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ABSTRACT 

A DEEP MACHINE LEARNING APPROACH FOR PREDICTING FREEWAY 

WORK ZONE DELAY USING BIG DATA 

  

by 

Abdullah Shabarek 

The introduction of deep learning and big data analytics may significantly elevate the 

performance of traffic speed prediction. Work zones become one of the most critical factors 

causing congestion impact, which reduces the mobility as well as traffic safety.  

A comprehensive literature review on existing work zone delay prediction models 

(i.e., parametric, simulation and non-parametric models) is conducted in this research. The 

research shows the limitations of each model. Moreover, most previous modeling 

approaches did not consider user delay for connected freeways when predicting traffic 

speed under work zone conditions. This research proposes Deep Artificial Neural Network 

(Deep ANN) and Convolution Neural Network (CNN) traffic speed prediction models, for 

upstream freeway segments, including those on connected freeways, under work zone 

conditions. 

The developed models are able to identify the congestion on the connected links in 

addition to the upstream mainline segments. The models predict traffic speed with work 

zone conditions based on traffic volume approaching the work zone, speed during normal 

conditions, work zone capacity, distance from work zone, vertical road gradient, 

downstream traffic volume and type of freeway segment. Moreover, the previous efforts 

in non-parametric approaches did not consider a solution to the overfitting problem of 

Artificial Neural Network (ANN). The proposed Deep ANN and CNN models use a 

dropout regularization to mitigate the overfitting issues. When comparing the CNN model 
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to the Deep ANN model and the results of the Work Zone Interactive Management 

APplication-Planning (WIMAP-P) model, the testing results show higher accuracy with 

the CNN model compared to the other two models. The CNN model has filters that extract 

useful inputs from previous layers and reduces the overfitting problems. Dropout 

regularization technique is used to prevent the co-adaptation of training data. The CNN 

model is calibrated by varying the number of neurons at each hidden layer, the number of 

hidden layers, the optimizer algorithm, the filter height and the filter stride. The results 

indicate that the CNN model outperforms Deep ANN and the model of WIMAP-P in 

predicting traffic speed under work zone conditions. 

While traditional efforts were conducted previously on predicting traffic congestion 

on the upstream freeway segments, the developed CNN model helps transportation 

agencies in planning for work zones by including both connected freeways and the 

upstream segments when predicting traffic speed under work zone conditions. Therefore, 

transportation agencies can prepare more accurate congestion mitigation plans, and provide 

more accurate user delay plans. 
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CHAPTER 1 

INTRODUCTION  

1.1 Background and Problem Statement 

Transportation infrastructures, such as freeways, require frequent maintenance that 

involves lane closures. With the increase of vehicles-mile traveled, work zones became the 

second greatest contributor to non-recurrent congestion. Work zone congestion accounts 

for 24 percent of non-recurrent congestion and 10 percent of the overall congestion 

(FHWA, 2019). Work zone congestion occurs on the upstream mainline segments and 

depending on the characteristic of the work zone, traffic volume, and geographic 

conditions, work zone congestion can spill back to upstream connected freeways.  

Transportation systems provide means for passengers and goods movement. With 

the important role of these systems, work zones are required to maintain and extend the life 

cycle of the infrastructure. However, work zones with lane closures are accounted for 

congestion. For this reason, transportation systems aim to predict the congestion upstream 

work zone and the spillback to other connected freeways. One of the elements in 

determining work zone congestion is work zone capacity, which is the maximum number 

of vehicles entering a work zone. When work zone capacity is less than the traffic volume 

approaching work zone, a queue forms, which leads to reduction in traffic speed upstream 

work zone area. Other factors include the vertical gradient, traffic speed during normal 

conditions, traffic volume, and distance of the upstream segment to the work zone. While 

the effect of each of these factors overestimating upstream traffic speed is not explicit, a 

non-parametric approach is desirable to predict traffic speed with work zone conditions on 

the mainline and upstream segments. 
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Parametric and simulation models are typically used for predicting traffic speed 

with work zone conditions. Non-parametric approaches can predict work zone speed when 

historical data is available. Moreover, non-parametric approaches do not assume a 

distribution of the sampled data. Since real-world data tend not to follow a well-known 

distribution, the parametric model’s approach may reduce the accuracy of the prediction 

results. Deep Artificial Neural Network (Deep ANN), a non-parametric model commonly 

used as a prediction model, is a machine-learning technique that are used to identify traffic 

patterns and traffic speed. Previous studies used ANN to predict the traffic speed upstream 

work zone on the mainline segments only. Since ANN models include one or two hidden 

layers, they cannot capture the complexity of larger scale networks that include connected 

freeways. Additionally, ANN models would be more susceptible to overfitting since some 

of the overfitting mitigation techniques are hard to be implemented in two hidden layers 

(Schmidhuber, 2015). With sufficient data, a deep learning approach is more suitable to 

predict the traffic speed on upstream mainline, ramps, and connected freeways. 

Furthermore, previous studies suffered from the overfitting problems, when using the 

traditional ANN models. Therefore, the accuracy of the traffic speed prediction may be 

affected, when predicting work zone conditions that are not included in the training dataset. 

As discussed, traditional ANN models suffered from overfitting problems and did 

not extend the study to include congestion spillback to connected freeways. Therefore, the 

CNN structure is adopted in this study to predict traffic speed on the upstream segments, 

including both the mainline and the connected freeway segments. The proposed CNN 

model is expected to mitigate the overfitting problems by extracting only important 

features from the layer it is applied at. The CNN model captures the spatial-temporal 
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impact of a work zone on the upstream segments. Once the congestion approaches the ramp 

segments, a spillback of congestion usually occurs on the ramp and connected freeways. 

This research focuses on the factors affecting the prediction of congestion on upstream 

ramps and connectors in addition to upstream mainline freeway segments. Moreover, the 

study recognizes the overfitting problem of Deep ANN models and suggests a dropout 

technique to prevent the co-adaptation on training data. A numerical evaluation is 

conducted on Interstate-287 to compare the predicted speed results of the CNN model with 

previous prediction models.  

The developed model in this study can be used for further planning purposes for 

work zone congestion prediction in which congestion can be predicted on connected 

freeways in addition to mainline segments. For instance, transportation planners can use 

the model to predict the delay the queue lengths prior to performing the work zone. Thus, 

transportation planners can see whether a work zone would produce a congestion spillback 

to other freeways or not. A work zone congestion that has a spillback on other freeways 

would produce higher user delay. Therefore, public agencies can increase the coverage in 

predicting user delay when preparing congestion mitigation plans. This research can be 

used to predict scenarios in which congestion spill backs on other connected freeways; 

thus, it can be useful for supporting decisions where to deploy queue warning systems on 

the upstream connected freeways.  

1.2 Objective and Work Scope 

The objective of this study is to develop a model that is able to predict the effect of a work 

zone on the mainline freeway and connected roads using a mass amount of data. Therefore, 

this research improves the coverage and accuracy of the previous studies in predicting 
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traffic speed under work zone conditions. In the development of these two models, various 

parameters of the network are optimized. The limitations of the previous models are 

discussed. One of the problems in previous models is the overfitting issue, which results in 

inaccurate prediction values. Dropout is discussed in this research as a mean to mitigate 

the overfitting problem. Then, two non-parametric models (i.e., Deep ANN and CNN) are 

developed and evaluated under various work zone, weather, and traffic conditions. The 

Deep ANN and CNN models utilize various data types including road geometry, work zone 

data, probe vehicle data, and traffic volume data. Both of the CNN and Deep ANN models 

use the drop out regularization to overcome the overfitting problem in previous models. 

 The scope of the work includes predicting traffic speed under work zone conditions 

on the freeway segments in New Jersey. The scope of the modeling approach is conducted 

on selected non-parametric approaches (i.e., Deep ANN, and CNN). The proposed CNN 

model can predict traffic speed upstream of a work zone including both the mainline and 

the connected freeway segments. Consequently, the predicted work zone traffic speed can 

include multiple freeways for congestion mitigation plans. Moreover, when a congestion 

occurs on upstream connected freeways due to work zone, queues can be formed. Thus, 

transportation agencies can mitigate any safety problems associated with the queue 

formation on the predicted congested upstream freeway segments.  

1.3 Organization 

This dissertation is organized into six chapters as shown in Figure 1.1. Chapter 1 focuses 

on the background and the gaps of the previous work zone speed prediction models. This 

chapter demonstrates the importance of this research. Chapter 2 discusses the previous 

work on work zone speed prediction, and reviews the factors affecting the traffic speed. 
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Chapter 3 discusses the data acquisition from various sources. Moreover, the structures and 

functionalities of Deep ANN model and CNN model are presented. Chapter 4 discusses 

the evaluation of Deep ANN and CNN models under various traffic and weather conditions 

with the database developed in Chapter 3. A case study is discussed in Chapter 5 for 

demonstrating the applicability of the proposed models. Finally, the research findings are 

concluded in Chapter 6 in addition to future potential studies. 

 

Figure 1.1 Organization of the dissertation. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter examines the previous research efforts in predicting the traffic speed under 

work zone conditions, including the parametric approaches, the simulation approaches, and 

the non-parametric approaches. Then, a research of the available tools and methods is 

conducted from previous work zone traffic speed predication methods. Finally, this chapter 

explores the configuration of Deep ANN and CNN in terms of applicable and 

recommended parameters. 

2.1 Work Zone Delay Prediction 

This section describes the previous approaches in predicting work zone traffic speed. Work 

zones usually produce congestion on the upstream segments. Work zone delay is the 

additional time vehicles need to travel through a work zone segment compared to normal 

conditions in which a work zone does not exist (Ullman et al., 2011; Weng and Meng, 

2013). Predicting a work zone delay is important for transportation agencies for planning 

purposes. First, this section previews the factors affecting a work zone delay. Second, this 

section explores the previous research efforts in the main three categories of predicting 

work zone delay: parametric approaches, simulation approaches and non-parametric 

approaches. 

2.1.1 Factors Affecting Work Zone Delay 

There are multiple factors affecting work zone delay (e.g., work zone intensity, work zone 

starting/ending time, the number of closed lanes, the number available lanes, the traffic 
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volume approaching work zone, the work zone capacity, the truck percentage, the vertical 

gradient, the traffic volume downstream an ramp segment, weather conditions) 

Work zone delay increases as a work zone intensity increase. Work zone intensities 

are categorized into three intensity types: low, medium, and high (Karim and Adeli, 2003). 

High Capacity Manual (HCM 2010) provides work zone intensity as a factor in 

determining work zone capacity. Additionally, a work zone delay change depends on the 

work zone starting/ending time. Work zones that occur during the night differ significantly 

from daytime work zones (Chien and Schonfeld, 2001; Tang and Chien, 2008). 

Previous studies indicate the effect of the number of closed lanes and the number of 

available lanes on a work zone delay (Krammes and Lopez, 1994; Kim et al., 2001; Chung 

et al., 2012). The increase in the number of closed lanes reduces the available number of 

lanes for traffic and reduces work zone capacity; as a result, this increases the work zone 

delay. Furthermore, as the traffic volume approaching a work zone increases, the work 

zone delay increases (Dudek and Richards, 1982; Krammes and Lopez, 1994; Chien and 

Schonfeld, 2001; Chien et al., 2002; Tang and Chien, 2008; Du and Chien, 2014). The 

work zone capacity represents the maximum number of vehicles entering a work zone. 

