

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

CODING AGAINST STRAGGLERS IN DISTRIBUTED
COMPUTATION SCENARIOS

by
Malihe Aliasgari

Data and analytics capabilities have made a leap forward in recent years. The

volume of available data has grown exponentially. The huge amount of data needs to

be transferred and stored with extremely high reliability. The concept of “coded

computing”, or a distributed computing paradigm that utilizes coding theory to

smartly inject and leverage data/computation redundancy into distributed computing

systems, mitigates the fundamental performance bottlenecks for running large-scale

data analytics.

In this dissertation, a distributed computing framework, first for input files

distributedly stored on the uplink of a cloud radio access network architecture, is

studied. It focuses on that decoding at the cloud takes place via network function

virtualization on commercial off-the-shelf servers. In order to mitigate the impact of

straggling decoders in this platform, a novel coding strategy is proposed, whereby

the cloud re-encodes the received frames via a linear code before distributing them

to the decoding processors. Transmission of a single frame is considered first, and

upper bounds on the resulting frame unavailability probability as a function of the

decoding latency are derived by assuming a binary symmetric channel for uplink

communications. Then, the analysis is extended to account for random frame arrival

times. In this case, the trade-off between an average decoding latency and the frame

error rate is studied for two different queuing policies, whereby the servers carry

out per-frame decoding or continuous decoding, respectively. Numerical examples

demonstrate that the bounds are useful tools for code design and that coding is

instrumental in obtaining a desirable compromise between decoding latency and

reliability.

In the second part of this dissertation large matrix multiplications are considered

which are central to large-scale machine learning applications. These operations are

often carried out on a distributed computing platform with a master server and

multiple workers in the cloud operating in parallel. For such distributed platforms,

it has been recently shown that coding over the input data matrices can reduce the

computational delay, yielding a trade-off between recovery threshold, i.e., the number

of workers required to recover the matrix product, and communication load, and the

total amount of data to be downloaded from the workers. In addition to exact recovery

requirements, security and privacy constraints on the data matrices are imposed, and

the recovery threshold as a function of the communication load is studied. First,

it is assumed that both matrices contain private information and that workers can

collude to eavesdrop on the content of these data matrices. For this problem, a novel

class of secure codes is introduced, referred to as secure generalized PolyDot codes,

that generalize state-of-the-art non-secure codes for matrix multiplication. Secure

generalized PolyDot codes allow a flexible trade-off between recovery threshold and

communication load for a fixed maximum number of colluding workers while providing

perfect secrecy for the two data matrices. Then, a connection between secure matrix

multiplication and private information retrieval is studied. It is assumed that one of

the data matrices is taken from a public set known to all the workers. In this setup,

the identity of the matrix of interest should be kept private from the workers. For

this model, a variant of generalized PolyDot codes is presented that can guarantee

both secrecy of one matrix and privacy for the identity of the other matrix for the

case of no colluding servers.

CODING AGAINST STRAGGLERS IN DISTRIBUTED
COMPUTATION SCENARIOS

by
Malihe Aliasgari

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical Engineering

Helen and John C. Hartmann Department of
Electrical and Computer Engineering

May 2020

Copyright c© 2020 by Malihe Aliasgari

ALL RIGHTS RESERVED

APPROVAL PAGE

CODING AGAINST STRAGGLERS IN DISTRIBUTED
COMPUTATION SCENARIOS

Malihe Aliasgari

Dr. Jörg Kliewer, Dissertation Advisor Date
Professor, Department of Electrical and Computer Engineering, NJIT

Dr. Osvaldo Simeone, Committee Member Date
Professor, Department of Engineering, Kings College London, U.K.

Dr. Emina Soljanin, Committee Member Date
Professor, Department of Electrical and Computer Engineering, Rutgers - State
University of New Jersey, New Brunswick

Dr. Alexander Haimovich, Committee Member Date
Distinguished Professor, Department of Electrical and Computer Engineering, NJIT

Dr. Ali Abdi, Committee Member Date
Professor, Department of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Malihe Aliasgari

Degree: Doctor of Philosophy

Date: May 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,

New Jersey Institute of Technology, Newark, NJ, 2020

• Doctor of Philosophy in Pure Mathematics,
Amirkabir University of Technology, Tehran, Iran, 2014

• Master of Science in Pure Mathematics,
Amirkabir University of Technology, Tehran, Iran, 2008

• Bachelore of Science in Pure Mathematics,
Amirkabir University of Technology, Tehran, Iran, 2006

Major: Electrical Engineering

Presentations and Publications:

M. Aliasgari, O. Simeone, and J. Kliewer, “Private and Secure Distributed Matrix
Multiplication with Flexible Communication Load,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp 2722-2734, February 2020.

M. Aliasgari, O. Simeone, and J. Kliewer, “Distributed and Private Coded
Matrix Computation with Flexible Communication Load,” IEEE International
Symposium on Information Theory (ISIT), pp 1092-1096, 2019.

M. Aliasgari, J. Kliewer,and O. Simeone, “Coded Computation Against Processing
Delays for Virtualized Cloud-Based Channel Decoding,” IEEE Transactions
on Communications, vol. 67, pp 28-38, January 2019.

M. Aliasgari, J. Kliewer, and O. Simeone, “Coded computation against straggling
decoders for network function virtualization,” IEEE International Symposium
on Information Theory (ISIT), pp 711-715, June 2018.

iv

DEDICATED TO MY BELOVED PARENTS,

MY LOVELY HUSBAND,

AND MY DEAREST SON

Life is a stage, we play our own unique roles

Everyone sings his own melody, leaves scene then after

Life is an everlasting stage

Great those melodies that people recall

Jaleh Esfahani

v

ACKNOWLEDGMENT

I would like to thank my advisor, Professor Jörg Kliewer for his advising and financial

support.

My dissertation committee member Professor Osvaldo Simeone has an invaluable

part of my experience. The seeds of this dissertation were planted during the

December 2016, after passing my qualify exam, when we had a meeting with Professor

Simeone. I was lucky to be advised by Professor Simeone, from whom I learned

from his insight, vision, commitment, patient, and forgiveness. He asked sharp

and insightful questions during our meetings that helped shape several key results

presented in this dissertation. I cannot thank him enough for his help and advising.

I would like to thank Professor Emina Soljanin, Professor Alexander Haimovich,

and Professor Ali Abdi for serving on my dissertation committee, and Professor Haim

Grebel and Nirwan Ansari for serving on my qualifying examination committee.

I would also like to thank all the faculty members who I interacted with

over these years, in particular, Professor Walid Hubbi, Professor Reza Khanbilvardi,

Professor Daniel Panario, Professor Pulkit Grover, Professor Edgar Martinez-Moro

Professor Karl-Heinz Zimmermann, and Professor Daniel Cabarcas.

Above all, I would like to sincerely thank my precious family. I am eternally

grateful to my mother, Zahra Safaei, and my father, Mahmoudreza Aliasgari, who

have always been there for me and supported me to overcome the challenges and

obstacles. I am very thankful to my kind brothers, Mojib and Moein, who have

always supported me emotionally and wanted the best for me.

My deep and sincere gratitude towards my better half Dr. Yousef Nejatbakhsh

for his eternal support, unfailing and continuous love for encouraging me in all of my

pursuits, and inspiring me to follow my dreams. He always stay with me, listen to

me, and help me in times of despair, sorrow, and boredom and in times of hope, joy

vi

and triumph. His patience and sacrifice will remain my inspiration throughout my

life. Without his help, I would not have been able to become who I am.

Last, but not least, thank you God for new life of my baby, the most precious

jewels from you, which changes my life and hope for the best, my dearest son, OMID.

vii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Main Contribution of this Dissertation 2

1.2 Related Works . 4

1.2.1 Distributed Coded Computation 4

1.2.2 Straggler Mitigation . 4

1.2.3 Distributed Matrix Multiplication 5

1.2.4 Secret Sharing Schemes . 6

1.2.5 Private Information Retrieval 7

1.3 Dissertation Outline . 7

2 CODED COMPUTATION AGAINST PROCESSING DELAYS IN NETWORK
FUNCTION VIRTUALIZATION . 9

2.1 Introduction . 9

2.2 Technical Background and Preliminaries 12

2.2.1 Large Deviation for Dependent Random Variables 12

2.2.2 Queueing Theory . 14

2.3 System Model . 15

2.4 Bounds on the Frame Unavailability Probability 20

2.4.1 Preliminaries . 20

2.4.2 Dependency Graph and Chromatic Number of a Linear Code . 21

2.4.3 Large Deviation Upper Bound 23

2.4.4 Union Bound . 25

2.5 Random Arrivals and Queuing . 27

2.5.1 System Model . 27

2.5.2 Per-Frame Decoding . 28

2.5.3 Continuous Decoding . 30

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

2.6 Simulation Results . 31

2.6.1 Single Frame Transmission . 31

2.6.2 Random Frame Transmission 37

2.7 Discussion and Concluding Remarks . 40

3 PRIVATE AND SECURE MATRIX MULTIPLICATION WITH FLEXIBLE
COMMUNICATION LOAD . 42

3.1 Introduction . 42

3.1.1 Motivation and Problem Definition 42

3.1.2 Related Work . 43

3.1.3 Main Contribution . 45

3.1.4 Organization . 46

3.2 Problem Statement . 46

3.2.1 Notation . 46

3.2.2 System Model . 47

3.2.3 Secure Matrix Multiplication 48

3.2.4 Private and Secure Matrix Multiplication 50

3.3 Background: Generalized PolyDot Code without Security Constraint . . 52

3.4 Secure PolyDot Code . 56

3.4.1 Secure Generalized PolyDot Code: The s < t Case 57

3.4.2 Secure Generalized PolyDot Code: The s ≥ t Case 63

3.4.3 Trading Off Computation and Communication Latencies 65

3.5 Secure and Private Generalized PolyDot Code 68

3.6 Discussion and Concluding Remarks . 72

4 CONCLUDING REMARKS AND FUTURE DIRECTIONS 74

4.1 Future Research Directions . 75

REFERENCES . 77

ix

LIST OF FIGURES

Figure Page

2.1 Network function virtualization model for uplink channel decoding. The input

information frame u is divided into packets, which are encoded with a linear

code Cu with generator matrix Gu. The packets are received by the remote

radio head (RRH) through a BSC and forwarded to the cloud. Server 0 in

the cloud re-encodes the received packet with a linear code Cc in order to

enhance the robustness against potentially straggling Servers 1, . . . , N . . . 16

2.2 Coded Network function virtualization at the cloud: Server 0 re-encodes the

received packets in Y by a linear network function virtualization code Cc
with generator Gc. Each encoded packet ỹi is then conveyed to Server i for

decoding. 17

2.3 Dependency graph associated with the (8,4) network function virtualization

code Cc in Example 1. 22

2.4 In the model studied in Section 2.5, frames arrive at the receiver according

to a Poisson process with parameter λ. Server 0 in the cloud encodes the

received frames using an network function virtualization code and forwards

the encoded packets to servers 1, . . . , N for decoding. 27

2.5 Decoding latency versus frame unavailability probability (FUP) for L =

504, N = 8, 1/µ1 = 0, µ2 = 10, a = 1, δ = 0.01, r = 0.5) : (a) LDB, UB

and Exact frame unavailability probability for the parallel, single-server, and

repetition coding. 29

2.6 Decoding latency versus frame unavailability probability (FUP) for L =

504, N = 8, 1/µ1 = 0, µ2 = 10, a = 1, δ = 0.01, r = 0.5) : LDB, UB and

Monte Carlo simulation (“MC Sim.”) results for split repetition code, SPC

code, and the network function virtualization code Cc defined in (2.21). . . 30

2.7 Parallel, single server and repetition code. 33

2.8 Decoding latency versus frame unavailability probability (FUP) for (L =

504, N = 8, 1/µ1 = 50, µ2 = 20, a = 0.1, δ = 0.01, r = 0.5) : (a) LDB,

UB and Exact frame unavailability probability for the parallel, single-server,

and repetition coding; (b) LDB, UB and Monte Carlo simulation (“MC

Sim.”) results for split repetition code, SPC code, and the network function

virtualization code Cc defined in (2.21). Split repetition code, SPC code and

Cc code. 34

2.9 Decoding latency versus exact frame unavailability probability (FUP) for

parallel and repetition coding for different number of servers N ∈ {3, 6, 12}
and (L = 240, 1/µ1 = 0, µ2 = 10, a = 1, δ = 0.03, r = 0.5) 36

x

LIST OF FIGURES
(Continued)

Figure Page

2.10 Average latency versus FER with different values of the user code rate r and

for different coding schemes when the system is lightly loaded, with L =

112, N = 8, δ = 0.03, λ = 0.1, µ = 500. 37

2.11 Average latency versus FER with different values of the user code rate r and

for different coding schemes when the system is heavily loaded, with L =

112, N = 8, δ = 0.03, λ = 1, µ = 50. 38

2.12 Average latency versus arrival rate λ (L = 112, N = 8, r = 0.5, µ = 500). . . 40

3.1 Secure matrix multiplication: the master server encodes both input matrices

A and B, to be kept secure from the workers, and both random matrices R

and R′, respectively, to define the computational tasks of the slave servers or

workers. The workers may fail or straggle, and they are honest but curious,

with colluding subsets of workers of size at most PC . The master server must

be able to decode the product C = AB from the output of a subset of PR
servers, which defines the recovery threshold. 47

3.2 Private and secure matrix multiplication: the master server encodes the input

matrix A, to be kept secret from the workers, and generates the encoded

matrix A
(κ)
p for each worker p. It also sends a query q

(κ)
p as a function

of the index κ ∈ [1, L], to be kept private from workers, of the desired

product C(κ) = AB(κ), with matrices {B(r)}Lr=1 available at all workers.

The non-colluding workers may fail or straggle, and they are honest but

curious. The master server must be able to decode the product C(κ) from

the output of a subset of PR servers, which defines the recovery threshold. . 50

3.3 Construction of the time sequences a and b used to define the generalized

PolyDot (GPD) code. The zero dashed lines in b indicates all-zero block

sequences. Each solid arrows in a and b shows a distinct row of A and a

column of B, respectively. 53

3.4 Construction of the time block sequences a∗ = [a, r] and b∗ = [b, r′] in (3.20)

and (3.21) used to define the SGPD code for the case s < t. The zero dashed

lines in b and r′ indicate all-zero block sequences. 56

3.5 Outcome of the communication Ci,j = ai ∗ bj for t = 3, s = 2, d = 2, and

PC = 2. Dashed blue stems with filled markers represent the convolution c∗.

Individual convolutions ci,j are shown in different colors with square markers.

Contributions from one or both random matrices are shown as red crosses.

The desired submatrices Ci,j are seen to equal the corresponding samples

from the sequence c∗, associated with the center points of the individual

convolutions. 60

xi

LIST OF FIGURES
(Continued)

Figure Page

3.6 Construction of the time block sequences a∗ and b∗ in (3.31) and (3.32) used to

define the secure generalized PolyDot (SGPD) code for the case s ≥ t. The

solid line and the zero dashed lines in b∗ indicate columns of B and all-zero

block sequences, respectively. 61

3.7 Communication load CL versus recovery threshold PR for both non-secure

generalized PolyDot (GPD) and secure generalized PolyDot (SGPD) codes

(m = n = 36 and P = 3000 workers). 66

3.8 Average completion time E[T] versus communication rate Rcomm for secure

generalized PolyDot (SGPD) codes with P = 3000, PC = 29, T = S = D =

1008, µ = 0.5× 10−4, and T comp = 1, and m = n = 36: (i) t = d = 36, s = 1

(SGPD code), (ii) t = s = d = 6, and (iii) t = d = 1, s = 36 (secure MatDot

code). 67

3.9 Communication load CL versus recovery threshold PR for secure generalized

PolyDot (SGPD) codes with PC = 1 and private and secure generalized

PolyDot (PSGPD) codes (m = n = 36 and P = 3000 workers). 72

xii

CHAPTER 1

INTRODUCTION

For over fifty years, people have been trying to follow Moores law and to increase the

number of transistors on a circuit by making the transistors smaller. However, this

trend is going end sometime inevitably, due to the limit imposed by power density

issues. There may be other types of breakthrough technologies that can make the

computation components even smaller and faster, but the main point is that the

fundamental theory of transistors may not apply any more to the new devices and

platforms. The inevitable saturation of Moores law has made researchers look into

the possibility and increasing size and dimension of data, system designers have

increasingly resorted to parallel and distributed computing to reduce the computation

time of machine-learning algorithms.

Distributed computing has become the basis for all large-scale computation.

The ability to distribute work over many processors and utilize their combined

computational power to run large tasks in parallel has become necessary with the

increasing size of data sets and task complexity.

All these breakthroughs were made possible only due to the scalability in

computing and storage capacity offered by modern large-scale clusters. While classical

computing and storage clusters were composed of a small number of expensive,

custom-designed high-end machines, modern large-scale clusters consist of more than

tens of thousands of hardware nodes, connected through general-purpose network

infrastructure.

In order to develop and deploy sophisticated solutions and tackle large-scale

problems in machine learning, science, and engineering, it is important to understand

1

and optimize novel and complex trade-offs across the multiple dimensions of

computation, communication, and storage.

One of the most serious issues facing distributed computing is that processors

take randomly varying amounts of time to finish, which means that all too frequently,

when a task is divided into N parts amongst N processors, several will straggle. In

these traditional schemes, one needs to wait for all processors to finish computing

before the job is done, resulting in increasing latency. Most current research in

this domain focuses on replicating the work of straggling processors by giving their

job to processors that have already finished. However, these approaches increase

communication and coordination cost, two bottlenecks in most systems. We tackle

the straggler problem arising in distributed computing by assigning redundant

computations to nodes derived through error correcting codes.

In this dissertation, distributed computing systems are viewed through a coding-

theoretic lens. The role of codes in providing resiliency against noise has been studied

for decades in many other engineering contexts, especially in communication systems,

and is part of our everyday infrastructure (smartphones, laptops, WiFi and cellular

systems, etc.). Since the performance of distributed systems is also significantly

affected by the system behavior and bottlenecks, which we call “system noise”, there

is an exciting opportunity for codes to endow distributed systems with robustness

against such system noise.

1.1 Main Contribution of this Dissertation

The backbone of this dissertation consists of two main parts: coded computation

for network function virtualization and coded computation for large matrix multipli-

cation. The role of codes for each of these parts is addressed in this dissertation, and

the main contributions are summarized as follows.

