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ABSTRACT 

HUMAN ACTIVITY RECOGNITION USING WEARABLE  

SENSORS: A DEEP LEARNING APPROACH 

 

by 

Jialun Xue 

In the past decades, Human Activity Recognition (HAR) grabbed considerable research 

attentions from a wide range of pattern recognition and human–computer interaction 

researchers due to its prominent applications such as smart home health care. The wealth 

of information requires efficient classification and analysis methods. Deep learning 

represents a promising technique for large-scale data analytics. There are various ways of 

using different sensors for human activity recognition in a smartly controlled 

environment. Among them, physical human activity recognition through wearable 

sensors provides valuable information about an individual’s degree of functional ability 

and lifestyle. There is abundant research that works upon real time processing and causes 

more power consumption of mobile devices. Mobile phones are resource-limited devices. 

It is a thought-provoking task to implement and evaluate different recognition systems on 

mobile devices.  

 This work proposes a Deep Belief Network (DBN) model for successful human 

activity recognition. Various experiments are performed on a real-world wearable sensor 

dataset to verify the effectiveness of the deep learning algorithm. The results show that 

the proposed DBN performs competitively in comparison with other algorithms and 

achieves satisfactory activity recognition performance. Some open problems and ideas 

are also presented and should be investigated as future research. 
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CHAPTER 1 

 

INTRODUCTION 
 

 

 
 

1.1 Human Activity Recognition 

 

Human Activity Recognition (HAR) aims to identify the actions carried out given a 

set of observations of a person and his/her surrounding environment. Recognition can 

be accomplished by exploiting the information retrieved from various sources such as 

environmental or body-worn sensors [1]. Some approaches [2], [3] have adapted 

dedicated motion sensors to fit different human body parts such as waist, wrist, chest 

and thighs. They have achieved great classification performance. However, these 

sensors usually make a common user not that comfortable and do not provide a long-

term solution for activity monitoring, due to such issues, as sensor repositioning after 

dressing. 

        HAR has become an attractive research field due to its importance as well as many 

challenges brought to the research community. Researchers use these HAR systems as 

a medium to get information about people’s behaviors. The information is commonly 

collected from the signals of sensors such as ambient and wearable sensors. The data 

from the signals are then processed through machine learning algorithms and recognize 

the events. Hence, such HAR systems can be applied in plenty of useful and practical 

applications in smart environments such as smart home health-care systems. For 

example, a smart HAR system can continuously observe patients for health diagnosis 

and medication. Also it can be applied for automated surveillance of public places to 

predict crimes that may occur in the near future. 
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1.2 Wearable Sensors 

 

Since the appearance of the first commercial hand-held mobile phones in 1979, it has 

been observed an accelerated growth in the mobile phone market. Mobile devices have 

almost become easily accessible to virtually everybody now. Smartphones, which are a 

new generation of mobile phones, are now offering many other features such as 

multitasking and the deployment of a variety of sensors, in addition to the basic 

telephony. Current efforts attempt to incorporate all these features while maintaining 

similar battery lifespans and device dimensions. The integration of these mobile devices 

in our daily life is rapidly growing. It is envisioned that such devices can seamlessly 

keep track of our activities, learn from them, and subsequently help us to make better 

decisions regarding our future actions.  

        Smartphones have been bringing up new research opportunities for human-

centered applications where the user is a rich source of context information and the 

phone is the firsthand sensing tool. Latest devices come with embedded built-in 

sensors such as microphones, dual cameras, accelerometers, gyroscopes, etc. The use 

of smartphones with inertial sensors is an alternative solution for HAR. These mass-

marketed devices provide a flexible, affordable and self-contained solution to 

automatically and unobtrusively monitor Activities of Daily Living (ADL) while also 

providing telephony services. Consequently, in the last few years, some works aiming 

to understand human behavior using smartphones have been proposed. For instance, 

one of the first approaches has been exploited an Android smartphone for HAR 

employing its embedded triaxial accelerometers. Improvements are still expected in 

topics such as in multi-sensor fusion for better HAR classification, standardizing 
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performance evaluation metrics, and providing public data for evaluation. 

        Currently, smartphones, wearable devices, and internet-of-things (IoT) are 

becoming more affordable and ubiquitous. Many commercial products, such as the 

Apple Watch, Fitbit, and Microsoft Band, and smartphone apps including Runkeeper 

and Strava, are already available for continuous collection of physiological data. These 

products typically contain sensors that enable them to sense the environment, have 

modest computing resources for data processing and transfer, and can be placed in a 

pocket or purse, worn on the body, or installed at home [4]. Accurate and meaningful 

interpretation of the recorded physiological data from these devices can be applied 

potentially to HAR. However, most current commercial products only provide 

relatively simple metrics, such as step count or cadence. The emergence of deep 

learning methodologies that extract different discriminating features from the data, and 

increased processing capabilities in wearable technologies. The ability of simultaneous 

activity classification and the decreasing size of computing platforms give rise to the 

possibility of performing detailed data analysis in situ and in real time. Today’s 

handheld PCs are often more powerful than desktop computers of the 1990s. Once a 

rare commodity, computers are now embedded in everything - toys, cars, cell phones, 

and even bread makers. 

        In the case of wearable sensors in activity recognition, a smartphone is an 

alternative to them due to the support of the diversity of sensors in it. Handling sensors 

such as accelerometers and gyroscopes along with the device with wireless 

communication capabilities made smartphones a very useful tool for activity 

monitoring in smart homes. Besides, smartphones are very ubiquitous and require 
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almost no static infrastructure to operate it. This advantage makes it more practically 

applicable than other ambient multi-modal sensors in smart homes. As recent smart 

phones consist of inertial sensors (e.g., gyroscopes and accelerometers), they can be 

appropriate sensing resources to obtain human motion information for HAR. 

        HAR has been actively explored based on a distinguished kind of ambient and 

wearable sensors. Some instances of such sensors include motion, proximity, 

microphone, and video sensors. Most of the ambient sensor-based latest HAR 

researchers have mainly focused on video cameras as cameras make it easy to retrieve 

the images of surrounding environment. Video sensors are included with some other 

prominent sensors in some work related to novel ubiquitous applications. Though 

video sensors have been very popular for basic activity recognition. They face very 

many difficulties for ordinary people to accept due to a privacy issue . On the contrary, 

wearable sensors such as inertial sensors can overcome this kind of privacy issues and 

hence, deserve more focus for activity recognition in smart homes. 

        In the past years, many HAR systems used accelerometers to recognize a big 

range of daily activities such as standing, walking, sitting, running, and lying. For 

instance, some researchers have already explored the accelerometer data to find out 

the repeating activities such as grinding, filling, drilling, and sanding [11] [14]. The 

others, have performed elderly peoples’ fall detection and prevention in smart 

environments [22]. Majority of the afore mentioned systems adopted many 

accelerometers fixed in different places of a human body. However, this approach 

apparently not applicable to daily life to observe long-term activities due to attachment 

of many sensors in the human body and cable connections. Some studies [12] [15] tried 
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to explore the data of single accelerometers at sternum or waist. These studies have 

reported substantial recognition results of basic daily activities such as running, 

walking, and lying. However, they could not show good accuracy for some complex 

activity situations such as transitional activities, e.g., sit to stand, lie to stand, and stand 

to sit. 

 

1.3 Deep Learning 

 

Deep learning is a paradigm of machine learning that uses multiple processing layers 

to infer and extract information from a large scale of data. Many studies [5]-[7] have 

shown that the use of deep learning can achieve better performances in a range of 

applications than traditional approaches. Traditional approaches use a set of selected 

features, also known as “shallow” features [8], to represent the data for a specific 

classification task.  

        HAR can be accomplished, for example, by exploiting the information retrieved 

from inertial sensors such as accelerometers. In some smartphones these sensors are 

embedded by default and we benefit from them to classify a set of physical activities 

(standing, walking, laying, walking, walking upstairs and walking downstairs) by 

processing inertial body signals through a supervised Machine Learning (ML) 

algorithm for hardware with limited resources.  

  1.3.1 Deep Belief Network 
  

Popular deep learning approaches include deep belief networks (DBN), stacked 

autoencoders (SAE) and convolutional neural nets (CNN). Among them, deep belief 

network (DBN) has been used in many complex pattern recognition problems, 
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including speech recognition, image and video processing and classification [23]-[25]. 