Previous research efforts estimate the effect of a work zone capacity in determining the 

work zone delay (Du et al., 2017; Du et al., 2015). 

Trucks have lower speed compared to regular passenger cars. Therefore, truck 

percentage affects the maximum number of vehicles entering work zone and work zone 

delay (Du et al., 2015). The vertical gradient also affects the work zone delay, which 

increases with the increase of vertical gradient, especially as the truck percentage is high 

(Kim et al., 2001). The increase of traffic flow upstream work zone attributes to the increase 
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in traffic delay in these upstream segments (Schroeder & Rouphail, 2010). Upstream work 

zone segments can be classified into three main categories: upstream mainline segments, 

upstream ramp segments, and upstream connected freeway segments. Depending on the 

type of upstream segment, the work zone delay can be significantly different (Ullman & 

Dudek, 2003; Karim & Adeli, 2003). Other factors include weather conditions and driver’s 

behavior. Weather conditions reduce work zone capacity by increasing the headways 

between the vehicles (HCM, 2010). 

2.1.2 Parametric Models 

Parametric models are commonly used for predicting traffic speed under work zone 

conditions. The deterministic approaches, which are parametric approaches, follow the idea 

in Figure 2.1. The shaded area represents the total work zone queuing delay in (veh-hr). 

The inputs of the parametric models are roadway capacity during normal conditions 𝐶, 

traffic volume 𝑄, roadway capacity under work zone conditions 𝐶𝑤, the starting/ending 

time of work zone.  

McCoy et al. (1980) defines the work zone delay as the difference between travel 

times under work zone and normal conditions, which does not consider the condition as 

the traffic volume is greater than the work zone capacity. Chien and Schonfeld (2001), on 

the other hand, considered queuing and moving delay but the variation of traffic volume 

over work zone duration was simplified.  
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Figure 2.1 A queuing model to determine work zone delay. 
 

Du and Chien (2014) considered a time-variant parametric model to calculate work 

zone delay considering the effect of heavy vehicles and light conditions. Traffic speed 

during shoulder closures is reduced through a work zone segment due to the limitation of 

the work zone speed limit.  

The work zone capacity depends on the value of traffic volume approaching work 

zone compared to the work zone capacity. Du and Chien (2014) modeled the work zone 

delay considering shoulder use to increase the work zone capacity. It was concluded with 

this paper the adjustment factors required to adjust the work zone capacity under shoulder 

usage and various lane closure types. The paper showed that shoulder usage is required to 
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reduce work zone delay especially during the peak hours’ times. These models, however, 

were not able to capture the spatio-temporal effect of work zones on the upstream 

segments. 

Another parametric approach relies on shockwave theory in which traffic flow is 

considered similar to fluid flow in terms of its movement (Lighthill and Whitham 1955;  

Richards, 1956). The shockwave theory utilizes the based on the spatio-temporal traffic 

flow transition to estimate the queue length. Benekohal et al., (2013) used the shockwave 

theory to calculate traffic delay and queue length under work zone conditions. The 

shockwave model uses jam density, speed under normal and work zone conditions, traffic 

volume, work zone capacity, critical density, and free flow speed to track the congestion 

spillback on upstream mainline segments (Habtemichael et al., 2015). Thus, developing an 

work zone congestion prediction using the shockwave theory is challenging due to the 

scarce of available data that are identical to the shockwave theory’s parameters. 

2.1.2 Simulation Models 

Several simulation models are used to predict work zone delay such as the model used in 

QuickZone (Chitturi and Benekohal, 2004), FRESIM (Chitturi and Benekohal, 2004), 

ARENA (Maze and Kamyab, 1999), CORSIM (Chien et al., 2002), PARAMICS (Wang et 

al., 2002), and VISSIM (Edara et al., 2013). Simulation models are more accurate than 

parametric models in predicting work zone delay. Earlier models use less calibrated 

parameters compared to newer simulation models (e.g., driver behavior) (Bloomberg & 

Dale, 2000).  

Chitturi and Benekohal (2004) compared work zone delay results from QUEWZ, 

FRESIM, and QuickZone against field data collected from 14 freeway segments under 
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work zone conditions in Illinois. The results suggest that QUEWZ and FRESIM 

overestimated queuing delay caused by work zones, while QuickZone underestimated 

delay and queue length. 

Maze and Kamyab, (1999) developed a simulation model, ARENA, that predicts 

work zone delay. Traffic delay is calculated based on the average travel time produced by 

the simulation model. It was observed that the increase of traffic volume increase work 

zone delay. ARENA relies on parametric queuing method to calculate work zone delay. It 

was found that ARENA simulation model underestimates the work zone delay 

Chien et al., (2002) developed a model for predicting work zone delay based on 

simulation data from CORSIM taking into consideration work zone configuration, road 

geometry, and traffic volume distribution over time. To obtain accurate results, calibration 

is conducted to match actual work zone conditions. A case study was conducted for work 

zone on Interstate-80 in New Jersey to show the applicability of the developed CNN model. 

Moreover, Yang et al. (2008) used CORSIM for predicting work zone delay under 

saturated and unsaturated traffic conditions. The results show that CORSIM predict work 

zone delay more accurately under unsaturated conditions comparing to deterministic 

approaches. However, it was found that CORSIM underestimate work zone delay under 

saturated conditions. Therefore, deterministic approaches outperform CORSIM under 

saturated traffic conditions. 

Edara et al. (2013) developed a model that uses VISSIM for predicting work zone 

delay. The results indicate high traffic speed fidelity compared to other simulation 

approaches. Nevertheless, VISSIM requires extensive network calibration prior to predict 

work zone delay. Network calibration can be done using travel time or queue length. It was 
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found that calibrating the network using travel time obtained from probe vehicle data 

recognizes higher accuracy than queue length calibration. Later, Du et al. (2014) developed 

a simulation model approach powered by VISSIM to predict work zone capacity under 

various situation. 

Simulation models yield higher accuracy than parametric approaches. However, 

simulation approaches require extensive calibration for each work zone, which makes them 

computationally expensive. In addition, simulation models cannot match real-time data in 

terms of driver behaviors, route choices, and many other factors that cannot be included in 

the simulation model. 

2.1.3 Non-parametric Models 

While simulation approaches provide acceptable results for work zone traffic speed 

prediction compared to parametric approaches, simulation models don not reflect real-

work zone traffic speed data. Therefore, non-parametric models are used to capture the 

effects of multiple parameters on work zone delay in which no mathematical relationship 

is provided. Artificial Neural Networks (ANN) is imitated from brain neurons 

functionality. Neurons in the brain is connected at different layers to communicate the 

information from one part to another (Adeli and Hung, 1995). 

 In transportation systems, previous research efforts focused on the prediction of 

traffic flow (Adeli and Hung 1995; Adeli and Park 1998; Adeli 2001; Hasebe et al., 1999; 

Neubert et al., 1999; Zhang et al., 1997; Park et al. 1998; Suzuki et al. 2000; Du et al., 

2014). Park et al., (1998) predicts traffic flow using Radial-Basis Neural Networks 

(RBFNN) whereas Zhang et al., (1997) developed a Neural Network that uses Back 
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propagation method to predict traffic flow. Suzuki et al., (2000) developed a back-

propagation model that is able to simulate traffic flow in origin-destination networks.  

Karim and Adeli (2003) uses RBFNN to predict work zone capacity based on work 

zone length, work zone layout, number of closed lanes, number of available lanes, heavy 

vehicle percentage, work zone intensity, work zone vertical gradient, work zone speed, and 

lane width. Although the results were acceptable, the training data was limited. Thus, the 

finding of the RBFNN needed more verification. Later, Du et al., (2014) developed a 

hybrid model of a simulation approach and ANN to predict work zone capacity. 

Furthermore, a comparison analysis between ANN and Support Vector Machine (SVM) 

was conducted. The research found that SVM outperforms ANN in predicting work zone 

capacity. However, the SVM model was trained based on simulated data because of the 

limitation of the availability of traffic volume data. 

As illustrated, previous studies used ANN models for predicting work zone 

capacity. Yet, these research efforts do not predict work zone traffic speed. Vemuri et al. 

(1998) uses an ANN with sigmoid function to predict work zone delay. Travel time data 

was collected from loop detectors as vehicles pass from one detector to the next one. Travel 

time data is simulated to predict travel time delay; hence, the result of the model needs to 

be verified with actual travel time delay data. Ghosh-Dastidar and Adeli (2006) used feed-

forward ANN model to predict traffic speed under work zone conditions. The research used 

simulated data and verified the results with five examples. However, this research did not 

provide a generalized prediction model due to the marginal number of tested samples.  

Traffic speed prediction has been modeled using non-parametric approach. Zhang 

et al., (2020) predicted traffic speed under normal conditions using three dimensions CNN 
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(3D). Du et al., (2017) developed an ANN model integrated with SVM model to predict 

traffic speed under work zone conditions. The SVM model predicts work zone capacity 

using a simulation approach (i.e., VisSim). The study used both actual and simulated data 

to predict work zone delay on upstream mainline segments. The model used work zone 

capacity simulated from Du et al., (2014) as a factor in the developed ANN model. The 

input of the ANN network is weighted speed and distance from freeway. Nevertheless, the 

research did not consider the complexity of upstream ramp and connected freeway 

segments. Moreover, the results of the research need to be investigated since it is a mixed 

model between actual and simulated data.  

Non-parametric models are able to predict the traffic speed in less computational 

efforts compared to simulation approaches. Moreover, parametric models assume a 

distribution over the prediction function whereas non-parametric approaches do not have a 

distribution assumption for the trained data (Simar & Wilson, 2000). Random forest 

models construct a decision tree that is able to predict the output of a given model. The 

models are commonly used in classification problems. Dogru & Subasi, (2018) used the 

random forest model to predict the injury levels of accidents. Other studies use the random 

forest models for transportation prediction purposes (Urbancic et al., 2018; Elhenawy & 

Rakha, 2017). Non-parametric models have many branches in which CNN model 

recognizes the best suited model for predicting traffic speed. CNN model has a Max-

pooling layer that mitigate the effect overfitting in the training model. Nguyen et al., 2019 

found that CNN predicts traffic speed more accurately than other deep learning models due 

to the ability to extract the inputs in multiple consecutive time frames.  
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This research utilizes the CNN structure for predicting traffic speed under work 

zone conditions for upstream mainline and connected freeways. Table 2.1 summarizes the 

advantages and disadvantages of the parametric, simulation, and non-parametric models. 

While parametric approaches provide a quick method to determine the outputs, non-

parametric approaches and simulation approaches require substantial amount of time 

finding the optimal structure and calibrating the model’s parameters. Non-parametric 

approaches, when compared to other simulation approaches, can be quickly scaled to 

multiple scenarios. 

Table 2.1 The Advantages and Disadvantages of Various Modeling Approaches 

Model 

Type 

Advantages Disadvantages 

Parametric 

Models 
• Transferability 

• scalability 

• Inexpensive 

computational time 

• Assumption of a distribution shape of 

the data  

• Difficulties in estimating the temporal 

and spatial traffic speed accurately by 

a simple mathematical formula 

Simulation 

Models 
• High fidelity for well 

calibrated models 

• Requirements for data is 

less than the other 

methods. 

• Representing a work zone on a 

specific roadway (Not scalable or 

transferrable) 

• Requiring high computation and 

calibration time 

Non-

Parametric 

Models 

• Scalability and 

Extensibility 

• Less computational time 

compared to simulation 

models 

• The data distribution is 

not required. 