2

• The first contribution of the dissertation is to propose coded computing to
enable reliable and timely channel decoding in a cloud radio access
network architecture based on distributed unreliable processors.
Codes transform the evolution of large-scale distributed storage systems in
modern data centers, which have a major impact on industry. The imple-
mentation of channel decoding in the cloud by means of network function
virtualization is faced with the challenge of providing reliable operation despite
the unreliability of commercial off-the-shelf servers. The proposed coded
network function virtualization solution leverages the algebraic structure of the
transmitted coded data frames in order to enhance the robustness of channel
decoding constraint.

• Runtime performance of distributed algorithms is heavily affected by stragglers,
i.e., “processors lagging behind in the execution of a certain orchestrated
function”, which we show to significantly improve the latency by using
coded computation against processing delays for network function
virtualization.

• Linear codes are used in forward error correction and are applied in methods
for transmitting symbols (e.g., bits) on a communications channel so that, if
errors occur in the communication, some errors can be corrected or detected by
the recipient of a message block. As a byproduct of the analysis we introduce
the dependency graph of a linear code and its chromatic number
as novel relevant parameters of a linear code beside minimum distance,
blocklength, and rate.

• Fast content download is one of the major user demands. Content download
time includes the time taken for a user to compete with the other users
to access to the processors, and the time to acquire the data from the
processors. In this dissertation a transmission of a single frame is considered
first. Then, we analyze random frame arrival times in network function
virtualization. In this case, the trade-off between an average decoding latency
and the frame error rate is studied for two different queuing policies, whereby
the servers carry out per-frame decoding or continuous decoding.

• A rapid growth of large-scale machine learning and big data analytics,
facilitating the developments of data-intensive applications. Faced with the
saturation of Moores law and increasing size and dimension of data, system
designers have increasingly resorted to parallel and distributed computing to
reduce computation time of machine-learning algorithms. For computing large
matrix multiplications, we introduce a novel perspective on distributed
computing codes based on the signal processing concepts of convo-
lution and z-transform.

• Finally, the phenomenal growth in computing power over much of the past
five decades has been motivated by scientific applications demanding, high-
performance parallel computing. The data tends to be distributed, and issues

3

such as privacy and security. To this end, we impose security and privacy
constraints on large data matrices, and study the recovery threshold
as a function of the communication load.

1.2 Related Works

In this section, we provide a high-level overview of some selected related works. More

extensive surveys of the related works are provided in the following chapters.

1.2.1 Distributed Coded Computation

The era of Big Data and the immensity of real-life datasets compels computation

tasks to be performed in a distributed fashion, where the data is dispersed among

many servers that operate in parallel. Coding has always played a fundamental role

in information propagation, e.g., in communication systems [95] and storage systems

[30]. In this dissertation, we aim to develop this understanding of coding theory and

techniques from communication systems to the much broader field of computation

system.

Sometimes, the code is applied in such a way that the communicated messages,

instead of the data, are encoded, for instance in, [66, 71, 102, 111, 36, 13, 72, 7, 6, 8,

84]. In this case, the data is essentially replicated, and the replication factor, which

relates to the density of the code, directly determines the overhead in both storage

and computation time. Although the main observation is that the communication

time may dominate the overall time cost, and hence increasing the computation time

may be acceptable, it is desirable that the overall storage cost does not increase by

much. Thus, a sparse code is more desirable than a dense code.

1.2.2 Straggler Mitigation

Stragglers are one of the main reasons why the actual speed-up of a parallelized

computation is always worse than the theoretical speed-up predicted by Amdahl’s

4

Law [10, 86]. A straggler is a processor which is still working on its share of the

parallelized computation when most or all of the other processors have completed

their shares. It is shown that running a computational task at parallel servers

involves unpredictable latency due to several factors such as network latency, shared

resources, maintenance activities, and power limits [12, 28]. Moreover, the stragglers

cannot be completely removed from a distributed computing cluster. One approach

to mitigate the adverse effect of stragglers is based on efficient straggler detection

algorithms. For instance, in order to combat with stragglers, cloud computing

frame works like Hadoop [96] employ various straggler detection techniques and

usually reset the task allotted to stragglers. Another line of approaches is based

on forward error-correction techniques offer an alternative approach to deal with this

straggler effect by introducing redundancy in the computational tasks across different

processors. The fusion or master node now requires outputs from only a subset of all

the processors to successfully finish. The use of preliminary erasure codes dates back

to the ideas of algorithmic fault tolerance [33]. Adding redundancy has also been

proposed as a way to tackle the straggler problem: by replicating tasks the runtime

of distributed algorithms can be significantly improved [62, 11, 93, 67, 42, 106, 24].

By collecting outputs of the fast-responding nodes (and potentially cancelling all

the other slow-responding replicas), such replication-based scheduling algorithms can

reduce latency.

1.2.3 Distributed Matrix Multiplication

At the core of many signal processing, machine learning applications, scientific

computing, and graph processing are tensor operations, most notably large matrix

multiplications [51]. Many such applications require processing terabytes or even

petabytes of data, which needs massive computation and storage resources that

cannot be provided by a single machine. Hence, deploying matrix computation tasks

5

on large-scale distributed systems has received wide interest [21, 25, 104, 97]. There

is also a lot of interest in classical Algorithm-Based Fault Tolerance literature, e.g.,

[49, 45] and more recently in distributed coded computation literature, to make matrix

multiplications resilient to faults and delays. An important problem in distributed

matrix multiplication is to consider the case where the inputs are encoded and

multiplied in a block-wise manner. This setup generalizes the problem formulated

in [111] to enable a more flexible trade-off between resources such as storage,

computation and communication,and has been studied in [68, 112, 39, 8, 81, 52].

1.2.4 Secret Sharing Schemes

Secret sharing refers to any method for distributing a secret among a group of

participants, each of which allocates a share of the secret. The secret can only be

reconstructed when the shares are combined together; individual shares are of no use

on their own. Secret-sharing schemes were introduced by Blakley [18] and Shamir [94]

independently for the threshold case, that is, for the case where the subsets that can

reconstruct the secret are all the sets whose cardinality is at least a certain threshold.

The volume of data continues to rapidly grow as information pours from various

platforms. This has motivated the fast development of scalable, interpretable, and

fault-tolerant distributed computing frameworks. In distributed computing systems

Over a general network, all communication between the fusion node and a participant

or processors, who is not directly connected to it, must pass through other participants

in the network. The fact that often the data is confidential and processors are curious

and untrusted poses the challenge of secret sharing over a network without leaking

any additional information to any processors [81, 113, 22, 56, 107, 27].

6

1.2.5 Private Information Retrieval

The most efficient way for a user to retrieve a desired message from a set of distributed

servers, each of which stores all the messages, without revealing any information

about which message is being retrieved to any individual server is given as the

private information retrieval problem. The user can hide his interests trivially by

requesting all the information, but that could be very inefficient (expensive). The

goal of the private information retrieval problem is to find the most efficient solution

in terms of download complexity. The private information retrieval problem was

introduced in 1995 [25, 26] and of broad interest because it shares intimate connections

to many other prominent problems [44, 40, 3, 15, 16, 94]. Private information

retrieval also connects distributed data storage repair [31], index coding [17] and

matrix multiplication [108]. As such, private information retrieval holds tremendous

promise as a point of convergence of complementary perspectives.

1.3 Dissertation Outline

The rest of the thesis is organized as follows:

Chapter 2. We consider the uplink of a cloud radio access network architecture

in which decoding at the cloud takes place via network function virtualization on

commercial off-the-shelf servers. In order to mitigate the impact of straggling decoders

in this platform, a novel coding strategy is proposed, whereby the cloud re-encodes the

received frames via a linear code before distributing them to the decoding processors.

Transmission of a single frame is considered first, and upper bounds on the resulting

frame unavailability probability as a function of the decoding latency are derived

by assuming a binary symmetric channel for uplink communications. Then, the

analysis is extended to account for random frame arrival times. In this case, the

trade-off between an average decoding latency and the frame error rate is studied for

two different queuing policies, whereby the servers carry out per-frame decoding or

7

continuous decoding, respectively. Numerical examples demonstrate that the bounds

are useful tools for code design and that coding is instrumental in obtaining a desirable

compromise between decoding latency and reliability.

Chapter 3. In addition to the exact recovery requirements of two large matrix

multiplications, we impose security and privacy constraints on the data matrices,

and study the recovery threshold as function of the communication load. We first

assume that both matrices contain private information and that workers can collude to

eavesdrop on the content of these data matrices. We introduce a novel class of secure

codes, referred to as secure generalized PolyDot codes, that generalize state-of-the-art

non-secure codes for matrix multiplication. We then study a connection between

secure matrix multiplication and private information retrieval. For this model, we

present a variant of generalized PolyDot codes that can guarantee both secrecy of one

matrix and privacy for the identity of the other matrix for the case of no colluding

servers.

Chapter 4. We conclude the dissertation with the summary of the results and

important future research directions.

8

CHAPTER 2

CODED COMPUTATION AGAINST PROCESSING DELAYS IN
NETWORK FUNCTION VIRTUALIZATION

2.1 Introduction

Promoted by the European Telecommunications Standards Institute (ETSI), network

function virtualization has become a cornerstone of the envisaged architecture for 5G

systems [77]. Network function virtualization leverages virtualization technologies in

order to implement network functionalities on commercial off-the-shelf programmable

hardware, such as general purpose servers, potentially reducing both capital and

operating costs. An important challenge in the deployment of network function

virtualization is ensuring carrier grade performance while relying on commercial

off-the-shelf components. Such components may be subject to temporary unavail-

ability due to malfunctioning, and are generally characterized by randomness in their

execution runtimes. The typical solution to these problems involves replicating the

virtual machines that execute given network functions on multiple processors, e.g.,

cores or servers [1, 75, 46, 57].

Among the key applications of network function virtualization is the imple-

mentation of centralized radio access functionalities in a cloud radio access network

[78, 2]. As shown in Figure 2.1, each remote radio head of a cloud radio access

network architecture is connected to a cloud processor by means of a fronthaul link.

Baseband functionalities are carried out on a distributed computing platform in

the cloud, which can be conveniently programmed and reconfigured using network

function virtualization. The most expensive baseband function in terms of latency to

be carried out at the cloud is uplink channel decoding [78, 9, 79].

The implementation of channel decoding in the cloud by means of network

function virtualization is faced not only with the challenge of providing reliable

9

operation despite the unreliability of commercial off-the-shelf servers, but also with

the latency constraints imposed by retransmission protocols. In particular, keeping

decoding latency at a minimum is a major challenge in the implementation of cloud

radio access network owing to timing constraints from the link-layer retransmission

protocols [34, 90, 60]. In fact, positive or negative feedback signals need to be sent

to the users within a strict deadline in order to ensure the proper operation of the

protocol. In [87, 88] it is argued that exploiting parallelism across multiple cores in

the cloud can reduce the decoding latency by enabling decoding as soon as one can has

computed its task. However, parallel processing does not address the unreliability of

commercial off-the-shelf hardware. A different solution is needed in order to address

both unreliability and delays associated with cloud decoding.

The problem of straggling processors, that is, of processors lagging behind in

the execution of a certain orchestrated function, has been well studied in the context

of distributed computing [29, 12, 114, 72, 71, 70]. Recently, it has been pointed out

that, for the important case of linear functions, it is possible to improve over repetition

strategies in terms of the trade-off between performance and latency by carrying out

linear precoding of the data prior to processing, e.g., [65, 73, 109, 101, 36, 92, 111, 76,

63]. The key idea is that, by employing suitable linear (erasure) block codes operating

over fractions of size 1/K of the original data, a function may be completed as soon

as any K or more processors, depending on the minimum distance of the code, have

completed their operations. Coding has also been found to be useful addressing the

straggler problem in the context of coded distributed storage and computing systems,

see, e.g., [106, 55, 11, 108, 4].

In this dissertation, we explore the use of coded computing to enable reliable

and timely channel decoding in a cloud radio access network architecture based on

distributed unreliable processors. Specifically, we formally and systematically address

the analysis of coded network function virtualization for cloud radio access network

10

uplink decoding. The only prior work on coded computing for network function

virtualization is [5], which provides numerical results concerning a toy example with

three processors in which a processor in the cloud is either on or off. Unlike [5], in

this work, we derive analytical performance bounds for a general scenario with any

number of servers, random computing runtimes, and random packet arrivals. Specific

novel contributions are as follows.

• We first consider the transmission of an isolated frame, and develop analytical
upper bounds on the frame unavailability probability as a function of the allowed
decoding delay. The frame unavailability probability measures the probability
that a frame is correctly decoded within a tolerated delay constraint. The frame
unavailability probability bounds leverage large deviation results for correlated
variables [50] and depend on the properties of both the uplink linear channel
code adopted at the user and the network function virtualization linear code
applied at the cloud;

• As a byproduct of the analysis we introduce the dependency graph of a linear
code and its chromatic number as novel relevant parameters of a linear code
beside minimum distance, blocklength, and rate;

• We extend the analysis to account for random frame arrival times, and
investigate the trade-off between average decoding latency and frame error rate
(FER) for two different queuing policies, whereby the servers carry out either
per-frame or continuous decoding;

• We provide extensive numerical results that demonstrate the usefulness of
the derived analytical bounds in both predicting the system performance and
enabling the design of network function virtualization codes.

The rest of this chapter is organized as follows. In Section 2.2, we review some

technical background and preliminaries for the rest of this chapter. In Section 3.2, we

present the system model focusing, as in [5], on a binary symmetric channel (BSC) for

uplink communications. Section 2.4 presents the two proposed upper bounds on the

frame unavailability probability as a function of latency. In Section 2.5 we study the

proposed system with random frame arrival times, and Section 2.6 provides numerical

results.

11

2.2 Technical Background and Preliminaries

2.2.1 Large Deviation for Dependent Random Variables

Many random variables can be written as a sum

X =
∑
α∈A

Yα (2.1)

of simpler random variables Yα, with ranging over some index set. For example, each

Yα may be an indicator variable taking the values 0 and 1 only, i.e. Yα ∼ Bern(pα)

for some pα ∈ [0, 1]. In this dissertation, we are interested in situations where the

variables Yα may be dependent, but there is a large amount of independence among

them. A typical situation is the sum

X =
∑
i1···id

fi1···id(ξi1 , . . . , ξid), (2.2)

for some functions fi1···id and independent random variables ξi1 , . . . , ξid , and some set

A ⊆ [n]d<, where [n]d< is the set of all d-tuples (i1, . . . , id) with i1 < · · · < id ≤ n. Here

d and n are some positive integers; typically d is small (perhaps only 2 or 3) and n is

large. One example of such sums (2.2) is the family of U -statistics [47], which is the

symmetric case obtained by taking ξi1 , . . . , ξid independent and identically distributed,

all fi1···id equal to some symmetric function f , and A = [n]d<. More generally, if we

in this situation sum over a subset A ⊂ [n]d<, we obtain an incomplete U -statistic.

Also two sample U -statistics are of the general type (2.2), but now the ξi are of two

different types.

Definition 1. A dependency graph is a directed graph representing dependencies

of several objects towards each other. It is possible to derive an evaluation order

or the absence of an evaluation order that respects the given dependencies from the

dependency graph. More preciecly, for random variables Yα, α ∈ A, a graph Γ with

vertex set A such that if B ⊂ A and α ∈ A is not connected by an edge to any vertex

in B, then Yα is independent of {Yβ}β∈B.

12

Definition 2. The chromatic number χ(Γ) of a graph Γ is the smallest number of

colors needed to color the vertices of Γ so that no two adjacent vertices share the same

color [105, page 334].

We can now state some results of [50], which we use in this chapter.

Theorem 1. Suppose that X is as in (2.1) with a aα ≤ Yα ≤ bα for every α ∈ A and

some real numbers aα and bα. Then for t > 0,

P(X ≥ EX + t) ≤ exp

(
−2

t2

χ(Γ)
∑

α∈A(bα − aα)2

)
(2.3)

The same estimate holds for P(X ≥ EX − t).

Corollary 1. Suppose that X is as in (2.1) with Y α ∼ Be(pα) for some pα ∈ (0, 1)

and all α ∈ A. Then, for t ≥ 0,

P(X ≥ EX + t) ≤ exp

(
−2

t2

χ(Γ)|A|

)
. (2.4)

The same estimate holds for P(X ≥ EX − t).

These results can be improved by Hoeffding’s methods [47, 48], when the

summands have variances that are substantially smaller than the upper bound

(bα − aα)2/4. The following results holds for P(X ≤ EX − t). If the boundedness

assumption is reversed to Yα − EYα ≥ −b.

Theorem 2. Suppose that X is as (2.1) with Yα − EYα ≤ b for some b > 0 and all

α ∈ A. Then, with ϕ(x) defined as follows

ϕ(x)
∆
= (1 + x) ln(1 + x)− x, (2.5)

and S
∆
=
∑

α∈AVar Yα, for t ≥ 0,

P(X ≥ EX + t) ≤ exp

(
− S

b2χ(Γ)
ϕ

(
4bt

5S

))
(2.6)

≤ exp

(
− 8t2

25χ(Γ)(S + bt/3)

)
. (2.7)

13

Corollary 2. Suppose that X is as (2.1) with Yα ∼ Be(p) for some p ∈ (0, 1) and all

α ∈ A. Let N
∆
= |A|. Then for t ≥ 0,

P(X ≥ EX + t) ≤ exp

(
− Np

(1− p)χ(Γ)
ϕ

(
4t

5Np

))
(2.8)

≤ exp

(
− 8t2

25χ(Γ)(Np+ t/3)

)
; (2.9)

P(X ≤ EX − t) ≤ exp

(
−N(1− p)

pχ(Γ)
ϕ

(
4t

5N(1− p)

))
(2.10)

P(X ≤ EX − t) ≤ exp

(
− 8t2

25χ(Γ)Np

)
. (2.11)

If a dependency graph Γ is given, then we may replace χ(Γ) by ∆(Γ), where

∆(Γ) denote the maximum degree of Γ. It can be easily seen that χ(Γ) ≤ ∆(Γ) + 1,

[19].

2.2.2 Queueing Theory

In this subsection, we review some concepts of a single server exponential queueing

theory which we use in Section 2.5.

