Berr.

Message space for the scheme consists of M ∈ Rp. The scheme consists of the

following operations:

18



KeyGen: Sample polynomials a←$URq and s, e←$χerr. Compute b = a·s+pe ∈ Rq.

Set the public key pk and private key sk:

sk = s ∈ R, pk = (a, b) ∈ R2
q

Encrypt: To encrypt a message m ∈ Rp we sample polynomials v, e0, e1←$χerr.

Compute the ciphertext c = (c0, c1) ∈ R2
q :

c0 = b · v + pe0 +m ∈ Rq, c1 = a · v + pe1 ∈ Rq

Decrypt: Compute the ciphertext error t = c0−s ·c1 ∈ Rq. Output m′ = t ( mod p).

The scheme is correct as long as there is no wrap-around modulo q. To

guarantee correct decryption of the ciphertext we should ensure q > 6
√
npB2

err.

Homomorphic addition is performed by addition of corresponding polynomials in

ciphertexts. Homomorphic multiplication operation is however more cumbersome

and increases the number of ring elements in a ciphertext. Specifically, result

of multiplication of two ciphertexts (c0, c1) and (c′0, c
′
1) is given by the ciphertext

cmult = (cmult,0, cmult,1, cmult,2) where cmult,0 = c0c
′
0, cmult,1 = c0c

′
1 + c′0c1, cmult,2 = c1c

′
1.

This ciphertext can be decrypted by computing (cmult,0 + cmult,1s+ cmult,2s
2) mod p.

Alternatively, using relinearization we can reduce the ciphertext back to two ring

elements. To aid relinearization, we publish evaluation keys as follows:

hi =
(
ai, bi = − (ais+ pei) + 2is2

)
for i = 0, · · · , dlog qe − 1

where ai←$Rq and ei←$χerr are chosen independently for every i. Finally,

relinearization proceeds as follows to transform a ciphertext cmult = (c0, c1, c2) to

19



cmult =
(
crelin

0 , crelin
1

)
:

crelin
1 = c1 +

dlog qe−1∑
i=0

c2,iai , crelin
0 = c0 +

dlog qe−1∑
i=0

c2,ibi

where c∗,i represents the i-th bit decomposition of polynomial c∗

1.2.3 The Third Generation of FHE Schemes

FHE scheme of third generation mainly refers to the work by Gentry et al. [GSW13]

which describes another homomorphic encryption scheme based on the learning with

errors (LWE) problem. The greatest benefit of GSW FHE scheme is that the noise in

this scheme grows asymmetrically which removes the need for modulus-switching and

makes bootstrapping optional. To explain this further, in previously mentioned LWE

FHE schemes multiplication of ciphertexts with initial noise B expands quadratically

to B2. Evaluation of a D-depth circuit by these schemes is kept to a minimum B2D

where homomorphic multiplication is performed in a binary tree representation to

get a logarithmic depth. In contrast to this, noise growth in GSW FHE scheme

is asymmetric and homomorphic multiplication is performed sequentially. More

specifically, final noise level in the resultant ciphertext mainly depends on the noise

magnitude of only the left multiplicand ciphertext. The other important feature

of this scheme is that relinearization is performed implicitly and hence the need to

generate evaluation keys is eliminated. Next, we present a brief overview of the

construction of GSW FHE scheme.

The scheme is parameterized by a modulus q, lattice dimension n, m =

O (n log q), error distribution χ. We set ` = dlog qe and N = (n+ 1) `.

KeyGen: Secret key is generated by sampling a short vector ~t as ~t←$χ and set

sk = ~s ← (1,−t1, · · · ,−tn) ∈ Zn+1
q . Further, we set a vector ~v = PowerOf2 (~s).

Public key is set by sampling a uniform random matrix B←$Zm×nq and an error

20



vector ~e←$χm. Public key is formed by concatenating the ~b vector and B matrix

resulting in a (m× n+ 1) matrix A. Finally, we set pk = A. It can be observed that

the m rows of the public key matrix B can be interpreted as m independent instances

of the LWE problem such that A · ~s = ~e.

Encrypt: Messages are restricted to bits,M∈ {0, 1}. To encrypt a bit µ we sample

a uniform binary matrix R←$UN×m{0,1} and output the ciphertext C given as :

C = Flatten (µ · IN + BitDecomp (R · A)) ∈ ZN×Nq

Here, the flattening operation is simply a compounded bit decomposition

operation which keeps the ciphertext bounded with low Euclidean norm. Flattening

procedure on a vector ~a returns the expanded vector such that Flatten (~a) =

BitDecomp
(
BitDecomp−1 (~a)

)
.

Decrypt: Decryption recovers the ciphertext by using the approximate eigenvector

property of the scheme. As per this property, a ciphertext C encrypts message µ if

the following holds true, C · ~v = µ · ~v + ~e. It can be interpreted that the secret key

~v is an approximate eigenvector of the ciphertext matrix C and the message µ is the

eigenvalue. Since the first ` coefficients of ~v are simply powers of 2, i.e., (1, 2, · · · , 2`−1)

we can use any index i of the vector µ · ~v to recover the message. Specifically, to

differentiate from the error we use a index i such that vi = 2i ∈ (q/4, q/2]. Finally,

we compute xi ← 〈Ci, ~v〉 and set µ′ = bxi/vie.

Homomorphic operation are quite straightforward in this scheme as they simply

map to addition and multiplication of ciphertexts represented in LWE matrix form.

Further, these operations do not require any evaluation key as they implicitly store

the gadget matrix G.

Because of the steady noise growth property, GSW FHE scheme has been shown

to be very useful in executing the bootstrapping procedure of other FHE schemes. In

21



these work [BV14b, ASP14], secret key of a particular SHE scheme is encrypted with

GSW FHE scheme, decryption circuit is evaluated using the homomorphic operations

of GSW FHE scheme and finally a ciphertext of the SHE scheme is extracted from

the resultant GSW ciphertext. A major drawback of such GSW FHE scheme based

bootstrapping is that efficiency is severely affected due the sub-cubic O (n2.3727−3)

runtime of computing matrix products needed for homomorphic multiplication. For

practically feasible, bootstrapping using GSW scheme can be replaced with it’s

RLWE counterpart, Ring-GSW FHE scheme [KGV16]. Starting from the work of

Ducas and Micciancio [DM15] many LWE FHE schemes [BR15, CGGI16, BDF18]

have been shown which make a greater use of Ring-GSW FHE scheme to achieve

bootstrapability. Next, we discuss the security aspects of lattice based cryptography

and some of it’s applications.

1.3 Resistance to Quantum Computer Attacks

Most of the primitives and encryption schemes in classical cryptography are based on

the intractability of the integer factorization problem and discrete logarithm problem

over a finite field. Examples of some of the well known schemes which base their

security on these hard problems are RSA encryption scheme, Elliptic curve digital

signature and encryption scheme etc.

In [Sho99], Peter Shor showed in his seminal work that a hypothetical

quantum computer can find solution to discrete logarithm and integer factorization

in polynomial time. This means if quantum computers some how come into existence

then most of the classical crypto systems will be broken. Furthermore, the existence

of Bitcoin and other crypto-currencies would suddenly come to a halt, causing wide

spread panic in financial markets.

With the recent advances in the field of quantum physics backed by many

reputable organizations and academia like Google, IBM, MIT etc, quantum computers

22



have finally transitioned from theory to reality. With these advances, there is an

immediate need to build efficient cryptographic schemes that can resist quantum

computer attacks.

One such solution is offered by lattice based cryptography which base their

security on the intractability of closest vector problem (CVP) and shortest vector

problems (SVP). Ajtai [Ajt98] showed that SVP is NP-hard for randomized reduction

of lattice basis. In another work, Micciancio [Mic01] proved that the approximate

variant of SVP known as γ-SVP is NP-hard for randomized reduction if γ <
√

2.

Furthermore, some of the efficient lattice reduction algorithms like LLL and block-KZ

are known to solve approximate version of SVP and CVP in 2O(n) time complexity

where n is the lattice dimension. These result prove that lattice based cryptographic

schemes (based on hardness of ICP, LWE and RLWE problem) are indeed secure

against quantum computer attacks.

1.4 Applications

Fully homomorphic encryption is considered as a generic computing tool that has

numerous applications in the realm of secure computing. As envisoned by Rivest et

al. [RAD+78], FHE has the potential to play a huge role in outsourcing data and

enabling cloud services or applications on them. In other use cases, FHE can query

private databases, aid multi-party computations, support Zero-Knowledge proofs and

even execute other cryptographic schemes (such as AES, PRINCE etc). In the next

few subsections, we describe some of these applications.

1.4.1 Server Aided Computations

In recent years, cloud computing has been flourishing and many tech giants and

startups are offering commercial services for customers to store data and host

applications. While the pervasive use of cloud computing has eased the burden on

23



individual users and businesses to invest in expensive hardware, on the other hand

it has also raised the question on data privacy. The level of trust a user places on a

service provider varies from client to client and with the sensitivity of information.

Furthermore, servers are always vulnerable to security breach where adversaries are

constantly looking out to exploit any security flaws or improper firewall setup.

Fully homomorphic encryption presents an elegant solution to alleviate such

concerns on data privacy. In such a paradigm, the users of the cloud server outsources

the data in encrypted form. Once the data is present on the server, the user can

then specify the computation to be carried out. Finally, the computed data can

be retrieved from the server and decrypted at user end for further consumption. A

major advantage of using FHE in this paradigm is that the user can be offline in the

computation phase thus allowing low-power or resource constrained devices to save

power.

Lauter et al. [NLV11] discussed some of the applications of homomorphic

encryptions pertaining to medical, financial and advertising sectors. They described

the computation of simple statistical functions such as mean, standard deviation

and logistical regression on outsourced encrypted data. In another work by Wu and

Haven [WH12], an implementation of large scale statistical analysis on encrypted

data was presented. The crux of the work was to show that computation on large

scale encrypted data can be made practical in reasonable amount of time by the

application of ciphertext packing techniques [GHS12c]. Lastly, FHE can be used

to run predictive models such as medical or genomics predictions, spam detection,

face recognition, and financial predictions on user encrypted data with pre-trained

machine learning classifiers. Many efficient frameworks [JVC18, GBDL+16, BPTG15]

have been shown which support such machine learning modeling on encrypted data.

24



1.4.2 Private Information Retrieval

A (single-database) private information retrieval (PIR) is a cryptographic scheme that

enables the client to retrieve records stored on the server without the server learning

which record was retrieved. Trivially, this can be achieved when the server sends

the entire database to the user and hence, doesn’t reveal the users access pattern.

However, such solutions are not practical for any realistic use case because of large

communication overheads. Implementing PIR protocols with single fetch query leads

to more efficient and secure design as they rely on computational security assumptions.

Among the many possible solutions, FHE is considered to be most practical in terms of

communication efficiency. In this approach, using the multiplicative homomorphism

property database indices are first matched with encrypted user query bits. Finally, a

sum of all query results are added and returned as the desired ciphertext. Some of the

notable FHE based PIRs were designed in [AMBFK16, ACLS18] which introduced

several compression techniques to amortize the computational cost further.

1.4.3 Multiparty Computations

Secure multiparty computation has been one of the significant research areas in the

field of cryptography. Initially proposed by Yao [Yao82, Yao86] in the two-party

setting with honest-but-curious adversary model, the protocol was extended to

multiple parties interested in computing a joint function. Secure Multi-Party

Computation (MPC) protocols allows a group of mutually distrusting users to

compute a function jointly on their inputs without revealing any information beyond

the output. Many secure multi-party computation protocols have been proposed

such as privacy preserving data mining, privacy preserving database query targeting

specific application, however, most of them suffer from the bottleneck arising from

communication complexity during protocol execution.

25



Alternatively, MPC protocols can be executed by a FHE scheme which supports

evaluation of functions on ciphertexts encrypted under different keys. Such FHE

schemes are commonly termed as multi-key FHE. Using server aided computation

strategy, participant of the MPC pool their data on an untrusted server and let the

server compute an arbitrary function without any participation from the users. The

server and the set of participants then interact in a decryption phase and retrieve

their corresponding outputs. López et al. [LTV13] introduced a multi-key FHE

scheme based on NTRU and DSPR assumption. The LTV multi-key FHE scheme is

dynamic in nature as it allows to compute arbitrary functions with an arbitrary choice

of participants chosen on the fly. Clear and McGoldrick [CM15], in another work

showed the construction of a multi-key FHE scheme based on a variant of GSW FHE

scheme. The [CM15] scheme was further simplified by Mukherjee and Wichs [MW16]

and extended to allow one round of distributed decryption of resultant multi-key

ciphertext.

1.5 Our Contributions

In this dissertation, we demonstrate our results from three major areas related to

FHE and it’s application in secure computing. In the first set of work, we present

construction of Proxy Re-Encryption (PRE) schemes from various homomorphic

encryption schemes. Our unidirectional PRE schemes enable users to share and

read encrypted data without any prior exchange of decryption keys. PRE is

particularly helpful when the publisher and subscriber of messages are working in

an untrusted environment such as cloud servers. Our next contribution lies in

the construction of efficient bootstrapping techniques for BV-LWE [BV11a] and

it’s variant BV-GSW FHE scheme. Further, we present an extension of BV-LWE

bootstrapping technique to accommodate larger ciphertext modulus by running the

decryption circuit on multi-dimensional grids. Lastly, we tackle the efficiency aspects

26



of our PRE schemes and bootstrapping algorithms by implementing them on NVIDIA

GPUs. We enumerate our key results as follows:

1.5.1 Proxy Re-encryption

• We develop two IND-CPA-secure multi-hop unidirectional Proxy Re-Encryption
(PRE) schemes on NTRU-RLWE [SS11] and BV [BV11b] homomorphic
encryption schemes.

• We develop PRE schemes for GSW [GSW13] FHE scheme and it’s RLWE
variant Ring-GSW [KGV16] FHE scheme.

• We present an open-source C++ implementation of these PRE schemes in
PALISADE lattice crypto software library and discuss several algorithmic and
software optimizations.

1.5.2 Bootstrapping

• We introduce a new bootstrapping technique for symmetric key BV-LWE
scheme and it’s GSW analogue BV-GSW encryption scheme resulting in a fully
homomorphic symmetric key scheme.

• We extend these bootstrapping techniques to work with secret keys generated
from wider discrete Gaussian distributions without affecting the runtimes.
These requirement are sometimes deemed necessary for compliance with
Homomorphic Encryption standards [ACC+18].

• We introduce a new bootstrapping procedure, Gridstrapping which works on a
large finite field represented as a multi-dimensional grid.

1.5.3 Implementation on NVIDIA GPUs

• We present a GPU implementation of BV-PRE and Ring-GSW-PRE schemes
and design several other low level kernels for parallel execution. Our results
show upto 228x factors of improvement for BV-PRE scheme and upto 11x
improvement in performance for Ring-GSW-PRE scheme when compared with
CPU implementation.

• We accelerate the performance of BV-LWE bootstrapping algorithm by porting
over the critical operations to NVIDIA GPUs. Our results indicate a speedup
of 2-8 times for lower values of relinearization factor, r = 1 and ring dimension
n = 512, 1024.

27



CHAPTER 2

BACKGROUND AND PRELIMINARIES

In this chapter, we introduce some of the mathematical notations, background on

lattices and the associated hard problems, algebra of polynomial rings and other

definitions. This chapter only aims at giving a general background on lattice based

cryptography and therefore compiled from several other prominent literatures [Pei09,

Pei16, Reg04, Reg09] in the area.

2.1 Notations

We denote the set of integers by Z, the set of non-negative integers by N, the set of

reals by R and the set of integers modulo some q by Zq. We denote scalars in plain

(e.g., x) and vectors in bold lowercase (e.g., v), and matrices in bold uppercase (e.g.,

A). The i-th element of vector v is denoted by v[i] or vi. The `i norm of a vector

is denoted by ‖v‖i. Infinite norm, `∞ of a vector v is given as ‖v‖∞ = maxi|vi|.

The norm of a polynomial p (x) is the norm of its coefficient vector. Inner product

is denoted by 〈u,v〉 and can be interpreted as 〈u,v〉 = vT · u. Unless explicitly

mentioned, all logarithms are assumed to be base 2. For a positive integer k, we let

[k] = {0, · · · , k − 1}. We use b·c and d·e to denote respectively rounding down and up

to the nearest integer. We use b·e to denote rounding to the nearest integer, rounding

up in case of ambiguity. When these operations are applied to a polynomial, we apply

the respective rounding operation to individual coefficients of the polynomial.

2.2 Lattices

Lattices are regular arrangements of points in Euclidean space. A n-dimensional

lattice Λ of rank k ≤ n is a discrete additive subgroup of Rn. The lattice Λ

is concretely generated from all integer linear combinations of some basis B =

28



{b1, · · ·bk} where the columns bi’s are linearly independent vectors.

Λ = L (B) = {Bc =
∑
i∈[k]

ci · bi : c ∈ Zk}

Here, we are only interested in full-rank lattices, i.e., those for which k = n. Every

lattice (of dimension n > 1) has an infinite number of lattice bases. If B1 and B2

are two lattice bases of Λ, then there is some unimodular matrix U (that has integer

entries and det (U) = ±1) satisfying B1 = U × B2. To basis B of lattice Λ we

associate the half-open parallelepiped P (B) ← {
∑n

i=1 xibi : xi ∈ [−1/2, 1/2)}. The

determinant of a lattice det (Λ) defines the n-dimensional volume of the fundamental

parallelepiped associated to B.

The dual lattice of Λ, denoted Λ∗ is defined as Λ∗ = {x ∈ Rn : ∀ v ∈ Λ, 〈x,v〉 ∈ Z}.

It holds that det (Λ) · det (Λ∗) = 1. Further, if B is a basis for the full-rank lattice Λ,

then the dual basis B∗ = (B−1)
T

is in fact a basis of Λ∗. By symmetry, we can write

(Λ∗)∗ = Λ.

Definition 2.2.1. (Minimum distance) The minimum distance of a lattice Λ is the

length of a shortest nonzero lattice vector:

λ1 (Λ) = min
v∈Λ\{0}

‖v‖

2.2.1 Computational Problems

The geometrical properties of lattices allow us to define some hard combinatorial

problems. In [Ajt96], Ajtai showed the first construction of a cryptographic primitive

which can be based on worst-case to average-case reduction of lattice problems.

Specifically, Ajtai introduced the short integer solution (SIS) problem and proved

that solving it is at least as hard as approximating various lattice problems in the

worst case. In another work, Ajtai and Dwork [AD97] constructed a probabilistic

29



public key cryptosystem and reduced the security of the scheme to intractability

of unique shortest vector problem (u-SVP). These computationally hard problems

on lattices along with others serve as fundamental basis for the design of some

powerful cryptographic primitives such as fully homomorphic encryption schemes,

digital signature schemes, identity-based encryption etc. In relation to FHE, the

lattice problems often used to establish the semantic security of the schemes are

mainly the approximate shortest vector problem and the shortest independent vector

problem (SIVP). We briefly present an overview of these hard problems and their

definitions.

Definition 2.2.2. (Shortest Vector Problem (SVP)). Given an arbitrary basis B of

some lattice Λ = L (B), find a shortest nonzero lattice vector, i.e., a vector v ∈ Λ

such that ‖v‖ = λ1 (Λ).

While several algorithms are known to solve SVP in exponential and even super

exponential time complexity, cryptosystems mostly rely on approximate variant of

the lattice problems to derive computational hardness. These approximations are

parameterized by a factor γ ≥ 1.

Definition 2.2.3. (Approximate Shortest Vector Problem (SVPγ)). Given an

arbitrary basis B of an n-dimensional lattice Λ = L (B), find a nonzero vector v ∈ Λ

such that ‖v‖ ≤ γ · λ1 (Λ).

The approximate SVP problem is known to be solved by family of lattice

basis reduction algorithms such as LLL [LLL82] algorithm which admits solution

in polynomial time when the approximation factor is very large, γ = 2Ω(n).

Definition 2.2.4. (Decisional Approximate Shortest Vector Problem (SVPγ)). Given

an arbitrary basis B of an n-dimensional lattice Λ = L (B), where λ1 (Λ) ≤ 1 or

λ1 (Λ) > γ, determine which is the case.

30



Definition 2.2.5. (Approximate Shortest Independent Vector Problem (SIVPγ)).

Given an arbitrary basis B of an n-dimensional lattice Λ = L (B), output a set S =

{v1, · · · ,vn} ∈ Λ of n linearly independent lattice vectors such that ‖vi‖ ≤ γ · λi (Λ)

for all i ∈ [n].

Definition 2.2.6. (Approximate Bounded Distance Decoding Problem (BDDγ)).

Given an arbitrary basis B of an n-dimensional lattice Λ = L (B) and a target

vector t ∈ Rn such that Dist (t,Λ) ≤ γ−1 · λ1 (Λ), find a vector v ∈ Λ such that

‖v − t‖ = Dist (t,Λ).

The BDDγ problem is a slight variation of the approximate closest vector

problem (CVP) which searches for a vector v close to target point t ∈ Rn.

2.2.2 Gaussian Distributions

We review some Gaussian measures over lattices in this section. Gaussian properties

are mainly used to substantiate the claim of computational hardness of lattice

problems by generating noise vectors from Gaussian distributions with varying

parameters. For any s > 0, we define the Gaussian function on Rn centered at c

with parameter s:

∀ x ∈ Rn, ρs,c (x) = exp
(
−π ‖x− c‖2 /s2

)
Deviation s and center c are taken to be 1 and 0 respectively when omitted.

For any c ∈ Rn, real s > 0, and n-dimensional lattice Λ, define the discrete

Gaussian distribution over Λ as:

∀ x ∈ Λ, DΛ,s,c (x) =
ρs,c (x)

ρs,c (Λ)

Definition 2.2.7. (Addition of Gaussians). Let D1 and D2 be Gaussian distributions

with parameters s1 and s2, respectively. Then distribution obtained by sampling

31



D1 and D2 and summing them results in another Gaussian distribution D+ with

parameter
√
s2

1 + s2
2.

Smoothing parameter: In [MR07] Micciancio and Regev introduced an important

parameter termed as smoothing parameter which shows the uniformity of a vector

when generated from certain noise vector with radius at least as large as the smoothing

parameter. It is defined as follows:

Definition 2.2.8. For a n-dimensional lattice Λ, and positive real ε > 0, smoothing

parameter, ηε (Λ) is defined as the smallest s such that ρ1/s (Λ∗ \ {0}) ≤ ε.

2.3 Learning with Errors (LWE)

Construction of lattice based public-key encryption schemes were greatly simplified

by the introduction of learning with errors (LWE) problem by Regev in [Reg09]. The

LWE problem is seen as an extension of the learning from parity with error problem

with the modulus raised to higher values. In this work, Regev showed that if the

LWE problem can be solved by a polynomial time algorithm then, this implies the

existence of an efficient quantum algorithm which can solve the decision version of

shortest vector problem (GapSVP) and the shortest independent vectors problem

(SIVP) to within Õ (n/α) factor in the worst case. Here, α is the error rate such

that α ∈ (0, 1). In another work [Pei09], Peikert showed a classical reduction of the

LWE problem from GapSVP problem by relying on a BDD oracle that solves lattice

problem.

LWE is parameterized by positive integers n and q, and an error distribution χ

over Z. The error distribution is usually a discrete Gaussian distribution with error

rate α with α < 1.

Definition 2.3.1. (LWE distribution). For a vector s ∈ Znq called the secret, the

LWE distribution As,χ over Znq × Zq is sampled by choosing a ∈ Znq uniformly at

random, choosing e←$χ, and outputting (a, b = 〈s, a〉+ e mod q).

32



Definition 2.3.2. (Search-LWEn,q,χ,m). Given m independent samples (ai, bi) ∈ Znq×

Zq drawn from LWE distribution LWEn,q,χ, find s.

Definition 2.3.3. (Decision-LWEn,q,χ,m). Given independent samples (ai, bi) ∈

Znq × Zq the problem is to decide whether the pair is sampled from LWE distribution

LWEn,q,χ or uniform distribution in Znq × Zq.

Regev further showed the construction of a public key encryption scheme and

proved the semantic security of the scheme on indistinguishably of LWE samples

(decision-LWE). In this scheme, secret key consists of a uniform vector s ∈ Znq chosen

at random. Public key consists of m instances of the LWE problem given by (ai, bi)
m
i=1.

To encrypt a bit µ, we choose a random binary set S ∈ {0, 1}m and set encryption

as
(∑

i∈S ai, µ · b q2c+
∑

i∈S bi
)
. To decrypt ciphertext c = (a, b), we compute t =

b−〈s, a〉. We output 0 if t is closer to 0 otherwise 1 if t is closer to b q
2
c. In subsequent

construction of LWE based FHE schemes, it is proved that generation of secret keys

from narrower distribution leads to higher homomorphic capacity while retaining the

quantum hardness of intractability of lattice problems.

In recent years, LWE has served as the basis for many other cryptosystems

such as CPA secure encryption schemes [PVW08, LP11], oblivious transfer [PVW08],

identity-based encryption [GPV08, CHKP10, ABB10a, ABB10b], fully homomorphic

encryption [BV14a, GSW13] and many more.

2.4 Ring LWE

Ciphertexts in the LWE form suffer from the problem of dimension expansion upon

homomorphic evaluation. This not only results in greater computational overhead

but adds significant noise growth. To accelerate cryptographic constructions based

on the learning with errors problem (LWE) Lyubashevsky, Peikert and Regev [LPR10]

introduced the ring learning with error (RLWE) problem. Lyubashevsky et al. first

showed a quantum reduction from approximate SVP (in the worst case) on ideal

33



lattices in R to the search version of ring-LWE, where the goal is to recover the secret

s ∈ Rq (with high probability, for any s) from arbitrary number of noisy products.

They also gave a reduction from the search problem to the decision variant, which

shows that RLWE distribution is pseudo random assuming worst-case problems on

ideal lattices are hard for polynomial-time quantum algorithms.

Efficiency: The primary reason for adopting RLWE security assumption is because

of it’s efficiency which is attributed to the algebraic and embedding properties of ideal

lattices over ring. Moreover, RLWE can be viewed as n instances of LWE in a compact

representation and operate simultaneously. Using the Fast Fourier Transform (FFT)

or its variants like Number Theoretic Transforms (NTT), operations on polynomial

rings can be restricted to O (n log n) scalar operations.

2.4.1 Definitions

RLWE is parameterized by a polynomial ring R such that R = Z[X]/Φm (X), where

Φm (X) is the m-th cyclotomic polynomial of degree n. Also, let q ≥ 2 be an

integer modulus, and let Rq = R/qR be the quotient ring. Finally, let χ be an

error distribution over R having an error rate α < 1.

Definition 2.4.1. (RLWE distribution). For a polynomial ring s ∈ Rq called the

secret, the RLWE distribution As,χ over Rq × Rq is sampled by choosing a ∈ Rq

uniformly at random, sampling e←$χ, and outputting (a, b = s · a+ e mod q).

Definition 2.4.2. (Search-RLWEn,q,χ,m). Given m independent samples (ai, bi) ∈

Rq ×Rq drawn from RLWE distribution RLWEn,q,χ, find secret polynomial s.

Definition 2.4.3. (Decision-RLWEq,χ,m). Given independent samples (ai, bi) ∈ Rq×

Rq the problem is to decide whether the pair is sampled from RLWE distribution

RLWEn,q,χ or uniform distribution over Rq ×Rq.

Lyubashevsky et al. [LPR10] further described a simple cryptosystem, a RLWE

analogue of Regev’s encryption scheme, which based the semantic security on the

34



pseudo randomness of RLWE (decision-RLWE). In this scheme, secret key, s is

generated from the error distribution χ. To generate the public key, pk we choose a

uniformly random element a ∈ Rq and sample a error, e from error distribution χ.

Set the public key as RLWE pair, pk = (a, b = a · s+ e) ∈ R2
q . The RLWE scheme is

capable of encrypting a n-bit message µ ∈ {0, 1}n as opposed to a single bit in the

LWE scheme. The encryption algorithm then samples three random ring elements

r, e1, e2 ∈ R from the error distribution χ and sets the ciphertext, c as follows:

u = a · r + e1 mod qv = b · r + e2 + µ · bq/2e mod q

c = (u, v) ∈ R2
q

The decryption algorithm computes the noise term t as follows:

t = v − u · s = (r · e− s · e1 + e2) + µ · bq/2e mod q.

To recover the bit vector, we proceed to round each coefficient of t to either 0 or

bq/2e, whichever is closest modulo q.

RLWE security assumption has been a huge success in construction of FHE

schemes and numerous variations of RLWE based FHE schemes have been proposed

in literature [BV11b, BGV14, LTV13, Bra12].

2.4.2 Cyclotomic Polynomials

Cyclotomic polynomials, Φm (X) in the definition of ring polynomials are mostly used

to embed integer coefficients in field extensions K 7→ Cn.

Definition: For any positive integer m, the m-th cyclotomic polynomial Φm (X) is

the minimal polynomial with integer coefficients such that Xm − 1 = 0 and is not a

divisor of
(
Xk − 1

)
for any k < m. It is defined by

35



Φm (X) =
Xm − 1∏

1≤d<n,d|n Φd (x)
(2.1)

When the field extension K (ζm) is a m-th order multiplicative group where ζm

is a primitive m-th root of unity, we can derive the cyclotomic polynomial as follows:

Φm (X) =
∏
i∈Z∗m

(
X − ζ im

)
(2.2)

As per the above definition, degree of the cyclotomic polynomial is given by

n = ϕ (m), the totient function of m. For prime m, cyclotomic polynomial is

reduced to Φm (X) = Xm−1 + Xm−2 + · · · + X2 + X + 1. When m is a power of

two the cyclotomic polynomial is maximally sparse and given by Φm (X) = Xn + 1,

where n = ϕ (m) = m/2. Most of the RLWE based cryptosystems use a power

of two cyclotomics as polynomial multiplication can be performed efficiently by a

simple tweak of the classical n-dimensional FFT algorithm. Even though power

of two cyclotomic polynomials are pervasive in RLWE cryptosystems, there are

special cases where arbitrary cyclotomic polynomial rings are deemed worthy. Most

notably, non-power-of-two cyclotomic rings are useful in obtaining more nimble

movement of plaintext in ciphertext slots as shown in [GHS12c]. However, it should

be noted that FFT algorithms tailored for non-power-of-two cyclotomic rings are

relatively inefficient because of large constants hidden factors and rather complex

and hard to implement. A toolkit of modular algorithms for designing applications

to work in arbitrary cyclotomic rings was described in [LPR13] and implemented in

PALISADE lattice crypto software library. Particularly in our implementation of

non-power-of-two cyclotomic rings we used the definition 2.1 to generate and store

cyclotomic polynomials.

36



2.4.3 Plaintext Slots and Embedding

It was first shown by Smart and Vercauteren [SV14] that by an application of the

Chinese Remainder Theorem to number fields the plaintext space in polynomial ring

can be partitioned into a vector of “plaintext slots”. Addition and multiplication of

polynomial rings in R correspond to component-wise operations on these plaintext

slots and hence it is sometimes referred as SIMD or batch operations. To understand

how this finite field splits and the homomorphisms between them, we let the plaintext

be a (X) ∈ R2. We assume the cyclotomic polynomial Φm (X) of degree n to split

into exactly r distinct irreducible factors of degree d = n/r.

Φm (X) = F (X) =
r∏
i=1

Fi (X)

This implies that, algebra on the plaintext space a (X) now has a natural isomor-

phisms w.r.t. a number of plaintext slots ai (X) obtained by a direct application of

polynomial Chinese Remainder Theorem.

a (X) mod Φm (X) ∼=
a (X)

F1 (X)
⊗ a (X)

F2 (X)
· · · ⊗ a (X)

Fr (X)

In practice, we replace the plaintext modulus 2 with a higher modulus p such

that p = 1 mod m and plaintext space Rp splits into r isomorphic subfield. In

the simplest case, to encode or batch r integers in Zp in the plaintext space Rp we

apply inverse nega-cyclic transform when working on power of two cyclotomics. To

summarize, the SIMD plaintext batching allows to amortize the cost of homomorphic

operations by a factor of r which in turn is a function of the security parameter n

and therefore leads to higher efficiency.

37



2.4.4 Automorphisms Transforms

In general, automorphism transform define a set of permutations in the plaintext space

Rp. In [LPR10], the authors used the permutation properties of automorphism group

to prove the pseudo-randomness of RLWE. However, the automorphism transform is

more useful for obtaining flexible movement of data across the plaintext slots.

We denote the automorphism transform as τκ : K 7→ K for a positive integer

κ ∈ Z∗m acting on the m-th cyclotomic number field represented as field extension

K = Q (ζ) having ζm as the primitive root of unity. The number field K has

n automorphisms where each transform acting on a polynomial ring, a ∈ R is

represented as τκ (a (X)) 7→ a (Xκ) or simply τκ : a 7→ aκ. Since, there exist a

transform for every i ∈ Z∗m and j ∈ Z∗m, 3 i · j = 1 mod m, the set of transformations

forms a multiplicative group under composition. When automorphism transforms,

τκ are applied to a plaintext a ∈ R they act transitively on the plaintext slots.

Specifically, for a non-power-of-two cyclotomic ring these transforms shift the vector

of slots cyclically. For example, if the ring a encodes integers (a0, a1, · · · , an−1), then

after a transformation we could get a ring a′ = (an−1, a0, · · · , an−2). Most importantly,

these set of automorphism transforms can be directly applied on a ciphertext without

affecting the norm of error. However, applying automorphism operations on cipertexts

have the downside of morphing the secret keys and therefore such operations are

generally followed with additional procedures to switch the secret key back to its

original form.