• Requiring more data for model 

development, training and validation 

processes 

• Requires substantial efforts to 

determine the model structure  

 

Non-parametric approaches have two general purposes: prediction purposes, and 

optimization purposes. This study is concerned with prediction purposes to predict traffic 

speed under work zone conditions.  Non-parametric models differ in their functionalities 
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and structures. Table 2.2 demonstrates the difference between Deep ANN models, CNN 

models, and random forests models. While Deep ANN models provide high fidelity 

compared to traditional ANN models, Deep ANN models still have problems with 

overfitting during the training processes. Thus, the CNN structure reduces the overfitting 

problems by using filters to extract the important features from the model inputs. Other 

non-parametric approaches (i.e., random forest models) are commonly used for 

classification problems. However, the problem in this research includes a numerical output 

that is represented by traffic speed under work zone conditions. Therefore, the CNN 

structure is better suited for traffic speed prediction compared to other non-parametric 

models. 

Table 2.2 The Advantages and Disadvantages of Various Non-Parametric Models 

Model 

Type 

Advantages Disadvantages 

ANN • Has the ability to predict 

model outputs with 

approximately two inputs 

• Has accuracy problems when the 

model inputs exceed two inputs 

 

Deep ANN • Has high fidelity for more 

sophisticated models that 

have more inputs 

compared to ANN models 

• Has overfitting problems that reduces 

the accuracy of the testing results 

 

CNN • Uses filters to reduce the 

overfitting issues of Deep 

ANN. Thus, improve the 

accuracy of the results 

• Requires substantial efforts in 

modeling development 

 

Random 

Forest 
• Has high reliability for 

feature interpretability 

• Is more suitable for 

classification problems 

• Does not perform well when more 

input variables are included in the 

model 

• Requires much higher computational 

powers and time for training and 

testing compared to other Deep ANN 

models 
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2.2 Data Collection Technologies 

The traffic speed during work zones, in previous studies, was usually obtained from loop 

detectors. Loop detectors have been used to measure average speed between two points on 

a roadway segment. However, using loop detectors requires high maintenance and 

installation costs. With the advancement of big data technologies, new methods have been 

used to collect traffic speed (e.g., GPS sensors, toll booth sensors, Uber data, mobile 

devices, floating vehicles). These new technologies provide low-cost big data acquisition 

tools. Therefore, the proportion of the data provided by loop detectors has been decreasing 

while new probe vehicle technologies’ proportion has been increasing (Burt et al., 2014). 

 Previous studies investigated the probe vehicle data technologies (i.e., INRIX), and 

showed that these technologies provide accurate traffic speed data (Elhenawy et al., 2014; 

Chen & Rakha, 2014; Haghani et al., 2009; Turner & Qu, 2013). One notable project 

involves studying the probe vehicle data on Interstate-95 corridor, which is located along 

the eastern coast of the United States. The project found that the INRIX database produce 

reliable traffic speed data under various scenarios (i.e., accidents). However, one study 

investigated the probe vehicle data in all roadways in Iowa, over four years span. The 

results show that INRIX speed is more reliable for Interstate roadways compared to non-

interstate ones. Moreover, INRIX speed is more reliable during daytimes between 6:00 AM 

and 10:00 PM compared to the ones between 10:00 PM and 6:00 AM (Ahsani et al., 2019). 

One reason for the change in the change in INRIX data is the number of probes available 

during periods of time. The greater the number of probes available, the higher the 

confidence score is provided (Eshragh et al., 2017; Ahsani et al., 2019). 

 Bluetooth is a wireless technology that allows various devices to connect to each 

other. The Bluetooth technology enables transferring the information over short ranges 
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(e.g., 10 m, 100 m), depending on the wireless frequency and the Bluetooth hardware type 

(Bronzi, 2017). The Bluetooth manufacturers produce a unique identification number for 

each Bluetooth device, also known as, Median Access Control (MAC) address, which has 

have been implemented in a variety of electronic devices (e.g., vehicles, headphones, 

smartphones, and watches). Therefore, when a vehicle that is equipped with a Bluetooth 

passes between known locations of Bluetooth sensors, traffic speed can be captured. 

 In travel time data acquisition, Bluetooth devices have been used to estimate 

various transportation performance measurement, which estimate the space mean speed 

between two known MAC locations based on the time stamps of individual vehicles 

passing through the locations. There are other applications for Bluetooth sensors including 

origin-destination studies and queue length estimations. One of the advantages of using 

Bluetooth sensors is protecting the privacy of the users, as Bluetooth manufacturers do not 

track their customers through the MAC address. Consequently, the Bluetooth sensors do 

not recognize the vehicles users, enhancing the privacy of the collected data (Boukhechba 

et al., 2017). 

 The Bluetooth sensors, nevertheless, require a sample size to enhance the accuracy 

of the collected travel time. The required sample size is four percent for a 36,000 Average 

Daily Traffic (ADT) or greater roadways. When the ADT is lower, the required sample 

size becomes greater (Puckett & Vickich, 2010). In general, a sample size that ranges 

between five percent and seven percent would be enough for estimating a reliable travel 

time (Tarnoff et al., 2009). Another advantages of using Bluetooth sensors is the low cost 

of production and maintenance compared to other travel time data collection methods.  
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 Toll tags is another technology that relies on floating car concept to predict travel 

time. The main purpose of deploying toll tags is to collect the tolls from the vehicles 

without the need to stop and pay. On the other hand, toll tags can be used to calculate travel 

time between two locations. The toll tags system for travel time data acquisition requires 

four components: the electronic tag in the floating vehicles, the readers, the antennas, and 

a central computer to perform the analysis (Wright et al., 2001). A vehicle that has an 

electronic tag if passes through a toll tag system, a toll identification number is recorded in 

the system with a specific location and time. When the same vehicle passes through another 

toll tag system, the system records the location and time, and the central computer calculate 

the travel time between these two locations. The toll identification number is protected in 

the system by encoding the number for privacy concerns. The toll tagging system in 

estimating travel time has been expanding in recent years. One study shows that the floating 

vehicles data has increased in both the coverage and the granularity over the years between 

2013 and 2016 (Ahsani et al., 2019). 

In the State of New Jersey, electronic toll tags, 79.6% of the registered vehicles use 

E-Z pass, which is an electronic toll tag (New Jersey Turnpike Authority, 2020). As the 

number of E-Z pass users is projected to increase, the accuracy of the travel time prediction 

using electronic toll tags is projected to increase. One of the disadvantages of toll tags travel 

time data collection is the coverage area, as some roads are toll-free, and they lack 

electronic toll tags infrastructure in place. 

 Another common travel time data acquisition technology is a radar sensor, which 

is a non-intrusive data technology. The radars are mounted at the side of the roadway, and 

as vehicles pass by, data is collected. The collected data include traffic volume at each lane, 
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traffic speed, and traffic density for each lane. Furthermore, the collected data can be 

calculated for all combined lanes. The collected data are sent to the cloud or a central 

computer for storage through internet cable. One radar sensor can cover multiple lanes in 

both directions, replacing the functionality of several loop detectors. The coverage of radar 

sensor can reach a width up to 250 ft from the pole, depending on the height of the radar 

sensor and the frequency of the equipment (Nyfors, 2000). The radar sensors are not 

affected by weather conditions and do not require maintenance, unlike loop detectors that 

require constant maintenance. 

 Closed-Circuit Television (CCTV) is another technology for traffic data 

acquisition, which can be used to collected traffic volume data based on pixeled images to 

identify vehicles count (Im et al., 2016). CCTV can be used to measure traffic speed by 

tracking the speed individual vehicles traveling between designated points on the camera 

screen (Cathey & Dailey, 2005). CCTV technology offers transportation management 

agencies with an insight of traffic conditions, when the cause of the congestion (e.g., 

incidents). Multiple research studies have implemented different CNN structure to detect 

and track vehicles (Chung & Sohn, 2017; Bochinski et al., 2016; Dorai et al., 2016). One 

type of the CNN structures, named as, You Only Look Once (YOLO), detects vehicles 

using neural network to a full image, and divides the various regions to detect the vehicles 

boundaries (Sreekumar et al., 2017). The CCTV technologies face challenges in terms of 

the accuracy of the vehicle detection method during low-visibility situations (e.g., night 

conditions, foggy conditions, rainy conditions, snow conditions) (Hahm et al., 2017). 

 Floating vehicle data are provided through various vendors (e.g., INRIX, TomTom, 

HERE). These floating vehicle data are provided from GPS sensors, which can capture 
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traffic speed at one second interval (Mudge et al., 2013). The sources of these floating 

vehicles data are GPS enabled vehicles (e.g., taxi vehicles, trucks, and smartphone enabled 

vehicles) (Seymour et al., 2011). INRIX data is divided into three categories: real-time data 

that has a confidence score of 30, historical data with a confidence score of 10, and a mixed 

data that has a 20-confidence score (Middleton et al., 2011). INRIX data is reported each 

one minute for over five million miles over forty countries (INRIX, 2018). The reported 

speed can be aggregated into 5 minutes, 15 minutes, or 1-hour intervals. Unlike other 

technologies, the INRIX data do not need any installation or maintenance costs, as 

smartphone based floating vehicles is increasingly used. On the other hand, INRIX data is 

more biased toward commercial trips as the data providers are mainly collected from long-

hauled trucks and taxi vehicles (Hard et al., 2017). 

2.3 Tools for Work Zone Congestion Prediction 

This section will describe various tools that are used by transportation agencies to predict 

the work zone congestion.  

Memmott and Dudek (1982) developed a work zone delay prediction model called 

Queue and User Cost Evaluation of Work Zone (QUEWZ). The model predicts work zone 

user delay cost on four and six lane multilane highways. Later, a developed model of 

QUEWZ, QUEWZ-98, estimates work zone capacity based on HCM 2000 (Benekohal et 

al., 2003). Edara and Cottrell, (2007) identified, through a survey of 19 states, the potential 

use of QUEWZ for predicting user delay cost due to work zone lane closures. The 

responses indicate that QUEWZ is an easy tool to be used in addition to giving quick 

results. However, the responses indicate simplicity in the predicted results as the QUEWZ 

was calibrated based on Texas freeway segments that has frontage roads. The key 
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limitations of QUEWZ include network configuration and the ability to adjust upstream 

ramps to count for diversion routes (Batson et al., 2009). 

Memmott and Dudek, (1982) developed a tool for predicting users’ delay cost and 

queue length called Queue and User Cost Evaluation of Work Zone (QUEWZ). The model 

considers the traffic volume and truck percentage in determining the users’ delay costs due 

to a specific lane closure type. An improved version of QUEWZ, QUEWZ-98, was 

established to predict work zone capacity based on HCM 2000. Moreover, QUEWZ-98 

added the emission costs to the user cost. The simulation model provides an option to 

determine the optimal work zone schedule time that minimizes road user costs (Benekohal 

et al., 2003).  

QuickZone, an FHWA work zone delay application, is developed to predict work 

zone delay and maximum queue length (Mitretek System, 2000). The model of QuickZone 

is a deterministic model, in which all the model inputs are provided in a Microsoft Excel-

based model developed. Thus, it is easier to use as a predictive work zone delay tool, 

compared to other work zone congestion prediction tools. One of the limitations of 

QuickZone is the limitations of the input parameters. 