Suppose that customers arrive at a single-server service station in accordance

with a Poisson process having rate λ. That is, the times between successive arrivals

are independent exponential random variables having mean 1/λ. Each customer,

upon arrival, goes directly into service if the server is free and, if not, the customer

joins the queue. When the server finishes serving a customer, the customer leaves the

system, and the next customer in line, if there is any, enters service. The successive

service times are assumed to be independent exponential random variables having

mean 1/µ.

The preceding is called the M/M/1 queue. The two Ms refer to the fact

that both the inter arrival and the service distributions are exponential (and thus,

memoryless, or Markovian), and the 1 to the fact that there is a single server.

14

Definition 3. The M/G/1 model assumes Poisson arrivals at rate λ; a general

service distribution; and a single server. In addition, we will suppose that customers

are served in the order of their arrival.

In parallel computing, the forkjoin model is a way of setting up and executing

parallel programs, such that execution branches off in parallel at designated points in

the program, to join (merge) at a subsequent point and resume sequential execution.

Parallel sections may fork recursively until a certain task granularity is reached.

Forkjoin can be considered a parallel design pattern [82]. This model is also called as

(n, n) fork-joint system.

Definition 4. [54] An (n, k) fork-join system consists of n nodes. Every arriving

job is divided into n tasks which enter first-come first-serve queues at each of the n

nodes. The job departs the system when any k out of n tasks are served by their

respective nodes. The remaining nk tasks abandon their queues and exit the system

before completion of service.

Definition 5. (Expected Latency). The expected latency E[T] is defined as the

expected time from the arrival of a task until any one replica is served. It includes

the waiting time in queue and the time spent at the servers until the task is served.

Although E[T] is a good indicator of the average behavior, system designers

are often interested in the tail Pr(T > t) of the latency. For many queueing

problems, determining the distribution of response time T requires the assumption of

exponential service time.

2.3 System Model

As illustrated in Figure 2.1, we consider the uplink of a cloud radio access network

system in which a user communicates with the cloud via a remote radio head (RRH).

The user is connected to the remote radio head via a BSC with cross error probability

15

Figure 2.1 Network function virtualization model for uplink channel decoding. The

input information frame u is divided into packets, which are encoded with a linear code

Cu with generator matrix Gu. The packets are received by the remote radio head (RRH)

through a BSC and forwarded to the cloud. Server 0 in the cloud re-encodes the received

packet with a linear code Cc in order to enhance the robustness against potentially straggling

Servers 1, . . . , N .

δ, while the remote radio head-to-cloud link, typically referred to as fronthaul, is

assumed to be noiseless. Note that the BSC is a simple model for the uplink channel,

while the noiseless fronthaul accounts for a typical deployment with higher capacity

fiber optic cables. The analysis can be generalized to other additive noise channel,

such as Gaussian channels. The cloud contains a master server, or Server 0, and N

slave servers, i.e., Servers 1, . . . , N . The slave servers are characterized by random

computing delays as in related works on coded computation [65, 73, 92]. Note that we

use here the term “server” to refer to a decoding processor, although, in a practical

implementation, this may correspond to a core of the cloud computing platform [87,

88].

In the first part of this chapter, we consider transmission of a single information

frame u, while Section 2.5 focuses on random frame arrival times and queuing effect

delays. The user encodes an information frame u consisting of L bits. Before

encoding, the information frame is divided into K blocks u1,u2, . . . ,uK ∈ {0, 1}L/K

of equal size, each of them containing L/K bits. As shown in Figure 2.1, in order

to combat noise on the BSC, the L/K blocks are encoded by an (n, k) binary linear

16

Figure 2.2 Coded Network function virtualization at the cloud: Server 0 re-encodes the

received packets in Y by a linear network function virtualization code Cc with generator

Gc. Each encoded packet ỹi is then conveyed to Server i for decoding.

code Cu of rate r = k/n defined by generator matrix Gu ∈ Fn×k2 , where n = L/(rK)

and k = L/K. Let xj ∈ {0, 1}n with j ∈ {1, . . . , K} be the K transmitted packets of

length n. At the output of the BSC, the length-n received vector for the jth packet

at the remote radio head is given as

yj = xj ⊕ zj, (2.12)

where zj is a vector of i.i.d. Bern(δ) random variables (rvs). The K received

packets (y1,y2, . . . ,yK) by the remote radio head are transmitted to the cloud via

the fronthaul link, and the cloud performs decoding. Specifically, as detailed next,

we assume that each Server 1, . . . , N performs decoding of a single packet of length

n bits while Server 0 acts as coordinator.

Assuming N ≥ K, we adopt the idea of network function virtualization coding

proposed in [5]. Accordingly, as seen in Figure 2.2, the K packets are first linearly

encoded by Server 0 into N ≥ K coded blocks of the same length n bits, each

forwarded to a different server for decoding. This form of encoding is meant to

mitigate the effect of straggling servers in a manner similar to [65, 73, 92]. Using an

(N,K) binary linear network function virtualization code Cc with K × N generator

17

matrix Gc ∈ FN×K2 , the encoded packets are obtained as

Ỹ = YGc, (2.13)

where Y = [y1, . . . ,yK] is the n×K matrix obtained by including the received signal

yj as the jth column and Ỹ = [ỹ1, . . . , ỹN] is the n×N matrix whose ith column ỹi

is the input to Server i, where i ∈ {1, . . . , N}. From (2.12), this vector can be written

as

ỹi =
K∑
j=1

yjgc,ji =
K∑
j=1

xjgc,ji +
K∑
j=1

zjgc,ji, (2.14)

where gc,ji is the (j, i)th entry of matrix Gc.

The signal part
∑K

j=1 xjgc,ji in (2.14) is a linear combination of di codewords for

the rate-r binary code with generator matrix Gu, and hence, it is a codeword of the

same code. The parameter di, i ∈ {1, . . . , N}, denotes the Hamming weight of the

ith column of matrix Gc, where 0 ≤ di ≤ K. Each server i receives as input ỹi from

which it can decode the codeword
∑K

i=1 xigc,ji. This decoding operation is affected

by the noise vector
∑K

j=1 zjgji in (2.14), which has i.i.d. Bern(γi) elements. Here,

γi is obtained as the first row and second column’s entry of the matrix Qdi , with Q

being the transition matrix of the BSC with crossover probability δ, i.e.,

Q =

 1− δ δ

δ 1− δ

 . (2.15)

As an example, di = 2, implies a bit flipping probability of γi = 2δ(1 − δ). Note

that a larger value of di yields a larger bit probability γi. We define as Pn,k(γi) the

decoding error probability of the (n, k) linear user code at Server i, which can be

upper bounded by using [83, Theorem 33].

Server i requires a random time Ti = T1,i + T2,i to complete decoding, which

is modeled as the sum of a component T1,i that is independent of the workload

and a component T2,i that instead grows with the size n of the packet processed

18

at each server, respectively. The first component accounts, e.g., for processor

unavailability periods, while the second models the execution runtime from the start of

the computation. The first variable T1,i is assumed to have an exponential probability

density function (pdf) f1(t) with mean 1/µ1, while the variable T2,i has a shifted

exponential distribution with cumulative distribution function (cdf) [84]

F2(t) = 1− exp

(
−rKµ2

L

(
t− a L

rK

))
, (2.16)

for t ≥ aL/(rK) and F2(t) = 0 otherwise. The parameter a represents the minimum

processing time per input bit, while 1/µ2 is the average additional time needed to

process one bit. As argued in [65, 84], the shifted exponential model provides a good

fit for the distribution of computation times over cloud computing environments such

as Amazon EC2 clusters. The cdf of the time Ti can hence be written as the integral

F (t) =
∫ t

0
f1(τ)F2(t−τ)dτ . We also assume that the runtime rvs {Ti}Ni=1 are mutually

independent. Due to (2.16), the probability that a given set of l out of N servers has

finished decoding by time t is given as

al(t) =

(
N

l

)
F (t)l(1− F (t))N−l. (2.17)

Let dmin be the minimum distance of the network function virtualization code

Cc. Due to (2.14), Server 0 in the cloud is able to decode the message u or equivalently

the K packets uj for j ∈ {1, . . . , K}, as soon as N − dmin + 1 servers have decoded

successfully. Let ûi be the output of the ith server in the cloud upon decoding. We

assume that an error detection mechanism, such as a cyclic redundancy check (CRC),

is in place so that Server 0 outputs

ûi =


ûi, for correct decoding,

∅, otherwise.

19

The output û(t) of the decoder at Server 0 at time t is then a function of the vectors

ûi(t) for i ∈ {1, . . . , N}, where

ûi(t) =


ûi, if Ti ≤ t,

∅, otherwise.

Finally, the frame unavailability probability at time t is defined as the probability

Pu(t) = Pr [û(t) 6= u] . (2.18)

The event {û(t) 6= u} occurs when either not enough servers have completed decoding

or many servers have completed but failed decoding by time t. We also define the

FER as

Pe = lim
t→∞

Pu(t). (2.19)

The FER measures the probability that, when all servers have completed decoding,

a sufficiently large number, namely larger than N − dmin, has decoded successfully.

2.4 Bounds on the Frame Unavailability Probability

In this section, we derive analytical bounds on the frame unavailability probability

Pu(t) in (2.18) as a function of the decoding latency t.

2.4.1 Preliminaries

Each server i with i ∈ {1, . . . , N} decodes successfully its assigned packet ỹi if: (i)

the server completes decoding by time t; (ii) the decoder at the server is able to

correct the errors caused by the BSC. Furthermore as discussed, an error at Server 0

occurs at time t if the number of servers that have successfully decoded by time t is

smaller than N − dmin + 1.

To evaluate the frame unavailability probability, we hence define the indicator

variables Ci(t) = 1{Ti ≤ t} and Di which are equal to 1 if the events (i) and (ii)

20

described above occur, respectively, and zero otherwise. Based on these definitions,

the frame unavailability probability is equal to

Pu(t) = Pr

[
N∑
i=1

Ci(t)Di ≤ N − dmin

]
. (2.20)

The indicator variables Ci(t) are independent Bernoulli rvs across the servers i ∈

{1, . . . , N}, due to the independence assumption on the rvs Ti. However, the indicator

variable Di are dependent Bernoulli rvs. The dependence of the variables Di is caused

by the fact that the noise terms
∑K

i=1 zjgc,ji in (2.14) generally have common terms.

In particular, if two columns i and j of the generator matrix Gc have at least a 1 in the

same row, then the decoding indicators Di and Dj are correlated. This complicates

the evaluation of bounds on the frame unavailability probability (2.20).

2.4.2 Dependency Graph and Chromatic Number of a Linear Code

To capture the correlation among the indicator variables Di, we introduce here the

notion of the dependency graph and its chromatic number for a linear code. These

appear to be novel properties of a linear code, and we will argue below that they

determine the performance of the network function virtualization code Cc for the

application at hand.

Definition 6. Let G ∈ FK′×N ′2 be a generator matrix of a linear code. The dependency

graph G(G) = (V , E) comprises a set V of N ′ vertices and a set E ⊆ V × V of edges,

where edge (i, j) ∈ E is included if both the ith and jth columns of G have at least a

1 in the same row.

21

Figure 2.3 Dependency graph associated with the (8,4) network function virtualization

code Cc in Example 1.

Example 1. For an (8, 4) network function virtualization code Cc with the following

generator matrix

Gc =



1 0 0 0 0 1 1 0

0 0 0 1 1 0 0 1

0 1 0 0 0 0 1 1

1 0 1 0 1 0 0 0


, (2.21)

the resulting dependency graph G(Gc) is shown in Figure 2.3.

The chromatic number X (G) of the graph G(G) will play an important role in

the analysis. We recall that the chromatic number is the smallest number of colors

needed to color the vertices of G(G), such that no two adjacent vertices share the

same color (see the example in Figure 2.3). Generally, finding the chromatic number

of a graph is NP-hard [91]. However, a simple upper bound on X (G) is given as [20]

X (G) ≤ ∆(G) + 1, (2.22)

where ∆(G) is the maximum degree of a graph G(G). A consequence of (2.22) is the

following.

22

Lemma 1. Let G be a K ′×N ′ matrix, where αr and αc are the maximum Hamming

weights of the rows and columns in G, respectively. Then the chromatic number of

the corresponding dependency graph G(G) is upper bounded as

X (G) ≤ min{N,αc(αr − 1) + 1}. (2.23)

Proof. According to Definition 6, we have the upper bound ∆(G) ≤ αc(αr − 1) and

hence (2.23) follows directly from (2.22).

2.4.3 Large Deviation Upper Bound

In this subsection, we derive an upper bound on the frame unavailability probability.

The bound is based on the large deviation result in [50] for the tail probabilities of

rvs X =
∑M

i=1Xi, where the rvs Xi are generally dependent. We refer to this bound

as the large deviation bound (LDB). The correlation of rvs {Xi} is described in [50]

by a dependency graph. This is defined as any graph G(X) with Xi as vertices,

such that, if a vertex i ∈ {1, . . . ,M}\{i} is not connected to any vertex in a subset

J ⊂ {1, . . . ,M}, then Xi is independent of {Xj}j∈J .

Lemma 2 ([50]). Let X =
∑M

i=1Xi, where Xi ∼ Bern(pi) and pi ∈ (0, 1) are generally

dependent. For any b ≥ 0, such that the inequality Xi − E(Xi) ≥ −b holds for all

i ∈ {1, . . . ,M} with probability one, and for any τ ≥ 0 we have

Pr[X ≤ E(X)− τ] ≤ exp

(
− S

b2X (G(X))
ϕ

(
4bτ

5S

))
, (2.24)

where S
∆
=
∑N

i=1 Var(Xi) and ϕ(x)
∆
= (1 + x) ln(1 + x) − x. The same bound (2.24)

holds for Pr(X ≥ E(X) + τ), where Xi − E(Xi) ≤ b with probability one.

The following theorem uses Lemma 2 to derive a bound on the frame

unavailability probability.

23

Theorem 3. Let Pmin
n,k = mini{Pn,k(γi)}Ni=1. For all

t ≥ F−1

(
N − dmin

N −
∑N

i=1 Pn,k(γi)

)
, (2.25)

the frame unavailability probability is upper bounded by

Pu(t) ≤ exp

− S(t)

b2(t)X (Gc)
ϕ

4b(t)
(
NF (t)− F (t)

∑N
i=1 Pn,k(γi)−N + dmin

)
5S(t)

 ,

(2.26)

where b(t)
∆
= F (t)

(
1− Pmin

n,k

)
and

S(t)
∆
=

N∑
i=1

F (t) (1− Pn,k(γi)) (1− F (t)(1− Pn,k(γi))) . (2.27)

The upper bound (2.26) on the frame unavailability probability captures the dependency

of the frame unavailability probability on both the channel and the network function

virtualization code. In particular, the bound is an increasing function of the error

probabilities Pn,k(γi), which depend on both codes. It also depends on the network

function virtualization code through parameters dmin and X (Gc).

Proof. Let Xi(t)
∆
= Ci(t)Di and X(t) =

∑N
i=1Xi(t), where Xi(t) are dependent

Bernoulli rvs with probability E[Xi(t)] = Pr[Xi(t) = 1] = F (t) (1− Pn,k(γi)). It can

be seen that a valid dependency graph G(X) for the variables {Xi} is the dependency

graph G(Gc) defined above. This is due to the fact that, as discussed in Section 2.4.3,

the rvs Xi and Xj are dependent if and only if the ith and jth column of Gc have

at least a 1 in a common row. We can hence apply Lemma 2 for every time t by

selecting τ = E(X) − N + dmin, and b(t) as defined above. Note that this choice of

b(t) meets the constraint for b in Lemma 2. For 1/µ1 = 0, (2.25) can be simplified as

follows:

t ≥ n

(
a− 1

µ
ln

(
dmin −

∑N
i=1 Pn,k(γi)

N −
∑N

i=1 Pn,k(γi)

))
. (2.28)

24

Remark 1. When t → ∞, we have the limit limt→∞ F (t) = 1, which implies

that eventually all servers complete decoding. Letting dmax ∆
= max{di}Ni=1 and

γ
∆
= Qdmax

(1, 2), the first row and second column’s entry of the matrix Qdmax

, the

bound (2.26) reduces to

lim
t→∞

Pu(t) ≤ exp

(
−NPn,k(γ)

(1− Pn,k(γ))X (Gc)
ϕ

(
4 (dmin/N − Pn,k(γ))

5Pn,k(γ)

))
. (2.29)

This expression demonstrates the dependence of the frame unavailability probability

bound (2.26) on the number of servers N , the decoding error probability Pn,k(γ) for

each server, the chromatic number X (Gc), and minimum distance dmin of the network

function virtualization code. In particular, it can be seen that the frame unavailability

probability upper bound (2.29) is a decreasing function of dmin, while it increases with

the chromatic number, Pn,k(γ) and with dmax.

2.4.4 Union Bound

As indicated in Theorem 3, the large deviation based bound in (2.30) is only valid

for large enough t, as can be observed from (2.28). Furthermore, it may generally

not be tight, since it neglects the independence of the indicator variables Ci. In this

subsection, a generally tighter but more complex union bound (UB) is derived that

is valid for all times t.

Theorem 4. For any subset A ⊆ {1, . . . , N}, define

P
min(A)
n,k

∆
= min{Pn,k(γi)}i∈A and PAn,k

∆
=
∑
i∈A

Pn,k(γi),

25

and let GA be the K × |A|, submatrix of Gc, with column indices in the subset A.

Then, the frame unavailability probability Pu(t) is upper bounded by

1− 1(
N
l

) N∑
l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

(
1−exp

(
− SA
b2
AX (GA)

ϕ

(
4bA

(
l −N + dmin − PAn,k

)
5SA

)))
.

(2.30)

where SA ,
∑

i∈A Pn,k(γi) (1− Pn,k(γi)) and bA
∆
= 1− P

min(A)
n,k .

Proof. Let Ii = 1 − Di be the indicator variable which equals 1 if Server i fails

decoding. Accordingly, we have Ii ∼ Bern(Pn,k(γi)). For each subset A ⊆ {1, . . . , N},

let IA =
∑

i∈A Ii. The complement of the frame unavailability probability Ps(t) =

1− Pu(t) can hence be written as

Ps(t) =Pr

[
N∑
i=1

Ci(t)Di > N − dmin

]
(2.31)

=
1(
N
l

) N∑
l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

·
l∑

j=N−dmin+1

Pr
[
j servers from A decode successfully

and
l−j servers from A fail to decode

]

=
1(
N
l

) N∑
l=N−dmin+1

al(t)
∑

A⊆{1,...,N}:
|A|=l

(1−Pr[IA≥ l−N+dmin]). (2.32)

We can now apply Lemma 2 to the probability in (2.32) by noting that G(GA) is a

valid dependency graph for the variables {Ii}, i ∈ A. In particular, we apply Lemma

2 by setting τA = l − N + dmin − E(IA), bA ≥ Ii − E[Ii], and SA =
∑

i∈AVar (Ii),

leading to

Pr [IA ≥ l −N + dmin] ≤ exp

(
− SA
b2
AX (GA)

ϕ

(
4bA

(
l −N + dmin − PAn,k

)
5SA

))
.