However, it has been addressed in many articles that the DBN shows its superior 

performance if the configuration of DBN is done appropriately. These studies rarely 

include details on how it performs best and finds the optimal configuration of 

parameters. They only shows single score, and it remains unclear how this peak 

performance is achieved. 

        Figure 1.1 shows the workflow of the proposed approach for selecting the optimal 

structure of DBN for HAR. The proposed system consists of three major parts: sensor 

data collection, feature extraction with dimensionality reduction, and activity 

recognition. The sensor data collection system collects various human activities related 

body sensor data from various sources. In this thesis, we consider the accelerometers 

and gyroscopes sensor data. The second part of the system extracts robust features and 

reduces dimensionality of features after removing noise and performing statistical 

analysis on sensor signals. Finally, the last part of the system trains DBN with these 

robot features and tries to find the optimal DBN structure for the highest accuracy of 

HAR.  

  1.3.2 Other Approaches 
  

Recently, smartphones have attracted many activity recognition researchers as they 

have fast processing capability, and they are easily deployable. For instance, some 

researchers [8] use wirelessly connected smartphones to collect a user’s data from a 

chest unit composed of the accelerometer and vital sign sensors. The data is later 
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Figure 1.1 A flowchart of the proposed human activity recognition system. 
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processed and analyzed by using different machine learning algorithms. Some of them 

[14] develop an HAR system to recognize five different kinds of transportation 

activities where data from smartphones inertial sensors are used with a mixture-of-

expert model for classification. Some researchers [11] proposed an offline HAR 

system where a smartphone with built-in triaxial accelerometer sensor is used. A phone 

is kept in the pocket during experiments. Some scientists [18] also used a smartphone 

mounted in the waist to collect inertial sensors’ data for activity recognition. They used 

Support Vector Machine (SVM) for activity modeling. In some papers [6] [10], a 

smartphone is used to recognize six different activities in real-time. Moreover, the 

researchers have proposed a real-time motion recognition system with the help of a 

smartphone with accelerometer sensors [19]. Some use a smartphone with an 

embedded accelerometer to recognize four different activities in real time [20]. 

        The development of HAR applications using smartphones has several advantages 

such as easy device portability without the need for additional fixed equipment, and 

comfort to a user due to their unobtrusive sensing. This contrasts with other established 

HAR approaches which use specific-purpose hardware devices such as those in body 

sensor networks [26]. Although the use of numerous sensors could improve the 

performance of a recognition algorithm, it is unrealistic to expect that the general 

public will use them in their daily activities because of the difficulty and the time 

required to wear them. One drawback of a smartphone-based approach is that energy 

and services on the mobile phone are shared with other applications and this become 

critical in devices with limited resources.  

        ML methods that are previously employed for pattern recognition include Naive 
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Bayes, and Support Vector Machines (SVMs) [20] [27]. In particular, we make use of 

SVMs for classification as many other studies [28] [29]. Although it is not fully clear 

which method performs better for HAR, SVMs have confirmed their successful 

application in several areas including heterogeneous types of recognition such as 

intrusion detection, fault detection, handwritten character recognition and speech 

recognition [30]. In ML, fixed-point arithmetic models [8] were previously studied  

initially because devices with floating-point units were unavailable or expensive. The 

possibility of retaking these approaches for HAR systems that require either low cost 

devices or to allow load reduction in multitasking mobile devices has nowadays 

become particularly appealing.  
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CHAPTER 2 

 

RELATED WORK 

 

 

 

HAR has been actively explored based on a distinguished kind of ambient and 

wearable sensors. Some instances of such sensors include motion, proximity, 

microphone, and video sensors. Most of the ambient sensor-based latest HAR 

researchers have mainly focused on video cameras as cameras make it easy to retrieve 

the images of surrounding environment. Video sensors are combined with some other 

prominent sensors in many applications. They have been very popular for basic activity 

recognition. However, they pose serious privacy issues. On the other hand, wearable 

sensors such as inertial sensors do not face this kind of privacy issues. They are thus 

useful in smart homes. 

        Many HAR systems apply accelerometers to recognize such daily activities as 

standing, walking, sitting, running, and lying. This chapter reviews their related 

problems and structure. 

 

2.1 Problem Statement 

 

In the last few decades, many HAR systems were developed. Researchers have focused 

on several activities in distinguished application domains. For instance, the activities 

can include walking, running, cooking, exercising, etc. In terms of their duration and 

complexity, these activities can be categorized into three key groups: short, simple, 

and complex activities. The first group consists of activities with very short duration 

such as transition from sit to stand. The second group refers to basic activities like 

walking and reading. The last group basically include the combinations of progressions 
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of basic activities with the interaction with other objects and individuals. Such kind of 

activities can be partying or official meeting together.  

        Some studies have introduced the concept of a Hardware-Friendly SVM (HF-

SVM) [9]. It exploits fixed point arithmetic in the feed-forward phase of an SVM 

classifier, so as to allow the use of this algorithm in hardware-limited devices. The 

SVM algorithm is originally proposed only for binary classification problems but it 

has been adapted by using different schemes for multiclass problems such as in [10]. 

In particular, the One-Vs-All (OVA) method is as its accuracy is comparable to other 

classification methods as demonstrated [7], and because its learned model uses less 

memory when compared to an One-Vs-One (OVO) method. This is advantageous 

when used in resource-limited hardware devices. Utilizing wearable sensors, numerous 

works [4]-[6] has been done in the literature with various classification algorithms for 

recognizing human activity. Most of the algorithms include SVM-based classification, 

neural network-based one and pattern mating based one. For instance, a neural system 

classifier for line activity recognition is proposed. However, actualizing such a 

complicated method in a wearable sensor system is restricted by the calculability of 

the implanted framework. Other more methodical ways to deal with classifying 

activities based on decision tree classifier are proposed in [19]. However, it has low 

recognition accuracy rate at 70% [20]. Therefore, to achieve high accuracy with low 

computation cost is a key challenge of human activity recognition. 
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2.2 General Structure of HAR Systems 

 

To deal with this challenge, recently, deep learning (DL) based human activity 

recognition from wearable sensors is becoming popular. The previous approaches [13] 

[15] in HAR mostly rely on manually designed feature extraction procedures, and 

various supervised classification methods. The manual feature extracting procedures 

require prior specific knowledge about the signals for finding important characteristics 

among different activities and thus lacks the robust physiological basis. In contrast, a 

deep learning approach can naturally extract representative or optimal features with no 

earlier learning from the sensor signals and afterward use these features to perform 

HAR. 

        Figure 2.1 [10] identifies a generic data acquisition architecture for HAR systems. 

First, wearable sensors are attached to a person’s body to measure attributes of interest 

such as motion location, temperature, among others. These sensors should 

communicate with an Integration Device (ID), which can be a cellphone, PDA, laptop, 

or customized embedded system. The main purpose of the ID is to preprocess the data 

received from the sensors and, in some cases, send them to an application server for 

real time monitoring, visualization, and/or analysis. The communication protocol 

could be UDP/IP or TCP/IP, according to the desired level of reliability. 

 

 Figure 2.1 Generic data acquisition architecture for HAR. 
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2.3 Evaluation of HAR Systems 

 

In this thesis, we have categorized HAR systems that rely on wearable sensors in two 

levels. The first one has to do with the learning approach, which can be either 

supervised or semi-supervised. In the second level, according to the response time, 

supervised approaches can work either online or offline. The former provides 

immediate feedback on the performed activities. The latter either needs more time to 

recognize activities due to high computational demands, or is intended for applications 

that do not require real-time feedback. This taxonomy has been adopted as the systems 

within each class have very different purposes and their associated challenges should 

be evaluated separately. For instance, an effective offline system may not be able to 

run online due to processing capacity constraints. Finally, although different sets of 

recognized activities clearly result in different types of HAR systems, incorporating it 

in the taxonomy would lead to an excessive granularity as most systems define a 

particular set of activities. 