Wisconsin Department of Transportation developed a tool, Work Zone Capacity 

Analysis Tool (WZCAT), to predict delays due to work zone lane closures. The tool uses 

deterministic approaches for estimating work zone delay. Therefore, the tool is not able to 

have results close to real-time results.  

Iteris Performance Management System (iPeMS) was developed for work zone 

delay prediction. iPeMS integrates real-time data from sensors and other ITS devices and 

stores them in a big data storage. The data is used for work zone delay prediction and travel 
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time estimation. The predicted model is based on historical and real-time information 

(Choe et al., 2002). 

 Another common tool is the Work Zone Traffic Analysis (WZTA) that is used in 

the state of Oregon. The tool provides a GIS map to be able to visualize the whole freeway 

network in Oregon. Oregon Department of Transportation (ODOT) provides the milepost 

start of the work zone and the milepost end on a selected direction of a selected highway. 

Moreover, the user specifies the number of closed lanes in the work zone will result in 

addition to the schedule of the work zone.  

The tool uses a parametric approach to predict traffic speed during work zone 

schedule in the upstream mainline segments. The approach modifies the predicted values 

depending on studies in the state of Oregon (e.g., seasonal periods, terrain grade, and 

availability of the information at specific locations).  Additionally, the approach accounts 

for special events timing for additional congestion by updating the calendar of the software 

accordingly. The tool is published as a web-based application in which the interface is 

illustrated in Figure 2.3 (Oregon Department of Transportation, 2010). 
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Figure 2.2 WZTA web-based interface.  
Source:(Oregon Department of Transportation, 2010). 
 

In the State of New Jersey, Rutgers Interactive Lane Closure Application (RILCA) 

is used to predict work zone delays at New Jersey Turnpike and Garden State Parkway 

(Bartin et al., 2012). RILCA, however, does not include real-time data. RILCA is a tool 

used to provide traffic volume for the routes, between two specified date and time inputs 

and two points. The tool uses a deterministic approach to schedule short- and long-term 

work zones and predict the delay costs and queue length accordingly. The queue length is 

determined when a particular segment has a volume that is higher than the roadway 

capacity/. One of the advantages that RILCA provides is collecting traffic volume at the 

toll booths providing transportation agencies with better information. Nevertheless, 

RILCA uses parametric approaches that can only work for the specified two routes. 
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Moreover, the tool does not consider delay costs due to congestion spillback on other 

freeways. 

Chien et al. (2016) developed Work Zone Interactive Management Application 

(WIMAP-P). Figure 2.2 demonstrates the system framework of WIMAP-P. WIMAP-P 

predicts work zone speed using a data analysis on five different databases: Plan4Safety, 

OpenReach, NJCMS, NJSLD, and probe vehicle databases. WIMAP-P is based on the 

model developed in (Du et al., 2017); as a result, the model is a hybrid model of actual and 

simulation results. WIMAP-P was developed based on the work zone data between 2013 

and 2014. Additionally, WIMAP-P predicts work zone speed on the mainline only, without 

including other connected freeways. Therefore, there is a need for an actual data model that 

is able predict work zone speed on the mainline and the connected freeways. 

 

Figure 2.3 System framework for WIMAP-P.  
Source: (Chien et al., 2016) 
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Table 2.3 summarizes the commonly used tools by various sponsored agencies to 

predict traffic speed due to work zone lane closures. 

Table 2.3 The Inputs, output and Modeling approaches of Various Work Zone Congestion 

Prediction Tools  

Tool Inputs Outputs Modeling Approach 

FlagSim Time and location 

of work zone  
• Traffic 

volume  

• Queue length 

• Delay 

Parametric 

Web-based Work 

Zone Traffic 

Time and location 

of work zone 
• Delay cost 

• Queue length 

Parametric 

Lane Closure 

Decision Support 

System (LCDSS) 

Time and location 

of work zone. 
• Queue length Parametric 

WIMAP-P Time, location of 

work zone, and 

values of time. 

• Delay cost 

• Queue length 

• Predicted 

traffic speed 

Non-parametric 

RILCA Time and location 

of work zone only 

for the Garden 

State Parkway and 

New Jersey 

Turnpike. 

• Queue length 

• Delay 

 

Parametric 

 

2.4 Deep Learning 

The structure of ANN varies depending on each type of problem. Deep learning is a type 

of ANN with two or more hidden layers (Weston et al., 2012). Recent study developed a 

new deep machine learning approaches for predicting crash severities (Yang et al., 2018). 

Other studies use deep machine learning for predicting the number of Uber pickups (Wang 

et al., 2018). All these studies indicate that deep machine learning models produce better 

results than typical artificial networks.  
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Elisseeff & Paugam-Moisy, (1997) recommends using a number of neurons at each 

hidden layer that are twice the number of neurons in the previous layer. Moreover, the 

increase of the number of neurons and the number of hidden layers contributes to the 

overfitting problem in ANN (Moody, 1992). 

To train a neural network, a loss function is defined to calculate the difference 

between the model and the actual results. Based on the difference value, sets of weights in 

the neural network are calculated. The optimizer updates the calculated sets of weights with 

every training epoch. A simple optimizer is the gradient descent method (Bottou, 2012). 

However, one of the problems with the gradient descent is being slow to achieve the 

optimal solution or never achieve the optimal solution (i.e., vanishing gradient descent) 

(Hanin, 2018). Reducing the number of training epochs contributes to the mitigation of the 

overfitting problem (Panchal et al., 2011). There are several optimizers that improve the 

accuracy of the traditional stochastic gradient descent functionality: Adagrad (Duchi et al., 

2011), Adam (Kingma & Ba, 2014), Adadelta (Zeiler, 2012), and RMSProp (Mukkamala 

and Hein, 2017). The best optimizer yields the most accurate results. 

While deep learning models can be formulated in various ways, simple structures 

may yield low accuracies. On the other hand, more complex configurations may not be 

suitable for smaller sample size during the training phase. Therefore, the CNN and Deep 

ANN structures may be promising based on the sample size in the database. Other complex 

structures (e.g., RNN, Long-Short Term Memory) are deemed to perform better when more 

data is available (Shabarek et al., 2020).  
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ANN suffer from overfitting problems. Figure 2.3 illustrates the difference between 

overfitting, underfitting, and good fitting problems. Figure 2.3 (a) shows a hypothetical 

data values (y) over (x). Figure 2.4 (b) demonstrates an underfitting model that does not fit 

the model well. On the other hand, Figure 2.3 (c) shows an overfitting model that 

recognizes less error but is not able to capture the relationship. Therefore, when an input is 

provided into the model for prediction, the model would show higher error than the trained 

data. Finally, a model that recognizes higher error than the overfitted problem, but 

represents an acceptable model is shown in Figure 3.2 (d).   

 

Figure 2.4 Overfitting, underfitting, and good fitting demonstration. 
 

Dropout is a regularization technique that is applied in hidden layers for the purpose 

of reducing the overfitting problem (Lambert et al., 2018). Figure 2.4 shows a neuron 

network with dropout and without dropout. More mathematical demonstration is shown in 

Section 3.2. 



 

29 

 

 

Figure 2.5 ANN architecture with and without dropout regularization. 
 

Deep Machine learning approaches has improved over the recent years in 

transportation applications. Ma et al. (2015) uses deep machine learning to predict short-

term speed based on microwave sensors. The prediction model is compared to other Neural 

Network models and shows less prediction errors. Hou & Edara, (2018) developed a 

Convolutional Neural Network (CNN) for predicting traffic speed in a network scale. The 

research indicate that CNN makes more accurate prediction on a network scale than other 

deep machine learning approaches. Pu et al. (2018) suggests a dropout regularization to 

overcome the limitation of overfitting in Artificial Neural Networks for predicting the 

decision on vertical gradient in railway systems. However, previous studies do not only 

use actual work zone speed on both mainline and connected freeways using deep machine 

learning and do not apply measurements for overfitting reduction. 

This study extends from the existing body of literature in the following ways.  First, 

the study uses only actual work zone information in prediction models.  Second, this 

research aims on applying deep machine learning approaches to predict work zone speed 

not only on the mainline but also on the connected freeways. Third, this study mitigates 
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the effect of overfitting problems in ANN by applying dropout regularization in the Deep 

ANN. 

2.5 Error Measurement Indexes 

The evaluation of deep learning models is used in this research to choose the optimal deep 

learning model. There are several common evaluation indexes (e.g., Mean Absolute Error 

(MAE), and Root Mean Absolute Error (RMSE), and Mean Absolute Percentage Error 

(MAPE)). MAE and MAPE are used to identify the absolute error as it is shown in 

Equations (2.4) and (2.5) respectively, in which 𝑦𝑖𝑗 represents the observed value, �̂�𝑖𝑗 the 

predicted value, 𝑛 is the sample size. 

On the other hand, RMSE is used to identify the actual error as it is shown in 

Equation (2.6). 

�̂�𝑖𝑗: Predicted work zone speed for segment 𝑗 at time 𝑖 

𝑦𝑖𝑗: Actual work zone speed for segment 𝑗 at time 𝑖 

𝑛: The number of TMC segments upstream work zone 

𝑚: The number of time intervals upstream work zone 

 𝑀𝐴𝐸 =
1

𝑛
∗ ∑ ∑|𝑦𝑖𝑗 − �̂�𝑖𝑗|

𝑛

𝑗=1

𝑚

𝑖=1

 (2.4) 

 𝑀𝐴𝑃𝐸 =
1

𝑛
∗ ∑ ∑

|𝑦𝑖𝑗 − �̂�𝑖𝑗|

|�̂�𝑖𝑗|

𝑛

𝑗=1

𝑚

𝑖=1

∗ 100 (2.5) 

 𝑅𝑀𝑆𝐸 =  √
∑ ∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)2𝑛

𝑗=1
𝑚
𝑖=1

𝑚 ∗ 𝑛
 (2.6) 
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While using MAE and MAPE, provides a constant weight for all errors, RMSE 

penalizes the errors as they deviate from the mean and therefore is more restrictive for 

model evaluation (Chai, & Draxler, 2014). RMSE is preferred to evaluated speed 

prediction models (McKeen et al., 2005; Savage et al., 2013) when the data primarily 

contain less congested situations, whereas MAE and MAPE can be used when the 

congestion dominates traffic speed data (Kim et al., 2018). For instance, a traffic speed 

error of 10 mph is more critical from transportation point of view, when the error occurs in 

the speed bin below 30 mph. The 10-mph error might be less critical for speed bin that is 

higher than 60 mph. As a result, for model development that primarily contains non-

congested situations, RMSE would be preferable. In work zone model developments. 

RMSE is recommended as work zone data does not primarily contain traffic speed with 

congestion (Du et al., 2017; Yu et al., 2016). 

2.6 Summary 

This chapter discussed the literature review of the models used in predicting work zone 

congestion using parametric, simulation, and non-parametric approaches. Based on the 

literature the non-parametric approaches do not assume a distribution of the data when 

training the model. Thus, the non-parametric approaches provide more accurate results 

compared to simulation and parametric approaches, when there is enough data to be used 

for training.  Most of the studies have investigated the applicability of the non-parametric 

approaches in predicting traffic speed due to work zone congestion but did not investigate 

the effect of work zone on the connected freeways. With the predicted speed being 

extended to cover both the upstream mainline segments in addition to the upstream 

connected freeways, transportation agencies can predict user delay on both the mainline 
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and the connected freeways. Thus, a developed mitigation plan that includes any 

congestion spillback on other freeways can be developed. 

