

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

EXPOSING AND FIXING CAUSES OF INCONSISTENCY AND
NONDETERMINISM IN CLUSTERING IMPLEMENTATIONS

by
Xin Yin

Cluster analysis aka Clustering is used in myriad applications, including

high-stakes domains, by millions of users. Clustering users should be able to assume

that clustering implementations are correct, reliable, and for a given algorithm,

interchangeable. Based on observations in a wide-range of real-world clustering

implementations, this dissertation challenges the aforementioned assumptions.

This dissertation introduces an approach named SmokeOut that uses differential

clustering to show that clustering implementations suffer from nondeterminism and

inconsistency: on a given input dataset and using a given clustering algorithm,

clustering outcomes and accuracy vary widely between (1) successive runs of the

same toolkit, i.e., nondeterminism, and (2) different toolkits, i.e, inconsistency.

Using a statistical approach, this dissertation quantifies and exposes statistically

significant differences across runs and toolkits. This dissertation exposes the diverse

root causes of nondeterminism or inconsistency, such as default parameter settings,

noise insertion, distance metrics, termination criteria. Based on these findings,

this dissertation introduces an automatic approach for locating the root causes of

nondeterminism and inconsistency.

This dissertation makes several contributions: (1) quantifying clustering

outcomes across different algorithms, toolkits, and multiple runs; (2) using a

statistical rigorous approach for testing clustering implementations; (3) exposing

root causes of nondeterminism and inconsistency; and (4) automatically finding

nondeterminism and inconsistency’s root causes.

EXPOSING AND FIXING CAUSES OF INCONSISTENCY AND
NONDETERMINISM IN CLUSTERING IMPLEMENTATIONS

by
Xin Yin

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

December 2020

Copyright © 2020 by Xin Yin

ALL RIGHTS RESERVED

APPROVAL PAGE

EXPOSING AND FIXING CAUSES OF INCONSISTENCY AND
NONDETERMINISM IN CLUSTERING IMPLEMENTATIONS

Xin Yin

Dr. Iulian Neamtiu, Dissertation Advisor Date
Professor, NJIT

Dr. Ali Mili, Committee Member Date
Professor and Associate Dean for Academic Affairs, NJIT

Dr. Usman Roshan, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Ioannis Koutis, Committee Member Date
Associate Professor of Computer Science, NJIT

Dr. Ji Meng Loh, Committee Member Date
Associate Professor of Mathematical Sciences, NJIT

BIOGRAPHICAL SKETCH

Author: Xin Yin

Degree: Doctor of Philosophy

Date: December 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science

New Jersey Institute of Technology, Newark, New Jersey 2020

• Master of Science, Statistics
University of Connecticut, Storrs, Connecticut, 2014

• Bachelor of Science, Mathematics and Applied Mathematics
Zhejiang gongshang University, Hangzhou, Zhejiang, China, 2012

Major: Computer Science

Presentations and Publications:

Xin Yin, Iulian Neamtiu, “Automatic Detection of the Root Causes of Clustering
Nondeterminism and Inconsistency,” the 14th International Conference on
Software Testing, Verification, and Validation (ICST), in preparation, 2021.

Sydur Rahaman, Iulian Neamtiu, Xin Yin, “Categorical Information Flow Analysis
for Understanding Android Identifier Leaks,” the 28th Network and Distributed
System Security Symposium (NDSS), submitted, February 2021.

Xin Yin, Iulian Neamtiu, Saketan Patil, Sean T Andrews, “Implementation-induced
Inconsistency and Nondeterminism in Deterministic Clustering Algorithms,”
the 13th International Conference on Software Testing, Verification, and
Validation (ICST), 2020.

Vincenzo Musco, Xin Yin, Iulian Neamtiu, “SmokeOut: An Approach for Testing
Clustering Implementations,” the 12th International Conference on Software
Testing, Verification, and Validation (ICST), Tool Track, 2019.

Xin Yin Vincenzo Musco, Iulian Neamtiu, Usman Roshan, “Statistically Rigorous
Testing of Clustering Implementation,” The First IEEE International
Conference on Artificial Intelligence Testing, 2019.

iv

Xin Yin, Vincenzo Musco, Iulian Neamtiu, “A Study on the Fragility of Clustering,”
IBM AI Systems Day 2018, MIT-IBM Watson AI Lab, MIT, 2018.

Jia He, Changying Du, Fuzhen Zhuang, Xin Yin, Qing He, Guoping Long, “Online
Bayesian max-margin subspace multi-view learning,” the 25th International
Joint Conference on Artificial Intelligence (IJCAI), 2016.

v

Dedicated to my family

vi

ACKNOWLEDGMENT

First and foremost, I would like to express my sincere gratitude to my advisor

Iulian Neamtiu for the continuous support of my Ph.D study and related research,

for his patience, motivation, and immense knowledge. Without his research vision

and utmost patience with my at times floundering process, this thesis would not be

possible. Doing my current research was one of the best decisions that I have ever

made. Iulian always pushed me towards interesting and important questions that

solved real world problems.

This dissertation would also not have been possible without Dr. Vincenzo

Musco. He brought me to research in Software Engineering and taught me lessons.

He enlightened me at the first glance of research and I learned a lot of essential skills

with his help. Thanks for his patience for guiding my research from time to time.

My gratitude also goes to my awesome thesis committee members: Ali Mili,

Usman Roshan, Ioannis Koutis and Ji Meng Loh, for their insightful comments and

encouragement, but also for the valuable suggestions to improve my research quality.

I had the wonderful opportunity to collaborate with Usman Roshan and he broadened

our research on the machine learning community.

I would like to thank the computer science department for offering the

opportunity to be the teaching assistant. I enjoyer tutoring students and helping them

build confidence in their ability to achieve. I also want to thank the National Science

Foundation to get financial support and work as a research assistant in multiple

projects and gain a lot of experience.

I thank my collaborators for the stimulating discussions and supportive

suggestions. Sean Andrew and Patil Saketan have been amazing collaborators and

this work would not have been possible without them. I am also very grateful to

vii

Sydur Rahaman for his support to participate in the project to investigate android

identifier leaks that enrich my horizons.

A very special thanks to the Mobile Profiler team I worked on at Facebook

during this summer. Thanks for my mentor Nathan Slingerland at Facebook for his

fitness and flexible training plan and timely and effective feedback on my work that

eventually made my internship succeed. Thanks to all my peers Riham Selim, Cheng

Chang, Anshuman Chadha frankly and fairly reviews on my work, that pulls me back

on the right track quickly.

Last, but not the least, I would like to thank my family: my parents always

believing in me and encouraging me to achieve my dreams. And my grandparents, my

aunts and uncles, my cousin sister, they took care of me when I was sick in hospital

in my fourth year. Special thanks to my doctor, for in time treatment, so I can go

back and continue my study. They saved me and supported me to complete my PhD.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Introduction . 1

1.2 Research Contributions . 2

1.3 Dissertation Outline . 4

2 BACKGROUND . 6

2.1 Clustering Definition . 6

2.2 Measuring Clustering Accuracy . 6

2.3 Determinism and Consistency . 8

2.4 Toolkits . 8

2.5 Clustering Algorithms . 9

2.6 Conclusion . 12

3 THE SMOKEOUT CLUSTERING TESTBED 17

3.1 SmokeOut Architecture . 17

3.2 Datasets . 18

3.3 Distribution Shapes . 20

3.3.1 Bimodality (B) . 21

3.3.2 Outliers (R, L, LR) . 22

3.4 Results . 23

3.4.1 SmokeOut Methodology . 23

3.4.2 K-means with Varying Starting Points 24

3.4.3 K-means++ . 26

3.4.4 Hierarchical (Agglomerative) 28

3.4.5 EM/Gaussian . 30

3.4.6 Spectral . 30

3.4.7 DBSCAN . 32

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

3.4.8 Affinity Propagation . 32

3.5 Conclusion . 33

4 STATISTICALLY RIGOROUS TESTING OF CLUSTERING
IMPLEMENTATIONS . 37

4.1 Variation Across Runs . 37

4.2 Variation Across Toolkits . 40

4.2.1 Non-overlaps . 41

4.3 Variation Across Algorithms . 43

4.4 Toolkit Disagreement . 44

4.5 Conclusion . 45

5 EXPOSING ROOT CAUSES OF IMPLEMENTATION-INDUCED
INCONSISTENCY AND NONDETERMINISM IN DETERMINISTIC
ALGORITHMS . 51

5.1 Definitions and Experimental Setup 51

5.1.1 Datasets . 51

5.1.2 Algorithms and Toolkits . 52

5.2 Affinity Propagation . 52

5.2.1 Inconsistency . 52

5.2.2 Case Study 1: Bounding the Number of Iterations 53

5.2.3 Under-iterating and Over-iterating 55

5.2.4 Heuristic 1: Consistent MAX ITER 57

5.2.5 Heuristic 2: Using an Adaptive MAX ITER 58

5.2.6 Noise . 60

5.2.7 Actionable Findings . 62

5.3 DBSCAN . 62

5.3.1 Inconsistency . 65

5.3.2 Defaults . 65

x

TABLE OF CONTENTS
(Continued)

Chapter Page

5.3.3 Controlling for eps . 65

5.3.4 Using a Heuristic for minPts 66

5.3.5 Mutual ARI . 66

5.3.6 Actionable Findings . 66

5.4 Hierarchical Agglomerative Clustering 67

5.4.1 Inconsistency . 67

5.4.2 Accuracy . 68

5.4.3 Actionable Findings . 69

5.5 K-means . 69

5.5.1 Inconsistency . 70

5.5.2 Actionable Findings . 72

5.6 Conclusion . 72

6 AUTOMATIC DETECTION OF NONDETERMINISM AND
INCONSISTENCY ROOT CAUSES . 74

6.1 Motivation . 74

6.2 Overview . 76

6.3 Annotation Framework . 77

6.4 Evaluation . 79

6.4.1 Effectiveness . 80

6.4.2 Manual Annotation Effort . 82

6.5 Conclusion . 83

7 RELATED WORK . 86

7.1 Testings on Clustering Implementations 86

7.2 Machine Learning Research on Clustering Properties 87

7.3 Testing on Machine Learning Implementations 88

7.4 Research on Improving Neural Networks Safety 88

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

8 FUTURE WORK . 89

8.1 Automatic Generation for Bug-Induced Datasets 89

8.2 Improving Runtime Performance . 89

9 CONCLUSION . 91

REFERENCES . 92

xii

LIST OF TABLES

Table Page

1.1 Nondeterminism and Inconsistency Issues in Clustering Implementations 2

2.1 Toolkit/Algorithm Configurations . 12

3.1 Descriptions for the PMLB Datasets . 19

3.2 Categories for the PMLB Datasets . 19

3.3 K-Means: Variation Due To Starting Points 25

3.4 K-means++ . 26

3.5 Hierarchical . 29

3.6 EM/Gaussian . 31

3.7 Spectral Clustering . 34

3.8 DBSCAN . 35

3.9 Affinity Propagation . 36

4.1 Levene’s Test Results: the Number of Datasets, Out Of 162, With
Significant Variance (p < 0.05) . 38

4.2 Top-10 Widest Differences in Accuracy Across Runs 39

4.3 Highest Standard Deviations in Accuracy Across Runs 40

4.4 Mann-Whitney U-test Results for Toolkits: Number of Datasets with
Significantly Different Accuracy Distributions (p < 0.05) 47

4.5 Top-10 Largest Accuracy Gaps Between Toolkits 48

4.6 Mann-Whitney U-test Results for Algorithms: Number of Datasets with
Significantly Different Accuracy Distributions (p < 0.05) 49

4.7 Top-10 Largest Disagreements Between Toolkits Yet Having High
Agreement with Ground Truth . 50

5.1 Statistics on Datasets . 52

5.2 Bottom-5 and Mean Consistencies for Affinity Propagation; Lower ARI
Values Mean Stronger Disagreement 53

5.3 Highest Accuracy Margins for Affinity Propagation 56

5.4 Top-5 Accuracy Gaps after Controlling for #Iterations 57

xiii

LIST OF TABLES
(Continued)

Table Page

5.5 R: Top-5 Differences in #Iterations Across Runs 61

5.6 R: Top-5 Differences in ARI Across Runs 61

5.7 Accuracy for DBSCAN (ARI w.r.t. Ground Truth): Default (top);
Controlled for eps (center); Heuristic for minPts (bottom) 63

5.8 Bottom-5 and Mean Consistencies for DBSCAN 64

5.9 Accuracy for Hierarchical Agglomerative Clustering: Default (top); with
Scikit-learn’s Default Linkage Ward (bottom) 67

5.10 Bottom-5 and Mean Consistencies for Hierarchical Agglomerative
Clustering . 68

5.11 Number of Datasets that Have Inconsistencies for K-means for Each
Controlling Step . 70

5.12 Bottom-5 Consistencies for K-means for Each Controlling Step 71

6.1 Annotations on Clustering implementations. 79

6.2 Number of Inconsistent Datasets for Affinity Propagation. 80

6.3 Number of Inconsistent Datasets for K-means. 81

6.4 Program Size and Program Effort. 82

xiv

LIST OF FIGURES

Figure Page

2.1 Different clusterings, U and V, of the same underlying 4-point dataset, and
the resulting ARI. 7

2.2 K-means pseudocode. 13

2.3 Hierarchical Agglomerative pseudocode. 14

2.4 DBSCAN pseudocode. 15

2.5 Affinity Propagation pseudocode. 16

3.1 SmokeOut architecture. 17

3.2 Distribution shapes and their corresponding labels; the red dotted vertical
line indicates the median while the yellow dotted line is the mean. . . 21

4.1 Testing for variation across runs. 37

4.2 Testing for variation across toolkits. 41

4.3 EM (Gaussian Mixture): differences between toolkits on two datasets,
dermatology and prnn-crabs. 42

4.4 Testing for variation across algorithms. 43

4.5 Toolkit disagreement. 44

5.1 Affinity Propagation’s accuracy vs. #iterations in Scikit-learn and R. . . 54

5.2 Lose-lose due to over-iterating in R (orange dashed line); note the higher
#iterations and lower final accuracy compared to Scikit-learn (blue). . 55

5.3 Under-iterating – premature termination – leads to lower accuracy in
Scikit-learn (blue solid line) compared to R (orange dashed line). . . . 56

5.4 ARI vs. #iterations: Scikit-learn predicted (green crosses), Scikit-learn
default (blue triangles), R default (orange circles); for legibility, x-axis
is logarithmic. 58

5.5 Noise insertion code. 59

5.6 Differences due to noise, after controlling for #iterations: by default,
Scikit-learn would terminate quickly and at low accuracy (blue).
Forcing Scikit-learn to keep iterating improves accuracy (green, dotted
line). R’s accuracy shown in orange dashed line. 60

6.1 AP: Accuracy distribution for sckit-learn and R on dataset tokyo1. 75

xv

LIST OF FIGURES
(Continued)

Figure Page

6.2 Architecture. 76

6.3 Excerpt from Python Affinity Propagation; functions initial variables
and iteration variables with annotations are inserted. 84

6.4 Excerpt from Java Affinity Propagation; functions initialPhase and
iterationPhase. 85

8.1 Mean ARI (linear scale) vs. mean time (log scale). 89

xvi

CHAPTER 1

INTRODUCTION

1.1 Introduction

Cluster analysis (Clustering) is an unsupervised learning technique used to group

together entities that are related or share similar characteristics. While clustering

is a well-established area with research going back to the 1950s, there is a pressing

need for approaches to testing clustering implementations due to several converging

factors.

First, supervised and unsupervised learning have started to permeate software

products, from “smart” home devices [15] to self-driving platforms [42] and predictive

analytics [45]. These implementations make critical decisions themselves or are used

to aid decision-making (e.g., autonomous driving or financial fraud detection).

Second, there has been a proliferation of clustering implementations, mostly

in the form of software toolkits (e.g., MATLAB and R each offer more than 100

clustering packages [6, 7]). These implementations are run by millions of users [9, 33]

including non ML-experts (from life scientists to medical professionals) who should

be able to assume that the implementations are correct.

Third, software engineers are under pressure to incorporate/adopt Machine

Learning into software products and processes [18,21,35]; engineers should be able to

(reasonably) assume that clustering implementations are reliable and interchangeable,

i.e., for a given algorithm, its implementation is correct and has no negative impact

on the clustering outcome.

In Table 1.1 we illustrate these issues by highlighting nondeterminism and

inconsistency in widely used clustering implementations when run on critical datasets:

security, safety, public health, etc. This table shows two major issues. First, clustering

1

Table 1.1 Nondeterminism and Inconsistency Issues in Clustering Implementations

Issue Nondeterminism Inconsistency Inconsistency Inconsistency

Clustering Algorithm Affinity Prop. Affinity Prop. DBSCAN Hierarchical

Implementation R Scikit-learn Scikit-learn/R/Matlab Scikit-learn/R

Dataset vs R vs MLpack vs Matlab

Coal mine seismic risk •

Pest damage prediction • • •

Satellite-based oil spill detection • •

Forecasting Ozone action days •

Air pollution-mortality link •

Predicting corporate bankruptcy • • •

F-16 controls (ailerons) •

F-16 controls (elevators) •

Credit card fraud • •

implementations are nondeterministic (second column): the same implementation,

run repeatedly on the same dataset, e.g., “Credit card fraud”, yields different

clusterings. Second, different implementations of the same clustering algorithm

are inconsistent (columns 3–5): different implementations run on the same dataset,

e.g., “Pest damage prediction”, or “Predicting corporate bankruptcy”, yield different

clusterings. When used in high-stakes domains, nondeterminism and inconsistency

can have severe consequences.

1.2 Research Contributions

Prior research efforts have produced many clustering algorithms, and these algorithms

have been implemented in numerous toolkits. But prior work has not questioned

the clustering implementations’ correctness or reliability. For example, developers

use clustering optimistically assume that algorithms’ implementations are correct,

accurate, and generally reliable. However, ensuring clustering correctness, or even

specifying clustering correctness, remain distant goals. Therefore, we propose

differential clustering approaches to measure and validate the determinism and

2

consistency across toolkits. This dissertation makes analytical contributions –

statistical approaches for exposing the diverse root causes of nondeterminism or incon-

sistency: default parameter settings, noise insertion, distance metrics, termination

criteria. This dissertation also makes practical contributions – an annotation and

tracing-based approach to locate nondeterminism and inconsistency’s root causes.

We introduce SmokeOut (Chapter 3), a tool that leverages the wide availability

of clustering implementations and datasets with ground truth to test clustering imple-

mentations (while controlling for datasets and algorithms). Crucially, SmokeOut does

not require an explicit specification associated with an implementation. SmokeOut

uses a suite of differential clusterings coupled with a statistics-driven approach to

help developers measure the determinism and accuracy (absolute, as well as relative

to other toolkits) of a given implementation. In Section 3.4, we present the SmokeOut

results. We now present a few highlights for our findings:

1. Deterministic algorithms have nondeterministic implementation across toolkits.

2. Nondeterministic algorithms have a wide range of outcomes: the variations
across toolkits and variation across runs can be severe.

We also propose a statistically rigorous approach that couples differential

clustering to with help developers (or toolkit testers) find statistically significant

clustering accuracy differences. Our approach has four tests and we expose variations

in a statistically rigorous way. Statistical tests show variations across runs shown in

Section 4.1, variations across toolkits in Section 4.2 and variations across algorithms

in Section 4.3.