        The human activity classifier can be trained online or offline as well as the 

classification process itself can be done online or offline. Offline classification (non-

real-time) is a sufficient solution when a user does not find an urgent need to receive 

immediate feedback. In the other side, online classification (real-time) assists users in 

receiving real-time feedback. 

   2.3.1 Online HAR Systems 
  

Applications of online HAR systems can be easily visualized. In healthcare, 

continuously monitoring patients with physical or mental pathologies becomes crucial 

for their protection, safety, and recovery. Likewise, interactive games or simulators 
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may enhance a user’s experience by considering activities and gestures. Table 2.1 

summarizes the online state-of-the-art activity recognition approaches. 

   Table 2.1 Summary of Online HAR Systems 

 

Research 

Number 

of 

sensors 

Technique 

Number 

of users 

Accuracy 

(%) 

Liu et al., 

2015 

1 SVM 50 88.1 

Sazonov 

et al., 

2011 

1 SVM 9 80.3 

Reiss & 

Stricker, 

2013 

3 

Boosted 

Decision 

Tree 

8 90.7 

Martin 

et 

al,2017  

2 

K-Nearest 

Neighbors  

5 89.4 

 

   2.3.2  Offline HAR Systems 
  

Table 2.2 summarizes state-of-the-art works in offline HAR systems based on 

wearable sensors. There are cases in which a user does not need to receive immediate 

feedback. For example, applications that analyze exercise and diet habits in patients  
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Table 2.2 Summary of Offline HAR Systems 

 

Research 

Number 

of 

sensors 

Technique 

Number 

of users 

Accuracy 

(%) 

Feng, 

Meiling, and 

Nan ,2011 

1 

Decision 

Tree  

20 94.1 

Czabke, 

Marsch, and 

Lueth, 2017  

1 SVM 10 83.2 

Bayati et al., 

2016  

-- 

Artificial 

Neural 

Network 

30 86.9 

Andreu et 

al.,  2011 

1 

K-Nearest 

Neighbors 

-- 87.4 

Yuting et al., 

2017 

3 

Naïve 

Bayes  

10 88.6 

 

with heart disease, diabetes, and obesity, as well as applications that estimate the 

number of calories burned after an exercise routine [22], can work on an offline basis. 

Another example of an offline HAR system is an application to discover commercial 

patterns for advertisement. For instance, if an individual performs exercise activities 

very frequently, they could be advertised on sport wear items. In all these cases, 
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gathered data can be analyzed on a daily or even weekly basis to draw conclusions on 

the person’s behavior.  
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CHAPTER 3 

 

DESIGN ISSUES 
 

 

 
 

3.1 Selection of Attributes and Sensors 

 

Environmental attributes: These attributes, include temperature, humidity, and audio 

level, etc., are intended to provide context information describing a person’s 

surroundings. If audio level and light intensity are fairly low, for instance, the subject 

may be sleeping. Various existing systems have utilized microphones, light sensors, 

humidity sensors, and thermometers, among others [10], [15]. These sensors alone, 

though, might not provide sufficient information as individuals can perform each 

activity under diverse contextual conditions in terms of weather, audio loudness, or 

illumination. Therefore, environmental sensors are generally accompanied by 

accelerometers and other sensors associated with a human subject [13].  

        Acceleration: Triaxial accelerometers are perhaps the most broadly used sensors 

to recognize ambulation activities (e.g., walking, running, and lying) [14]–[16]. 

Accelerometers are inexpensive, require relatively low power and are embedded in 

most of today’s cellular phones. Several papers have reported high recognition 

accuracy 92.25% [15], 90% [17], 91% [18], and up to 93% [19], under different 

evaluation methodologies. However, other daily activities such as eating, working at a 

computer, or brushing teeth, are confusing from the acceleration point of view. For 

instance, eating might be confused with brushing teeth due to arm motion. The impact 

of the sensor specifications on HAR performance has also been analyzed. In fact, 

Maurer et al. [11] have studied the behavior of the recognition accuracy as a function 
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of the accelerometer sampling rate (which lies between 10 Hz and 100 Hz). 

Interestingly, they have found that no significant gain in accuracy is achieved above 

20 Hz for ambulation activities. The placement of an accelerometer is another 

important point of discussion: Marta et al. [19] have found that the best place to wear 

the accelerometer is inside the trousers pocket. Instead, other studies suggest that the 

accelerometer should be placed in a bag carried by the user:  on the belt, or on the 

dominant wrist. In the end, the optimal position to place an accelerometer depends on 

the application and type of activities to be recognized. For instance, an accelerometer 

on the wrist may not be appropriate to recognize ambulation activities, since accidental 

arm movements could generate incorrect predictions. On the other hand, in order to 

recognize an activity such as working at the computer, an accelerometer on the chest 

would not provide sufficient information.  

        Location: Global Positioning System (GPS) enables all sort of location based 

services. Current cellular phones are equipped with GPS devices, making this sensor 

very convenient for context-aware applications, including the recognition of a user’s 

transportation mode [17]. The place at which a user is can be helpful to infer their 

activity by using ontological reasoning [12]. As an example, if a person is at a park, 

they are probably not brushing their teeth but might be doing exercise, e.g., running or 

walking. Such location information about places can be easily obtained by means of 

the Google Places Web Service [11], among other tools. However, GPS devices do not 

work well indoors and they are relatively expensive in terms of energy consumption, 

especially in real-time tracking applications. For those reasons, this sensor is usually 

employed along with accelerometers. Finally, location data has privacy issues because 
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users are not always willing to be tracked. Encryption, obfuscation, and anonymization 

are some of the techniques available to ensure privacy in location data.   

        Physiological signals: Vital sign data (e.g., heart rate, respiration rate, skin 

temperature, skin conductivity, and ECG) have also been considered in a few studies 

[3]. Tapia et al. [20] have proposed an HAR system that combines data from five 

triaxial accelerometers and a heart rate monitor. They have concluded that the heart 

rate is not useful in a HAR context because after performing physically demanding 

activities (e.g., running) the heart rate remains at a high level for a while, even if the 

individual is lying or sitting. In a previous study, by means of structural feature 

extraction, vital signs can be exploited to improve recognition accuracy. Now, in order 

to measure physiological signals, additional sensors would be required, thereby 

increasing the system cost and introducing obtrusiveness [19]. Also, these sensors 

generally use wireless communication which entails higher energy expenditures.  

 

3.2 Recognition Performance 

 

The performance of a HAR system depends on several aspects: 1) a concerned activity 

set, 2) the quality of training data, 3) a feature extraction method, and 4) a machine 

learning algorithm. Each set of activities brings a totally different pattern recognition 

problem. For example, discriminating among walking, running, and standing still [7], 

turns out to be much easier than the cases incorporating more complex activities such 

as watching TV, eating, ascending, and descending [17]. Secondly, there should be a 

sufficient amount of training data, which should also be similar to the expected testing 

data. Finally, a comparative evaluation of several learning methods is desirable as each 

dataset exhibits distinct characteristics that can be either beneficial or detrimental for  
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a particular method. Such interrelationship among datasets and learning methods can 

be very hard to analyze theoretically, which accentuates the need of an experimental 

study. In order to quantitatively understand the recognition performance, some 

standard metrics are used, e.g., accuracy, recall, precision, F-measure, Kappa statistic, 

and ROC curves. 

3.3 Obtrusiveness 

 

To be successful in practice, HAR systems should not require a user to wear many 

sensors nor to interact too often with the systems. The more sources of data available, 

the richer the information that can be extracted from the measured attributes. There are 

systems which require the users to wear four or more accelerometers [3], [7], [15], or 

carry a heavy rucksack with recording devices [20]. These configurations may be 

uncomfortable, invasive, expensive, and hence not suitable for HAR. Other systems 

are able to work with rather unobtrusive hardware. For instance, a sensing platform 

that can be worn is presented in [5], which only requires a strap that is placed on the 

chest and a cellular phone. Finally, the systems introduced in [22], recognize activities 

with a cellular phone only. Minimizing the number of sensors required to recognize 

activities is beneficial not only for human subjects’ comfort, but also to reduce 

complexity and energy consumption a smaller amount of data would be processed than 

the cases with many sensors. Maurer et al. [11] have performed an interesting study 

with accelerometers and light sensors. They have explored different subsets of features 

and sensors, as well as different sensor placements. Their conclusion is that all sensors 

available should be used together in order to achieve the maximum accuracy level. 