Based on the literature review, as the number of variables increase, the structure of 

the ANN becomes deeper, increasing the overfitting problem. Therefore, the CNN 

structure, along with the dropout, can reduce the effect of the overfitting. Previous studies 

did not consider the problem of overfitting when predicting traffic speed under work zone 

conditions. Reducing the overfitting problem of traditional ANN models will improve the 

accuracy of the result. In this study, two main non-parametric approaches are developed 

and compared: Deep ANN model and CNN models. An understanding of the functionality 

of Deep ANN and the parameters need to be optimized is required for the model 

development and evaluation. Moreover, the CNN structures build on the optimal structure 

of Deep ANN; thus, it requires the optimal Deep ANN structure for the CNN development 

and evaluation. 
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CHAPTER 3 

METHODOLOGY 

This chapter explains the general structure of Deep ANN and CNN. Additionally, this 

chapter explains the integration of dropout as an overfitting mitigation method. 

3.1 Deep ANN Model 

This section discusses the   general structure of Deep Artificial Neural Network (Deep 

ANN). Deep ANN can be used to predict traffic speeds on the roadways with work zones. 

Deep ANN has high fidelity for more sophisticated models that have more inputs compared 

to ANN models.  

The general structure of the model uses, in its first step, the back propagation for 

Deep ANN development. Back propagation is a training algorithm that includes two steps. 

First, feed forward is applied through the connection of the network. Second, the error that 

is calculated at the propagated stage back. Deep ANN has a more complex structure than 

ANN in which the number of layers exceeds two layers. ANN uses kernel functions in the 

learning algorithm (Vapnik, 2013). However, Deep ANN use more complex learning 

algorithms that are able to achieve a lower minimum error compared to kernel machine 

functions (Schmidhuber, 2015).  

 The number of hidden layers and the number of neurons at each hidden layer is 

determined through analysis, by finding the minimum value of Root Mean Square Error 

(RMSE). 

 Dropout regularization creates a new neural network that is thinned from the actual 

network (Srivastava et al., 2014). To understand the concept beyond dropout, assume an 

ANN. The index of hidden layers and neurons are 𝑙 and 𝑞, respectively. Given the number 
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of neurons 𝑄𝑙 at a hidden layer 𝑙, 𝑦𝑞′
𝑙+1, the output of neuron 𝑞′ on a hidden  layer 𝑙 + 1 is 

shown in Equation 3.1 in which 𝑦𝑞
𝑙  is the output of neuron 𝑞 on a hidden  layer 𝑙,  𝑤𝑞

𝑙  and 

𝑏𝑞
𝑙  are the weight and bias of each neuron 𝑞 on a hidden layer 𝑙, respectively. 

 

When dropout regulation is applied at an ANN, a vector of independent Bernoulli 

random variables is created for each layer 𝑙. Figure 3.1 demonstrates the difference 

between standard neural network and a neural network with drop out regularization. Each 

element in  the created vector has a weight probability to be multiplied by either 0 or 1. 

Equations (3.2) explains how each element 𝑟𝑞
𝑙 for layer 𝑙 at neuron 𝑞 is assigned to values 

of 0 or 1, in which 𝜌
𝑞
 is the probability of assigning a value of zero to the element 𝑟𝑞

𝑙 (i.e., 

dropout ratio). 

As formulated in Equation (3.3), a thinned ANN output �̃�𝑞
𝑙  is the product of 𝑟𝑞

𝑙 and 

𝑦𝑞
𝑙 . A neuron 𝑞 on layer 𝑙 is dropped out if 𝑟𝑞

𝑙 is equal to zero. Otherwise, it will stay in 

the ANN.  

Equation (3.4) illustrates the layer output under dropout regularization. Dropout 

ratio should not exceed the 0.5 ratio and should be minimal in the first hidden layer 

 𝑦𝑞′
𝑙+1 = ∑(𝑤𝑞

𝑙 ∗ 𝑦𝑞
𝑙 + 𝑏𝑞

𝑙 )

𝑄𝑙

𝑞=1

 (3.1) 

 𝑟𝑞
𝑙 =  {

1 𝑓𝑜𝑟 1 − 𝜌𝑞 

0 𝑓𝑜𝑟 𝜌𝑞
 (3.2) 

 �̃�𝑞
𝑙 = 𝑟𝑞

𝑙 ∗ 𝑦𝑞
𝑙  (3.3) 
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(Lambert et al., 2018). In this study, dropout regularization is applied at ratio of 0.25 for 

the first hidden layer and 0.5 ratio for all other hidden layers. 

 

Figure 3.1 ANN structure with and without drop out regularization. 

 

Overfitting imposes an issue in deep learning. The dropout helps mitigating the 

effect of overfitting by randomly deleting some weights, so the network does not remember 

the old path, increasing the chance of deleting the overfitted coefficients. Figure 3.2 

illustrates a general Deep ANN structure. 

 𝑦𝑞′
𝑙+1 = ∑(𝑤𝑞

𝑙 ∗ �̃�𝑞
𝑙 + 𝑏𝑞

𝑙 )

𝑄𝑙

𝑞=1

 (3.4) 
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Figure 3.2 General structure of Deep ANN. 

 

The Deep ANN can still have over fitting problems that reduces the accuracy of the 

testing results. Therefore, a more comprehensive model algorithm is required to mitigate 

the over fitting problem. A CNN model would be optimal in reducing the overfitting issue 

by using filters. The filters select the important features of a layers through applying filters. 

The next section explains the CNN model. 

3.2 CNN Model  

𝑓⨂𝑔𝑙 is a convolution function. The convolutional function ⨂ is a shape function between 

filter 𝑓 at a location 𝜏 and a hidden layer 𝑔𝑙. The filter 𝑓
𝑙
 is a matrix that convolutes with l 

over stride size 𝑧, as formulated in Equation (3.5), in which 𝑍 is the total number of strides 

and 𝜏 is the index of the filter’s location in the hidden layer.  
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The Convolution function identifies the important features in the network by 

extracting a reduced sized matrix from neuron layers. The output of convolutional layer 

will be the input of the next neuron layer. The model inputs and output have not changed 

from Deep ANN model. Since Convolutional layers are built on neuron layers, the number 

of layers and the number of neurons at each layer are determined through the Deep ANN 

model. A convolutional layer is applied at the first neuron layer matrix that has the 

dimensions of model input and number of neurons in the first hidden layer. A filter that has 

the width of neuron layer matrix and a height of ℎ convolutes over the neuron layer with 

strides 𝑧. The output of the convolutional layer has the width of the model input. However, 

the height of the matrix would be the number of neurons at a layer 𝑙 divided by strides z. 

More illustration is provided in Chapter 4. Figure 3.3 demonstrates a general unconfigured 

CNN network. 

 𝑓𝑙⨂𝑔𝑙 = ∫ 𝑓(𝜏)𝑙(𝑧 − 𝜏)𝑑(𝜏)
𝑍

0

 (3.5) 



 

 

 

Figure 3.3 General structure of CN 
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The CNN structure is able to extract important features from hidden layers by using 

filters that are applied at each layer. CNN filters have heights and strides that needs to be 

optimized depending on the type of problem. Figure 3.4 shows how a filter, denoted in 

yellow shadowing, is applied on a matrix of hidden layer. The output of the convolutional 

layer would be a reduced sized matrix that mitigates the effect of overfitting. 
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Figure 3.4 The functionality of the CNN on a hidden layer. 

 

 



 

41 

 

3.3 Summary  

This study shows the general structure of the Deep ANN model and the CNN model. These 

models require data, which is discussed in detail in Chapter 4. The structure of the CNN 

model uses the structure of the Deep ANN in addition to the convolution function applied 

at each hidden layer. Dropout is explained as method to overcome the overfitting problem 

in the deep learning models.  
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CHAPTER 4 

MODEL DEVELOPMENT 

Roadway work zones include shoulder and/or lane closures. These closures lead to increase 

in travel time of vehicles traveling upstream work zone. To mitigate the delays associated 

with the roadway users, developing a traffic speed prediction model is recommended for 

public agencies. A prediction model is needed to capture the travel time reduction due to 

work zones not only on upstream mainline segments, but also on the upstream connected 

freeways. The prediction model is required to predict work zone impact over space and 

time upstream work zone area. Therefore, this chapter explains the database development 

that is required for model inputs. After that, this chapter introduces the model formation 

that is used for predicting work zone speed. The framework of the model’s development 

and evaluation is provided in Figure 4.1. 
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Figure 4.1 The framework of the model development and evaluations. 

4.1 Data Collection   

This section presents the database sources and the procedure in which databases is fused. 

Previous studies indicate that an accurate prediction model for work zone effect would 

require a significant amount of big data (Edara and Cottrell, 2007; Du et al., 2017). In work 

zone congestion prediction problem, it is required to obtain information about work zone 

location and timing, road geometry, traffic volume, traffic speed, and incident occurrence. 

Thus, the developed databases are categorized and categorized into the followings: 

• Work zone data: Work zone data includes information about work zones such as work 

zone location, time, starting milepost, ending milepost, number of closed lanes. 
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• Road geometry data: Road geometry data includes data regarding road type, number of 

lanes, ramp connection to mainline, connected freeways, vertical gradient. 

• Traffic volume data: Traffic volume is collected for New Jersey through a big data 

source (New Jersey Congestion Management Systems). The analyzed data includes 

truck percentage, traffic volume, and traffic volume at ramps.  

• Floating car data: Floating car data includes the space mean speed for freeway and 

ramps segments under work zone conditions and under normal conditions.  

• Crash records data: Crash records data includes the location of crashes and the time 

crashes occurred. 

 

The databases are combined and merged through big data analysis, to ensure 

homogeneity in the data inputs. The databases are used to report actual work zone 

conditions and the associated model inputs that are used for model development and 

evaluations. The needed databases for model development are illustrate d in Figure 4.2. 

 

Figure 4.2 Data sources for model development. 
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Data are combined through big data analysis to obtain a final version of the data 

that includes all the information from these databases. The combined database is used in 

model development and evaluation. 

The databases in which the data is collected from are as explained in detailed in the 

following sections. 

4.1.1 OpenReach 

OpenReach (CoVal Systems., 2016) is a dynamic event reporting system of work zones 

and accidents. The required work zone data from OpenReach includes work zone starting 

and ending time, work zone location, and number of closed lanes. OpenReach database is 

the result of a collaboration of 16 agencies in New Jersey, Connecticut, and New York. 

OpenReach database includes three main categories: work zone information, incident 

information, and special events information.  

OpenReach database is updated, by Traffic Operations Center (TOC), on the 511NJ 

website to reflect any incident or work zone occurrence. Figure 4.3 demonstrates an 

example of work zone date, work zone time, and work zone location at a given location. 

The information also includes the agencies responsible for the work zone and the date they 

updated the information on OpenReach (511NJ, 2020). In this study, OpenReach data is 

analyzed for all work zones between July 2014 and September 2019.  
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Figure 4.3 Sample of Real-time work zone data illustration through the 511NJ website. 
Source: (511NJ, 2020) 

 

4.1.2 New Jersey Straight Line Diagram (NJSLD)  

NJSLD (New Jersey Department of Transportation., 2014) is a database that is developed 

by New Jersey Department of Transportation (NJDOT), which includes geometric 

information about all roadways in New Jersey. Roadways are identified in NJSLD through 

Standard Road Identification (SRI) system. The database includes information about 

roadway milepost locations, total number of lanes. roadway class, and traffic direction.  
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NJSLD database includes around one million segments in the State of New Jersey 

(NJGIN, 2020). Figure 4.4 demonstrates an example of one segment of Interstate-78 in 

New Jersey and the information presented from NJSLD dataset.  