2.5 Syntax of Cryptographic Primitives

In this section, we describe the basic syntax of secret-key, public-key and homomorphic

encryption schemes and the security notions associated with them.

Definition 2.5.1. (Secret-key encryption scheme). A secret-key encryption scheme
consists of the following algorithms:

38



• KeyGen
(
1λ
)
7→ (s, pp) It takes input security parameter λ, outputs the key s

and some public parameters pp;

• Encrypt(s,m) 7→ c It takes secret key s and a message m, and outputs a
ciphertext c;

• Decrypt(s, c) 7→ m It takes secret key s and a ciphertext c, and outputs a
message m;

A public-key (also known as asymmetric-key) encryption scheme consists of

separate keys for encryption and decryption, and defined as follows:

Definition 2.5.2. (Public-key encryption scheme). A public-key encryption scheme
consists of the following algorithms:

• KeyGen
(
1λ
)
7→ (sk, pk, pp) It takes input security parameter λ, outputs the

secret key sk, public key pk, and some public parameters pp;

• Encrypt(pk,m) 7→ c It takes public key pk and a message m, and outputs a
ciphertext c;

• Decrypt(sk, c) 7→ m It takes secret key sk and a ciphertext c, and outputs a
message m;

A homomorphic encryption can be described as a public-key encryption scheme

which can evaluate a certain class C of circuits. Formally, it is defined as follows:

Definition 2.5.3. (Homomorphic Encryption scheme). A C-Homomorphic encryption
scheme consists of the following algorithms:

• KeyGen
(
1λ
)
7→ (sk, pk, pp, ek) It takes input security parameter λ, outputs a

secret key sk, a public key pk, a (public) evaluation key ek and some public
parameters pp;

• Encrypt(pk,m) 7→ c It takes public key pk and a message m, and outputs a
ciphertext c;

• Decrypt(sk, c) 7→ m It takes secret key sk and a ciphertext c, and outputs a
message m;

• Eval(ek, C, c1, · · · , c`) 7→ c Given a evaluation key ek, a (description of a)
circuit C and ` ciphertexts c1, · · · , c`, it outputs a ciphertext c. For the
correctness of evaluation we require Decrypt(sk, c) = C (m1, · · · ,m`) where
ci = Encrypt (pk,mi).

We now give a standard notion of security for an encryption scheme E , namely

indistinguishably under chosen-plaintext attacks or IND-CPA security [GM84]. The

39



Game IND-CPAE

1 : (pk, sk, pp) ←$KeyGen
(
1λ
)

2 : (m0,m1) ←$A
(
1λ, pk, pp

)
3 : b←$ {0, 1}
4 : c← E .Encrypt (pk,mb)

5 : b′ ← A
(
1λ, pk, pp, c

)
6 : return b = b′

Figure 2.1 Game describing IND-CPA security.

IND-CPA notion guarantees that the encryption reveals nothing about encrypted

messages to a passive (eavesdropping) adversary.

Definition 2.5.4. (Indistinguishability under chosen-plaintext attacks). For a public-

key encryption scheme E, we define IND-CPA security via the game depicted in figure

2.1. Let the advantage of an adversary A when playing the game IND-CPAE be as

follows:

Advind-cpa
A (λ) =

∣∣∣∣Pr[IND-CPAE,λ ]− 1

2

∣∣∣∣
We say that E is IND-CPA secure if, for any PPT adversary A, it holds that

Advind-cpa
A (λ) = negl(λ).

40



CHAPTER 3

PROXY RE-ENCRYPTION

Over the past decade, computing technologies such as mobile computing, cloud

computing, data analytic, machine learning, etc. have matured to accommodate

the needs and expectations of consumers. Today, a wide variety of services are

hosted on the web or cloud computing systems. This paradigm of cloud computing

has attracted small vendors and individual users to host their services on servers

of large tech corporations. This has resulted in spawning collections of consumer

data. Because of the sensitivity of consumer data, these cloud platforms are under

threat of attack. Cloud platforms enforce a wide range of network security solutions

to safeguard their computing infrastructure but in spite of counter measures and

network security techniques, a flurry of data breaches have been reported attracting

countless consumer lawsuits.

Traditional approaches to security are not sufficient to guarantee privacy and

confidentiality. Security constraints which enforce stronger threat models are needed

in practice. Under this new threat model we assume the cloud to be a malicious entity

and confidentiality is enforced by cryptographic solutions. A user should interact

with the cloud by publishing encrypted contents onto the cloud and only decrypt

the contents at its end. In this scenario, even in the event of a successful attack the

possibility of data breach is reduced. However, encrypting user data severely limits

the possibility of sharing it across other users or applications.

Proxy re-encryption is a cryptographic primitive that presents an elegant

solution to this problem. In a simple two user setting there are two parties, Alice and

Bob. Alice stores encrypted data on an untrusted cloud and can read the data when

decrypted with her secret key. When Bob needs to access the data, Alice generates a

41



re-encryption key and gives it to the untrusted cloud. The cloud can now transform

the data encrypted by Alice into a ciphertext that can be decrypted by Bob’s secret

key. Moreover, the cloud doesn’t learn anything about the underlying data in this

process.

In the context of cloud computing, PRE scheme can be interpreted as an

access delegation mechanism which allows users to delegate rights to the cloud while

enforcing a stronger security notion of an untrusted cloud. It can be easily seen that

a PRE scheme is not just restricted to cloud computing environments but the same

idea can be extended to many such privacy concerning applications. PRE schemes

have been known to be used in digital rights management (DRM) system [TCG06],

secure file storage system [AFGH06], email list services [KHP06] and many other

applications.

Proxy Re-Encryption, as we have described it, is also called a unidirectional

PRE scheme, and was defined in [ID03, AFGH06]. Henceforth, when we refer

to proxy re-encryption, we mean a unidirectional scheme. In this chapter we

describe four new IND-CPA-secure Proxy Re-Encryption (PRE) schemes and their

implementations where the PRE functionality is provided using the LWE/RLWE key

switching procedure. The first scheme (NTRU-ABD-PRE) is based on the NTRU

encryption scheme with RLWE modifications [SS11] where the NTRU immunity

constraint against subfield lattice attacks is applied to set the distribution parameter

for NTRU key generation [ABD16]. The second scheme (BV-PRE) is based on the BV

homomorphic encryption scheme [BV11b] and relies only the RLWE assumption. Our

third scheme GSW-PRE is based on GSW [GSW13] homomorphic encryption scheme.

The security of GSW FHE scheme is based on the LWE [Reg09] assumption. Our last

PRE scheme, Ring-GSW-PRE is based on a Ring variant of GSW scheme, Ring-GSW

FHE scheme [KGV16] where security is based on RLWE [LPR10] assumption which

was introduced to speed up LWE based cryptosystems. Utilizing techniques from our

42



RLWE based PRE scheme we introduce a key-switching procedure for Ring-GSW

FHE scheme. Further, we show that our key-switching procedure can be extended to

enable Automorphism operations over cyclotomic polynomials. Owing to asymmetric

noise growth property of Ring-GSW FHE scheme, this directly leads us to SIMD FHE

computations with reduced noise.

A unidirectional PRE scheme can be constructed from any fully homomorphic

encryption (FHE) scheme using the procedure based on double encryption of plaintext

and evaluation of decryption circuit [G+09]. However, this approach relies on

heavyweight tools generally used for bootstrapping. The goal of this work is to avoid

the use of these computationally expensive tools and study elementary and efficient

constructions of lattice-based proxy re-encryption schemes based on LWE or RLWE

key switching.

As opposed to other known approaches to PRE, lattice encryption approaches,

such as ours, are generally considered post-quantum [MR09, Reg04], that is,

potentially secure against attacks even from adversaries with practical quantum

computing devices in addition to adversaries with classical computing devices. Our

goal is to provide a software PRE capability that can support high-throughput

pub-sub information sharing without direct interactions between publishers and

subscribers. We provide experimental evaluation of software implementations of our

PRE schemes to evaluate its security, scalability and performance. We further show

that our PRE schemes based on GSW FHE scheme have the added advantage of

asymmetric noise growth which permits evaluation of deeper circuits. We provide a

direct comparison of Ring-GSW-PRE scheme with BV-PRE [PRSV17] scheme and

highlight the difference in capabilities in terms of circuit depth and number of hops

for the same set of parameters.

Motivation for extending PRE scheme for GSW and Ring-GSW FHE

schemes: Before the advent of fully homomorphic encryption (FHE), PRE scheme’s

43



only role was to transform the ciphertext while preserving the message as it arrived

from the producer. In other words, a PRE scheme dealt with read-only data.

Designing a PRE scheme that has homomorphic capabilities opens up the door for

many interesting applications. For example, consider the case of health care sector

where different organizations may be involved in running diagnostic inference on

patient health information collected from hospitals. However, due to sensitivity of

information, US laws and regulations (HIPAA) do not allow such direct outsourcing

of information. It is therefore more appropriate to encrypt patient information with

a FHE scheme and then send it to various diagnosing bodies who can run blind

evaluations on the data. Once the results are processed, it can be re-encrypted by a

proxy which in turn can be deciphered into meaningful information by the patient.

In other scenarios, we can form an information processing pipeline where each node

evaluates and forwards the information to next node after re-encryption in a multi-hop

manner.

Modern lattice based schemes require evaluating a re-encryption operation or

function on ciphertexts which always leads to increase in noise in them. Hence, our

goal is to design a robust and computationally efficient PRE scheme that is amenable

to larger depth of computation over multiple hops without bloating the parameters

too much. While BV-PRE and NTRU-ABD-PRE are PRE schemes which have

homomorphic capabilities, the nature of noise growth in these schemes is quadratic.

In order to achieve asymmetric nature of noise growth, it is highly pertinent to develop

PRE schemes based on GSW and Ring-GSW FHE schemes.

BV-PRE outperforms NTRU-ABD-PRE and other PRE schemes in both single-

hop and multi-hop settings, and is provably secure under the RLWE assumption,

in contrast to the NTRU variant which is proven secure under a less well-studied

variant of the so-called NTRU assumption. BV-PRE scales well with the number of

hops due to a relatively small additive noise growth provided by the BV scheme and

44



RLWE key switching procedure. BV-PRE has small ciphertext modulus and ring

dimension requirements: successful decryption after re-encryption can be achieved

using a 17-bit ciphertext modulus and ring dimension of 512 (for at least 100 bits

of security). This translates to submillisecond encryption/decryption runtime and

re-encryption runtime of under 5 ms. When compared to the LWE-based PRE lattice

schemes recently proposed in [ABPW13, Kir14, FL16a, PWA+16], our BV-PRE

scheme provides key sizes and ciphertext expansion factors as good as or better than

the key sizes of any other lattice-based PRE schemes, and lower time complexity than

any other LWE-based scheme.

A GPU implementation of GSW PRE shows 5x acceleration in key generation

time and more than 100x in encryption, re-encryption and re-encryption key

generation run times over CPU implementation. For Ring-GSW PRE scheme we

complete critical operations under 10 milliseconds.

Chapter Organization. In Section 3.1 we review related results on encrypted

computing and PRE. In Section 3.2 we discuss the the high-level concept and

performance and security tradeoffs of PRE. In Sections 3.3, 3.4, 3.5 and 3.6 we

describe the proposed lattice-based PRE cryptosystems. In Section 3.7 we discuss

parameter selection for these schemes to provide practical secure computing on

commodity computing hardware. In Section 3.8 we describe the overall software

architecture of the library to support the end-to-end encrypted application. In Section

3.9 we discuss experimentation and evaluation of our design and implementation. In

Section 3.10 we present practical use cases for the proposed PRE cryptosystem. We

conclude the paper with a discussion of our insights and future work in Section 3.11.

45



3.1 Related Work

3.1.1 Proxy Re-Encryption

The notion of Proxy Re-Encryption (PRE) was introduced in the work of Blaze,

Bleumer and Strauss [BBS98], where they also presented a construction based on

the El-Gamal encryption scheme. Their construction was a bidirectional proxy re-

encryption scheme in that a re-encryption key can be used to translate encrypted

data from the publisher encryption to subscriber encryption but also in reverse, from

the subscriber encryption to publisher encryption. In contrast, in this work, we

focus on unidirectional proxy re-encryption that provides tighter control on which

ciphertexts can be re-encrypted and to whom.

Unidirectional PRE schemes were first proposed in [ID03, AFGH06]. The

scheme in [AFGH06] is based on the decisional bilinear Diffie-Hellman (DBDH)

assumption. The schemes in [ID03, AFGH06] are single-hop proxy re-encryption

schemes, meaning that a re-encrypted ciphertext cannot be re-encrypted further, to

a third party.

Also, related is the work in [CH07] which provides a multi-hop bidirectional

scheme based on bilinear maps. Multi-hop re-encryption schemes are important in

applications where re-encryption needs to be applied multiple times, for example

where information needs to be brokered in multiple steps from publisher to subscriber.

We refer the reader to Sections 3.10.1 and 3.10.2 for a discussion of applications.

Our approach to PRE is based on two common ring variants of lattice-based

homomorphic encryption schemes, with the PRE functionality provided using the

LWE/RLWE key switching procedure of Brakerski and Vaikuntanathan [BV11b].

The first scheme (NTRU-ABD-PRE) is built on top of the NTRU encryption scheme

[HPS98] with RLWE modifications [SS11] where the NTRU immunity constraint

against subfield lattice attacks is applied to set the distribution parameter for NTRU

key generation (c.f. [ABD16]). The second scheme (BV-PRE) is based on the BV

46



homomorphic encryption scheme [BV11b] and relies only on the RLWE assumption.

The third scheme (GSW-PRE) and fourth scheme (Ring-GSW-PRE) are based

on GSW [GSW13] homomorphic encryption scheme and rely on LWE and RLWE

assumptions respectively. FHE schemes are encryption schemes that allow anyone to

run computations over encrypted data without decrypting the data.

It is at times difficult to establish direct comparisons between encryption

schemes, even with similar computational hardness underpinnings. Following [CN11,

LP11, MR09, vdP12], we use the standard “root Hermite factor” δ as the primary

measure of the concrete security of RLWE-based encryption schemes, for a given set of

parameters, where a smaller δ provides more security. Experimental evidence [CN11]

suggests that δ = 1.007 would require roughly 240 core-years on recent Intel Xeon

processors to break. We set the configuration parameters to attain δ of just less than

1.006 for each of the schemes for our parameter and key size comparisons, and for

our later experimental analyses. The root Hermite factor parameter setting we use of

δ < 1.006 arguably provides at least 100 bits of security [CN11, LP11, MR09, vdP12].

Whereas our BV-PRE scheme provides sub-millisecond runtimes for optimal

parameter settings for encryption and decryption operations and millisecond-order

runtimes for re-encryption, the experimental results of [AFGH06] are in the ranges

of 3 to 9 ms (for 256 bits of security) and 8 to 27 (for 512 bits of security) for these

same operations. However, the experimental results of the non-lattice-based work in

[AFGH06] are shown for 256 and 512 bits of security rather than approximately 100

bits in our case. Our estimates using equation (7) in [GHS12c] show that δ ≈ 1.0034

and δ ≈ 1.002 correspond to 256 and 512 bits of securiy, respectively. These values

of δ increase the minimum ring dimension for 256 bits of security to 1024 and for 512

bits of security to 2048, while keeping the bit width approximately the same. This

implies that the runtime is roughly doubled when one goes from 100 bits of security

47



to 256 and then doubles again when going from 256 to 512 bits of security, which

suggests that our runtimes are comparable to those reported in [AFGH06].

An independent work of [NAL15] proposes and implements a IND-CPA-secure

proxy re-encryption scheme based on the NTRU encryption scheme with RLWE

modifications [SS11], which they label as PS-NTRUReEncrypt. This PRE scheme

relies on a variant of NTRU assumption. The PS-NTRUReEncrypt construction

is a bidirectional PRE scheme, whereas ours is unidirectional (see Section 3.10 for

why unidirectional schemes are critical to our applications). The runtimes reported

in [NAL15] are of the order of one second. The authors [NAL15] also propose and

implement another bidirectional (more efficient but not IND-CPA-secure) scheme

called NTRUReEncrypt with runtimes of the order of one millisecond. However,

NTRUReEncrypt is not directly comparable to our schemes in security as its security

relies on an ad-hoc new assumption. It is therefore unclear how to set key-sizes

for this scheme, and hence, we will not discuss this scheme further in this paper.

We note, however, that our RLWE-based BV-PRE scheme achieves a comparable,

even better, performance with the added provable security guarantee based on the

relatively well-studied RLWE problem.

Several LWE-based PRE lattice schemes have recently been proposed in [ABPW13,

Kir14, FL16b, PWA+16]. The schemes presented in [Kir14, FL16b] are based on a

Regev-style encryption, which can be regarded as an extension of the CCA-secure

public key encryption scheme developed in [MP12]. The schemes developed

in [ABPW13, PWA+16, FL16b] are based on a public key encryption scheme

formulated in [LP11]. [FL16b] shows an implementation of a IND-CPA-secure

multi-hop scheme. The most efficient implemented variant [PWA+16], which we

label as IND-CPA-LWE, is similar to BV-PRE but relies on the LWE assumption

(instead of ideal lattices and RLWE assumption). This scheme is also unidirectional

and supports multiple hops of re-encryptions.

48



Table 3.1 Parameter Configuration and Key Size Comparison of LWE-based
IND-CPA-Secure PRE Schemes for Normalized Conditions

Scheme

Parameters for

Secure Configuration

Key Sizes for

Secure Operation, KB

Asymptotic

Key Sizes

δ n k sk pk rk sk pk rk

BV-PRE 1.0051 512 17 1.06 2.13 36.1 nk 2nk 2nk2

NTRU-ABD-PRE 1.0054 1024 35 4.38 4.38 153 nk nk nk2

GSW-PRE 1.0033 1023 22 2.74 1.23 ×105 6.32 ×107 nk 2n(n+ 1)k2 (n+ 1)3k2

Ring-GSW-PRE 1.0033 1024 22 2.75 5.5 484 nk 2nk 8nk2

PS-NTRUReEncrypt [NAL15] 1.0037 2048 47 11.8 11.8 11.8 nk nk nk

IND-CPA-LWE [PWA+16] 1.0042 450 14 346 692 9,690 n2k 2n2k 2n2k

Plaintext Modulus p = 2, Key Switching Window r = 1, Message Length l = n (in the LWE Scheme) with Comparable
Security (Root Hermite Factor δ is Under 1.006; Bound Corresponds to Approximately 100 Bits of Security).

Table 3.1 shows the comparison of parameter selections, resulting concrete

secure key sizes and asymptotic key sizes for the following LWE-based IND-CPA-

secure PRE schemes: NTRU-ABD-PRE, BV-PRE, GSW-PRE, Ring-GSW-PRE,

PS-NTRUReEncrypt [NAL15], and the IND-CPA-secure LWE scheme [PWA+16].

We base these comparisons on roughly equivalent functionality and security config-

urations. For notational simplicity we define k = blog2 q + 1c, the number of bits

required to represent the ciphertext modulus q. For the concrete parameters in the

table, we set the ring dimension n (referred to as the lattice security parameter n

in the case of the LWE scheme) and ciphertext modulus q for each of the schemes

for a single-hop use case for plaintext modulus p = 2 to ensure that the security

parameter δ < 1.006. Note that for the PS-NTRUReEncrypt and IND-CPA-LWE

schemes we use a tighter bound on the root Hermite factor δ due to the parameter

selection decisions made in the papers we cited for the schemes.

In comparison with prior lattice-based PRE schemes:

• The key sizes and ciphertext expansion factors of BV-PRE and NTRU-ABD-
PRE are as good as or better than the key sizes of the other lattice-based PRE
schemes.

• The ciphertext expansion factor of NTRU-ABD-PRE and PS-NTRUReEncrypt
is k and 2k for BV-PRE and CP-LWE. However, NTRU-ABD-PRE and
PS-NTRUReEncrypt require higher parameter values, which automatically
increases space requirements for the secret and public keys and encryption/decryption
execution time.

49



• Noise grows multiplicatively with the number of re-encryption hops in the case
of NTRU-ABD-PRE (at most two hops are supported). BV-PRE, Ring-GSW-
PRE, IND-CPA-LWE, and PS-NTRUReEncrypt can support up to 100 hops
without significantly increasing the ring dimension (lattice security parameter)
and ciphertext bit length due to additive noise growth.

• Although the re-encryption space and time complexity for PS-NTRUReEncrypt
is lower, this scheme is bidirectional and does not support the same security use
cases as BV-PRE and IND-CPA-LWE.

• IND-CPA-LWE has much higher space requirements (an additional factor of n
in the size of all keys) as compared to BV-PRE, which limits its applicability
to embedded systems.

The above analysis implies that BV-PRE is more efficient for Pub/Sub systems than

all existing lattice-based PRE schemes.

We also provide a high-level theoretical evaluation of the performance of our

schemes in comparison with other identified recent lattice-based IND-CPA-secure

PRE schemes. Rather than base this initial comparison on experimental runtime

performance, we compare performance in terms of the computational operations

which are generally the lower-level computational building blocks provided by math

libraries and hardware accelerators which implementations are built from. In

particular, we couch our evaluation of theoretical performance in terms of the

number of slightly higher-level polynomial operations, inclusive of Number Theoretic

Transforms (NTT’s), Vector Products (VP’s), Matrix Vector Products (MVP’s)

and Bit-decomposed Matrix Vector Products (BMVP). This allows us to present

complexity comparisons independent of the specific differences in implementation

libraries that might be used to experimentally compare these schemes. A table with

comparisons for encryption, re-encryption and decryption operations of our schemes

and PS-NTRUReEncrypt [NAL15] and IND-CPA-LWE [PWA+16] schemes can be

seen in Table 3.2. In this table, the short-hand notation of (k+1) NTT + 2k VP for

the cell corresponding to the re-encryption complexity for BV-PRE is used to indicate

that the re-encryption operations requires (k+1) calls to an NTT operation and 2k

calls to a VP operation. As a matrix-vector product of n × n by n generally has a

50



Table 3.2 Theoretical Complexity Comparison of LWE-based IND-CPA-Secure
PRE Schemes for Normalized Conditions

Scheme
Runtime/Latency

Enc ReEnc Dec
BV-PRE 1 NTT + 2 VP (k+1) NTT + 2k VP 1 NTT + 1 VP
NTRU-ABD-PRE 1 NTT + 1 VP (k+1) NTT + k VP 1 NTT + 1 VP
PS-NTRUReEncrypt
[NAL15]

1 NTT + 1 VP 1 VP 1 NTT + 1 VP

IND-CPA-LWE
[PWA+16]

2 MVP 2 BMVP 1 MVP

Plaintext Modulus p = 2, Key Switching Window r = 1, Message Length l = n
(in the LWE Scheme).

higher complexity than Number Theoretic Transform (NTT), which is O (n log n), the

runtime of BV-PRE is expected to be smaller for comparable values of ring dimension

(lattice security parameter) and ciphertext modulus bit-width than IND-CPA-LWE.

In summary, the relation of our work to the prior work is as follows.

• Constructions of PRE based on bilinear maps are either single-hop unidi-
rectional [AFGH06] or multi-hop bidirectional [CH07], whereas our scheme
is multi-hop unidirectional. As noted in [CH07], constructing a multi-hop
unidirectional PRE scheme using bilinear maps is an open problem. The
practical execution times of our BV-PRE scheme (order of one millisecond),
which supports dozens of hops without significant performance degradation,
are comparable to those of bilinear map-based constructions.

• The BV-PRE scheme has a lower time and space complexity than existing
IND-CPA-secure lattice-based PRE schemes.

3.1.2 Key-Switching and Automorphism

The notion of key-switching was introduced first by Brakerski and Vaikuntanathan

[BV11b] as an optimization in the context of FHE. Specifically, a key-switching

operation is invoked to transform a ciphertext encrypted under squared-secret key

to a ciphertext encrypted under linear secret key.

Key-switching operations have also been shown to be very useful for performing

algebraic operations on encrypted ciphertexts where data is embedded in plaintext

slots [GHS12b, GHS12c]. Smart and Vercauteren [SV14] showed that in RLWE based

51



FHE schemes the plaintext space can be split into a vector of “plaintext slots” by

an application of polynomial Chinese Remainder Theorem. Applying homomorphic

operations to the ciphertext has a natural isomorphism with the embedded plaintext

data. These operations are sometimes referred to as SIMD operations. One of

the limitations of these SIMD operation is that we cannot move data across the

slots of plaintext polynomial. This problem was resolved by Gentry, Halevi and

Smart [GHS12b, GHS12c] with the construction of an Automorphism operation on

ciphertext. By this tool of Automorphism transformation, the authors were able to

carry out an implementation of AES on FHE encrypted data.

One of the problems associated with this transformation is that after an

Automorphism operation, the ciphertext can only be decrypted by the transformed

secret key. At this stage, one needs to apply key-switching techniques to bring the

ciphertext into a form that can be decrypted by the original secret key. We present a

key-switching techniques native to Ring-GSW FHE scheme and utilize it further to

devise an Automorphism operation.

3.2 Proxy Re-Encryption

3.2.1 Workflow
The basic usage of Proxy Re-Encryption is shown in Figure 3.1. We assume a slightly
more general model for PRE operations where a Policy Authority operates as a proxy
for Alice to generate Alice’s public key and generate re-encryption keys to control
who can decrypt information encrypted by Alice. It is also possible for Alice to be
her own Policy Authority. The high-level operational flow of this key management
infrastructure is as follows:

1. The policy authority generates public and secret key pairs for publishers such
as Alice. These keys are designated as pkA and skA, respectively. This key
generation operation nominally occurs prior to deployment, or just as publishers
need to send information to a PRE server.

2. Prior to deployment, the policy authority sends the publisher Alice public key
pkA. The publisher (and possibly multiple publishers) uses this public key
to encrypt ciphertexts cA = Enc(m, pkA) they send to the PRE server. The

52



Figure 3.1 Proxy Re-Encryption functional key management and interaction
workflow.

policy authority retains the secret key skA in case it needs to access information
encrypted by the publisher.

3. When a subscriber needs to receive information from the PRE server, the
subscriber Bob sends his public key (pkB) to the policy authority.

4. The policy authority uses the publisher secret key (skA) and the subscriber
public key (pkB) to generate a re-encryption key (rkAB). This re-key generation
could occur prior to deployment or just as a subscriber needs to receive
information.

5. The policy authority sends the re-encryption key to the PRE server.

6. The PRE server re-encrypts ciphertext so it can be decrypted by Bob.

7. Bob receives ciphertext and decrypts it using its secret key skB.

An important aspect of this key management infrastructure is that PRE pushes trust

from the publisher to the policy authority and computational effort and bandwidth

requirements to the PRE server. The policy authority determines who can share

information and the PRE server uses information access policies to determine what

subset of information from the publisher should be sent to the subscriber. The

publisher and subscriber, who generally have the lowest computational capability in

53



mobile applications, require the lowest computational effort and only need to maintain

single keys, thus simplifying mobile deployments.

3.2.2 Syntax of Non-Interactive PRE

The workflow depicted in Figure 3.1 can only be supported by non-interactive PRE

schemes, which require that re-encryption keys are generated using Bob’s public key

and Alice’s private key. In this case, direct interaction between Bob and Alice can be

avoided.
A non-interactive scheme includes algorithms (ParamsGen, KeyGen, ReKeyGen,

Enc, ReEnc, Dec), described as follows:

• ParamsGen(λ): returns public parameters pp corresponding to security parameter
λ;

• KeyGen(pp, λ): returns public-secret key pairs (pk, sk);

• ReKeyGen(pp, ski, pkj): returns the re-encryption key rki→j;

• Enc(pp, pk,m): encrypts message m using pk and returns the ciphertext;

• ReEnc(pp, rki→j, ci): transforms a ciphertext ci of party i into a ciphertext cj
that party j can decrypt;

• Dec(pp, sk, c): recovers message m.

3.2.3 IND-CPA Security of PRE Schemes

Our security definition is a variant of the one postulated by Ateniese, Fu, Green and

Hohenberger [AFGH06]. While Ateniese et al. [AFGH06] considered the notion of

single-hop PRE schemes, both us and [PWA+16] consider multi-hop PRE schemes.

We remark that the distinction between single-hop and multi-hop PRE is one of

correctness, not security. We state the definition below.

Definition 3.2.1 (IND-CPA Security). We consider the following game between an

adversary A and a challenger C which proceeds in two phases.

Phase 1:

• C generates public parameters pp← ParamsGen(λ) and gives them to A.

54



• Uncorrupted key generation: C generates (pk, sk)← KeyGen(pp, λ) and gives pk
to A upon request. A can request polynomially many such pk. Let ΓH be the
set of honest public keys (also called honest entities).

• Corrupted key generation: C generates (pk, sk) ← KeyGen(pp, λ) and gives
(pk, sk) to A upon request. A can request polynomially many such (pk, sk).
Let ΓC be the set of corrupted public keys (also called corrupted entities).

The adversary can issue a polynomial number of these queries, in arbitrary order.

Phase 2:

• Re-encryption key generation: The adversary submits a directed acyclic re-
encryption graph G = (V,E) where the vertex set V is the set of all uncorrupted
keys the adversary requested in Phase 1. A is given all the re-encryption keys
rki→j ← ReKeyGen(pp, ski, pkj) where (i, j) ∈ E.
We remark that the adversary can generate by herself all re-encryption keys
rki→j where i ∈ ΓC, since she knows the secret keys ski. On the other hand,
she is not allowed to obtain rki→j where i ∈ ΓH and j ∈ ΓC as that could
allow her to decrypt the challenge ciphertext simply by performing a sequence
of re-encryptions.
We also note that this mechanism already allows the adversary to obtain re-
encryptions of any ciphertext that she wishes. To obtain the re-encryption of
an adversarially chosen string ci from the public key pki to pkj, she simply uses
the re-encryption key rki→j that she obtained and runs the honest re-encryption
procedure. Thus, there is no need to handle a separate re-encryption query.

• Challenge: A submits (i∗,m0,m1). C chooses a random bit b ∈ {0, 1}, and then
returns ci∗ ← Enc(pp, pki∗ ,mb). This is done only once, and it is required that
i∗ ∈ ΓH .

A finally outputs b′ ∈ {0, 1} as a guess of b. Define A’s advantage as

AdvcpaA (λ) =

∣∣∣∣Pr [b′ = b]− 1

2

∣∣∣∣.
The PRE scheme is IND-CPA-secure if this advantage is negligible for all poly-

time adversaries A.

A few remarks about this definition are in order.

First, assume that the proxy obtains a (unidirectional) re-encryption key from

user Alice to user Bob. The security definition above implies that even if the proxy

55



(who has the re-encryption key) and Alice collude, they cannot break the security of

Bob’s encryption.

Second, note that if the proxy and Bob collude, they can decrypt Alice’s

ciphertexts, by definition. This is simply because the proxy can use the re-encryption

key to turn Alice’s ciphertext into Bob’s ciphertext (for the same message) and then

proceed to use Bob’s secret key to decrypt. In essence, this means that the proxy and

Bob together have a decryption circuit for Alice. (We do not attempt to define the

notion of allowing this collusion to obtain only a “weak secret key” as in [AFGH06]).

Third, we note that stronger definitions are possible in that they can allow for

chosen ciphertext decryption queries as considered in the work of [CH07]. One way

to capture such attacks in the framework of our definition is to allow the adversary

to request for re-encryption keys from uncorrupted public keys to corrupted ones,

except that he cannot ask for a path of re-encryption keys from the challenge public

key to a corrupted public key. We do not pursue this line of definitions in this work.

Fourth, we note that our IND-CPA definition does not explicitly handle re-

encryption queries by the adversary, namely where the adversary queries with a tuple

(i, j, c) and obtains the result of the re-encryption algorithm applied to rki→j and c.

The reason we do not do this explicitly is that the adversary can simulate by herself

the execution of such a query by first asking our re-encryption key generation oracle

for rki→j and using it to re-encrypt c by herself. Since the pairs of keys for which the

adversary is permitted to make re-encryption queries is the same as the ones between

which she can obtain a re-encryption key, this omission is without loss of generality.

Finally, we note that the single-hop scheme of [AFGH06] is secure in a stronger

IND-CPA sense than the above, since they can handle re-encryption graphs that

contain directed cycles. On the other hand, the security proof of [PWA+16] appears

to only handle our acyclic IND-CPA definition.

56



3.3 PRE Cryptosystem with NTRU Key Generation and RLWE Key

Switching (NTRU-ABD-PRE)

The first PRE scheme proposed in this chapter is based on the NTRU encryption

scheme [HPS98] with RLWE modifications [SS11]. The NTRU immunity constraint

against subfield lattice attacks is used to set the distribution parameter for NTRU

key generation [ABD16]. The subfield lattice attacks allow the adversary to reduce

the ring dimension of the affected cryptosystems for certain parameter regimes and

solve the Shortest Vector Problem for n = 512 or lower [ABD16, CJL16].

3.3.1 NTRU-RLWE Encryption Scheme

The scheme is parameterized using the following quantities:

• security parameter (root Hermite factor) δ [CN11],

• ciphertext modulus q,

• ring dimension n,

• Bk-bounded discrete Gaussian key distribution χk over the polynomial ring
R = Z[n]/ 〈xn + 1〉 with distribution parameter σk (subscript k refers to key
distribution),

• Be-bounded discrete Gaussian error distribution χe with distribution parameter
σe (subscript e refers to error distribution),

• empirically selected assurance measure α to minimize the number of bits needed
to represent q (introduced for better performance).