Ravi et al. [14] have carried out another study in the same research issue by placing 
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accelerometers on a person’s hip, wrist, arm, ankle, thigh, and combinations of them. 

Their conclusions suggest that only two accelerometers (i.e., either wrist and thigh or 

wrist and hip) are sufficient enough to recognize ambulation and other daily activities. 

Clearly these studies have indicated contractor results. 
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CHAPTER 4 

 

PROPOSED METHODS AND RESULTS 
 

 

 
 

Figure 4.1 shows the basic structure of a deep learning module. Deep learning is a 

paradigm of machine learning that uses multiple processing layers to infer and extract 

information from big data. Research has shown that the use of deep learning can 

achieve improved performance in a range of applications over traditional approaches. 

Conventional learning approaches use a set of predesigned features, also known as 

“shallow” features, to represent the data for a specific classification task. In image 

processing and machine vision [31]-[33], shallow features such as Spectrogram 

representation provides a form of time and sampling rate invariance. This enables the 

classification to be more robust. Frequency selection in the spectrogram domain also 

allows noise filtering of the data over time. 

        From each sampled window described above, a vector of features is obtained. 

Standard measures previously used in HAR literature such as the mean, correlation, 

signal magnitude area (SMA) and autoregression coefficients are employed for  feature 

mapping.  

        A set of features is also employed in order to improve the learning performance, 

including energy of different frequency bands, frequency skewness, and angle between 

vectors, e.g. mean body acceleration [8]. It contains the list of all the measures applied 

to the time and frequency domain signals. A total of 561 features are extracted to 

describe each activity window. In order to ease the performance assessment, the dataset 

has been also randomly partitioned into two independent sets, where 70% of the data 
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are selected for training and the remaining 30% for testing.  

        From each window, a vector of features is extracted to 17 features estimated from 

a set of measurements in the time and frequency domain using previously suggested 

features. The Fast Fourier Transform (FFT) is used to find the frequency components 

for each window. Some examples of measurements extracted to obtain a feature vector 

are depicted in Figure 4.1. 

 

Figure 4.1 Deep learning module.  
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4.1 Signal Processing 

 

We can collect triaxial linear acceleration and angular velocity signals by using the 

phone accelerometer and gyroscope at a sampling rate of 50Hz. These signals are     

preprocessed for noise reduction with a median filter and a 3rd order low-pass Butter- 

worth filter with a 20 Hz cutoff frequency. This rate is sufficient for capturing human 

body motion since 99% of its energy is contained below 15Hz.  

        The acceleration signal, which has gravitational and body motion components, is 

separated by using another Butterworth low-pass filter into body acceleration and 

gravity. The gravitational force is assumed to have only low frequency components. 

Therefore, from the experiments, we conclude that 0.3 Hz is an optimal corner 

frequency for a constant gravity signal. Additional time signals are obtained by 

calculating the Euclidean magnitude and time derivatives [19] (jerk da/dt and angular 

acceleration dw/dt) from the triaxial signals. The time signals are then sampled in 

fixed-width sliding windows of 2.56 sec and 50% overlap between them, since the 

cadence of an average person walking is within [90,130] steps/min, i.e. a minimum of 

1.5 steps/sec.  

        At least a full walking cycle (two steps) is preferred on each window sample; 

People with slower cadence such as elderly and disabled should also benefit from this 

method. It is supposed that a minimum speed is equal to 50% of average human 

cadence. Signals are also mapped in the frequency domain through a Fast Fourier 

Transform (FFT), which is optimized for the power of two vectors (2.56 sec×50 Hz = 

128 cycles). 
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4.2 Feature Extraction and Dimension Reduction 

 

Human activities are performed during relatively long periods of time (in the order of 

seconds or minutes) compared to the sensors’ sampling rate (which can be up to 250 

Hz). Besides, a single sample on a specific time instant (e.g., the Y-axis acceleration 

is 2.5g or the heart rate is 130 bpm) does not provide sufficient information to describe 

the performed activity. Thus, activities need to be recognized in a time window basis 

rather than in a sample basis.  

        Now, a question is: how do we compare two given time windows? It would be 

nearly impossible for the signals to be exactly identical, even if they come from the 

same subject performing the exactly same activity. This is the main motivation for 

applying feature extraction (FE) methodologies to each time window: filtering relevant 

information and obtaining quantitative measures that allow signals to be compared. In 

general, two approaches have been proposed to extract features from time series data: 

statistical and structural [30]. The former, such as the Fourier transform and Wavelet 

transform, use quantitative characteristics of the data to extract features; whereas the 

latter take into account the interrelationship among data. The criterion to choose either 

of them is certainly subject to the nature of a given signal. Each instance in the 

processed dataset corresponds to the feature vector extracted from all the signals within 

a time window. Most of the existing approaches adhere to this mapping. Next, we 

cover the most common FE techniques for each of the measured attributes, i.e., 

acceleration, environmental signals, and vital signs. GPS data are not considered in 

this section since they are mostly used to compute the speed [19], or include some 

knowledge about the place where an activity is being performed [1].  
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        1) Acceleration: Acceleration signals are highly fluctuating and oscillatory, which 

makes it difficult to recognize the underlying patterns using their raw values. Existing 

HAR systems based on accelerometer data employ statistical feature extraction and, in 

most of the cases, either time- or frequency-domain features.  

        Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA) 

have also been applied with promising results [15], as well as autoregressive model 

coefficients [12]. All these techniques are conceived to handle the high variability 

inherent to acceleration signals.  

        2) Environmental variables: Environmental attributes, along with acceleration 

signals, have been used to enrich context awareness. For instance, the values from air 

pressure and light intensity are helpful to determine whether the individual is outdoors 

or indoors [2]. Also, audio signals are useful to conclude that the user is having a 

conversation rather than listening to music [19].  

        3) Vital signs: The very first work that explores vital sign data with the aim of 

recognizing human activities applies statistical feature extraction. In [13], the authors 

compute the number of heart beats above the resting heart rate value as the only feature. 

Instead, Parkka et al. [19] calculate time domain features for heart rate, respiration 

effort, SaO2, ECG, and skin temperature. Nevertheless, a signal’s shape is not 

described by these features. A heart rate signal S(t) for an individual that was walking 

is shown with a bold line and the same signal in reverse temporal order, S(t), is 

displayed with a thin line. Notice that most time domain and frequency domain features 

(e.g., mean, variance, and energy) are identical for both signals while they may 

represent different activities. This is he main motivation for applying structural feature 
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extraction.  

        4) Selection of window length: Dividing the measured time series in time 

windows is a convenient way to help solve an HAR problem. A key factor is, therefore, 

the selection of proper window length because the computational complexity of any 

FE method depends on the number of samples. Having rather short windows may 

enhance FE performance, but would entail higher overhead since it would trigger the 

recognition algorithm more frequently. Besides, short time windows may not provide 

sufficient information to fully describe a performed activity. Conversely, if window 

size is too big, there might be more than one activity within a single time window [7]. 

Different window lengths have been used in the literature. This decision is conditioned 

to the activities to be recognized and the measured attributes. The heart rate signal, for 

instance, requires 30s time windows according to [3]. For activities such as 

swallowing, 1.5s time windows are normally employed. 

        Time windows can also be either overlapping or disjoint. Overlapping time 

windows are intended to handle transitions more accurately, although, by using small 

non-overlapping time windows, misclassifications due to transitions are negligible.  

        5) Feature selection: Some features in the processed dataset might contain 

redundant or irrelevant information that can negatively affect the recognition accuracy. 

Then, implementing techniques for selecting the most appropriate features is a 

suggested practice to reduce computation and simplify learning models. Bayesian 

Information Criterion (BIC) and Minimum Description Length (MDL) [9] have been 

widely used for general machine learning problems. In HAR, a common method is the 

Minimum Redundancy and Maximum Relevance (MRMR) [5], and has been utilized 
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in [10]. In [10], the minimum mutual information between features is used as a 

criterion for minimum redundancy; while the maximal mutual information between 

the classes and features is used as a criterion for maximum relevance. In contrast, 

Maurer et al. [11] have applied a Correlation-based Feature Selection (CFS) approach 

by taking advantage of the fact that this method is built in WEKA [6]. CFS works 

under the assumption that features should be highly correlated with the given class but 

uncorrelated with each other. Iterative approaches have also been evaluated to select 

features. 