 

Figure 4.4 Example of NJSLD data records. 
Source: (NJGIN, 2020) 

 

4.1.3 Digital Elevation Model (DEM)  

DEM is an elevation system developed by United States Geological Survey (USGS) that 

is used to find landscape value (i.e., the elevation of specific points) on a given terrain 

(United States Geological Survey, 2018). DEM data are developed using topographical 

data, spot heights, and a software package called ANUDEM (Wilson et al., 2000). 

ANUDEM provides a grid elevation map from drainage points (Hutchinson, 2011) 

 The DEM data is used to determine the vertical gradient of roadways, by calculating 

the difference in the elevation between two points and dividing the difference by the 

segment length. Figure 4.5 shows a sample of DEM database visualization (Satellite 

Imagery Corporation, 2020). 
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Figure 4.5 Sample of DEM elevation heat map. 
Source: (Satellite Imagery Corporation, 2020) 

 

4.1.4 Google Earth API System  

Google Earth API is developed by Google corporate (Google., 2018). It provides 

information regarding ramp and connected freeways related to freeway segments. 

Therefore, it is used to develop a database that includes mainline network and the 

associated ramp and connected freeway segments. The Google Earth API system can 

provide information about the longitude and latitude of the connection points between the 

ramps and the freeways. However, a data analysis is required to combine these coordinates 

with the Milepost system. Thus, other databases can be merged into the developed 

database. 

4.1.5 New Jersey Congestion Management System (NJCMS) 

NJCMS (New Jersey Department of Transportation., 2015) provides information regarding 

traffic volume and truck percentage in the state of New Jersey. NJCMS is a system software 

that provides NJDOT with various performance measurements (e.g., level of service, 



 

49 

 

volumes to capacity ratios, delays, and travel speed)The database is used to provide work 

zone capacity, which is an input in the deep machine learning model.  

The NJCMS covers an overall of 7,129 miles of roadway segments in the State of 

New Jersey. This study includes all freeway segments in New Jersey; therefore, the 

developed model uses 1,562 miles of NJCMS data, which are distributed over 1,227 

segments. One major issue when using NJCMS with other data sources is that NJCMS uses 

the Milepost coordinates in identifying the segments. However, some other databases use 

the global coordinate systems, making the matching between the two systems important 

for data analysis.  

4.1.6 INRIX Database 

INRIX data provides space mean speed data. The probe-vehicle data used in the model is 

reported from INRIX speed database (INRIX., 2019). INRIX identify segments through 

Traffic Message Channel (TMC). There are more than 1700 freeway TMCs and more than 

600 ramp TMCs in the state of New Jersey. The collected data includes 4 billion records 

of freeway segments and 1.3 billion records of ramp segments. The data duration is from 

July 2014 to July 2018.  

 INRIX data is provided for all the interstate segments, the Turnpike and the Garden 

State Parkway in New Jersey. Figure 4.6 demonstrates an INRIX coverage of the studied 

segments in New Jersey. For the development of the model, the data is aggregated on 15-

minute intervals for each roadway segment.  
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Figure 4.6 INRIX coverage of Interstate roadways in New Jersey. 
Source: (INRIX 2019) 

 

4.1.7 Plan4Safety and New Jersey Crash Records 

Plan4Safety and New Jersey Crash Records report crash accidents time and location 

Transportation Safety Research Center. (2016); New Jersey Department of Transportation. 

(2018). New Jersey Crash Records data was developed from 511NJ website. Accidents 

were reported from Plan4Safety, but Plan4Safety was stopped in 2016. Hence, the New 

Jersey Crash Records was substituted during the years 2017 and 2018. Figure 4.7 shows a 
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sample of the 511NJ website showing real-time incidents including a description of the 

accident, the exact location, and the time the incident is reported (511NJ, 2020). 

 

Figure 4.7 Sample of real-time incident of 511NJ website. 
Source: (511NJ, 2020) 

 

The purpose of these two databases is to exclude work zones with accidents records, 

downstream and upstream work zone, as the purpose of the model is to predict work zone 

congestion without any additional accident congestion.  

4.2 Descriptive Statistics 

To develop a model that is able to identify work zone congestion, work zone information 

is collected between 2014 and 2019. Work zone information that are useful for predicting 

upstream mainline, ramps, and upstream segments are listed in section 2.1.1 in the literature 

review. Among collected work zones, work zones with accident records are excluded using 

Plan4Safety database and Crash Records as it is illustrated in section 3.1. In New Jersey, 

in the periods between 2014 and 2019, there is around 40,000 work zones. Only around 

5,500 work zone have occurred on the interstate roadways. The selected work zone include 

only work zones that have a duration less than 24 hours, and with full information (i.e., 

verified location, and time). Consequently, after screening the 5,500 work zone, there is 
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822 work zones with complete information. The analysis is conducted on 822 work zones 

with complete information in New Jersey between 2014 and 2019. The complete 

information includes the exact work zone location and work zone time, excluding work 

zones with accidents 10-miles on the upstream and downstream segments during the work 

zone duration.  Work zones vary in terms of the number of lane closures and the available 

lanes for traffic. Table 4.1 demonstrates the distribution of the 822 work zones in terms of 

lane closure type.  

Table 4.1 The Selected Number of Work Zones for Model Development. 

Lane Configuration 

at Each Direction 

Shoulder 

Closure 

One Lane 

Closure 

Two Lane 

Closure 

Total 

Two Lane Freeway 23 119 NA 142 

Three Lane Freeway 122 394 21 537 

Four Lane Freeway 20 106 17 143 

Total 165 619 38 822 

 

 Table 4.2 provides the descriptive statistics of TMC data by routes. The number of 

freeways TMC segments is 1,733, extending over 1,561.5 miles of freeway roads in NJ, in 

which the total route length is 1,561.5. The average TMC length varies between 0.31 and 

1.22 with an average standard deviation of 1.35.  
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Table 2.2 Descriptive Statistics of Freeways TMC Data by Route 

Route 

Name 

Number of 

Work 

Zones 

Avg. TMC 

Length 

(miles) 

SD of TMC 

Length 

(miles) 

Route 

Length 

(miles) 

Number 

of TMCs 

Garden 

State 

Parkway 

205 0.89 

1.14 

393 441 

I-76 2 0.31 0.22 9.4 30 

I-78 113 1.02 2.98 198.8 195 

I-80 187 0.78 1.17 153.4 197 

I-195 22 1.14 1.23 70.8 62 

I-278 6 0.52 0.25 4.6 9 

I-280 32 0.4 0.37 33.4 84 

I-287 59 0.84 1.15 144.6 173 

I-295 153 0.75 0.83 135.3 180 

I-676 1 0.36 0.21 9.4 26 

New Jersey 

Turnpike 

42 1.22 

1.63 

408.8 336 

Total 822 0.9 1.35 1,561.5 1,733 

 

4.3 Deep ANN Development  

The proposed model uses probe vehicle data to capture traffic speed on the network. Probe-

vehicle database provides one input and the output of the model depending on the work 

zone time, and the location. The output is the speed during work zone conditions for 

segment (i) at time interval (j). The input of the model is the average monthly speed during 

normal conditions for the same day for segment (i) at time interval (j). Traffic volume data 

in work zones are typically provided through vehicle counting. However, the scarce 

availability of the traffic counts during work zone conditions would not be feasible to be 

included in the model. Therefore, an available vehicle counts through a big data source, 

New Jersey Congestion Management Systems (NJCMS), is used in the model. The model 

assumes that traffic volume and truck percentage are given through historical data based 

on Average Annual Daily Traffic (AADT) from NJCMS. Moreover, the model calculates 
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work zone capacity using Highway Capacity Manual, HCM (2010), approach as it is shown 

in Equation 4.1.  

 

where  𝐶𝑤: Work zone Capacity (vph); 

𝑓𝐻𝑉: Heavy vehicle adjustment factor explained in (HCM); 

𝐼: The adjustment factor for type and intensity of work activity (vphpl) 

𝑁0: The number of open lanes within a work zone; and 

R: HCM manual adjustment for on-ramps (vph). 

 The Deep ANN considers eight inputs to predict speed with work zone conditions 

for segment (i) at time (j): Traffic volume approaching work zone at time j, Traffic speed 

during normal conditions, Traffic volume on the mainline downstream interchange on at 

time (j), Vertical gradient of segment (i), Work zone capacity, Distance of segment (i) to 

work zone, traffic volume of segment (i) at time (j). As it is illustrated in the literature 

review, traffic volume approaching work zone at time (j) in addition to work zone capacity 

is correlated to speed reduction upstream work zone. Some of model inputs are retrieved 

from the datasets directly, others are obtained from other sources (e.g., HCM formula for 

work zone capacity). The increase of traffic volume approaching a work zone increases the 

congestion upstream work zone whereas the decrease in work zone capacity is attributed 

to the increase of congestion upstream work zone. The model classifies upstream segments 

into three types: upstream mainline segments, upstream ramp segments, upstream 

 𝐶𝑤 = (1600 + 𝐼) ∗ 𝑓𝐻𝑉 ∗ 𝑁0 − 𝑅 (4.1) 
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connected freeway segments as it is shown in Figure 4.8. The model includes prediction of 

the work zone impact up to 10-miles upstream work zone segment. 

 

Figure 4.8 Work zone on Interstate-295and adjacent road network. 

 

The model includes factors affecting ramp and connected freeways only in order to 

predict when work zone congestion hits upstream ramps and connected freeways. Figure 

3.2 demonstrates the general input-output of the suggested model. The model inputs are 

identified to affect traffic speed during work zone conditions throughout Chapter 2. 

The optimized Deep ANN structure is determined by its performance which yields 

the least RMSE. The RMSE is calculated based on the TMC segmentations of the INRIX 

data. 

To find the optimized structure, a set of scenarios are set based on number of hidden 

layers and number of neurons with each hidden layer, which are illustrated in Table 4.2. In 

this study, 5 layers are chosen as the maximum number of layers because increasing the 

number of layers results in overfitting problems. Therefore, throughout the analysis, six 

layers would yield higher errors, setting a trend of overfitting pattern in the data.   
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 The results in Table 4.5 indicate that a Deep ANN with 4 layers that have 128 

neurons in the first layer, 256 neurons in the second one, 512 neurons in third one, and 

1024 neurons in the fourth one recognizes 5.9 mph RMSE value. The optimizer used in 

these structures is Adam, as it is recognized as a superior optimizer in the literature. 

However, to investigate its effectiveness in the suggested model, three other Deep ANN 

optimizers are analyzed on the optimal Deep ANN structure. A grid search analysis is 

conducted to find the optimal optimizer. To find the optimal structure, a grid search 

analysis is used. The number of layers in the grid search analysis is within the range of 3 

and 5 and the number of neurons in the first hidden layer is one of the following: 128, 256, 

or 512. The following layers have a number of neurons twice the number of neurons in the 

previous layer. The grid search is conducted with a variety of optimizers. Based on grid 

search analysis, Table 4.3 shows the RMSE results of using RMSprop, Adagrad, Adadelta, 

and Adam as optimizers on the suggested Deep ANN structure. From the analysis, 

Adadelta and Adagrad has similar performance, but since Adam has the least RMSE, Adam 

optimizer is selected for model development and evaluation. The optimal structure 

represents the number of neurons at each hidden layer. 