We quantify implementation-induced nondeterminism and inconsistency of

deterministic clustering algorithms, expose their root causes, and show how they

can be alleviated, which in turn can improve both efficiency and effectiveness. Three

algorithms are studied: Affinity Propagation (Section 5.2), DBSCAN (Section 5.3),

and Hierarchical Agglomerative Clustering (Section 5.4).

3

This dissertation proposes an approach to automatically detect inconsistency

(Section 6.2) of clustering algorithms via dynamic analysis, using an annotation

framework (Section 6.3). This approach focuses on scikit-learn, R, and Elki toolkits.

1.3 Dissertation Outline

The remainder of this dissertation is organized as follows.

Chapter 2 presents background material, definitions, and the experimental

setup. Clustering background is discussed in Section 2.1. Section 2.2 discusses

clustering accuracy measures. Section 2.3 defines determinism and consistency

formally. The widely-popular clustering toolkits we studied (MATLAB, MLpack,

R, Scikit-learn, Shogun, TensorFlow, WEKA) are discussed in Section 2.4. The

clustering algorithms used in our study are discussed in Section 2.5.

Section 3.1 presents SmokeOut, the first approach for differential testing of

clustering implementations. To characterize clustering outcomes and present the

results in an intuitive way, we introduce a concise, yet effective and statistically

rigorous, 5-label system that captures distribution shapes (Section 3.3). Section 3.4

presents the SmokeOut results.

A statistically rigorous approach to testing clustering implementations is

presented in Chapter 4: statistical tests on whether accuracy varies across runs

(Section 4.1) and tests on variations across toolkits (Section 4.2). Section 4.3 shows

the toolkit’s impact when comparing algorithms and Section 4.4 tests on how different

toolkits “disagree”.

Chapter 5 exposes and explores the various causes of nondeterminism and

inconsistency in deterministic clustering algorithms; we study 528 datasets, of which

400 are medical datasets (Section 5.1.1). Our quantitative analysis exposes several

root causes of nondeterminism for three deterministic algorithm: Affinity Propagation

4

(Section 5.2), DBSCAN (Section 5.3), and Hierarchical Agglomerative Clustering

(Section 5.4).

Chapter 6 proposes an approach to automatically detect inconsistency (Section 6.2)

of clustering algorithms by using dynamic analysis with annotation framework

(Section 6.3). We evaluate the effectiveness of our approach on Scikit-learn, R, and

Elki in Section 6.4.

Chapter 7 reviews related work, comparing our approach with other cluster

comparison studies as well as Machine Learning/Neural Networks reliability work.

Chapter 8 discusses several directions for future work.

5

CHAPTER 2

BACKGROUND

This chapter presents the definitions, metrics, datasets, toolkits, and clustering

algorithms we used throughout the dissertation.

2.1 Clustering Definition

Given a set S of n points (d-dimensional vectors in the Rd space), a clustering

is a partitioning of S into K non-overlapping subsets (clusters) S1, . . . , Si, . . . , SK

such that intra-cluster distance between points (that is, within individual Si’s) is

minimized, while inter-cluster distance (e.g., between centroids of Si and Sj where

i 6= j) is maximized [22].

2.2 Measuring Clustering Accuracy

Evaluating the performance of a clustering algorithm is not trivial (as compared to,

for instance, measuring precision and recall for a supervised classification algorithm).

There are a myriad metrics for comparing two clusterings (partitionings) C and C ′

of an underlying set D, e.g., Mutual Information based scores [51], V-Measure [46].

The adjusted Rand index (ARI), introduced by Hubert and Arabie [34] is

an effective and intuitive measure of clustering outcomes: it allows two different

partitioning schemes of an underlying set D to be compared. Multiple surveys and

comparisons of clustering metrics have shown that ARI is the most widely used [49],

most effective, as well as very sensitive [40]. Concretely, assuming two clusterings

(partitionings) U and V of S, the ARI measures how similar U and V are. The ARI

varies between −1 and +1, where ARI = +1 indicates perfect agreement, ARI = 0

corresponds to independent/random clustering, and ARI = −1 indicates “perfect

disagreement”, that is completely opposite assignment.

6

Per Vinh et al. [52], using the notation “N11 for the number of pairs that are

in the same cluster in both U and V ; N00 as the number of pairs that are in different

clusters in both U and V ; N01 as the number of pairs that are in the same cluster in

U but in different clusters in V ; and N10 as the number of pairs that are in different

clusters in U but in the same cluster in V ” [52] we have:

ARI(U, V) =
2(N00N11 −N01N10)

(N00 +N01)(N01 +N11) + (N00 +N10)(N10 +N11)

x	

x	x	

x	 x	

x	x	

x	

N00 = 2
N01 = 2
N10 = 2
N11 = 0

ARI = -0.5

U V

x

x	x	

x	

x	x	

x	

N00 = 1
N01 = 2
N10 = 2
N11 = 1

ARI = -0.33

U V

x	

x	x	

x	 x	

x	x	

x	
N00 = 2
N01 = 0
N10 = 0
N11 = 4

ARI = 1

U V

U

x

x	x	

x	

V

x	

x	x	

x	

x	

N00 = 2
N01 = 1
N10 = 2
N11 = 1

ARI = 0

Figure 2.1 Different clusterings, U and V, of the same underlying 4-point dataset,
and the resulting ARI.

7

In Figure 2.1 we illustrate how the same 4-point dataset can be clustered in four

different ways, which leads to four different ARIs: -0.5, -0.33, 0, and 1, respectively.

Notice how the ARI intuitively captures the similarity of various clusterings: in the

top clusterings, U and V are strongly dissimilar – no two points are in the same cluster,

hence the negative ARI = -0.5; in the second clustering, two points appear in the same

cluster, hence the smaller dissimilarity ARI = -0.33; the third clustering, ARI = 0, is

usually called “independent”; finally, the fourth clustering is the “perfect agreement”

case hence ARI = 1.

2.3 Determinism and Consistency

In Table 1.1 we have presented two serious issues, nondeterminism and inconsistency,

and defined them informally. We now proceed to defining them formally.

Determinism. A deterministic clustering of dataset D yields clustering

solutions C ′R that are isomorphic to CR. A clustering implementation, i.e., a toolkit

implementing a deterministic algorithm, is deterministic if two different runs R and

R′ of the implementation on the same dataset D yield isomorphic clusterings CR and

CR′ .

Consistency. Two clustering implementations I1 and I2 are consistent if they

yield isomorphic clusterings C1 and C2 when run on the same dataset D.

2.4 Toolkits

We now discuss the toolkits used in our studies and evaluation. We chose eight

widely-used ML toolkits: MATLAB, MLpack, R, Scikit-learn, Shogun, TensorFlow,

WEKA, Elki. The popularity of these toolkits is apparent in many ways: multi-million

user bases, e.g., MATLAB and R; TensorFlow’s 1,600+ GitHub contributors [4]

or the abundance of S&P 500 companies that use TensorFlow [1]; Scikit-learn is

used by popular services such as Spotify, Evernote, or Booking.com [13]; Pentaho

8

Corporation acquired an exclusive licence to use Weka for business intelligence; Elki

has an emphasis on unsupervised methods in cluster analysis.

There are plenty of libraries or platforms supporting clustering analysis. Scikit-

learn, Shogun and TensorFlow are Python libraries. R’s clustering functions are

developed in stat library, apcluster library and dbscan library. MATLAB has its own

Statistics and Machine Learning Toolbox. MLpack is an intuitive, fast, and flexible

C++ machine learning library. WEKA and Elki are Machine Learning and Data

Mining tools that are developed on Java.

2.5 Clustering Algorithms

We presented the clustering algorithms used for testing in this section.

K-means [?] aims to cluster the observations (points in S) into K distinct

clusters, where observations belong to the clusters with the nearest mean. The goal

is to minimize the sum of all intra-cluster distances. The algorithm starts from K

selected initial points as “centroids” (cluster centers); as we shall see, these centroids

ultimately play a crucial role in the algorithm’s effectiveness.

Figure 2.2 shows the algorithm’s pseudocode. K-means has two phases: initial-

ization and iteration. In the initialization phase, the algorithm is nondeterministic

as it randomly picks K points as initial centroids {C1, . . . , CK}. In the deterministic

iteration phase, each data point is assigned to the closest center Cj and centers Cm

are recomputed (as means of updated clusters). The iteration phase ends when the

clusters are not changing anymore (Cm is not changing); or when the objective (sum of

squared Euclidean distances of observations from their cluster centers) is minimized;

or when a predefined maximum number of iterations is reached (iter≥MAX ITER).

Therefore, for the same starting points, we would expect different implementations to

converge to the same result. However, upon examining the source code, we have found

that different toolkits make different choices (e.g., stopping conditions or tie-breaking)

9

that introduce inconsistency. Specifically, K-means is NP-hard when seeking a global

optimum, so toolkits employ heuristics which substantially improve efficiency, but

risk converging to a local optimum.

K-means++ [5]was designed to improve K-means by choosing the starting

points more carefully so they are farther apart. Theoretically, this improved version

ensures that the algorithm is less likely to converge to local minima.

Gaussian/EM [20] aka Gaussian mixture clustering is a model-based approach:

clustering is first done using a model (i.e., a parametric distribution such as a

Gaussian). Each cluster is defined by an initial random model and the dataset is

composed of the mixture of these models. Then, the model/data fitness is optimized

– a common optimization is Expectation-Maximization.

Spectral clustering [36] computes eigenvalues of the similarity matrix between

the data points to reduce the dimensionality of the original data. After the reduction,

a clustering algorithm, e.g., K-means, is applied on the reduced-dimensionality data.

Hierarchical clustering [41] – we use its agglomerative variant – proceeds

bottoms-up by first considering each point a cluster and then iteratively merging

clusters based on linkage criteria (minimizing distance between points, usually).

Figure 2.3 shows the algorithm’s pseudocode. Initially, each point di is its own

cluster. Next, inter-cluster distances d(Ci,Cj) are computed and the closest clusters

Cmi,Cmj are merged. The algorithm continues until it reaches the desired number of

clusters k.

DBSCAN [25] forms clusters by looking for “dense” regions, i.e., regions with

at least minPoints separated by a maximum distance eps. DBSCAN’s number is

fixed: in the general scenario we explore here, it practically executes O(N2)steps.

Figure 2.4 shows the algorithm’s pseudocode. For each unvisited point p, the

algorithm “scans” its neighborhood (within eps distance). If there are at least minPts

in this neighborhood, p is a “core point” and will start a new cluster c; all of p’s

10

neighbors, and recursively their neighbors within eps, will be added to c. If, on the

other hand, p does not have enough neighbors, it is declared noise and will not be

part of any clusters.

Affinity Propagation (AP) [28] forms clusters by identifying “exemplars”,

i.e., one representative per cluster; initially all points are considered potential

exemplars, and affinity (belonging) to a certain cluster is constructed iteratively

via message-passing; the algorithm uses a damping factor – typically in the interval

[0.5, 1) – to avoid moving points back-and-forth between clusters. AP proceeds in

two phases: initialization followed by iteration. Figure 2.5 shows the algorithm’s

pseudocode. AP is convergence-based, that is, it iterates until a convergence metric

indicates the clusters are stable, or an iteration limit has been reached. Since these

conditions (or parameters) are implementation-specific, nondeterminism can ensue.

During initialization, the algorithm deterministically picks the K initial points that

are cluster representatives (exemplars). In the iteration phase, the current clustering

solution C is refined into Cnew at each iteration. If the distance between the current

and previous iteration’s solution d(C,Cnew) is lower than a predefined threshold ε, the

algorithm might have reached convergence (tracked by c). The iteration phase ends

when either the clusters are not changing anymore (c >= CONV ITER) or when a

predefined total iteration limit (i >= MAX ITER) has been reached. Examining the

source code of different implementations for the same algorithm reveals that different

toolkits use different default values for CONV ITER and MAX ITER, which can lead

to inconsistency.

Some toolkits do not support all seven algorithms; Table 2.1 shows the

supported algorithm/toolkit combinations; in all, there were 33 algorithm-toolkit

configurations.

11

Table 2.1 Toolkit/Algorithm Configurations

M
A

T
L

A
B

M
L

p
ac

k

R S
ci

k
it

-l
ea

rn

S
h
og

u
n

T
en

so
rF

lo
w

W
E

K
A

E
lk

i

kmeans++ X X X X X X X X

kmeans X X X X X X X

spectral X X

hierarchical X X X X

gaussian X X X X X

dbscan X X X X

apcluster X X X

2.6 Conclusion

In theory, implementations of deterministic clustering algorithms should produce the

same clustering solution across runs and toolkits. In practice, we discovered that this

assumption breaks, leading to nondeterministic implementations and inconsistency

across toolkits. In the rest of the dissertation we study these issues and propose

solutions.

12

/∗ K−MEANS ∗/

// Input : dataset S = x1, . . . , xn; number of clusters K

// start with empty clusters

S1 = ∅; . . .; SK = ∅;

// INITIALIZATION PHASE: initialize centroids randomly

// {C1, . . . , CK} = {xr1 , . . . , xrK}

iter = 0;

do {// ITERATION PHASE

// Assignment step: add each point xi to its closest centroid

for (i=1; i <= n; i++) {

//‘‘ tie ” exists when there are at least one minimum

m = argmin
K∑
j=1
‖xi − Cj‖

Sm = Sm ∪ {xi}

}

// Update step: recompute centroids to be the mean of the updated clusters

for (j=1; j <= K; j++) {

Cm = (
|Cm|∑
l=1

xlm)/|Cm|

}

iter ++;

}

while ((clusters still changing || objective > minObjective)

&& iter < MAX ITER);

Figure 2.2 K-means pseudocode.

13

procedure HierarchicalAgglomerativeClustering(D,k) :

// D = {d1,d2,...,dn}

// start with N singleton clusters

C = {{d1},{d2},...,{dn}};

do {

mi,mj = argmin (d(Ci,Cj)) over all (i,j) pairs in C

C ′ = merge(Cmi,Cmj);

remove Cmi,Cmj from list of clusters C;

add C ′ to list of clusters C;

}

while (|C| > k);

return list of clusters C;

Figure 2.3 Hierarchical Agglomerative pseudocode.

14

procedure DBSCAN(D, eps, minPts):

C = ∅;

foreach p in D {

if (p not in a cluster) {

N = set of points eps−reachable from p;

if (|N| < minPts) {

mark p as noise;

}

else {

c = newCluster();

add c to list of clusters C;

foreach n in N {

addToCluster(c,n);

N’ = set of points eps−reachable from N;

N = N ∪ N’;

}

}

}

}

return list of clusters C;

Figure 2.4 DBSCAN pseudocode.

15

procedure AffinityPropagation(D, K):

/∗ initialize K exemplars (cluster centers) ∗/

C = {{dc1},{dc2},...,{dcK}};

i = 0;

c = 0;

do {

// refine clusters into Cnew

Cnew = refine (C);

if (d(C,Cnew) < ε)

c++; // no substantial changes in last c iterations

else

c = 0; // substantial changes

C = Cnew; // update solution

i++;

}

while ((c < CONV ITER) && (i < MAX ITER));

return list of clusters C;

Figure 2.5 Affinity Propagation pseudocode.

16

CHAPTER 3

THE SMOKEOUT CLUSTERING TESTBED

To investigate the assumption that clustering implementations are deterministic and

consistent (and consequently, toolkits implementing the same algorithm are inter-

changeable), in this chapter we introduce the SmokeOut approach and tool (testbed).

SmokeOut uses a suite of differential clusterings coupled with a statistics-driven

approach to help developers measure the determinism, accuracy, and relative accuracy

of clustering toolkits (implementations).

3.1 SmokeOut Architecture

Crucially, SmokeOut does not require an explicit specification associated with an

implementation, as it uses a suite of differential clusterings coupled with accuracy

Clustering	Toolkit	N	
Clustering	Toolkit	2	

Clustering	Toolkit	1	
.	.	.		

Clustering	Toolkit	
under	Test	(CTT)	

Datasets	

Multiple	runs	 Accuracy	distributions	

Nondeterminism	
Low	accuracy	

Errors	

Absolute	accuracy	

Relative	accuracy	

SmokeOut	

Figure 3.1 SmokeOut architecture.

17

distributions to automatically quantify issues such as nondeterminism and incon-

sistency. SmokeOut can also be used to detect low-accuracy anomalies; for this, it

leverages the wide availability of datasets that come with “ground truth” (e.g., as

available from classification repositories). More generally, SmokeOut can be used for

a wide range of test scenarios for clustering implementations (while controlling for

datasets and algorithms).

Figure 3.1 shows SmokeOut’s architecture. Let CTT be a new “Clustering

Toolkit under Test” (bottom left of the figure), that is, an implementation of a specific

clustering algorithm. CTT is tested as follows:

1. CTT is run multiple times on the same dataset to gauge (potential) non-

determinism. For this we run statistical analyses on the accuracy distributions.

2. CTT ’s accuracy distributions are compared with other implementations of

CTT ’s algorithm (“Clustering Toolkit 1” . . . “Clustering Toolkit N”); which

allows us to measure CTT ’s relative accuracy, or compare accuracy when ground

truth is not available.

3.2 Datasets

We chose PMLB (Penn Machine Learning Benchmark), a benchmark suite that

includes “real-world, simulated, and toy benchmark datasets” [44]. PMLB was

designed to benchmark ML implementations and avoid imbalance across meta-

features (which often plagues handpicked datasets). PMLB is a collection of 166

datasets, of which we used 162; we excluded connect-4, poker, mnist, and kddcup due

to their excessive size – running these hundred of times would be prohibitive. The

following table contains descriptive statistics for the 162 datasets.

Datasets have, on average, 809 instances (that is, points to be clustered) and

the mean number of features (the number of attributes, or dimensions d) is 15. PMLB

18

Table 3.1 Descriptions for the PMLB Datasets

Min Max Geom. mean

Instances 32 105,908 809.25

Features (attributes) 2 1,000 15.41

K (# of clusters) 2 26 3.18

comes with ground truth, which allows us to measure clustering accuracy. About half

the datasets have two clusters (K = 2), while for the rest we have 3 ≤ K ≤ 26.

Table 3.2 Categories for the PMLB Datasets

Category Percentage

Medical/Health 24%

Biology, Biochemistry, Bioinformatics 15%

Physics, Math, Astronomy 11%

Social, Census 10%

Sports 7%

Financial 7%

Image recognition 6%

Synthetic datasets 6%

IT, AI 4%

Linguistics 3%

Miscellaneous 7%

We categorize the nature of each dataset and present the category breakdown

in Table 3.2. We point out several things: the datasets are quite representative, as

they cover a wide range of domains, from scientific to social to financial; medical

19

data (discussed next) has the highest proportion, 24%; and the presence of synthetic

datasets, 6%, to increase the variety of data density distributions.

To illustrate the need for clustering reliability, we note that 38 of the real-

world datasets in PMLB are clustering tasks from the medical/health domain, e.g.,

contain patient data and outcomes. For example, four datasets are dedicated to breast

cancer; three are focused on heart disease; other datasets involve predicting diabetes,

hypothyroidism, appendicitis, etc.

3.3 Distribution Shapes

Since clustering implementations are used as “black boxes”, SmokeOut users can also

get an idea of what to expect from a certain toolkit or algorithm: will clustering

performance be consistently good? will it be consistently bad? will it be mostly good

with an occasional “bad” run? will it be mostly bad with an occasional “good” run?

will it be good for half the runs, and bad for the other half?