In this work, we focus on the case of power-of-2 cyclotomic polynomials where n

is a power of 2 for multiple reasons. For one, the case of power-of-2 cyclotomics leads

to much simpler and more efficient implementations of number theoretic transforms

used to support ring operations. Further, the computational hardness underlying

security assumptions for these cases is better understood as compared to the case of

arbitrary cyclotomics [SS11].

We support a plaintext space of M = {0, 1, . . . , p− 1}n, where p ≥ 2 is

the plaintext modulus. All operations on ciphertexts are performed in the ring

57



Rq ≡ R/qR. Each coefficient in the polynomials is represented in the range{
−
⌊
q
2

⌋
, ...,

⌊
q
2

⌋}
.

The scheme includes the following operations:

• ParamsGen(λ): Choose positive integers q and n. Return pp = (q, n).

• KeyGen(pp, λ): Sample polynomials f ′, g ← χk and set f := pf ′ + 1 to satisfy
f ≡ 1 (modp). If f has no modular multiplicative inverse in Rq, then re-sample
f ′. Set the public key pk and private key sk:

sk := f ∈ R, pk := h = pg f−1 ∈ Rq.

• Enc (pp, pk = h,m ∈M): Sample polynomials s, e ← χe. Compute the
ciphertext:

c := hs+ pe+m ∈ Rq.

• Dec (pp, sk = f, c): Compute the ciphertext error b := f · c ∈ Rq. Output
m′ := b (modp).

The scheme is correct as long as there is no wrap-around modulo q. Indeed,

b = f · c = f (h s+ pe+m) = pgs+ pfe+ fm

and if the value of b does not wrap around modulo q, then

m′ = pgs+ pfe+ fm = fm = m (modp).

To derive the correctness constraint for decryption, we note that the coefficients

in g, s cannot exceed Bk as they are generated by a Bk-bounded discrete Gaussian

distribution χk. Analogously, the coefficients in f cannot exceed pBk + 1 and

coefficients in e cannot exceed Be, yielding

‖b‖∞ = ‖pgs+ pfe+ fm‖∞ < 2np2BkBe.

Here, we assume that Bk, Be � 1, which is true for all practical scenarios of this

scheme. To guarantee correct decryption of the ciphertext, coefficients in b should

58



not exceed q/2 leading to the following correctness constraint:

q > 4np2BkBe. (3.1)

When σ > ω (log n), the bound Bi can be expressed as σi
√
n, where i ∈ {k, e}

and 2−n+1 is the probability that a coefficient generated using discrete Gaussian

distribution exceeds the bound Bi [MR07, LTV13]. To obtain less conservative

estimated bounds for noise, we introduce an assurance measure α < n corresponding

to the probability of 2−α+1 that a coefficient of a discrete Gaussian polynomial exceeds

the bound Bi (the choice of a specific practical value of α is validated using an

empirical analysis of decryption correctness for a large sample of plaintexts). In this

case, the bounds Bk and Be can be expressed as σk
√
α and σe

√
α, respectively.

The constraint (3.1) was derived for the worst-case scenario where both Bi-

bounded polynomials may simultaneously take the upper (or lower) bound values for

all coefficients in the polynomials of dimension n. As the coefficients of polynomials

generated by the discrete Gaussian distribution are taken from a relatively large

sample of size n (where n is at least 512), we can apply the Central Limit Theorem

(CLT) to derive a lower (average-case) bound for q.

If we examine a product of two Bk-bounded polynomials g and s in the ring

Rq, we observe that each coefficient in g is multiplied by the mean of coefficients

in s (followed by modulo reduction). This implies that each coefficient in g · s is

bounded by nσkσknα, where σkn is the standard deviation of the mean expressed as

σkn = σkn
−1/2. After simplification, the bound for g · s can be expressed as

√
nσ2

kα

instead of the original worst-case bound nσ2
kα. Therefore, this technique allows one

to replace each occurrence of n (corresponding to a polynomial multiplication) with

√
n. Applying this logic to the worst-case constraint for the encryption scheme, we

59



obtain the following average-case correctness constraint:

q > 4
√
np2BkBe. (3.2)

It should be noted that the effective probability associated with assurance

measure α, i.e., 2−α+1, gets significantly reduced for a product of two discrete

Gaussians. This further justifies the use of an assurance measure much smaller than

n.

3.3.2 Security of NTRU-RLWE Encryption Scheme

This general NTRU-RLWE encryption scheme can be instantiated for three different

ranges of distribution parameter σk, giving us security from different computational

assumptions [SS11, LTV13, ABD16]. The scheme can be proven secure based on

the NTRU and RLWE assumptions for these different parameter regimes. Here, the

NTRU problem is to distinguish between the following two distributions: a polynomial

f/g with f and g sampled from distribution χk (assuming g is invertible over Rq) and

a polynomial h sampled uniformly at random over Rq.

The first variant [SS11] is based on the RLWE assumption. The public key

(polynomial f/g) distribution was shown to be statistically indistinguishable from

uniform random distribution for Φm (x) = xn + 1 when σk = ω
(
q1/2
)

[SS11]. This

allowed the authors to rely solely on the RLWE assumption to prove semantic security

of the encryption scheme. This logic was applied to show that the Stehlé-Steinfeld

scheme defined by operations KeyGen,Enc, and Dec and constraint σk = ω
(
q1/2
)

is

IND-CPA secure [SS11].

Though based solely on the RLWE assumption, the original Stehlé-Steinfeld

scheme is impractical for proxy re-encryption or any homomorphic encryption

scheme requiring at least one multiplication of two polynomials generated from the

60



distribution χk. In this case, the correctness inequality for q would never hold as we

would have B2
k ∝ σ2

k = ω (q) on the right hand side of the expression, i.e., q > ω (q).

For practical reasons, the constraint σk = ω
(
q1/2
)

was suggested to be replaced

with a smaller value corresponding to the error distribution χe by arguing that the

resulting Decisional Small Polynomial Ratio (DSPR) problem is secure against all

known practical attacks [LTV13]. This assumption was recently invalidated for some

parameter ranges by two subfield lattice attacks [ABD16, CJL16], which are able to

reduce the ring dimension of the affected cryptosystems and solve the Shortest Vector

Problem for n = 512 or lower.

Albrecht et al. [ABD16] proposed a new practical constraint for σk based on the

immunity of NTRU to subfield lattice attacks, conjecturing that the Stehlé-Steinfeld

proof may be extended to this case:

σk >

(
2q

nπe

)1/4

. (3.3)

Our proxy re-encryption scheme, referred to as NTRU-ABD-PRE, uses this

constraint. In contrast to the original Stehlé-Steinfeld scheme, this scheme supports

ReKeyGen, ReEnc, and homomorphic indexing and multiplication operations.

To meet the RLWE security requirements of the encryption scheme, we use the

inequality derived in [GHS12c], namely,

n ≥ log2 (q/σe)

4 log2 (δ)
. (3.4)

3.3.3 Single-Hop Re-Encryption Scheme

The PRE scheme introduces a new configurable parameter, key switching window r,

and two new operations (in addition to ParamsGen, KeyGen, Enc, and Dec):

61



• ReKeyGen (pp, sk = f, pk = h∗): For every i = 0, 1, .., blog2 (q) /rc, sample
polynomials si and ei, and compute γi

γi = h∗si + pei + f · (2r)i ∈ Rq, rk := γ =
(
γ0, γ1, ..., γblog2(q)/rc

)
.

• ReEnc (pp, rk = γ, c): Compute the ciphertext

c′ =

blog2(q)/rc∑
i=0

(ci · γi),

where ci := {h · s+ pe+ m }i, c =
blog2(q)/rc∑

i=0

ci · (2r)i.

Here, rk = γ is the re-encryption key. The key switching window r is used to

decompose the ciphertext coefficients into base-2r components ci, thus substantially

reducing the noise growth. Each ci is represented as a polynomial in Rq with

coefficients in the range between 0 and 2r − 1.

The PRE scheme is devised using a generalized version of the RLWE key

switching (bit decomposition) technique originally introduced for reducing the

ciphertext error in homomorphic encryption [BV11a, LTV13]. Consider a new set

of keys: private key f ∗ and public key h∗ = pg∗ (f ∗)−1. The goal is to re-encrypt the

ciphertext c using the public key h∗ without decrypting the data.

To this end, we introduce a set of elements γi as

γi = h∗si + pei + f · (2r)i ∈ Rq,

where i = 0, 1, .., blog2 (q) /rc. This set of elements, referred to as the re-encryption

key, represents an encryption of all powers-of-2r multiples of the secret key f under the

public key h∗. The key switching window was set to unity in [BV11a, LTV13]. In this

study, we consider a range of key switching window values (powers of 2) to achieve

a faster implementation of re-encryption. The vector γ =
(
γ0, γ1, ..., γblog2(q)/rc

)
is

public.

62



The ciphertext c is computed using the public key h:

c := hs+ pe+m ∈ Rq.

For each window i of length r (in bits), we introduce ci := {h · s+ pe+ m }i,

and the ciphertext c can then be represented as

c =
∑
i

ci · (2r)i.

The polynomial c′ computed as

c′ =
∑
i

ci · γi

can be shown to represent an encryption of m under the new public key h∗.

Indeed,

f ∗·c′ = f ∗·(
∑
i

ci·γi) =
∑
i

ci·(f ∗·γi) = p
∑
i

ci·Ei+
∑
i

ci f
∗f · (2r)i = p

∑
i

ci·Ei+f ∗f c,

where Ei = g∗si + f ∗ei.

It can be seen that

f ∗ · c′ = f ∗f c = m (modp) ,

i.e., the decryption is correct, if the ciphertext error f ∗ · c′ is not too large to wrap

around q.

Considering that ‖ci‖∞ ≤ 2r − 1, ‖Ei‖∞ ≤ nBe (Bk + pBk + 1), and

‖f ∗f c‖∞ ≤ n2 (pBk + 1) {pBe (Bk + pBk + 1) + (pBk + 1) (p− 1)} ,

63



we have

‖f ∗c′‖∞ ≤ pn (blog2 (q) /rc+ 1) (2r − 1) {nBe (Bk + pBk + 1)}

+ n2 (pBk + 1) (pBe (Bk + pBk + 1) + (pBk + 1) (p− 1)}

< 2p2n2BeBk {(2r − 1) (blog2 (q) /rc+ 1) + pBk} .

To guarantee correct decryption of the ciphertext, f ∗ ·c′ should not exceed q/2 leading

to the following worst-case correctness constraint:

q > 4p2n2BkBe {pBk + (2r − 1) (blog2 (q) /rc+ 1)} .

Similar to the case of the encryption scheme, we can apply CLT to obtain the following

average-case correctness constraint for the PRE scheme:

q > 4p2nBkBe {pBk + (2r − 1) (blog2 (q) /rc+ 1)} . (3.5)

3.3.4 Extension to Multiple Re-Encryption Hops

The presented re-encryption scheme can be generalized to support multiple re-

encryption hops. Consider a new set of keys: private key f ∗∗ and public key

h∗∗ = pg∗∗ (f ∗∗)−1. The goal is to re-encrypt the re-encrypted ciphertext c′ devised

in Section 3.3.3 using the public key h∗∗ without decrypting the data.

Analogously to the case of single re-encryption, we introduce a set of elements

γ′i = h∗∗s′i + pe′i + f ∗ · (2r)i ∈ Rq,

where i = 0, 1, .., blog2 (q) /rc. The vector γ′ =
(
γ′0, γ

′
1, ..., γ

′
blog2(q)/rc

)
is the re-

encryption key to transform from {f ∗, h∗} to {f ∗∗, h∗∗}.

64



The polynomial c′′ computed as

c′′ =
∑
i

c′i · γ′i

can be shown to represent an encryption of m under the new public key h∗∗ as long

as there is no wrap-around modulo q.

Indeed,

f ∗∗ · c′′ =
∑
i

c′i · (f ∗∗ · γ′i) = p
∑
i

c′i ·E ′i +
∑
i

c′i f
∗∗f ∗ · (2r)i = p

∑
i

c′i ·E ′i + f ∗∗f ∗ c′,

where E ′i = g∗∗s′i + f ∗∗e′i.

It can be easily shown that

f ∗∗ · c′′ = f ∗∗f ∗ · c′ = f ∗∗f ∗f · c = m (modp) ,

i.e., the decryption is correct, if the ciphertext error f ∗∗ · c′′ is not too large to wrap

around q.

Applying the same procedure as for the first re-encryption, the correctness

inequality after two re-encryptions can be expressed as

q > 4p2nBkBe {(2r − 1) (blog2 (q) /rc+ 1)}

+ 4p2nBkBen
0.5 (pBk + 1) {pBk + (2r − 1) (blog2 (q) /rc+ 1)} .

Considering that the first summand is at least by a factor of n0.5 (pBk + 1) (this

value is larger than 210 for all practical parameter ranges) smaller than the second

65



summand, the correctness constraint can be rewritten as

q > n0.5 (pBk + 1) · 4p2nBkBe {pBk + (2r − 1) (blog2 (q) /rc+ 1)} , (3.6)

which implies that the second re-encryption increases the lower bound for q by a

factor of n0.5 (pBk + 1).

After two re-encryption hops, the expression on the right hand side of (3.6) is

Ω(B3
k) and B3

k ∝ σ3
k ∝ q3/4+ε, where ε > 0. This implies that NTRU-ABD-PRE does

not support more than two re-encryption hops because in the case of three hops the

right-hand side expression of (3.6) will reach q1+ε.

The effective value of assurance measure α corresponding to a given probability

can be decreased for each extra step of re-encryption as long as the empirical

evaluation of decryption correctness is performed.

3.3.5 IND-CPA Security

We will show that the NTRU-ABD-PRE scheme is IND-CPA secure in the sense of

Definition 3.2.1.

As noted in Section 3.3.2, the NTRU-ABD-PRE scheme is based on the NTRU

and RLWE assumptions. Specifically, we use a variant of the NTRU assumption

formulated in [ABD16] to achieve the immunity of NTRU to subfield lattice attacks.

We refer to this variant as NTRU-ABD with the formal definition as follows:

Definition 3.3.1. The NTRU-ABDn,q,χk problem is to distinguish between the

following two distributions over ring Rq = Zq[x]/ 〈xn + 1〉: a polynomial g/f with

g and f sampled from distribution χk with σk > Θ(q1/4) (assuming g is invertible

over Rq) and a polynomial h sampled uniformly at random over Rq.

For the RLWE assumption, we use the Hermite normal form [LTV13], which is

defined as follows:

66



Definition 3.3.2. For all λ ∈ N, let φ(x) = φλ(x) ∈ Z[x] be a cyclotomic polynomial

of degree n = n(λ), let q = q(λ) ∈ Z be a prime number, let the ring R
.
= Z[x]/ 〈φ(x)〉

and Rq
.
= R/qR, and let χe denote an error distribution over the ring R.

The decision ring-LWE assumption RLWEφ,q,χe states that for any ` = poly(λ),

{(ai, ai · s+ ei)}i∈[`]

c
≈ {(ai, ui)}i∈[`] ,

where s and ”error polynomials” ei are sampled from the noise distribution χe, and

ai and ui are uniformly random in Rq.

Albrecht et al. [ABD16] conjectured that the Stehlé-Steinfeld IND-CPA proof [SS11],

which was provided for σk = ω(q1/2), may be extended to this case assuming only

RLWE. However, as it stands, the security of this scheme is based on RLWE as well as

the NTRU-ABD assumption described above. We will assume that the NTRU-ABD

assumption is stronger than RLWE and set the key-sizes accordingly.

We showed that the NTRU-ABD PRE scheme maintains correctness for only

two hops, in the sense that once a ciphertext goes through more than two hops, it

cannot be decrypted to the correct message any more. It is important to note that

the “two-hopness” is a limitation on the correctness of the scheme, not its security.

In particular, we will show below that the scheme is IND-CPA-secure in the sense of

Definition 3.2.1 which is a notion of security for general, multi-hop PRE schemes.

Our proof for NTRU-ABD-PRE is similar to that of the IND-CPA-secure LWE

scheme proposed in [PWA+16].

Theorem 1 (IND-CPA security of NTRU-ABD-PRE). Under the NTRU-ABDn,q,χk

and RLWEφ,q,χe assumptions, NTRU-ABD-PRE is IND-CPA-secure. Specifically, for

a poly-time adversary A, there exists a poly-time distinguisher D such that

AdvcpaA (λ) ≤ (ρ · (Qrk +Qre) +N + 1) ·max(Adv
NTRU-ABDn,q,χk
D (λ),Adv

RLWEφ,q,χe
D (λ))

67



where Qrk and Qre are the numbers of re-encryption key queries and re-encryption

queries, respectively; N is the number of honest entities; λ is the security parameter;

ρ := 1 + blog2 q/rc.

Proof. We show that the NTRU-ABD-PRE scheme is IND-CPA-secure through a

sequence of games.

Let Game0 be an initial game between an adversary A and a challenger C

with their interactions governed by Definition 3.2.1. For notational convenience,

let us consider the case when ΓH = {1, . . . , N} and ΓC = {N + 1, . . . ,M} for

some polynomial M . Furthermore, without loss of generality, let 1, 2, . . . , N be the

topological order dictated by the re-encryption graph, starting from the sinks to the

sources, namely there are no edges from i to k if i < k. In more detail:

• The i-th key pair is defined as ski := fi ∈ R, and pki := hi = pgif
−1
i ∈ Rq,

where fi = pf ′i + 1 and f ′i , gi ← χk.

• The re-encryption key from party i to party k is written as

rki→k := (hk · siku + peiku + fk · (2r)u)u∈{0,1,...blog2(q)/rc} ,

where siku, eiku are generated by party i.

• The challenge ciphertext of message mb related to party i∗ is:

c∗ := h∗ · s∗ + pe∗ +mb ∈ Rq,

where b ∈ {0, 1} is the challenge bit, s∗, e∗ ← χe, and h∗ is the challenge public
key.

Let Gamek (1 ≤ k ≤ N) be defined by considering the honest party k ∈ ΓH .

Gamek is identical to Gamek−1 except for the following changes:

• When generating the k-th key pair, hk = p·r∗k, where r∗k is a randomly generated
ring element rather than an NTRU-ABD sample.

• When answering the re-encryption key query (i, k): First, note that i > k
because of the topological ordering. The re-encryption key is expressed as

rki→k := (p · γiku)u∈{0,1,...blog2(q)/rc} ,

where γiku is freshly random.

68



Each Gamek is computationally indistinguishable from Gamek−1 because of the

NTRU-ABD and RLWE assumptions. First, k ∈ ΓH and therefore, there is no

re-encryption “edge” from user k to any user in ΓC . Additionally, and crucially, all

the re-encryption keys (k, i) have already been replaced with uniformly random ring

elements in the prior games. Consequently, the secret key fk is used only in the form

of fresh NTRU-ABD samples in its public key and in the form of fresh RLWE samples

in the re-encryption keys (the latter assumes that the public key is indistinguishable

from a random sample based on the the NTRU-ABD assumption). Thus, all these

can be replaced by uniformly random ring elements by invoking the NTRU-ABD and

RLWE assumptions. The security loss is proportional to the number of re-encryption

key and re-encryption queries that user k was part of (an additional multiplicative

factor 1+blog2 q/rc is incurred in the security loss as each re-encryption key contains

that many RLWE samples).

Gamefinal is the same as GameN except for the challenge ciphertext that is

expressed as

c∗ := p · r∗ +mb ∈ Rq,

where r∗ is a freshly random ring element in Rq. This is computationally indistin-

guishable from GameN by the RLWE assumption (assuming that the public key is

indistinguishable from a random sample based on the the NTRU-ABD assumption).

The last change guarantees that the challenge bit b is information-theoretically

hidden from A, and therefore, the advantage of the adversary in Game1 is 0.

Putting all this together, we see that

AdvcpaA (λ) ≤ (ρ · (Qrk +Qre) +N + 1)·max(Adv
NTRU-ABDn,q,χk
D (λ),Adv

RLWEφ,q,χe
D (λ))

where ρ := 1 + blog2 q/rc. This finishes our proof.

69



3.4 PRE Cryptosystem with RLWE Key Generation and Key Switching

(BV-PRE)

The second PRE scheme proposed in this chapter, BV-PRE, is based on the

Brakerski-Vaikuntanathan (BV) homomorphic encryption scheme [BV11b]. The

BV-PRE scheme relies only on the RLWE security assumption.

3.4.1 The Encryption Scheme

The basic encryption scheme comes from the work of Lyubashevsky, Peikert and

Regev [LPR10, LPR13] and Micciancio [Mic10]. The scheme is parameterized using

the following quantities:

• security parameter (root Hermite factor) δ [CN11],

• ciphertext modulus q,

• ring dimension n,

• Be-bounded discrete Gaussian error distribution χe with distribution parameter
σe,

• empirically selected assurance measure α to minimize the number of bits needed
to represent q (introduced for better performance).

As in the case of NTRU-ABD-PRE, we work with the polynomial ring Rq =

Zq[n]/ 〈xn + 1〉 and use a plaintext space of M = {0, 1, . . . , p− 1}n, where p ≥ 2 is

the plaintext modulus. Each coefficient in the polynomials is represented in the range{
−b q

2
c, ..., b q

2
c
}

. We also introduce Uq as a discrete uniform random distribution over

Rq.
The scheme includes the following operations:

• ParamsGen(λ): Choose positive integers q and n. Return pp = (q, n).

• KeyGen(pp, λ): Sample polynomials a ← Uq and s, e ← χe. Compute b :=
a · s+ pe ∈ Rq. Set the public key pk and private key sk:

sk := s ∈ R, pk := (a, b) ∈ R2
q .

70



• Enc (pp, pk = (a, b) ,m ∈M): Sample polynomials v, e0, e1 ← χe. Compute the
ciphertext c = (c0, c1) ∈ R2

q :

c0 := b · v + pe0 +m ∈ Rq, c1 := a · v + pe1 ∈ Rq.

• Dec (pp, sk = s, c): Compute the ciphertext error t := c0 − s · c1 ∈ Rq. Output
m′ := t (modp).

The scheme is correct as long as there is no wrap-around modulo q. Indeed,

t = b · v + pe0 +m− s · (a · v + pe1) = (a · s+ pe) · v + pe0 +m− s · (a · v + pe1)

= m+ p (e · v + e0 − s · e1) .

where all computations are done mod q. If the value of t does not wrap around

modulo q, then

m′ = m+ p (e · v + e0 − s · e1) = m (modp).

To derive the correctness constraint for decryption, we note that the coefficients

in s, v, e, e0, e1 cannot exceed Be as they are generated by a Be-bounded discrete

Gaussian distribution χe. Applying the same procedure as for the NTRU-RLWE

scheme followed by CLT, we obtain

‖t‖∞ < 3
√
npB2

e .

Here, we assume that Be > 1. To guarantee correct decryption of the ciphertext,

coefficients in t should not exceed q/2, leading to the following correctness constraint:

q > 6
√
npB2

e . (3.7)

71



3.4.2 Proxy Re-Encryption Scheme

The PRE scheme introduces three new operations (in addition to ParamsGen, KeyGen,

Enc, and Dec) in contrast to two needed for the PRE functionality in NTRU-ABD-

PRE. In BV-PRE, the evaluation key generation is performed in two separate stages:

Preprocess and ReKeyGen. First, the owner of key s∗ generates a set of “public” keys

(βi, βi · s∗ + pei) and then sends these keys to the policy authority, as displayed in

Figure 3.1. After that, the proxy authority computes γi to generate the complete

re-encryption key. This allows one to apply the same non-interactive PRE workflow

as discussed in Section 3.2.

• Preprocess (pp, λ, sk∗ = s∗): For every i = 0, 1, .., blog2 (q) /rc, where r is the key
switching window, sample polynomials βi ← Uq and ei ← χe and compute

θ∗i = βi · s∗ + pei ∈ Rq,

pk := (βi, θ
∗
i )i∈{0,1,...blog2(q)/rc} .

• ReKeyGen
(
pp, sk = s, pk = (βi, θ

∗
i )i∈{0,1,...blog2(q)/rc}

)
:

For every i = 0, 1, .., blog2 (q) /rc, compute γi and store them in re-encryption
key rk

γi = θ∗i − s · (2r)
i ∈ Rq, rk := (βi, γi)i∈{0,1,...blog2(q)/rc} .

• ReEnc
(
pp, rk = (βi, γi)i∈{0,1,...blog2(q)/rc} , c

)
: Compute the ciphertext c′ = (c′0, c

′
1)

using the 2r-base decomposition of ciphertext element c1 of original ciphertext
c = (c0, c1)

c′0 = c0 +

blog2(q)/rc∑
i=0

(c
(i)
1 · γi), c′1 =

blog2(q)/rc∑
i=0

(c
(i)
1 · βi),

where c
(i)
1 := {a · v + pe}i is the ith “digit” of the base-2r representation of c1

and

c1 =

blog2(q)/rc∑
i=0

c
(i)
1 · (2r)

i.

72



The ciphertext c′ = (c′0, c
′
1) can be shown to represent an encryption of m under

the new key s∗. Indeed,

c′0 − s∗c′1 = c0 +

blog2(q)/rc∑
i=0

(c
(i)
1 · γi)− s∗ ·

blog2(q)/rc∑
i=0

(c
(i)
1 · βi)

= c0 +

blog2(q)/rc∑
i=0

(
c

(i)
1 ·
{
βi · s∗ + pei − s · (2r)i

})
− s∗ ·

blog2(q)/rc∑
i=0

(c
(i)
1 · βi)

= c0 − s · c1 + pEi,

where Ei =
blog2(q)/rc∑

i=0

(
c

(i)
1 · ei

)
.

It can be easily seen that

c0 − s · c1 + pEi (modp) = c0 − s · c1 (modp) = m (modp) .

The above analysis implies that the ciphertext noise term grows only by a small

additive factor p ‖Ei‖∞ after each re-encryption. ‖Ei‖∞ can be expressed as

‖Ei‖∞ <
√
nBe (2r − 1) (blog2 (q) /rc+ 1) .

Therefore, the correctness constraint for d re-encryption hops can be written as

q > 2
√
npBe {3Be + d · (2r − 1) (blog2 (q) /rc+ 1)} . (3.8)

3.4.3 IND-CPA Security

We will show that the BV-PRE scheme is IND-CPA secure in the sense of

Definition 3.2.1.

Theorem 2 (IND-CPA security of BV-PRE). Under the RLWEφ,q,χe assumption,

BV-PRE is IND-CPA-secure. Specifically, for a poly-time adversary A, there exists

73



a poly-time distinguisher D such that

AdvcpaA (λ) ≤ (ρ · (Qrk +Qre) +N + 1) ·Adv
RLWEφ,q,χe
D (λ)

where Qrk and Qre are the numbers of re-encryption key queries and re-encryption

queries, respectively; N is the number of honest entities; λ is the security parameter; φ

is the cyclotomic polynomial defining the ring Rq = Zq[x]/ 〈φ〉 and ρ := 1+blog2 q/rc.

Proof. We show that the BV-PRE scheme is IND-CPA-secure through a sequence of

games.

Let Game0 be an initial game between an adversary A and a challenger C

with their interactions governed by Definition 3.2.1. For notational convenience,

let us consider the case when ΓH = {1, . . . , N} and ΓC = {N + 1, . . . ,M} for

some polynomial M . Furthermore, without loss of generality, let 1, 2, . . . , N be the

topological order dictated by the re-encryption graph, starting from the sinks to the

sources, namely there are no edges from i to k if i < k. In more detail:

• The i-th key pair is defined as sk := si ∈ R, and pk := (ai, ai · si + pei) ∈ R2
q ,

where si, ei ← χe.

• The re-encryption key from party i to party k is written as

rki→k := (βiku, βiku · sk + peiku − si · (2r)u)u∈{0,1,...blog2(q)/rc} ,

where βiku, eiku are generated by party k.

• The challenge ciphertext related to party i∗ is c∗ = (c∗0, c
∗
1) ∈ R2

q :

c∗0 := b∗ · v∗ + pe∗0 +mb ∈ Rq, c
∗
1 := a∗ · v∗ + pe∗1 ∈ Rq,

where b ∈ {0, 1} is the challenge bit, v∗, e∗0, e
∗
1 ← χe, and (a∗, b∗) is the challenge

public key.

Let Gamek, i ∈ {1 ≤ k ≤ N}, be defined by considering the honest party

k ∈ ΓH . Gamek is identical to Gamek−1 except for the following changes:

• When generating the k-th key pair, bk is a randomly generated ring element
rather than a RLWE sample.

74



• When answering the re-encryption key query (i, k): First, note that i > k
because of the topological ordering. The re-encryption key is expressed as

rki→k := (βiku, γiku)u∈{0,1,...blog2(q)/rc} ,

where γiku is freshly random.

Each Gamek is computationally indistinguishable from Gamek−1 because of the

RLWE assumption. First, k ∈ ΓH and therefore, there is no re-encryption “edge”

from user k to any user in ΓC . Additionally, as before, all the re-encryption keys (k, i)

have already been replaced with uniformly random ring elements in the prior games.

Consequently, the secret key sk is used only in the form of fresh RLWE samples in

its public key and in the re-encryption keys. Thus, all these can be replaced by

uniformly random ring elements by invoking the RLWE assumption. The security

loss is proportional to the number of re-encryption key and re-encryption queries

that user k was part of (an additional multiplicative factor 1 + blog2 q/rc is incurred

in the security loss as each re-encryption key contains that many RLWE samples).

Gamefinal is same as GameN except for the challenge ciphertext that is expressed

as

c∗0 := r∗1 +mb ∈ Rq, c
∗
1 := r∗2 ∈ Rq,

where r∗1, r
∗
2 are freshly random ring elements in Rq. This is computationally

indistinguishable from GameN by the RLWE assumption as well.

The last change guarantees that the challenge bit b is information-theoretically

hidden from A, and therefore, the advantage of the adversary in Game1 is 0.

Putting together, we see that

AdvcpaA (λ) ≤ (ρ · (Qrk +Qre) +N + 1) ·Adv
RLWEφ,q,χe
D (λ)

where ρ := 1 + blog2 q/rc. This finishes our proof.

75



3.5 PRE Cryptosystem with LWE Key Switching (GSW-PRE)

We describe our third PRE scheme which is based on GSW [GSW13] identity based

FHE scheme. Our construction relies only on LWE security assumption.

3.5.1 Encryption Scheme

GSW encryption scheme was introduced by Gentry, Shahai and Waters [GSW13].

Message space for the scheme is restricted to M ∈ {0, 1}. The scheme is broadly

parameterized by :

• Security parameter λ.

• Working modulus q of κ = κ (λ, d) bits.

• d is the maximum depth of the circuit.

• Lattice dimension n and m = O (n log q). It is sufficient to take m ≥ 2n log q.

• Bound B for generating error e from distribution χ = χB (λ).

Encryption scheme is described by the following algorithms:

• ParamsGen(λ): Choose appropriate q, n and m = 2n log q. Set N = (n+ 1) ·
dlog qe and ` = dlog qe. The public parameter pp consists of (q, n,m, `,N).

• SecretKeyGen(λ, pp): Sample ~t ∈ Znq from distribution χ, ~t←$χn. We set

sk = ~s←
(

1,−~t
)
∈ Zn+1

q . Also, set ~v = PowersOf2 (~s).

• PublicKeyGen(λ, pp, sk): Public key consists of ~b and matrix B. Matrix B
is obtained by sampling uniformly from Um×nq , B←$Um×nq . We generate error

vector as ~e←$χm and set ~b = B · ~t + ~e. Set public key as A =
[
~b || B

]
∈

Zm×(n+1)
q .

• Encrypt(pp, pk, µ): For encrypting a message µ ∈ {0, 1} we sample a uniform
matrix R ∈ UN×m{0,1} and output the ciphertext C ∈ ZN×Nq as follows:

C = Flatten (µ · IN + BitDecomp (R ·A))

• Decrypt(pp, sk,C): We recover µ′ by performing the following two operations.

1. Compute w = C · ~v ∈ ZNq .

2. Recover µ′ = bwi/2ie where 2i ∈ (q/4, q/2].

76



3.5.2 Proxy Re-Encryption Scheme

GSW-PRE augments the above mentioned PKE scheme with two additional operations,

namely, ReKeyGen and ReEncrypt. The operations for Proxy Re-Encryptions are

described as follows:

• ReKeyGen(pp, λ, skA, pkB): ReKeyGen generates the evaluation public key that
is required for a proxy to transform the ciphertext. In this scheme the re-
encryption key is a sequence of (n+ 1) matrices where each matrix is represented

as EK [i] ∈ ZN×(n+1)
q . Each of the matrix is generated as follows:

Sample uniformly random matrix Ri ← UN×m{0,1}

EK [i] = Ri ·AB + (~vA � i)

rkA→B = (EK [0] , · · · ,EK [n])

(3.9)

Where v � i represents the addition of v on the i-th column.

• ReEncrypt(pp,CA, rkA→B): This operations transforms a ciphertext CA into
CA→B. For this purpose we work only on the top ` row of ciphertext CA,
represented as C`×N

A and build the resulting ciphertext CA→B in blocks of Z`×Nq .
Finally, we assemble the blocks by stacking them vertically which gives us a
ciphertext C ∈ ZN×Nq .