        The next step of the feature extraction is to apply dimension reduction using 

Kernel PCA (KPCA). In KPCA, a statistical kernel is applied to the input features, 

followed by typical PCA. Given spatiotemporal robust features F, the covariance 

matrix of the features can be defined as 
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where q represents the total number of feature segments for training and 𝛷  is a 

Gaussian kernel. Now, the principal components can be found by solving the following 

eigenvalue decomposition problem: 
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where E represents the principal components and 𝜆 the corresponding eigenvalues. 

The feature vectors using KPCA for a signal segment can be represented as 

 

 

𝐾 =  𝐹𝐸𝑚
𝑇  

 

(4.6) 

  

4.3 Machine Learning 

 

In recent years, the prominent development of sensing devices (e.g., accelerometers, 

cameras, GPS, etc.) has facilitated the process of collecting attributes related to  human 

beings and their surroundings. However, most applications require much more than 

simply gathering measurements from variables of interest. In fact, additional 



 
30 

challenges for enabling context awareness involve knowledge discovery since the raw 

data (e.g., acceleration signals or electrocardiogram) provided by the sensors are often 

useless.  

        For this purpose, HAR systems make use of machine learning tools, which are 

helpful to build patterns to describe, analyze, and predict data. In a machine learning 

context, patterns are to be discovered from a set of given examples or observations 

denominated instances. Such input set is called a training set. In our specific case, each 

instance is a feature vector extracted from signals within a time window. The examples 

in the training set may or may not be labeled, i.e., associated to a known class, e.g., 

walking, and running. In some cases, labeling a vast amount of data is not feasible 

because it may require an expert to manually examine the examples and assign a label 

based upon their experience. This process is usually tedious, expensive, and extremely 

time-consuming in many data mining applications. There exist two learning 

approaches, namely supervised and unsupervised learning, which deal with labeled 

and unlabeled data, respectively. Since an HAR system should return a label such as 

walking, sitting, and running, most HAR systems work in a supervised learning 

fashion. Indeed, it might be very hard to discriminate activities in a completely 

unsupervised context. Some other systems [17] work in a semi-supervised fashion 

allowing part of the data to be unlabeled. 

  4.3.1 Supervised Learning 

 

Labeling sensed data from individuals performing different activities is a technically 

easy task. Some systems store sensor data in a non-volatile medium while a person 

from the research team supervises the collection process and manually registers 
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activity labels and time stamps. Other systems feature a mobile application that allows 

the user to select the activity to be performed from a list. In this way, each sample is 

matched to an activity label, and then stored in the server. Supervised learning (referred 

to as classification for discrete-class problems) has been a very productive field, in 

which a great number of algorithms have been proposed. 

        Decision trees can be used to build a hierarchical model in which attributes are 

mapped to nodes and edges represent the possible attribute values. Each branch from 

the root to a leaf node is a classification rule. C4.5 is perhaps the most widely used 

decision tree classifier and is based on the concept of information gain to select the 

attributes that should be placed in the top nodes. 

        Bayesian methods calculate posterior probabilities for each class using estimated 

conditional probabilities from a training set. The Bayesian Network (BN) classifier 

and Naive Bayes (NB) (which is a specific case of BN) are the principal players of this 

family of classifiers. A key issue in Bayesian Networks is the topology construction, 

as it is necessary to make assumptions on the independence among features. For 

instance, the NB classifier assumes that all features are conditionally independent 

given a class value. Yet such assumption does not hold in many cases. As a matter of 

fact, acceleration signals are highly correlated, as well as physiological signals such as 

heart rate, respiration rate, and ECG amplitude.  

        Instance based learning (IBL) methods classify an instance based upon the most 

similar instance(s) in the training set. For that purpose, they define a distance function 

to measure similarity between each pair of instances. This makes IBL classifiers quite 

expensive in their evaluation phase as each new instance to be classified needs to be 
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compared to the entire training set. Such high cost in terms of computation and storage, 

makes IBL models inconvenient to be implemented in a mobile device.   

        Support Vector Machines (SVM) and Artificial Neural Networks (ANN) have 

also been broadly used in HAR although they do not provide a set of rules 

understandable by human beings. Instead, knowledge is hidden within the model, 

which may hinder the analysis and incorporation of additional reasoning. SVMs rely 

on kernel functions that project all instances to a higher dimensional space with the 

aim of finding a linear decision boundary (i.e., a hyperplane) to partition the data. 

Neural networks [34]-[36] replicate the behavior of biological neurons in human brain, 

propagating activation signals and encoding knowledge in the network links. Besides, 

ANNs have been shown to be universal function approximators. The high 

computational cost and the need for a large amount of training data are two common 

drawbacks of neural network-based approaches.  

        Ensembles of classifiers [37] [38] combine the output of several classifiers to 

improve classification accuracy. Some examples are bagging, boosting, and stacking. 

Classifier ensembles are clearly more expensive, computationally speaking, as they 

require several models to be trained and evaluated. 

  4.3.2 Semi-Supervised Learning 

 

Relatively few approaches [10] have implemented activity recognition in a semi-

supervised fashion, thus, having part of the data without labels. In practice, annotating 

data might be difficult in some scenarios, particularly when the granularity of activities 

is very high or a user is not willing to cooperate with a data collection process. Since 

semi-supervised learning is a minority in HAR, there are no standard algorithms or 
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methods, but each system implements its own approach. 

  4.3.3 Evaluation Metrics 

 

In general, the selection of a classification algorithm for HAR has been merely 

supported by empirical evidence. The vast majority of studies use cross validation with 

statistical tests to compare classifiers’ performance for a particular dataset. The 

classification results for a particular method can be organized in an nn confusion 

matrix M for a classification problem with n classes. This is a matrix such that its 

element Mij is the number of instances from class i that are actually classified as class 

j.  

        The following values can be obtained from the confusion matrix in a binary 

classification problem:  

        1) True Positives (TP): The number of positive instances that are classified as 

positive;         

        2) True Negatives (TN): The number of negative instances that are classified as 

negative; 

        3) False Positives (FP): The number of negative instances that are classified as 

positive;  

        4) False Negatives (FN): The number of positive instances that are classified as 

negative. 

The accuracy is the most standard metric to summarize the overall classification 

performance for all classes and it is defined as follows: 
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Accuracy =  
TP + TN

TP + TN + FP + FN
 

 

(4.7) 

  

The precision, often referred to as positive predictive value, is the ratio of correctly  

classified positive instances to the total number of instances classified as positive: 

 

 

Precision =  
TP

TP + FP
 

 

(4.8) 

  

The recall, also called true positive rate, is the ratio of correctly classified positive 

instances to the total number of positive instances: 

 

 

Recall =  
TP

TP + FN
 

 

(4.9) 

  

The F-measure combines precision and recall in a single value: 
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          𝐹 − measure =  2 ∗ 
Precision ∗ Recall

Precisio + Recall
 

(4.10) 

        Although defined for binary classification, these metrics can be generalized for a 

multi-classification problem with n classes. In such case, an instance could be positive 

or negative according to a particular class, e.g., positives might be all instances of 

running while negatives would be all instances other than running.  

   4.3.4 Machine Learning Tools 

 

The Waikato Environment for Knowledge Analysis (WEKA) is among the best known 

tools in the machine learning research community. It contains implementations of a 

number of learning algorithms and allows researchers to easily evaluate them for a 

particular dataset using cross validation and random split, among others. WEKA also 

offers a Java API that facilitates the incorporation of new learning algorithms and 

evaluation methodologies on top of the pre-existing framework. One of the limitations 

of current Machine Learning APIs such as WEKA and the Java Data Mining (JDM) 

platform [8] is that they are not fully functional in current mobile platforms. In that 

direction, the work [20] has proposed MECLA, a mobile platform for the evaluation 

of classification algorithms based on the Android operating system.  
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4.4 Results and Analysis 

 

In order to evaluate the state-of-the-art HAR systems, it is required to first define a 

taxonomy that allows us to compare and analyze them within groups that share 

common characteristics. To the best of our knowledge, no comprehensive taxonomy 

has been proposed in the literature to encompass all sorts of HAR systems.  