(2.33)

By substituting (2.33) into (2.32), the proof is completed.

26

Figure 2.4 In the model studied in Section 2.5, frames arrive at the receiver according

to a Poisson process with parameter λ. Server 0 in the cloud encodes the received frames

using an network function virtualization code and forwards the encoded packets to servers

1, . . . , N for decoding.

2.5 Random Arrivals and Queuing

In this section, we extend our analysis from one to multiple frames transmitted by

the users. To this end, we study the system illustrated in Figure 2.4 with random

frame arrival times and queueing at the servers. We specifically focus on the analysis

of the trade-off between average latency and FER.

2.5.1 System Model

As illustrated in Figure 2.4, we assume that the arrival times of the received frames

are random and distributed according to a Poisson process with a rate of λ frames

per second. Upon arrival, Server 0 applies an network function virtualization code

to any received frame yr for r = 1, 2, . . ., as described in Section II and sends each

resulting coded packet ỹri to Server i, for i = 1, . . . , N . At Server i, each packet ỹri

enters a first-come-first-serve queue. After arriving at the head of the queue, each

packet ỹri requires a random time Ti to be decoded by Server i. Here, we assume that

Ti is distributed according to an exponential distribution in (2.16) with an average

processing time of 1/µ2 per bit. Furthermore, the average time to process a frame of

n bits is denoted as 1/µ. Also, the random variables Ti are i.i.d. across servers.

27

If the network function virtualization code has minimum distance dmin, as soon

as N−dmin +1 servers decode successfully their respective packets derived from frame

yr, the information frame ur can be decoded at Server 0. We denote as T the average

overall latency for decoding frame ur, which includes both queuing and processing.

Using (2.19), (2.20) and the fact that all servers complete decoding almost surely

as t→∞, that is Ci(t)→ 1 as t→∞, the FER is equal to

Pe = Pr

[
N∑
i=1

Ii ≥ dmin

]
, (2.34)

where Ii is the indicator variable that equals 1 if decoding at Server i fails. This

probability can be upper bounded by the following corollary of Theorem 3.

Corollary 3. The FER defined in (2.34) is upper bounded by

Pe ≤ exp

 −S
b2X (GC)

ϕ

4b
(
dmin−

∑N
i=1Pn,k(γi)

)
5S

 , (2.35)

where S
∆
=
∑N

i=1 Pn,k(γi) (1− Pn,k(γi)) and b
∆
= 1− Pmin

n,k .

Proof. The result follows from Theorem 3 by selecting τ = dmin −
∑N

i=1 Pn,k(γi).

We now discuss the computation of the average delay T for different queueing

management policies.

2.5.2 Per-Frame Decoding

We first study the system under a queue management policy whereby only one frame

yr is decoded at any time. Therefore, all servers wait until at least N − dmin + 1

servers have completed decoding of their respective packets ỹri before moving to the

next frame r+ 1, if this is currently available in the queues. Furthermore, as soon as

Server 0 decodes a frame, the corresponding packets still being present in the servers’

queues are evicted.

28

0 200 400 600 800 1000 1200 1400
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

LDB
UB
Exact FUP

Figure 2.5 Decoding latency versus frame unavailability probability (FUP) for L =

504, N = 8, 1/µ1 = 0, µ2 = 10, a = 1, δ = 0.01, r = 0.5) : (a) LDB, UB and Exact frame

unavailability probability for the parallel, single-server, and repetition coding.

As a result, the overall system can be described an M/G/1 queue with arrival

time λ and service time distributed according to the (N − dmin + 1)th order statistic

of the exponential distribution [54]. The latter has the pdf [89]

fTN−dmin+1:N
(t) =

N !

(N − dmin)!(dmin − l)!
fT (t)FT (t)N−dmin(1− FT (t))dmin−1, (2.36)

where FT (t) and fT (t) are the cdf and pdf of rv Ti, respectively. This queueing system

was also studied in the context of distributed storage systems.

Using the Pollaczek-Khinchin formula [103], the average delay Tpfd of an M/G/1

queue can be obtained as

n(HN −Hdmin−1)

(N − dmin + 1)µ
+

λn2[(HN −Hdmin−1)2 + (HN2 −H(dmin−1)2)]

2(N − dmin + 1)2µ2[1− λnµ−1(N − dmin + 1)−1(HN −Hdmin−1)]
,

(2.37)

29

0 200 400 600 800 1000 1200 1400
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

LDB
UB
MC Sim.

Figure 2.6 Decoding latency versus frame unavailability probability (FUP) for L =

504, N = 8, 1/µ1 = 0, µ2 = 10, a = 1, δ = 0.01, r = 0.5) : LDB, UB and Monte Carlo

simulation (“MC Sim.”) results for split repetition code, SPC code, and the network

function virtualization code Cc defined in (2.21).

where HN and HN2 are generalized harmonic numbers, defined by HN =
∑N

i=1
1
i

and

HN2 =
∑N

i=1
1
i2

[54]. Note that the queue is stable, and hence the average delay (2.37)

is finite, if the inequality nλ(HN − Hdmin−1) < µ(N − dmin + 1) holds. We refer to

the described queue management scheme as per-frame decoding (pfd). This set-up is

equivalent to the fork-join system studied in [54].

2.5.3 Continuous Decoding

As an alternative queue management policy, as soon as any Server i decodes its packet

ỹri , it starts decoding the next packet ỹr+1
i in its queue, if this is currently available.

Furthermore, as above, as soon as Server 0 decodes a frame yr, all corresponding

30

packets ỹri still in the servers’ queues are evicted. We refer this queue management

policy as continuous decoding (cd).

The average delay in Equation (2.37) of per-frame decoding is an upper bound

for the average delay of continuous decoding, i.e., we have Tcd ≤ Tpfd [54]. This is

because, with per-frame decoding, all N servers are blocked until N−dmin +1 servers

decode their designed packets. We evaluate the performance of continuous decoding

using Monte Carlo methods in the next section.

2.6 Simulation Results

In this section, we provide numerical results to provide additional insights into the

performance trade-off for the system shown in Figure 2.1. We first consider individual

frame transmission as studied in Section 3.2 and Section 2.4, and then we study

random arrivals as investigated in Section 2.5.

2.6.1 Single Frame Transmission

We first consider single frame transmission. The main goals are to validate the

usefulness of the two bounds presented in Theorems 1 and 2 as design tools and

to assess the importance of coding in obtaining desirable trade-offs between decoding

latency and frame unavailability probability. We employ a frame length of L = 504

and N = 8 servers. The user code Cu is selected to be a randomly designed

(3, 6) regular (Gallager-type) LDPC code with r = 0.5, which is decoded via belief

propagation.

We compare the performance of the following solutions: (i) Standard single-

server decoding, whereby we assume, as a benchmark, the use of a single server, that

is N = 1, that decodes the entire frame (K = 1); (ii) Repetition coding, whereby the

entire frame (K = 1) is replicated at all servers; (iii) Parallel processingor uncoded,

whereby the frame is divided into K = N disjoint parts processed by different servers;

31

(iv) Split repetition coding, whereby the frame is split into two parts, which are each

replicated at N/2 servers. The code has hence K = 2, dmin = N/2, X (Gc) = N/2,

which can be thought of as an intermediate choice between repetition coding and the

parallel scheme; (v) Single parity check code (SPC), with N = K + 1, whereby, in

addition to the servers used by parallel decoding, an additional server decodes the

binary sum of all other K received packets; and (vi) a network function virtualization

code Cc with the generator matrix Gc defined in (2.21), which is characterized by

K = 4. Note that, with both single-server decoding and repetition coding, we have

a blocklength of n = 1008 for the channel code. Single-server decoding is trivially

characterized by X (Gc) = dmin = 1, while repetition coding is such that the equalities

X (Gc) = dmin = 8 hold. Furthermore, the parallel approach is characterized by

n = 126, dmin = 1 and X (Gc) = 1; the split repetition code is characterized by

n = 504, dmin = 4 and X (Gc) = 4; the SPC code has n = 144, dmin = 2 and

X (Gc) = 2; and the network function virtualization code Cc has n = 252, dmin = 3

and X (Gc) = 3. The exact frame unavailability probability for a given function Pn,k(·)

can easily be computed for cases (i)-(iii). In particular, for single server decoding,

the frame unavailability probability equals

Pu(t) = 1− a1(t)(1− PL/r,L(δ)); (2.38)

for the repetition code, the frame unavailability probability is

Pu(t) = 1−
N∑
i=1

ai(t)(1− PL/r,L(δ)); (2.39)

and for the parallel approach, we have

Pu(t) = 1− aN(t)(1− PL/(rN),L/N(δ))N . (2.40)

32

0 200 400 600 800
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

LDB
UB
Exact FUP

Figure 2.7 Parallel, single server and repetition code.

In contrast, the exact frame unavailability probabilities for the SPC and code Cc are

difficult to compute, due to the discussed correlation among the decoding outcomes

at the servers.

Figure 2.5 shows decoding latency versus frame unavailability probability for

the LDB in Theorem 3, the UB in Theorem 4, and the exact error (2.38), (2.39),

(2.40), for the first three schemes (i)-(iii), and Figure 2.6 shows the LDB in Theorem

3, the UB in Theorem 4, as well as Monte Carlo simulation results for schemes (iv),

(v), and (vi). Here, we assume that the latency contribution that, is independent

of the workload, is negligible, i.e., 1/µ1 = 0. We also set a = 1 and µ2 = 10. As a

first observation, Figures 2.7 and 2.8 confirms that the UB bound is tighter than the

LDB.

Leveraging multiple servers in parallel for decoding is seen to yield significant

gains in terms of the trade-off between latency and frame unavailability probability

33

0 200 400 600 800
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

LDB
UB
MC Sim.

LDB
UB
MC Sim.

Figure 2.8 Decoding latency versus frame unavailability probability (FUP) for (L =

504, N = 8, 1/µ1 = 50, µ2 = 20, a = 0.1, δ = 0.01, r = 0.5) : (a) LDB, UB and Exact frame

unavailability probability for the parallel, single-server, and repetition coding; (b) LDB, UB

and Monte Carlo simulation (“MC Sim.”) results for split repetition code, SPC code, and

the network function virtualization code Cc defined in (2.21). Split repetition code, SPC

code and Cc code.

34

as argued also in [87] by using experimental results. In particular, the parallel scheme

is observed to be preferred for lower latencies. This is due to the shorter blocklength

n, which entails a smaller average decoding latency. However, the error floor of the

parallel scheme is large due to the higher error probability for short blocklengths. In

this case, other forms of network function virtualization coding are beneficial. To

elaborate, repetition coding requires a larger latency in order to obtain acceptable

frame unavailability probability performance owing to the larger blocklength n, but

it achieves a significantly lower error floor. For intermediate latencies, the SPC

code, and at larger latencies also both the network function virtualization code

Cc, and the split repetition code provide a lower frame unavailability probability.

This demonstrates the effectiveness of network function virtualization encoding in

obtaining a desirable trade-off between latency and frame unavailability probability.

In order to validate the conclusion obtained using the bounds, Figures 2.7 and

2.8 also shows the exact frame unavailability probability for the schemes (i)-(iii), as

well as Monte Carlo simulation results for schemes (iv)-(vi), respectively. While the

absolute numerical values of the bounds in Figures 2.5 and 2.6 are not uniformly tight

with respect to the actual performance, the relative performance of the coding schemes

are well matched by the analytical bounds. This provides evidence of the usefulness

of the derived bounds as a tool for code design in network function virtualization

systems.

Figures 2.7 and 2.8 are obtained in the same way as Figures 2.5 and 2.6, except

for the parameters µ1 = 0.02, µ2 = 20, and a = 0.1. Unlike Figures 2.5 and 2.6, here

latency may be dominated by effects that are independent of the blocklength n since

we have 1/µ1 > 0. The key difference with respect to Figures 2.7 and 2.8 is that,

for this choice of parameters, repetition coding tends to outperform both the parallel

case, and the network function virtualization code Cc, apart from very small latencies.

This is because repetition coding has the maximum resilience to the unavailability of

35

0 100 200 300 400 500 600 700
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

N=3
N=6
N=12

Figure 2.9 Decoding latency versus exact frame unavailability probability (FUP) for

parallel and repetition coding for different number of servers N ∈ {3, 6, 12} and (L =

240, 1/µ1 = 0, µ2 = 10, a = 1, δ = 0.03, r = 0.5)

the servers, while not being excessively penalized by the larger blocklength n. This

is not the case, however, for very small latency levels, where the network function

virtualization code Cc provides the smallest frame unavailability probability given its

shorter blocklength as compared to repetition coding and its larger dmin, with respect

to the parallel scheme.

Figure 2.9 shows the exact frame unavailability probability for the extreme cases

of parallel and repetition coding for different number of servers N ∈ {3, 6, 12}. The

figure confirms that, for both schemes, the latency decreases for a larger number of

servers N . However, by increasing N , the error floor of the parallel scheme grows due

to the higher channel error probability for shorter block lengths.

36

0.02 0.03 0.04 0.05 0.06
10 -8

10 -6

10 -4

10 -2

10 0

Per-frame decoding
Continuous decoding

Figure 2.10 Average latency versus FER with different values of the user code rate r

and for different coding schemes when the system is lightly loaded, with L = 112, N =

8, δ = 0.03, λ = 0.1, µ = 500.

2.6.2 Random Frame Transmission

We now consider the queueing system described in Section 2.5, and present numerical

results that provide insights into the performance of both per-frame and continuous

decoding in terms of FER versus average latency (2.34). As above, the decoding error

probability is upper bounded by using [83, Theorem 33]. Both FER and average

latency are a function of the user code rate r. We hence vary r ∈ {1/2, . . . , 1/5} to

parametrize a trade-off curve between FER and latency. We assume a frame length of

L = 112 bits with N = 8 servers, and adopt the same user code Cc as in the previous

subsection. The average delay Tpfd is computed from (2.37), and Tcd is obtained via

Monte Carlo simulations.

37

0.2 0.3 0.4 0.5 0.6 0.7 0.8

10 -6

10 -4

10 -2

10 0

Per-frame decoding
Continuous decoding

Figure 2.11 Average latency versus FER with different values of the user code rate r

and for different coding schemes when the system is heavily loaded, with L = 112, N =

8, δ = 0.03, λ = 1, µ = 50.

38

Figures 2.10 and 2.11 compare the performance of repetition coding, the network

function virtualization code Cc with the generator matrix (2.21), and the parallel

approach as defined above. Figure 2.10 considers a lightly loaded system with λ = 0.1

frames per second and µ = 500 frames per second, while Figure 2.11 shows a highly

loaded system with both λ = 1 frames per second and µ = 50 frames per second.

First, by comparing the two figures we observe that per-frame decoding and

continuous decoding have a similar performance when the system is lightly loaded

(see Figure 2.10), while continuous decoding yields a smaller average latency than

per-frame decoding when the system is heavily loaded (see Figure 2.11). This is

because, in the former case, it is likely that a frame is decoded successfully before the

next one arrives. This is in contrast to heavily loaded systems in which the average

latency becomes dominated by queuing delays. We also note that, for repetition

coding, the performance of per-frame decoding and continuous decoding coincides in

both lightly or heavily loaded systems, since decoding is complete as soon as one

server decodes successfully.

Also, by comparing the performance of different codes, we recover some of

the main insights obtained from the study of the isolated frame transmission. In

particular, the parallel approach outperforms all other schemes for low average delays

due to its shorter block length n. In contrast, repetition coding outperforms all

other schemes in FER for large average delay because of its large block length n and

consequently low probability of decoding error (not shown). Furthermore, we observe

that split repetition coding is to be preferred for small values of FER.

Finally, Figure 2.12 demonstrates the behavior of the average latency as the

arrival rate λ increases and the system becomes more heavily loaded. We observe

that, for a lightly loaded system, the latencies of per frame and continuous decoding

are similar, while continuous decoding is preferable for a large number of λ. This is

because per-frame decoding requires all servers to wait until at least N − dmin + 1

39

1 2 3 4 5 6 7

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Per-frame decoding
Continuous decoding

Figure 2.12 Average latency versus arrival rate λ (L = 112, N = 8, r = 0.5, µ = 500).

servers have completed decoding of their respective packets before moving on to the

next frame.

2.7 Discussion and Concluding Remarks

We obtained the performance of a novel coded NFV approach for the uplink of a

C-RAN system in which decoding takes place at a multi-server or multi-core cloud

processor. This approach is based on the linear combination of the received packets

prior to their distribution to the servers or cores, and on the exploitation of the

algebraic properties of linear channel codes. The method can be thought of as an

application of the emerging principle of coded computing to NFV. Analysis and

simulation results demonstrate the significant gains that linear coding of received

40

packets, or NFV coding, can yield in terms of trade-off between decoding latency and

FER. Among interesting open problems, we mention here the design of optimal NFV

codes and the extension of the principle of NFV coding to Gaussian channels.

The source of the error probability in the system is due to first, decoding noisy

packets in servers and second a random respond time that each server needs to decode.

Furthermore, we explore the tradeoff between effective parameters of the NFV system

such as minimum distance and chromatic number of the code. These analysis direct us

to interesting future design of NFV codes considering the application of the principle

of coded NFV.

41

CHAPTER 3

PRIVATE AND SECURE MATRIX MULTIPLICATION WITH
FLEXIBLE COMMUNICATION LOAD

3.1 Introduction

3.1.1 Motivation and Problem Definition

At the core of many signal processing and machine learning applications are tensor

operations, most notably large matrix multiplications [51]. In the presence of

practically sized data sets, such operations are typically carried out using distributed

computing platforms with a master server and multiple workers that can operate in

parallel over distinct parts of the data set. The master server plays the role of the

parameter server, distributing data to the workers and periodically reconciling their

internal state [69]. Workers are commercial off-the-shelf servers that are characterized

by possible temporary failures and delays [28].