Ci = BitDecomp
(
C`×N
A · EK[i]

)
, i ∈ [0, n]

CA→B =
[
C0 ||ᵀ · · · ||ᵀ Cn

] (3.10)

Ciphertext CA→B can be shown to represent an encryption of µ under the new
key skB as described below. For simplicity, let Ctop

A ∈ Z`×Nq represent the top `

row block of ciphertext CA. Then, Ctop
A can be written as:

Ctop
A = Flatten

(
µ · g + BitDecomp

(
Rtop ·AA

))
Now, for i = 0 we can see that,

Ctop
A · EK[0] = Ctop

A · [R0 ·AB + ~vA]

= Ctop
A · ~vA + Ctop

A ·R0 ·AB = µ · g + R′top
0 ·AB

In general, we can see that for any i ≤ n we have,

Ctop
A · EK[i] = Ctop

A · [Ri ·AB + (~vA � i)]

= Ctop
A · (~vA � i) + Ctop

A ·Ri ·AB

= (µ · g� i) + R′top
i ·AB

77



Finally, we can see that vertical stacking of these partial results leads us to the
final ciphertext CA→B.

CA→B =
[
Ctop
A · EK[0] ||ᵀ · · · ||ᵀ Ctop

A · EK[n]
]

= µ ·G + R′ ·AB

3.5.3 Correctness Constraint and Run-time Analysis

For an analysis on the correctness constraint we determine the noise w as:

w = CA→B · ~vB = µ · ~vB + R′~e.

We can see that error in ciphertext mainly depends on norm of R′ or ‖C ·R‖1.

Assuming worst-case conditions we correctly decrypt the ciphertext for the following

condition:

‖R′~e‖1 ≤ q/8 or, q ≥ 8mNB [worst-case bounds]

Invoking central limit theorem we arrive at a more conservative bounds as:

q ≥ 8
√
mNB [average-case bounds] (3.11)

Run-time for performing the re-encryption procedure depends upon the size of

the matrices EK[i] and ciphertext C. Hence, run-time complexity to re-encrypt each

block is O
(
n2 · log2 q

)
. Repeating this for the entire n + 1 blocks we arrive at the

overall time complexity of the GSW-PRE scheme given by:

GSW-PRE runtime: O
(
n3 log2 q

)
.

78



3.5.4 Multi-hop GSW PRE

In case of a multi-hop scenario, a proxy interacts with the next proxy, thus building a

chain of re-encryptions until the ciphertext reaches the final entity. Given h such hops

we expect the noise to grow by number exponential in h w.r.t to security parameter λ.

Applying correctness constraints from single hop GSW-PRE to multi-hops we arrive

at the following bounds for q:

q ≥ 8
√
NhmB

3.6 PRE Cryptosystem with RLWE Key Generation and Key Switching

(Ring-GSW PRE)

In this section, we describe our last PRE scheme which is based on ring variant of

GSW FHE scheme. Similar to BV-PRE, the construction relies solely on RLWE

security assumption and underlying cyclotomic polynomial arithmetic.

3.6.1 Ring-GSW Encryption Scheme

Messages are restricted to plaintext space of M ∈ Rp where p ≥ 2. Unlike our

previous scheme, we consider the coefficients of the polynomial to be in the range

[−q/2, q/2]. The following represents the parameters of the encryption scheme:

• security parameter λ and ciphertext modulus q.

• plaintext modulus p� q and ring dimension n.

• B- bounded discrete Gaussian distribution χB.

• Ternary distribution T which generates a ring polynomial with coefficients
uniformly sampled from {−1, 0, 1}.
• depth d of the circuit for homomorphic evaluation.

The scheme encapsulates the following operations:

79



• ParamsGen
(
1λ
)
: Choose positive integers q = q (λ, d) and n = n (λ, d). Return

public parameter set pp = (`,N, p, q, n) where ` = dlog qe and N = 2`.

• SecretKeyGen
(
1λ, pp

)
: Sample polynomial s←$χB,Rq and set sk = (1;−s) ∈

R2×1
q .

• PublicKeyGen
(
1λ, pp, sk

)
: To generate public key pk sample polynomials a and

e from uniform and discrete Gaussian distributions respectively and proceed as
follows:

a←$URq , e←$χB,Rq , b = as+ pe

Set the public key, pk = A1×2 = [b a]
(3.12)

• Encrypt(pp, pk, µ): To encrypt a message polynomial µ ∈ Rp we sample a
random vector r ∈ RN

q from uniform ternary distribution and an error matrix
E ∈ RN×2

q and set the encryption as follows:

C = µ ·G + r ·A + pE, r←$ T NRq , E←$χN×2
B,Rq

• Decrypt(pp, sk,C): Given a ciphertext C, plaintext µ is recovered by multi-
plying the first row of the ciphertext with sk. This is represented as follows:

µ′ = ((C0 × sk mod q) mod p) ≡ µ mod p

3.6.2 Ring-GSW PRE Scheme

As in the case of GSW PRE scheme we introduce two more operations ReKeyGen

and ReEncrypt. For a proxy to gain access to the re-encryption key, party A retrieves

party B’s public key and proceeds with the ReKeyGen operation. The operations for

Ring-GSW PRE scheme are described as follows:

ReKeyGen(pp, skA, pkB): ReKeyGen evaluation key consists of two ring

polynomial matrices. To generate the matrices we first sample two uniformly random

matrices r0, r1 ∈ RN
q . Next we sample two error matrices from discrete Gaussian

distribution χRq ,B and set the evaluation matrices EK (i) as follows:

ri←$ T NRq , Ei←$χN×2
Rq ,B

, i ∈ {0, 1}

EK[i] = ri ·AB + pEi + (PowerOf2 (skA)� i)

rkA→B = { EK[0], EK[1] }

80



ReEncrypt(pp,CA, rkA→B): This operations results in a ciphertext CA→B

which can be decrypted under B’s secret key skB. We use the top ` rows of the

ciphertext CA to perform re-encryption and denote this as Ctop
A . Next, we multiply

each of the matrices EK[i] with Ctop
A and reassemble the results into a Ring-GSW

ciphertext CA→B. This is shown as follows:

Ci
A→B = BitDecomp

(
Ctop
A

)
· EK[i] ∈ R`×2

q

CA→B =
[
C0
A→B ||ᵀ C1

A→B
]

3.6.3 Correctness Constraint Analysis

To formulate the correctness constraint of the scheme we have to ensure that there

is no wrap around mod-q and coefficients of the noise term t are indeed in the range

[−q/2, q/2]. Noise term t is given by:

t = CA→B,0 × skB = CA→B,0,0 − sBCA→B,0,1

Let, αi = BitDecomp
(
Ctop
A,j,0

)
and βi = BitDecomp

(
Ctop
A,j,1

)
for (i, j) ∈ [0, `). Then,

CA→B,0 can be shown as:

CA→B,0 = [αi βi]
`−1
i=0 · [rjAB + pEj + PowerOf2 (skA)]

where i ∈ [0, `) and j ∈ [0, 2`) .

CA→B,0,0 = bB

`−1∑
i=0

(αiri + βir`+i) + p

`−1∑
i=0

(αiEi,0 + βiE`+i,0)

+
`−1∑
i=0

αiPowerOf2 (1) +
`−1∑
i=0

βiPowerOf2 (−sA)

= bBr
′
0 + pE′0,0 + α− sAβ

81



Similarly,

CA→B,0,1 = aB

`−1∑
i=0

(αiri + βir`+i) + p

`−1∑
i=0

(αiEi,1 + βiE`+i,1)

= aBr
′
0 + pE′0,1

Therefore,

t = r′0 (bB − aBsB) + p
(
E′0,0 − sBE′0,1

)
+ µ+ pe ≈ µ

For correct decryption ‖t‖∞ ≤ q/2. By using central limit theorem on B-

bounded discrete Gaussian distribution we arrive at the final correctness constraint:

‖t‖∞ ≤ p ·
(
4ndlog qeB + 2

√
ndlog qe+B

)
≈ 5pnBdlog qe

or, q ≥ 10pnBdlog qe [ average case bounds ]

(3.13)

3.6.4 Key-Switching and Automorphism

We introduce two new operations, KeySwitchGen and SwitchKey to aid the ciphertext

transformation process. Assuming we have a ciphertext C encrypted under secret key

sk we describe below the key-switching procedure which results in a ciphertext C∗

which can be decrypted with secret key sk∗:

KeySwitchGen(pp, sk, sk∗): We generate an evaluation key which consists

of two RLWE matrices similar to ReKeyGen operation. First we generate a noise

free RLWE pair from s∗. Next, to generate each of the RLWE matrix we generate

a random vector from ternary distribution TRq and an error matrix from discrete

82



Gaussian distribution and proceed as follows:

Sample a←$URq ; b = as∗; Set A = [b a] ∈ R1×2
q

Sample ri←$ TRq ; Ei←$χRq ,B

EK[i] = riA + pEi + (PowerOf2(sk)� i)

Set ek = {EK[0],EK[1]}

SwitchKey(pp,C, ek): This results in a ciphertext C∗ and is analogous to

ReKeyGen procedure of Ring-GSW-PRE scheme. We outline the procedure as

follows:

C∗,i = BitDecomp
(
Ctop

)
· EK[i] ∈ R`×2

q

C∗ =
[
C∗,0 ||ᵀ C∗,1

]

Next, we discuss the application of Automorphism transformation in conjunction

with key-switching operation. Automorphism transformation, denoted by σ, has an

effect of rotating or permuting the plaintext slots. While plaintext slots can be easily

generated for power of two cyclotomic polynomials by an application of negacyclic

NTT, plaintext slots can be rotated only for special cyclotomic polynomials where

plaintext modulus satisfies p ≡ 1 ( mod m) and R = Z [X] /Φm (X). Number of

slots that can be used is denoted by ` = ϕ(m) where each slot element mi ∈ Zp.

An Automorphism transformation σ(R, i), for i ∈ ϕ(m), permutes the coefficient of

the polynomial. Given a ciphertext C an Automorphism transformation produces a

ciphertext C′ = σ (C, i) which can be decrypted by a secret key sk′ = σ (sk, i). At

this stage, we need to key-switch the ciphertext C′ so that it can be decrypted by the

original secret key sk. This is shown as follows:

Generate eki = KeySwitchGen (pp, ski, sk) , ∀ i ∈ ϕ(m)

Compute σ (C, i) , Output C′ = SwitchKey (pp, σ (C, i) , eki)

83



3.7 Parameter Selection

A general issue with lattice encryption schemes is that they are more complicated

to parameterize than other families of encryption schemes. Parameter selection is

governed largely by a correctness condition (which is specific to the scheme being

analyzed) and security conditions for the underlying security assumptions.

For NTRU-ABD-PRE, parameter selection is governed by the correctness

condition (3.6), the security condition (3.3) accounting for the NTRU immunity

against subfield lattice attacks, and RLWE security condition (3.4).

For BV-PRE, GSW-PRE and Ring-GSW-PRE parameter selection is governed

by their respective correctness conditions (3.8, 3.11, 3.13) and LWE/RLWE security

condition (3.4).

We identify the parameter tradeoffs associated with the correctness constraint

and security constraints for PRE schemes in the experimental results section of this

paper. Of high importance are the ring dimension n and ciphertext modulus q which

have the largest direct impact on the runtimes of the scheme. The value of n should be

kept as small as possible as runtime is at least linear in n for all operations. The value

of q determines the sizes of integers that need to be manipulated computationally.

Ideally q should be kept less than the threshold 232 or the less preferred threshold

264 to utilize native arithmetic operations supported with the processor word sizes in

modern processors.

The value of d, the number of hops that the re-encryption scheme supports, can

be thought of as an application-specific parameter determined by the number of PRE

hops needed.

We begin the process of parameter selection with the security parameter δ, also

known as the root Hermite factor. The root Hermite factor is discussed above in the

Related Work section with relevant references. A heuristic argument is presented in

84



[CN11] which suggests that a root Hermite factor of δ = 1.006 could provide adequate

security. Therefore, we select to be as close as possible to the ceiling δ < 1.006.

The bound for discrete Gaussian distribution χi(x), where i ∈ (k, e), is

expressed as Bi = σi
√
α, where σi is the standard deviation of the distribution

and α determines the effective probability that a coefficient generated using discrete

Gaussian distribution (or a product of discrete Gaussians) exceeds the bound Bi

[LTV13].

The value of σe is usually chosen in the range from 3 to 6, and we set the value

of σe to 4 as in [GHS12c]. We set α to 9, which for the case of an integer generated

using discrete Gaussian distribution corresponds to the theoretic probability of at

most 2−8 of choosing a value that exceeds the upper bound Bi.

We validated our selection of σi and α experimentally. Over 35,000 iterations of

encryption/decryption (using different keys) for ring dimensions in the range from 29

to 215 (5,000 iterations for each value of ring dimension), we observed no decryption

errors. Note that when products of two discrete Gaussians (encryption scheme), three

discrete Gaussians (single-hop re-encryption in the case of NTRU-ABD-PRE), and

higher number of discrete Gaussians (multi-hop re-encryption in the case of NTRU-

ABD-PRE) are considered, the practical probability drops dramatically. This implies

that smaller practical values of α may be possible.

Subsequent to the selections of d, δ, σe, and α, we can choose n, q, and σk (only

in the case of NTRU-ABD-PRE) experimentally using appropriate correctness and

security constraints to minimize runtime/throughput for various values of the key

switching window r and plaintext modulus p.

Tables 3.3 and 3.4 shows the minimum number of bits needed to represent the

ciphertext modulus q (which we refer to as k = blog2 q + 1c), as a function of ring

dimension n and re-encryption depth d for the key switching window of unity assuming

the other parameters were selected as above. It can be seen that NTRU-ABD-PRE

85



Table 3.3 Minimum Bits Required to Represent Modulus q for Selections of Ring
Dimension n and Multiple Re-encryption Depths d at p = 2 and r = 1

PRE Scheme d
Ring dimension n

512 1024 2048 4096 8192 16384

NTRU-ABD-PRE
1 – 35 36 37 38 39
2 – – – 93 96 99
3 – – – – – –

BV-PRE
1 17 18 18 19 19 20
2 18 18 19 19 20 20
3 18 19 19 20 20 21

Table 3.4 Minimum Bits Required to Represent Modulus q for Selections of Ring
Dimension n and Multiple Re-encryption Depths d at p = 2 and r = 1

PRE Scheme d n k

GSW-PRE

1
511 21
1023 22

2
511 22
1023 23

3
511 22
1023 23

PRE Scheme d n k

Ring-GSW-PRE

1
1024 22
2048 23

2
1024 23
2048 24

3
1024 23
2048 24

requires a ring dimension of at least 4096 and ciphertext modulus of approximately

100 bits to support two re-encryption hops in contrast to a ring dimension of 512

and 18-bit ciphertext modulus for BV-PRE, implying that NTRU-ABD-PRE can be

treated as a single-hop scheme for all practical purposes. It should also be noted that

all ciphertext moduli for BV-PRE require representations with less than 32 bits, thus

enabling efficient implementations based on native integer types (32-bit and 64-bit

integers). The growth of the number of ciphertext modulus bits k with increase in

ring dimension n for both schemes can be easily estimated from expressions (3.6) and

(3.8): for NTRU-ABD-PRE the dependence of q on n is n1+d/2 while for BV-PRE, it

is
√
n.

Table 3.5 illustrates the effect of increasing the key switching window r and

plaintext modulus p on the minimum values of ring dimension n and the number of

bits k required to represent the ciphertext modulus q for both schemes. Increase in r

reduces the dimension of the re-encryption key (to blog (q) /rc+ 1) and the number of

86



Table 3.5 Dependence of Minimum Values of Ring Dimension n and the Number of
Bits k Required to Represent the Ciphertext Modulus q, on Plaintext Modulus p
and Key Switching Window r for Re-encryption Depth d of Unity

PRE Scheme p
r = 1 r = 2 r = 4 r = 8 r = 16

n k n k n k n k n k

NTRU-ABD-PRE

2 1024 35 1024 35 1024 35 1024 38 2048 48

16 2048 53 2048 53 2048 53 2048 53 2048 57

256 4096 78 4096 78 4096 78 4096 78 4096 78

4096 4096 102 4096 102 4096 102 4096 102 4096 102

65536 4096 126 4096 126 4096 126 4096 126 4096 126

BV-PRE

2 512 17 512 17 512 18 1024 22 1024 29

16 512 20 1024 21 1024 22 1024 25 1024 32

256 1024 25 1024 25 1024 26 1024 29 1024 37

4096 1024 29 1024 29 1024 30 1024 33 2048 41

65536 1024 33 1024 33 1024 35 1024 37 2048 45

Table 3.6 Dependence of Minimum Values of Ring Dimension n and the Number of
Bits k Required to Represent the Ciphertext Modulus q, on Re-encryption Depth d
and Key Switching Window r for BV-PRE at p = 2

d
r = 1 r = 2 r = 4 r = 8 r = 16

n k n k n k n k n k

1 512 17 512 17 512 18 1024 22 1024 29

2 512 18 512 18 512 19 1024 23 1024 30

5 512 19 512 19 512 20 1024 24 1024 31

10 512 19 512 20 1024 22 1024 25 1024 32

20 512 20 1024 21 1024 23 1024 25 1024 33

50 1024 22 1024 23 1024 24 1024 28 1024 35

100 1024 23 1024 24 1024 25 1024 29 1024 36

NTT operations (performed for groups of r bits of each coefficient), which effectively

reduces the re-encryption runtime. Increase in p improves the plaintext throughput

of PRE and reduces the ciphertext expansion factor defined as k/blog2 p + 1c. More

detailed information on these performance metrics is presented in Section 3.9.

The results in Table 3.5 suggest that r can be used to reduce the re-encryption

runtime with negligible effect on the encryption/decryption runtimes. For instance,

the ring dimension and the number of bits k required to represent the ciphertext

modulus q are essentially the same for BV-PRE at p = 2 when r is increased from 1

to 4. At the same time, this reduces the runtime of re-encryption by roughly a factor

87



of 4. One can also observe for BV-PRE that increasing the plaintext modulus to

65536 (2 bytes per polynomial coefficient) raises the ring dimension requirement only

by a factor of 2 (to 1024), which implies that a much higher plaintext throughput can

be achieved for BV-PRE by using large values of plaintext modulus (in applications

where runtime/latency is not critical). It can also be seen that the ring dimension

/ ciphertext modulus requirements are substantially lower for BV-PRE as compared

to NTRU-ABD-PRE.

Table 3.6 shows the effect of increasing the re-encryption depth d for different

values of key switching window r on the minimum values of ring dimension n and the

number of bits k required to represent the ciphertext modulus q for BV-PRE (results

for NTRU-ABD-PRE are not presented because the values of ring dimension and

ciphertext modulus are impractical for d = 2). It can be seen that BV-PRE supports

at least 20 re-encryption hops at n = 512 (the maximum number is 23 hops). One can

also observe that the number of bits k required to represent the ciphertext modulus

q changes slowly with increase in re-encryption depth because the noise growth is

additive (rather than multiplicative as in the case of NTRU-ABD-PRE), and 100

re-encryption hops can be supported without exceeding the ring dimension of 1024.

3.8 Software Implementation

3.8.1 Software Library Design

We implemented our PRE scheme in PALISADE, a general-purpose portable multi-

threaded C++ library designed to support and ease the development of lattice-based

encryption prototypes.

The main runtime performance bottleneck (in RLWE based PRE schemes) is

conversion between coefficient and evaluation representations. For the power-of-two

cyclotomic rings, the most efficient algorithm to perform this operation is the

Fermat-Theoretic Transform (FTT) [APS13]. We implemented FTT with NTT as

88



a subroutine in PALISADE. For NTT, the iterative Cooley-Tukey algorithm with

optimized butterfly operations was applied. The two slowest sub-operations needed to

support NTT operations are multiplication and modulo reduction. For multiplication,

we used the standard shift-and-add multiplication algorithm as it performs well for

relatively small ciphertext moduli (up to multiple hundreds of bits, but in our case the

running bitwidths required to represent ciphertext moduli do not exceed 128 bits).

For modulo reduction, we used the generalized Barrett modulo reduction algorithm

[DQ00], which requires one pre-computation per NTT run and converts one modulo

reduction to roughly two multiplications. For discrete Gaussian sampling, we used

the inversion method from [Pei10].

The conventional key switching procedure works with the key switching window

r of unity, implying that every coefficient of the ciphertext polynomial c is decomposed

into bits. Although this technique dramatically reduces the noise growth (from ‖c‖∞

to 1), it significantly increases both computational and space complexities of re-

encryption. As there is no efficient method to extract bits from a polynomial in CRT

form, the ciphertext polynomial c has to be first converted to the coefficient form, then

decomposed into polynomials over Z2, and finally all of these bit-level polynomials

need to be converted back to CRT form prior to performing the component-wise

multiplication with the elements of the re-encryption key. The total computational

cost of this operation is blog2 (q)c+ 2 FTT operations. The size of the re-encryption

key is approximately n · log2 (q)2 bits (or the double of that in the case of BV-PRE).

To reduce the number of FTT operations and size of the re-encryption key, we

consider a generalized key switching window of up to 16 bits. It can be seen that

in the case of r = 8, the number of FTT operations reduces to blog2 (q) /8c + 2 and

the re-encryption key size reduces by a factor of 8. At the same time, Table 3.5

suggests that the number of bits required to represent q, which is determined by the

correctness constraint, increases only by 3 bits compared to the case of r = 1 with

89



the minimum ring dimension n staying at the same level (for NTRU-ABD-PRE at

p = 2). In view of the above, it can be expected that the re-encryption time for

this case will be significantly less than for r = 1, which is demonstrated in the next

section.

(CPU) Implementation of GSW PRE scheme is found to be rather impractical.

The main bottleneck in GSW PRE scheme arises in computations over matrices.

Because the parameter m is a function on LWE dimension n and dlog qe we end up

with huge matrix dimensions. We dealt with this issue to some extent by dropping

the factor of 2 from the computation of m. Furthermore, we kept all ciphertexts in

normal form rather than the bit decomposed form.

Given the impractical runtimes of GSW PRE, we opted for a GPGPU

implementation. Some of the key features of our GPU implementation are as follows:

Multiprecision Integer: NVIDIA GPU architectures are restricted to 32-bit

native integer data types. We implemented a multi precision integer class where large

integers are represented internally with an array of 32-bit unsigned integer datatype.

Fast Integer Arithmetic: We provided an implementation of modular

reduction using generalized Barrett reduction [DQ98]. Barrett reduction requires

an additional constant term which we precompute and keep on the device memory.

Large integer multiplication are implemented using shift-and-multiply algorithm and

all device kernels make use of device intrinsic methods.

Fast Randomness Generation: Because of large dimensions generating

random elements on the fly is quite expensive. We remedy this problem by generating

random elements on device memory using cuRAND library. In particular our

implementation uses CURAND RNG PSEUDO MTGP32 generators. It is 5x faster

than other random number generators of the same family and atleast 10x faster than

CPU random number generators.

90



Minimal Memory Transfers: In our implementation we have eliminated

most of the data transfers between CPU. We generate all keys and ciphertexts on

device memory thereby eliminating calls to host-to-device and device-to-host data

transfers.

Matrix Vector Multiplication Kernel: We optimized the Matrix-Vector

multiplication by computing dot products for each row in parallel. Furthermore, we

compute the product of integers in parallel followed by a logarithmic reduction phase

to compute the final summation.

Matrix Multiplication Kernel: Our matrix multiplcation kernel closely

follows the approach presented in NVIDIA guide [Hoc12] with few modifications.

We divide the input matrices into smaller non-overlapping blocks and load them

into shared memory. At each stage, we compute a partial product from matrix

multiplication of smaller blocks and finally add them form an entry of resultant

matrix.

3.9 Experimental Evaluation

3.9.1 Methodology
We identify a set of standard metrics, including those used in related work
[AFGH06, NAL15] with which we evaluate the performance of our PRE design and
implementation. These metrics include:

1. Runtime / Latency: How long it takes to perform the implemented Encryption,
Re-Encryption and Decryption operations for various parameter settings.

2. Throughput: How many plaintext bits per unit time can be processed by the
implemented operations for various settings.

3. Ciphertext Expansion: How many bits are required to represent ciphertext for
every bit in the plaintext.

4. Memory Usage: How much memory is required to run the implemented
operations for various settings.

We would normally also use security as a metric to evaluate the performance of our

PRE design and implementation, but we assume a ceiling on the security parameter

91



such that δ < 1.006, and we would want δ to be as close as possible to 1.006 to

provide as quick runtime performance as possible while providing adequate security.

For our experimental analyses, we varied the ring dimension n, key switching window

r, plaintext modulus p, and number of hops d to explore tradeoffs in runtime and

amortized throughput.

Because we perform all experiments in the single-threaded mode and our

implementation does not access disk or networking interfaces, we use latency as a

means of determining the temporal overhead of the implementation. Further, runtime

performance is useful, for example, when assessing fitness for real-time applications

when end-to-end latency is critical. We use the throughput metric to assess how much

plaintext data can be processed by the implementation per unit time.

Related to ciphertext expansion is memory usage. Memory intensive operations

may not be easily supported on resource-constrained devices, such as embedded

systems used for disposable sensor nodes. We therefore, differentiate between the

memory requirements of PRE clients (subscribers and publishers) from those of PRE

servers (brokers). Memory usage for PRE clients is governed primarily by the size

of public/private keys and ciphertext elements. At the same time, the memory

requirements for PRE servers are determined primarily by the size of re-encryption

keys and decomposed ciphertext ring elements.

We conducted experiments for our PRE implementation on a commodity

desktop/laptop computing environment. The evaluation environment for NTRU-

ABD-PRE and BV-PRE used an Intel Core i7-3770 CPU rated at 3.40GHz and

16GB of memory running CentOS 7. Our experiments for evaluation of Ring-GSW

PRE were run on a Dell Inspiron laptop with Intel Core i7-7700HQ running at 2.8

GHz, on an Ubuntu 18.04 operating system with 16 GB of physical memory, using

g++ compiler version 7.4.0. Our GPU experiments for evaluation of GSW PRE

were run on an university HPC with host as Intel Xeon Silver-R 4114 Core running

92



at 2.2 GHz, on an Scientific Linux 6.10 operating system with 24 GB of physical

memory, using nvcc compiler version 10.0. The GPU device consists of two NVIDIA

TITAN RTX processor each of which has 72 multiprocessors and 64 CUDA cores

per multiprocessors running at 1.77 GHz. All of our implementations were compiled

as single-threaded and used only one core despite our test environment providing

multiple cores.

We generated random plaintext samples using discrete uniform distribution from

0 to p− 1. We ran 100 iterations for a subset of parameter datasets listed in Tables

3.3-3.6 and evaluated the mean runtime of encryption, decryption, and re-encryption

operations, with decryption runtime measured before and after re-encryption, and

the runtime of multiple re-encryptions. The number of correct decryptions was also

recorded, and no decryption errors were observed.

In Tables 3.10 through 3.12 we present experimental results for the dependence

of runtime and throughputs of PRE (NTRU-PRE and BV-PRE) operations on

variations in key configuration parameters, including the ring dimension, key

switching window, plaintext modulus, and number of re-encryption hops. We

show throughputs in kilobits per second (Kbps) for encryption, re-encryption, and

decryption amortized in terms of the plaintext size.

The ciphertext expansion factor is equal to k = blog2 q + 1c in all tables except

for 3.11. Although not directly related to the security provided, the key size in bits

is equal to the ring dimension n times the number of bits k in ciphertext modulus q.

We consider key generation to be an offline process which is run once for most

feasible applications of the PRE capability. For all (except for GSW-PRE) of our

experimental configurations we observed key generation and proxy key generation

runtime of less than 1 second.

93



3.9.2 Single-Hop Re-Encryption

Table 3.7 shows the effect of changes in ring dimension n on runtime, amortized

throughputs, and ciphertext expansion factors for single-hop re-encryption using both

NTRU-ABD-PRE and BV-PRE schemes with security parameter δ ≤ 1.006. The

highest encryption, re-encryption, and decryption throughputs and lowest runtime

are observed for the smallest ring dimension: 1024 and 512 for NTRU-ABD-PRE

and BV-PRE, respectively. The ciphertext expansion, which is proportional to the

number of bits k required to represent the ciphertext modulus q, and memory usage for

both PRE clients and servers, which is proportional to the product of ring dimension

and the number of bits k required to represent the ciphertext modulus q, are lowest

for the smallest value of ring dimension. This implies that one should always choose

the smallest ring dimension satisfying the desired security level.

Note that the runtimes for BV-PRE scheme operations are always lower

than for NTRU-ABD-PRE due to lower requirements on the ring dimension and

the number of bits required to represent the ciphertext modulus of the former.

For the same ring dimension, the runtime improvement factors observed from

Table 3.7 are approximately 1.2 for encryption, 1.5 for decryption, and 2.5 for

re-encryption operations. Considering that the lowest ring dimension with security

parameter δ ≤ 1.006 for BV-PRE is 512, the improvement factors for throughputs

at smallest ring dimension are 1.3, 1.6, and 2.9 for encryption, decryption, and

re-encryption, respectively. The decryption times after regular encryption and proxy

re-encryption are approximately the same for all datasets, which also applies to all

other experimental results presented in this paper.

Table 3.10 shows the dependence of runtime and throughputs on variations

in the key switching window r for single-hop re-encryption with security parameter

δ ≤ 1.006. The plaintext modulus is kept the same (p = 2). It can be seen that for

both schemes the highest encryption runtime and throughput are observed for r = 1

94



Table 3.7 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operations for Ring Dimension n at r=1, p=2, and d=1

Configuration Runtime Throughput

PRE Scheme n k
Enc
(ms)

Dec
before
ReEnc
(ms)

ReEnc
(ms)

Dec
after
ReEnc
(ms)

Enc
(Kbps)

ReEnc
(Kbps)

Dec
after
ReEnc
(Kbps)

NTRU-ABD-PRE

1024 35 2.13 2.45 67.08 2.44 481.06 15.26 418.85

2048 36 4.62 5.27 150.95 5.26 443.27 13.57 389.71

4096 37 9.80 11.07 331.73 11.05 417.94 12.35 370.78

8192 38 20.69 23.35 724.80 23.29 395.95 11.30 351.70

16384 39 44.15 49.73 1597.81 49.41 371.14 10.25 331.58

BV-PRE

512 17 0.85 0.76 11.77 0.76 604.37 43.51 674.62

1024 18 1.81 1.64 27.48 1.63 567.03 37.26 628.04

2048 18 3.84 3.47 59.83 3.44 533.82 34.23 594.85

4096 19 7.99 7.24 131.68 7.22 512.70 31.11 566.95

8192 19 17.00 15.80 296.63 15.33 481.85 27.62 534.30

16384 20 35.77 32.82 634.71 32.70 458.07 25.81 501.10

Table 3.8 Experimental Runtime Performance of GSW Proxy Re-Encryption on
CPU and GPU for Different LWE Dimension and Modulus

PRE

Scheme

Configuration Runtime

n m
k

(bits in q)
N

KeyGen

(ms)
Encrypt

Decrypt

(ms)

ReKeyGen

per EK

ReEnc

per EK

GSW-PRE

(CPU)
511

10731 21 10752 288.23 >10 m 0.01 >10 m 5.45 s

15841 31 15872 476.25 >10 m 0.01 >10 m 12.24 s

GSW-PRE

(GPU)

511
10731 21 10752 57.66 444.5 ms 0.06 420.2 ms 4.9 ms

15841 31 15872 95.2 1022.8 ms 0.09 990.5 ms 15.3 ms

1023
22506 22 22528 234.8 3670 ms 0.11 3689 ms 11.5 ms

38874 38 38912 409.6 12310.7 ms 0.13 12486.6 ms 21.5 ms

For Memory Consideration m is Reduced to m = n log q.

(which uses the smallest the number of bits required to represent the ciphertext

modulus.) As the key switching window r increases, the re-encryption time declines

until the ring dimension is forced to double by the security constraint. This lowest

re-encryption runtime occurs at r = 8 and r = 4 for NTRU-ABD-PRE and BV-PRE,

respectively. Note that the encryption and decryption runtimes for these values of r

are approximately the same as for r = 1, which implies that r = 8 and r = 4 are

optimal values for all operations of NTRU-ABD-PRE and BV-PRE, respectively, from

the runtime/latency perspective. At the same time, the re-encryption throughput

at r = 16 is highest for both schemes. This implies that in applications where

re-encryption througput needs to be maximized and latency requirements are low,

95



Table 3.9 Experimental Runtime Performance of Ring-GSW Proxy Re-Encryption
for Different Ring Dimension, Modulus Bits, p = 2 and r = 1

PRE

Scheme

Configuration Runtime Throughput

n k
KeyGen

(ms)

Enc

(ms)

Dec

before

ReEnc

(ms)

ReKeyGen

(ms)

ReEnc

(ms)

Dec

after

ReEnc

(ms)

Enc

(kbps)

ReEnc

(kbps)

Dec

(kbps)

Ring-

GSW

1024
22 0.38 17.32 0.12 34.28 120.02 0.11 59.12 8.53 9309

41 0.42 31.56 0.13 61.41 422.86 0.08 32.43 2.42 12325

2048
23 0.93 37.24 0.29 72.27 275.5 0.19 54.99 7.43 10778

41 0.85 62.91 0.27 125.37 864.02 0.16 32.55 2.37 12666

Table 3.10 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operations on Key Switching Window Size r at p=2 and d=1

Configuration Runtime Throughput

PRE Scheme r n k
Enc
(ms)

Dec
before
ReEnc
(ms)

ReEnc
(ms)

Dec
after
ReEnc
(ms)

Enc
(Kbps)

ReEnc
(Kbps)

Dec
after
ReEnc
(Kbps)

NTRU-ABD-PRE

1 1024 35 2.13 2.45 67.08 2.44 481.06 15.26 418.85

2 1024 35 2.13 2.45 36.65 2.44 480.75 27.94 419.03

4 1024 35 2.13 2.45 21.27 2.44 480.09 48.15 418.86

8 1024 38 2.11 2.46 13.88 2.44 484.61 73.77 418.95

16 2048 48 4.72 5.45 19.97 5.42 434.23 102.57 377.71

BV-PRE

1 512 17 0.85 0.76 11.77 0.76 604.37 43.51 674.62

2 512 17 0.83 0.74 6.38 0.74 615.12 80.21 691.43

4 512 18 0.84 0.77 4.33 0.76 607.58 118.27 676.02

8 1024 22 1.78 1.60 6.23 1.60 576.85 164.25 639.50

16 1024 29 2.00 1.82 5.41 1.82 512.23 189.15 562.60

r = 16 could be the preferred choice. It should be noted that the ciphertext expansion

grows with r, memory usage by PRE clients increases proportionally to the number

of bits required to represent the ciphertext modulus and ring dimension, and memory

usage by PRE servers declines as the re-encryption keys are composed of blog2 (q) /rc+

1 ring elements.