There are many statistical parameters that characterize a distribution, but no

single parameter to give us the answers to the previous questions. To this end,

we introduce a simple, concise, five-label system that can succinctly characterize a

distribution along the lines drawn above. The labels capture distribution shapes

(illustrated in Figure 3.2 and described shortly) and are defined as follows:

R, which stands for outliers to the Right of the distribution; that is, clustering

accuracy can sometimes be high; put prosaically, some runs are “good”.

L, which stands for outliers to the Left of the distribution; that is, clustering accuracy

can sometimes be low; put prosaically, some runs are “bad”.

LR, when both good and bad outliers exist.

B, which stands for Bimodality – the distribution is bimodal, where a set of values

if low and one is high.

20

U, aka Uniform values – no outliers.

R (skewed) L (skewed) LR B U

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4

0

1

2

−0.50 −0.25 0.00 0.25 0.50

de
ns
ity

0.00

0.05

0.10

0.15

0.0 2.5 5.0 7.5

0.03925

0.03950

0.03975

0 1 2 3 4

R (non-skewed) L (non-skewed)

Figure 3.2 Distribution shapes and their corresponding labels; the red dotted
vertical line indicates the median while the yellow dotted line is the mean.

Figure 3.2 shows these distribution shapes. For L and R we have two cases –

when the distribution is skewed (top) and non-skewed (bottom) which will require us

to be careful with outlier detection. The rest of the shapes, LR, B, and U are only

applicable when the distribution is non-skewed (hence a single corresponding figure).

This five-label system, along with the minimum & maximum accuracy attained

in our experiments serve as effective indicators of expected clustering performance

over repeated runs: they show whether the algorithm is stable and accurate. We now

proceed to define the statistical underpinnings of the label system: we first check for

a bimodal distribution; if the distribution is not bimodal, we test for outliers.

3.3.1 Bimodality (B)

We assign the label B when the underlying distribution is bimodal. We use the

bimodality coefficient [47]:

b =
g2 + 1

k + 3(n−1)2
(n−2)(n−3)

where n is the number of items in the sample, g is the skewness and k is the kurtosis.

Intuitively, a higher b indicates a bimodal distribution, whereas a lower b indicates

a unimodal one; we use a threshold value of 0.45, i.e., when b > 0.45 we declare the

distribution bimodal.

21

3.3.2 Outliers (R, L, LR)

When the distribution is not bimodal, we need a statistical measure to detect outliers,

even in the presence of skewness. We start with Medcouple (MC): introduced by

Brys et al. [17], MC is a simple yet robust single parameter that can characterize

distribution skewness – its shape and asymmetry. The MC captures the distribution’s

“tilt”: negative MC’s indicate left-skewed distributions while positive MC’s indicate

right-skewed distributions. For practical reasons we use −0.1 ≤ MC ≤ 0.1 as

indicator of a symmetric distribution; we consider MC values lower than −0.1 (or

greater that 0.1) to indicate left-skewness (or right-skewness, respectively).

We use the standard notations: Q1 is the first quartile (25% percentile), Q3

is the first quartile (75% percentile); IQR (interquartile range) is IQR = Q3 − Q1;

range r is r = Max−Min. The table below indicates the adjusted ranges, i.e., outlier

thresholds, depending on skewness:

Skewness Left threshold Right threshold

Left Q1 Q3 + 1.5e4MCIQR

Right Q1 − 1.5e−4MCIQR Q3

Non-skewed Max− 0.8r Min+ 0.8r

For the non-skewed case, the thresholds allow us to detect the lowest 20% “bad”

outliers and the highest 20% “good” outliers. For skewed distributions, the outlier

thresholds have to be moved to the right (for left-skewed distributions) and left,

respectively (for right-skewed distributions) to account for the shift in the “bulk” of

the distribution and avoid declaring bulk points as outliers. A vertical comparison

between the skewed and non-skewed illustrations (Figure 3.2, the four graphs on the

left) makes this point.

22

We detect outliers, and assign labels, as follows. If there are points that lie to

the left of the adjusted range (that is, lower than the Left threshold), we assign label

L. If there are points that lie to the right of the adjusted range (that is, higher than

the Right threshold), we assign label R. If there are points that lie both to the left

and the right of the adjusted range, we assign label LR. In other words, we treat

tailed data as outliers.

Finally, if there are no outliers, we use the U label – that is, performance is

expected to be stable/quasi-constant/uniform.

3.4 Results

3.4.1 SmokeOut Methodology

SmokeOut was run 30 times for each algorithm, so we can draw meaningful statistical

conclusions; we used default settings for all toolkits. In all, across all algorithms and

toolkits, there were 152,276 runs. We use the following format: for each of these

30 runs, we obtain 30 clustering outcomes. We compare these clusterings against

Ground Truth, and measure the ARI. Next, we characterize the ARI distribution by

indicating the min value, the max value, and the shape (that is, one of B, R, L, LR,

U). Let us take the first row of Table 3.3 as an example, where K-means was run on

dataset collins using SKlearn, R, MLpack, MATLAB, Shogun and TensorFlow. For

SKlearn, across the 30 runs, we observed a minimum accuracy of 0.54, a maximum

accuracy of 0.7, and the distribution shape is LR (both left and right outliers).

That is, the expected accuracy is in the interval [0.54, 0.7], with both left and right

outliers possible. The next row, confidence, however, has a bimodal distribution with

minimum 0.36 and maximum 0.71 hence running the toolkit repeatedly will yield

accuracy values either in the neighborhood of 0.36 or in the neighborhood of 0.71, i.e.,

a 2× variation from run to run! Note that the numbers discussed so far compare the

clustering outcome against Ground Truth. The final set of columns, “T.A.” (toolkit

23

agreement), indicates the ARI when comparing toolkits against each other; in other

words, we want to know if toolkits agree with each other (though they might disagree

with Ground Truth). This is computed pairwise, toolkit vs. toolkit, hence we have

30×30 = 900 comparisons per toolkit pair. Based on these comparisons, we compute

the ARI and indicate the minimum ARIs, as well as the toolkit combinations.

Finally, each table has three sets of rows: 25 “regular” rows on top where we

show results for the top-25 highest accuracy for that algorithm. The Median and

Geometric Mean are computed over the 25 datasets shown in the table. The last two

rows, Median (all) and Geometric Mean (all), are computed over all 162 datasets.

3.4.2 K-means with Varying Starting Points

The K-means algorithm requires “starting points”, that is, initial cluster centers –

with different starting points, the algorithm may converge to different minima. We

explored the variation in outcome by randomly picking different starting points from

the dataset to compare difference between toolkits.

Specifically, in each run we pick K (according the number of clusters in the

dataset) points from the datasets and use them as initial centroids (cluster centers).

We ran R in the default configuration (the ‘R’ grouped columns) as well as 100-

iterations configuration (‘R100iter’ grouped columns) because by default R stops

iterations early. Table 3.3 shows the results; we now proceed to discuss the results.

A bad choice of starting point can be worse than random . Note the fifth

row, house-votes-84: all toolkits except R have a minimum value of -0.02 (recall that

ARI = 0 corresponds to random clustering); moreover, these toolkits’ distributions

are bimodal (marked with B) meaning the minimum is not an outlier (which would

be marked as L).

MAX performance (best case). No toolkit outperforms consistently. For

example, on dataset flags, all toolkits except R100iter have max accuracy of 0.11–0.15.

24

Table 3.3 K-Means: Variation Due To Starting Points

Dataset SKlearn R R100iter MLpack Matlab Shogun TensorFlow T.A.

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

A
lg
o

collins .54 .70 LR .56 .65 B .54 .70 LR .54 .70 LR .54 .70 LR .54 .70 LR .54 .70 LR .50 ALL

confidence .36 .71 B .36 .71 B .36 .71 B .36 .71 B .36 .71 B .36 .71 B .36 .71 B .30 ALL

corral 0 .38 B 0 .38 B 0 .38 B -.01 .38 B 0 .38 B 0 .38 B 0 .38 B -.08 ALL

ecoli .47 .70 B .47 .69 B .47 .70 B .47 .70 B .47 .70 B .47 .70 B .47 .70 B .51 ALL

house-votes-84 -.02 .54 B .52 .54 U -.02 .54 B -.02 .54 B -.02 .54 B -.02 .54 B -.02 .54 B 0 ALL

iris .41 .73 B .41 .78 B .41 .73 B .41 .73 B .41 .73 B .41 .73 B .41 .73 B .41 ALL

mfeat-karhunen .48 .76 LR .47 .76 R .48 .76 LR .48 .76 LR .48 .76 LR .48 .76 LR .48 .76 LR .42 ALL

mfeat-pixel .50 .78 LR .51 .78 LR .50 .78 LR .50 .78 LR .50 .78 LR .50 .78 LR .50 .78 LR .41 MT/R

monk3 .09 .39 B .09 .39 B .09 .39 B .09 .39 B .09 .39 B .09 .39 B .09 .39 B -.01 ALL

mushroom 0 .37 B 0 .37 B 0 .37 B 0 .37 B 0 .37 L 0 .37 L 0 .37 L -.01 ALL

new-thyroid .16 .60 B .21 .60 B .16 .60 B .16 .60 B .16 .60 B .16 .60 B .16 .60 B .14 ALL

optdigits .57 .75 LR .52 .75 LR .57 .67 B .57 .75 LR .57 .75 LR .57 .75 LR .57 .75 LR .55 MT/R/R1/S/SH/T

promoters 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U 1 ALL

shuttle .17 .45 B .13 .45 LR .24 .45 B .24 .45 B .24 .45 B .24 .45 B .24 .45 B .19 MT/R/R1/SH/T

solar-flare 1 .08 .45 LR .08 .45 LR .08 .45 LR .08 .45 LR .08 .45 LR .08 .45 LR .08 .45 LR .19 ALL

solar-flare 2 .12 .54 LR .12 .54 LR .12 .54 LR .12 .57 LR .12 .54 LR .12 .54 LR .12 .54 LR .24 ALL

waveform-40 .25 .46 B .25 .25 U .25 .25 U .25 .46 B .25 .46 B .25 .46 B .25 .46 B .37 ALL

soybean .29 .49 LR .29 .44 B .29 .49 B .29 .49 LR .29 .49 LR .29 .49 LR .29 .49 LR .47 ALL

satimage .28 .52 B .30 .53 B .28 .52 B .28 .52 B .28 .52 B .28 .52 B .28 .52 B .38 MP/MT/R/R1/SH/T

pendigits .48 .62 B .47 .62 B .48 .62 B .48 .62 B .48 .62 B .48 .62 B .48 .62 B .52 MT/R/R1/S/SH/T

mofn-3-7-10 -.06 .38 B -.06 .38 B -.06 .37 B -.06 .38 B -.06 .38 B -.06 .38 B -.06 .38 B -.04 ALL

mfeat-pixel .50 .78 LR .51 .78 LR .50 .78 LR .50 .78 LR .50 .78 LR .50 .78 LR .50 .78 LR .41 MT/R

led7 .31 .49 LR .31 .50 LR .23 .49 LR .23 .49 LR .22 .49 LR .31 .49 LR .22 .49 LR .23 MP/MT/R1/S/SH/T

haberman -.01-.01 U -.01 .01 U -.01-.01 U -.01 .17 B -.01-.01 U -.01-.01 U -.01-.01 U -.01 ALL

flags -.01 .15 B 0 .11 LR -.01 .35 B -.02 .15 B -.01 .15 B -.01 .15 B -.01 .15 B -.04 MP/MT

dna .32 .45 B .24 .47 LR .33 .45 B .32 .45 B .32 .45 B .32 .45 B .32 .45 B .54 MT/R

balance-scale .04 .29 LR .04 .29 LR .04 .29 LR .04 .33 LR .04 .29 LR .04 .29 LR .04 .29 LR -.01 ALL

Median .28 .52 .29 .53 .25 .52 .25 .52 .25 .52 .28 .52 .25 .52 .30

Geometric Mean .25 .52 .27 .51 .25 .52 .25 .53 .25 .52 .25 .52 .25 .52 .26

Median (all) .01 .07 .01 .07 .01 .07 .01 .07 .01 .07 .01 .07 .01 .07 .30

Geometric Mean (all) .09 .16 .09 .16 .09 .16 .09 .17 .09 .16 .09 .16 .09 .16 .26

However, R100iter achieves three times better accuracy: .35! For haberman, with the

exception of MLpack, all toolkits’ max hovers around 0; hence, except MLpack, all

toolkits’ top performance is close to random.

MIN performance (worst case). house-votes-84 shows the danger of local

minima: all toolkits, except R, have mins of -0.02 (worse than random). Occasionally,

these toolkits will achieve high accuracy. However, R users are much better

“protected”: their min is essentially the same as their max (.52 min, .54 max).

25

Table 3.4 K-means++

Dataset SKlearn R R100iter MLpack Matlab Weka Shogun TensorFlow T.A.

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

A
lg
o

collins .56 .65 B .55 .65 B .57 .65 B .54 .70 B .65 .70 U .27 .38 LR .50 .70 LR .49 .64 LR .20 MP/W

confidence .58 .58 U .58 .65 B .58 .61 U .36 .71 B .57 .69 B .39 .71 LR .35 .71 B .36 .71 LR .05 MP/T

corral .13 .31 B -.01 .31 B .13 .31 B -.01 .31 B .13 .18 B -.01 .37 B -.01 .34 B -.01 .38 B -.09 MP/SH/W

ecoli .46 .53 B .46 .53 B .47 .53 B .42 .70 B .68 .70 U .44 .72 B .42 .70 B .44 .72 B .43 MP/W

house-votes-84 .54 .54 U .54 .54 U .54 .54 U .01 .54 B .54 .54 U -.02 .54 B -.02 .54 B -.02 .54 B -.01 MP/SH/T/W

iris .73 .73 U .73 .73 U .73 .73 U .41 .73 B .73 .73 U .42 .71 B .41 .73 B .71 .73 U .42 MP/SH/W

mfeat-karhunen .56 .76 LR .55 .70 LR .56 .75 LR .50 .70 LR .55 .66 B .45 .64 LR .50 .75 LR .51 .74 B .35 MP/W

mfeat-pixel .55 .69 B .56 .69 B .56 .75 LR .48 .67 LR .57 .61 U .49 .69 LR .49 .75 LR .52 .72 B .41 MP/W

monk3 .09 .09 U .09 .09 U .09 .09 U -.01 .39 B .07 .09 U -.01 .23 B -.01 .39 B .01 .09 B -.01 SH/T

mushroom .11 .11 U .11 .11 U .11 .11 U 0 .11 B .05 .11 B 0 .23 B 0 .11 B 0 .37 B -.07 T/W

new-thyroid .24 .62 B .57 .59 U .57 .59 U .16 .60 B .16 .59 B .43 .62 B .16 .59 B .16 .62 B .13 MP/MT/SH/T/W

optdigits .66 .67 U .67 .67 U .67 .67 U .52 .75 B .59 .67 B .50 .76 LR .57 .75 LR .57 .75 LR .44 SH/W

promoters 1 1 U 1 1 U 1 1 U 1 1 U 1 1 U -.01 .40 B 1 1 U 1 1 U -.01 ALL

shuttle 0 0 U .25 .27 U .16 .32 LR .14 .37 LR 0 .26 B .18 .27 B .24 .41 B 0 .45 B -.01 MP/T

solar-flare 1 .26 .44 B .25 .28 U .25 .45 B .07 .33 B .22 .25 U .03 .17 LR .07 .45 LR .06 .45 LR -.01 SH/W

solar-flare 2 .33 .56 LR .25 .57 LR .12 .55 LR .10 .48 LR .15 .28 B .07 .16 LR .09 .55 LR .13 .57 B .04 SH/W

vote .57 .58 U .58 .58 U .58 .58 U 0 .58 B .57 .58 U .57 .58 U .57 .58 U .57 .58 U -.01 MP/S/SH/T/W

spambase .03 .03 U .03 .03 U .03 .03 U .03 .03 U .03 .03 U -.03 .35 B .03 .03 U 0 .03 U -.06 ALL

dermatology .02 .02 U .02 .02 U .02 .02 U .01 .06 U .01 .06 U .31 .91 B .01 .08 B .01 .06 B -.02 MP/W

crx 0 0 U 0 0 U 0 0 U 0 0 U 0 0 U 0 .50 B 0 0 U 0 0 U -.01 MP/MT/S/SH/T/W

credit-a 0 0 U 0 0 U 0 0 U 0 0 U 0 0 U -.01 .50 B 0 0 U 0 0 U -.01 MP/S/SH/T/W

buggyCrx 0 0 U 0 0 U 0 0 U 0 0 U 0 0 U 0 .50 B 0 0 U 0 0 U -.01 MP/MT/S/SH/T/W

australian 0 0 U 0 0 U 0 0 U 0 0 U 0 0 U -.01 .50 B 0 0 U 0 0 U -.01 MP/MT/SH/T/W

appendicitis .31 .33 U .31 .31 U .31 .31 U -.06 .37 B .29 .29 U -.06 .37 B .29 .37 B .29 .37 B .07 MP/SH/T/W

Median .28 .48 .28 .42 .28 .49 .05 .44 .19 .28 .05 .50 .12 .49 .10 .50 -.01

Geometric Mean .29 .35 .31 .36 .31 .37 .17 .39 .28 .34 .16 .48 .21 .41 .21 .41 .08

Median (all) .02 .05 .02 .05 .03 .05 .01 .06 .02 .05 0 .15 .01 .07 .01 .07 -.01

Geometric Mean (all) .12 .14 .12 .14 .12 .14 .08 .15 .11 .14 .08 .20 .09 .16 .09 .16 .08

Instability, as revealed by distribution shapes. Recall that U indicates

“predictable” performance. However, the table shows the abundance of bimodality

and outlier-prone outcomes, i.e., B, L, R, LR. The last row shows the median values

for min- and max- accuracy, respectively. Notice how accuracy can vary from .25–.29

(min) to .52–.53 (max), indicating a large degree of instability.

3.4.3 K-means++

Table 3.4 shows the clustering outcomes when running K-means with starting

points generated according the K-means++ initialization algorithm. However, for

K-means++ we do not control how the starting points are chosen, as K-means++

26

is supposed to improve upon K-means with a better initialization. We now discuss

the findings.

No real improvement compared to random starting points. Despite

the fact that K-means++ was devised to improve upon K-means, in our experiments

K-means++ does not achieve higher accuracy compared with the random starting

points (Section 3.4.2). Indeed, in the last rows, showing the median values for min-

and max- accuracy, respectively, we observe that we are around the same values:

.22–.31 to .29–.54. However, there is an improvement in terms of stability – comparing

the shape labels in Table 3.3 and those in Table 3.4 we see more stability (more U’s).

Weka differs from the other toolkits. When using K-means++, we were

able to add Weka to our study (Weka does not permit specifying starting points hence

its absence from Section 3.4.2). Weka has interesting behavior, markedly different

from the other toolkits. For example, if we look at credit-a through australian datasets

(lower half of the table) we can see that no algorithm can break 0 (they achieve

0 min/max with a uniform distribution) whereas Weka has a bimodal distribution

with accuracies of up to 0.5. Unfortunately, for the “easy” promoters set where all

algorithms achieve a 1 score, Weka can only manage between 0.1 and 0.41.