Straggling workers can affect the computation latency by orders of magnitude,

e.g., [55, 106]. While current distributed computing platforms conventionally handle

straggling servers by means of replication of computing tasks [49], recent work has

shown that encoding the input data can help reduce the computation latency. More

generally, coding is able to control the trade-off between computational delay and

communication load between workers and master server [66, 111, 74, 6, 7, 37, 35,

39, 38, 98]. Furthermore, stochastic coding can help keeping both input and output

data secure from the workers, assuming that the latter are honest, i.e., carrying out

the prescribed protocol, but curious [81, 113, 22, 56, 107, 32, 27, 80]. This chapter

contributes to this line of work by investigating the trade-off between computational

delay and communication load as a function of the privacy level.

As illustrated in Figures 3.1 and 3.2, we focus on the basic problem of computing

a matrix multiplication C = AB in a distributed computing system of P workers that

42

can process each only a fraction 1/m and 1/n of matrices A and B, respectively. In

the first setup under study, illustrated in Figure 3.1, both matrices A and B are to

be kept private from the workers. Here, three performance criteria are of interest:

• the recovery threshold PR, that is, the number of workers that need to complete
their task before the master server can recover the product C;

• the communication load CL between workers and master server, i.e., the amount
of information to be downloaded from the workers;

• the maximum number PC of colluding servers that ensures perfect secrecy for
both data matrices A and B.

In the second setup of interest shown in Figure 3.2, only matrix A is private,

while matrix B is selected from a public data set B. In this case, apart from the

security constraint on A, we only impose a privacy constraint on the identity of

the specific matrix B ∈ B of interest. As a motivation for this second setup,

consider a recommender system based on collaborative filtering [85]. In this case,

recommendations are based on the product of two matrices, one describing the profile

of a user, or a group of users, and one representing features of the items of interest,

such as movies, music or TV shows. The users’ profile matrix can be modelled by

the private matrix A. Hence ensuring the privacy of users’ data; while the items’

data matrix for each category is represented by one of the matrices in the public data

set B = {B(k)}Lk=1. This latter assumption captures the constraint that users may

want to keep the confidential types of items they are interested in. For this problem,

the criteria of interest are still PR and PC , and we simplify the problem by setting

PC = 1. This chapter focuses on the design of coding and computing techniques for

both problems.

3.1.2 Related Work

In order to put our contribution in perspective, we briefly review prior related work.

Consider first solutions that provide no security guarantees, i.e., PC = 0, for the

43

problem in Figure 3.1. As a direct extension of [66], a first approach is to use

product codes that apply separately the maximum distance separable (MDS) codes

to encode the two matrices [68]. The recovery threshold of this scheme is improved

by [111], which introduces polynomial codes. The construction in [111] is proved to

be optimal under the assumption that minimal communication is allowed between

workers and master server. MatDot codes are introduced in [39], resulting in a lower

recovery threshold at the expense of a larger communication load. The construction

in [37] bridges the gap between polynomial and MatDot codes and presents PolyDot

codes, yielding a trade-off between recovery threshold and communication load. An

extension of this scheme, termed Generalized PolyDot (GPD) codes improves on the

recovery threshold of PolyDot codes [35], which is independently obtained also by the

construction in [112]. GPD codes in [35] are used to design a unified coded computing

strategy for the training of deep neural networks.

Much less work has been done in the literature for the case in which security

constraints are factored in, i.e., where PC 6= 0, for the problem of Figure 3.1. In

[113], Lagrange coding is presented that achieves the minimum recovery threshold

for multilinear functions by generalizing MatDot codes. In [81, 80], coded schemes

have been used to develop multi-party computation techniques to calculate arbitrary

polynomials of massive matrices, preserving the security of the data matrices.

In [22, 56, 32] a reduction of the communication load is obtained by extending

polynomial codes. While these works focus on either minimizing recovery threshold

or communication load, the trade-off between these two fundamental quantities has

not been addressed in the open literature to the best of our knowledge. A new class

of secure distributed matrix multiplication and its capacity is studied in [53].

In the second part of this work, we study a connection between secure matrix

multiplication and private information retrieval (PIR), as illustrated in Figure 3.2.

The private information retrieval problem was introduced in [26] and has been widely

44

studied in recent years, e.g., in [43, 110, 99, 14, 41, 59, 58, 61, 23, 100]. In [61]

and [23] the private information retrieval setup was investigated for the problem

of distributed matrix multiplication illustrated in Figure 3.2 that imposes private

information retrieval guarantees for the index of matrix B within a public library.

In [61], a coding strategy is proposed that combines the private information retrieval

scheme for non-colluding servers (i.e., with PC = 1) [26] with polynomial codes [111].

In [23], the authors introduce a related approach for this problem, and show that it

outperforms the scheme proposed in [61] in terms of upload and download cost. The

code design in [23] focuses on the minimization of the communication load, and does

not explore the trade-off between this metric and the recovery threshold.

3.1.3 Main Contribution

In this dissertation, we first present a novel class of secure computation codes, referred

to as secure GPD (SGPD) codes, for the setup in Figure 3.1, SGPD codes generalize

GPD codes to operate at a flexible communication load level. This yields a new

achievable trade-off between recovery threshold PR and communication load CL as

a function of a prescribed number of colluding workers PC . In the process, we also

introduce a novel perspective on distributed computing codes based on the signal

processing concepts of convolution and z-transform. SGPD codes. Then, SGPD codes

are modified to offer a solution, introduced here for the first time, for the scenario in

Figure 3.2. This is done through concatenation with the private information retrieval

code in [61], which ensures both secrecy of the input matrix A and privacy of the

identity for the desired matrix in the library B if PC = 1. The resulting codes

are referred to as private and secure GPD (PSGPD) codes. They generalize the

approach in [23], enabling a trade-off between (upload) communication load and

recovery threshold. We finally illustrate the benefits of the proposed codes, which offer

45

a flexible trade-off between communication load and recovery threshold, by analyzing

the overall completion time due to both computation and communication.

3.1.4 Organization

The rest of the chapter is organized as follows. In Section 3.2, we present the system

models for secure matrix multiplication (Figure 3.1 in Section 3.2.3) and for private

and secure matrix multiplication (Figure 3.2 in Section 3.2.4), respectively. In Section

3.3, we propose an intuitive interpretation of the GPD code introduced in [39]. Using

z-transforms, Section 3.4 proposes a novel extension of GPD codes by imposing

a security constraint on the data matrices and deriving the resulting trade-off

between recovery threshold PR and communication load CL. In this section, we also

study overall completion latency encompassing both computation and communication

latencies for SGPD codes. In Section 3.5, we address the setup in Figure 3.2, again

with respect to the trade-off between PR and CL and to the overall completion latency.

This chapter is concluded in Section 3.6.

3.2 Problem Statement

3.2.1 Notation

Throughout this chapter, we denote a matrix with upper boldface letters (e.g., X),

and lower boldface letters indicate a vector or a sequence of matrices (e.g., x).

Furthermore, a math calligraphic font refers to a set (e.g., X). A set F represents

the Galois field with cardinality |F|. We denote by N the set of all non-zero positive

integers, and for some a, b ∈ N, a ≤ b, [a, b]
∆
= {a, a+ 1, . . . , b}. For any real number

r, dre represents the largest integer nearest to r. The function H(·) represents the

entropy of its argument, and I(X;Y) denotes the mutual information of the random

variables X and Y .

46

Figure 3.1 Secure matrix multiplication: the master server encodes both input matrices

A and B, to be kept secure from the workers, and both random matrices R and R′,

respectively, to define the computational tasks of the slave servers or workers. The workers

may fail or straggle, and they are honest but curious, with colluding subsets of workers of

size at most PC . The master server must be able to decode the product C = AB from the

output of a subset of PR servers, which defines the recovery threshold.

3.2.2 System Model

As illustrated in Figures 3.1 and 3.2, we consider a distributed computing system

with a master server and P slave servers or workers. The master server is interested

in computing securely the matrix product C = AB of two data matrices A and B

with dimensions T × S and S ×D, respectively. The matrices have i.i.d. uniformly

distributed entries from a sufficient large finite field F, with |F| > P . More precisely,

we will consider two scenarios. In the first, both matrices A and B are available

at the master server and contain confidential data that should be kept secure from

the workers (see Figure 3.1). In the second, only matrix A contains confidential

information, and there are L public matrices in the set B = {B(r)}Lr=1 from which

the master node wishes to compute the product C(κ) = AB(κ) for some κth index

κ ∈ [1, L]. The index must be kept private against the workers (see Figure 3.2). In

the subsequent sections, we first describe the system model for the setup in Figure

47

3.1, referred to as secure matrix multiplication, followed by the setup for the model

in Figure 3.2, referred to as private and secure matrix multiplication.

3.2.3 Secure Matrix Multiplication

For the scenario in Figure 3.1 workers receive information on matrices A ∈ FT×S and

B ∈ FS×D from the master server; they process this information and they respond

to the master server, which finally recovers the product C = AB with minimal

computational effort. Due to communication and complexity constraints, each worker

can receive only TS/m and SD/n symbols, respectively, for some integers m and n.

The workers are honest but curious. Accordingly, we impose the secrecy constraint

that, even if up to PC < P workers collude, the workers cannot obtain any information

about both matrices A and B based on the data received from the master server.

To keep the data secure and to leverage possible computational redundancy

at the workers (namely, if P/m > 1 and/or P/n > 1), the master server sends

encoded versions of the input matrices to the workers due to the above mentioned

communication and complexity constraints. Specifically, it produces the encoded

matrices Ap = fp(A,R), where R is a random matrix of dimension T ′ × S ′, for some

integers T ′ and S ′ to be defined below, via the function

fp : FT×S × FT ′×S′ → FT/t×S/s, (3.1)

for some integers t and s such that m = st. The resulting TS/m entries in the

output of function fp are then sent to worker p, with p ∈ [1, P]. Likewise, the master

server computes the encoded matrices Bp = gp(B,R
′), where R′ is a random matrix

of dimension S ′ × D′, for some integers S ′ and D′ to be defined below, using the

function

gp : FS×D × FS′×D′ → FS/s×D/d, (3.2)

48

for some integers s and d such that n = sd. The resulting SD/n entries in Bp are

then sent to worker p. The random matrices R and R′ consists of i.i.d. uniformly

distributed entries from a field F. The security constraint imposes the condition

I(AP ,BP ; A,B) = 0, (3.3)

for all subsets of P ⊂ [1, P] of PC workers, where the random matrices R and R′

serve as random keys in order to meet the security constraint (3.3) [94].

Each worker p computes the product Cp = ApBp of the encoded sub-matrices

Ap and Bp. The master server collects a subset of PR ≤ P outputs from the workers as

defined by the subset {Cp}p∈PR with |PR| = PR. It then applies a decoding function

as h ({Cp}p∈PR),

h : FT/t×D/d × · · · × FT/t×D/d︸ ︷︷ ︸
PR times

→ FT×D. (3.4)

Note that correct decoding translates into the condition

H(AB|{Cp}p∈PR) = 0. (3.5)

A coding and decoding strategy that satisfies condition (3.3) and (3.5) is said to be

feasible.

For given parameters m and n the performance of a coding and decoding scheme

is measured by the triple (PC , PR, CL), where CL is defined as

CL =
∑
p∈PR

|Cp|; (3.6)

|Cp| is the dimension of the product matrix Cp computed by worker p. Note that

condition (3.5) requires the inequality min{PR/m, PR/n} ≥ 1 or PR ≥ PR,min
∆
=

max{m,n}, which is hence a lower bound for the minimum recovery threshold.

Furthermore, the communication load is lower bounded by CL ≥ CL,min
∆
= TD,

which is the size of the product C = AB.

49

Figure 3.2 Private and secure matrix multiplication: the master server encodes the

input matrix A, to be kept secret from the workers, and generates the encoded matrix A
(κ)
p

for each worker p. It also sends a query q
(κ)
p as a function of the index κ ∈ [1, L], to be

kept private from workers, of the desired product C(κ) = AB(κ), with matrices {B(r)}Lr=1

available at all workers. The non-colluding workers may fail or straggle, and they are honest

but curious. The master server must be able to decode the product C(κ) from the output

of a subset of PR servers, which defines the recovery threshold.

3.2.4 Private and Secure Matrix Multiplication

In this subsection, we discuss the private and secure matrix multiplication problem

illustrated in Figure 3.2. In this setup, the master server wishes to compute the

product C(κ) = AB(κ) of a confidential input matrix A with a matrix B(κ) from a set

of public matrices {B(1), . . . ,B(L)}, while keeping the index κ of the matrix B(κ) of

interest private from the workers.

Similar to the secure model in Figure 3.1, we consider a distributed computing

system with a master server and P honest but curious workers. The master server

contains a confidential data matrix A with dimension T ×S. Each worker has access

to the library B, which consists of L distinct matrices {B(1), . . . ,B(L)}, each with

dimension S×D. As above, all matrices contain data symbols chosen uniformly i.i.d.

from a sufficient large finite field F, with |F| > P . The master server is interested in

computing the matrix product C(κ) = AB(κ) of the data matrix A and of a matrix

50

B(κ) for some index κ ∈ [1, L]. This should be done while keeping the data matrix

A secret against the workers in the same sense as in the scenario of Figure 3.1, while

also ensuring that the index κ is kept secret from the workers.

To do so, as in the private information retrieval problem [99, 14], the master

server generates P query vectors q
(κ)
1 , . . . ,q

(κ)
P ∈ FL, for some L > 1 as a function

of the desired index κ and sends each worker p ∈ [1, P], the query vector q
(κ)
p . We

assume that the workers do not collude, i.e., we set PC = 1. Extensions to any PC > 1

are possible and are left for future work. We note that, when the input matrix A is

an identity matrix, the setup reduces to a private information retrieval problem.

To keep the data matrix A secure against workers, the master server sends each

worker p ∈ [1, P] an encoded version A
(κ)
p = fp(κ,A,R) ∈ FT/t×S/s which is a function

of index κ, and through it, of the query q
(κ)
p , of the data matrix A and of a random

matrix R, for some integers t and s such that m = ts.

Upon receiving (q
(κ)
p ,A

(κ)
p), each worker p uses the query q

(κ)
p to derive an

S/s × D/d matrix B
(κ)
p = gp(q

(κ)
p ,B) ∈ FS/s×D/d from the library B by using an

encoding function

gp : FL × FS×D × · · · × FS×D︸ ︷︷ ︸
L times

→ FS/s×D/d, (3.7)

for some integers s and d such that n = sd. We emphasize that, unlike the setup

considered in Figure 3.1, the content of the desired matrix B(κ) is not secure against

workers, since the library B is public. Each worker p then computes the product

C
(κ)
p = A

(κ)
p B

(κ)
p and sends it to the master server. The master server collects a

subset {C(κ)
p }p∈PR of PR ≤ P outputs from the workers with |PR| = PR. It then

applies a decoding function h({C(κ)
p }p∈PR), as in (3.4), in order to retrieve the desired

product C(κ) = AB(κ).

51

To guarantee the secrecy of input matrix A, in a manner similar to (3.3), we

have the constraint

I(A(κ)
p ,B(κ)

p ,q(κ)
p ,B; A) = 0, (3.8)

for all p ∈ [1, P]. Following the private information retrieval formulation on [61], in

order to ensure the privacy of index κ, for some value of κ the information available

at each worker should be statistically indistinguishable from that available for any

other value κ′ 6= κ. Mathematically, for all κ, κ′ ∈ [1, L] with κ′ 6= κ and for all

workers p ∈ [1, P], we have the condition

(q(κ)
p ,A(κ)

p ,C(κ)
p ,B) ∼ (q(κ′)

p ,A(κ′)
p ,C(κ′)

p ,B), (3.9)

that is, the joint distribution of variables (q
(κ′)
p ,A

(κ′)
p ,C

(κ′)
p ,B) should be the same for

any pair of index values κ′ 6= κ. Finally, the correct decoding requirement is defined

as in (3.5), that is

H(AB(κ)|{C(κ)
p }p∈PR) = 0. (3.10)

A coding and decoding strategy that satisfies conditions (3.8), (3.9), and (3.10) is

said to be feasible. For given parameters m and n the performance is measured by

the pair (PR, CL), with PC = 1, where CL is the communication load defined in (3.6).

3.3 Background: Generalized PolyDot Code without Security
Constraint

In this section, we consider the system model shown in Figure 3.1 and review the

GPD construction first proposed in [39] and later improved in [112, 35] for the special

case of no secrecy constrains, i.e., PC = 0. In the process, we propose a novel intuitive

interpretation of GPD encoding and decoding based on the distributed computation

of samples from convolutions via z-transforms.

52

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Figure 3.3 Construction of the time sequences a and b used to define the generalized

PolyDot (GPD) code. The zero dashed lines in b indicates all-zero block sequences. Each

solid arrows in a and b shows a distinct row of A and a column of B, respectively.

We start by recalling that the GPD coding scheme achieves the best currently

known trade-off between recovery threshold PR and communication load CL for PC =

0, i.e., under no security constraint. The entangled polynomial codes of [112] have

the same properties in terms of (PR, PC). The GPD codes for PC = 0 also achieve

the optimal recovery threshold among all linear coding strategies in the cases of t = 1

or d = 1, also they minimize the recovery threshold for the minimum communication

load CL,min [111, 112].

The GPD code splits the data matrices A and B both horizontally and vertically

as

A =


A1,1 . . . A1,s

...
. . .

...

At,1 . . . At,s

 , B =


B1,1 . . . B1,d

...
. . .

...

Bs,1 . . . Bs,d

 . (3.11)

The parameters s, t, and d can be set arbitrarily under the constraints m = ts and

n = sd. Note that polynomial codes set s = 1, while MatDot codes have t = d = 1

53

[37]. All sub-matrices Ai,j and Bk,l have dimensions T/t × S/s and S/s × D/d,

respectively. The GPD code computes each block (i, j) of the product C = AB,

namely Ci,j =
∑s

k=1 Ai,kBk,j, for i ∈ [1, t] and j ∈ [1, d], in a distributed fashion.

This is done by means of polynomial encoding and polynomial interpolation. As we

review next, the computation of block Ci,j can be interpreted as the evaluation of

the middle sample of the convolution ci,j = ai ∗ bj between the block sequences ai =

[Ai,1, . . . ,Ai,s] and bj = [Bs,j, . . . ,B1,j]. In fact, the sth sample of the block sequence

ci,j equals Ci,j, i.e., [ci,j]s = Ci,j. The computation is carried out distributively in

the frequency domain by using z-transforms with different workers being assigned

distinct samples in the frequency domain.