Table 3.11 illustrates the effect of plaintext modulus p on performance metrics

of PRE operations for both schemes. The key switching window is kept constant

(r = 1). One can see that runtime increases as p rises due to increased requirements

on the number of bits k required to represent the ciphertext modulus q and the

ring dimension n. At the same time, plaintext throughputs increase until p = 4096

for both schemes. Ciphertext expansion factors, defined as k/ log2 p, are highest at

p = 65536. This suggests that larger plaintext moduli may be suggested when high

96



Table 3.11 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operations on Plaintext Modulus p at r=1 and d=1

Configuration Runtime Throughput

PRE Scheme p n k
Enc
(ms)

Dec
before
ReEnc
(ms)

ReEnc
(ms)

Dec
after
ReEnc
(ms)

Enc
(Kbps)

ReEnc
(Kbps)

Dec
after
ReEnc
(Kbps)

NTRU-ABD-PRE

2 1024 35 2.13 2.45 67.08 2.44 481.06 15.26 418.85

16 2048 53 5.38 7.73 228.30 7.55 1523.62 35.88 1085.06

256 4096 78 16.20 23.05 1016.58 22.98 2022.23 32.23 1425.92

4096 4096 102 20.00 28.94 1642.66 28.88 2458.12 29.92 1701.95

65536 4096 126 21.24 33.66 2141.11 34.03 3085.50 30.61 1925.83

BV-PRE

2 512 17 0.85 0.76 11.77 0.76 604.37 43.51 674.62

16 512 20 0.95 0.91 13.84 0.92 2156.82 147.93 2221.67

256 1024 25 2.03 1.90 36.65 1.95 4028.96 223.53 4200.40

4096 1024 29 2.33 2.15 47.28 2.19 5269.21 259.90 5600.50

65536 1024 33 2.74 2.47 63.57 2.41 5989.05 257.73 6809.95

throughput and low ciphertext expansion are sought, and latency requirements are

secondary. One can also see that the memory usage of both PRE clients and servers

increases with p due to requiring more bits to represent the ciphertext modulus and

larger ring dimensions, which may be an issue for embedded systems (PRE clients).

All tables for single-hop re-encryption suggest that BV-PRE outperforms

NTRU-ABD-PRE for all performance metrics. The best BV-PRE re-encryption

runtime of 4.33 ms is almost two orders of magnitudes faster than the runtime reported

for comparable conditions (same ring dimension of 512) in the independent work of

[NAL15]. Besides being faster than the scheme reported in [NAL15], BV-PRE is

unidirectional and is based strictly on the RLWE assumption.

We observed experimentally that as ring dimension n increases for our schemes,

the latency due to Encryption, Re-Encryption and Decryption increase, but the

ammortized cost and throughput decrease. Furthermore, ciphertext expansion and

memory requirements increase. The effect of increasing the key switching window r is

similar to the effect of increasing n, except that Re-Encryption latency decreases and

throughput increases. The effect of increasing plaintext modulus p is similar to the

effect of increasing ring dimension. These results may be used for selecting optimal

configuration of these three parameters in practical single-hop PRE applications.

97



From the GSW-PRE experiments on CPU, we can see that encryption time

exceeds over 10 minutes because of the large dimension of matrices. Because of this

reason, we chose to generate a single matrix out of the n + 1 ReKeyGen matrices.

Consequently, we were able to report re-encryption times for a single matrix of the

ReKeyGen matrices. Complete runtime of ReKeyGen and ReEncrypt procedure can

be calculated by scaling the timings with LWE dimensions. From Table 3.8, we can

infer that ReEncryption timings are in the order of seconds and very far from being

practical.

Implementation of GSW-PRE on GPU yields significant order of boost in

performance. From Table 3.8, we can observe that because of matrix-vector

multiplication parallelization, we achieve a speedup of more than 5x on an average.

A major performance acceleration is achieved in encryption and re-encryption key

generation procedures where the runtimes improve by more than 100x. Furthermore,

the actual re-encryption procedure is now reduced to a few milliseconds. We remark

that the entire re-encryption procedure can now be completed under a second

assuming single threaded host processor.

As compared to GSW-PRE, Ring-GSW-PRE possesses the capability to encrypt

and re-encrypt a large number of bits/digits in a single ciphertext and consequently

we expect higher throughput per operation. Most of the cases of key generation and

decryption are very fast only taking sub-milliseconds. Re-encryption key generation

takes nearly twice the amount of time of encryption for a particular ring dimension.

This is because of the fact that re-encryption key consists of two matrices which

individually consists of an encryption of secret key. Comparing two different ring

dimensions we can also infer that as the ring dimension doubles we expect encryption,

re-encryption key generation and re-encryption to scale by the same factor. As

described earlier, we can benefit further by reducing the size of the ciphertext matrix

by using a relinearization window higher than 1. When compared with BV-PRE and

98



NTRU-ABD-PRE, Ring-GSW-PRE runtimes are significantly higher because of the

matrix structure of ciphertext.

3.9.3 Multi-Hop Re-Encryption

Table 3.12 illustrates the dependence of runtime, throughputs, and ciphertext

expansion factors on the number of re-encryption hops for PRE-BV with security

parameter δ ≤ 1.006. The results for NTRU-ABD-PRE are not listed because

the scheme supports only two re-encryption hops with the second hop requiring

more bits k to represent the ciphertext modulus q, as seen in Table 3.3. It can

be seen that PRE-BV scales well with re-encryption depth. For the first 20 hops,

the runtime and throughput metrics are approximately the same for encryption

and decryption operations, and degrade by at most 20% for the re-encryption

operation. For larger re-encryption depths (up to 100), the encryption/decryption

throughputs degrade only by at mosty 20% as compared to the single-hop case while

re-encryption throughput declines by 40%. It should be noted that the observed

enryption/decryption times are still under 2 ms, which may be adequate for many

practical applications.

The runtimes for first re-encryption hop and last re-encryption hop are

essentially the same for all re-encryption depths, with the latter being slightly lower

due to local caching effects of the implementation. The decryption times after regular

encryption and proxy re-encryption are approximately the same.

We compared the number of hops of re-encryption and depth of computation

after re-encryption of Ring-GSW PRE with BV-PRE [PRSV17] scheme instantiated

with same set of parameters. From Figure 3.2, we can see that both the PRE schemes

have the ability to perform multiple re-encryptions with Ring-GSW PRE scheme

exceeding the number of hops by a large margin. In the next Figure 3.3, we can

observe that after a re-encryption operation Ring-GSW scheme still has the ability

99



Table 3.12 Dependence of Performance Metrics for BV-PRE Encryption,
Decryption, and Re-encryption Operations on the Number of Re-encryption Hops d
at r=1 and p=2

Configuration Runtime Throughput

d n k
Enc
(ms)

Dec
before
ReEnc
(ms)

First
ReEnc
(ms)

Last
ReEnc
(ms)

Dec
after
ReEnc
(ms)

Enc
(Kbps)

ReEnc
(Kbps)

Dec
after last
ReEnc
(Kbps)

1 512 17 0.85 0.76 11.77 – 0.76 604.37 43.51 674.62

2 512 18 0.86 0.77 12.84 12.82 0.77 597.52 39.88 667.48

5 512 19 0.85 0.76 13.74 13.43 0.76 604.31 37.27 672.78

10 512 19 0.85 0.77 13.56 13.57 0.76 602.13 37.75 670.37

20 512 20 0.84 0.76 13.69 13.69 0.75 611.51 37.40 681.35

50 1024 22 1.83 1.67 33.98 33.60 1.67 560.44 30.13 613.60

100 1024 23 2.00 1.87 39.45 39.38 1.86 512.11 25.96 550.19

Figure 3.2 Comparison of BV-PRE
and Ring-GSW-PRE scheme on
multi-hop capability, p = 5, r = 1.

Figure 3.3 Comparison of BV-PRE
and Ring-GSW-PRE scheme on
depth of computation after
re-encryption, p = 5, r = 1.

to perform a large number of computations owing to its asymmetric noise growth

property. In comparison, BV FHE scheme can only perform a single homomorphic

multiplication for the bit lengths shown in the figure. This shows robustness of

Ring-GSW scheme and viability in practical applications where computations maybe

be needed along with re-encryptions.

100



3.10 Application

A major security challenge for Pub/Sub systems is confidentiality of information

which is distributed by the Pub/Sub broker. Existing Pub/Sub systems protect

information payloads via encryption that requires either: 1) the publisher and

subscriber coordinate to establish the encryption and decryption keys or 2) the

Pub/Sub broker decrypts the information payloads from the publishers and then

encrypts this information payload again for re-transmission to the subscribers. The

first solution contradicts one of the goals of Pub/Sub systems, i.e., the decoupling of

publishers and subscribers. The second solution solves this issue, but gives the broker

access to the unprotected information. Thus, it makes the broker a ripe target for

adversaries to compromise and steal sensitive information.

PRE is a natural fit to support publish-subscribe because PRE maintains data

confidentiality even when the broker is compromised and an adversary obtains all

re-encryption keys and observes all communications between the publisher, broker and

subscriber. These features reduce the need for special, difficult to use security-enabled

hardware and software for high-assurance applications, such as in military settings. A

compromised PRE-enabled broker would at most allow the adversary to learn which

subscribers are allowed to receive information from which publishers based on the

existence of re-encryption keys.

In this section, we are particularly interested in understanding how to parame-

terize the PRE schemes for three application use cases to illustrate the adaptability

of our design and implementation.

3.10.1 Enterprise Security

PRE could be very useful in enterprise-style computing environments such as for

medical file sharing. Enterprise environments are characterized by high resource

availability - both computational power at the publishers, subscribers and PRE

101



servers, but also bandwidth availability. The primary concern would be overall

throughput.

For single-hop applications, the goal is to maximize re-encryption throughput.

As Tables 3.10 and 3.11 suggest, re-encryption throughput can be maximized by

increasing the key swtching window r or increasing the plaintext modulus p (up

to certain limits, until the ciphertext modulus bit length and ring dimension start

to significantly slow down the runtime). In the case of the BV-PRE scheme, the

plaintext throughputs can reach 250 Kbps. The combined effect of increased plaintext

modulus and key switching window can produce even higher plaintext outputs but

this analysis should be performed based on the requirements of a specific application.

The BV-PRE scheme can also provide a multi-hop capability without significantly

increasing parameter requirements if the value of key switching window r in expression

(3.8) does not exceed 8.

3.10.2 Embedded Support

At the opposite end of the resource availability spectrum is the use case of embedded

sensors that collect, encrypt and publish data to a PRE server. To set up the

environment, point-to-point communication approvals need to be established, namely

that:

• The sensors would need to have appropriate encryption keys.

• The sensors would need to be paired with the PRE server.

• The approval for subscribers to receive data would need to be received to
approve the generation of a re-encryption key hosted at the PRE server.

PRE addresses the above measures to encrypt data at the sensor, transmit the

data to a cloud storage environment where processing is done, and the encrypted

results shared with intended recipients, without ever decrypting the data or sharing

decryption keys. Recent results [LSSR+15, BGG+16] show that it is possible to

implement public key lattice encryption schemes, very similar to our PRE schemes,

102



and run them on very resource-limited devices, inlcuding devices using 8-bit AVR

processors [LSSR+15]. These results also provide general design guidelines to port

our designs into limited hardware.

Because embedded use cases require computationally intense operations at

low-powered sensor nodes, encryption throughput is paramount. It is feasible

that multi-hop encryption would be needed so that the encrypted information can

aggregate from the sensors to local PRE servers which send data to a centralized

encrypted information clearinghouse. In this situation, the use of BV-PRE with r = 1

and a large plaintext modulus, for example, p = 65536, would maximize encryption

throughput.

An alternative formulation of this use-case for especially low-powered sensor

devices might rely on processors with 32-bit words, or less. In this scenario it is

generally important for modulus bit-widths to be within a power-of-2 rather than

without for increased performance. If the modulus bit-width is larger than bit-width

of the processor, then extra shuffling of data and at least a factor-of-2 decrease in

performance is likely to result. Selecting BV-PRE at n = 512, r ∈ (1, 2, 4), and a

ciphertext modulus bit-width of 17-18 bits is recommended to maximize encryption

throughput. It should be noted that the ciphertext bit-width of up to 20 and ring

dimension of 512 can support up to 23 re-encryption hops of BV-PRE at p = 2 and

r = 1, as can be seen from Tables 3.6 and 3.12.

3.10.3 Hybrid Deployment with AES

This work is motivated by the problem of sharing data across coalition partners

who do not interact directly, including across administrative boundaries, yet want to

control data access within each coalition partner by policy. While encryption and

policy enforcement solutions are available, a major challenge is the lack of suitable

techniques to generate or share encryption keys. For example, streaming video,

103



images and text data are often transmitted when encrypted by AES, because AES is

considered both secure and highly efficient. PRE can be used in these scenarios as

an AES key distribution mechanism.

Single-hop application operation of PRE would provide the most control for

users to limit the spread of restricted data. Based on the RLWE security constraint

and PRE correctness constraint, we should keep q as small as possible to guarantee

correctness and use the lowest value of n that satisfies the security requirements.

3.11 Conclusion

In this chapter, we present four new lattice-based PRE schemes. We experimentally

evaluate the performance of the PRE schemes. Our lattice encryption library is

an important aspect of our implementation performance in that its modularity

and extensibility enables us to further improve performance with either improved

mathematical libraries or even hardware acceleration as these technologies become

available.

A benefit of our PRE approach is that it supports applications on commodity

computing hardware and improves the overall security of information sharing in

practical pub/sub systems. Taken together, this could greatly reduce the opera-

tional costs of highly regulated industries such as health-care where regulatory

compliance restricts the ability to outsource computation to low cost cloud computing

environments.

Although we have focused our discussion on PRE for situations with one

producer (Alice) and one consumer (Bob), there is no theoretical limit to the number

of producers and subscribers that can be used for PRE operations. With PRE we

can support general many-to-many operations where data from many producers is

securely shared with many consumers through the PRE prototype, by generating

multiple re-encryption keys, one for every permitted publisher-subscriber information

104



sharing pair. A possible approach to address scalability is to distribute the operations

of the PRE servers across many computation nodes, and we seek to address this in

follow-on research.

105



CHAPTER 4

EFFICIENT AND SCALABLE BOOTSTAPPING OF BV-LWE FHE

SCHEME

4.1 Introduction

In his breakthrough seminal work, Gentry [Gen09] showed the first theoretical

construction of a fully homomorphic encryption (FHE) scheme. The idea first

introduced as “privacy homomorphism” by Rivest et al. [RAD+78] had the capability

to outsource computation and get back encrypted results without revealing any

information to the outsourcing party. In recent years it has been shown through

a series of work that FHE can be pragmatically deployed for a wide variety of

applications such as large scale statistical analysis [WH12], spam filtering [KGV16],

machine learning [BLN14, BHHH19, CGH+18] etc.

Gentry’s initial construction of FHE scheme was based on ideal lattices however,

initial implementation of the scheme [GH11] revealed an impractical runtime in the

order of seconds to minutes. Since then many FHE schemes have been developed

[DGHV10, SV10, BV14a, BV14b, BGV14, GSW13] which are much efficient, have

shorter memory footprints and based on hardness assumption of worst case lattice

problems.

Almost all of the above mentioned schemes are based on the “noisy” encryption

technique as they base security on hardness assumption of LWE and its variant

RLWE. In other words, a small amount of noise or error is added to the ciphertexts

for the security of the scheme. Evaluation of functions on ciphertexts of these

schemes leads to asymptotic noise growth. Furthermore, noise growth of the

ciphertexts is directly proportional to the depth of computation. Once the noise

contained in ciphertext reaches a certain threshold there is no room for further

106



homomorphic evaluation. Any homomorphic operation beyond this point amounts to

incorrect result upon decryption. Such encryption schemes are said to be ”somewhat

homomorphic” (SHE) encryption schemes, a choice by design. Following Gentry’s

blueprint, these schemes can be then converted into a fully homomorphic scheme by

Bootstrapping. In a nutshell, Bootstrapping implies evaluating the decryption circuit

of the scheme via homomorphic operations. As a result, Bootstrapping is possible if

and only if the homomorphic capacity is higher than the depth of decryption circuit

of the scheme.

Bootstrapping algorithms demonstrated in cryptology literature can be broadly

classified into two body of work. In the first line of work, bootstrapping algorithms

[GHS12a, HS15, CH18] are applicable to FHE schemes where multiple messages can

be potentially packed into a ciphertext. Such bootstrapping algorithms are often

associated with very large runtimes, typically in the order of minutes, however their

amortized runtime is quite comparable to other LWE based bootstrapping approaches.

In the second line of work, bootstrapping algorithms [DM15, BR15, CGGI16, BDF18,

MP20] work on FHEW-like cryptosystems where ciphertexts are in present in LWE

form, typically encrypt single bit messages and homomorphic decryption is performed

via Ring-GSW FHE scheme. In practice, this family of bootstrapping algorithm

performs much faster than the former with runtimes in the order of milliseconds.

In this work, our goal is to bridge this gap between the two family of

bootstrapping algorithms by supporting larger plaintext modulus and arbitrary depth

of computation before the need to bootstrap. We present techniques for bootstrapping

BV-LWE [BV14a] and BV-GSW FHE scheme in a symmetric key setting. To

begin with, BV-LWE FHE scheme allows elementary operations of addition and

multiplication on encrypted data. Security of the scheme is based on learning with

errors (LWE) assumption which is known to be reducible to solving hard problems in

general lattices. A message m ∈ Zp can be encrypted in the scheme where p (≥ 2) is a

107



relatively small plaintext modulus. This work advances on other LWE cryptosystems

such as FHEW [DM15] and TFHE [CGGI16] that can only encrypt binary messages

and evaluate arbitrary boolean circuits. One of the similarity found in both these

schemes is that the noise and plaintext modulus evolve after evaluation of a boolean

gate. Bootstrapping the ciphertext then restores it back to original plaintext modulus

and noise levels. In contrast to this, plaintext modulus in BV-LWE scheme remains

unaffected by homomorphic operations and consequently we can evaluate circuits till

the depth of instantiated parameters allow.

One of the drawbacks of BV-LWE scheme is that multiplication of ciphertexts

leads to quadratic blow up in ciphertext size (n + 1 to n2/2 roughly). Application

of re-linearization technique then reduces the ciphertext size back to n + 1 however,

at the cost of publishing encryptions of all the quadratic terms as well as individual

terms of the secret key. We remedy this problem in a simple and effective way

by adding GSW extensions to the original BV-LWE ciphertext of the form c =

(a, b = 〈a, s〉+ pe+m) ∈ Znq × Zq. The outcome of this modification leads to BV-

GSW FHE scheme where noise grows asymmetrically instead of quadratically in

LWE dimension and hence larger depth of computations can be evaluated. Naturally,

BV-GSW FHE scheme inherits all the advantages of GSW [GSW13] FHE scheme.

We summarize our contributions as follows:

• Larger plaintext modulus: Following approaches presented in [ASP14,

DM15, CGGI16] we demonstrate bootstrapping algorithms that are applicable to

BV-LWE and BV-GSW FHE schemes and work with plaintext modulus, p ≥ 2. In

these set of algorithms we retain the usage of ternary or root of unity encoding where

an integer (mod-q) is represented as a polynomial in {−1, 0, 1}. The core of our

BV-GSW bootstrapping technique relies on a RLWE coefficient extraction procedure

on polynomial rings. We show an efficient implementation of this extraction procedure

108



which uses log2 (n) Automorphism operations without introducing any significant

noise growth.

• Arbitrary secret key: In addition to secret keys generated from binary

(B) distributions, we extend our bootstrapping algorithms to work efficiently with

secret keys generated from ternary (T ) or discrete Gaussian (χe) distributions. In

other words, our bootstrapping algorithms meets the specification of Homomorphic

Encryption standardization document [ACC+18] which suggests the usage of Gaussian

distribution over the interval {±8} for generation of secret key. To work with

arbitrary secret key distributions our bootstrapping algorithms uses Automorphism

maps instead of Galois field isomorphisms which preclude the necessity of generating

lookup tables and lead to efficient generation of bootstrapping keys. Lastly, we discuss

memory trade-offs in bootstrapping key generation that can reduce the bootstrapping

key size further.

• Arbitrary ciphertext modulus and Gridstrapping: We introduce a

new bootstrapping procedure which works on a large finite field without increasing

the ring dimension of Ring-GSW FHE scheme. The finite field is described as a

multi-dimensional grid or matrix where the position of “1” indicates the integer value.

Contrary to our first bootstrapping procedure we encode integers as binary {0, 1}

polynomial and represent grid pointers as ciphertexts. This finite field can be scaled

further by increasing the grid-dimension parameter ζ ( for a two dimensional grid or

matrix ζ = 2).

Chapter Organization: We start by describing some of the earlier works

done on Bootstrapping in Section 4.2. In Section 4.4 we present BV-GSW scheme

in symmetric key setting. Section 4.5 outlines the Ring-GSW scheme along with

an analysis on noise growth of homomorphic operations. We use Ring-GSW FHE

scheme as well as BV FHE scheme as primary tools for bootstrapping BV-LWE and

109



BV-GSW FHE schemes. In Section 4.6 we present our bootstrapping procedures

while Section 4.7 shows extension of bootstrapping technique to large modulus sizes.

4.2 Related Work

In [BV14b], Brakerski and Vaikuntanathan describe a generalized bootstrapping

procedure for LWE based cryptosystems. The central idea in their construction rests

on the application of Barrington’s [Bar89] circuit sequentialization theorem which

allows to transform any depth d circuit into a polynomial length, width-5 permutation

branching program. Evaluation of the circuit translates to sequential homomorphic

multiplication of ` 5-by-5 encrypted permutation matrices where ` is the length of

the branching program. Next, to show that such evaluations can be performed

within polynomially bounded noise in security factor the authors describe a new LWE

based FHE scheme roughly similar to GSW FHE scheme. Finally, they reduce the

ciphertext with successive application of dimension-modulus reduction technique and

prove that the bootstapping technique meets the optimal approximation factor for

lattice problems under quantum reductions. This theoretical bootstrapping technique

appears to be satisfactory but its implementation would lead to very large runtimes

because of the hidden constant factor in run-time complexity and O (n3) complexity

of GSW FHE operations.

To reduce the time complexity and approximation factor of [BV14b], Sheriff and

Peikert introduced a new bootstrapping algorithm [ASP14] which works on injective

homomorphism of permutation matrices and removes the necessity to transform

decryption circuit into boolean circuit. More specifically, their bootstrapping

algorithm generalizes the LWE decryption circuit as a rounded inner product between

secret key vector and binary ciphertext. The bootstrapping key consists of encryption

of each coordinate of the secret key vector after mapping it to a binary indicator

vector. To evaluate the decryption circuit as an arithmetic function, the authors used

110



the additive embedding property of permutation matrices to a finite field element

in Zq. To evaluate an addition, the indicator vector needs to be expanded into

a permutation matrix and then multiplied with another indicator vector leading to

O (q2) homomorphic operations, q being the ciphertext modulus. After the evaluation

of inner product, rounding function is performed through a homomorphic equality

test. For ciphertext evaluations the authors use GSW FHE scheme because of its

quasi-additive error growth property and show the total number of homomorphic

computations to be Õ (λ) where λ is the security factor. However, no direct

implementation of this algorithm has been reported in literature.

Building upon the work of [ASP14], Ducas and Micciancio [DM15] demonstrated

the first concrete implementation of a bootstrapping technique on a LWE based

FHE scheme capable of evaluating boolean functions. In their work, the authors

eliminated the need to map integers to permutation matrices by utilizing the

finite field properties of cyclotomic polynomials. A major outcome of their work

is in demonstrating that cyclic groups can be directly embedded into cyclotomic

polynomials by encoding the cyclic group Zq into the group of roots of unity: i→ X i.

Further the isomorphic operations of bootstrapping can be directly evaluated using

the appropriate homomorphic operations of a RLWE based FHE scheme. In their

implementation, they instantiated the RLWE scheme with Ring-GSW FHE scheme

and reported a bootstrapping runtime under a second for a small parameter set. A

major bottleneck in their implementation is the updating procedure of homomorphic

accumulator which stores the intermediate ciphertext during bootstrapping. To

accelerate this updating procedure bootstrapping key needs to be represented as

a lookup table with a base, b > 2 which increases the size of bootstrapping key

roughly by a factor b/ log2 b and q/ log2 q in the extreme case. In contrast to this,

our bootstrapping procedure doesn’t incur such memory overheads as homomorphic

accumulator is always updated in a single step via Automorphism transforms.

111



In another arithmetic bootstrapping technique, TFHE, Chillotti et al. [CGGI16]

takes a different approach. In particular, the authors follow the generalized

bootstrapping approach based on mux gates discussed in [GINX16]. In their

implementation, the underlying arithmetic element is Torus, defined over real numbers

modulo 1. Further, the FHE schemes used in their work are scale invariant Torus

analogues of LWE, BV FHE [BV11b] and Ring-GSW FHE [KGV16] schemes. In

comparison to FHEW, TFHE bootstrapping runtime and bootstrapping key size is

significantly reduced. This is mainly because two reasons: 1. Use of binary mux

gates for updating the FHEW accumulator. 2. Use of matrix-vector multiplications

(external product) of ciphertexts instead of matrix multiplication of polynomial

ciphertexts (internal product). One of the drawbacks of TFHE scheme is that the

usage of binary mux gates places a constraint on generation of secret keys from a

binary distribution. TFHE bootstrapping can still be adapted to arbitrary secret

keys as shown in [MP20] however, this approach scales the bootstrapping runtime

and evaluation key size linearly with the number of bits in secret keys.

A more rigorous and practical comparison between FHEW and TFHE bootstrapping

procedures was presented in [MP20]. For direct comparison between both the

schemes, the authors chose a unified approach by implementing them in PALISADE

crypto software library using modular arithmetic. Further, the TFHE scheme was

extended to support ternary and arbitrary secrets. It was found that TFHE is faster

than FHEW roughly by a factor 2 when working with binary secret keys. For ternary

secret keys, performance of both the bootstrapping procedures are nearly equivalent.

However, for the case of arbitrary secret keys FHEW bootstrapping outperforms

TFHE in terms of running time. In these evaluations, it can be noted that a large base

(b ≈ q) is used resulting in larger bootstrapping key. Our bootstrapping procedure is

a variation of the FHEW scheme however works without any dependence on a base

decomposition parameter b. As such, when working with ternary and arbitrary secret

112



keys we achieve similar or better performance in runtimes when compared with TFHE

scheme. Further, we achieve these results without any expansion in bootstrapping

key size.

In a separate work, [BR15] presented a generalization of FHEW bootstrapping

procedure by extending it to larger plaintext modulus t > 2. It should be noted that

here the underlying LWE scheme is same as that used in FHEW and ciphertexts are

encryption of binary messages. The extended modulo t allows the computation of

multiple gates or gates with several inputs and outputs, and hence, amortizes the

cost of single gate FHEW bootstrapping. The number of gates that can be evaluated

before bootstrapping is roughly equal to the parameter t. One of the drawbacks of this

scheme is usage of power-of-p cyclotomics that is required in accumulator operations.

As non power of 2 cyclotomics are known to incur extra overhead in computation

of FFTs, bootstrapping runtime of [BR15] is significantly higher. In comparison to

[BR15], our bootstrapping procedures work on a LWE scheme which directly supports

encryption of integer rather than binary messages and still retain the usage of power of

2 cyclotomics. Additionally, finite field arithmetic are supported by our schemes and

have the ability to amortize cost of bootstrapping by instantiating larger ciphertext

modulus.

In other related work, improvement of FHEW bootstrapping scheme has been

pursued in [MS18] to reduce the amortized runtime by packing multiple bits in a

ciphertext, extension of FHEW scheme to larger gates has been shown in [BDF18]

by CRT polynomial tensoring techniques.

113



4.3 Design

4.3.1 Syntax of a Fully Homomorphic Encryption Scheme

A non-interactive FHE scheme is an ensemble of PPT algorithms Π = (ParamsGen,

KeyGen, Encrypt, EvalAdd, EvalMult, Decrypt, BootstrapKeyGen and Bootstrap)

described as follows:

• ParamsGen
(
1λ
)
: It takes in the security parameter λ and returns the

corresponding public parameters pp.

• KeyGen
(
pp, 1λ

)
: KeyGen takes the public parameters pp and returns the

public key and secret key pair (pk, sk).

• Encrypt(pp, pk,m): Given public key pk, public parameters pp and message
m ∈M, it encrypts the message m and returns a ciphertext c.

• EvalAdd(pp, c0, c1): Given two ciphertexts c0 and c1 encrypting messages
m0,m1 ∈M, EvalAdd produces a ciphertext cadd encrypting message m0 +m1.

• EvalMult(pp, c0, c1): Given two ciphertexts c0 and c1 encrypting messages
m0,m1 ∈M, EvalMult produces a ciphertext cmult which encrypts the message
m0 ·m1.

• Decrypt(pp, sk, c) Decrypt recovers the message m from the ciphertext c.

• BootstrapKeyGen(ppΠ′ , ppΠ, pkΠ′ , skΠ): Given a FHE scheme Π′ where Π′

may or may not be equal to Π, BootstrapKeyGen generates an evaluation key,
bk which consists of encryptions of secret key sk under the public key of scheme
Π′.

• Bootstrap(ppΠ′ , bk, c) Given a bootstrapping key bk and ciphertext c ∈ Π,
Bootstrap generates a ciphertext c′ ∈ Π with reduced noise that c.

4.4 BV-GSW FHE Scheme

BV-GSW [BV14a] is a symmetric-key encryption scheme and its security is based on

standard LWE [Reg09] assumption. To circumvent the generation of O (λ2) keys and

quadratic noise growth, we present a modified encryption scheme by adding GSW

[GSW13] extensions. The scheme has a message space of M ∈ Zp where p is the

plaintext modulus. The scheme is parameterized by:

• Security parameter λ and dimension n = n (λ).

• Working modulus q of κ = κ (λ, d) bits and plaintext modulus p.

114



• maximum depth of evaluation, d.

• Discrete random uniform noise generator x←$Unq and B-bounded discrete

Gaussian noise generator y←$χ`B, | x ∈ Znq ,y ∈ Z`q.

The scheme is an ensemble of following operations:

• ParamsGen
(
1λ
)
: Choose positive integers q, n and p such that p > 2,

gcd(p, q) = 1, q � p and n = (λ). Set N = (n+ 1) ` and ` = dlog qe. Return
public parameter set pp = (p, q, n, `,N).

• SecretKeyGen(pp): Generate s←$χnB from discrete Gaussian distribution and
set sk = t = (1,−s) ∈ Zn+1

q .

• Encrypt(pp,m, sk): To produce an encryption of message m ∈ Zp we produce
a LWE matrix, A and simply add m ·G to it. To generate LWE matrix A first
we sample uniformly random matrix B, binary random matrix R and discrete
Gaussian noise vector e and set b = Bs+p·e. LWE matrix A is a concatenation
of b and B. This procedure is shown as:

B←$UN×nq , R←$UN×N{0,1} , e←$χNB , b = Bs + p · e, A = [b || B]

C = m ·G + RA ∈ ZN×(n+1)
q , c← C

• EvalAdd(c0, c1): Homomorphic addition is given by addition of the input
matrices represented by c0 and c1.