Similarly, the agreement columns show that Weka has, in some cases, minimum

agreement with other toolkits (e.g., solar-flare 1, but it is never present when agreeing

with the maximum values. Even worse, on a large number of cases (not shown due

to space limits), all toolkits report a 100% agreement with each other except with

Weka!

We reached out to WEKA developers who suggested that we change WEKA’s

default configuration (turn normalization off) to improve its performance on this

particular dataset [8]. While turning off normalization improved the performance

on this dataset. We believe it is important for uniformity to run all toolkits with

27

default parameters, as per-dataset tweaking might affect behavior negatively for other

datasets.

MAX performance (best case). Similarly to K-means with random starting

points, for K-means++ no toolkit outperforms consistently. For example, on monk3,

Shogun and MLPack have a maximum accuracy of 0.39 where other algorithms do

not get higher than 0.09 (with the exception of Weka which have a maximum score

of 0.23), that is four times lower!

MIN performance (worst case). The minimum shows that even if

considering using a specific algorithm for drawing our starting points, the difference

min/max can be important. MLPack seems to be really sensitive as its min/max

can range greatly. A clear examples is solare flare 2 with a minimum of 0.1 where the

maximum was 0.49; similarly for vote where minimum is 0.01 and maximum is 0.59.

3.4.4 Hierarchical (Agglomerative)

Table 3.5 shows the results obtained with the hierarchical (agglomerative) clustering.

Deterministic runs. Unlike the previous algorithms, hierarchical is deter-

ministic, hence we expect no variation between runs. Indeed we find that for a given

toolkit, distribution is uniform (all U’s).

Difference across toolkits. What is concerning however, is the difference

between toolkits, e.g., on sets house-votes-84 (max is .59 for SKLearn, .67 for R,

.33 for Matlab) or balance-scale (max’s were .16, .17, and .12 respectively). For a

deterministic algorithm there should be no such variation.

Toolkit (dis)agreement. Excepting some specific cases, all toolkits agree

on their outcome as we have a large number of 1 as minimum values. A few

datasets however show some disagreement, e.g., car and solar-flare 1. However, for

a deterministic algorithm, there should be no such disagreement.

28

Table 3.5 Hierarchical

Dataset SKlearn R Matlab T.A.

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

A
lg
o

Hill Valley with noise 0 0 U 0 0 U 0 0 U 1 ALL

analcatdata germangss .01 .01 U .01 .01 U .01 .01 U 1 ALL

balance-scale .16 .16 U .17 .17 U .12 .12 U .29 MT/S

vote .49 .49 U .49 .49 U .49 .49 U 1 ALL

breast-cancer-wisconsin .28 .28 U .28 .28 U .28 .28 U 1 ALL

analcatdata aids -.02-.02 U -.02-.02 U -.02-.02 U 1 ALL

cmc .01 .01 U .03 .03 U .01 .01 U .46 R/S

analcatdata happiness .10 .10 U .10 .10 U .10 .10 U 1 ALL

backache -.01-.01 U -.01-.01 U -.01-.01 U 1 ALL

buggyCrx 0 0 U 0 0 U 0 0 U 1 ALL

analcatdata japansolvent 0 0 U 0 0 U 0 0 U 1 ALL

mfeat-karhunen .57 .57 U .57 .57 U .57 .57 U 1 ALL

ionosphere .18 .18 U .18 .18 U .18 .18 U 1 ALL

car 0 0 U 0 0 U -.01-.01 U .17 MT/R

solar-flare 1 .25 .25 U .25 .25 U .24 .24 U .61 R/S

pima .10 .10 U .10 .10 U .10 .10 U 1 ALL

house-votes-84 .59 .59 U .67 .67 U .33 .33 U .36 MT/S

allhypo .02 .02 U .02 .02 U .02 .02 U 1 ALL

tic-tac-toe 0 0 U 0 0 U -.02-.02 U -.08 MT/R

pendigits .55 .55 U .55 .55 U .55 .55 U .99 ALL

waveform-21 .31 .31 U .31 .31 U .31 .31 U 1 ALL

analcatdata asbestos .11 .11 U .11 .11 U .11 .11 U 1 ALL

flags .02 .02 U .02 .02 U .03 .03 U .97 ALL

soybean .40 .40 U .38 .38 U .38 .38 U .82 MT/S

analcatdata authorship .76 .76 U .77 .77 U .77 .77 U .94 ALL

Median .10 .10 .10 .10 .10 .10 1

Geometric Mean .20 .20 .20 .20 .19 .19 .79

Median (all) .04 .04 .03 .03 .02 .02 1

Geometric Mean (all) .13 .13 .13 .13 .12 .12 .72

29

Chapter 6 shows how we can automatically find the root causes of these

determinism violations.

3.4.5 EM/Gaussian

Table 3.6 shows the results on Gaussian mixture.

MAX performance (best case). This algorithm stands out in that multiple

toolkits achieve max performance of 0.9 or higher (Matlab, for instance, does so on

four datasets, while SKlearn and Weka do so on three!).

MIN performance (worst case). house-vote-84 poses difficulties for all

toolkits (minimum is around -0.03 to -0.01) except Weka, which achieves a minimum

of 0.56!

The tolerance parameter from SKlearn has limited impact on results. Only for

waveform-40, SKlearn with default tolerance attains a 0.25 max, whereas SKlearn0t

attains double the accuracy (0.53).

Overall, best performance. EM/Gaussian is the only algorithm where

multiple toolkits (Matlab and TensorFlow) exceed a 0.2 geometric mean across the

162 datasets.

3.4.6 Spectral

Table 3.7 shows the performance for SKlearn (Gaussian), SKlearnFast (k-nearest)

and R (Gaussian).

SKlearnFast is a solid all-around choice. SKlearnFast outperforms other

implementations, e.g., analcatdata authorship reports a performance of .96 where it is

around .63 to .72 for R and 0 for SKlearn! Similar for mfeat-pixel. More than having

a high global performance, it is also quite stable (a lot of U’s) despite the fact that

it is supposed to sacrifice accuracy in the name of efficiency (compared to Gaussian).

MAX performance (best case). The max values range from 0 to .92 depending

on the dataset and the toolkit. However, SKlearn shows the worst performance as it

30

Table 3.6 EM/Gaussian

Dataset SKlearn SKlearn0T Matlab Weka TensorFlow T.A.

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

A
lg
o

prnn crabs 0 0 U .02 .02 U -.01 .97 B -.01-.01 U -.01 1 B -.02 MT/T

analcatdata creditscore -.04 .26 B -.05 .26 B -.03 .95 B 0 0 U -.03 .25 B -.08 S/S0/T

twonorm .90 .90 U .90 .90 U 0 .91 B .91 .91 U -.01 .90 B -.05 MT/T

analcatdata authorship .59 .90 LR .50 .90 LR .04 .79 LR .95 .95 U -.01 .41 B -.09 MT/T

wdbc .81 .81 U .81 .81 U 0 .75 B .67 .67 U .03 .76 B -.01 MT/T

breast-cancer-wisconsin .81 .81 U .81 .81 U 0 .72 B .67 .67 U .03 .76 B -.01 MT/T

ionosphere .39 .40 U .39 .40 U -.02 .43 B .25 .25 U 0 .77 B -.04 MT/T

wine-recognition .45 .60 B .44 .61 B .32 .94 B .91 .91 U .02 .49 B -.06 MT/T

breast -.01 .70 B -.01 .70 B -.01 .58 B .76 .76 U .48 .67 B -.01 MT/S/S0/W

dermatology .08 .35 B .02 .36 B .41 .84 B .52 .82 B .11 .65 LR -.06 MT/T

new-thyroid .86 .86 U .86 .86 U .41 .90 B .89 .89 U .40 .86 LR .24 MT/T

vote .47 .54 B .47 .54 B 0 .62 B .47 .57 B -.03 .45 B -.03 MT/T

iris .90 .90 U .90 .90 U .56 .56 U .75 .75 U .51 .90 B .50 T/W

house-votes-84 -.02 .49 B -.02 .49 B -.03 .56 B .55 .55 U -.02 .57 B -.05 MT/T

biomed .18 .54 B .18 .57 B .01 .55 B .54 .54 U 0 .57 B -.02 MT/T

dna .26 .50 LR .33 .49 B -.02 .10 LR .30 .72 B -.03 .01 U -.03 T/W

waveform-40 .25 .25 U .53 .53 U .25 .56 B .25 .25 U 0 .53 B -.03 MT/T

ecoli .27 .61 B .25 .61 B 0 0 U .34 .73 B .53 .75 B 0 ALL

confidence .32 .60 B .32 .67 B .30 .66 LR .57 .75 B .35 .62 B .27 S0/T

promoters 1 1 U 1 1 U -.01 .25 B .45 .62 B -.01 .03 U -.05 MT/T

optdigits .41 .57 B .36 .61 LR .45 .66 LR .22 .61 B .29 .53 LR .12 T/W

waveform-21 .25 .25 U .57 .57 U .15 .58 B .25 .25 U .15 .57 B .06 MT/T

splice .02 .35 B .02 .36 B -.02 .26 B .23 .34 LR -.03 .49 B -.07 MT/T

mushroom 0 .12 B 0 .38 B -.01 .45 B .07 .07 U -.01 .49 B -.10 MT/T

shuttle .04 .23 B .03 .20 B .03 .50 B .19 .32 B .08 .27 B .01 S/S0

Median .29 .55 .37 .59 0 .58 .46 .62 0 .57 -.03

Geometric Mean .35 .54 .37 .58 .09 .57 .44 .53 .09 .53 .01

Median (all) .01 .10 .01 .09 0 .16 .03 .10 -.01 .16 -.02

Geometric Mean (all) .10 .18 .11 .18 .04 .21 .13 .18 .03 .22 .01

is the only one to perform consistently worse than random (9 times, its max is around

0; across all datasets it has a min/max of 0, too), whereas the max for SKlearnFast

and R are much higher.

31

SKlearnFast agrees more with R than with SKlearn. Last columns show

that R generally agrees with SKlearnFast regarding maximums (18 times), where it

generally agrees with SKlearn for the minimums (20 times).

3.4.7 DBSCAN

Recall that DBSCAN is deterministic; Table 5.7 shows the results.

Low performance (with default parameters). We noticed that DBSCAN

can suffer from low accuracy with default parameters. For example, on datasets

new-thyroid and analcatdata lawsuit, accuracy can be as low as -0.2 and -0.1, respectively:

lower than random and lower than K-means++. To gauge the impact of (small)

variations in defaults, we also ran experiments where we varied its minPoints and ε

parameters.1 This leads to wide-spread bimodality and outliers – note the B’s and

LR’s. For example, the accuracy varies widely for the same toolkit across different

runs: this range can be as large as 0.95 (min 0, max 0.95) for analcatdata creditscore,

0.89 (min -0.2, max 0.69) for new-thyroid or 0.84 for breast-w (min -0.07, max 0.77).

This finding is especially worrisome for a deterministic algorithm.

3.4.8 Affinity Propagation

Table 3.9 shows the results. Recall that this algorithm (AP) is deterministic. AP

uses a dampingFactor parameter.2

Variation across toolkits. Given that this algorithm is deterministic, we

should not see variation across toolkits when toolkits are run with the same parameter

(damping factor). However, max performance differed substantially, e.g., on breast-w

max was .47 for SKLearn and .17 for R; for cleveland-nominal max was .31 for SKLearn

and .03 for R.

1These control the minimum cluster size (our range was 1 ≤ minPoints ≤ 10) and
maximum neighborhood size (our range was 0 < ε < 10.
2The factor controls oscillations; in our experiments 0.5 < dampingFactor < 1.

32

Variation across runs. Our experiments show that the damping factor

induces substantial differences between min and max performances across runs. This

was the case for both SKLearn and R, e.g., for SKLearn we had collins (min .19, max

.63) or breast-w (min .03, max .47) and for balance-scale on R we had (min 0.03, max

.15).

3.5 Conclusion

We introduced SmokeOut, an approach for testing clustering implementations that

leverages the current abundance of datasets and clustering toolkits. We applied

SmokeOut to quantify clustering outcomes across different algorithms, toolkits, and

multiple runs. Our findings exposed outliers and characterized distribution shapes.

In Chapter 4 we show how we use statistical analysis of clustering outcomes across

multiple runs, toolkits and algorithms to ensure statistical rigor.

33

Table 3.7 Spectral Clustering

Dataset SKlearn SKlearnFast R T.A.

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

A
lg
o

M
a
x

A
lg
o

breast-w .10 .10 U .80 .80 U .05 .81 LR -.03 R/S .93 R/SF

mfeat-pixel 0 0 U .92 .92 U .55 .92 LR -.01 R/S .96 R/SF

dermatology .01 .01 U .17 .17 U .47 .86 LR -.04 R/S .18 R/SF

breast-cancer-wisconsin -.01 0 U .41 .41 U 0 .53 B -.01 R/S .18 R/SF

wdbc -.01 .32 B .41 .41 U .02 .53 B -.01 R/S .43 R/S

analcatdata lawsuit -.07 0 B .03 .03 U .31 .69 B -.08 R/S .05 R/SF

analcatdata creditscore -.05 .26 B .84 .84 U -.03-.01 U -.07 R/S .19 S/SF

confidence .01 .01 U .70 .70 U .32 .68 B -.14 R/S .86 R/SF

appendicitis .35 .35 U .46 .46 U -.04 .45 B -.09 R/SF .76 R/SF

corral .48 .48 U .13 .13 U -.01 .38 B -.02 R/S .55 R/SF

collins -.01 0 U .61 .63 U .40 .66 LR -.02 R/S .60 R/SF

new-thyroid -.12-.08 U .27 .27 U .23 .50 B -.12 R/S .23 R/SF

mfeat-fourier .54 .56 U .56 .56 U .41 .62 LR .47 R/S .66 R/S

mfeat-factors -.01 0 U .67 .67 U .47 .66 B -.01 R/S .83 R/SF

mfeat-zernike 0 0 U .56 .57 U .47 .66 B -.04 R/S .80 R/SF

mfeat-morphological 0 .01 U .23 .30 B .17 .45 B -.03 R/S .37 R/SF

solar-flare 2 .08 .10 U -.02 .04 B .11 .41 B -.10 R/SF .61 R/SF

analcatdata bankruptcy -.02 .18 B .45 .45 U .04 .30 B -.12 R/S .43 R/S

iris .74 .74 U .75 .75 U .55 .70 B .58 R/S .94 S/SF

ecoli .60 .62 U .50 .50 U .58 .73 LR .47 R/SF .70 R/SF

balance-scale -.01 .31 LR .13 .13 U 0 .21 B 0 R/S .80 S/SF

soybean .01 .03 U .19 .29 B .25 .46 B .01 R/S .58 R/SF

threeOf9 -.01 .29 B -.01 .12 B -.01 .09 B -.01 ALL .51 S/SF

analcatdata authorship -.01 .01 U .96 .96 U .63 .72 B -.01 S/SF .75 R/SF

lupus -.02 0 U .19 .21 U -.02 .25 B -.04 R/S 1 R/SF

Median 0 .03 .45 .45 .23 .53 -.02 .61

Geometric Mean .08 .15 .41 .43 .22 .51 .01 .57

Median (all) -.01 0 .03 .03 0 .04 -.01 .57

Geometric Mean (all) .03 .05 .12 .12 .07 .15 .02 .52

34

Table 3.8 DBSCAN

Dataset SKlearn R MLPack T.A.

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

A
lg
o

analcatdata creditscore 0 .95 B 0 .95 B 0 .95 B -.06 ALL

breast-w -.07 .77 B -.07 .77 B -.07 .77 B -.34 ALL

new-thyroid -.20 .69 B -.20 .69 B -.21 .69 B -.26 ALL

ionosphere 0 .65 B 0 .65 B 0 .66 B -.12 ALL

collins 0 .63 B 0 .63 B 0 .63 B -.08 ALL

iris 0 .56 B 0 .56 B 0 .56 B 0 ALL

vote -.01 .47 B -.01 .47 B -.02 .45 B -.12 ALL

spect -.08 .32 B -.08 .32 B -.10 .32 B -.17 ALL

analcatdata lawsuit -.10 .29 B -.10 .29 B -.10 .29 B -.24 ALL

led7 0 .32 B 0 .32 B 0 .32 B 0 ALL

house-votes-84 -.03 .30 B -.03 .30 B -.02 .31 B -.16 ALL

soybean -.02 .27 B -.02 .27 B -.02 .30 B 0 ALL

mfeat-fourier 0 .29 B 0 .29 B 0 .29 B 0 ALL

titanic 0 .27 B 0 .27 B 0 .27 B 0 ALL

spectf -.02 .26 B -.02 .26 B -.02 .26 B 0 ALL

prnn fglass 0 .26 B 0 .26 B 0 .26 B 0 ALL

glass 0 .26 B 0 .26 B 0 .26 B 0 ALL

dermatology 0 .21 B 0 .21 B 0 .21 B -.15 ALL

dna -.06 .18 B -.06 .18 B -.06 .18 B -.12 ALL

lymphography 0 .21 B 0 .21 B -.04 .17 B -.17 ALL

page-blocks -.01 .19 LR -.01 .19 LR -.01 .20 LR -.05 ALL

haberman -.08 .16 LR -.08 .16 LR -.06 .16 B -.22 ALL

agaricus-lepiota -.01 .19 B -.01 .19 B -.01 .19 B -.02 ALL

clean2 -.09 .15 LR -.09 .15 LR -.09 .15 LR -.01 ALL

tic-tac-toe 0 .17 B 0 .17 B 0 .17 B 0 ALL

Median -.01 .27 -.01 .27 -.01 .29 -.06

Geometric Mean -.03 .35 -.03 .35 -.04 .35 -.10

Median (all) -.01 .01 -.01 .01 -.01 .01 -.01

Geometric Mean (all) -.02 .06 -.02 .06 -.02 .07 -.05

35

Table 3.9 Affinity Propagation

Dataset SKlearn R T.A.

M
in

M
a
x

S
h
a
p
e

M
in

M
a
x

S
h
a
p
e

M
in

A
lg
o

collins .19 .63 B .21 .62 B .11 ALL

breast-w .03 .47 B .07 .17 B .10 ALL

iris .42 .67 B .44 .64 B .47 ALL

cleveland-nominal -.02 .31 B .02 .03 U .11 ALL

tokyo1 -.01 .31 L .10 .30 B 0 ALL

promoters 0 .28 B .23 .28 U 0 ALL

mfeat-morphological 0 .28 B 0 .27 B -.01 ALL

ecoli .21 .37 B .21 .24 U .15 ALL

titanic -.01 .24 B -.01 .09 B 0 ALL

soybean .21 .34 LR .21 .25 U .56 ALL

wine-recognition .17 .30 B .17 .21 U .45 ALL

analcatdata cyyoung9302 0 .19 B .18 .19 U 0 ALL

analcatdata creditscore -.03 .16 LR -.03 .16 LR .01 ALL

dermatology 0 .15 B .14 .15 U .05 ALL

confidence .24 .31 B .24 .31 B .50 ALL

new-thyroid .04 .17 B .12 .17 B 0 ALL

segmentation 0 .14 B .12 .14 U 0 ALL

mfeat-fourier 0 .13 B .12 .13 U 0 ALL

balance-scale 0 .06 LR .03 .15 B 0 ALL

analcatdata bankruptcy .04 .15 B .04 .15 B .07 ALL

solar-flare 1 .08 .17 B .09 .15 B .13 ALL

prnn synth .07 .17 B .07 .11 U .38 ALL

solar-flare 2 .01 .13 B .02 .12 B 0 ALL

prnn fglass .13 .20 B .13 .17 U .10 ALL

glass .13 .20 B .13 .17 U .10 ALL

Median .02 .22 .12 .17 .07

Geometric Mean .07 .26 .12 .21 .12

Median (all) 0 .04 .01 .03 .05

Geometric Mean (all) .02 .08 .04 .07 .18

36

CHAPTER 4

STATISTICALLY RIGOROUS TESTING OF CLUSTERING
IMPLEMENTATIONS

In Chapter 3, we exposed outliers and characterized distributions shapes. Descriptive

statistics (min/max) were used to compare runs (as well as toolkits and algorithms),

which is concise but lacks statistical rigor. In this chapter, we introduce and use a

statically rigorous approach for comparing runs, toolkits, and algorithms.