        For tests, an openly accessible database has to be gathered. The database [1] 

consists of twelve exercises: Standing, Sitting, Walking, Lying Down, Stand-to-Sit, 

Walking-downstairs, Walking-upstairs, Sit-to-Lie, Sit-to-Stand, Lie-to-Sit, Lie-to-

Stand, and Stand-to-Lie. An aggregate of 7767 and 3162 occasions can be utilized for 

preparing and testing exercises separately. Every occasion has 561 fundamental 

highlights. It is to be noticed that in the database utilized as a part of this work, the 

number of tests for preparing and testing distinctive action is not uniformly 

disseminated. A few exercises contain an extensive number of tests though some of 

them have few experiments.   

        We started a network structure with 10 hidden units for layer-1 and layer-2, then 

increase the number of hid-den units up to 860.  

        The rest of the structures has a different number of hidden units for layer-1 and 

layer-2. The total number of epochs is 1000. Momentum = 0.7, learning rate = 2, and 

batch size = 881. The reconstruction error of Restricted Boltzmann Machine (RBM) 

layer for DBN structure-16 is plotted in Figure 4.2. It is seen that reconstruction error 

rate is decreased sharply as the number of epochs increases. The weight matrix of a 

trained DBN is used as the initial weight of an artificial neural network (ANN) where 

the out-puts of ANN is kept same as the number of activity types. ANN is trained by 
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using a backpropagation algorithm and an activation function of optimal tan hyperbolic 

[39]. Scaling factor for the learning rate in each epoch for ANN is 1, learning rate is 2, 

and momentum is 0.5. The training error rate of ANN for a DBN structure is presented 

in Figure 4.3. It is observed that error rate decreases as the number of epoch increases.  

 

Figure 4.2 Reconstruction error. 

 

Figure 4.3 Error rate of ANN.  
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   Table 4.1 Different Types of Activities in the Training Data and Error Rate 

 

        Table 4.1 shows our experimental results about different types of activities 

through DBN. As we can see, all the six basic activities achieve, i.e., Standing, Sitting, 

Lying Down, Walking, Walking-downstairs and Walking-upstairs, have achieved the 

accuracies over 90%. The result of distinguishing short-term activities (Stand-to-Sit, 

Sit-to-Lie, Sit-to-Stand, Lie-to-Sit, Lie-to-Stand, and Stand-to-Lie) with high 

statistical similarities cannot achieve as what we expect, which should be our future 

work. Our proposed approach achieved an average accuracy of 87.65% which is pretty 

good for this data set. It is computed as the sum of all recognition rates divided by 12 

Activity Recognition Rate 

(%) 

Mean 

Standing 

 

98.60  

Sitting 

 

95.72  

Lying Down 95.15  

Walking 92.34  

Walking Upstairs 94.65  

Walking Downstairs 

 

 

 

 

 

 

95.36  

Stand-to-sit 79.37 87.65 

Sit-to Stand 

 

86.18  

Sit-to-Lie 

 

80.39  

Lie-to-Sit 

 

73.10  

Stand-to-Lie 81.21  

Lie-to-Stand 

 

 

 

 

79.72  
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(activities). Therefore, the excellent performance of the proposed approach is 

experimentally verified.   

        Table 4.2 depicts the performance of different features ranked based on 

information gain with different classifier learning approaches, and time taken to build 

the model. We examine the effects of using the top 2,8,16, 32, 64, 128, 256 and 561 

(all features) for HAR.  

Table 4.2 Recognition Accuracies 

 

Number of  
Features 

 NB  DT  DBN 

2 

8 

16 

32 
64 

128 

256 
561 

49.45 

48.26 

48.57 

52.34 
56.10 

55.31 

53.86 
79.00 

56.30 

61.39 

69.02 

70.24 
77.30 

81.46 

88.81 
91.00 

53.18 

60.18 

67.84 

71.74 

77.51 

88.97 

90.55 

91.89 

 

   

        Tables 4.2 shows the performance for our approach. compared with others’ 

methods, in terms of classification accuracy. As can be seen, Decision Tree (DT) 

performs well with the recognition accuracy (91%). The Naïve Bayes Classifier 

performs moderately well for such a large dataset, with 79% accuracy. The best 

performing classifier is the proposed DBN model as its accuracy is 91.89%. In detail, 

it performs with an accuracy of 90.55% with 256 features and 91.89% with 561 

features. It also performs well with an accuracy of 88.97% by using only 128 features, 

which has its advantage over the other two approaches when only 128 features are 

used. A good trade-off between accuracy and model building time is necessary for a 
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smartphone-based activity recognition system, as real time activity monitoring needs 

an accurate model to be built dynamically from the captured data.  

        Meanwhile, there is much room to extend the presented work. An observation 

from Table 4.2 is that Decision Tree has the best performance through 2, 8, and 16 

features. Therefore, which approach can use the fewest features to achieve the same 

satisfying accuracy is an interesting topic as our future work. 
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CHAPTER 5 

 

CONCLUSION 
 

 

 
 

The idea of this thesis is to build a deep learning model to solve the Human Activity 

Recognition (HAR) problems. This thesis surveys the state-of-the-art work in human 

activity recognition based on wearable sensors. HAR systems are introduced according 

to their response time and learning scheme. Meanwhile, several systems are also 

qualitatively compared in terms of response time, learning approach, obtrusiveness, 

flexibility, recognition accuracy, and other important design issues. The fundamentals 

of feature extraction and machine learning are also included, as they are important 

components of every HAR system.  

        In this thesis, we explore the performance of a Deep Belief Network (DBN) for 

HAR by using wearable body sensors. We describe how to extract the robust features 

from the sensor signals and use them to train DBN. We also show how to find the 

optimal DBN architecture by varying the hyper-parameters of a DBN structure. Our 

experimental results using the proposed DBN method on a public human activity 

recognition dataset shows its superiority as compared to traditional approaches. The 

overall accuracy obtained by the proposed method is over 91%. 

        As future work, we plan to try with some different kinds of functions and 

methods. We can also attempt to perceive body exercises from the point of view of 

inadequate portrayal and arbitrary projections in real-time environments. Various ideas 

are also proposed for future research to extend this field to more realistic and pervasive 

scenarios. Multiple applications such as intelligent homes and smart healthcare may 
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also be realized using the model presented in the thesis. 
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APPENDIX  

SOURCE CODE  

Function test_example_DBN. 

clear all; close all; clc; 

load mnist_uint8; 

addpath('E:\00.lab\Jialun\000DeepLearning\DeepLearnToolbox9faf641\DeepLearnT

oolbox-9faf641'); 

train_x = double(train_x) / 255; 

test_x  = double(test_x)  / 255; 

train_y = double(train_y); 

test_y  = double(test_y); 

%%  ex1 train a 100 hidden unit RBM and visualize its weights 

rand('state',0) 

dbn.sizes = [100]; 

opts.numepochs =   1; 

opts.batchsize = 100; 

opts.momentum  =   0; 

opts.alpha     =   1; 

dbn = dbnsetup(dbn, train_x, opts); 

dbn = dbntrain(dbn, train_x, opts); 

figure; visualize(dbn.rbm{1}.W');   %  Visualize the RBM weights 

%train dbn 
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dbn.sizes = [64  70]; 

opts.numepochs =   1; 

opts.batchsize = 100; 

opts.momentum  =   0; 

opts.alpha     =   1; 

dbn = dbnsetup(dbn, train_x, opts); 

dbn = dbntrain(dbn, train_x, opts); 

nn = dbnunfoldtonn(dbn, 10); 

nn.activation_function = 'sigm'; 

%train nn 

opts.numepochs =  1; 

opts.batchsize = 100; 

nn = nntrain(nn, train_x, train_y, opts); 

labels = nnpredict(nn, test_x); 