Cadd = C0 + C1, cadd ← Cadd

Cadd = (m0 +m1) ·G + RaddAadd, RaddAadd = R0A0 + R1A1

• EvalMult(c0, c1): Homomorphic multiplication of ciphertexts is achieved by
first bit decomposing the first ciphertext and then we proceed to multiply it
with the second ciphertext. It is shown as:

Cmult = G−1 (C0) ·C1 = G−1 (C0) · (m1G + R1A1)

= m1 ·C0 + G−1 (C0) R1A1

= m0m1 ·G +
(
m1R0A0 + G−1 (C0) R1A1

)
= m0m1 ·G + Amult

• Decrypt(sk, c): We recover message m′ by performing the following two
operations:

1. Compute w = Ct ∈ ZNq , Note that,
w = m · g ⊗ t + p · e.

2. Since, the first ` rows of g⊗ t are powers of two we output m′ = w0 mod p

115



4.4.1 Correctness Constraints

In order to correctly recover the message, we have to ensure that there in no wrap

around mod-q. Since, our working modulus range is
[
− q

2
, q

2

]
, noise has to be strictly

within this bound. We derive noise bounds as follow:

‖w0‖ < q/2, or ‖m+ pe‖ < q/2

In case of homomorphic multiplication, we derive noise bound as follows:

w = Cmultt = mmult ·Gt + Amultt

= mmult · g ⊗ t +m1A0t + G−1 (C0) A1t

= mmult · g ⊗ t + pm1e0 + pG−1 (C0) e1

Using central limit heuristics on noise bounds, we can correctly decrypt for the

following condition:

‖w0‖ = p
(
m1 ‖e0‖∞ +

√
N ‖e1‖∞

)
< q/2

or, q > 2pB
√
N

where B is bound for B-bounded discrete Gaussian generator.

4.4.2 Modulus Switching

(Adapted from [DM15]) We use modulus switching operation not only as a noise

reduction technique but also to align the current parameters with the Bootstrapping

scheme. Given a ciphertext c with modulus q we can transform the ciphertext into c′

with modulus q′. To switch modulus we use the following rounding function [x]q→q′

116



which is defined as:

[x]q→q′ = β + γ, β = [q′x/q], γ = (x− β) mod p

We apply this scaled rounding function to every entry of the ciphertext matrix to

complete the modulus switching procedure.

ModSwitch (c) = [Ci,j]q→q′ , i ∈ [0, N), j ∈ [0, n]

Since, γ ∈ [0, p − 1] and integer rounding is uniformly distributed in [−1
2
, 1

2
] the

rounding error is a Gaussian distribution with a variance of σ2 = p2−1
12

.

More specifically, we use modulus switching prior to initiating Bootstrapping

procedure with modulus parameter q′ = 2blog qc. Furthermore, we use only the first

row of ciphertext matrix to “align” with Bootstrapping parameters.

4.4.3 Key-Switching

Key-switching operations transform a LWE ciphertext C encrypted under a key s ∈

Znq to be transformed into another ciphertext C∗ which can be decrypted under a

new key s∗. To facilitate this transformation process, we generate an evaluation key,

ek which consists of a sequence of (n+ 1) matrices, EK[i], i ∈ [0, n]. These matrices

are then used in the re-encryption phase to complete the transformation process. We

segregate the key-switching process into KeySwitchGen and SwitchKey procedures

which are described as follows:

KeySwitchGen(pp, sk, sk∗): To generate the matrices EK[i], first we generate

Bi from discrete uniform distribution UN×nq and set bi using the new secret key s∗.

117



Next, we add a shifted column matrix of the old secret key. This is described as:

Sample Bi←$UN×nq , ei←$χNB

Set bi = Bis
∗ + p · ei, Ai = [bi || Bi]

EK[i] = Ai + (g ⊗ t� i) , ek = {EK[0], · · · ,EK[n]}

SwitchKey(pp,C, ek): This results in a ciphertext C∗ and the procedure is

described as follows:

C∗,i = G−1
(
Ctop

)
· EK[i] ∈ Z`×n+1

q

C∗ =
[
C∗,0 ||ᵀ · · · ||ᵀ C∗,n

]
∈ ZN×n+1

q

Here Ctop represent the top-` rows of the ciphertext matrix C.

4.5 Ring-GSW Bootstrapping Scheme

Ring-GSW encryption scheme is a RLWE [LPR10, KGV16] adaptation of the GSW

[GSW13] FHE scheme based on LWE security assumption. We primarily use it for

bootstrapping or evaluating the decryption circuit of BV-LWE or BV-GSW scheme.

However, it can be noted that leveled BGV [BGV14] FHE scheme can also be used

instead but at a greater expense of noise growth and larger modulii.

The scheme has a message space of M ∈ Rp where p > 2. Construction of the

scheme is based on underlying cyclotomic polynomial arithmetic and parameterized

by:

• Security paramter λ and ciphertext modulus q.

• Plaintext modulus p such that 2 < p� q and ring dimension n.

• B-bounded discrete Gaussian distribution χB.

• Ternary distribution T which generates a ring polynomial with coefficients
uniformly sampled from {−1, 0, 1}.

118



• Discrete uniform distribution URq .
• Maximum depth of homomorphic evaluation d.

Ring-GSW scheme encapsulates the following operations:

• ParamsGen
(
1λ
)
: Choose positive integers q = q (λ, d) and n = n (λ). Return

parameter set pp = (`,N, p, q, n) where ` = dlog qe and N = 2`.

• SecretKeyGen(pp): Secret key is a low norm polynomial sampled randomly
from discrete Gaussian distribution χRq . However, it has been shown that
generating secret key from sparse distributions such as binary (B ∈ {0, 1} )
[GKPV10, BLP+13] or ternary distributions, T [Mic18] still leads to instan-
tiation of LWE problem that are as hard as standard LWE and hence we show
secret key generation using ternary distribution, T as follows:

s←$ TRq , sk = [1;−s] ∈ R2×1
q

• PublicKeyGen(pp, sk): Public key, pk is a RLWE pair (b, a) represented as
a matrix A. To generate b, we sample polynomials a and e from uniform and
discrete Gaussian distributions respectively and proceed as follows:

a←$URq , e←$χB,Rq , b = as+ pe

Set public key, pk = A1×2 = [b a]

• Encrypt(pp, pk,m): For encryption we sample a random matrix R from
uniform ternary distribution T NRq and an error matrix E ∈ RN×2

q from discrete
Gaussian distribution. Encryption of message polynomial m ∈ Rp is then set
as follows:

R = (r0, r1, · · · , rN−1) ←$ T N×1
Rq

, E←$χN×2
B,Rq

C = m ·G + R⊗A + pE, Set c← C

• Decrypt(pp, sk, c): Message m′ is recovered by multiplying the first row of
ciphertext C by secret key sk. This is shown as:

m′ = (C0 × sk mod q) mod p

Message m′ is recovered correctly as long as the coefficients of the noise
polynomial t are within modulus q

(
= [− q

2
, q

2
]
)

where t is given as:

t = C0 × sk mod q

For correct decryption, ‖t‖∞ ≤ q/2, or, q ≥ 2 · ‖t‖∞

Next, we discuss the homomorphic operations of the scheme, namely, EvalAdd

and EvalMult and analyze their noise growth.

119



EvalAdd(c0, c1): Ciphertext addition is quite straightforward. To produce cadd

we simply add each polynomial entry of c0 with corresponding entry of c1. This is

shown as:

Cadd = C0 + C1, Set cadd ← Cadd

EvalMult(c0, c1): Homomorphic multiplication is a two step procedure. In the

first step we use the bit decomposition subroutine to expand the first operand matrix.

In the next step we multiply this expanded matrix with the second operand. This is

shown as:

C′ = BitDecomp (C0) ∈ RN×N
q

Cmult = C′ ·C1 ∈ RN×2
q , cmult ← Cmult

To determine correctness of decryption after homomorphic multiplication, we

have to ensure that the noise term t is within the modulus bounds. Noise after

homomorphic multiplication is given as:

t = Cmult,0 × sk = Cmult,0,0 − s ·Cmult,0,1

Breaking it down further, Cmult,0,0 and Cmult,0,1 are given by:

Cmult,0,0 =
`−1∑
i=0

(αi ·C1,i,0 + βi ·C1,i+`,0)

=
`−1∑
i=0

αi
(
rib+ 2im1 + pEi,0

)
+ βi (ri+`b+ pEi+`,0)

=
`−1∑
i=0

[b (riαi + ri+`βi) + p (αiEi,0 + βiEi+`,0)] + αm1

120



where αi and βi are given by:

αi = BitDecomp (C0,0,0) , βi = BitDecomp (C0,0,1)

where i ∈ [0, `). Similarly,

Cmult,0,1 =
`−1∑
i=0

(αi ·C1,i,1 + βi ·C1,i+`,1)

=
`−1∑
i=0

αi (ria+ pEi,1) + βi
(
ri+`a+ pEi+`,1 + 2im1

)
=

`−1∑
i=0

[a (riαi + ri+`βi) + p (αiEi,1 + βiEi+`,1)] + βm1

The noise term, t can then be shown as follows:

t = (b− as) ·
`−1∑
i=0

(riαi + ri+`βi) + (β − sα)m1+

`−1∑
i=0

p [(αiEi,0 + βiEi+`,0)− s (αiEi,1 + βiEi+`,1)]

≈ m0m1

Using central limit heuristics, we finally arrive at the following noise bound and

correctness constraint:

‖t‖ ≈ 6pnB log2 q

∴ q ≥ 12pnB log2 q, average case bounds

4.5.1 Key-Switching

As defined in Section 4.4, key switching procedure allows one to transform the

ciphertext so that it can be decrypted by a more desirable secret key sk∗. The

procedure is divided into two phases, a static phase called KeySwitchGen where we

121



generate roughly an encryption of the secret key and a dynamic phase SwitchKey

which is responsible for the ciphertext transformation. Given a Ring-GSW ciphertext

C encrypted under a secret key sk we describe the key-switching procedure as follows:

KeySwitchGen(pp, sk, sk∗): : We generate an evaluation key which consists

of two RLWE matrices. First, we generate a noise free RLWE pair from sk∗. Next,

to generate each of the matrix we generate a random vector from ternary distribution

TRq and an error matrix from discrete Gaussian distribution and proceed as follows:

Sample a←$URq , b = as∗, Set A = [b a] ∈ R1×2
q

Sample ri←$ T NRq , Ei←$χN×2
Rq ,B

EK[i] = ri ⊗A + pEi + (PowersOf2(sk)� i)

Set ek = {EK[0],EK[1]}

SwitchKey(pp,C, ek): This procedure is similar to homomorphic multipli-

cation however only considers the upper `-rows of the input ciphertext for bit

decomposition and represented as Ctop. We outline the procedure as follows:

C∗,i = BitDecomp
(
Ctop

)
· EK[i] ∈ R`×2

q

C∗ =
[
C∗,0 ||ᵀ C∗,1

]
∈ RN×2

q

Noise growth in a ciphertext after key-switching is comparatively lower when

compared to that in homomorphic multiplication.

4.6 RLWE Bootstrapping Procedure

In this section, we describe the complete mechanics of bootstrapping BV-LWE or

BV-GSW ciphertexts. For simplicity, we represent the BV-LWE and BV-GSW

122



ciphertexts in the following form:

c = (a, b) ∈ Zn+1
q where b = 〈a, s〉+ pe+m

We assume that the noise in ciphertext is in the form pe ∈ [−q/2, q/2] and large

in magnitude. Our goal is to homomorphically decrypt this ciphertext and output a

BV-GSW ciphertext in modified (LWE matrix) form or original LWE form. Recall

that the decryption circuit is represented as b− 〈a, s〉 mod q. This arithmetic circuit

can then be transformed in terms of homomorphic encryption E(·) of a scheme Π′ as

follows:

∆q = E(b)−
n−1∑
i=0

ai · E (si) mod q

It can be noted that ∆q may or may not be the final refreshed ciphertext. Further,

we need to publish the encryption of the secret key’s individual entries si as E (si).

A collection of such encryption of secret key is referred to as bootstrapping key and is

considered to be secure under hardness assumption of the underlying scheme Π′.

Next, we can observe that such homomorphic decryption can be performed

trivially by instantiating an encryption scheme Π′ with a large plaintext modulus,

pRLWE such that pRLWE = qBV-LWE. This automatically leads to a very large ciphertext

modulus qRLWE given the condition pRLWE � qRLWE. Furthermore, to maintain a

particular security level RLWE dimension needs to be increased accordingly which

can have detrimental effects on overall efficiency. Nonetheless, in a different line

of work [GHS12a, HS15] such large parameters were proven useful to evaluate the

decryption formula homomorphically.

To avoid such “parameter bloating”, we represent an integer (in mod q) using

a low norm encoding technique derived from the work of [DM15].

123



4.6.1 Message Encoding

We can observe that the cyclotomic polynomial Rq = Zq[X]/ (Xn + 1) acts as a finite

field where a small integer i can be encoded simply as a monomial X i ∈ Rq. This

encoding technique works for any two integers a, b < n/2 and addition of a and b

simply maps to multiplication of cyclotomic polynomials as (a+ b) → Xa · Xb =

Xa+b. In group theory this is also referred to as embedding an additive group Zq

into a multiplicative group G of some order |G|. Because of the negacyclic nature of

cylotomic polynomials this multiplicative group changes sign when (a+ b) ≥ n. To

account for this negative cycle, the first n integers are mapped to X i while the next

n integers are mapped to −X i. In summary, a cyclotomic polynomial Rq acts a finite

field of order 2n and shown as follows:

Z2n → G〈X〉 =
{

1, X, · · · , Xn−1,−1,−X, · · · ,−Xn−1
}

It is not much difficult to prove that G〈X〉 obeys the group properties as it has an

identity element, e = 1, every element has an inverse, Xa → X−a ∈ Rq and lastly a

group action defined as X|X2n = e = 1. Further, the group is also Abelian because

of the commutative nature of multiplication.

4.6.2 Homomorphic Decryption with Ring-GSW FHE Scheme

In this section, we describe four different variants of our bootstrapping algorithm.

The first two are applicable to BV-LWE ciphertext and the next two are applicable

to BV-GSW ciphertext in LWE matrix form. We start with a brief overview of

[DM15] and [CGGI16] bootstrapping procedure.

One of the key differences in bootstrapping procedure of both schemes lies in

computation of the product term ai · si ∈ Zq, (ai, si ∈ Zq) required for updating the

homomorphic accumulator. In [DM15], to compute the product term the authors

resorted to bit decomposition of ai followed by homomorphic multiplication with

124



corresponding powers of 2 of si. Such an approach is chosen due to the fact that scalar

multiplications in Zq map to homomorphic exponentiation in cyclotomic polynomials.

This results in a total cost of O (log2 q) homomorphic multiplications to produce a

single product ai · si. It was shown that by moving to a larger base b > 2 the number

of homomorphic multiplications can be reduced further at the cost of generating a

larger bootstrapping key. Using this generalized base b the entire bootstrapping key,

bk in closed form can be shown as follows:

bk = E
(
k · si2j

)
∀i ∈ [0, n), j ∈ [0, dlogb qe), k ∈ [0, b)

Applying the [DM15] technique, homomorphic decryption of BV-LWE ciphertext

along with the above mentioned bootstrapping key, bk can be expressed as follows:

∆q = E (b) +
n−1∑
i=0

(−ai) · E (si)

= E (b) +
n−1∑
i=0

`−1∑
j=0

bk(ai,j, i, j) = E (m+ pe)

To compute the product ai · si efficiently, the authors in [CGGI16] place a

stronger security assumption on generation of secret keys from binary distributions

(B). Because of this assumption, the product simply reduces to (0, ai) for si = (0, 1).

In this case the product can be evaluated by picking appropriate values using a binary

homomorphic multiplexer where the control bit is given by the secret key si. The

product can be expressed using homomorphic computations as follows:

E (ai · si) = G + (Xai − 1) · E (si)

Bootstrapping key, bk here is simply a collection of encryptions of individual

secret key terms, si ∈ {0, 1}. We can observe that the bootstrapping key generated

125



here is smaller than that of [DM15] by a factor of b logb (q). Applying the [CGGI16]

technique, homomorphic decryption of BV-LWE ciphertext can be expressed as

follows:

∆q = E (b) +
n−1∑
i=0

(
G +

(
X−ai − 1

)
· E (si)

)
= E (m+ pe)

We can observe that for secret keys generated from ternary distributions (T )

or Be-bounded discrete Gaussian distributions (χe) computation of each product

term would scale linearly by a factor of 2 log2 (Be) in number of homomorphic

multiplexer operations. To circumvent such inefficiency we introduce a new technique

for computing the product term by homomorphic exponentiation in cyclotomic rings

or scalar multiplication in finite field space. More specifically, we rely on Frobenius

automorphisms for achieving such scalar multiplications.

Particularly for a power of 2 cyclotomic polynomial with unpacked coefficients,

Automorphism transformation with an index k maps a polynomial z (X) ∈ RQ

to a RLWE polynomial z
(
Xk
)

( mod Φm=2N=q (X)) ∈ RQ. These Automorphism

maps, denoted by τk : RQ 7→ RQ, are however only defined for odd indices k

which are relative primes of 2N (= q). It is now known that the complete set of

transformation maps form a group under composition and isomorphic to (Z/2NZ)∗

[LPR10, GHS12c]. With regards to our monomial encoding for an integer i ∈ Zq or

X i ∈ RQ Automorphism map τk produces another mononomial X i·k ∈ RQ which

is equivalent to scalar multiplication in finite field Zq. To apply Automorphism

on a ciphertext, c we apply the transformation maps on individual elements of the

ciphertext after which the cphertext τk (c) can be decrypted by the transformed secret

key τk (sk). To get back the ciphertext in native form, we key-switch the ciphertext

w.r.t a pre-computed evaluation key.

126



Extending scalar multiplication to Z/2NZ and trade-off in bootstrapping

key size: Since, the scalar multiplications are not defined for even valued indices we

apply the following simple tweaks to cover the scalar multiplication over the entire

range of Z/2NZ.

• For ai = 2κ, ai > 2 we apply Automorphism (τk (si)) with index k = ai − 1
followed by a multiplication with null (noise less) ciphertext encrypting X.

• For ai = 2κ, ai > 1 we apply Automorphism (τk (2jsi)) with index k = ai/2
j

where j is the rightmost bit set in ai.

The first approach is nearly as efficient as the second one however, memory

overhead of bootstrapping key is very different. In the first approach bootstrapping

key consists of encryptions of individual components of secret key whereas in the

second one we generate all powers of 2 of secret key components. Additionally,

in both approaches we also populate the bootstrapping key with evaluation keys

ksi ← KeySwitchGen (τi (sk) , sk) ∀i ∈ (Z/2NZ)∗ to transform the intermediate

ciphertexts to native form. We remark that in our implementation we used the second

approach for the sake of efficiency. Applying this technique, homomorphic decryption

of BV-LWE ciphertext can be expressed as follows:

∆q = E (b) +
n−1∑
i=0

KeySwitch [τj (E (si,j) , ksi)]

= E (m+ pe) , where j = log2 (ai ∧ −ai)

Testing polynomial and Post processing: At this stage, if homomorphic

decryption is correct then ∆q decrypts to Xm+pe ∈ Rp. To extract a BV-LWE or

BV-GSW ciphertext deterministically from the constant term of RLWE ciphertext

we have to sum up the coefficients in ∆q ciphertext. This is done by multiplying ∆q

127



with a special polynomial called testing polynomial, t and shown as follows:

t0 = 1 + (Q− 1)X + · · ·+ (Q− 1)XN−1 ∈ RQ

t1 = 1 +X + · · ·+XN−1 ∈ RQ,

γ ≡ 0 mod p, |γ ≥ q/4, t = γt0t1, ∆′q = ∆qt

As noted in [CGGI16], we apply the testing polynomial in the beginning to

avoid an additional factor of
√
N in final noise term. The factor of γ is introduced to

pin down the noise in the range [0, q/2) resulting in a positive coefficient polynomial.

Consequently noise limit in BV-LWE scheme is reduced to |q/4|. Now, ∆′q can be

shown to be a ciphertext encrypting the plaintext message N−2 (m+ pe) in constant

term. With additional linear transformations, the message is finally transformed

to m + pe. At this stage, ciphertext ∆′q is in a more desirable form, however, it

can’t be decrypted with original secret key. Assuming LWE dimension is less than

RLWE dimension, n ≤ N , we generate the key switching evaluation key ksRQ→Zn and

key-switch the ciphertext.

RLWE secret key sk ∈ RQ, BV-LWE secret key z ∈ Znq

z∗ = {z0,−zn−1, · · · ,−z1} ∈ ZnQ

ksRQ→Zn ← KeySwitchGen (sk, z∗)

Finally, we run a mod-switch procedure to reduce the ciphertext modulus Q

in ∆q ∈ R2
Q to a very small value q and get back a ciphertext w = (w0, w1) ∈ R2

Q.

Bootstrapped BV-SLWE ciphertext is given by crefresh = (w0[0], w1[0], w1[1], · · · , w1[n− 1]) ∈

Znq .

BV-LWE [B] Bootstrapping Using the above described techniques, we proceed

to describe our first bootstrapping Algorithm 1 applicable to BV-LWE scheme in

128



LWE form with binary secret keys. For this specific case, we retain the usage of

homomorphic multiplexer for computing the product terms aisi. Further, we keep

the accumulator in BV [BV11b] ciphertext form.

Algorithm 1: BV-LWE [z←$B] Bootstrapping procedure

Input : Ciphertext c = (a, b) ∈ Zn+1
q , bki s.t.

bki ← RGSW.Enc (zi, pk) , i ∈ n.
Output: Refreshed cref = (aref, bref) ∈ Zn+1

q .

1 ACC← Xb · t, ACC ∈ R2
p ;

2 for i = 0 to n− 1 do
3 c̄← G + (X−ai − 1) · bki ;
4 ACC← ACC× c̄;
5 end for
6 ACC← 2−1negate (ACC−N);
7 wQ = (w0, w1)← KeySwitch (ACC, kssk→z∗) ;
8 wq = ModReduceQ→q (wQ) ;
9 return cref = LWE-Extract (wq)

BV-LWE [T or χe ] Bootstrapping Our next bootstrapping Algorithm 2 is

applicable to BV-LWE scheme in LWE form with secret keys generated from ternary,

T or discrete Gaussian distributions χe. Again, we keep the intermediate accumulator

as BV scheme ciphertext however, at the greater cost of 2 key-switching operations

per iteration.

BV-GSW Bootstrapping Bootstrapping BV-GSW ciphertext in LWE matrix

form is a little more involved and needs more operations to refresh the ciphertext.

From the construction of BV-GSW ciphertext, we can see that the top ` rows of the

LWE matrix can be trivially obtained by applying LWE extraction procedure on the

top ` rows of a Ring-GSW ciphertext. This even applies to the next ` rows but only

for the cases when the message is a constant term, i.e., remaining coefficients must be

0. Similarly, remaining (n−1)` rows of LWE matrix can be formed by multiplication

with X ∈ Rq followed by LWE extraction. However, as shown in Algorithms 1 and 2

our accumulator, ACC stores random values in all coefficients except for the constant

129



Algorithm 2: BV-LWE [ z←$ T or χe] Bootstrapping procedure

Input : Ciphertext c = (a, b) ∈ Zn+1
q , bki,j s.t.

bki,j ← RGSW.Enc (2jzi, pk) , i ∈ n, j ∈ log2(2N).
ks→,i = BV.KeySwitchGen (sk, τi (sk)) and
ks←,i = BV.KeySwitchGen (τi (sk) , sk)∀i ∈ (Z/2NZ)∗

Output: Refreshed cref = (aref, bref) ∈ Zn+1
q .

1 ACC← Xb · t, ACC ∈ R2
p ;

2 for i = 0 to n− 1 do
3 a′ ← q − ai, j ← log2(a′ ∧ −a′);
4 k ← (a′ � j);
5 c̄k ← τk (bki,j);
6 ACCk ← KeySwitch (ACC, ks→,k) ;
7 ACCk ← ACCk × c̄k;
8 ACC← KeySwitch (ACCk, ks←,k) ;
9 end for

10 ACC← 2−1negate (ACC−N);
11 wQ = (w0, w1)← KeySwitch (ACC, kssk→z∗) ;
12 wq = ModReduceQ→q (wQ) ;
13 return cref = LWE-Extract (wq)

term. To resolve this issue, we rely on a RLWE coefficient extraction (RCE, discussed

in Section 4.6.3) procedure which nullifies these random coefficients. As an aftermath

of RCE procedure, the value of constant term increases by a factor equal to RLWE

dimension. This factor can be canceled out by simply scaling the testing polynomial

appropriately. We remark that the intermediate accumulator ACC can no longer be

kept as a BV ciphertext because of the limitation in multiplication properties of BV

FHE scheme. Further, accumulator (in Ring-GSW form) can only be multiplied by

powers of 2 right after the RCE procedure to obtain the ` rows of BV-GSW ciphertext.

Algorithm 3 and 4 outlines the bootstrapping procedure for different modes of secret

key generation.

4.6.3 RLWE Coefficient Extraction Procedure

RLWE coefficient extraction (RCE) procedure discussed in this section allows us

to selectively filter out the “garbage” values from the RLWE polynomial that is

accrued during the bootstrapping procedure. Specifically, given a RLWE ciphertext

130



Algorithm 3: BV-GSW [z←$B] Bootstrapping procedure

Input : Ciphertext C ∈ ZO×(n+1)
q , b = C0,0, a = (C0,1 · · ·C0,n+1), bki s.t.

bki ← RGSW.Enc (zi, pk) , i ∈ n.

Output: Refreshed Cref ∈ ZO×(n+1)
q .

1 ACC← Xb · t · (N−1 % Q) ;
2 for i = 0 to n− 1 do
3 c̄← G + (X−ai − 1) · bki ;
4 ACC← ACC× c̄;
5 end for
6 ACC← RCE (ACC) ;
7 for i = 0 to `− 1 do
8 ACCi ← ACC× 2i, ACCi ∈ R2

Q ;

9 ACCi ← 2−1negate (ACCi − 2iN) ;
10 WQ,i ← KeySwitch (ACCi, kssk→z∗) ;
11 Wq,i = ModReduceQ→q (WQ,i) ;
12 end for
13 return Cref = GSW-Extract (Wq,0, · · · ,Wq,`−1)

Algorithm 4: BV-GSW [z←$ T or χe] Bootstrapping procedure

Input : Ciphertext C ∈ ZO×(n+1)
q , b = C0,0, a = (C0,1 · · ·C0,n+1), bki,j

s.t. bki,j ← RGSW.Enc (2jzi, pk) , i ∈ n, j ∈ log2(2N).
ks←,i = RGSW.KeySwitchGen (τi (sk) , sk)∀i ∈ (Z/2NZ)∗

Output: Refreshed Cref ∈ ZO×(n+1)
q .

1 ACC← Xb · t · (N−1 % Q) ;
2 for i = 0 to n− 1 do
3 a′ ← q − ai, j ← log2(a′ ∧ −a′);
4 k ← (a′ � j), c̄k ← τk (bki,j);
5 c̄← KeySwitch (c̄k, ks←,k) ;
6 ACC← ACC× c̄;
7 end for
8 ACC← RCE (ACC) ;
9 for i = 0 to `− 1 do

10 ACCi ← ACC× 2i, ACCi ∈ R2
Q ;

11 ACCi ← 2−1negate (ACCi − 2iN) ;
12 WQ,i ← KeySwitch (ACCi, kssk→z∗) ;
13 Wq,i = ModReduceQ→q (WQ,i) ;
14 end for
15 return Cref = GSW-Extract (Wq,0, · · · ,Wq,`−1)

131



c = Encrypt (m) where m = (m0, g1, · · · , gn−1) the RCE procedure on c results in a

ciphertext c′ = Encrypt (m′) where m = (nm0, 0, · · · , 0) and n is the ring dimension.

Coefficient extraction procedure shown in [DM15] is very efficient but only

results in a LWE ciphertext which cannot be converted to RLWE form. Alternatively,

after extraction of coefficient in LWE form one can decrypt it usingO (n) homomorphic

operations, however, such method is accompanied with significant noise growth.

We describe an efficient RCE procedure which requires O (log2 (n)) homomorphic

operations with very little noise growth.

Our RCE procedure mainly comprises of Automorphism operations on RLWE

polynomials with unpacked coefficients. Automorphism (τk : Rq 7→ Rq) with an index

k ∈ (Z/2nZ)∗ produces a transformation on polynomial m as follows:

τk (m(X)) 7→ m
(
Xk
)

= m̄ (x)

The effect of Automorphism is that the j-th coefficent of m̄ is now related to the i-th

coefficient of the original polynomial by the equation (2j − 1) = (2i− 1) k mod 2n for

any i, j ∈ [n]. It was observed in[GHS12c, GHS12b] that coefficients embedded in slots

of m̄ shift cyclically when the cyclotomic (not a power of 2) polynomial is in packed

form. However, in the case of power of 2 cyclotomic polynomials all the coefficients

except for the constant term permute in a particular order depending upon the value

of k. Another interesting property of Automorphism is that we can selectively negate

coefficients of m̄ by choosing appropriate k values. Using the idempotentcy and

negation property of Automorphism, we can filter out half of the original coefficients

of m. However, after each Automorphism we need to key-switch the transformed

ciphertext to bring it back to original form so that it can be added to the original

ciphertext c. Repeating this process log2 (n) times gives us the required ciphertext.

RCE procedure is outlined in Algorithm 5.

132



Algorithm 5: RLWE Coefficient Extraction (RCE) Procedure

Input : A ciphertext c = Encrypt (m) ,m ∈ Rq of dimension n and
cyclotomic order 2n. m = (m0, g1, · · · , gn−1). Evaluation keys,
ksi such that ksi ← KeySwitchGen (τi (sk) , sk) ∀i ∈ (Z/2nZ)∗.

Output: Ciphertext c′ = Encrypt (m′) ,m′ ∈ Rq. m
′ = (nm0, 0, · · · , 0).

1 b← log2 (n) ;
2 c′ ← c ;
3 for i = 0 to b− 1 do
4 p := 2i;
5 κ := n/p+ 1;
6 c̄τκ(sk) ← τκ (c′) ;

7 c̄sk ← KeySwitch
(
c̄τκ(sk), ksκ

)
;

8 c′ ← c′ + c̄sk ;
9 end for

10 return c′

4.7 Gridstrapping

In this section, we describe the work on bootstrapping that builds on the above work

and other common FHE tools and techniques. Our starting point is the additive group

structure Zq mentioned in the work by Sheriff and Pikert [ASP14] on bootstrapping.

Recall that the additive group is defined as an embedding of Zq into the symmetric

group Sq of permutation matrices. Such an embedding allows us to express an integer

x ∈ Zq as a q-by-q permutation matrix. Alternatively, the permutation matrix can be

represented succinctly by an indicator vector {0, 1}q where the position of 1 denotes

the integer value. Given such a multiplicative group represented by permutation

matrices, each addition translates to O (q2) homomorphic operations.

We forgo many other details and focus on this multiplicative group Sq. In order

to extend this field over a large modulus q, the authors [ASP14] split the modulus

into many small terms by a direct application of Chinese Remainder Transform. Since

arithmetic on Zq is isomorphic to q =
∏

i Zri an integer is now expressed in terms

of a group of indicator vectors {0, 1}ri . As a natural consequence the number of

homomorphic operation reduces to O (r2
i ) for each integer addition. However, it is

133



not clear how to compute an inverse CRT on these ensemble of homomorphically

encrypted indicator vectors.

4.7.1 Message Encoding

Building further on the above mentioned idea of indicator vectors, we express an

integer x ∈ Zqζ as a tuple of indicator vectors {0, 1}q where ζ is the grid dimension

parameter. Collectively, integer x can be shown as an indicator vector {0, 1}q
ζ

where

the position of 1 denotes its value. For the simple case of ζ = 2, integer x is represented

by a sparse grid or matrix. In this case, position of 1 is indicated by a row pointer

and a column pointer. Figure 4.1 shows a multi dimensional grid where the position

of 1 is shown by k0, k1 and k2 pointers. Integer x can be shown to be equal to

x = k2 · q2 + k1 · q + k0. Generalizing this over a multi dimensional grid with a grid

dimension parameter ζ an integer in the grid is represented as follows:

x = kζ−1 · qζ−1 + kζ−2 · qζ−2 + · · ·+ k0 ∈ Zqζ

The above equation is reminiscent of representation of a large number in base-q

and indeed this idea converges with our goal to bootstrap ciphertexts with large

modulus. We represent each of the indicator vector ki = {0, 1}q as cyclotomic

polynomial with RLWE dimension n = q. Now, it only remains to show the addition

of integers using grid representation.

Grid Addition: Addition of grid integers quickly lands us in problems because

of the negacyclic nature of cyclotomic polynomials. Concretely, for two integers i0 and

i1 addition of grid integers translates to homomorphic multiplication of ciphertexts,

E (i0) and E (i1). If the sum is greater than n, then the resultant polynomial attains

a negative sign and falls out of encoding domain. To resolve this issue, we need to

evaluate absolute value of the resultant polynomial. For this purpose, we extract the

sign (sgn ∈ {−1,+1}) after every ciphertext multiplication and again multiply the

134



0

×

·
·
·

· · · 0

0 0

k1-ptr

k0-ptr

k2-ptr

Figure 4.1 Figure shows a multi dimensional grid representation of an integer,
ζ = 3, q = nζ . k0-ptr, k1-ptr and k2-ptr are ciphertexts capturing different grid
dimensions.

ciphertext with the sign. Pseudocode for grid addition is outlined in Algorithm 6.

For sign extraction, we apply the RCE procedure on the product term, Ri’s after

multiplying it with the testing polynomial t0, however, this step can be omitted if the

message polynomial is already present in a rotated form (by a multiplication with t1).

Carryover Next, we have to generate and propagate a carry-over for each of

the indicator ciphertexts. We define a homomorphic carry-over generation circuit,

EvalCarry as a map from sign, sgn to {1, X}, defined in the following equation:

EvalCarry : sgn 7→ {1, X}

carry = {(1−X)× sgn+ (1 +X)} × 2−1G

Bootsrapping keys: We assume BV-LWE secret keys are generated from

binary (B) distributions but it can be extended to other distributions at the expense of

135



Algorithm 6: Grid Add procedure

Input : Grid ciphertexts, P = (Pζ−1, · · · , P0) and Q = (Qζ−1, · · · , Q0),
grid dimension, ζ.