4.1 Variation Across Runs

In this section, we test a null hypothesis on how different runs of the same algorithm

in the same implementation lead to different clusterings.

This testing procedure is shown in Figure 4.1: a single toolkit is run on a single

dataset multiple times (30 in our case), and a statistical analysis is performed on the

resulting accuracy distribution.

Null hypothesis: accuracy does not vary across runs.

In other words, for a certain algorithm and dataset, we set out to measure

non-determinism. To test this hypothesis, we use Levene’s test [43] as follows: one

sample contains the actual accuracy values for the 30 runs, the other sample has the

Toolkit	

Multiple	runs	 Accuracy	distribution	

Dataset	

Algorithm	 (variation	across		runs)	

Figure 4.1 Testing for variation across runs.

37

same mean, size, and no variance, that is, all 30 elements are equal to the mean of

the first set. We ran this on all datasets. Rejecting the null hypothesis means that

accuracy varies in a statistically significant way across runs. We report results at

p < 0.05.

Table 4.1 Levene’s Test Results: the Number of Datasets, Out Of 162, With
Significant Variance (p < 0.05)

Algorithm Toolkit # Datasets

kmeans++ sklearn 126

kmeans++ R 111

kmeans++ mlpack 144

kmeans++ matlab 125

kmeans++ shogun 143

kmeans++ tensorflow 144

kmeans++ weka 157

spectral sklearn 93

spectral sklearnfast 97

spectral R 113

kmeans sklearn 148

kmeans R 153

kmeans mlpack 146

kmeans matlab 141

kmeans shogun 146

kmeans tensorflow 145

hierarchical sklearn 71

hierarchical R 63

hierarchical matlab 63

gaussian sklearn 136

gaussian matlab 153

gaussian tensorflow 151

gaussian weka 123

38

Table 4.2 Top-10 Widest Differences in Accuracy Across Runs

Algorithm Toolkit Dataset Min Max

gaussian tensorflow prnn crabs -0.005 1

gaussian matlab prnn crabs -0.005 0.979

gaussian matlab analcatdata cr. -0.024 0.958

gaussian tensorflow twonorm 0 0.908

gaussian matlab twonorm 0.003 0.910

gaussian tensorflow ionosphere 0.004 0.772

spectral R breast-w 0.056 0.818

gaussian matlab analcatdata aut.p 0.041 0.794

gaussian matlab wdbc 0.007 0.754

gaussian tensorflow breast-cancer-wsc. 0.032 0.760

In Table 4.1 we show the number of datasets where variance is statistically

significant at p < 0.05; recall that we have a total of 162 datasets. We observe that

Spectral is the most stable nondeterministic algorithm; for Spectral, only 93–113

datasets show significant variance. Hierarchical, which should be deterministic, still

has 63–71 datasets with significant variance. In contrast, K-means, K-means++, and

Gaussian Mixture, have significant variance from run to run.

In Table 4.2 we show how broad the accuracy range (difference between

minimum accuracy and maximum accuracy) can be. The first three columns show

the algorithm, toolkit and dataset. The last two columns show the minimum and

maximum accuracy attained over the 30 runs. For example, Gaussian has quite

a large range on some datasets: accuracy on the dataset prnn crabs has a min-max

range of more than 1, with one run’s accuracy below 0 and another run having perfect

or (close to perfect) accuracy.

In Table 4.3 we show how high the standard deviation of the accuracy can

be across runs. For example, accuracy on the dataset twonorm can have a standard

39

Table 4.3 Highest Standard Deviations in Accuracy Across Runs

Algorithm Toolkit Dataset Stddev

gaussian tensorflow twonorm 0.400

gaussian tensorflow prnn crabs 0.345

gaussian tensorflow ionosphere 0.298

gaussian sklearn breast 0.281

kmeans++ weka australian 0.236

gaussian matlab house-votes-84 0.236

gaussian matlab tokyo1 0.216

gaussian sklearn.0 tol breast 0.213

gaussian matlab twonorm 0.212

gaussian matlab analcatdata cr. 0.206

gaussian matlab wine-recognition 0.205

spectral R appendicitis 0.204

kmeans++ shogun house-votes-84 0.201

deviation of 0.4. More than a dozen other toolkit/algorithm setups have standard

deviation higher than 0.2.

4.2 Variation Across Toolkits

In this section, we test a null hypothesis on how different implementations of the same

algorithm in different toolkits lead to different clusterings. This testing procedure is

shown in Figure 4.2: two toolkits implementing the same algorithms are run on the

same dataset multiple times (30 in our case), and a statistical analysis is performed

to compare the two accuracy distributions.

Null hypothesis: For a given algorithm, accuracy does not vary across toolkits.

To test this hypothesis, we use the Mann-Whitney U test as follows. We fix the

algorithm, e.g., K-means++, and the dataset. Next, we compare the distributions of

accuracy values pairwise, for all possible toolkits pairs, that is, if we have N toolkits

for a given algorithm, for a given dataset there will be
(
N
2

)
Mann-Whitney U tests;

40

Toolkit	1	 Multiple	runs	

Variation		
across		
toolkits	Dataset	

Algorithm	

Toolkit	2	
Multiple	runs	

Figure 4.2 Testing for variation across toolkits.

hence for each algorithm there will be 162×
(
N
2

)
tests. Rejecting the null hypothesis

means that accuracy varies significantly between toolkits. We report results at p <

0.05.

In Table 4.4, we show the number of datasets where accuracy distributions

between two toolkits are statistically significant at p < 0.05. We observe that

Gaussian Mixture and K-means++ induce most differences in toolkit outcomes’

distributions (generally over 100 out of 162). Even for apcluster (deterministic), on

40 out of 162 datasets we found statistically significant differences between Sklearn

and R.

4.2.1 Non-overlaps

In Table 4.5, we show the largest gaps between accuracy intervals, computed as

follows: we find all dataset/algorithm combinations where the accuracy intervals for

two toolkits, say [ARI1min, ARI1max] and [ARI2min, ARI2max] are non-overlapping,

that is, ARI1min > ARI2max. In other words, for any run of toolkit 1, its accuracy

floor (min.) is higher than the accuracy ceiling (max.) of any run of toolkit 2. We

call that difference “gap”, i.e., gap = ARI1min − ARI2max. We show the top-10 gaps

in Table 4.5. Notice that this gap can be as large as 0.966.

41

Accuracy

Accuracy

Figure 4.3 EM (Gaussian Mixture): differences between toolkits on two datasets,
dermatology and prnn-crabs.

We found that 1,776 such gaps exist (out of 34,987 runs of the same

algorithm/dataset combinations). This is very problematic, as it shows how toolkits

are not “created equal” – even after multiple runs, in 1,776 scenarios, a toolkit’s best

accuracy cannot even reach another toolkit’s worst accuracy.

In Figure 4.3, we show violin plots of toolkits’ accuracy distributions in the

EM algorithm on two datasets. On set dermatology (top) note the wide ranges of

TensorFlow and the gap between WEKA and Sklearn. On set prnn-crabs (bottom)

42

note the high-end accuracy of 1 (TensorFlow, MATLAB) and the consistently low

accuracy in WEKA and Sklearn.

4.3 Variation Across Algorithms

In this section, we test a null hypothesis on the toolkit’s impact when comparing

algorithms. This testing procedure is shown in Figure 4.4: implementations of two

different algorithms but in the same toolkit are run on the same dataset multiple

times (30 in our case), and a statistical analysis is performed to compare the two

accuracy distributions.

Toolkit	

Multiple	runs	

Variation		
across		

algorithms	Dataset	

Algorithm	1	

Multiple	runs	
Algorithm	2	

Figure 4.4 Testing for variation across algorithms.

Null hypothesis: For a given toolkit, accuracy does not vary across algorithms.

To test this hypothesis, we again use the Mann-Whitney U test. We fix

the toolkit, e.g., MATLAB, and the dataset. Next, we compare the distributions

of accuracy values pairwise, for all possible algorithm pairs. Rejecting the null

hypothesis implies that, for a given toolkit, algorithms’ accuracy varies significantly.

In Table 4.6, we show the number of datasets where accuracy distributions

between two algorithms are significantly different. Typically, algorithms’ accuracies

differ on more than 110 datasets; we expected to see such differences between

algorithms. However, we did not expect wide differences when looking at the same

43

algorithm pairs in different toolkits. For example, K-means and K-means++ differ on

105/101/115/120 datasets in Sklearn/R/MATLAB/WEKA but only on 27 datasets

in MLpack and only 31 datasets in Shogun. This again shows that toolkits are not

interchangeable (though users might expect them to be).

4.4 Toolkit Disagreement

In this section, we test on a null hypothesis how different toolkits “disagree”. We

next set out to study whether toolkits “agree” or “disagree” on those points that

are misclassified w.r.t. ground truth. Specifically, we are interested in those cases

where two toolkits have relatively high accuracy w.r.t. ground truth, but there are

large disagreements between the toolkits on the remaining, or misclassified points

(i.e., where toolkits’ clustering differs from ground truth).

x5	

x8	x7	

x6	

x1	

x4	x3	

x2	

Disagreement
Agreement

T1	

T2	

Figure 4.5 Toolkit disagreement.

We illustrate this in Figure 4.5. Assuming two toolkits T1 and T2, their

clustering of x1, x2, x3, x4 (on the bottom) is in agreement, and let us assume this

clustering agrees with ground truth as well. We want to measure the disagreement

on the remaining points x5, x6, x7, x8 (on top).

44

Intuitively, datasets that induce this disagreement between T1 and T2 on the

top points manage to expose differences in toolkit implementations “at the margin”;

since agreement with ground truth is high, users might expect the toolkits will be in

agreement on the reminaing points, too.

Let ARIT1G and ARIT2G be the accuracy of two different toolkits on the same

algorithm and same dataset. Let ARIT1T2 be the ARI when comparing the two

clusterings (rather than with ground truth). There were 14,831 ARIT1T2 comparisons.

Out of these, we found 928 cases where:

ARIT1G > ARIT1T2 ∧ ARIT2G > ARIT1T2

That is, there were 928 cases where toolkits’ clusterings disagree with each other more

than they disagree with ground truth – in other words, toolkits disagree strongly on

those points that are not clustered perfectly.

In Table 4.7, we show the top-10 such disagreements, excluding the trivial

cases where one toolkit’s accuracy is 1. These datasets are particularly important

as they manage to “drive wedges” between toolkits; this has many applications, from

differential toolkit testing to constructing adversarial datasets.

4.5 Conclusion

This chapter presented our approach for testing clustering implementations via

rigorous statistical analysis, more specifically statistical analysis of clustering outcomes

across multiple runs, toolkits, and algorithms. We found statistically significant

variations across all these dimensions, which violate users’ determinism, invariance,

and consistency assumptions. Our results point out the need for improving

determinism and consistency of clustering implementations. In Chapter 5 we show

several root causes for nondeterminism and inconsistency. We also show that

45

addressing those root causes improves determinism, increases consistency, and can

even improve efficiency.

46

Table 4.4 Mann-Whitney U-test Results for Toolkits: Number of Datasets with
Significantly Different Accuracy Distributions (p < 0.05)

Algorithm Toolkits # Datasets

kmeans++ sklearn vs. R 50

kmeans++ sklearn vs. matlab 107

kmeans++ sklearn vs. weka 134

kmeans++ sklearn vs. mlpack 104

kmeans++ sklearn vs. shogun 110

kmeans++ sklearn vs. tensorflow 109

kmeans++ R vs. matlab 104

kmeans++ R vs. weka 134

kmeans++ R vs. mlpack 101

kmeans++ R vs. shogun 108

kmeans++ R vs. tensorflow 115

kmeans++ matlab vs. weka 141

kmeans++ matlab vs. mlpack 105

kmeans++ matlab vs. shogun 120

kmeans++ matlab vs. tensorflow 124

kmeans++ weka vs. mlpack 96

kmeans++ weka vs. shogun 113

kmeans++ weka vs. tensorflow 125

kmeans++ mlpack vs. shogun 15

kmeans++ mlpack vs. tensorflow 57

kmeans++ shogun vs. tensorflow 60

spectral sklearn vs. R 109

kmeans sklearn vs. R 41

kmeans sklearn vs. matlab 9

kmeans sklearn vs. mlpack 8

kmeans sklearn vs. shogun 9

kmeans sklearn vs. tensorflow 9

kmeans R vs. matlab 48

kmeans R vs. mlpack 39

kmeans R vs. shogun 43

kmeans R vs. tensorflow 42

kmeans matlab vs. mlpack 2

kmeans matlab vs. shogun 1

kmeans matlab vs. tensorflow 0

kmeans mlpack vs. shogun 1

kmeans mlpack vs. tensorflow 2

kmeans shogun vs. tensorflow 1

hierarchical sklearn vs. R 53

hierarchical sklearn vs. matlab 58

hierarchical R vs. matlab 57

gaussian sklearn vs. matlab 129

gaussian sklearn vs. weka 146

gaussian sklearn vs. tensorflow 120

gaussian matlab vs. weka 146

gaussian matlab vs. tensorflow 104

gaussian weka vs. tensorflow 120

dbscan sklearn vs. R 0

dbscan sklearn vs. mlpack 7

dbscan R vs. mlpack 7

apcluster sklearn vs. R 40

47

Table 4.5 Top-10 Largest Accuracy Gaps Between Toolkits

Algorithm Dataset Toolkit 1 Toolkit 2 Gap

Floor Ceiling

(Min) (Max)

gaussian promoters sklearn 1 tensorflow 0.034 0.966

gaussian promoters sklearn 1 tensorflow 0.034 0.966

spectral promoters R 0.962 sklearn 0.001 0.962

spectral analcatdata cred. sklearn 0.84 R -0.002 0.842

kpp breast weka 0.813 sklearn -0.003 0.815

kpp breast weka 0.813 mlpack,matlab,R 0.02 0.792

kpp breast weka 0.813 tensorflow,shogun 0.02 0.792

gaussian promoters sklearn 1 matlab 0.234 0.766

kpp promoters tensorflow 1 weka 0.406 0.594

48

Table 4.6 Mann-Whitney U-test Results for Algorithms: Number of Datasets with
Significantly Different Accuracy Distributions (p < 0.05)

Toolkit Algorithms # Datasets

sklearn kmeans vs. kmeans++ 105

sklearn kmeans vs. gaussian 123

sklearn kmeans vs. hierarchical 134

sklearn kmeans vs. spectral 112

sklearn kmeans vs. dbscan 150

sklearn kmeans vs. apcluster 115

sklearn kmeans++ vs. gaussian 132

sklearn kmeans++ vs. hierarchical 153

sklearn kmeans++ vs. spectral 109

sklearn kmeans++ vs. dbscan 155

sklearn kmeans++ vs. apcluster 117

sklearn gaussian vs. hierarchical 145

sklearn gaussian vs. spectral 108

sklearn gaussian vs. dbscan 150

sklearn gaussian vs. apcluster 113

sklearn hierarchical vs. spectral 120

sklearn hierarchical vs. dbscan 155

sklearn hierarchical vs. apcluster 122

sklearn spectral vs. dbscan 122

sklearn spectral vs. apcluster 115

sklearn dbscan vs. apcluster 117

shogun kmeans vs. kmeans++ 31

R kmeans vs. kmeans++ 101

R kmeans vs. hierarchical 139

R kmeans vs. spectral 94

R kmeans vs. dbscan 149

R kmeans vs. apcluster 117

R kmeans++ vs. hierarchical 150

R kmeans++ vs. spectral 97

R kmeans++ vs. dbscan 157

R kmeans++ vs. apcluster 123

R hierarchical vs. spectral 113

R hierarchical vs. dbscan 154

R hierarchical vs. apcluster 123

R spectral vs. dbscan 115

R spectral vs. apcluster 122

R dbscan vs. apcluster 123

tensorflow kmeans vs. kmeans++ 74

tensorflow kmeans vs. gaussian 117

tensorflow kmeans++ vs. gaussian 121

matlab kmeans vs. kmeans++ 115

matlab kmeans vs. gaussian 135

matlab kmeans vs. hierarchical 141

matlab kmeans++ vs. gaussian 146

matlab kmeans++ vs. hierarchical 155

matlab gaussian vs. hierarchical 146

mlpack kmeans vs. kmeans++ 27

mlpack kmeans vs. dbscan 135

mlpack kmeans++ vs. dbscan 130

weka kmeans++ vs. gaussian 120

49

Table 4.7 Top-10 Largest Disagreements Between Toolkits Yet Having High
Agreement with Ground Truth

Algorithm Dataset Toolkit1 Toolkit2

ARIT1G ARIT2G ARIT1T2

spectral promoters sklearnfast 0.889 R 0.962 0.853

gaussian iris weka 0.759 sklearn 0.904 0.693

gaussian wine-recognition weka 0.915 sklearn 0.607 0.568

gaussian analcatdata authorship weka 0.951 sklearn 0.740 0.719

gaussian wine-recognition sklearn 0.607 matlab 0.724 0.469

spectral breast-w sklearnfast 0.809 R 0.552 0.477

gaussian wine-recognition weka 0.915 matlab 0.724 0.718

gaussian iris sklearn 0.904 matlab 0.560 0.550

gaussian iris tensorflow 0.562 sklearn 0.904 0.555

gaussian texture tensorflow 0.694 sklearn 0.742 0.614

gaussian dermatology weka 0.615 matlab 0.695 0.519

kpp analcatdata authorship weka 0.777 shogun 0.718 0.700

50

CHAPTER 5

EXPOSING ROOT CAUSES OF IMPLEMENTATION-INDUCED
INCONSISTENCY AND NONDETERMINISM IN DETERMINISTIC

ALGORITHMS

In Chapter 4, we chose 7 popular clustering algorithms, 4 nondeterministic (K-means,

K-means++, Spectral Clustering, Expectation Maximization-GaussianMixture); and

3 deterministic (Hierarchical clustering Agglomerative, Affinity Propagation, DBSCAN)

and we analyzed clustering behavior on 162 datasets. We found statistically significant

variations across runs, toolkits, and algorithms. In this chapter, we expose several

root causes for nondeterminism and inconsistency and show that remedying these root

causes improves determinism, increases consistency, and can even improve efficiency.

We use a substantially higher number of datasets (528 vs. the 162 used previously),

strengthening the relevance of our statistical findings.

5.1 Definitions and Experimental Setup

We use SmokeOut’s suite of differential clusterings to measure determinism and

inconsistency for implementations of deterministic clustering algorithms.