Table 4.3 RMSE of the optimal structure with various Optimizers. 

Optimizer Name Optimal Structure RMSE (mph) 

RMSprop 256/512/1024/2048 6.4 

Adadelta 128/256/512 6.3 

Adagrad 256/512/1024/2048 6.0 

Adam 128/256/512/1024 5.8 

 

The RMSE for the Deep ANN model is 5.8 mile per hour. However, to get more 

insight of the applicability of the model regarding each lane-closure type, a sample of each 

lane-closure type is selected for model development. Table 4.4 indicates the RMSE value 
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for the selected sample size of each lane-closure type. The results show that one-lane 

closure in general yields the minimum RMSE indicating that the predicted model have 

more accurate results for this type of lane closures. Three different number of hidden layers 

structure are analyzed: 3 layers, 4 layers, and 5 layers. Structure 1, 2, 3, 4 have 16, 32, 64, 

128 neurons in the first hidden layer respectively. The number of neurons in the next hidden 

layers is twice the number of neurons of the previous hidden layer, as it is suggested by 

(Elisseeff & Paugam-Moisy, 1997). Testing results are proceeded on 15% of work zone 

database Table 4.4 shows testing sample size for each lane-closure type. 52% of the total 

822 work zone database has ramp spillback at connected freeways.  

 

Table 4.4 Testing Sample Size and the number of TMC links 

Testing Sample Size 

(Number of TMC Links) 

Shoulder 

Closure 

One Lane 

Closure 

Two Lane 

Closure 

Total 

Two Lane Freeway per 

each Direction 

3 

(96) 

18 

(446) 

NA 21 

(542) 

Three Lane Freeway per 

each Direction 

18 

(754) 

59 

(1730) 

3 

(66) 

80 

(2,550) 

Four Lane Freeway per 

each Direction 

3 

(111) 

16 

(522) 

2 

(62) 

21 

(695) 

Total 24 

(961) 

93 

(2,698) 

5 

(128) 

122 

(3,787) 

 

The results, in Table 4.5, indicate that a deep Artificial Neural Network with 4 

layers that have 128, 256, 512, 1024 neurons in the first, second, third and fourth layers 

respectively is the optimal structure of Deep ANN, and it recognizes 5.8 mph RMSE value. 

Figure 4.9 shows the structure of the Deep ANN model.  The activation function that 

is used in the training is Rectified Linear Unit (ReLU) as it is widely 
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recommended to be used as a non-linear function with Deep ANN and CNN 

layers (Schmidt-Hieber, J., 2020). It is not computationally expensive and 

simply outputs the maximum value between zero and the input value. 

 

Table 4.5 RMSEs with Different Deep ANN Structures. 

Structures Number of Neurons at each hidden layer (RMSE in mph) 

3 Layers 4 Layers 5 Layers 

Structure 1 16/32/64 

(10.3) 

16/32/64/128 

(9.4) 

16/32/64/128/256 

(9.1) 

Structure 2 32/64/128 

(6.2) 

32/64/128/256 

(6.3) 

32/64/128/256/512 

(6.2) 

Structure 3 64/128/256 

(6.0) 

64/128/256/512 

(6.1) 

64/128/256/512/1024 

(6.2) 

Structure 4 128/256/512 

(6.1) 

128/256/512/1024 

(5.8) 

128/256/512/1024/2048 

(6.1) 

 

 

Figure 4.9 The structure of the Deep ANN model. 
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4.4 CNN Development 

Convolutional Neural Networks are deep learning approach used for estimating model 

outputs based on different outputs. The convolutional function ⨂ is a shape function that 

is the product of filter 𝑓 and input layer 𝑔 over strides 𝑧 as it is illustrated in Equation (3.8).  

Convolution identifies the important features in the network by extracting a reduced 

sized matrix from neuron layers. The output of convolutional layer will be the input of the 

next neuron layer. To demonstrate how convolution occurs, the model input from Deep 

ANN model, consists of 7 variables and based on the optimal number of neurons in the 

first layer, we have 128 neurons at the first layer and 7 input variables. Since Convolutional 

layers are built on neuron layers, the number of layers and the number of neurons at each 

layer are determined through the previous Deep ANN model we conducted before. As we 

previously found in step 2, the optimal number of layers for our problem is 4 in which the 

first, second, third, and forth layers include 128, 256, 512, and 1,024 neurons respectively. 

A convolutional layer is applied at the first neuron layer matrix that has the dimensions of 

model input and number of neurons in the first hidden layer (7*128). A filter (f) that has 

the width of neuron layer matrix (7) and a height of (h) convolutes over the neuron layer 

with strides (z). The output of the convolutional layer has the width of the model input, 

which is 7. However, the height of the matrix would be 128 divided by strides (z). Figure 

4.10 demonstrates an example of filter height of 3 and stride size of 2. Note that each hidden 

layer is reshaped and padded and the activation function that is used in the training is ReLU, 

which is suitable for a regression output (i.e., traffic speed). 



 

60 

 

 

Figure 4.10 The CNN mechanism example. 
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The purpose of CNN model is to predict the speed during work zone for segment i 

at time j. The general structure of CNN model is demonstrated in Figure 4.11.



 

 

 

Figure 4.11 Structure of the proposed CNN model.  
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From the previous discussion, we have not determined the filter height and filter 

stride. These values are determined through analysis and based on recommended ranges 

specified in the literature review. Filter stride is recommended to be less or equal to filter 

height whereas Filter height is recommended to be less than the number of variables 

(Goodfellow, 2016). Table 4.6 demonstrates the testing results to determine the optimal 

filter height and filter stride. The testing results are obtained from 15% of available work 

zone database as it is indicated in Table 4.4. 

Table 4.6 CNN Model Results 

RMSE value “mph” Filter Height =2 Filter Height =3 Filter Height =4 

Stride Size = 1 5.6 5.6 5.6 

Stride Size = 2 5.5 5.7 5.7 

Stride Size = 3 - 5.6 5.7 

Stride Size = 4 - - 5.8 

 

The results indicate that the optimal CNN structure has a filter height of 2 and stride 

size of 2 in which RMSE value is equal to 5.5 mile per hour. CNN model has lower RMSE 

values than the Deep ANN model (5.8 mile per hour), and therefore is able to predict traffic 

speed under work zone conditions with less error.  

4.5 Summary 

This research implements the models discussed in Chapter 3 for the prediction of traffic 

speed under work zone conditions. The data sources are discussed in detail with the 

coverage of each data source. Two deep learning models are developed and evaluated: 

Deep ANN and CNN.  

The Deep ANN model requires optimization of the number of hidden layers and 

the number of neurons at each hidden layer. It is found that four layers with the structure 

128/256/512/1024 yields the optimal solution. The optimized structure of Deep ANN is 
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used for the CNN model development. In the CNN model, the filter height and stride need 

to be optimized. It is found that a filter height of 3 and stride size of 2 yield the optimal 

solutions. Based on the results, the CNN model yields more accurate results compared to 

the Deep ANN. 
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CHAPTER 5 

CASE STUDY 

5.1 Background   

The developed CNN model predicts traffic speed on the mainline segments and the 

connected freeways. To illustrate the applications of the developed CNN model, a work 

zone location that has a connected freeway segment close to the work zone location is 

selected. The selected location has a congestion spillback due on other freeway segments. 

Therefore, the location of the 1-mile work zone is Interstate-287 between Milepost 39 and 

Milepost 38 in which one lane closed over four lane freeway at the southbound direction. 

I-287 Southbound has multiple junction areas with various routes 10 miles upstream work 

zone (i.e., Route-10, I-80, Route 202, and Route-46). However, INRIX data only covers 

the TMCs in the junction area of I-80. Thus, this study only includes I-80 as a connected 

route. 

The selected work zone duration is from 3:00 PM till 09:00 PM on 07/08/2015. 

This study considers both the mainline segments and the connected freeways when 

predicting traffic speed under work zone conditions. Figure 5.1 demonstrates the general 

configuration of work zone location. The green links represent the selected work zone 

location whereas the blue links represent upstream mainline segments, and the orange links 

illustrate ramp links, connecting the connected freeways to the mainline freeway. The red 

links are the connected freeway segments. In this case study, the connectors are Interstate-

80, Westbound and I-80 Eastbound.  

The importance of adding connected freeways is to account for the congestion 

spillback from one freeway to another. Therefore, users delay due to work zone conditions 
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will change. The coverage of the analysis includes 10-miles of upstream segments 

including both the mainline segments and the connected segments, separately. Moreover, 

the work zone congestion prediction span extends two-hours post the ending of work zone, 

to account for any residual delays from previous time steps. Consequently, is the heat maps 

are shown is between 2:30 PM (i.e., 30 minutes before the starting time of work zone to 

observe any congestion prior to the work zone starting time) and 11:00 PM. The inputs of 

the model include traffic speed and traffic volume over the specified period of time in 

addition to the number of closed lanes and the number of lanes at the upstream segments. 

 

 

Figure 5.1 Work zone on Interstate-287 and adjacent road network. 
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5.2 Results 

The analysis is conducted at 0.5 miles spatial intervals and 15-minute temporal intervals. 

The analysis uses a heat map to visualize the model results. The heat map, in its horizontal 

axis, represents the temporal changes (i.e., time of the day), starting from the work zone 

starting date and time and ending two hours post the work zone ending date and time. On 

the other hand, the vertical axis, in the developed heat map, shows the spatial changes (i.e., 

mileposts upstream work the zone). The spatial changes are illustrated at 0.5-mile intervals 

starting from the work zone segment link and ending 10-miles upstream the work zone. 

Heat maps showing traffic volume change over time and space are demonstrated in 

Figure 5.2. The heat maps in Figure 5.2 show (a) the passenger car volume and (b) truck 

volume. The results indicate high traffic volume in heat maps representing both the 

passenger car and truck volumes between 16:00 and 19:00, for the 3-miles upstream work 

zone segments. Consequently, high traffic volumes is expected to correspond to any 

potential congestion during work zone conditions.  
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Figure 4.2 Heat map of (a) passenger cars and (b) trucks distribution for I-287 SB.  
Source: New Jersey Congestion Management Systems 

 

To show the traffic volume on the connector segments, heat maps are demonstrated 

in Figure 5.3. The heat maps in Figures 5.3 and 5.4 show (a) the passenger car traffic 

volume and (b) the truck volume on the upstream ramp and the connected freeway for I-

80 Westbound and I-80 Eastbound, respectively. The heat maps show high traffic volume, 

especially between 15:00 and 18:30, compared to the mainline freeway segments. 
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Figure 5.3 Heat map of (a) passenger cars and (b) truck volumes of I-80 Westbound. 
Source: New Jersey Congestion Management Systems. 
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Figure 5.4 Heat map of (a) passenger cars and (b) truck volumes of I-80 Eastbound. 
Source: New Jersey Congestion Management Systems. 