[dummy, expected] = max(test_y,[],2); 

err = find(labels~=expected); 

assert(er < 0.10, 'Too big error'); 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function dbn = dbnsetup(dbn, x, opts) 

    n = size(x, 2); 

    dbn.sizes = [n, dbn.sizes]; 

    for u = 1 : numel(dbn.sizes) - 1 

        dbn.rbm{u}.alpha    = opts.alpha; 
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        dbn.rbm{u}.momentum = opts.momentum; 

        dbn.rbm{u}.W  = zeros(dbn.sizes(u + 1), dbn.sizes(u)); 

        dbn.rbm{u}.vW = zeros(dbn.sizes(u + 1), dbn.sizes(u)); 

        dbn.rbm{u}.b  = zeros(dbn.sizes(u), 1); 

        dbn.rbm{u}.vb = zeros(dbn.sizes(u), 1); 

        dbn.rbm{u}.c  = zeros(dbn.sizes(u + 1), 1); 

        dbn.rbm{u}.vc = zeros(dbn.sizes(u + 1), 1); 

    end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function dbn = dbntrain(dbn, x, opts) 

    n = numel(dbn.rbm); 

    dbn.rbm{1} = rbmtrain(dbn.rbm{1}, x, opts); 

    for i = 2 : n 

        x = rbmup(dbn.rbm{i - 1}, x); 

        dbn.rbm{i} = rbmtrain(dbn.rbm{i}, x, opts); 

    end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function nn = dbnunfoldtonn(dbn, outputsize) 

%   layer of size outputsize added. 

    if(exist('outputsize','var')) 

        size = [dbn.sizes outputsize]; 
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    else 

        size = [dbn.sizes]; 

    end 

    nn = nnsetup(size); 

    for i = 1 : numel(dbn.rbm) 

        nn.W{i} = [dbn.rbm{i}.c dbn.rbm{i}.W]; 

    end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function nn = nnapplygrads(nn) 

% weights and biases 

    for i = 1 : (nn.n - 1) 

        if(nn.weightPenaltyL2>0) 

            dW=nn.dW{i}+nn.weightPenaltyL2*[zeros(size(nn.W{i},1),1) 

nn.W{i}(:,2:end)]; 

        else 

            dW = nn.dW{i}; 

        end 

        dW = nn.learningRate * dW; 

        if(nn.momentum>0) 

            nn.vW{i} = nn.momentum*nn.vW{i} + dW; 

            dW = nn.vW{i}; 

        end 
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        nn.W{i} = nn.W{i} - dW; 

    end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function nn = nnbp(nn) 

%NNBP performs backpropagation 

    n = nn.n; 

    sparsityError = 0; 

    switch nn.output 

        case 'sigm' 

            d{n} = - nn.e .* (nn.a{n} .* (1 - nn.a{n})); 

        case {'softmax','linear'} 

            d{n} = - nn.e; 

    end 

    for i = (n - 1) : -1 : 2 

        % Derivative of the activation function 

        switch nn.activation_function  

            case 'sigm' 

                d_act = nn.a{i} .* (1 - nn.a{i}); 

            case 'tanh_opt' 

                d_act = 1.7159 * 2/3 * (1 - 1/(1.7159)^2 * nn.a{i}.^2); 

        end 

        if(nn.nonSparsityPenalty>0) 



 
48 

            pi = repmat(nn.p{i}, size(nn.a{i}, 1), 1); 

            sparsityError = [zeros(size(nn.a{i},1),1) nn.nonSparsityPenalty * (-

nn.sparsityTarget ./ pi + (1 - nn.sparsityTarget) ./ (1 - pi))]; 

        end 

        % Backpropagate first derivatives 

        if i+1==n % in this case in d{n} there is not the bias term to be removed              

            d{i} = (d{i + 1} * nn.W{i} + sparsityError) .* d_act; % Bishop (5.56) 

        else % in this case in d{i} the bias term has to be removed 

            d{i} = (d{i + 1}(:,2:end) * nn.W{i} + sparsityError) .* d_act; 

        end 

        if(nn.dropoutFraction>0) 

            d{i} = d{i} .* [ones(size(d{i},1),1) nn.dropOutMask{i}]; 

        end 

    end 

    for i = 1 : (n - 1) 

        if i+1==n 

            nn.dW{i} = (d{i + 1}' * nn.a{i}) / size(d{i + 1}, 1); 

        else 

            nn.dW{i} = (d{i + 1}(:,2:end)' * nn.a{i}) / size(d{i + 1}, 1);       

        end 

    end 

end 

function nnupdatefigures(nn,fhandle,L,opts,i) 
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if i > 1 %dont plot first point, its only a point    

    x_ax = 1:i; 

    % create legend 

    if opts.validation == 1 

        M = {'Training','Validation'}; 

    else 

        M = {'Training'}; 

    end 

    %create data for plots 

    if strcmp(nn.output,'softmax') 

        plot_x       = x_ax'; 

        plot_ye      = L.train.e'; 

        plot_yfrac   = L.train.e_frac'; 

    else 

        plot_x       = x_ax'; 

        plot_ye      = L.train.e'; 

    end 

    if opts.validation == 1 

        plot_x       = [plot_x, x_ax']; 

        plot_ye      = [plot_ye,L.val.e']; 

    end 

    if opts.validation == 1 && strcmp(nn.output,'softmax') 

        plot_yfrac   = [plot_yfrac, L.val.e_frac'];         
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    end 

%    plotting 

    figure(fhandle);    

    if strcmp(nn.output,'softmax')  %also plot classification error 

        p1 = subplot(1,2,1); 

        plot(plot_x,plot_ye); 

        xlabel('Number of epochs'); ylabel('Error');title('Error'); 

        title('Error') 

        legend(p1, M,'Location','NorthEast'); 

        set(p1, 'Xlim',[0,opts.numepochs + 1]) 

        p2 = subplot(1,2,2); 

        plot(plot_x,plot_yfrac); 

        xlabel('Number of epochs'); ylabel('Misclassification rate'); 

        title('Misclassification rate') 

        legend(p2, M,'Location','NorthEast'); 

        set(p2, 'Xlim',[0,opts.numepochs + 1]) 

    else 

        p = plot(plot_x,plot_ye); 

        xlabel('Number of epochs'); ylabel('Error');title('Error'); 

        legend(p, M,'Location','NorthEast'); 

        set(gca, 'Xlim',[0,opts.numepochs + 1]) 

    end 

    drawnow; 
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end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function [nn, L, K]  = nntrain(nn, train_x, train_y, opts, val_x, val_y) 

assert(isfloat(train_x), 'train_x must be a float'); 

assert(nargin == 4 || nargin == 6,'number ofinput arguments must be 4 or 6') 

loss.train.e               = []; 

loss.train.e_frac          = []; 

loss.val.e                 = []; 

loss.val.e_frac            = []; 

opts.validation = 0; 

if nargin == 6 

    opts.validation = 1; 

end 

fhandle = []; 

if isfield(opts,'plot') && opts.plot == 1 

    fhandle = figure(); 

end 

m = size(train_x, 1); 

batchsize = opts.batchsize; 

numepochs = opts.numepochs; 

 

numbatches = m / batchsize; 
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assert(rem(numbatches, 1) == 0, 'numbatches must be a integer'); 

L = zeros(numepochs*numbatches,1); 

K=zeros(numepochs,1); 

n = 1; 

for i = 1 : numepochs 

    tic; 

    kk = randperm(m); 

    for l = 1 : numbatches 

        batch_x = train_x(kk((l - 1) * batchsize + 1 : l * batchsize), :); 

        %Add noise to input (for use in denoising autoencoder) 

        if(nn.inputZeroMaskedFraction ~= 0) 

            batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction); 

        end 

        batch_y = train_y(kk((l - 1) * batchsize + 1 : l * batchsize), :); 

        nn = nnff(nn, batch_x, batch_y); 

        nn = nnbp(nn); 

        nn = nnapplygrads(nn); 

        L(n) = nn.L; 

        n = n + 1; 

    end 

    t = toc; 

 

    if opts.validation == 1 
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        loss = nneval(nn, loss, train_x, train_y, val_x, val_y); 

        str_perf = sprintf('; Full-batch train mse = %f, val mse = %f', loss.train.e(end), 

loss.val.e(end)); 

    else 

        loss = nneval(nn, loss, train_x, train_y); 

        str_perf = sprintf('; Full-batch train err = %f', loss.train.e(end)); 

    end 

    if ishandle(fhandle) 

        nnupdatefigures(nn, fhandle, loss, opts, i); 

    end 

    disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds' 