5.1.1 Datasets

We used 528 datasets from OpenML [11]. About 400 of these datasets are from

medicine/bioinformatics, e.g., separating benign from malignant tumors, while the

rest come from the Penn ML Benchmark [44], a benchmark suite specifically designed

to evaluate ML implementations. Table 5.1 summarizes the characteristics of our

datasets: on average, datasets have 454 instances, 39 dimensions, and 2.6 clusters.

51

Table 5.1 Statistics on Datasets

Min Max Geometric Mean

Instances 27 9,989 454

Features (attributes) 2 61,360 39

K (# of clusters) 2 108 2.6

5.1.2 Algorithms and Toolkits

We studied three deterministic algorithms (Affinity Propagation, DBSCAN, Hierarchical

Agglomerative Clustering) and the deterministic part of K-means (Section 2.5). We

examined several toolkits: MATLAB, MLpack, R, Scikit-learn, and TensorFlow

(Section 2.4).

5.2 Affinity Propagation

Affinity Propagation (AP) forms clusters by identifying “exemplars”, i.e., one

representative per cluster; initially all points are considered potential exemplars, and

affinity (belonging) to a certain cluster is constructed iteratively via message-passing;

the algorithm uses a damping factor – typically in the interval [0.5, 1) – to

avoid moving points back-and-forth between clusters. We studied this algorithm’s

implementation in two toolkits: Scikit-learn and R.

5.2.1 Inconsistency

We measure inconsistency using mutual ARI (defined in Section 2.2). Ideally, the

mutual ARIs would be 1 for all datasets, indicating that Scikit-learn and R yield

the same solution. However, we found that toolkits disagree on 196 datasets. The

‘Default’ rows in Table 5.2 show the bottom-5 consistencies, i.e., the strongest

disagreements. For example on parity5, the toolkits produce such different clustering

solutions that they are practically unrelated: ARI = 0.02. The mean consistency

is ARI = 0.68, well short of ARI = 1. The remainder of this section delves into

52

Table 5.2 Bottom-5 and Mean Consistencies for Affinity Propagation; Lower ARI
Values Mean Stronger Disagreement

ARI: Scikit-learn vs. R

Default analcatdata uktrainacc 0

parity5 0

sleuth case1102 0

rabe 166 0

sleuth ex1221 0

mean (all 528 datasets) 0.68

Forcing R to match parity5 0.02

Scikit-learn’s #iterations mux6 0.11

car-evaluation 0.12

xd6 0.12

threeOf9 0.14

mean (all 528 datasets) 0.95

Forcing Scikit-learn to match dbworld-subjects 0

R’s #iterations schlvote 0

hutsoff99 child witness 0

AP Prostate lung 0

diggle table a1 0

mean (all 528 datasets) 0.94

Adaptive MAX ITER parity5 0

sleuth case1102 0

rabe 166 0

visualizing slope 0

analcatdata vehicle 0

mean (all 528 datasets) 0.81

inconsistency root causes and shows how addressing these root causes is effective at

reducing inconsistency (the remaining Table 5.2 rows are explained in Sections 5.2.4

and 5.2.5).

5.2.2 Case Study 1: Bounding the Number of Iterations

Different clustering implementations make different latent assumptions about convergence

conditions, materialized in different default parameters.

53

0 200 400 600 800 1000
#iterations

0.0

0.2

0.4

0.6

0.8

A
R
I

SKlearn
R

Figure 5.1 Affinity Propagation’s accuracy vs. #iterations in Scikit-learn and R.

We illustrate this in Figure 5.1 on Scikit-learn vs. R. By default, Scikit-learn

bounds the total number of iterations MAX ITER to 200, while R bounds it to 1000.

The figure shows the number of iterations (x-axis) required to cluster each dataset

and the accuracy, i.e., ARI vs. Ground Truth (y-axis). Note how Scikit-learn takes

substantially fewer iterations to cluster the datasets, yet without sacrificing precision.

A paired test on mean accuracy, that is, Scikit-learn’s accuracy distribution

vs. R’s accuracy distribution, has shown no significant difference (p−value > 0.1).

However, a paired test on #iterations until stopping (i in Figure 2.5) shows significant

differences (p−value ≈ 0): Scikit-learn’s mean was 66 iterations, while R stops at 220

iterations, on average.

In fact, Scikit-learn always (for all datasets) terminates in fewer iterations

compared to R. Regarding accuracy, we found that, out of 528 datasets: Scikit-learn

has higher ARI than R for 232 of them; lower ARI for 200 of them; and the same ARI

for 96 of them. To summarize, Scikit-learn is in a win-win, higher effectiveness-higher

efficiency situation in 232 cases (fewer iterations, higher ARI).

54

AR
I

iteration

Figure 5.2 Lose-lose due to over-iterating in R (orange dashed line); note the higher
#iterations and lower final accuracy compared to Scikit-learn (blue).

Finally, note the “hard” limits for MAX ITER at 200 and 1000, respectively

– the 1000 vertical line is clearly visible for R in Figure 5.1 – if the implementation

has not converged by then, the toolkit terminates. These parameters are up to the

developers but their default values end up having substantial impact on accuracy, as

shown next.

5.2.3 Under-iterating and Over-iterating

Figure 5.2 shows the danger of over-iterating. The dataset is arsenic-male-lung; dataset

characteristics are shown on top of the chart. Note how Scikit-learn exits after 16

iterations, at ARI=0.95, whereas R continues. Eventually R terminates after 231

iterations at ARI=0: a lose-lose scenario.

Conversely, Figure 5.3 shows the danger of under-iterating (on the zoo dataset).

Note how Scikit-learn exits prematurely (blue solid line) after just 81 iterations, at

ARI=0.29, whereas R (orange dashed line) continues; eventually R terminates, at

ARI=0.52, after 174 iterations.

Table 5.3 shows the highest margins for Scikit-learn and R, respectively. The

first column contains the dataset name, the next four columns show the iterations

55

iteration

AR
I

Figure 5.3 Under-iterating – premature termination – leads to lower accuracy in
Scikit-learn (blue solid line) compared to R (orange dashed line).

Table 5.3 Highest Accuracy Margins for Affinity Propagation

Dataset Scikit-learn R Accuracy

Iterations Accuracy Iterations Accuracy gap

Scikit-learn’s arsenic-male-lung 16 0.95 247 0 0.95

highest margin arsenic-female-lung 16 0.75 168 0 0.75

arsenic-male-bladder 16 0.64 247 0 0.63

kc1-top5 16 0.38 1000 0.04 0.34

rabe 148 19 0.57 148 0.27 0.30

R’s zoo 81 0.29 255 0.52 0.22

highest margin robot-failures-lp1 16 -0.05 454 0.13 0.18

tokyo1 16 0 164 0.17 0.17

AP Omentum Prostate 16 0 245 0.16 0.16

AP Prostate Lung 16 0.04 206 0.20 0.16

56

Table 5.4 Top-5 Accuracy Gaps after Controlling for #Iterations

Dataset Scikit-learn R Gap

schlvote 0.10 -0.06 0.17

ar3 0.12 0.23 0.10

dbworld-subjects 0.14 0.07 0.07

tecator 0.19 0.14 0.05

analcatdata jap. 0.07 0.11 0.04

and accuracy for Scikit-learn and R, respectively, while the last column shows the

accuracy difference (absolute value).

Note how, on the arsenic-* datasets,1 R’s accuracy is essentially 0, whereas Scikit-

learn’s is 0.64–0.95. Moreover, Scikit-learn achieves this accuracy in just 16 iterations;

this is due to Scikit-learn default setting CONV ITER=15. The second half of the

table shows those datasets where R has the upper hand, but we found the accuracy

difference to be less than 0.22.

5.2.4 Heuristic 1: Consistent MAX ITER

One potential solution for eliminating cross-toolkit inconsistencies would be to use

the same MAX ITER in both toolkits. Therefore, we ran experiments where, after

obtaining R’s terminating i (number of iterations), we forced Scikit-learn’s to use

it: MAX ITER=i. After implementing this control into Scikit-learn, we were able to

make two observations.

First, we noticed a slight decrease in Scikit-learn’s accuracy, but the decrease

was not statistically significant (p−value = 0.16). Second, the high-margin

discrepancies between the two toolkits were removed or reduced substantially. In

Table 5.4 we show the largest accuracy gaps after implementing this control. Note

that accuracy differences were at most 0.17 (in stark contrast with Table 5.3 where

1Predicting the risk of certain cancers based on exposure to arsenic.

57

18 32 57 100 178 316 562 1000

Figure 5.4 ARI vs. #iterations: Scikit-learn predicted (green crosses), Scikit-learn
default (blue triangles), R default (orange circles); for legibility, x-axis is logarithmic.

accuracy gaps were as high as 0.95). This demonstrates that forcing Scikit-learn to

iterate longer yields no statistically significant gains in accuracy.

Finally, we measure how much consistency improves when forcing one toolkit

to use the other’s #iterations. The ‘Forcing...’ rows in Table 5.2 show consistency

improving from 0.68 (default) to 0.94 or 0.95, respectively, which indicate this is an

effective control.

5.2.5 Heuristic 2: Using an Adaptive MAX ITER

An alternative solution to this problem (a fixed MAX ITER does not fit all datasets)

would be to use an “adaptive,” per-dataset MAX ITER. This showed promise as

we were able to correlate log(N) with i, the number of iterations at which the

algorithm has terminated. Specifically, we ran an Ordinary Least Squares (OLS)

regression where the dependent variable was the final number of iterations i, and the

independent variable was log(N); note that N is the number of points (instances)

in the dataset. For Scikit-learn we found a good fit: R2 = 0.883, t−value = 42,

58

Scikit-learn R

random state = np.random.RandomState(0)

Remove degeneracies

S += ((np.finfo(np.double).eps ∗ S + np.finfo

(np.double).tiny ∗ 100) ∗

random state.randn(n samples,

n samples))

if (!nonoise)

randomMat <− matrix(

rnorm(N ∗ N),N)

s <− s + (.Machine$double.

eps ∗ s + .

Machine$double.xmin ∗

100) ∗ randomMat

Figure 5.5 Noise insertion code.

p−value ≈ 0. For R, the regression did not find a good fit (Section 5.2.6 explains

why).

Therefore, we constructed a model where MAX ITER was predicted by log(N).

Figure 5.4 shows how “tailoring” the termination to the dataset by replacing a fixed

MAX ITER with a predicted one effectively shifts all the Scikit-learn points to the

left (terminate sooner): the green crosses towards the left are Scikit-learn-predicted,

while the blue triangles are the Scikit-learn-default. Moreover, a paired test on ARI

indicated no significant ARI reduction (p−value = 0.27); that is, no precision is lost.

However the test shows a statistically significant reduction in #iterations, from 66 to

57. To conclude, this approach improves efficiency without sacrificing precision. The

‘Adaptive MAX ITER’ rows in Table 5.2 show how this improves consistency from

0.68 (default) to 0.81.

We emphasize that the point of this “tailoring” is not to improve accuracy but

to underscore that defaults can be too rigid. Consequently, accuracy, efficiency, or

both can suffer.

59

iteration

AR
I

Figure 5.6 Differences due to noise, after controlling for #iterations: by default,
Scikit-learn would terminate quickly and at low accuracy (blue). Forcing Scikit-learn
to keep iterating improves accuracy (green, dotted line). R’s accuracy shown in orange
dashed line.

5.2.6 Noise

Another source of inconsistency we discovered was the noise insertion policy.

Essentially, toolkits choose to add “noise” to prevent degenerate clustering scenarios.

Figure 5.5 shows the noise insertion code in Scikit-learn and R (noise insertion is ON

by default in both toolkits).

For both Scikit-learn and R, noise ranges from −1e − 15∗s to 1e − 15∗s is

similarity matrix). However, R add random “noise”, while Scikit-learn set fixed seed

in the code, so the add “noise” is fixed. To quantify the impact of randomness of

noise, we forced both toolkits to run for the same number of iterations, and compared

the final outcomes, as discussed next.

Inconsistency. Figure 5.6 illustrates noise-induced inconsistency after controlling

for #iterations (i.e., forcing Scikit-learn to “keep going” until it matches R’s final

number of iterations). Note how the difference in noise leads to a 0.2 gap in accuracy:

0.1 for Scikit-learn (green, dotted line) and -0.1 for R (orange, dashed line). After

60

we turned off noise insertion, the two toolkits essentially achieve the same ARI

(p−value < 0.05).

Nondeterminism. R inserts random noise, leading to nondeterminism, as discussed

next (as expected, turning noise insertion off makes R’s implementation deter-

ministic).

Table 5.5 R: Top-5 Differences in #Iterations Across Runs

Dataset Iterations

Min Max Diff.

threeOf9 388 1000 612

scene 419 1000 581

corral 396 965 569

jungle 432 1000 568

parity5 437 1000 563

Table 5.6 R: Top-5 Differences in ARI Across Runs

Dataset ARI

Min Max Gap

shuttle-landing-control -0.07 0.44 0.51

Titanic 0.04 0.18 0.14

analcatdata vehicle 0.01 0.10 0.09

parity5 -0.04 0.05 0.09

dbworld-subjects 0.06 0.15 0.09

When running R repeatedly on each dataset 30 times, out of 528 datasets,

107 had a nondeterministic number of iterations. In Table 5.5 we show the top-5

such cases (minimum and maximum #iterations) sorted by the minimum-maximum

difference. The numerous max. = 1000 values indicate that R failed to converge on

61

that dataset for at least one run, and was force-stopped by the default MAX ITER.

We believe that this convergence nondeterminism – on the same dataset and with the

same parameters – would surprise most R users.

Similarly, in Table 5.6 we show the top-5 datasets, sorted by the minimum vs

maximum accuracy gap, achieved when repeatedly running R, 30 times on the same

dataset. We believe that understanding/avoiding such noise subtleties is well beyond

the purview of a typical clustering user.

5.2.7 Actionable Findings

To conclude, our experiments have revealed that Affinity Propagation has deter-

ministic behavior in Scikit-learn, and nondeterministic behavior in R due to flexible

seed of noise insertion. Scikit-learn and R’s implementations are mutually inconsistent

due to default iterations and flexible seed of noise insertion.

These findings suggest that (a) users on R platform can track nondeterminism

and inconsistency by turning off noise insertion. However, there is no parameter in

Scikit-learn to turn off noise or set seed that makes the process to validate results

and eliminate inconsistency harder. (b) Compared to R’s performance, Scikit-learn

is in a win-win scenario. we suggest to use an adaptive MAX ITER in Scikit-learn

to improve determinism, consistency, and might even improve efficiency, i.e., high

accuracy without over-iterating.

5.3 DBSCAN

DBSCAN forms clusters by looking for “dense” regions, i.e., regions with at least

minPoints separated by a maximum distance eps. Unlike Affinity Propagation’s

variable #iterations, DBSCAN’s number is fixed: in the general scenario we explore

here, it practically executes O(N2) steps.

62

Table 5.7 Accuracy for DBSCAN (ARI w.r.t. Ground Truth): Default (top);
Controlled for eps (center); Heuristic for minPts (bottom)

Dataset Scikit-learn/ MLpack Max

R/MATLAB Gap

Defaults eps=0.5, eps=1

minPts=5 minPts=5

zoo -0.05 0.71 0.76

led7 0.33 0 0.33

ionosphere -0.03 0.27 0.31

iris 0.75 1.00 0.25

acute-inflammations 0.20 0.44 0.24

mean (all 528 datasets) 0.006 0.009

Controlled eps eps=0.5 eps=0.5

minPts=5 minPts=5

seismic-bumps 0.06 0.20 0.15

phoneme 0.13 -0.01 0.14

bank8FM -0.03 0.02 0.06

seeds 0.06 0 0.05

acute-inflammations 0.20 0.23 0.03

mean (all 528 datasets) 0.006 0.006

Heuristic minPts eps=0.5 eps=1

minPts=d+1 minPts=d+1

zoo 0 0.37 0.37

led7 0.33 0 0.33

smartphone-b. 0 0.31 0.31

qualitative-bankruptcy 0.19 0.48 0.28

acute-inflammations 0.17 0.44 0.27

mean (all 528 datasets) 0.006 0.012

63

Table 5.8 Bottom-5 and Mean Consistencies for DBSCAN

MLpack vs

Scikit-learn/R/MATLAB

Defaults sonar -0.015

qual-bk. -0.13

vineyard -0.10

hayes-roth -0.09

pyrim -0.09

mean (all 528 datasets) 0.79

Controlled seeds -0.07

for eps bank8FM 0

fri c1 250 5 0

fri c1 500 5 0

fri c3 100 5 0

mean (all 528 datasets) 0.97

Heuristic hayes-roth -0.09

minPts vineyard -0.08

qual-bk. -0.078

solar-flare -0.073

seeds -0.059

mean (all 528 datasets) 0.81

64

5.3.1 Inconsistency

We studied this algorithm’s implementation in four toolkits: Scikit-learn, R, MLpack,

and MATLAB. There was no variation across runs for any of the toolkits, so our

examined DBSCAN implementations were deterministic across runs.

Therefore, we focus on inconsistency; specifically, we observed inconsistency

when comparing MLpack with the other three toolkits.

5.3.2 Defaults

We started by running DBSCAN with defaults; we have default minPts=5 for all three

toolkits, default eps=0.5 for Scikit-learn and R, and default eps=1 for MLpack. We

show the accuracy in the top third of Table 5.7: the top-5 datasets, with the largest

gaps between toolkits. The difference between MLpack and the other toolkits across

all datasets was marginal, p−value = 0.1, albeit with a slightly higher mean (0.009

compared to 0.006). However, the difference could be quite large for specific datasets,

e.g., for zoo, MLpack achieved ARI=0.71 while Scikit-learn and R’s ARI=-0.05. The

gap was noticeable for other datasets, too.

5.3.3 Controlling for eps

Next, we controlled for eps by setting MLpack’s eps to 0.5. The results are

shown in the middle of Table 5.7: the gap was reduced considerably (at most 0.15

for dataset seismic-bumps). Actually, this control made the accuracies across all

datasets statistically indistinguishable (three paired tests between the three toolkit

combinations yielded p−value � 0.1; the mean was 0.006 for all toolkits). We

have thus shown that, by controlling for eps, we can make MLpack’s behavior more

consistent with the other toolkits.

65

5.3.4 Using a Heuristic for minPts

While by default minPts=5 in all toolkits, R’s DBSCAN package documentation

mentions “Setting parameters for DBSCAN: minPts is often set to be dimensionality

of the data plus one or higher” [30]. Therefore, we set minPts=d+1, where d is

the dimensionality of the dataset; we present the results in the bottom rows of

Table 5.7. The difference between MLpack and the other toolkits across all datasets

was significant, p−value = 0.02, and MLpack’s mean in this scenario was the highest

of all three scenarios: 0.012. The maximum gaps were also more prominent compared

to the “controlled” version above (maximum gap was 0.37 for dataset zoo). Hence, it

appears that the heuristic is only effective for MLpack.

5.3.5 Mutual ARI

The measurements so far have used accuracy (ARI vs. Ground Truth). Table 5.8

shows the mutual ARI results, before and after eliminating these root causes. We

make several observations: with a default setting of eps=1, MLpack disagrees with the

other toolkits substantially – note how the bottom-5 consistencies have negative ARI

values, which signify disagreeing clustering solutions (worse than unrelated/random

clustering which have ARI=0, see Section 2.2). Across all datasets, we have mean

ARI=0.79. The situation improves when controlling for eps (middle of the table, note

that mean ARI=0.97). Finally, when using eps=1 and minPts=d+1, MLpack again

tends to disagree (mean ARI=0.81).