Output: Grid ciphertexts, R = (Rζ−1, · · · , R0).
1 carry← X0 ;
2 for i = 0 to ζ − 1 do
3 Ri ← Pi ×Qi × carry;
4 sgn← RCE (Ri × t0);
5 carry← EvalCarry (sgn) ;
6 Ri ← Ri × sgn ;
7 end for
8 return R = (Rζ−1, · · · , R0).

more number of evaluations. Bootstrapping keys are simply published as encryption

of individual secret key components so that the product term (aisi) remains as a

positive coefficient indicator vector. We use homomorphic multiplexer function for

generating grid product terms. Gridstrapping procedure is described in Algorithm 7.

4.8 Experimental Results

We evaluated our bootstrapping Algorithms 1-3 on open source C++ lattice crypto

library PALISADE 1. Our testing platform consist of a 64-bit quad core (i7-7700HQ)

processor clocked at 2.80GHz. Further, we remark that our implementations were

run entirely on a single thread with no hardware optimizations.

Unlike previous works [DM15, CGGI16, CGGI17] which worked on complex

FFTs for switching between RLWE polynomial representation, our work relies

on finite field FFT or NTT with mod-q reductions done with optimized Barrett

reductions. Further, we believe that our runtimes will improve by a factor of 4 or

more by using AVX vectorized instructions in FFT implementation as demonstrated

by these previous works. We treat hardware optimization as an independent topic

and reserve it for future works. Since runtime of bootstrapping algorithms are mostly

dominated by the relinearization factor, r and NTT operations we kept most of the

1. PALISADE homomorphic encryption software library is currently in version 1.9.1 and
available to download from https://palisadecrypto.org

136

https:// palisadecrypto.org


Algorithm 7: BV-LWE [B] Gridstrapping procedure

Input : Ciphertext c = (a, b) ∈ Zn+1
q , bki s.t. q = N ζ ,

bki ← RGSW.Enc (zi, pk) , i ∈ [0, n− 1].
Output: Refreshed cref = (aref, bref) ∈ Zn+1

q .
1 ACCgrid = (ACCζ−1, · · · ,ACC0)← GridEncode (b) ;
2 ACCgrid ← ACCgrid ·N−1 · t1 ;
3 for i = 0 to n− 1 do
4 ai ← N ζ − ai ;
5 ai,j ← GridEncode (ai) , j ∈ [0, ζ − 1] ;
6 for j = 0 to ζ − 1 do
7 pj ← G + (Xai,j − 1) · E(si) ;
8 end for
9 P ← (pζ−1, · · · , p0) ;

10 ACCgrid ← GridAdd (P,ACCgrid) ;
11 end for
12 ACC← 0 ;
13 for i = 0 to ζ − 1 do
14 ACCi ← ACCi × t0 ;
15 ACCi ← RCE (ACCi);
16 ACCi ← 2−1negate (ACCi −N) ;
17 ACC← ACC + ACCi × (N i mod p);
18 end for
19 wQ ← KeySwitch (ACC, kssk→z∗) ;
20 wq = ModReduceQ→q (wQ) ;
21 return cref = LWE-Extract (wq)

137



RLWE elements in evaluation form and r considerably large. For the same reason,

we performed Automorphism operations in evaluation representation making the

generalized secret key bootstrapping very efficient.

4.8.1 Parameter Selection and Results

In our experiments, we used a static parameter set from [DM15] to fix the parameters

for BV-LWE FHE and BV-GSW FHE schemes. Parameters for RLWE cryptosystems

are usually set from security and correctness constraints. However, in our experiments

we chose standard RLWE dimensions of N = 512, 1024 and then determine

correctness empirically. While security level (bits of security) for some of the

parameters have been set to a relatively low value, we remark that these runtimes

help in ease of comparison with other bootstrapping techniques and can be easily

extended for more secure parameter settings.

BV-LWE/GSW Parameters : LWE dimension, n = 500, ciphertext modulus,

q = 512, plaintext modulus, p = 5.

From the results, we observe that we get the fastest bootstrapping runtime

from Algorithm 1 where the secret keys are generated from binary distribution.

Algorithm 2 has a runtime roughly twice that of Algorithm 1 but has the added

benefit that it can work with arbitrary distribution secret keys. Lastly, Algorithm

3 has a relatively higher runtime because of the fact that the ciphertext is in LWE

matrix form. Moreover, the runtimes of these algorithms grow proportionately as the

RLWE dimension is increased.

4.9 Conclusion and Future Directions

In this chapter, we presented an improved variant of BV-LWE scheme and discussed

several novel techniques for refreshing a ciphertext of the scheme. Building on prior

works we have shown that a LWE homomorphic scheme capable of computing on

138



Table 4.1 Experimental Results Showing Bootstrapping Runtimes for BV-LWE
Scheme using Different Algorithms and Parameters

Algorithm N r Q bits
Bootstrapping

KeyGen
(ms)

Bootstrapping
Runtime

(ms)

1

512

11 32 308 133
8 31 410 166

2
11 32 2820 233
8 31 3680 295

3
14 41 310 721
11 43 412 1187

1

1024

13 37 675 282
11 43 852 362

2
13 37 6250 495
11 43 8310 615

3 11 43 832 2477

RLWE plaintext modulus p = 5, σ = 4.

integers can be bootstrapped efficiently resulting in a fully homomorphic scheme. In

contrast to prior work. which convert arithmetic functions to binary circuits, our

LWE FHE scheme can be applied directly resulting in several orders of improvement

in performance.

In the future, we plan to improve our bootstrapping algorithm runtimes by

porting over to heterogeneous execution platforms such as GPUs and FPGAs. We

also plan to bring in other FHE tools such as RLWE Field switching which can

decouple the LWE and RLWE parameters more effectively. Lastly, we believe our

techniques will benefit the most if they can be extended to bootstrap RLWE FHE

schemes.

139



CHAPTER 5

ACCELERATING LATTICE BASED PRIMITIVES ON GPUS

5.1 Introduction

Over the last decade, lattice based cryptography has revolutionized the field of

cryptology by introducing many powerful cryptographic primitives such as Fully

Homomorphic Encryption (FHE) schemes, Proxy Re-Encryption (PRE) schemes,

digital signature, functional encryption and many more. In theory, many of these

lattice based primitives are considered to be more efficient than other traditional

cryptosystems which rely on modular exponentiation. This is mainly because

evaluating modular exponentiation of very large integers (depending on security

factor) is a time consuming operation and further the most optimized algorithms

for exponentiation are not amenable to parallelization. On the other hand, it is also

evident from numerous implementation of lattice-based cryptographic schemes on

modern computing platforms that they still suffer from inefficiencies incurred due to

intensive computational workloads. Some of the inefficiencies can still be mitigated by

careful design choices and other trade-off in parameters however such choices often

come with a limitation on improvement in performance. A large number of these

implementations can be efficiently realized in practice by mapping the schemes to

appropriate hardware platform or synthesizing, part or all of a scheme, on special

purpose hardware. Additionally, performance of the system is boosted tremendously

if the computational workload can be split up into parallel constructs and mapped to

individual hardware units.

Fortunately, most of the lattice based primitives belong to the category of

problems which are in NC. Particularly, the class NC captures the set of problems

for which there are efficient parallel algorithms or in other words problems that are

140



massively parallelizable. Therefore, in theory many lattice based schemes can be

efficiently implemented in parallel using a parallel computer with nO(1) processors

and in time logO(1)(n) where n is the size of input and assuming availability of

infinite number of processors. For example, many operations on matrices such as

computation of product, rank and determinant have been shown to be computable

in parallel as the depth of circuits corresponds to a parallel time. Furthermore, the

trend in semiconductor industries is continuously shifting focus on high performance

multi-core architectures instead of building power hungry single-core processors

running at significantly higher clock speeds. This strongly suggests and justifies

the need to investigate the implementation of lattice based primitives on high

performance computational platforms such as ASICS, FPGAs, GPUs etc. In this

chapter, we describe the acceleration of RLWE based Proxy Re-Encryption schemes

and bootstrapping procedure by implementing them on heterogeneous computing

platforms such as GPUs.

5.1.1 Motivation for Accelerating PRE Schemes on GPUs

First introduced in the work of Blaze, Bleumer and Strauss [BBS98], Proxy Re-

Encryption (PRE) is a powerful cryptographic primitive that allows a subscriber

(Bob) to exchange and interpret encrypted data received from a publisher (Alice)

without ever exchanging any secret key. To interpret the messages, Alice creates

and gives to Proxy (Polly) a re-encryption key which then allows Polly to transform

messages encrypted with Alice’s public key into an encrypted message that can be

decrypted by Bob’s secret key. Furthermore, semantic security of proxy re-encryption

guarantees that the proxy, Polly doesn’t learn anything about Alice’s secret key or

messages.

Proxy re-encryption can be immensely useful in brokering information exchanges

in untrusted environments such as cloud computing platforms. Users can choose to

141



store contents in encrypted form on cloud and then register re-encryption keys of other

users they want to interact with. Now, the cloud acting as a proxy, can re-encrypt

messages on the fly and deliver encrypted messages that can be read by the desired

users. Even if the cloud is corrupted by a malicious adversary and all data stored on

cloud is compromised, the adversary cannot retrieve meaningful information out of it.

Further, the adversary in possession of re-encryption keys cannot deduce secret keys

of either the producer or consumer. Additionally, if the PRE scheme in deployment

is key private secure then the adversary cannot even trace the identities of Alice and

Bob.

Building PRE primitive with FHE schemes presents a simple yet powerful

approach for extending them for information exchanges in untrusted environment.

Further these PRE schemes mitigate some of the problems associated with traditional

PRE schemes as they are inherently endowed with uni-directional and multi-hop

nature. Construction of a PRE scheme based on BV [BV11b] FHE scheme was

presented in [PRSV17] where the authors exploited the key-switching procedure

for achieving the re-encryption functionality. Similarly, in [SR20] the authors

presented two PRE schemes based on GSW [GSW13] FHE scheme and it’s RLWE

variant Ring-GSW [KGV16] FHE scheme. Evaluation of the both BV-PRE and

Ring-GSW-PRE (with r = 1) with standard parameter set and security factor

(100-bits) shows that re-encryption procedure can be completed in the order of

10− 100 milliseconds.

Nowadays, owing to the ever increasing computational power and network

efficiency most of the applications hosted on cloud are expected to work in real

time. An application involving a PRE primitive is no different to this. Being a

low level key primitive, the PRE scheme in deployment is expected to deliver least

possible latency. The above mentioned PRE schemes share the similarity of using the

algebraic structure of ideal lattices as polynomial rings (RLWE) or finite field vectors

142



(LWE). As a result, many of the computational bottlenecks in implementation of these

PRE schemes arise due to large ring dimensions, arbitrary precision multiplications,

polynomial tensor, number theoretic transforms, matrix multiplication etc. Over

the years many of these problems have been remedied by switching over to better

algorithms or optimizations. However, in order to provide additional speedups better

hardware architectures have to be considered. In a heterogeneous computing model,

these hardware accelerators acting as co-processors can be orchestrated by CPUs to

achieve the desired levels of throughput. Among the common hardware accelerators

such as FPGAs, ASICs and GPUs the most common and readily available solution is

provided by GPUs. Modern GPUs consist of streaming multi-core processors which

can be utilized to accelerate parts of computations that can be processed in parallel.

Lattice based cryptography and more specifically RLWE based FHE schemes

being amenable to such parallelism have shown significant folds of improvement in

performance when implemented on GPUs. For example, in [DDS14] the authors

presented an implementation of NTRU FHE scheme on GPUs and evaluated AES and

Prince block ciphers resulting in 2.5-7.6x factors of speedup over CPUs. Similarly,

[DS15] present a homomorphic encryption accelerator library, cuHE targeting LTV

[LATV12], BGV [BGV14] and DHS [DHS14] FHE schemes. Speedups of 12-41x were

reported by the authors for homomorphic sorting of ciphertexts. In another work

[KGV16] leveraged the power of GPUs towards construction of homomorphic Bayesian

spam filter, secure multiple keyword search, and evaluation of binary decision trees

based on Ring-GSW FHE scheme. For the same security settings [KGV16] reported

a factor of 10x improvement in performance when compared with IBM HeLib [HS14]

software library. Continuing in this line work, we present an implementation of PRE

schemes based on BV and Ring-GSW FHE schemes.

143



5.1.2 Motivation for Accelerating Bootstrapping Procedures for LWE

FHE Scheme on GPUs

Nearly a decade ago, Gentry proposed the first Fully Homomorphic Encryption

(FHE) scheme, a powerful cryptographic primitive that enables computations on

encrypted data. FHE is the most versatile tool that can be directly applied to

outsource storage and computation to a remote server, enable private queries on

a database or a search engine and other secure two-party computations. Because of

its wide spectrum of application and strong security guarantees, fully homomorphic

encryption is sometimes dubbed as the “holy grail of cryptography”. Although for all

practical purposes a fixed depth homomorphic encryption scheme or SHE can be used

however, such instantiations are rather found to be inefficient due to the requirement

of very large modulus to contain the noise and satisfy the correctness constraints. In

the FHE approach, noise in the ciphertext is allowed to grow during computation

phase and once it reaches a certain threshold the ciphertext is refreshed by applying

a bootstrapping procedure. First described by Gentry [Gen09, G+09], a repeated

application of this bootstrapping procedure converts a fixed depth HE scheme to

FHE in all currently known schemes.

In all practical implementations [HS15, GH11], bootstrapping procedure is often

found to be computationally expensive because of homomorphic evaluation of the

decryption circuit which in turn can bring down the efficiency of the entire FHE

scheme or the application depending on it. To circumvent such inefficiency, it is much

desirable to offload the entire bootstrapping procedure to a hardware accelerator such

as GPU. In this chapter, we explore hardware acceleration of BV-LWE like FHE

schemes using NVIDIA GPUs interfaced on devices ranging from high end HPCs

to resource constrained embedded systems (NVIDIA Jetson AGX Xavier). A key

advantage of using BV-LWE FHE scheme over FHEW -like [DM15] cryptosystem is

that messages other than bits (m > 2) can be encrypted and operated on. Further,

144



we remark that our GPU implementation can be easily extended for implementation

of FHEW [DM15] or TFHE [CGGI16, CGGI17] FHE schemes.

Our Contributions: We enumerate our main contributions and scope of the

chapter as follows.

• We present a GPU implementation of number theoretic transforms (NTT) based
on finite field arithmetic where butterfly operations are performed in parallel.
In order to extend the finite field over large numbers we keep integers in CRT
representation. Our NTT implementation targets both small (n ≤ 1024) and
large (n > 1024) polynomial dimensions.

• Armed with a parallel implementation of NTT operation, next we target
parallelization of bit decomposition procedure. Relinearization operation along
with bit/digit decomposition is considered to be the most critical procedure in
many homomorphic encryption schemes and accelerating this operation imparts
overall efficiency to the FHE scheme.

• Utilizing the above implementations we demonstrate acceleration of BV-PRE
and Ring-GSW PRE schemes. In our implementation we have reduced number
of memory transfers between host and device to a minimum by storing most
of the dynamic elements on GPU memory. Another key feature of our
implementation is the use of cuda streams which allow concurrent execution
of kernels thereby minimizing latency.

• Similarly, we present an implementation of bootstrapping procedure 1 for BV-
LWE FHE scheme on NVIDIA GPUs. To minimize the latency of bootstrapping
procedure we execute the optimized SHE operations of Ring-GSW FHE scheme
on GPUs directly. Furthermore, to reduce the number of memory transfers we
generate and store the bootstrapping keys on GPU memory.

Chapter Organization: Section 5.2 discusses the implementation of underlying

arithmetic layer, number theoretic transforms and bit decomposition procedures on

GPU along with other optimizations. We omit the description of PRE schemes and

bootstrapping procedure 1 for BV-LWE FHE scheme as they have been discussed

in previous chapters 3 and 4. In Section 5.3, we provide the parameters selected for

implementation. Section 5.4 discusses the evaluation platforms, salient features of our

software implementation and overall speedups achieved for these implementations.

145



5.2 Number Theoretic Transform and Bit-Decomposition

5.2.1 Number Theoretic Transform

Cryptosystems based on RLWE security assumption are defined over a polynomial

ring R = Z [X] /Φm (X) where Φm (X) is an irreducible monic polynomial, typically

a cyclotomic polynomial of order m. This notation is extended to a polynomial

Rq modulo an integer q where the coefficients of the polynomial are in the interval

(−q/2, q/2]. Alternatively, an element a ∈ Rq is simply considered to be a coefficient

vector ~a ∈ Zϕ(m)
q . While addition of these polynomials is quite efficient, multiplication

leads to quadratic time complexity. To circumvent this inefficiency we represent

polynomial rings in the so called “Evaluation” representation. For a polynomial

a ∈ Rq, the coefficients can be converted to evaluation domain ā by evaluating a (X)

at each of the m-th primitive roots of unity modulo q. Coefficients of ā are related to

polynomial a through the relation āi = a (ωi) mod q where (i,m) = 1 and ω is m-th

primitive root of unity modulo q.

This back and forth conversion of a polynomial can be achieved efficiently by

using number theoretic transforms (NTT) which is roughly similar to the classical

n-dimensional fast fourier transform where finite field is used instead of complex

numbers. Concretely, in our implementation we use power of two cyclotomics (m =

2k) where Φm (X) is maximally sparse and ring dimension n = ϕ (m) = m/2 is also

a power of two. Power of two cyclotomics along with NTT have become so pervasive

in lattice based cryptography that overall efficiency of the cryptosystem depends

upon latency of NTT procedure. For this reason, we chose to implement NTT as

iterative Cooley-Tukey algorithm. More specifically, we implemented NTT routine

with Fermat-Theoretic Transform (FTT) optimization which eliminates the need for

interleaved zero padding when using the conventional NTT procedure. The pseudo-

code describing the NTT decimation in time procedure targeting CPU platforms is

shown in Algorithm 8.

146



5.2.2 Parallel NTT

Exploiting NVIDIA GPU architecture we reduce the NTT latency further by mapping

the butterfly computations of each of the log n stages to an independently processing

thread of a thread block. In NVIDIA CUDA architecture, each kernel can be

potentially divided into a 3-dimensional array of blocks where a block further consists

of a number of threads. CUDA runtime schedules these threads in groups of 32

threads (called warps) which execute concurrently on a streaming-multiprocessor

(SM). Because of hardware restrictions, a maximum of 1024 threads can be assigned

to a block. Further, these threads within a block have the capability to share data

and more importantly synchronize with each other. In our implementation, for small

polynomials (n ≤ 1024) we map the coefficients entirely to a thread block and

synchronize the thread block after completion of a stage as shown in Figure 5.1.

We use shared memory for storing the intermittent results as latency associated with

data retrieval for global memory is higher than that of shared memory which reside

on chip. After completion of the entire NTT procedure, we transfer data back to the

global memory. For larger polynomial rings (n > 1024) we use a combination of block

level synchronization and stream level synchronization to avoid data race conditions.

Because stream level synchronization avoids data race conditions via global memory

synchronization, we pay the penalty of using slower memory but only for a fraction

of the NTT procedure call.

Evaluation of the proposed NTT procedure on GPU platforms and CPU

platforms is shown in Figure 5.2. From the figure, we can see that CPU platform

running on single thread achieves slightly better performance for smaller ring

dimensions. As the ring dimensions grow higher, we can see that the GPU platform

start showing significant improvement in performance.

147



Xi−1(0)

Xi−1(1)

Xi−1(2)

Xi−1(3)

Xi−1(4)

Xi−1(5)

Xi−1(6)

Xi−1(7)

Xi(0)

Xi(1)

Xi(2)

Xi(3)

Xi(4)

Xi(5)

Xi(6)

Xi(7)

×

×

×

×

×

×

×

×

W0·0
i

W1·0
i

W2·0
i

W3·0
i

W0·1
i

W1·1
i

W2·1
i

W3·1
i

S
y
n
c
h
r
o
n
iz

a
t
io

n
B

a
r
r
ie

r

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

S
y
n
c
h
r
o
n
iz

a
t
io

n
B

a
r
r
ie

r

Figure 5.1 Figure demonstrating parallel implementation of the i-th stage of NTT
on GPU, N = 8.

Figure 5.2 Comparison of CPU and GPU runtimes of NTT algorithm.

148



5.2.3 Barrett Modulo Reduction and Arbitrary Precision Support

For modulo reduction we used a variation of the generalized Barrett modulo reduction

presented in [Bar86, DQ98], outlined in Algorithm 10. Barrett modulo reduction

requires a pre-computation term µ = b22b/qc for a particular modulus q and it’s bit

width, b = dlog2 qe. We pre-compute these terms and transfer them to GPU global

memory for read only access to any kernel. NVIDIA GPUs are restricted to 32-

bit architecture however 64-bit arithmetic is supported by assembly code emulation.

Because of this reason, we limit our modulus to 32-bits and prefer modulus with

bit width closer to 32-bits so that the precomputation term, µ fits into word size.

Concretely, we used 29− 30 bit width modulus in our implementation.

Lattice based cryptosystems, and particularly those related to homomorphic

encryption employ the addition of low norm noise terms to base their security on

Ring-LWE and LWE assumptions. As a result, noise term in ciphertexts grow upon

homomorphic evaluation such as addition, multiplication and other operations. For

preserving the correctness constraints so that ciphertexts are decrypted correctly, the

modulus q should be chosen large enough such that the the final accumulated error

terms do not “wrap around” modulo q. To extend support for larger modulus, we store

a set of increasing prime moduli qi by an application of Chinese Remainder Theorem

(CRT). We only reconstruct back the coefficients into larger terms, for the purpose

of decryption or bit-decomposition where the polynomial needs to be represented in

terms of the larger modulus, q =
∏t−1

i=0 qi.

Evaluation of the NTT procedure on GPU with varying number of moduli, t

and ring dimension, n can be seen in Figure 5.3. It can be seen from the figure

that for most of the ring dimensions the runtimes vary a little. This is due to the

fact that GPUs have the capability to improve throughput by hiding latency with

concurrent execution of NTT procedure on different polynomials. On a CPU platform

149



Figure 5.3 GPU runtimes of NTT algorithm with varying ring dimension and
moduli, t.

the runtimes is estimated to scale linearly with the number of moduli assuming a single

thread execution environment.

5.2.4 Bit Decomposition

Bit decomposition along with relinearization procedure forms the backbone of lattice

based cryptography. Relinearization procedure has proved to be a crucial primitive for

many cryptographic operations such as key-switching, re-encryption, homomorphic

multiplication and ciphertext length reduction. While bit decomposing elements

is a simple procedure in finite field arithmetic, it is accompanied with additional

computational overhead in Ring-LWE based cryptosystems. In Ring-LWE based

cryptosystems, ciphertexts and other key elements are mostly present in evaluation

representation. In order to bit decompose polynomial ring elements, it needs to

switched back to coefficient representation by an application of inverse NTT. At

this stage, bit decomposition of the polynomial results in a vector of b polynomials,

where b is the bit length of the modulus q. To perform further computations, these

polynomials needs to be converted back to evaluation representation by a series of

NTT calls.

150



Algorithm 8: NTT DIT Procedure

Input : A polynomial a ∈ Rq of dimension n and cyclotomic order m.
Modulus q, m-th primitive root of unity, ω mod q.

Output: Polynomial ā of dimension n in evaluation representation.
1 for i← 0 to n− 1 do
2 ai ← ai · ωi mod q;
3 end for
4 ā← BitReversal(a);
5 for i = 1 to log n do
6 `← 2i;
7 for j = 0 to n− 1 by ` do
8 for k = 0 to `/2− 1 do
9 p = (m/2i) · k ;

10 ζ = ωp%q ;
11 idxEven = j + k ;
12 idxOdd = idxEven+ `/2 ;
13 āidxEven = (āidxEven + ζ · āidxOdd) % q ;
14 āidxOdd = (āidxEven − ζ · āidxOdd) % q;
15 end for
16 end for
17 end for
18 return ā

Algorithm 9: INTT DIT Procedure

Input : A polynomial ā ∈ Rq of dimension n and cyclotomic order m.
Modulus q, m-th primitive root of unity, ω mod q.

Output: Polynomial a of dimension n in coefficient representation.
1 a← BitReversal(ā);
2 a← NTT(a, ω−1, q);
3 for i← 0 to n− 1 do
4 ai ← ai · ω−i mod q;
5 end for
6 return a

151



Algorithm 10: Mod Barrett Reduction

Input : x ∈
[
0, (q − 1)2], modulus q, bit-width b = dlog qe, q̄ = 2 · q and

µ = b22b/qc.
Output: z ← x% q

1 z ← x� b ;
2 z ← z · µ ;
3 z ← x� b ;
4 z ← z · q ;
5 z ← x− z ;
6 if z >= q̄ then
7 z ← z − q̄;
8 end if
9 if z >= q then

10 z ← z − q;
11 end if
12 return z

Since the bit decomposed polynomials are independent of each other, we
can apply NTT procedures on them in parallel. For this purpose, in our GPU
implementation we map the three dimensional CUDA grid as follows:

• grid.X → mapped to individual bit of decomposed polynomial with grid
dimension set to bit length b of modulus q.

• grid.Y → mapped to individual modulus qi with grid dimension set to number
of moduli, t.

• grid.Z→ mapped to polynomial coefficients in excess of the maximum number
of threads allowed to exist in a block.

In order to avoid race conditions in NTT procedure, we provide the kernel

with appropriate synchronization. From Figure 5.4, we can observe that GPU

implementation of bit decomposition outperforms runtimes of CPU platform for all

ring dimensions and further the speedups are more pronounced in case of higher ring

dimensions.

5.3 Parameter Selection

Estimating parameters for LWE or RLWE based encryption schemes is a significantly

challenging task. On one hand, we have to ensure that the chosen parameters generate

an underlying RLWE instance that is hard to solve as per known attacks while on the

other hand we have to also meet the correctness constraint. Correctness constraint

152



Figure 5.4 GPU vs CPU runtimes of bit decomposing polynomial ring with
varying ring dimension, N .

can be trivially achieved by choosing an arbitrarily large modulus q. However, such a

strategy is not suitable for efficient implementation and further leads to insecure LWE

instances. It was shown in [LL15] when the modulus is exponential in LWE dimension,

q ≥ 2O(n) and error distribution is narrow enough, secret key can be recovered

in polynomial time using standard lattice basis reduction algorithms such as LLL

[LLL82] and Babai’s nearest planes method [Bab86]. These LWE attacking algorithms

which work by reducing the lattice basis (LLL and BKZ), are often quantified by a

parameter called root Hermite factor, δ which represents the quality of resultant basis.

A smaller δ factor leads to better lattice basis and improved security. In order to lay

out concrete parameter, Lindner and Peikert [LP11] gave a heuristic relation that

computes runtime of BKZ lattice reduction algorithm for a particular root Hermite

factor. This is shown as:

log2 (tBKZ) ≥ 1.8

log2(δ)
− 110

Further, Gentry et al. [GHS12c] gave a relation which computes minimum LWE

dimension secure for a particular modulus q, standard deviation of error distribution

153



σe and root Hermite factor, δ. Combining the two we can express the minimum LWE

dimension to support κ-bits of security as follows:

n ≥ log2 (q/σe) (κ+ 110)

7.2

In particular, we used the runtime of BKZ2.0 [ACF+15] (considered to be a

improved version of BKZ algorithm) given by the relation

log2 (tBKZ2.0) ≥ 0.009

log2
2 δ
− 27

Again, combining this with minimum LWE dimension relation from [GHS12c] we

arrive at our final security constraint as follows:

n ≥ log2 (q/σe)
√
κ+ 27

0.379

5.3.1 PRE Parameter Selection

In our implementation, we targeted for κ = 128-bits of security for both BV-PRE

and Ring-GSW-PRE scheme. Using the correctness constraint from the respective

schemes, we generated the working modulus for various ring dimensions as shown in

Tables 5.1 and 5.2.

5.3.2 BV-LWE Bootstrapping Parameter Selection

In this case, we need to set parameters for both BV-LWE and Ring-GSW schemes

separately. We fix the parameters for BV-LWE scheme as follows:

BV-LWE Parameters: LWE dimension, n = 500, ciphertext modulus, q = 512,

plaintext modulus, p = 5.

154



Table 5.1 Minimum Modulus Bits that Satisfies 128-bits of Security for BV-PRE
scheme

PRE Scheme n
log(q) based on

average case error bounds

BV-PRE

512 18
1024 18
2048 19
4096 19
8192 20
16384 20

B = 15 and σ = 4.

Table 5.2 Minimum Modulus Bits that Satisfies 128-bits of Security for
Ring-GSW-PRE Scheme

PRE Scheme n
log(q) based on

average case error bounds

Ring-GSW-PRE

1024 25
2048 26
4096 27
8192 28
16384 29

B = 15 and σ = 4.

For Ring-GSW FHE scheme, we set the ring dimension to N = {512, 1024},

use small relinearization factor r and increment them gradually. We set the modulus

values (Q-bits) empirically by verifying the correctness of decryption.

5.4 GPU Implementation and Results

5.4.1 Software Implementation

We evaluated both BV-PRE and Ring-GSW-PRE scheme on two NVIDIA GPU

devices, namely, GeForce GTX-1050 and Titan-RTX as shown in Table 5.3. While

GPU1 is a commodity grade notebook GPU, GPU2 is a much more powerful GPU

targeted towards compute intensive applications. Our software implementation 1

follows the modular structure of PALISADE 2 homomorphic encryption library

1PRE scheme implementations available to download from https://git.njit.edu/grs22/

pre-on-gpu
2PALISADE homomorphic encryption software library is currently in version 1.9.1 and
available to download from https://palisade-crypto.org

155

https://git.njit.edu/grs22/pre-on-gpu
https://git.njit.edu/grs22/pre-on-gpu
https:// palisade-crypto.org


Table 5.3 Configuration and Features of GPU with their Corresponding CPU used
for Evaluation of PRE Schemes

Feature CPU1 CPU2 GPU1 GPU2
Model Intel i7-7700HQ Intel Silver 4114 NVIDIA GeForce GTX 1050 NVIDIA Titan RTX
Cores 4 10 640 4608
Clock Rate 2.8 GHz 2.2 GHz 1.49 GHz 1.77 GHz
Multiprocessors - - 5 72
RAM Memory 16 GBytes 181 GBytes 4042 MBytes 24190 MBytes
CUDA Capability - - 6.1 7.5

Table 5.4 Configuration and Features of GPU with their Corresponding CPU used
for Evaluation of BV-LWE Bootstrapping Procedure

Feature CPU1 CPU2 CPU3 GPU1 GPU2 GPU3
Model Intel i7-7700HQ Intel Silver 4114 ARM v8 NVIDIA GeForce GTX 1050 NVIDIA Titan RTX NVIDIA Volta
Cores 4 10 8 640 4608 512
Clock Rate 2.8 GHz 2.2 GHz 2.26 GHz 1.49 GHz 1.77 GHz 1.38 GHz
Multiprocessors - - - 5 72 8
RAM Memory 16 GBytes 181 GBytes 32 GBytes 4042 MBytes 24190 MBytes 15823 MBytes
CUDA Capability - - - 6.1 7.5 7.2

separating crypto implementations from lower level math layers. Our implementation

is compiled with CUDA 10.0 NVCC compiler along with C++14 support. Our

execution environment consist of 64-bit x86 architecture with operating system

for GPU1 and GPU2 as Ubuntu 18.04 and Scientific Linux 6.10 (available on

university HPC). Further, we remark that we strictly focus on a single threaded CPU

implementation with no hardware optimization. Additionally, on the GPU side our

implementations make use of a single GPU device in spite of availability of multiple

GPU devices on GPU2.

In the evaluation of Algorithm 1 for bootstrapping of BV-LWE scheme

with binary secret keys, we used both GPU1 and GPU2. In addition, we used

GPU3, NVIDIA Jetson AGX Xavier GPU to investigate the performance on a

embedded systems platform. The embedded system is a heterogeneous platform

which is interfaced with a ARMv8 processor. The device works on three different

pre-configured power modes. We note that our evaluation used the highest power

mode for better performance. Complete details of devices are shown in Table 5.4.

156



In our implementation, we primarily aimed to improve the runtimes of

operations pertaining to encryption scheme, PRE scheme and homomorphic operations.

To do so, we identified the critical operations in encryption, re-encryption, decryption,

re-keygen, addition and multiplication and switched them to CUDA kernel calls. We

outline the main aspects of our GPU optimizations as follows:

• Optimized pre-computation phase: Our implementation consists of an

optimized pre-computation phase wherein we compute most of the cryptosystem

parameters and NTT related parameters on CPU and transfer them to GPU global

memory. For faster memory transfers, we used coalesced memory spaces which require

fewer memory transfer calls. On the CPU side we mostly used memory allocation

using pinned host memory. Memory transfer using pinned memory is generally faster

than pageable host memory because GPU can directly access such memory spaces.

Finally, we remark that we do not make use of constant or texture memory as it

reported little or no improvement in performance. Moreover, such memory spaces

are available in very limited number and not scalable for higher ring dimensions.

• Memory related optimizations: Being a heterogeneous platform, one should

expect a significant amount of data transfers between CPU and GPU memory.

However, it is known that such data transfers are generally slower (because of lower

bandwidth PCIe) and can sometimes degrade the overall performance of application.