To elaborate, define the block sequence a obtained by concatenating the block

sequences ai as a = {a1, a2, . . . , at}. Pictorially, a sequence a is obtained from the

matrix A by reading the blocks in the left-to-right top-to-bottom order, as seen in

Figure 3.3. We also introduce the longer time block sequence b as

b = {b1,0,b2,0, . . . ,bd}, (3.12)

with 0 being a block sequence of s(t∗ − 1) all-zero block matrices with dimensions

S/s × D/d. The sequence b can be obtained from the matrix B by following the

bottom-to-top left-to-right order shown in Figure 3.3 and by adding the all-zero block

sequences between any two columns of the matrix B.

In the frequency domain, the z-transforms of sequences a and b are obtained

as

Fa(z) =
ts−1∑
r=0

[a]r+1z
r =

t∑
i=1

s∑
j=1

Ai,jz
s(i−1)+j−1, (3.13)

Fb(z) =

s−1+ts(d−1)∑
r=0

[b]r+1z
r =

s∑
k=1

d∑
l=1

Bk,lz
s−k+ts(l−1), (3.14)

54

respectively. The master server evaluates the polynomials Fa(z) and Fb(z) in P

non-zero distinct points z1, . . . , zP ∈ F and sends the corresponding linearly encoded

matrices Ap = Fa(zp) and Bp = Fb(zp) to server p. The encoding functions

are hence given by the polynomial evaluations (3.13) and (3.14), for z1, . . . , zp.

Server p computes the multiplication Fa(zp)Fb(zp) and sends it to the master

server. The master server computes the inverse z-transform for the received products

{ApBp}p∈PR = {Fa(zp)Fb(zp)}p∈PR , obtaining the convolution a ∗ b.

From the convolution a ∗ b, we can see that the master server is able to

compute all the desired blocks Ci,j by reading the middle samples of the convolutions

ci,j = ai ∗ bj from samples of the sequence c = a ∗ b in the order [c]s−1 =

C1,1, [c]2s−1 = C2,1, . . . , [c]ts−1 = Ct,1, [c]s−1+t∗s = C1,2, . . . , [c]ts−1+t∗s = Ct,2,

Note that, in particular, the zero block subsequences added to sequence b ensure

that no interference from the other convolutions, ci′,j′ affects the middle (sth) sample

of a convolution ci,j with i′ 6= i and j′ 6= j.

To carry out the inverse transform, the master server needs to collect as many

values Fa(zp)Fb(zp) as there are samples of the sequence a ∗ b, yielding the recovery

threshold

PR = tsd+ s− 1. (3.15)

Equivalently, in terms of the underlying polynomial interpretation, the master

server needs to collect a number of evaluations of the polynomial Fa(z)Fb(z) equal

to the degree of Fa(z)Fb(z) plus one. This computation is of complexity order

O(TDPR(log(PR))2) [37]. Furthermore, the communication load is given as

CL = PR
TD

td
, (3.16)

where TD/(td) is the size of each matrix Fa(z)Fb(z).

55

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0 0
0
0
0

0
0
0
0

Figure 3.4 Construction of the time block sequences a∗ = [a, r] and b∗ = [b, r′] in (3.20)

and (3.21) used to define the SGPD code for the case s < t. The zero dashed lines in b and

r′ indicate all-zero block sequences.

3.4 Secure PolyDot Code

In this section, we propose a novel extension of the GPD code that is able to ensure

the secrecy constraint for any PC < P . We also derive the corresponding achievable

set of triples (PC , PR, CL). As we will discuss, the projection of this set onto the plane

defined by the condition PC = 0 includes the set of pairs (PR, CL) in (3.15) and (3.16)

obtained by the GPD code [35]. The proposed secure GPD (SGPD) code augments

matrices A and B by adding PC random block matrices to the input matrices A

and B, in a manner similar to prior works [81, 113, 22, 56, 32], yielding augmented

matrices A∗ and B∗. As we will see, a direct application of the GPD codes to these

matrices is suboptimal.

In contrast, we propose a novel way to construct sequences a∗ and b∗ from

matrices A∗ and B∗ that enables the definition of a more efficient code by means of

the z-transform approach discussed in the previous section. To this end, we follow the

design criterion of decreasing the recovery threshold PR for a given communication

load CL. Based on the discussion in the previous section, this goal can be realized

by decreasing the length of the sequence c∗ = a∗ ∗ b∗, which can in turn be ensured

56

by reducing the length of the sequence b∗ for a given length of the sequence a∗. We

accomplish this objective by (i) adaptively appending rows or columns with random

elements to matrix A, and, correspondingly columns or rows to B, which can reduce

the recovery threshold; and (ii) modifying the zero padding procedure (see Figure 3.3)

for the construction of sequence b∗. In order to account for point (i), we consider

separately the two cases s < t and s ≥ t.

3.4.1 Secure Generalized PolyDot Code: The s < t Case

As illustrated in Figure 3.4, when s < t, we augment the input matrices A and B by

adding

∆PC
∆
=

⌈
PC
s

⌉
, (3.17)

random row and column blocks to matrices A and B, respectively. Accordingly, the

t∗ × s augmented block matrix A∗ with t∗ = t+ ∆PC is obtained as

A∗ =

 A

R

 =



A1,1 . . . A1,s

...
. . .

...

At,1 . . . At,s

R1,1 . . . R1,s

...
. . .

...

R∆PC,1
. . . R∆PC,s


, (3.18)

while the s× d∗ augmented matrix B∗ = [B R′] with d∗ = d+ ∆PC is obtained as

B∗ =


B1,1 . . . B1,d R′s,1 . . . R′s,∆PC

...
. . .

...
...

. . .
...

Bs,1 . . . Bs,d R′1,1 . . . R′1,∆PC

 . (3.19)

In (3.18) and (3.19), if s divides PC , all block matrices Ri,j ∈ FT
t
×S
s and R′i,j ∈ FS

s
×D
d

are generated with i.i.d. uniform random elements in F. Otherwise, if ∆PC−PC/s > 0,

57

the last s∆PC − PC matrices in (3.18), with right-to-left ordering in the last row of

Ri,j, and in (3.19) with top-to-bottom ordering in the last column of R′i,j, are all-zero

block matrices.

As illustrated in Figure 3.4, in the SGPD scheme, the block sequence a∗ is

defined in the same way as in the conventional GPD, yielding

a∗ = {a1, . . . , at, r1, . . . , r∆PC
}, (3.20)

where ri is the ith row of the block matrix R, i ∈ [1,∆PC]. We also define the time

block sequence b∗ = {b, r′} as

b∗ = {b1,0,b2,0, . . . ,bd,0, r
′
1, r
′
2, . . . , r

′
∆PC
}, (3.21)

where 0 is block sequences of s(t∗ − 1) all-zero block matrices, respectively, with

dimensions S/s×D/d, while r′j is the jth column of the random matrix R′. The key

novel idea of this construction is that no zero matrices are introduced between the

columns of matrix R′. As shown in Theorem 5 below, this construction allows the

master server to recover all the desired submatrices Ci,j for i ∈ [1, t] and j ∈ [1, d]

from the middle samples of the convolutions ci,j = ai ∗ bj (see Figure 3.5 for an

illustration).

Theorem 5. For a given security level PC < P , the proposed SGPD code achieves

the recovery threshold

PR =


tsd+ s− 1, if PC = 0,

t∗s(d+ 1) + s∆PC − 1, if PC ≥ 1 and ∆PC = PC
s
,

t∗s(d+ 1)− s∆PC + 2PC − 1, if PC ≥ 1 and ∆PC >
PC
s
,

(3.22)

and the communication load (3.16), where t∗ = t + ∆PC and d∗ = d + ∆PC for any

integer values t, s, and d such that s < t, m = ts, and n = sd.

58

Proof. The z-transform of sequences a∗ and b∗ are given respectively as

Fa∗(z) =
t∑
i=1

s∑
j=1

A∗i,jz
s(i−1)+(j−1)

︸ ︷︷ ︸
∆
= F1(z)

+
t∗∑

i=t+1

s∑
j=1

A∗i,jz
s(i−1)+j−1

︸ ︷︷ ︸
∆
= F2(z)

, (3.23)

Fb∗(z) =
s∑

k=1

d∑
l=1

B∗k,lz
s−k+t∗s(l−1)

︸ ︷︷ ︸
∆
= F3(z)

+
s∑

k=1

d∗∑
l=d+1

B∗k,lz
t∗sd+s(l−d)−k

︸ ︷︷ ︸
∆
= F4(z)

. (3.24)

The master server evaluates Fa∗(z) and Fb∗(z) at P non-zero distinct points

z1, . . . , zP ∈ F, which define the encoding functions, and sends both matrices

Ap = Fa∗(zp) and Bp = Fb∗(zp) to worker p. Worker p performs the multiplication

Fa∗(zp)Fb∗(zp), and sends the results back to the master server. To reconstruct

all blocks Ci,j of matrix C = AB, the master server carries out a polynomial

interpolation, or equivalently, it computes the inverse z-transform, upon receiving

a number of multiplication results equal to at least the length of the sequence

c∗ = a∗ ∗ b∗. As we detail next, the (i, l) block Ci,l =
∑s

r=1 Ai,rBr,l, for all i ∈ [1, t]

and l ∈ [1, d], of matrix C = AB can be seen equal to the (si − 1 + (l − 1)t∗s)th

sample of the convolution c∗ = a∗ ∗ b∗. An illustration can be found in Figure 3.5.

To see this, we first note that, by the properties of GPD codes, matrix Ci,l

is the coefficient of the monomial zsi−1+(l−1)t∗s in F1(z)F3(z). Note that this holds

since the polynomial F1(z) and F3(z) are defined as GPD codes. We now need to

show that no other contribution to this term arises from the products F1(z)F4(z),

F2(z)F3(z), and F2(z)F4(z). The terms in the product F1(z)F4(z) have exponents

59

0

0.5

1

0 1 2 3 4 5 6 7 8

0

0.5

1

0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

Figure 3.5 Outcome of the communication Ci,j = ai ∗ bj for t = 3, s = 2, d = 2, and

PC = 2. Dashed blue stems with filled markers represent the convolution c∗. Individual

convolutions ci,j are shown in different colors with square markers. Contributions from one

or both random matrices are shown as red crosses. The desired submatrices Ci,j are seen

to equal the corresponding samples from the sequence c∗, associated with the center points

of the individual convolutions.

(t∗sd+s(i−1)+s(l−d)−1), for i ∈ [1, t] and l ∈ [d+1, d∗], which do not include the

desired values (si−1+(l−1)t∗s) for i ∈ [1, t] and l ∈ [1, d]. A similar discussion applies

to the product F2(z)F3(z), whose exponents are (s(i+ t∗l− t∗)− 1), for i ∈ [t+ 1, t∗]

and l ∈ [1, d], and F2(z)F4(z), whose exponents are (t∗sd + s(i − 1) + s(l − d) − 1),

for i ∈ [t+ 1, t∗] and l ∈ [d+ 1, d∗].

In order to recover the convolution c∗, the master server needs to collect a

number of values of the product Fa(z)Fb(z) equal to the length of the sequence c∗,

which can be computed as the degree deg (Fa(z)Fb(z)) + 1, where deg(Fa(z)Fb(z))

60

0
0
0
0

0

0
0
0
0

0

0
0
0
0

0

0
0
0
0

0

0
0
0
0

0

0
0
0
0

0

0
0
0
0

0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Figure 3.6 Construction of the time block sequences a∗ and b∗ in (3.31) and (3.32) used

to define the secure generalized PolyDot (SGPD) code for the case s ≥ t. The solid line and

the zero dashed lines in b∗ indicate columns of B and all-zero block sequences, respectively.

is

deg(Fa(z)Fb(z)) =


t∗s(d+ 1) + s∆PC − 1, if ∆PC = PC

s
,

dst∗ − s∆PC + 2PC + t− 2, if ∆PC >
PC
s
.

(3.25)

For PC ≥ 1 this implies the recovery threshold PR in (3.22). The communication load

CL in (3.16) follows from the fact that there are TD/(td) entries in Fa∗(zp)Fb∗(zp),

for all p ∈ [1, PR].

61

The security constraint in Equation (3.3) can be proved in a manner similar to

[22] by the following steps:

I(A,B; AP ,BP)

=H(AP ,BP)−H(AP ,BP |A,B)

(a)
=H(AP ,BP)−H(AP ,BP |A,B)

+H(AP ,BP |A,B,R1, . . . ,RPC ,R
′
1, . . . ,R

′
PC

)

=H(AP ,BP)− I(AP ,BP ; R1, . . . ,RPC ,R
′
1, . . . ,R

′
PC
|A,B)

=H(AP ,BP)−H(R1, . . . ,RPC ,R
′
1, . . . ,R

′
PC
|A,B)

+H(R1, . . . ,RPC ,R
′
1, . . . ,R

′
PC
|A,B,AP ,BP)

(b)
=H(AP ,BP)−H(R1, . . . ,RPC ,R

′
1, . . . ,R

′
PC

)

(c)

≤H(AP) +H(BP)−
PC∑
p=1

H(Rp)−
PC∑
p=1

H(R′p)

(d)
=H(AP) +H(BP)− PC

TS

m
log |F| − PC

SD

n
log |F|

(e)

≤
PC∑
p=1

H(Ap) +

PC∑
p=1

H(Bp)− PC
TS

m
log |F| − PC

SD

n
log |F|

(f)
=PC

TS

m
log |F|+ PC

SD

n
log |F| − PC

TS

m
log |F|

− PC
SD

n
log |F|

=0, (3.26)

where (a) follows from the definition of encoding functions, since AP is a deterministic

function of A and Rp, and BP is a deterministic function of B and R′p, respectively, for

all p ∈ [1, PC]; (b) follows from Equations (3.23) and (3.24), since from PR polynomial

evaluations AP and BP in Equations (3.23) and (3.24) we can recover 2PC unknowns

when the coefficients Ai,j and Bk,l are known, given that we have PR ≥ 2PC ; (c)

and (d) follows since Rp and R′p are independent uniformly distributed entries; (e)

follows by upper bounding the joint entropy using the sum of individual entropies;

62

and (f) follows from an argument similar to (d). Hence, the proposed scheme is

information-theoretically secure.

Remark 2. When PC ≥ 1 a direct application of the GPD construction in Figure

3.3 would yield the larger recovery threshold

PR =


t∗sd∗ + s− 1, if ∆PC = PC

s
,

dst∗ + s− 1− 2(s∆PC − PC), if ∆PC >
PC
s
.

(3.27)

3.4.2 Secure Generalized PolyDot Code: The s ≥ t Case

As illustrated in Figure 3.6, when s ≥ t, we instead augment input matrices A and

B by adding

∆′PC
∆
=

⌈
PC

min {t, d}

⌉
(3.28)

column and row blocks to matrices A and B. This can be seen to yield a smaller

recovery threshold. Accordingly, the t×s∗ augmented block matrix A∗ = [A R] with

s∗ = s+ ∆′PC is obtained as

A∗ =


A1,1 . . . A1,s R1,1 . . . R1,∆′PC

...
. . .

...
...

. . .
...

At,1 . . . At,s Rt,1 . . . Rt,∆′PC

 , (3.29)

while the s∗ × d augmented block matrix B∗ is defined as

B∗ =

 R′

B

 =



R′∆′PC,1
. . . R′∆′PC,d

...
. . .

...

R′1,1 . . . R′1,d

B1,1 . . . B1,d

...
. . .

...

Bs,1 . . . Bs,d


. (3.30)

63

As for (3.29) and (3.30), if ∆′PC−PC/min{t, d} > 0, the last s∆′PC−PC block matrices

in Equation (3.29), with bottom-to-top right-to-left ordering in R, and in Equation

(3.30) with right-to-left top-to-bottom ordering in R′, are all-zero block matrices.

The construction of sequences a∗ and b∗ is analogous to the GPD in the non-secure

case. In particular, as seen in Figure 3.6, the time block sequence a∗ is

a∗ = {a1, r1, a2, r2, . . . , at, rt}, (3.31)

whereas the block sequence b∗ is defined as

b∗ = {b1,0,b2, . . . ,0,bd, 0̂, r
′
∆′PC

, . . . , r′1}. (3.32)

Here, 0 and 0̂ are a block sequence of t and t−1 all-zero block matrices with dimensions

S/s×D/d, respectively, while r′i is the ith row of the random matrix R′.

Theorem 6. For a given security level PC < P , the proposed SGPD code achieves

the recovery threshold

PR = t(s∗d−∆′PC) + ts+ 2PC − 1 (3.33)

and the communication load in Equation (3.16), where s∗ = s+ ∆′PC for any integer

values t, s, and d such that s ≥ t, m = ts, and n = sd.

Proof. We define the z-transform of sequences a∗ and b∗ respectively as

Fa∗(z) =
t∑
i=1

s∑
j=1

A∗i,jz
i−1+t(j−1)

+
t∑
i=1

s∗∑
j=s+1

A∗i,jz
i−1+t(j−1), (3.34)

Fb∗(z) =
s∗∑

k=1+∆′PC

d∑
l=1

B∗k,lz
(s∗−k)t+ts∗(l−1)

+

∆′PC∑
k=1

d∑
l=1

B∗k,lz
t(s∗d−∆′PC

)+d(∆′PC
−k)+l−1

. (3.35)

64

The (i, l) block Ci,l =
∑s

r=1 Ai,rBr,l, for all i ∈ [1, t] and l ∈ [1, d], of matrix C = AB

can be seen equal to the (i− 1 + t(s∗l− 1))th sample of the convolution c∗ = a∗ ∗b∗.

The rest of the proof follows in a manner akin to Theorem 5.

Remark 3. The computational complexity of SGPD codes for both workers and

master server can be summarized as follows. Each worker is assigned to compute

the multiplication Cp = ApBp, requiring TSD/(tsd) multiplications. For the

master server, encoding matrices Ap and Bp at each worker amounts to evaluating

z-transforms Fa∗(z) and Fb∗(z) at a random point zp. This requires multiplying zp

by (ts+PC) and (sd+PC) submatrices, each of dimension T/t×S/s and S/s×D/d,

respectively. This requires PC(TS/(ts)+SD/(sd))+TS+SD multiplications. Overall,

the master server needs to carry out PPC(TS/(ts) + SD/(sd)) + P (TS + SD)

multiplications. For decoding, the master server interpolates a polynomial degree

PR−1 for each element in C. Using a polynomial interpolation algorithm, the decoding

complexity amounts to (PR − 1)(log(PR − 1))2TD/(td) multiplications [64].