'. Mini-batch mean squared error on training set is ' num2str(mean(L((n-

numbatches):(n-1)))) str_perf]); 

    nn.learningRate = nn.learningRate * nn.scaling_learningRate; 

    K(i)=loss.train.e(end); 

end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function nn = nnff(nn, x, y) 

% performs a feedforward pass 

    n = nn.n; 

    m = size(x, 1); 

    x = [ones(m,1) x]; 
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    nn.a{1} = x; 

    %feedforward pass 

    for i = 2 : n-1 

        switch nn.activation_function  

            case 'sigm' 

                % Calculate the unit's outputs (including the bias term) 

                nn.a{i} = sigm(nn.a{i - 1} * nn.W{i - 1}'); 

            case 'tanh_opt' 

                nn.a{i} = tanh_opt(nn.a{i - 1} * nn.W{i - 1}'); 

        end 

        %dropout 

        if(nn.dropoutFraction > 0) 

            if(nn.testing) 

                nn.a{i} = nn.a{i}.*(1 - nn.dropoutFraction); 

            else 

                nn.dropOutMask{i} = (rand(size(nn.a{i}))>nn.dropoutFraction); 

                nn.a{i} = nn.a{i}.*nn.dropOutMask{i}; 

            end 

        end 

        %calculate running exponential activations for use with sparsity 

        if(nn.nonSparsityPenalty>0) 

            nn.p{i} = 0.99 * nn.p{i} + 0.01 * mean(nn.a{i}, 1); 

        end 
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        %Add the bias term 

        nn.a{i} = [ones(m,1) nn.a{i}]; 

    end 

    switch nn.output  

        case 'sigm' 

            nn.a{n} = sigm(nn.a{n - 1} * nn.W{n - 1}'); 

        case 'linear' 

            nn.a{n} = nn.a{n - 1} * nn.W{n - 1}'; 

        case 'softmax' 

            nn.a{n} = nn.a{n - 1} * nn.W{n - 1}'; 

            nn.a{n} = exp(bsxfun(@minus, nn.a{n}, max(nn.a{n},[],2))); 

            nn.a{n} = bsxfun(@rdivide, nn.a{n}, sum(nn.a{n}, 2));  

    end 

    %error and loss 

    nn.e = y - nn.a{n}; 

    switch nn.output 

        case {'sigm', 'linear'} 

            nn.L = 1/2 * sum(sum(nn.e .^ 2)) / m;  

        case 'softmax' 

            nn.L = -sum(sum(y .* log(nn.a{n}))) / m; 

    end 

end 

function nn = nnsetup(architecture) 
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%NNSETUP creates a Feedforward Backpropagate Neural Network 

% nn = nnsetup(architecture) returns an neural network structure with 

n=numel(architecture) 

% layers, architecture being a n x 1 vector of layer sizes e.g. [784 100 10] 

 

nn.size   = architecture; 

nn.n      = numel(nn.size); 

     

nn.activation_function              = 'tanh_opt';    

layers: 'sigm' (sigmoid) or 'tanh_opt' (optimal tanh). 

nn.learningRate                     = 2;             

nn.momentum                         = 0.5;           

nn.scaling_learningRate             = 1;             

 nn.weightPenaltyL2                  = 0;             

    nn.nonSparsityPenalty               = 0;             

    nn.sparsityTarget                   = 0.05;          

    nn.inputZeroMaskedFraction          = 0;             

    nn.dropoutFraction=0;             

nn.testing                          = 0;                

nn.output                           = 'sigm';        

    for i = 2 : nn.n    

       nn.W{i - 1} = (rand(nn.size(i), nn.size(i - 1)+1) - 0.5) * 2 * 4 * sqrt(6 / (nn.size(i) 

+ nn.size(i - 1))); 
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        nn.vW{i - 1} = zeros(size(nn.W{i - 1})); 

        nn.p{i}     = zeros(1, nn.size(i));    

    end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function [loss] = nneval(nn, loss, train_x, train_y, val_x, val_y) 

% Evaluates performance of neural network 

% Returns a updated loss struct 

assert(nargin == 4 || nargin == 6, 'Wrong number of arguments'); 

nn.testing = 1; 

% training performance 

nn                    = nnff(nn, train_x, train_y); 

loss.train.e(end + 1) = nn.L; 

% validation performance 

if nargin == 6 

    nn                    = nnff(nn, val_x, val_y); 

    loss.val.e(end + 1)   = nn.L; 

end 

nn.testing = 0; 

%calc misclassification rate if softmax 

if strcmp(nn.output,'softmax') 

    [er_train, dummy]               = nntest(nn, train_x, train_y); 

    loss.train.e_frac(end+1)    = er_train; 
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    if nargin == 6 

        [er_val, dummy]             = nntest(nn, val_x, val_y); 

        loss.val.e_frac(end+1)  = er_val; 

    end 

end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

function nn = nnff(nn, x, y) 

%Performs a feedforward pass 

    n = nn.n; 

    m = size(x, 1); 

    x = [ones(m,1) x]; 

    nn.a{1} = x; 

    %feedforward pass 

    for i = 2 : n-1 

        switch nn.activation_function  

            case 'sigm' 

                % Calculate the unit's outputs  

                nn.a{i} = sigm(nn.a{i - 1} * nn.W{i - 1}'); 

            case 'tanh_opt' 

                nn.a{i} = tanh_opt(nn.a{i - 1} * nn.W{i - 1}'); 

        end 

        %dropout 
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        if(nn.dropoutFraction > 0) 

            if(nn.testing) 

                nn.a{i} = nn.a{i}.*(1 - nn.dropoutFraction); 

            else 

                nn.dropOutMask{i} = (rand(size(nn.a{i}))>nn.dropoutFraction); 

                nn.a{i} = nn.a{i}.*nn.dropOutMask{i}; 

            end 

        end 

        %calculate running exponential activations for use with sparsity 

        if(nn.nonSparsityPenalty>0) 

            nn.p{i} = 0.99 * nn.p{i} + 0.01 * mean(nn.a{i}, 1); 

        end 

        %Add the bias term 

        nn.a{i} = [ones(m,1) nn.a{i}]; 

    end 

    switch nn.output  

        case 'sigm' 

            nn.a{n} = sigm(nn.a{n - 1} * nn.W{n - 1}'); 

        case 'linear' 

            nn.a{n} = nn.a{n - 1} * nn.W{n - 1}'; 

        case 'softmax' 

            nn.a{n} = nn.a{n - 1} * nn.W{n - 1}'; 

            nn.a{n} = exp(bsxfun(@minus, nn.a{n}, max(nn.a{n},[],2))); 
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            nn.a{n} = bsxfun(@rdivide, nn.a{n}, sum(nn.a{n}, 2));  

    end 

    %error and loss 

    nn.e = y - nn.a{n}; 

    switch nn.output 

        case {'sigm', 'linear'} 

            nn.L = 1/2 * sum(sum(nn.e .^ 2)) / m;  

        case 'softmax' 

            nn.L = -sum(sum(y .* log(nn.a{n}))) / m; 

    end 

end 

/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 

clc; 

clear all; 

addpath(genpath('.\')); 

load Actvity_Dataset_Normalized_0_1_Zia.mat; 

rand('state',0) 

dbn.sizes = [60 20]; 

opts.numepochs =  10; 

opts.batchsize = 881; 

opts.momentum  = 0; 

opts.alpha     =   0.0000000000001; 

dbn = dbnsetup(dbn, train_x, opts); 
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dbn = dbntrain(dbn, train_x, opts); 

nn = dbnunfoldtonn(dbn, 12); 

nn.activation_function = 'sigm'; 

opts.numepochs =  1000; 

opts.batchsize = 881; 

[nn, L]  = nntrain(nn, train_x, train_y, opts); 

labels = nnpredict(nn, test_x); 

[dummy, expected] = max(test_y,[],2); 

good = find(labels == expected);     

Accuracy=size(good,1)/3162*100; 

fprintf(1,"The accuracy is = %.2f%%.\n", Accuracy); 
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