5.3.6 Actionable Findings

To conclude, our experiments have revealed that DBSCAN has deterministic behavior

in Scikit-learn, R, MATLAB and MLpack. MLpack’s implementation can be

inconsistent with the other toolkits due to its different default eps.

66

Table 5.9 Accuracy for Hierarchical Agglomerative Clustering: Default (top); with
Scikit-learn’s Default Linkage Ward (bottom)

Dataset Scikit-learn R MATLAB Max Gap

Defaults l=Ward l=Complete l=Single

synthetic control -0.05 -0.05 1 1.05

AP Prostate Lung 0.89 -0.00 -0.00 0.90

AP Omentum Prostate 0.87 -0.00 -0.00 0.87

AP Prostate Kidney 0.85 -0.00 -0.00 0.85

AP Endometrium Prostate 0.85 0.00 0.00 0.85

mean (all 528 datasets) 0.11 0.12 0.11

l=Ward socmob 0.17 0.50 0.17 0.33

analcatdata supreme 0.25 0.04 -0.06 0.31

corral 0.30 0.30 0.03 0.26

analcatdata boxing2 0.01 0.19 0.02 0.17

vinnie 0.27 0.30 0.17 0.45

mean (all 528 datasets) 0.11 0.12 0.11

These findings suggest that MLpack can gain consistency and accuracy: using

a common eps makes MLpack more consistent with the other toolkits, while using a

heuristic minPts improves MLpack’s accuracy.

5.4 Hierarchical Agglomerative Clustering

Hierarchical clustering (we use its agglomerative variant) proceeds bottoms-up by

first considering each point a cluster and then iteratively merging clusters based on

linkage criteria (minimizing distance between points, usually).

5.4.1 Inconsistency

We studied this algorithm’s implementation in three toolkits: Scikit-learn, R, and

MATLAB. Our experiments have revealed that Hierarchical clustering implemen-

tations are deterministic. Therefore, we only focus on inconsistency.

67

Table 5.10 Bottom-5 and Mean Consistencies for Hierarchical Agglomerative
Clustering

Scikit-learn vs. R Scikit-learn vs. MATLAB R vs. MATLAB

Defaults mbagrade -0.11 rabe 266 -0.06 mbagrade -0.06

molecular-biology-promoters -0.11 diggle table a2 -0.05 rabe 266 -0.06

planning-relax -0.10 synthetic control -0.05 synthetic control -0.05

tic-tac-toe -0.10 lupus -0.04 allbp 0.33

hepatitisC -0.08 analcatdata uktrainacc -0.04 parity5 -0.03

mean (all 528 datasets) 0.41 0.14 0.26

l=Ward tic-tac-toe -0.10 mux6 -0.01 optdigits -0.08

optdigits -0.08 analcatdata boxing2 -0.01 mbagrade 0.01

mbagrade -0.02 parity5 plus 5 0 mux6 0

threeOf9 0 car 0 analcatdata boxing2 0

profb 0 threeOf9 0 car 0

mean (all 528 datasets) 0.94 0.93 0.93

5.4.2 Accuracy

We found 173 cases where the toolkits’ ARIs (accuracies) on the same dataset

differ by more than 0.1. In the top half of Table 5.9, we show the top-5

datasets by accuracy gap between the three toolkits. Four out of these five

datasets come from the Gene Expression for Oncology repository GEMLeR by

Stiglic and Kokol [50]: AP Prostate Lung, AP Omentum Prostate, AP Prostate Kidney,

and AP Endometrium Prostate.

We determined that one source of differences was the linkage criterion (distance

function), which was different for each toolkit: Ward vs. Complete vs. Single for

Scikit-learn, R, and MATLAB, respectively. Since Ward is uniformly supported in all

three toolkits, we set the linkage to Ward, and report the results in the bottom half

of Table 5.9. Using the same linkage not only improves consistency, but also increases

accuracy for both R and MATLAB.

We also found an implementation difference so substantial that it is impossible

to control for by just changing input parameters: R’s implementation is optimized for

time via fast distance computation (Nearest-neighbor chain algorithm [10]). Per its

68

authors [12], R is the only clustering toolkit to use this distance computation method.

Extricating the distance computation code to force consistency with other toolkits

would be a substantial endeavor (as it is pervasive throughout the implementation).

We leave this endeavor to future work.

Mutual ARI. The mutual ARIs are presented in Table 5.10. For bottom-5

consistencies, note the negative values in default mode (top rows); the mean

consistency across all datasets was 0.14–0.41, which is way lower than DBSCAN

defaults (0.79–0.97) or Affinity Propagation defaults (0.95).

Controlling for linkage substantially improves consistency: while some datasets’

mutual ARIs are around 0 (bottom rows of Table 5.10) the mean mutual ARI has

increased to 0.93–0.94.

5.4.3 Actionable Findings

To conclude, our experiments have revealed that Hierarchical Agglomerative Clustering

has deterministic behavior in Scikit-learn, R, and MATLAB. However, all three

implementations are mutually inconsistent due to different default linkage; setting

linkage to “Ward” is an effective consistency measure.

5.5 K-means

K-means forms clusters by assigning points to their closest cluster center. Given

initial “centroids”, K-means assigns each point to the closest centroid, calculates the

new centroids (means of updated clusters), and repeats the process until clusters

are stable. While the choice of initial centroids is nondeterministic, the iteration

phase is deterministic. Therefore, our strategy was to choose the same centroids

for all implementations and study implementation-induced nondeterminism and

inconsistency, due to the iteration phase. We studied K-means in four toolkits:

Scikit-learn, R, MATLAB, and Tensorflow.

69

Table 5.11 Number of Datasets that Have Inconsistencies for K-means for Each
Controlling Step

#Datasets TF TF TF R R Scikit-learn

vs. vs. vs. vs. vs. vs.

R Scikit-learn MATLAB Scikit-learn MATLAB MATLAB

Default parameters 369 82 29 376 369 58

Fixed ITER=100 21 31 29 18 15 4

Control first-iteration tie 15 23 22 16 13 6

5.5.1 Inconsistency

We show the progression toward stronger consistency, starting from default parameters

and then applying stronger controls: Table 5.11 shows the number of datasets that

toolkits disagree on, while Table 5.12 shows the mean mutual ARIs and the strongest

disagreements.

Defaults. The lowest consistencies are between R and other toolkits: ARIs as low

as -0.06 for four datasets, and disagreements on 369–376 datasets. This is due to R’s

default implementation, including stopping conditions.2

Stop conditions. The most important consistency parameter is MAX ITER. By

default MAX ITER=10 for R, MATLAB uses MAX ITER=100 and Scikit-learn uses

MAX ITER=300. Since we found that 96.9% of datasets finish in 40 iterations or less,

we set MAX ITER=100 for all toolkits. Table 5.11 shows that R’s disagreement with

the other toolkits reduces substantially, from 369–370 disagreements to just 15–21;

Table 5.12 shows that the mean mutual ARI increases from 0.75 to 0.99.

Scikit-learn uses a parameter “tolerance,” i.e., the relative difference in

objectives between two iterations, as one of the stop conditions. By default,

2R uses “Hartigan-Wong” heuristics [32] by default, whereas Scikit-learn and MATLAB use
“Lloyd” heuristics [39].

70

Table 5.12 Bottom-5 Consistencies for K-means for Each Controlling Step

TF TF TF R R Sk

vs. vs. vs. vs. vs. vs.

R Sk MATLAB Sk MATLAB MATLAB

Default parameters analcatdata vehicle -0.02 0.43 0.43 -0.02 -0.02 1

analcatdata chlamydia -0.01 0.64 0.64 -0.01 -0.01 1

rabe 266 -0.01 0.64 0.64 -0.01 -0.01 1

AP Breast Kidney 0.00 0.76 0.76 0.00 0.00 1

fri c4 100 50 -0.09 1 1 -0.09 -0.09 1

mean 0.75 0.99 0.99 0.75 0.75 1

Fixed ITER=100 analcatdata vehicle 1 0.43 0.43 0.43 0.43 1

monks-problem3 1 0.46 1 0.46 1 0.46

glass 0.59 0.59 0.59 1 1 1

rabe 266 1 0.64 0.64 0.64 0.64 1

analcatdata boxing1 1 0.69 0.69 0.69 0.69 1

mean 0.99 0.98 0.99 0.99 0.99 1

Control first-iteration tie solar-flare 0.31 0.58 0.58 0.43 0.43 1

analcatdata vehicle 1 0.43 0.43 0.43 0.43 1

led7 0.41 0.83 0.82 0.40 0.42 0.90

LED-display-domain-7digit 0.56 0. 73 0.95 0.56 0.54 0.69

cleveland-nominal 0.52 0.92 0.92 0.52 0.52 1

mean 0.99 0.99 0.99 0.99 0.99 1

TOL=0.0001 in Scikit-learn; its equivalent would be TOL=0 in the other toolkits.

We found that setting Scikit-learn’s TOL=0 yields a small increase in consistency;

due to the small magnitude of this improvement (visible at the third decimal place)

we omit it from Table 5.11.

“Tie-breaking” at first iteration. Even after the aforementioned controls, we

still observe inconsistencies. For example, R and Scikit-learn have inconsistencies

on 18 out of 497 datasets; Tensorflow and R have inconsistencies on 21 out of 497

datasets. Most of these inconsistencies are visible after the first iteration. When we

compared label assignments between toolkits after the first iteration, we found that

71

toolkits break “ties” (i.e., assign observations that have the same Euclidean distances

to cluster centers) differently. For example, Scikit-learn assign points with ties to

the cluster that has the higher index, that is quite arbitrary tie breaking; MATLAB

resolves ties by keeping last step’s assignments – it will prefer not to move a point

if it becomes tied. These tie breaking-induced inconsistencies persist after the first

iteration, as later steps are deterministic. Therefore, our next control was to avoid

starting points that have equal distance to points to be clustered. This measure

increased inconsistencies for 25 datasets; bottom-5 consistencies are shown in the last

6 rows Table 5.12. Note that mutual ARIs are at least 0.99.

Table 5.11 shows 6–23 datasets that still have inconsistencies after controlling for

first iteration tie-breaking. These inconsistencies are due to inherent ties in datasets

(certain points are equidistant to cluster centers) and cannot be avoided by changing

parameters or starting points.

5.5.2 Actionable Findings

To conclude, our experiments have revealed that Scikit-learn, R, MATLAB and

Tensorflow’s K-means implementations are deterministic, but mutually inconsistent

due to heuristics, stop conditions, and tie-breaking. These findings suggest that

controlling for MAX ITER and tie-breaking strategy are effective measures for

achieving high consistency.

5.6 Conclusion

In this chapter we were able to manually identify, and expose, various root causes

of nondeterminism or inconsistency in implementations of deterministic algorithms:

default parameter settings, noise insertion, distance metrics, or termination criteria.

Controlling these sources can eliminate nondeterminism and bring several different

implementations of the same algorithm more in line with each other. In Chapter 6

72

we address the challenge associated with manually finding root causes by exposing

root causes automatically.

73

CHAPTER 6

AUTOMATIC DETECTION OF NONDETERMINISM AND
INCONSISTENCY ROOT CAUSES

In Chapter 5, we (a) exposed various root causes of nondeterminism or inconsistency

– default parameter settings, noise insertion, distance metrics, termination criteria –

and (b) eliminated them to improve effectiveness and efficiency. To automatically

find inconsistencies across multiple clustering implementations, in this chapter

we introduce a programmer-assisted approach to trace and compare clustering

implementations. Our approach uses annotations, coupled with dynamic analysis,

to trace programs and automatically find nondeterminism/inconsistency root causes.

We evaluate our approach on Scikit-learn, R, and Elki. Our results show that all

examined toolkits can be transformed with modest programmer effort; and that

our approach is effective at automatically finding nondeterminism/inconsistency root

causes.

6.1 Motivation

As prior chapters have shown, we manually discovered root causes of nondeterminism

and inconsistency of in deterministic clustering algorithm’s implementations for four

algorithms. However, finding root causes automatically is still a challenge for

two main reasons: when clustering algorithms vary (e.g., K-means with different

heuristics) and when implementations’ programming languages vary (e.g., clustering

implemented in Python, R, or Java).

We start by motivating our approach with clustering accuracy in tokyo1 on AP.

tokoyo1 contains performance co-pilot (PCP) data for the Tokyo server at Silicon

Graphics International (SGI). We compared clustering outcomes of deterministic

algorithm AP in two toolkit configurations. In Figure 6.1, we can find mutual ARIs

74

Figure 6.1 AP: Accuracy distribution for sckit-learn and R on dataset tokyo1.

for each iteration which indicates inconsistencies between Scikit-learn and R due to

under-iterating. The question is, what specific part of the implementation (code,

setting, input parameter) is responsible for these inconsistencies?

To answer this question, we introduce a programmer-assisted approach where

programmers simply indicate algorithm phases and our toolchain will isolate and

identify the inconsistency (or nondeterminism) root causes.

In Section 3.1, we describe the architecture of our approach. Our approach

supports either compile-time or run-time solutions (annotation frameworks) for

transforming clustering programs into programs that output “differentiable” traces,

a dynamic analysis that performs the differencing, and finally an automatic approach

to find root causes on trace reports.

Constructing effective annotation frameworks is key, with reducing annotation

burden being a top concern. Therefore, in our approach, described in Section 6.3,

programmers simply add a few annotations to indicate certain variables and/or

algorithm phases, and writing conversion functions.

75

In Section 6.4, we provide an evaluation of approach from two perspectives:

effectiveness and ease of use. We evaluated our approach on three clustering

algorithms: AP, K-means and DBSCAN. We found that programming effort is overall

modest, and that most of the effort consists of writing conversion functions.

6.2 Overview

Figure 6.2 shows the architecture for our approach. There are three steps. First,

we apply an annotation framework to transform clustering programs so their phases

can be traced and we use a dynamic analysis to trace the deterministic part of the

implementation. Last, we use a differential analysis to detect inconsistency on trace

reports and automatically find root causes.

Dynamic analysis

Hyperparameters

Differential
analysis

Deterministic part of
Adaptive Implementation

Trace reports

Results

“Peer
Implementation”

Annotation
Framework

Programmer
assist

Figure 6.2 Architecture.

Annotation Framework. We describe our approach for transforming the

clustering program into adaptive implementation in Section 6.3.

Dynamic Tracing. Our dynamic tools trace program executions to identify

program phases and make these phases available in the dynamic trace. We now

discuss the language-specific tracing approach.

76

For Python, a Python-execution tool [2] traces the local context of a Python

function’s execution; we modified it to trace multiple functions.

For Java, we use a runtime dynamic tracing tool called Java Tracing Agent [3].

This is a lightweight and fast runtime injection tool for logging and tracing.

For R, note that R’s trace library only allows tracing the entry and exit points of

R closures. Therefore we used the RDT dynamic tracing framework 10.1145/3360579

that modifies GNU R Virtual Machine with probes that can trace function entry and

exit, variable definition and mutation, non-local jumps and S3/S4 dispatch, etc. These

probes are triggered when specific program events are called.

To ensure our results are deterministic, we turn off implementation-induced

randomness before applying dynamic analysis.

Inconsistency Detection. We apply a differential analysis on the trace

reports. These trace reports from the adaptive programs are implementation-agnostic.

Our comparisons have two components: initial variables in the initial and iterative

variables in the iteration phase. There are two main reasons for this design. First,

initial variables are traced only once, but iterative variables are updated for each

iteration. Second, our evaluation shows that most inconsistencies are caused by

inconsistent implementation inputs.

6.3 Annotation Framework

We now present our annotation framework that transforms a general clustering

implementation into a trace-emitting differentiable implementation. Programmers

need to add a handful of annotations to the source code, to indicate the traced

functions; mark the initial phase and iteration phase; and write convention functions

that switch program to be adaptive. This annotated source code is identified and

traced by our modified dynamic tracing tools.

77

Running example: Annotation Framework on Python for Affinity

Propagation.

In Figure 6.3, we show an excerpt from Affinity Propagation (AP) implemented

in Python – the main function implementing AP algorithm. The inputs of this

function are similarity matrix, preference, convergence iter, max iter; they are all

initial variables. The iterative variables are it , I, E, K. However we only trace

K, since K is used to identify exemplars and affect results directly. To transform

the program to adapt to its inputs and algorithm, we add two conversion functions:

initial variables and iteration variables .

Running example: Conversion Functions on Java for Affinity Propagation.

In Figure 6.4, we show an excerpt from Affinity Propagation implemented

in Java (the implementation’s core method). The inputs to the method are

similarity matrix, lambda, convergence iter, max iter. There are slight differences

from Python: the variable lambda is the damping factor in Python; the preference

is the first diagonal value of similarity matrix according to the source code. The

iterative variables are it , K, etc., and we still pick up K, because K is used to

identify exemplars. To transform the program we insert two conversion functions:

initialPhase and iterationPhase. Since the dynamic tracing tool on Java will pass

tracing configures on runtime, programs can perform switching by passing settings

for conversion functions on configuration and there is no need to add annotations on

program again.

Programming Model. Our approach is designed to minimize the programmer’s

burden. Programmers simply use two annotations to indicate initial variables and

variables in the loop. Also, programmers need to write conversion functions, although

tracing these functions is automatic. Our modified tracing tools will identify these

functions in program executions and restore their data.

78

Table 6.1 Annotations on Clustering implementations.

Annotation Modify Implementation Purpose

Python record initial Yes input

Python record iteration Yes loop

Java initialPhase Yes input

Java iterationPhase Yes loop

R initial phase No adaptive input

& restore data

R iteration phase No adaptive loop

& restore data

Note that the insertion place (where programmers add annotations) differs

depending on the underlying language. For example, while Python programmers

should add annotations record initial and record iteration in the source code, Java

programmers indicate conversion functions initialPhase and iterationPhase into Java

dynamic tools. Because R is recompiled to insert probes, after inserting annotations

in R, the R project itself needs to be recompiled.

6.4 Evaluation

We evaluate our annotation framework on three clustering algorithms: Affinity

Propagation, K-means and DBSCAN as implemented in scikit-learn, R (apcluster

package version 1.4.7, stats version 3.2.3 package) and Elki. Our datasets come from

OpenML (Section 5.1.1).

79

6.4.1 Effectiveness

Affinity Propagation. To avoid testing on nondeterministic part of implemen-

tation, we turn off the random generator and remove noise from the similarity matrix.

Note that Elki does not use noise insertion. We measure inconsistency using mutual

ARIs for clustering. We analyze on trace reports to find inconsistent variables that

indicate root causes.

Table 6.2 shows that the number of inconsistent datasets found by our tools.

341 out of 446 datasets are inconsistent because of inconsistent initial variables of

max iter and conv iter between scikit-learn and R implementation. Also, Elki has 22

inconsistent datasets with the other two toolkits.

We also found a substantial number of inconsistent datasets for Elki: 364 out of

446 datasets are inconsistent when Elki is compared with scikit-learn and R. The root

cause is the function Elki uses, a median function in the method QuickSelect.quantile.

These results indicate that our tool is effective: it shows that inconsistent initial

variables are root causes of inconsistencies. Note that we found only 6 inconsistent

datasets in scikit-learn and R, caused by the iterative variable K.