Example 2. We now provide some numerical results of the proposed SGPD scheme.

We set P = 3000 workers and parameters m = n = 36. The trade-off between

communication load CL and recovery threshold PR for both non-secure conventional

GPD codes (PC = 0) and proposed SGPD code with colluding workers PC = 11

and PC = 29 is illustrated in Figure 3.7. The figure quantifies the loss in terms of

achievable pairs (PR, CL) that is caused by the security constraint.

3.4.3 Trading Off Computation and Communication Latencies

In this subsection, we elaborate on the importance of enabling a flexible trade-off

between communication load and recovery threshold by analyzing the overall

completion time for the matrix multiplication task at hand. The completion delay is

the sum of latencies due to computation and communication.

65

0 500 1000 1500 2000 2500
0

20

40

60

80

100

Figure 3.7 Communication load CL versus recovery threshold PR for both non-secure

generalized PolyDot (GPD) and secure generalized PolyDot (SGPD) codes (m = n = 36

and P = 3000 workers).

To this end, following a well-established model [66], we assume that computation

at each worker p requires a random time T comp
p , measured in some specified unit

of time, that is modeled as a shifted exponential distribution with cumulative

distribution function (cdf)

F comp(T comp) = 1− exp

(
−µTSD

tsd
(T comp − T comp

min)

)
, (3.36)

for T ≥ T comp
min and F comp(T) = 0 otherwise. According to (3.36), the parameter

T comp
min represents the minimum processing time, and 1/µ represents the average

excess computing time, with respect to T comp
min , per multiplication (recall Remark

3). Assuming independent computing times, for a given recovery threshold PR, the

computation time T comp is hence given as the PRth-order statistic, i.e., the PRth

smallest variable, among the i.i.d. variables (T comp
1 , . . . , T comp

P). Its expectation is

66

106 108 1010 1012
10-4

10-2

100

102

Figure 3.8 Average completion time E[T] versus communication rate Rcomm for secure

generalized PolyDot (SGPD) codes with P = 3000, PC = 29, T = S = D = 1008, µ =

0.5 × 10−4, and T comp = 1, and m = n = 36: (i) t = d = 36, s = 1 (SGPD code), (ii)

t = s = d = 6, and (iii) t = d = 1, s = 36 (secure MatDot code).

given by [89]

E[T comp]=
tsd

µTSD

PR∑
i=1

1

P−PR+i
=

tsd

µTSD
(HP −HP−PR), (3.37)

where HP is the generalized harmonic number defined as HP =
∑P

i=1 1/i.

Suppose now that the workers communicate with the master server are a link

with an overall download rate Rcomm (symbols per unit time). The communication

latency is hence given as

T comm = PR
TD

tdRcomm
, (3.38)

67

since the workers need to return PRTD/(td) symbols to the master server. Overall,

the average completion time is given as

E[T] = T comp
min +

tsd

µTSD
(HP −HP−PR) + PR

TD

tdRcomm
. (3.39)

Example 3. Let consider P = 3000 workers and parameters m = n = 36. We

assume that PC = 29, T = S = D = 1008, µ = 0.5 × 10−4, and T comm
min = 1. We

compare the performance of the following SGPD codes: (i) t = d = 36 and s = 1

(secure Polynomial code); (ii) t = s = d = 6; (iii) t = d = 1 and s = 36 (secure

MatDot code). The values of CL and PR for these codes are shown in Figure 3.7. The

average completion time (3.39) is plotted versus the communication rate Rcomm in

Figure 3.8. The figure shows that the optimal choice of the latency-minimizing SGPD

code along the curve in Figure 3.7 depends on the system’s operating point: For small

communication rates, it is preferable to reduce the communication load CL, and hence

secure Polynomial codes are the best choice; while for large communication rate, it is

optimal to choose codes with an increasingly large value of the communication load

CL.

3.5 Secure and Private Generalized PolyDot Code

In this section, we study the setup shown in Figure 3.2. We propose a variant of

the private and secure GPD code introduced in [61] that we refer to as private and

secure GPD (PSGPD) code. Note that in [61] a private coded matrix multiplication

scheme is proposed only for Polynomial codes with s = 1 in (3.11). We derive the

corresponding achievable set of pairs (PR, CL) as defined in Section 3.2 under the

condition PC = 1, i.e., the workers do not collude.

68

Theorem 7. For a given security level PC = 1, there is an achievable PSGPD codes

with the recovery threshold

PR =


s(t+ 1)d, if s < t,

ts(d+ 1)− t+ 1, if s ≥ t,

(3.40)

and the communication load (3.16), for any integer values t, s, and d such that m = ts,

and n = sd.

Proof. We start by discussing the s < t case, as done in Section 3.4. The polynomial

encoding function for the input matrix A, is obtained is defined as in (3.23) for

PC = 1, that is

FA(z) =
t∑
i=1

s∑
j=1

Ai,jz
s(i−1)+(j−1) + Rzst, (3.41)

where we recall that R is an T/t × S/s random matrix with i.i.d. uniform random

elements in F. The encoded matrices are given as A
(κ)
p = FA(zκ,p) for values zκ,p

to be discussed below. For the desired index κ, the master server also computes the

query vector q
(κ)
p for all p ∈ [1, P]. This is obtained as

q(κ)
p = [z1, . . . , zκ−1, zκ,p, zκ+1, . . . , zL], (3.42)

where all points {zi}i 6=κ are selected uniformly i.i.d. from F but are identical for all

p. The points {zκ,p}Pp=1 are selected i.i.d. as distinct elements from F (recall that we

have |F| > P). We note that, as in the private information retrieval scheme [61], the

query vector (3.42) does not leak any information on index κ in the sense defined by

condition (3.9). The master server evaluates FA(z) in (3.41) at the distinct random

point zκ,p, to produce the encoded matrices A
(κ)
p = FA(zκ,p), and then sends A

(κ)
p

along with the query vector q
(κ)
p to worker p ∈ [1, P].

Each worker p, after receiving the query vectors q
(κ)
p , encodes the library B into

a matrix B
(κ)
p as follows. Define the polynomial encoding function for each matrix

69

B(r), r ∈ [1, L], in the library B as in (3.24) for PC = 0, i.e.,

FB(r)(z) =
s∑

k=1

d∑
l=1

B
(r)
k,l z

s−k+(l−1)s(t+1). (3.43)

Each worker p computes the encoded matrices as

B(κ)
p

∆
=
∑
r∈[1,L]

FB(r)([q(κ)
p]r)

=FB(κ)(zκ,p) +
∑

r∈[1,L]\κ

FB(r)(zr), (3.44)

where [q
(κ)
p]r denotes the rth element of the query vector q

(κ)
p .

After encoding the library, each worker p computes the matrix product C
(κ)
p =

A
(κ)
p B

(κ)
p and then sends C

(κ)
p back to the master server. We note that both

polynomials FA(z) and FB(κ)(z), assigned to the input matrix A and the desired

matrix B(κ), are evaluated at the same random points zκ,1, . . . , zκ,P for workers

1, . . . , P , respectively. Since each undesired matrix is evaluated at an identical

random point for all workers the second term in (3.44), i.e.,
∑

r∈[1,L]\κ FB(r)(zr), can

be considered as a constant term.

To reconstruct all blocks C
(κ)
i,l of the product matrix C(κ) = AB(κ), the master

server carries out polynomial interpolation, upon receiving a number of multiplication

results equal to at least deg(FA(z)GB(κ)(z))+1, which is s(t+1)d, for the case s < t.

Similarly, for the s ≥ t case, the polynomial encoding function for the input

matrix A as in (3.34) for PC = 1, that is,

FA(z) =
t∑
i=1

s∑
j=1

Ai,jz
i−1+t(j−1) + Rzts, (3.45)

and the encoding function for matrices B(r) is given as in (3.35) for PC = 0, that is

FB(r)(z) =
s∑

k=1

d∑
l=1

B
(r)
k,l z

(s−k)t+ts(l−1). (3.46)

70

The encoded matrices A
(κ)
p and B

(κ)
p are defined as above, and so are the query vectors

q
(κ)
p for all p ∈ [1, P].

The security of the data matrix A against non-colluding workers is guaranteed

by appending the random matrix R to the input matrix A in (3.41) in the same way

as described in Section 3.4. The details for both cases s < t and s ≥ t are given in

the proofs of Theorems 5 and 6, respectively, for the case of PC = 1. The privacy

condition of (3.9) follows by definition of the query vectors (3.42) for the desired index

κ ∈ [1, L], as proved in [61]. Finally, the recovery threshold and the communication

load follow in a manner analogous to Theorems 5 and 6.

Remark 4. The computational complexity of PSGPD codes for both workers and

master server is summarized as follows. In PSGPD codes, each worker has two duties,

namely encoding the library B and computing the multiplication C
(κ)
p = A

(κ)
p B

(κ)
p .

Encoding the library, i.e., computing the matrix B
(κ)
p in (3.44), requires to evaluate

FB(r)(z), r ∈ [1, L] at query vector q
(κ)
p . Hence, the former task requires LSD

multiplications, while the latter entails TSD/(tsd) multiplications. In total, each

worker carries out LSD + TSD/(tsd) multiplications. The master server encodes

matrix A
(κ)
p with (1 + ts)TS/(ts) multiplications. In total, for all P workers, the

master server needs P (1+ ts)TS/(ts) multiplications. The computation complexity of

the decoding complexity of the master server is the same as for SGPD codes, namely

O((PR − 1)(log(Pr − 1))2TD/(td))).

Example 4. Let us consider P = 3000 workers and parameters m = n = 36. We

assume that PC = 1 in order to compare the performance of proposed SGPD and

PSGPD codes. Note that both recovery threshold and communication load of the

PSGPD code do not depend on the number of public matrices |B| = L in the library.

The trade-off between communication load CL and recovery threshold PR is illustrated

in Figure 3.9 for both codes. The figure shows that, for a fixed value of PR, the

resulting achievable value of the communication load CL is smaller for PSGPD than

71

0 500 1000
0

5

10

15

20

25

30
PSGPD
SGPD

Figure 3.9 Communication load CL versus recovery threshold PR for secure generalized

PolyDot (SGPD) codes with PC = 1 and private and secure generalized PolyDot (PSGPD)

codes (m = n = 36 and P = 3000 workers).

for SGPD codes. This suggests that the privacy requirement on the index κ imposed

by PSGPD is less demanding than the security constraint on matrix B under which

SGPD codes operate.

Remark 5. As for SGPD codes, the overall average completion time of PSGPD codes

can be derived following the same steps as described in Section 3.4.3.

3.6 Discussion and Concluding Remarks

In this chapter, we have considered the problem of secure and private distributed

matrix multiplication on C = AB in terms of design of computational codes for two

settings. In the first setting, the two matrices A and B contain confidential data

and must be kept secure from the workers; and in the second setting , matrix A is

72

confidential, while matrix B is selected in a private manner from a library of public

matrices. For both problems, this work presents the best currently known trade-off

between communication load and recovery threshold. This is done by presenting two

code constructions that generalize the state-of-the-art GPD codes [39, 37, 35], in

combination with private information retrieval based codes [61].

73

CHAPTER 4

CONCLUDING REMARKS AND FUTURE DIRECTIONS

In this dissertation, the problem of using codes to speed up distributed computing

systems is studied.

In Chapter 2, we study distributed computing framework, when the input files

distributedly stored on the uplink of a cloud radio access network architecture. It

focuses in which decoding at the cloud takes place via network function virtualization

on commercial off-the-shelf servers. In order to mitigate the impact of straggling

decoders in this platform, a novel coding strategy is proposed, whereby the cloud re-

encodes the received frames via a linear code before distributing them to the decoding

processors. Transmission of a single frame is considered first, and upper bounds on

the resulting frame unavailability probability as a function of the decoding latency are

derived by assuming a binary symmetric channel for uplink communications. Then,

the analysis is extended to account for random frame arrival times. In this case, the

trade-off between an average decoding latency and the frame error rate is studied for

two different queuing policies, whereby the servers carry out per-frame decoding or

continuous decoding, respectively. Numerical examples demonstrate that the bounds

are useful tools for code design and that coding is instrumental in obtaining a desirable

compromise between decoding latency and reliability.

In Chapter 3, we consider large matrix multiplications. These operations are

often carried out on a distributed computing platform with a master server and

multiple workers in the cloud operating in parallel. For such distributed platforms,

in addition to exact recovery requirements, security and privacy constraints on

the data matrices are imposed, and the recovery threshold as a function of the

communication load is studied. First, it is assumed that both matrices contain private

74

information and that workers can collude to eavesdrop on the content of these data

matrices. For this problem, a novel class of secure codes is introduced, referred to

as secure generalized PolyDot codes, that generalize state-of-the-art non-secure codes

for matrix multiplication. Secure generalized PolyDot codes allow a flexible trade-off

between recovery threshold and communication load for a fixed maximum number of

colluding workers while providing perfect secrecy for the two data matrices. Then, a

connection between secure matrix multiplication and private information retrieval is

studied. It is assumed that one of the data matrices is taken from a public set known

to all the workers. In this setup, the identity of the matrix of interest should be kept

private from the workers. For this model, a variant of generalized PolyDot codes is

presented that can guarantee both secrecy of one matrix and privacy for the identity

of the other matrix for the case of no colluding servers.

In summary we show that

• Coded distributed computing systems allows reliable and timely channel
decoding in a C-RAN architecture based on distributed unreliable processors
rather than uncoded ones;

• Coding can provide a systematic way to add redundancy into distributed
algorithms so that their runtime is not affected by stragglers;

• We introduce the dependency graph of a linear code and its chromatic number
as novel relevant parameters of a linear code and;

• We introduce a novel class of secure codes, referred to as secure generalized
PolyDot codes. We also propose a secure and private class of codes called
private ans secure generalized PolyDot codes for matrix multiplication.

4.1 Future Research Directions

Among interesting open problems, we mention the design of optimal NFV codes

and the extension of the principle of NFV coding to other channels. Note that the

approach proposed here applies directly to other additive noise channels in which the

user code is an additive group. A key example is the additive Gaussian channel with

lattice codes at the user.

75

Also, we focus on private secure generalized PolyDot schemes for any number of

colluding workers that provides a smaller computational complexity at the workers.

Finally, the establishment of a converse bound and the consideration of nonperfect

communication channels between workers and master server are open problems.

76

REFERENCES

[1] European Telecommunications Standards Institute. Network function virtualisation
(NFV); report on models and features for end-to-end reliability. Technical
Report GS NFV-REL 003, Apr., 2016.

[2] European Telecommunications Standards Institute. Cloud RAN and MEC: A perfect
pairing. ISBN No. 979-10-92620-17-7, Feb., 2018.

[3] Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information from an
oracle. Journal of computer and system sciences, 39(1):21–50, Aug., 1989.

[4] Mehmet Fatih Aktas, Pei Peng, and Emina Soljanin. Effective straggler mitigation:
Which clones should attack and when? ACM SIGMETRICS Performance
Evaluation Review, 45(2):12–14, Sep., 2017.

[5] Ali Al-Shuwaili, Osvaldo Simeone, Joerg Kliewer, and Petar Popovski. Coded network
function virtualization: Fault tolerance via in-network coding. IEEE Wireless
Communications Letters, 5(6):644–647, Dec., 2016.

[6] Malihe Aliasgari, Jörg Kliewer, and Osvaldo Simeone. Coded computation against
processing delays for virtualized cloud-based channel decoding. IEEE
Transaction on Communication, 67(1):28–38, Jan., 2019.

[7] Malihe Aliasgari, Jörg Kliewer, and Osvaldo Simeone. Coded computation against
straggling decoders for network function virtualization. In Proceeding IEEE
International Symposium on Information Theory (ISIT), pages 711–715, Jun.,
2018.

[8] Malihe Aliasgari, Osvaldo Simeone, and Jörg Kliewer. Distributed and private coded
matrix computation with flexible communication load. In Proceeding IEEE
International Symposium Information Theory (ISIT), pages 1092–1096, Jul.,
2019.

[9] Islam Alyafawi, Eryk Schiller, Torsten Braun, Desislava Dimitrova, Andre Gomes,
and Navid Nikaein. Critical issues of centralized and cloudified LTE-FDD
radio access networks. In IEEE International Conference on Communications
(ICC), pages 5523–5528. IEEE, Jun., 2015.

[10] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings Federation of Information Processing
Societies, pages 483–485, Apr., 1967.

[11] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Effective
straggler mitigation: Attack of the clones. In Proceeding of the 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), volume 13, pages 185–198, Apr., 2013.

77

[12] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G Greenberg, Ion Stoica,
Yi Lu, Bikas Saha, and Edward Harris. Reining in the outliers in Map-Reduce
clusters using mantri. In Proceeding of the 10th USENIX Symposium on
Operating Systems Design and Implementation, volume 10, page 24, Oct.,
2010.

[13] Navid Azizan-Ruhi, Farshad Lahouti, Amir Salman Avestimehr, and Babak Hassibi.
Distributed solution of large-scale linear systems via accelerated projection-
based consensus. IEEE Transactions on Signal Processing, 67(14):3806–3817,
Dec., 2019.

[14] Karim Banawan and Sennur Ulukus. The capacity of private information retrieval
from coded databases. IEEE Transaction on Information Theory, 64(3):1945–
1956, Mar., 2018.

[15] Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Locally random
reductions: Improvements and applications. Journal of Cryptology, 10(1):17–
36, Sep., 1997.

[16] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conversion and
private information retrieval. In IEEE 27th Conference on Computational
Complexity, pages 258–268, Jun., 2012.

[17] Yitzhak Birk and Tomer Kol. Coding on demand by an informed source (iscod) for
efficient broadcast of different supplemental data to caching clients. IEEE
Transactions on Information Theory, 52(6):2825–2830, Jan., 2006.

[18] George Blakley. Safeguarding cryptographic keys. In International Workshop on
Managing Requirements Knowledge (MARK), pages 313–318. IEEE, Jun.,
1979.

[19] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business Media,
2013.

[20] Rowland Leonard Brooks. On colouring the nodes of a network. Mathematical
Proceedings of the Cambridge Philosophical Society, 37(02):194–197, Jul., 1941.