To get a more realistic performance estimate of various operations, we eliminated most

of the data transfers by allocating memory for most of the cryptosystem elements on

GPU memory directly.

• Fast Random Generators: Our implementation relies on CUDA random

number generation library cuRAND for generating random polynomials. The

distributions targeted in our application are uniform random distribution Uq, discrete

Gaussian distribution χe with standard deviation σe, binary and ternary uniform

distributions. Except for uniform distribution, all other distributions were generated

157



using continuous Gaussian distribution on pre-allocated memory and then launching

appropriate kernels to reduce them in a particular range. More specifically, we used

the CURAND RNG PSEUDO MTGP32 set of generators which is 5x faster than

other random number generators of the same family and atleast 10x faster than CPU

random number generators.

• Relinearization As described in Section 5.2.4, we benefit significantly by mapping

the bit-decomposed polynomials to a three dimensional CUDA kernel wherein NTT

procedure can be invoked in parallel. Once the polynomials are evaluated they need to

be reduced back into a single polynomial. To do this efficiently, we launch a parallel

reduction kernel with grid dimension roughly equal to number of bit-decomposed

polynomials. After each kernel call, we obtain the partial results in half the

polynomials than we start with. Repeating this process until we reach a single reduced

polynomial makes the relinearization process very efficient with only O (log (log (q)))

reduction kernel calls.

• Streams: On GPUs we can increase the throughput of kernels by launching

them simultaneously on independent streams. For example, NVIDIA K20 has

the ability to support upto 32 concurrent kernels launched on a separate stream.

In our implementation, we use streams mainly for parallel generation of noise,

synchronizing NTTs, asynchronous memory transfers and kernel parallelization.

For taking advantage of stream APIs, we always keep the ciphertext components

independent; for example in Ring-GSW PRE scheme we keep ciphertext as a vector

of column polynomials in row major order.

•Cache optimized multiplication: We optimized the homomorphic multiplication

of a Ring-GSW ciphertext with a BV ciphertext by storing the intermediate results

on shared memory. These shared memories are on-chip memory spaces with very fast

access time and hence reduce the evaluation runtime considerably.

158



Table 5.5 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operation for Ring Dimension n at r = 1, p = 5, and 128-bits of
Security

PRE Scheme
Parameters Runtime Throughput

n b
Enc
(ms)

Dec
(ms)

ReEnc
(ms)

Enc
(Kbps)

Dec
(Kbps)

ReEnc
(Kbps)

BV-PRE

512 18 2.14 0.46 0.29 239.25 1113.04 1765.51
1024 18 2.18 0.52 0.45 469.72 1969.23 2275.55
2048 19 2.21 0.55 0.85 926.69 3723.63 2409.41
4096 19 2.28 0.66 1.26 1796.49 6206.06 3250.79
8192 20 2.76 1.18 2.76 2968.11 6942.37 2968.11

Ring-GSW-PRE

1024 25 3.92 0.6 39.75 261.22 1706.66 25.76
2048 26 5.34 0.55 61.18 383.52 3723.63 33.47
4096 27 9.85 0.63 118.86 415.83 6501.58 34.46
8192 28 19.89 1.08 259.02 411.86 7585.18 31.62

Evaluation Data Reported for GPU1.

Table 5.6 Experimental Runtime Performance of Encryption, Decryption, and
Re-encryption Operation for Ring Dimension n at r = 1, p = 5, and 128-bits of
Security

PRE Scheme
Parameters Runtime Throughput

n b
Enc
(ms)

Dec
(ms)

ReEnc
(ms)

Enc
(Kbps)

Dec
(Kbps)

ReEnc
(Kbps)

BV-PRE

512 18 4.16 0.47 0.31 123.07 1089.36 1651.61
1024 18 4.04 0.57 0.4 253.46 1796.49 2560
2048 19 4.24 0.61 0.69 483.02 3357.37 2968.11
4096 19 4.3 0.63 0.72 952.55 6501.58 5688.88
8192 20 4.99 0.68 1.3 1641.68 12047.05 6301.53

Ring-GSW-PRE

1024 25 4.75 0.62 35.46 215.57 1651.61 28.87
2048 26 5.22 0.67 49.5 392.33 3056.71 41.38
4096 27 7.98 0.71 87.24 513.28 5769.01 46.95
8192 28 12.2 0.71 166.67 671.47 11538.03 49.15

Evaluation Data Reported for GPU2.

5.4.2 Experimental Results

For experimental analysis of our PRE schemes, we use latency and throughput as

primary yardsticks. A PRE scheme can be divided into a static and dynamic phase.

Static phase takes into account all sorts of key generation, pre-computations and

parameter setup. Performance of any real time system that uses PRE scheme is largely

determined by this dynamic phase where encryption, re-encryption and decryption

operations are performed on the fly. Therefore, we only report the runtimes and

159



throughput for dynamic phase operations by varying the ring dimension, n and

modulus bit length, b determined as per 128-bit security setting. For recording

throughput, we consider messages as binary string with length equal to the ring

dimension.

From Tables 5.5 and 5.6, we can observe that encryption and decryption

runtimes for BV-PRE scheme vary in very small amount with increasing ring

dimensions. We remark that encryption runtimes for smaller ring dimensions are

still slower with break even occuring for n = 2048 and hence encryption for smaller

ring dimensions are more suitable for CPU platforms. Re-encryption runtimes for

BV-PRE scheme increases linearly with ring dimensions but still doesn’t grow more

than twice as observed on CPU implementations. Comparing our results with Table

6 [PRSV17] for re-encryption runtimes, we get a performance improvement by a

factor of 39x to 228x. Similarly, we get a peak throughput of 6.3 Mbps for BV-PRE

re-encryption procedure from GPU2. We remark that the actual runtimes of BV-PRE

in the current release of PALISADE has been improved since the publication of

[PRSV17].

For Ring-GSW PRE scheme, decryption runtimes are slightly higher than

that of BV PRE scheme because of relatively large modulus bit lengths. Further,

decryption runtimes vary very little and can be treated as constant for all practical

purposes. Re-encryption runtimes are drastically higher and consequently throughput

reduced when compared to BV PRE re-encryption runtimes and throughput. This

is due to the fact that relinearization procedure is performed over multiple rows of

ciphertext matrix. However, when compared to CPU implementation we still get

performance improvement of 3.5x to 11x. Runtimes of both BV PRE and Ring-GSW

PRE schemes can be further brought down by considering a larger relinearization

window but is accompanied with larger noise growth and error bounds.

160



Table 5.7 Experimental Runtime Performance of BV-LWE Bootstrapping
Algorithm 1 for Varying Ring Dimension, N , Relinearization Factor, r and GPUs

N r Q bits
Bootstrapping KeyGen

(in s)
Bootstrapping Runtime

(in s)
GPU1 GPU2 GPU3 GPU1 GPU2 GPU3

512
1 30 1.75 1.35 3.36 0.57 0.25 2.25
2 30 1.43 1.32 3.32 0.41 0.22 1.97
4 30 1.27 1.32 2.67 0.32 0.21 1.21

1024
1 32 2.58 1.44 5.9 0.93 0.32 2.65
2 32 1.94 1.42 3.52 0.65 0.28 1.66
4 32 1.57 1.42 2.62 0.48 0.26 1.24

In the evaluation of bootstrapping algorithm for BV-LWE scheme, we used

very low relinearization values, r = {1, 2, 4}. These small relinearization factors

use relatively low base 2r to decompose polynomials and hence the noise growth is

considerably less. The overall impact is that a lower ciphertext modulus (within

machine word size) can be used however the runtimes is increased. In such cases, a

hardware accelerator such as GPU can be more useful. From Table 5.7, we can observe

that for GPU1 and GPU2 the overall runtimes stay under a second. In case of the

embedded GPU platform, GPU3, we get reduced performance on account of power

and architecture constraints. For these small relinearization factors, the runtimes

are faster than CPU runtimes by a factor of 4x or more. Further, with very high

relinearization factors (r > 9) CPU implementation are slightly faster but use higher

ciphertext modulus values.

5.5 Conclusion

In this work, we explored GPU acceleration of BV-PRE, Ring-GSW PRE schemes

and bootstrapping algorithm for BV-LWE schemes and showed that GPUs are indeed

capable of improving performance by more than an order of magnitude. Moreover,

from our experiments we found that GPUs are more effective in working with

larger ring dimensions. In future we would like to explore hardware acceleration of

161



other FHE applications and primitives through our optimized and parallel software

library.

162



REFERENCES

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient Lattice (H)IBE in
the Standard Model. In Henri Gilbert, editor, Advances in Cryptology –
EUROCRYPT 2010, pages 553–572, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice Basis Delegation in Fixed
Dimension and Shorter-Ciphertext Hierarchical IBE. In Tal Rabin, editor,
Advances in Cryptology – CRYPTO 2010, pages 98–115, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[ABD16] Martin Albrecht, Shi Bai, and Léo Ducas. A Subfield Lattice Attack on Overstretched
NTRU Assumptions. In Matthew Robshaw and Jonathan Katz, editors,
Advances in Cryptology – CRYPTO 2016, pages 153–178, Berlin, Heidelberg,
2016. Springer Berlin Heidelberg.

[ABPW13] Yoshinori Aono, Xavier Boyen, Le Trieu Phong, and Lihua Wang. Key-Private
Proxy Re-encryption under LWE. In Goutam Paul and Serge Vaudenay,
editors, Progress in Cryptology – INDOCRYPT 2013, pages 1–18, Cham, 2013.
Springer International Publishing.

[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya
Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai,
and Vinod Vaikuntanathan. Homomorphic Encryption Security Standard.
Technical report, HomomorphicEncryption.org, Toronto, Canada, November
2018.

[ACF+15] Martin R Albrecht, Carlos Cid, Jean-Charles Faugere, Robert Fitzpatrick, and
Ludovic Perret. On the Complexity of the BKW algorithm on LWE. Designs,
Codes and Cryptography, 74(2):325–354, 2015.

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with Compressed
Queries and Amortized Query Processing. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 962–979, 2018.

[AD97] Miklós Ajtai and Cynthia Dwork. A Public-key Cryptosystem with Worst-
case/Average-case Equivalence. In Proceedings of the Twenty-ninth Annual
ACM Symposium on Theory of Computing, pages 284–293, 1997.

[AFFP11] Martin R Albrecht, Pooya Farshim, Jean-Charles Faugere, and Ludovic Perret. Polly
Cracker, Revisited. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 179–196. Springer, 2011.

163



[AFGH06] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
Proxy Re-encryption Schemes with Applications to Secure Distributed
Storage. ACM Transactions on Information and System Security (TISSEC),
9(1):1–30, 2006.

[Ajt96] Miklós Ajtai. Generating Hard Instances of Lattice Problems. In Proceedings of
the Twenty-eighth Annual ACM Symposium on Theory of Computing, pages
99–108, 1996.

[Ajt98] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for Randomized
Reductions. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, pages 10–19, 1998.

[AMBFK16] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
Xpir: Private Information Retrieval for Everyone. Proceedings on Privacy
Enhancing Technologies, 2016(2):155–174, 2016.

[APS13] Aydin Aysu, Cameron Patterson, and Patrick Schaumont. Low-cost and Area-efficient
FPGA Implementations of Lattice-based Cryptography. In Hardware-Oriented
Security and Trust (HOST), 2013 IEEE International Symposium on, pages
81–86, June 2013.

[ASP14] Jacob Alperin-Sheriff and Chris Peikert. Faster Bootstrapping with Polynomial Error.
In Annual Cryptology Conference, pages 297–314. Springer, 2014.

[Bab86] László Babai. On Lovász Lattice Reduction and the Nearest Lattice Point Problem.
Combinatorica, 6(1):1–13, 1986.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In Conference on the
Theory and Application of Cryptographic Techniques, pages 311–323. Springer,
1986.

[Bar89] David A Barrington. Bounded-width Polynomial-size Branching Programs Recognize
Exactly those Languages in NC1. Journal of Computer and System Sciences,
38(1):150–164, 1989.

[BBC+10] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Raimondo, Ruggero
Donida Labati, Pierluigi Failla, Dario Fiore, Riccardo Lazzeretti, Vincenzo
Piuri, Fabio Scotti, et al. Privacy-preserving Fingercode Authentication. In
Proceedings of the 12th ACM Workshop on Multimedia and Security, pages
231–240, 2010.

[BBS98] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible Protocols and
Atomic Proxy Cryptography. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 127–144. Springer, 1998.

164



[BDF18] Guillaume Bonnoron, Léo Ducas, and Max Fillinger. Large FHE Gates from Tensored
Homomorphic Accumulator. In International Conference on Cryptology in
Africa, pages 217–251. Springer, 2018.

[BGG+16] Johannes Buchmann, Florian Göpfert, Tim Güneysu, Tobias Oder, and Thomas
Pöppelmann. High-Performance and Lightweight Lattice-Based Public-Key
Encryption. In Proceedings of the 2nd ACM International Workshop on IoT
Privacy, Trust, and Security (IoTPTS’16), pages 2–9, 2016.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on
Ciphertexts. In Theory of Cryptography Conference, pages 325–341. Springer,
2005.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) Fully
Homomorphic Encryption without Bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6:13, 2014.

[BHHH19] Flavio Bergamaschi, Shai Halevi, Tzipora T Halevi, and Hamish Hunt. Homomorphic
Training of 30,000 Logistic Regression Models. In International Conference on
Applied Cryptography and Network Security, pages 592–611. Springer, 2019.

[BLLN13] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved
Security for a Ring-based Fully Homomorphic Encryption Scheme. In IMA
International Conference on Cryptography and Coding, pages 45–64. Springer,
2013.

[BLN14] Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private Predictive Analysis
on Encrypted Medical Data. Journal of Biomedical Informatics, 50:234–243,
2014.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical Hardness of Learning with Errors. In Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing, pages 575–584. ACM,
2013.

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine
Learning Classification over Encrypted Data. In NDSS, volume 4324, page
4325, 2015.

[BR15] Jean-François Biasse and Luis Ruiz. FHEW with Efficient Multibit Bootstrapping.
In International Conference on Cryptology and Information Security in Latin
America, pages 119–135. Springer, 2015.

[Bra12] Zvika Brakerski. Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. In Annual Cryptology Conference, pages 868–886. Springer,
2012.

165



[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic Encryption
from (Standard) LWE. In Proceedings of the 2011 IEEE 52Nd Annual
Symposium on Foundations of Computer Science, FOCS ’11, pages 97–106,
Washington, DC, USA, 2011. IEEE Computer Society.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from
Ring-LWE and Security for Key Dependent Messages. In Annual Cryptology
Conference, pages 505–524. Springer, 2011.

[BV14a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic Encryption
from (Standard) LWE. SIAM Journal on Computing, 43(2):831–871, 2014.

[BV14b] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as Secure as PKE.
In Proceedings of the 5th Conference on Innovations in Theoretical Computer
Science, pages 1–12. ACM, 2014.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. Faster
Fully Homomorphic Encryption: Bootstrapping in less than 0.1 Seconds. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 3–33. Springer, 2016.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster
Packed Homomorphic Operations and Efficient Circuit Bootstrapping for
TFHE. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 377–408. Springer, 2017.

[CGH+18] Jack LH Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor Shoup. Doing
Real Work with FHE: The case of Logistic Regression. In Proceedings of the 6th
Workshop on Encrypted Computing & Applied Homomorphic Cryptography,
pages 1–12. ACM, 2018.

[CH07] Ran Canetti and Susan Hohenberger. Chosen-ciphertext secure proxy re-encryption.
In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors,
Proceedings of the 2007 ACM Conference on Computer and Communications
Security, CCS 2007, Alexandria, Virginia, USA, October 28-31, 2007, pages
185–194. ACM, 2007.

[CH18] Hao Chen and Kyoohyung Han. Homomorphic Lower Digits Removal and Improved
FHE Bootstrapping. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 315–337. Springer, 2018.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai Trees, or How to
Delegate a Lattice Basis. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 523–552. Springer, 2010.

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An Algorithm for NTRU
Problems and Cryptanalysis of the GGH Multilinear Map without a Low-level
Encoding of Zero. LMS Journal of Computation and Mathematics, 19(A):255–
266, 2016.

166



[CM15] Michael Clear and Ciaran McGoldrick. Multi-identity and Multi-key Leveled FHE
from Learning with Errors. In Annual Cryptology Conference, pages 630–656.
Springer, 2015.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security Estimates.
In ASIACRYPT, pages 1–20, 2011.

[DDS14] Wei Dai, Yarkın Doröz, and Berk Sunar. Accelerating NTRU based Homomorphic
Encryption using GPUs. In 2014 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2014.

[DGHV10] Marten Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
Homomorphic Encryption over the Integers. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
24–43. Springer, 2010.

[DHS14] Yarkin Doröz, Yin Hu, and Berk Sunar. Homomorphic AES Evaluation using NTRU.
IACR Cryptology ePrint Archive, 2014:39, 2014.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Homomorphic Encryption
in Less than a Second. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 617–640. Springer, 2015.

[DQ98] J-F Dhem and J-J Quisquater. Recent Results on Modular Multiplications for Smart
Cards. In International Conference on Smart Card Research and Advanced
Applications, pages 336–352. Springer, 1998.

[DQ00] Jean-François Dhem and Jean-Jacques Quisquater. Recent Results on Modular
Multiplications for Smart Cards. In Jean-Jacques Quisquater and Bruce
Schneier, editors, Smart Card Research and Applications, volume 1820
of Lecture Notes in Computer Science, pages 336–352. Springer Berlin
Heidelberg, 2000.

[DS15] Wei Dai and Berk Sunar. cuhe: A Homomorphic Encryption Accelerator Library.
In International Conference on Cryptography and Information Security in the
Balkans, pages 169–186. Springer, 2015.

[EFG+09] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald Lagendijk,
and Tomas Toft. Privacy-preserving Face Recognition. In International
Symposium on Privacy Enhancing Technologies Symposium, pages 235–253.
Springer, 2009.

[EHKM11] David Evans, Yan Huang, Jonathan Katz, and Lior Malka. Efficient Privacy-
preserving Biometric Identification. In Proceedings of the 17th Conference
Network and Distributed System Security Symposium, NDSS, volume 68, 2011.

[ElG85] Taher ElGamal. A Public key Cryptosystem and a Signature Scheme based on
Discrete Logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

167



[FL16a] Xiong Fan and Feng-Hao Liu. Various Proxy Re-Encryption Schemes from Lattices.
IACR Cryptology ePrint Archive, 2016:278, 2016.

[FL16b] Xiong Fan and Feng-Hao Liu. Various Proxy Re-Encryption Schemes from Lattices.
Cryptology ePrint Archive, Report 2016/278, 2016. http://eprint.iacr.

org/2016/278.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic
Encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[G+09] Craig Gentry et al. Fully Homomorphic Encryption using Ideal Lattices. In STOC,
volume 9, pages 169–178, 2009.

[GBDL+16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. Cryptonets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In International Conference on
Machine Learning, pages 201–210, 2016.

[Gen09] Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford
University, Stanford, CA, USA, 2009.

[GH11] Craig Gentry and Shai Halevi. Implementing Gentrys Fully-homomorphic Encryption
Scheme. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 129–148. Springer, 2011.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P Smart. Better Bootstrapping in Fully
Homomorphic Encryption. In International Workshop on Public Key
Cryptography, pages 1–16. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P Smart. Fully Homomorphic Encryption with
Polylog Overhead. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 465–482. Springer, 2012.

[GHS12c] Craig Gentry, Shai Halevi, and Nigel P Smart. Homomorphic Evaluation of the AES
Circuit. In Annual Cryptology Conference, pages 850–867. Springer, 2012.

[GINX16] Nicolas Gama, Malika Izabachène, Phong Q Nguyen, and Xiang Xie. Structural
Lattice Reduction: Generalized Worst-case to Average-case Reductions
and Homomorphic Cryptosystems. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 528–558.
Springer, 2016.

[GKPV10] Shafi Goldwasser, Tauman Yael Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Robustness of the Learning with Errors Assumption. International Conference
on Supercomputing, pages 230–240, 2010.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption &amp; how to play
Mental Poker keeping Secret all Partial Information. In Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing, pages 365–377,
1982.

168

http://eprint.iacr.org/2016/278
http://eprint.iacr.org/2016/278


[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for Hard Lattices
and New Cryptographic Constructions. In Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing, pages 197–206. ACM, 2008.

[GR15] Paolo Gasti and Kasper B Rasmussen. Privacy-preserving User Matching. In
Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society,
pages 111–120, 2015.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from
Learning with Errors: Conceptually-simpler, Asymptotically-faster, Attribute-
based. In Advances in Cryptology–CRYPTO 2013, pages 75–92. Springer,
2013.

[HG01] Nick Howgrave-Graham. Approximate Integer Common Divisors. In International
Cryptography and Lattices Conference, pages 51–66. Springer, 2001.

[Hoc12] Robert Hochberg. Matrix Multiplication with CUDA-a basic Introduction
to the CUDA Programming Model. Internet”: http://www. shodor.
org/media/content/petascale/materials/UPModules/matrixMultiplication/moduleDocument.
pdf,[August 11 2012], 2012.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A Ring-based Public
Key Cryptosystem. In International Algorithmic Number Theory Symposium,
pages 267–288. Springer, 1998.

[HS14] Shai Halevi and Victor Shoup. Algorithms in HeLib. In Annual Cryptology
Conference, pages 554–571. Springer, 2014.

[HS15] Shai Halevi and Victor Shoup. Bootstrapping for HeLib. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
641–670. Springer, 2015.

[ID03] Anca-Andreea Ivan and Yevgeniy Dodis. Proxy Cryptography Revisited. In NDSS,
2003.

[JVC18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}:
A Low latency Framework for Secure Neural Network Inference. In 27th
USENIX Security Symposium (USENIX Security 18), pages 1651–1669, 2018.

[KGV16] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: Scalable
Homomorphic Implementation of Encrypted Data-Classifiers. IEEE
Transactions on Computers, 65(9):2848–2858, 2016.

[KHP06] Himanshu Khurana, Jin Heo, and Meenal Pant. From Proxy Encryption Primitives
to a Deployable Secure-mailing-list Solution. In International Conference on
Information and Communications Security, pages 260–281. Springer, 2006.

169



[Kir14] Elena Kirshanova. Proxy Re-encryption from Lattices. In International Workshop
on Public Key Cryptography, pages 77–94. Springer, 2014.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-Fly Multiparty
Computation on the Cloud via Multikey Fully Homomorphic Encryption.
In Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of
Computing, STOC 12, page 12191234, New York, NY, USA, 2012. Association
for Computing Machinery.

[LdVMPT09] Françoise Levy-dit Vehel, Maria Grazia Marinari, Ludovic Perret, and Carlo Traverso.
A Survey on Polly Cracker Systems. In Gröbner Bases, Coding, and
Cryptography, pages 285–305. Springer, 2009.

[LL15] Kim Laine and Kristin Lauter. Key Recovery for LWE in Polynomial Time. IACR
Cryptology ePrint Archive, October 2015.

[LLL82] Arjen K Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring Polynomials
with Rational Coefficients. Mathematische annalen, 261(ARTICLE):515–534,
1982.

[LP11] Richard Lindner and Chris Peikert. Better Key Sizes (and attacks) for LWE-based
Encryption. In Cryptographers Track at the RSA Conference, pages 319–339.
Springer, 2011.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning
with Errors over Rings. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–23. Springer, 2010.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A Toolkit for Ring-LWE
Cryptography. In Advances in Cryptology (EUROCRYPT’13), volume 7881,
pages 35–54. Springer, 2013.

[LSSR+15] Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon Kim, and Ingrid
Verbauwhede. Efficient Ring-LWE Encryption on 8-Bit AVR Processors, pages
663–682. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[LTV13] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. Multikey Fully
Homomorphic Encryption and On-the-Fly Multiparty Computation. IACR
Cryptology ePrint Archive, 2013:94, 2013. Full Version of the STOC 2012
paper with the same title.

[Mic01] Daniele Micciancio. The Shortest Vector in a Lattice is hard to Approximate to
within some Constant. SIAM Journal on Computing, 30(6):2008–2035, 2001.

[Mic10] Daniele Micciancio. Duality in Lattice Cryptography. In Public Key Cryptography
(PKC’10), 2010. Invited talk.

[Mic18] Daniele Micciancio. On the Hardness of Learning with Errors with Binary Secrets.
Theory of Computing, 14(1):1–17, 2018.

170



[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for Lattices: Simpler, Tighter,
Faster, Smaller. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 700–718. Springer, 2012.

[MP20] Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like Cryptosystems.
IACR Cryptology. ePrint Arch., 2020:86, 2020.

[MR07] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case Reductions Based
on Gaussian Measures. SIAM J. Comput., 37(1):267–302, 2007. Preliminary
version in FOCS 2004.

[MR09] Daniele Micciancio and Oded Regev. Lattice-based Cryptography. In Post-quantum
Cryptography, pages 147–191. Springer, 2009.

[MS18] Daniele Miccianco and Jessica Sorrell. Ring Packing and Amortized FHEW
Bootstrapping. In 45th International Colloquium on Automata, Languages,
and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two Round Multiparty Computation via
Multi-key FHE. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 735–763. Springer, 2016.

[NAL15] David Nuñez, Isaac Agudo, and Javier Lopez. Ntrureencrypt: An Efficient Proxy
Re-encryption Scheme based on NTRU. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security, pages
179–189. ACM, 2015.

[NLV11] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can Homomorphic
Encryption be Practical? In Proceedings of the 3rd ACM workshop on Cloud
Computing Security Workshop, pages 113–124, 2011.

[Pai99] Pascal Paillier. Public-key Cryptosystems based on Composite Degree Residuosity
Classes. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 223–238. Springer, 1999.

[Pei09] Chris Peikert. Public-key Cryptosystems from the Worst-case Shortest Vector
Problem. In Proceedings of the Forty-first Annual ACM Symposium on Theory
of Computing, pages 333–342. ACM, 2009.

[Pei10] Chris Peikert. An Efficient and Parallel Gaussian Sampler for Lattices. In Tal Rabin,
editor, Advances in Cryptology CRYPTO 2010, volume 6223 of Lecture Notes
in Computer Science, pages 80–97. Springer Berlin Heidelberg, 2010.

[Pei16] Chris Peikert. A Decade of Lattice Cryptography. Foundations and Trends R© in
Theoretical Computer Science, 10(4):283–424, 2016.

171



[PRSV17] Yuriy Polyakov, Kurt Rohloff, Gyana Sahu, and Vinod Vaikuntanathan. Fast Proxy
Re-encryption for Publish/Subscribe Systems. ACM Transactions on Privacy
and Security (TOPS), 20(4):14, 2017.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A Framework for Efficient
and Composable Oblivious Transfer. In Annual International Cryptology
Conference, pages 554–571. Springer, 2008.

[PWA+16] L Phong, L Wang, Y Aono, M Nguyen, and X Boyen. Proxy Re-encryption Schemes
with Key Privacy from LWE. Technical report, IACR Cryptology ePrint
Archive 2016/327, 2016.

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On Data banks and
Privacy Homomorphisms. Foundations of Secure Computation, 4(11):169–180,
1978.

[Reg04] Oded Regev. Quantum Computation and Lattice Problems. SIAM Journal on
Computing, 33(3):738–760, 2004.

[Reg09] Oded Regev. On Lattices, Learning with Errors, Random Linear codes, and
Cryptography. Journal of the ACM (JACM), 56(6):34, 2009.

[Sho99] Peter W Shor. Polynomial-time algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM review, 41(2):303–332, 1999.

[SR20] Gyana Sahu and Kurt Rohloff. Construction and Evaluation of Proxy Re-Encryption
on GSW FHE Scheme and other Primitives. IEEE Transactions on Dependable
and Secure Computing, 2020. Manuscript submitted to IEEE journal of
Transactions on Dependable and Secure Computing.

[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as Secure as Worst-case Problems
over Ideal Lattices. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 27–47. Springer, 2011.

[SSW09] Ahmad-Reza Sadeghi, Thomas Schneider, and Immo Wehrenberg. Efficient Privacy-
preserving Face Recognition. In International Conference on Information
Security and Cryptology, pages 229–244. Springer, 2009.

[SV10] Nigel P Smart and Frederik Vercauteren. Fully Homomorphic Encryption with
Relatively Small Key and Ciphertext Sizes. In International Workshop on
Public Key Cryptography, pages 420–443. Springer, 2010.

[SV14] Nigel P Smart and Frederik Vercauteren. Fully Homomorphic SIMD Operations.
Designs, Codes and Cryptography, 71(1):57–81, 2014.

[TCG06] Gelareh Taban, Alvaro A Cárdenas, and Virgil D Gligor. Towards a Secure and
Interoperable DRM Architecture. In Proceedings of the ACM Workshop on
Digital Rights Management, pages 69–78. ACM, 2006.

172



[vdP12] Joop van de Pol. Quantifying the Security of Lattice-Based Cryptosystems in
Practice. In Mathematical and Statistical Aspects of Cryptography, 2012.

[WH12] David Wu and Jacob Haven. Using Homomorphic Encryption for Large Scale
Statistical Analysis, 2012.

[Yao82] Andrew C Yao. Protocols for Secure Computations. In 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pages 160–164. IEEE, 1982.

[Yao86] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets. In 27th Annual
Symposium on Foundations of Computer Science (SFCS 1986), pages 162–167.
IEEE, 1986.

[YBG+15] Xun Yi, Athman Bouguettaya, Dimitrios Georgakopoulos, Andy Song, and Jan
Willemson. Privacy Protection for Wireless Medical Sensor Data. IEEE
Transactions on Dependable and Secure Computing, 13(3):369–380, 2015.

[ZZZ+13] Rui Zhang, Jinxue Zhang, Yanchao Zhang, Jinyuan Sun, and Guanhua Yan. Privacy-
preserving Profile Matching for Proximity-based Mobile Social Networking.
IEEE Journal on Selected Areas in Communications, 31(9):656–668, 2013.

173


	Copyright Warning & Restrictions
	Personal Information Statement
	INTRODUCTION
	Gentry's FHE Scheme
	Early Attempts and Evolution of FHE Scheme
	The First Generation of FHE Schemes
	The Second Generation of FHE Schemes
	The Third Generation of FHE Schemes

	Resistance to Quantum Computer Attacks
	Applications
	Server Aided Computations
	Private Information Retrieval
	Multiparty Computations

	Our Contributions
	Proxy Re-encryption
	Bootstrapping
	Implementation on NVIDIA GPUs


	Background and Preliminaries
	Notations
	Lattices
	Computational Problems
	Gaussian Distributions

	 Learning with Errors (LWE)
	Ring LWE
	Definitions
	Cyclotomic Polynomials
	Plaintext Slots and Embedding
	Automorphisms Transforms

	Syntax of Cryptographic Primitives

	Proxy Re-encryption
	Related Work
	Proxy Re-Encryption
	Key-Switching and Automorphism

	Proxy Re-Encryption
	Workflow
	Syntax of Non-Interactive PRE
	IND-CPA Security of PRE Schemes

	PRE Cryptosystem with NTRU Key Generation and RLWE Key Switching (NTRU-ABD-PRE)
	NTRU-RLWE Encryption Scheme
	Security of NTRU-RLWE Encryption Scheme
	Single-Hop Re-Encryption Scheme
	Extension to Multiple Re-Encryption Hops
	IND-CPA Security

	PRE Cryptosystem with RLWE Key Generation and Key Switching (BV-PRE)
	The Encryption Scheme
	Proxy Re-Encryption Scheme
	IND-CPA Security

	PRE Cryptosystem with LWE Key Switching (GSW-PRE)
	Encryption Scheme
	Proxy Re-Encryption Scheme
	Correctness Constraint and Run-time Analysis
	Multi-hop GSW PRE

	PRE Cryptosystem with RLWE Key Generation and Key Switching (Ring-GSW PRE) 
	Ring-GSW Encryption Scheme
	Ring-GSW PRE Scheme
	Correctness Constraint Analysis
	Key-Switching and Automorphism

	Parameter Selection
	Software Implementation
	Software Library Design

	Experimental Evaluation
	Methodology
	Single-Hop Re-Encryption
	Multi-Hop Re-Encryption

	Application
	Enterprise Security
	Embedded Support
	Hybrid Deployment with AES

	Conclusion

	Efficient and Scalable Bootstapping of BV-LWE FHE Scheme
	Introduction
	Related Work
	Design
	Syntax of a Fully Homomorphic Encryption Scheme

	BV-GSW FHE Scheme
	Correctness Constraints
	Modulus Switching
	Key-Switching

	Ring-GSW Bootstrapping Scheme
	Key-Switching

	RLWE Bootstrapping Procedure
	Message Encoding
	Homomorphic Decryption with Ring-GSW FHE Scheme
	RLWE Coefficient Extraction Procedure

	Gridstrapping
	Message Encoding

	Experimental Results
	Parameter Selection and Results

	Conclusion and Future Directions

	Accelerating Lattice based Primitives on GPUs
	Introduction
	Motivation for Accelerating PRE Schemes on GPUs
	Motivation for Accelerating Bootstrapping Procedures for LWE FHE Scheme on GPUs

	Number Theoretic Transform and Bit-Decomposition
	Number Theoretic Transform
	Parallel NTT
	Barrett Modulo Reduction and Arbitrary Precision Support
	Bit Decomposition

	Parameter Selection
	PRE Parameter Selection
	BV-LWE Bootstrapping Parameter Selection

	GPU Implementation and Results
	Software Implementation
	Experimental Results

	Conclusion

	REFERENCES