Table 6.2 Number of Inconsistent Datasets for Affinity Propagation.

Parameter R &

Scikit-learn

Java &

Scikit-learn

Java &

R

Root Cause

Initial Phase preference 20 364 364 Inconsistent function

preference, damping damping 0 0 0 None

max iter & conv iter max iter & conv iter 341 22 22 Parameter settings

Iteration Phase, K K 6 0 0 Unequal assignment

K-means. To avoid use random starting points, we feed the same initial centroids

for all implementations scikit-learn, R, and Elki.

80

K-means has multiple heuristic algorithms, and to make implementations

comparable, we compare K-means implementations of the same heuristic algorithm.

We compare two heuristics: Lloyd in scikit-learn, R and Elki; Macqueen inn R and

Elki. We trace centroids at initial phase and iteration phase.

Table 6.3 shows that the major root cause for inconsistency is the inconsistent

implementations for K-means heuristic algorithms. For the Lloyd algorithm, there

are no inconsistent cases found in the initial phase. All inconsistent cases are due

to inconsistent centroids in the iteration process: 48 inconsistent datasets are found

when Java (Elki) is compared to R; 49 inconsistent datasets are found when Java

(Elki) is compared to scikit-learn. We also found that there are more inconsistent

datasets for the Macqueen algorithm due to inconsistent centroids in the iteration

phase than those on the initial phase. In total, there are 222 inconsistent datasets

in the iteration phase. In conclusion, most of the inconsistent datasets using the

Macqueen heuristic are in the iteration phase, and Macqueen is also easily affected by

“bad” starting points compared to Lloyd heuristic (since we observed 59 inconsistent

cases happening in the initial phase).

Table 6.3 Number of Inconsistent Datasets for K-means.
Parameter Java &

R(Lloyd)

Python &

Java(Lloyd)

Java &

R(MacQueen)

Root Cause

Initial Phase, centroids centroids 0 0 59 Empty Cluster

Iteration Phase, centroids centroids 48 49 222 Unequal Assignments

DBSCAN. We studied this algorithm for three toolkits; we only compare scikit-

learn/R with Elki, since there is no inconsistency observed between scikit-learn and

R. Recall that DBSCAN forms clusters by looking for “dense” regions, i.e., regions

with at least minPoints separated by a maximum distance eps. We only traced the

initial variables; 2 out of 382 datasets were inconsistent.

81

Table 6.4 Program Size and Program Effort.

Algorithm Size Step1 Step2

LOC LOC LOC

AP 484 4 4

Python K-means 2017 4 4

DBSCAN 309 4 2

AP 386 2 2

Java K-means 316 2 2

DBSCAN 357 2 1

AP 432 9 2

R K-means 784 6 2

DBSCAN 273 3 1

6.4.2 Manual Annotation Effort

Programming effort. Converting an off-the-shelf implementation into a differen-

tiable implementation is a two-step process (hence we only focus on the programming

effort for adding support for annotation framework): first, writing the conversion

functions for initial phase and iteration phase; and second, annotating the source

code.

We report this effort in Table 6.4. The function code size “Step 1” column

depends on the number of functions and parameters. Python and Java need two

conversion functions; R need two conversion functions with lines for restoring data.

“Step 2” code consists of annotations and the lines that support for annotations.

For annotations (the four grouped columns), Python need four more lines because it

82

needs adding two annotations and call for conversion functions. Java and R do not

have to add the line for annotations.

6.5 Conclusion

We proposed a programmer-assisted approach to detect implementation-induced

inconsistency for clustering implementations automatically. Our evaluation shows

the effectiveness of our approach at automatically identifying root causes in three

clustering implementations.

83

@record initial(200, ” initial . json”)

def initial variables(preference , damping, convergence iter , max iter) :

pass

@record iteration(200, ” iteration . json”)

def iteration variables(K, labels , it) :

pass

def affinity propagation (S, preference =None, convergence iter=15, max iter=200,

damping=0.5, copy=True, verbose=False,

return n iter =False):

S = as float array (S, copy=copy)

preference = np.median(S)

S. flat [::(n samples + 1)] = preference

......

initial variables (preference , damping, convergence iter , max iter)

for it in range(max iter) :

......

K = np.sum(E, axis=0)

iteration variables (K, it)

Figure 6.3 Excerpt from Python Affinity Propagation; functions initial variables
and iteration variables with annotations are inserted.

84

public void initialPhase(double lambda, double preference , int convergenceiter ,

int maxiter) ;

public void iterationPhase(int iteration , int k);

public Clustering<MedoidModel> run(Relation<O> relation) {

ArrayDBIDs ids = DBIDUtil.ensureArray(relation .getDBIDs());

final int size = ids. size () ;

int [] assignment = new int[size];

double [][] s = initialization . getSimilarityMatrix (relation , ids) ;

double [][] r = new double[size][size], a = new double[size][size];

initialPhase (lambda, s [0][0] ,convergence, maxiter) ;

int inactive = 0;

for (int iteration = 0; iteration < maxiter && inactive < convergence;

iteration ++) {

...

iterationPhase (iteration , k);

...

}

Figure 6.4 Excerpt from Java Affinity Propagation; functions initialPhase and
iterationPhase.

85

CHAPTER 7

RELATED WORK

We now compare our approach with prior efforts.

7.1 Testings on Clustering Implementations

While clustering is a richly explored field, prior clustering research efforts have not

questioned or investigated clustering reliability or correctness. For example, Software

Engineering research has used clustering as a tool rather than as an object of study;

Machine Learning and Data Mining research can be split into theoretical research

on clustering properties, or experiments on improving clustering; in both cases, the

research literature assumes correct algorithm implementations.

The study closest to our approach in breadth of algorithm/toolkit combinations

is Kriegel et al.’s [37]. They have also pointed out the peril of assuming that

“toolkits don’t matter”: an algorithm’s implementation is not standardized across all

toolkits. They have compared several algorithms and implementations on a narrower

benchmark set (a single dataset of 500k Twitter locations, and subsets thereof)

but their goal was different: runtime efficiency. They found orders-of-magnitude

differences across toolkits for the same algorithm and same input dataset.

Abu [14] has compared four clustering algorithms – K-means, hierarchical,

SOM, and Expectation Maximization (EM), each implemented in two toolkits

LNKnet and Cluster/TreeView; they used a single 600-instance dataset, and

compared performance/accuracy on this dataset, and a 200-instance subset thereof.

Our setup is substantially larger and our focus is substantially broader.

86

7.2 Machine Learning Research on Clustering Properties

Ben-Hur et al. [16] have investigated hierarchical clustering on several datasets:

varying K to find the value for which the algorithm is most stable. Our goal is

toolkit dependability, and our focus is on datasets with ground truth and fixed K.

Fred [27] has proposed voting K-means, an improvement upon standard

K-means by choosing clusters on a majority voting policy, to weed out outliers.

They use consistency (similarity of partitionings for multiple runs of K-means on

the same dataset and the same K) which is akin to our notion of determinism. Their

experiments were run with varying K on two datasets. Our use of ARI is more

robust, and our goal is toolkit dependability, rather than improving K-means.

Fränti [26] has compared performance on clustering basic benchmark, and

measure performance on four factors: overlap of clusters, number of clusters,

dimensionality and unbalance of cluster sizes. However, they only consider synthesis

data and their datasets have simple structures. Our work is based on PMLB

which includes mainly real-world datasets allowed for comparing ML methods

comprehensively.

Hamerly [31] has proposed a new algorithm for accelerating K-means, and

performed an evaluation on efficiency similar to Kriegel et al.’s (time and memory).

Our focus is on accuracy rather than efficiency.

Chen et al. [19] have compared four clustering algorithms – hierarchical

clustering, K-means, Self-organizing Map (SOM) and Partitioning around Medoids

(PAM) on a single dataset, mouse genomic data. Unlike us, they varied the K,

whereas we used the ground truth’s K. Our focus is different: varying runs of the

same algorithm, and a breadth of datasets.

Clustering stability has been defined by Tilman et al. [38] as “solutions [that] are

similar for two different data sets that have been generated by the same (probabilistic)

87

source”. Our definition of stability is different: similarity of solutions on the same

dataset, but produced by two different runs.

7.3 Testing on Machine Learning Implementations

There are several research efforts on automatic testing of ML libraries.

Srisakaokul et al. [48] detect inconsistencies across multiple implementations of

ML algorithms like kNN or Naive Bayes (NB). They use majority votes to estimate the

expected output, but they assume that most algorithms are correctly implemented.

In contrast, our approach found implementation-induced inconsistencies.

Dwarakanath et al. [24] apply transformations on the training and testing data

to detect inconsistencies on ML libraries. However, we used benchmark datasets and

would like to see how implementation-induced inconsistencies and nondeterminism

affect our results in the real world.

7.4 Research on Improving Neural Networks Safety

Prior efforts have focused on supervised learning approaches, mostly Neural Networks

(NNs)/Deep Learning [29], rather than unsupervised learning (e.g., clustering). While

NNs are popular and successful, challenges such as limited training data, unlabeled

data, or interpretability make “traditional” clustering preferable.

88

CHAPTER 8

FUTURE WORK

In this dissertation, we have proposed several techniques to expose nondeterminism

and inconsistency on clustering implementations. However, there are several avenues

worth exploring. In this section, we lay out some possible directions for future work.

8.1 Automatic Generation for Bug-Induced Datasets

In the prior study, we used datasets that had ground truth. Compared with ground

truth, we can point out a“bad” sample that produces bugs and leads to wrong results.

There are several studies about generating/transforming bug-induced datasets: Dutta

et al. [23] use fuzzing to test probabilistic programming; Dwarakanath et al. [24]

apply transformations on datasets and can find artificially injected bugs. Our future

work can be extended to apply the technique of applying Bug-Induced datasets on

implementations to find bugs in the search-based engineering area.

0.1 1 10 100
Time (seconds)

AR
I

Hierarchical R Hierarchical MATLAB

Hierarchical SKlearn

Affinity Prop. SKlearn Affinity Prop. R

DBSCAN R DBSCAN MLpack

DBSCAN SKlearn

Figure 8.1 Mean ARI (linear scale) vs. mean time (log scale).

8.2 Improving Runtime Performance

Performance (clustering running time) is another strong differentiating factor between

toolkits: in Figure 8.1, note the orders-of-magnitude difference in time between

89

toolkits implementing the same algorithm. Therefore, techniques for profiling

clustering implementations can expose runtime inefficiencies and eventually improve

runtime performance.

90

CHAPTER 9

CONCLUSION

In summary, this dissertation makes the following contributions:

• This dissertation is the first approach to question and investigates clustering
reliability or correctness.

• This dissertation has designed and implemented the SmokeOut tool to quantify
clustering outcomes across different algorithms, toolkits, and multiple runs.

• This dissertation proposes a statically rigorous approach for comparing runs,
toolkits and algorithms.

• This dissertation quantifies implementation-induced nondeterminism and incon-
sistency, finding their root causes, and showing how they can be alleviated.

• This dissertation introduced an approach to dynamically collect traces for
clustering implementations and automatically find root causes of inconsisten-
cy/nondeterminism.

91

REFERENCES

[1] Companies using tensorflow. https://www.tensorflow.org/.

[2] execution-trace. https://github.com/mihneadb/python-execution-trace. Accessed:
2020-10-15.

[3] java-tracing-agent. https://github.com/dakaraphi/java-tracing-agent. Accessed:
2020-10-15.

[4] Tensorflow github. https://github.com/tensorflow/tensorflow.

[5] SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, USA, 2007. Society for Industrial and Applied
Mathematics.

[6] Cran task view: Cluster analysis & finite mixture models, November 2018.
https://cran.r-project.org/web/views/Cluster.html.

[7] Matlab file exchange:clustering, November 2018.
https://www.mathworks.com/matlabcentral/fileexchange/?term=clustering+product

[8] Weka mailing list, September 2018. http://weka.8497.n7.nabble.com/Weka-
clustering-diverges-from-other-toolkits-td43955.html.

[9] Mathworks fast facts, April 2019.
https://www.mathworks.com/company/aboutus.html.

[10] Nearest-neighbor chain algorithm, April 2019.
https://en.wikipedia.org/wiki/Nearest-neighborchainalgorithm.

[11] OpenML, April 2019. https://www.openml.org/.

[12] The R Project: Hierarchical Clustering, April 2019.
https://svn.r-project.org/R/trunk/src/library/stats/R/hclust.R.

[13] Who is using scikit-learn?, April 2019.
http://scikit-learn.org/stable/testimonials/testimonials.html.

[14] Osama Abu Abbas. Comparison between data clustering algorithm. Int. Arab
Journal of Information Technology, 5(3), 2008.

[15] Duncan Bell. 5 great ai-powered home devices that will improve your life today.
https://www.t3.com/features/5-great-ai-powered-home-devices-that-will-
improve-your-life-today.

92

[16] Asa Ben-Hur, André Elisseeff, and Isabelle Guyon. A stability based method for
discovering structure in clustered data. In Proceedings of the 7th Pacific
Symposium on Biocomputing, PSB 2002, Lihue, Hawaii, USA, January 3-7,
2002, pages 6–17, 2002.

[17] Guy Brys, Mia Hubert, and Anja Struyf. A comparison of some new measures of
skewness. In Rudolf Dutter, Peter Filzmoser, Ursula Gather, and Peter J.
Rousseeuw, editors, Developments in Robust Statistics, pages 98–113,
Heidelberg, 2003. Physica-Verlag HD.

[18] Carlton E. Sapp. Gartner: Preparing and architecting for machine learning, 2017.
https://www.gartner.com/binaries/content/assets/events/keywords/catalyst/
catus8/preparing and architecting for machine learning.pdf.

[19] Gengxin Chen, Saied A. Jaradat, Nila Banerjee, Tetsuya S. Tanaka, Minoru S. H.
Ko, and Michael Q. Zhang. Evaluation and comparison of clustering
algorithms in analyzing es cell gene expression data. Stat. Sinica, pages
241–262, 2002.

[20] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. JOURNAL OF THE ROYAL
STATISTICAL SOCIETY, SERIES B, 39(1):1–38, 1977.

[21] Nathalia Moraes do Nascimento, Carlos Lucena, Paulo S. C. Alencar, and Donald D.
Cowan. Software engineers vs. machine learning algorithms: An empirical
study assessing performance and reuse tasks. CoRR, abs/1802.01096, 2018.

[22] Harold E. Driver and Alfred Louis Kroeber. Quantitative Expression of Cultural
Relationships. Publications in American archaeology and ethnology.
University of California Press, 1932.

[23] Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. Testing
probabilistic programming systems. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2018, page 574–586,
New York, NY, USA, 2018. Association for Computing Machinery.

[24] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M. Rao, R. P.
Jagadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. Identifying
implementation bugs in machine learning based image classifiers using
metamorphic testing. Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018.

[25] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, KDD’96, page 226–231. AAAI Press, 1996.

93

[26] Pasi Fränti and Sami Sieranoja. K-means properties on six clustering benchmark
datasets. Applied Intelligence, 48(12):4743–4759, Dec 2018.

[27] Ana Fred. Finding consistent clusters in data partitions. In In Proc. 3d Int.
Workshop on Multiple Classifier, pages 309–318. Springer, 2001.

[28] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data
points. Science, 315(5814):972–976, 2007.

[29] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. Ai2: Safety and robustness certification of
neural networks with abstract interpretation. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 3–18, May 2018.

[30] Michael Hahsler. R’s dbscan package v. 1.1.3, April 2019.
https://cran.r-project.org/web/packages/dbscan/index.html.

[31] Greg Hamerly. Making k-means even faster, pages 130–140.

[32] John A. Hartigan and MA Wong. Algorithm AS 136: A K-means clustering
algorithm. Applied Statistics, pages 100–108, 1979.

[33] Mark Hornick. Oracle r technologies overview.
https://www.oracle.com/assets/media/oraclertechnologies-2188877.pdf.

[34] Lawrence Hubert and Phipps Arabie. Comparing partitions. 2:193–218, 02 1985.

[35] Janakiram MSV. Why do developers find it hard to learn machine learning?, 2017.
https://www.forbes.com/sites/janakirammsv/2018/01/01/why-do-
developers-find-it-hard-to-learn-machine-learning/.

[36] Jianbo Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905,
2000.

[37] Hans-Peter Kriegel, Erich Schubert, and Arthur Zimek. The (black) art of runtime
evaluation: Are we comparing algorithms or implementations? Knowl. Inf.
Syst., 52(2):341–378, August 2017.

[38] Tilman Lange, Volker Roth, Mikio L. Braun, and Joachim M. Buhmann.
Stability-based validation of clustering solutions. Neural Computation,
16(6):1299–1323, 2004.

[39] Stuart. Lloyd. Least squares quantization in pcm. IEEE Trans. Inf. Theor.,
28(2):129–137, September 2006.

[40] Glenn W. Milligan and Martha C. Cooper. A study of the comparability of external
criteria for hierarchical cluster analysis. Multivariate Behavioral Research,
21(4):441–458, 1986.

94

[41] Frank Nielsen. Introduction to HPC with MPI for Data Science. 09 2016.

[42] Nvidia. World’s first functionally safe ai self-driving platform.
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/.

[43] Ingram Olkin. Contributions to Probability and Statistics: Essays in Honor of
Harold Hotelling. Stanford studies in mathematics and statistics. Stanford
University Press, 1960.

[44] Randal S. Olson, William La Cava, Patryk Orzechowski, Ryan J. Urbanowicz, and
Jason H. Moore. Pmlb: a large benchmark suite for machine learning
evaluation and comparison. BioData Mining, 10(1):36, Dec 2017.

[45] PAT RESEARCH. Top 15 artificial intelligence platforms in 2018, 2018.
https://www.predictiveanalyticstoday.com/artificial-intelligence-platforms/.

[46] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages
410–420, Prague, Czech Republic, June 2007. Association for Computational
Linguistics.

[47] SAS Institute Inc. Sas/stat 12.1 user’s guide, 2012.

[48] Siwakorn Srisakaokul, Zhengkai Wu, Angello Astorga, O. Alebiosu, and T. Xie.
Multiple-implementation testing of supervised learning software. In AAAI
Workshops, 2018.

[49] Douglas Steinley. Properties of the hubert-arable adjusted rand index. Psychological
methods, 9(3):386, 2004.

[50] Gregor Stiglic and Peter Kokol. Stability of ranked gene lists in large microarray
analysis studies. Journal of biomedicine & biotechnology, 2010:616358, 06
2010.

[51] Alexander Strehl and Joydeep Ghosh. Cluster ensembles — a knowledge reuse
framework for combining multiple partitions. J. Mach. Learn. Res.,
3(null):583–617, March 2003.

[52] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures
for clusterings comparison: Variants, properties, normalization and
correction for chance. JMLR, 11(Oct):2837–2854, 2010.

95

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: The Smokeout Clustering Testbed
	Chapter 4: Statistically Rigorous Testing of Clustering Implementations
	Chapter 5: Exposing Root Causes of Implementation-Induced Inconsistency and Nondeterminism in Deterministic Algorithms
	Chapter 6: Automatic Detection of Nondeterminism and Inconsistency Root Causes
	Chapter 7: Related Work
	Chapter 8: Future Work
	Chapter 9: Conclusion
	References

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 2)
	List of Figures (2 of 2)