[21] Lynn Elliot Cannon. A cellular computer to implement the Kalman filter algorithm.
PhD thesis, Montana State University-Bozeman, College of Engineering, Aug.,
1969.

[22] Wei-Ting Chang and Ravi Tandon. On the capacity of secure distributed matrix
multiplication. arXiv preprint, arXiv:1806.00469, 2018.

[23] Wei-Ting Chang and Ravi Tandon. On the upload versus download cost for secure
and private matrix multiplication. arXiv preprint, arXiv:1906.10684, 2019.

78

[24] Manmohan Chaubey and Erik Saule. Replicated data placement for uncertain
scheduling. In IEEE International Parallel and Distributed Processing
Symposium Workshop, pages 464–472. IEEE, May., 2015.

[25] Jaeyoung Choi, David W Walker, and Jack J Dongarra. Pumma: Parallel
universal matrix multiplication algorithms on distributed memory concurrent
computers. Concurrency: Practice and Experience, 6(7):543–570, Oct., 1994.

[26] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
information retrieval. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 41–50, Oct., 1995.

[27] Anindya B Das, Aditya Ramamoorthy, and Namrata Vaswani. Random convolutional
coding for robust and straggler resilient distributed matrix computation. arXiv
preprint, arXiv:1907.08064, 2019.

[28] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, Feb., 2013.

[29] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communication of the ACM, 51(1):107–113, Feb., 2008.

[30] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and
Andre R LeBlanc. Design of ion-implanted mosfet’s with very small physical
dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, Dec., 1974.

[31] Alexandros G Dimakis, Kannan Ramchandran, Yunnan Wu, and Changho Suh. A
survey on network codes for distributed storage. Proceedings of the IEEE,
99(3):476–489, 2011.

[32] Rafael GL D’Oliveira, Salim El Rouayheb, and David Karpuk. GASP codes for secure
distributed matrix multiplication. arXiv preprint, arXiv:1812.09962, 2018.

[33] Jack Dongarra, Thomas Herault, and Yves Robert. Fault tolerance techniques for
high-performance computing. In Computer Communications and Networks,
pages 3–85. Springer, Jul., 2015.

[34] Uwe Dötsch, Mark Doll, Hans-Peter Mayer, Frank Schaich, Jonathan Segel, and
Philippe Sehier. Quantitative analysis of split base station processing and
determination of advantageous architectures for LTE. Bell Labs Technical
Journal, 18(1):105–128, Dec., 2013.

[35] Sanghamitra Dutta, Ziqian Bai, Haewon Jeong, Tze Meng Low, and Pulkit Grover.
A unified coded deep neural network training strategy based on generalized
polydot codes for matrix multiplication. arXiv preprint, arXiv:1811.10751,
2018.

79

[36] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. Short-dot: Computing
large linear transforms distributedly using coded short dot products. In
Advances In Neural Information Processing Systems, pages 2100–2108, Dec.,
2016.

[37] Sanghamitra Dutta, Mohammad Fahim, Farzin Haddadpour, Haewon Jeong, Viveck
Cadambe, and Pulkit Grover. On the optimal recovery threshold of coded
matrix multiplication. arXiv preprint, arXiv:1801.10292, 2018.

[38] Mohammad Fahim and Viveck R Cadambe. Numerically stable polynomially coded
computing. arXiv preprint, arXiv:1903.08326, 2019.

[39] Mohammad Fahim, Haewon Jeong, Farzin Haddadpour, Sanghamitra Dutta, Viveck
Cadambe, and Pulkit Grover. On the optimal recovery threshold of
coded matrix multiplication. In Proceeding 55th Allerton Conference on
Communication, Control, and Computing, IL, USA, pages 1264–1270, Oct.,
2017.

[40] Joan Feigenbaum. Encrypting problem instances. In Conference on the Theory and
Application of Cryptographic Techniques, pages 477–488. Springer, Aug., 1985.

[41] R Freij-Hollanti, O. W. Gnilke, C Hollanti, and D. A. Karpuk. Private information
retrieval from coded databases with colluding servers. SIAM Journal on
Applied Algebra and Geometry, 1(1):647–664, Nov., 2017.

[42] Kristen Gardner, Samuel Zbarsky, Sherwin Doroudi, Mor Harchol-Balter, and Esa
Hyytia. Reducing latency via redundant requests: Exact analysis. ACM
SIGMETRICS Performance Evaluation Review, 43(1):347–360, Jun., 2015.

[43] William Gasarch. A survey on private information retrieval. Bulletin of the EATCS,
82(113):72–107, Feb., 2004.

[44] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy
in private information retrieval schemes. Journal of Computer and System
Sciences, 60(3):592–629, Jun., 2000.

[45] Thomas Herault and Yves Robert. Fault-tolerance techniques for high-performance
computing. Springer, Jul., 2015.

[46] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in NFV: A compre-
hensive survey. IEEE Transactions on Network and Service Management,
13(3):518–532, Mar., 2016.

[47] Wassily Hoeffding. A class of statistics with asymptotically normal distribution. In
Breakthroughs in Statistics, pages 308–334. Springer, 1992.

[48] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. In
The Collected Works of Wassily Hoeffding, pages 409–426. Springer, 1994.

80

[49] Kuang-Hua Huang and Jacob A Abraham. Algorithm-based fault tolerance for matrix
operations. IEEE Transaction on Computers, 100(6):518–528, Jun., 1984.

[50] Svante Janson. Large deviations for sums of partly dependent random variables.
Random Structures & Algorithms, 24(3):234–248, Mar., 2004.

[51] Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of
non-convexity: Guaranteed training of neural networks using tensor methods.
arXiv preprint, arXiv:1506.08473, 2015.

[52] Zhuqing Jia and Syed A Jafar. Cross subspace alignment codes for coded distributed
batch matrix multiplication. arXiv preprint, arXiv:1909.13873, 2019.

[53] Zhuqing Jia and Syed A Jafar. On the capacity of secure distributed matrix
multiplication. arXiv preprint, arXiv:1908.06957, 2019.

[54] Gauri Joshi, Yanpei Liu, and Emina Soljanin. On the delay-storage trade-off in
content download from coded distributed storage systems. IEEE Journal on
Selected Areas in Communications, 32(5):989–997, Dec., 2014.

[55] Gauri Joshi, Emina Soljanin, and Gregory Wornell. Efficient redundancy techniques
for latency reduction in cloud systems. ACM Transactions on Modeling and
Performance Evaluation of Computing Systems (TOMPECS), 2(2):12, Sep.,
2017.

[56] Jaber Kakar, Seyedhamed Ebadifar, and Aydin Sezgin. On the capacity and straggler-
robustness of distributed secure matrix multiplication. IEEE Access, 7:45783–
45799, Apr., 2019.

[57] Jinkyu Kang, Osvaldo Simeone, and Joonhyuk Kang. On the trade-off between
computational load and reliability for network function virtualization. IEEE
Communications Letters, 21:1767–1770, Dec., 2017.

[58] Fatemeh Kazemi, Esmaeil Karimi, Anoosheh Heidarzadeh, and Alex Sprintson.
Private information retrieval with private coded side information: The
multi-server case. arXiv preprint, arXiv:1906.11278, 2019.

[59] Fatemeh Kazemi, Esmaeil Karimi, Anoosheh Heidarzadeh, and Alex Sprintson.
Single-server single-message online private information retrieval with side
information. In Proceeding IEEE International Symposium on Information
Theory (ISIT), pages 350–354, Jul., 2019.

[60] Shahrouz Khalili and Osvaldo Simeone. Uplink HARQ for cloud RAN via separation
of control and data planes. IEEE Transactions on Vehicular Technology,
66(5):4005–4016, Mar., 2017.

[61] Minchul Kim and Jungwoo Lee. Private secure coded computation. arXiv preprint,
arXiv:1902.00167, 2019.

81

[62] Ger Koole and Rhonda Righter. Resource allocation in grid computing. Journal of
Scheduling, 11(3):163–173, Aug., 2008.

[63] Jack Kosaian, KV Rashmi, and Shivaram Venkataraman. Learning a code: Machine
learning for approximate non-linear coded computation. arXiv preprint,
arXiv:1806.01259, 2018.

[64] Hsiang-Tsung Kung. Fast evaluation and interpolation. Carnegie Mellon University,
Tech. Rep., 2009.

[65] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. Speeding up distributed machine learning using codes.
Proceeding IEEE International Symposium on Information Theory, pages
1143–1147, Jul., 2016.

[66] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos, and
Kannan Ramchandran. Speeding up distributed machine learning using codes.
IEEE Transation on Information Theory, 64(3):1514–1529, Mar., 2018.

[67] Kangwook Lee, Ramtin Pedarsani, and Kannan Ramchandran. On scheduling
redundant requests with cancellation overheads. IEEE/ACM Transactions
on Networking, 25(2):1279–1290, Apr., 2017.

[68] Kangwook Lee, Changho Suh, and Kannan Ramchandran. High-dimensional
coded matrix multiplication. In Proceeding IEEE International Symposium
Information Theory (ISIT), pages 2418–2422, Jun., 2017.

[69] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling
distributed machine learning with the parameter server. In Proceeding of the
11th USENIX Conference on Operating Systems Design and Implementation,
OSDI, volume 14, pages 583–598, Oct., 2014.

[70] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. A unified coding
framework for distributed computing with straggling servers. In Globecom
Workshops (GC Wkshps), 2016 IEEE, pages 1–6. IEEE, Dec., 2016.

[71] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. Coded
MapReduce. In Communication, Control, and Computing (Allerton), 2015
53rd Annual Allerton Conference on, pages 964–971. IEEE, Oct., 2015.

[72] Songze Li, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. Coded
distributed computing: Straggling servers and multistage dataflows. In
Communication, Control, and Computing (Allerton), 2016 54th Annual
Allerton Conference on, pages 164–171. IEEE, Oct., 2016.

[73] Songze Li, Mohammad Ali Maddah-Ali, Qian Yu, and A Salman Avestimehr. A
fundamental tradeoff between computation and communication in distributed

82

computing. IEEE Transactions on Information Theory, 64(1):109–128, May.,
2018.

[74] Songze Li, Mohammad Ali Maddah-Ali, Qian Yu, and A Salman Avestimehr. A
fundamental tradeoff between computation and communication in distributed
computing. IEEE Transaction on Information Theory, 64(1):109–128, Sep.,
2017.

[75] Jiajia Liu, Zhongyuan Jiang, Nei Kato, Osamu Akashi, and Atsushi Takahara.
Reliability evaluation for NFV deployment of future mobile broadband
networks. IEEE Wireless Communications, 23(3):90–96, Apr., 2016.

[76] Ankur Mallick, Malhar Chaudhari, and Gauri Joshi. Rateless codes for near-perfect
load balancing in distributed matrix-vector multiplication. arXiv preprint,
arXiv:1804.10331, 2018.

[77] Rashid Mijumbi, Joan Serrat, Juan-Luis Gorricho, Niels Bouten, Filip De Turck, and
Raouf Boutaba. Network function virtualization: State-of-the-art and research
challenges. IEEE Communications Surveys & Tutorials, 18(1):236–262, Dec.,
2016.

[78] Navid Nikaein. Processing radio access network functions in the cloud: Critical issues
and modeling. In Proceedings of the 6th International Workshop on Mobile
Cloud Computing and Services,, pages 36–43. ACM, Apr., 2015.

[79] Navid Nikaein, Raymond Knopp, Florian Kaltenberger, Lionel Gauthier, Christian
Bonnet, Dominique Nussbaum, and Riadh Ghaddab. OpenAirInterface: an
open LTE network in a PC. In Proceedings of the 20th annual international
conference on Mobile computing and networking, pages 305–308. ACM, Sep.,
2014.

[80] Hanzaleh Akbari Nodehi and Mohammad Ali Maddah-Ali. Secure coded multi-party
computation for massive matrix operations. arXiv preprint, arXiv:1908.04255,
2019.

[81] Hanzaleh Akbari Nodehi and Mohammad Ali Maddah-Ali. Limited-sharing multi-
party computation for massive matrix operations. In Proceeding IEEE
International Symposium on Information Theory (ISIT), pages 1231–1235,
Jun., 2018.

[82] Linus Nyman and Mikael Laakso. Notes on the history of fork and join. IEEE Annals
of the History of Computing, 38(3):84–87, 2016.

[83] Yury Polyanskiy, H Vincent Poor, and Sergio Verdú. Channel coding rate in the finite
blocklength regime. IEEE Transactions on Information Theory, 56(5):2307–
2359, Dec., 2010.

83

[84] Amirhossein Reisizadehmobarakeh, Saurav Prakash, Ramtin Pedarsani, and Salman
Avestimehr. Coded computation over heterogeneous clusters. [Online]
www.arxiv.org, arXiv:1701.05973 [cs.IT], 2017.

[85] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. Springer, Oct., 2010.

[86] David P Rodgers. Improvements in multiprocessor system design. ACM SIGARCH
Computer Architecture News, 13(3):225–231, Jun., 1985.

[87] Veronica Quintuna Rodriguez and Fabrice Guillemin. Towards the deployment of
a fully centralized cloud-RAN architecture. In Wireless Communications
and Mobile Computing Conference (IWCMC), 2017 13th International, pages
1055–1060, Valencia, Spain, Jun., 2017.

[88] Veronica Quintuna Rodriguez and Fabrice Guillemin. Cloud-ran modeling based
on parallel processing. IEEE Journal on Selected Areas in Communications,
36(3):457–468, Nov., 2018.

[89] Sheldon M Ross. Introduction to Probability Models. Academic Press, 2014.

[90] Peter Rost and Athul Prasad. Opportunistic hybrid arqenabler of centralized-RAN
over nonideal backhaul. IEEE Wireless Communications Letters, 3(5):481–
484, Dec., 2014.

[91] Abdón Sánchez-Arroyo. Determining the total colouring number is NP-hard. Discrete
Mathematics, 78(3):315–319, 1989.

[92] Albin Severinson, Alexandre Graell i Amat, and Eirik Rosnes. Block-diagonal coding
for distributed computing with straggling servers. In Information Theory
Workshop (ITW), pages 464–468, Nov., 2017.

[93] Nihar B Shah, Kangwook Lee, and Kannan Ramchandran. When do redundant
requests reduce latency? IEEE Transactions on Communications, 64(2):715–
722, Sep., 2015.

[94] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
Nov., 1979.

[95] Claude E Shannon. A mathematical theory of communication. Bell system technical
journal, 27(3):379–423, Jul., 1948.

[96] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
hadoop distributed file system. In IEEE 26th symposium on mass storage
systems and technologies (MSST), pages 1–10, May., 2010.

[97] Edgar Solomonik and James Demmel. Communication-optimal parallel 2.5 d matrix
multiplication and lu factorization algorithms. In European Conference on
Parallel Processing, pages 90–109. Springer, Aug., 2011.

84

[98] Adarsh M Subramaniam, Anoosheh Heidarzadeh, and Krishna R Narayanan.
Random khatri-rao-product codes for numerically-stable distributed matrix
multiplication. arXiv preprint, arXiv:1907.05965, 2019.

[99] Hua Sun and Syed Ali Jafar. The capacity of private information retrieval. IEEE
Transaction on Information Theory, 63(7):4075–4088, Jul., 2017.

[100] Behrooz Tahmasebi and Mohammad Ali Maddah-Ali. Private sequential function
computation. arXiv preprint, arXiv:1908.01204, 2019.

[101] Rashish Tandon, Qi Lei, Alexandros Dimakis, and Nikos Karampatziakis. Gradient
coding: Avoiding stragglers in synchronous gradient descent. [Online]
www.arxiv.org arXiv:1612.03301 [cs.IT], 2016.

[102] Rashish Tandon, Qi Lei, Alexandros G Dimakis, and Nikos Karampatziakis.
Gradient coding: Avoiding stragglers in distributed learning. In International
Conference on Machine Learning, pages 3368–3376, Aug., 2017.

[103] Henk C Tijms. A First Course in Stochastic Models. John Wiley and Sons, Jul.,
2003.

[104] Robert A Van De Geijn and Jerrell Watts. Summa: Scalable universal matrix multipli-
cation algorithm. Concurrency: Practice and Experience, 9(4):255–274, Oct.,
1997.

[105] Richard Walker. Implementing discrete mathematics: combinatorics and graph theory
with mathematica. The Mathematical Gazette, 76(476):286–288, Jul., 1992.

[106] Da Wang, Gauri Joshi, and Gregory Wornell. Using straggler replication to reduce
latency in large-scale parallel computing. ACM SIGMETRICS Performance
Evaluation Review, 43(3):7–11, Jun., 2015.

[107] Heecheol Yang and Jungwoo Lee. Secure distributed computing with straggling
servers using polynomial codes. IEEE Transaction on Information Forensics
and Security, 14(1):141–150, Jan., 2019.

[108] Yaoqing Yang, Malhar Chaudhari, Pulkit Grover, and Soummya Kar. Coded iterative
computing using substitute decoding. arXiv preprint, arXiv:1805.06046, 2018.

[109] Yaoqing Yang, Pulkit Grover, and Soummya Kar. Computing linear transformations
with unreliable components. IEEE Transactions on Information Theory,
63(6):3729–3756, Mar., 2017.

[110] Sergey Yekhanin. Private information retrieval. Commun. ACM, 53(4):68–73, Apr.,
2010.

[111] Qian Yu, Mohammad Maddah-Ali, and Salman Avestimehr. Polynomial codes: An
optimal design for high-dimensional coded matrix multiplication. In Advances
in Neural Information Processing Systems, pages 4403–4413, Dec., 2017.

85

[112] Qian Yu, Mohammad Ali Maddah-Ali, and A Salman Avestimehr. Straggler
mitigation in distributed matrix multiplication: Fundamental limits and
optimal coding. arXiv preprint, arXiv:1801.07487, 2018.

[113] Qian Yu, Netanel Raviv, Jinhyun So, and A Salman Avestimehr. Lagrange coded
computing: Optimal design for resiliency, security and privacy. arXiv preprint,
arXiv:1806.00939, 2018.

[114] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. Proceeding of the 2nd
USENIX Conference on Hot topics in Cloud Computing, pages 10–10, Jun.,
2010.

86

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Coded Computation Against Processing Delays in Network Function Virtualization
	Chapter 3: Private and Secure Matrix Multiplication with Flexible Communication Load
	Chapter 4: Concluding Remarks and Future Directions
	References

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