 

The heat maps showing normal traffic speed are shown in Figure 5.5 for (a) I-287 

SB (b) I-80 WB and (c) I-80 EB. The normal traffic speed is obtained from the average 

traffic speed of the same month the work zone occurred in during the same day and time, 

excluding the periods in which accidents occurred. These heat maps show no major 

congestion during non-work zone conditions. It is worth noting that the normal traffic 

speed on the ramp is low compared to the other freeway segments due to speed limit of the 

ramps. 
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Figure 5.5 Heat map of traffic speed without work zone conditions for (a) I-287 SB (b) I-

80 WB and (c) I-80 EB. 
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The heat map showing the traffic speed of the mainline (i.e., I-287 SB) is shown in 

Figure 5.5 for (a) actual traffic speed reported from INRIX  (b) traffic speed predicted from 

the CNN model and (c) predicted speed from the model of WIMAP-P. On The results, in 

both the actual and the predicted traffic speed heat map results, show that there is a 

congestion for around 3-miles upstream the work zone. The congestion mainly occurred 

between 15:00 and 19:00, especially in the first three hours. Additionally, the model of 

WIMAP-P overestimates congestion 4-miles upstream the work zone between 16:00 and 

19:00. The results indicate that the model of WIMAP-P underestimates the congestion 

between 15:00 and 17:00 and overestimates the congestion between 17:00 and 19:00. On 

another note, WIMAP-P does not provide any indication of congestion spillback to other 

freeways. Therefore, there is no further analysis for other connected freeway using the 

model of WIMAP-P. 
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Figure 5.6 Heat map of I-287 SB of (a) Actual speed reported from INRIX (b) predicted 

speed from the CNN Model (c) predicted speed from the model of WIMAP-P. 

 

 



 

74 

 

This study provides a model that predicts traffic speed on connected freeways under 

weather conditions. The connected freeways are merged into the mainline freeway 

segments through ramp segments. In the case study the ramp merges into the mainline 

freeway on milepost 38.5 (i.e., 1.5-mile upstream work zone). The heat maps, illustrated 

in Figures 5.8 and 5.9, show the comparison between (a) the CNN predicted upstream 

connected freeway traffic speed and the (b) actual traffic speed on the same connector 

freeway. The actual traffic speed shows a higher congestion between 15:30 and 16:30 

compared to the CNN predicted values. Hence, the CNN model underestimated the 

congestion during these periods.  
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Figure 5.7 Heat map of traffic speed on I-80 WB from (a) the CNN prediction model (b) 

the actual traffic speed reported from INRIX. 
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Figure 5.8 Heat map of traffic speed on I-80 EB from (a) the CNN prediction model (b) 

the actual traffic speed reported from INRIX. 

 

 

 The absolute error between the CNN model results and actual traffic speed heat 

maps are illustrated in Figure 5.9 for (a) I-287 SB (b) I-80 WB and (c) I-80 EB. The results 

indicate higher absolute errors around the 3-miles upstream area in I-287 SB. Additionally, 

the closer segments to the work zone tend to have higher absolute errors compared to 

further segments. 
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Figure 5.9 Heat map of absolute error of the CNN results again the actual speed for (a) I-

287 SB (b) I-80 WB and (c) I-80 EB. 
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Traffic Delay is the additional delay caused by work zone congestion due to 

traffic speed reduction from traffic speed of segment 𝑖 at time 𝑗 during normal conditions 

𝑠𝑖𝑗 to traffic speed under work zone condition �̂�𝑖𝑗. Given a traffic volume 𝑉𝑖𝑗 for segment 

𝑖 at time 𝑗 and 𝑙𝑖 as a length of segment 𝑖, a total queue delay caused by work zone  𝐷 is 

denoted in Equation (5.1). 

Where, 𝜏𝑖𝑗 represents a congestion status of segment 𝑖 at time j. As denoted in Equation 

(5.2), 𝜏𝑖𝑗 is 1 when it is congested and 0 otherwise  

Delay cost 𝐶𝑑 , as denoted by Equation 5.3, is calculated based on the percentage 

of passenger cars 𝑃𝑐 of the overall traffic volume and the percentage of trucks 𝑃𝑡 of the 

overall traffic volume. 

 

where: 

 𝜇𝑐 is the value of travel time delay for passenger cars ($/veh-hr) 

 𝜇𝑡 is the value of travel time delay for trucks ($/veh-hr) 

 The queue length 𝐿𝑗 at time 𝑗, which is defined in Equation (5.4) is the total length 

of the congested segments, affected by the work zone. 

 𝐷 = ∑ ∑ max {𝑙𝑖[
1

�̂�𝑖𝑗
−

1

𝑠𝑖𝑗
]𝜏𝑖𝑗𝑉𝑖𝑗, 0}           ∀𝜏𝑖𝑗 = 1

𝑛

𝑗=1

𝑚

𝑖=1

 (5.1) 

 𝜏𝑖𝑗 {
1          𝑖𝑓  �̂�𝑖𝑗  ≤   0.75 ∗ 𝑠𝑖𝑗

0           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
 (5.2) 

 𝐶𝑑  =  𝑃𝑐𝜇𝑐 + 𝑃𝑡𝜇𝑡 (5.3) 

 𝐿𝑗 = ∑ 𝜏𝑖𝑗 ∗  𝑙𝑖                           ∀𝜏𝑖𝑗 = 1

𝑚

𝑖=1

 (5.4) 



 

79 

 

This research investigates the accuracy of the model in relation to the distance from 

the work zone. Figure 5.10 demonstrate the RMSE values with a variation of the distance 

from the work zone. The mainline freeway is I-287 Southbound and there are two 

connected freeways 1.5-mile upstream work zone (i.e., I-80 Eastbound, and I-80 

Westbound). The results show that the RMSE for I-287 Southbound is lower than the 

RMSE for both connected freeways at locations that have a distance to work zone greater 

than 4-miles.  

 

Figure 5.10 The RMSE values in variation of distance to work zone. 

 

Predicting work zone congestion before they happen is one of the prime concerns 

of transportation agencies. Traffic congestion leads to users delay due to work zone. This 

study develops a CNN model to predict traffic speed on the upstream mainline segments 

and the connected freeway segments.  

Traffic Delay is the additional delay caused by work zone congestion due to traffic 

speed reduction compared to traffic speed under normal conditions. In this case study 
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traffic delay is calculated for the mainline segments and the connected freeways segments. 

Figure 5.11 shows the change of users delay on I-287 due to work zone lane closure, 

varying over time. The results indicate that for the selected work zone, the model of 

WIMAP-P underestimates the work zone delay during the start of the work zone, but 

overestimates the results around the 17:30 time period. Figure 5.12 demonstrates the users 

delay variation over time on the connected freeway segments (i.e., I-80 Eastbound and I-

80 Westbound) for the CNN model and the actual data. The results show that the CNN 

model overestimates the user delay between 15:30 and 16:30 of the work zone. Based on 

the results of Figures 5.11 and 5.12, more errors can occur during peak-hour periods, in 

which traffic volume tend to be high. Thus, an evaluation in section 5.3 is conducted to 

evaluate the models under various V/C ratios. 

It is worth noting that previous models (e.g., the model of WIMAP-P) cannot 

capture the user delay of these connected freeways, resulting in less reported user delays. 

The results show that the CNN users delay, on the connector segments, is underestimated 

between 15:30 and 16:00, when compared with actual users’ delay. On the other hand, the 

model of WIMAP-P results overestimates the work zone delays between 17:00 and 19:00. 

WIMAP-P does not provide delay prediction on the connectors. Thus, only mainline 

segments are included in the analysis. From the analysis, it can be surmised that the 

predicted and actual values are almost the same after 17:30 PM. 
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Figure 5.11 Delay varying over time for I-287 freeway segments using CNN, WIMAP-P, 

and the actual results. 

 

 

 
Figure 5.12 Estimated Delay varying over time for the connected freeway segments (i.e., 

I-80 EB and I-80 WB) using the CNN model and the actual results. 

 

 

 To summarize the results of the analysis, a total delay cost is conducted for each 

method and for both of the mainline and the connected freeways. Figure 5.13 demonstrates 

the comparison between the mainline and the connected freeway segments for CNN, the 

model of WIMAP-P, and actual delay cost results. The mode of WIMAP-P is unable to 

predict the work zone delay for connecting freeways, providing in accurate final results. 

The comparison indicates that the CNN model overestimates the work zone delay cost 

compared to the actual delay whereas the WIMAP-P model underestimate the delay. On 

the other hand, the CNN model underestimates the work zone delay costs for the connector 

segments. 
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Figure 5.13 Comparison of total delay cost for both the mainline (i.e., I-287 SB) and the 

connectors segments (i.e., I-80 EB and I-80 WB) to the actual work zone delay. 

 

In Figure 5.14, the queue length is demonstrated for the mainline segments using 

WIMAP-P, the CNN, and the actual queue length. Figure 5.15 shows the queue length on 

the connected freeways obtained from the CNN model, and the actual estimated queue 

length. The results indicate that WIMAP-P overestimates the queue length at the start of 

the work zone but overestimates the results around 17:30 time period. Moreover, the results 

indicate higher errors at the peak-hour periods (i.e., traffic volume is high). Additionally, 

the connector queue length is compared between the CNN predicted results and the actual 

queue length. The results indicate that WIMAP-P underestimates the queue length between 

15:00 and 16:30 whereas it overestimates the queue length between 17:00 and 19:00. The 

CNN model, on the other hand, overestimates the queue length between 21:15 and 21:45. 
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Figure 5.14 Queue length varying over time for the I-287 SB route using the CNN model, 

the WIMAP-P, and the actual results. 

 

 
Figure 5.15 Queue length varying over time the connected freeways (i.e., I-80 EB and I-

80 WB) using the CNN model and the actual results. 

 

5.3 Models Comparison  

WIMAP-P does not cover congestion spillback on freeways. It only predicts traffic speed 

on the same freeway that work zone occurs. Therefore, for comparison reasons, the 

connected and ramp segments are emitted from the data to include only mainline segments. 

Therefore, a comparison analysis between the Deep ANN model, the CNN model, and the 

WIMAP-P model is shown in Table 5.1, in which only mainline freeway segments are 

considered, and based on testing sample size indicated in Table 4.2. The results show high 

accuracy for Deep ANN and CNN models compared to WIMAP-P model, and slight 

improvement in terms of the accuracy for the CNN model. Additionally, the results indicate 

that with lower sample size for each category, the accuracy of the prediction model 

becomes less (e.g., two-lane closure scenarios). 
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Table 5.1 RMSE with Deep ANN, CNN, and WIMAP-P under different lane-closure 

Model Number of Lanes RMSE (mph) 

(% of testing data) 

Shoulder 

Closure 

One Lane 

Closure 

Two Lane 

Closure 

Deep 

ANN 

2 6.2 (2%) 6.2 (6%) NA (0%) 

3 6.1 (8%) 5.8 (20%) 7.4 (1%) 

4 7.0 (2%) 6.2 (5%) 7.6 (1%) 

CNN 2 6.0 (2%) 5.9 (6%) NA (0%) 

3 5.8 (8%) 5.2 (20%) 7.2 (1%) 

4 6.4 (2%) 5.8 (5%) 7.3 (1%) 

WIMAP-P 2 7.7 (2%) 8.8 (6%) NA (0% 

3 9.1 (8%) 9.4 (20%) 10.4 (1%) 

4 9.9 (2%) 9.6 (5%) 10.8 (1%) 

 

Since the Deep ANN and CNN models outperforms the WIMAP-P, a more 

inclusive comparison analysis including both the mainline and the connected freeway 

segments is conducted in Table 5.2. The results in Table 5.1 show higher accuracy for CNN 

model in addition to less accurate results when compared to Table 5.2 in general. Therefore, 

the results indicate that connected freeway prediction results have less accurate results than 

mainline segment predictions in most of lane closure types. Furthermore, the low sample 

size, shown in Table 4.2, leads to greater RMSE values (e.g., two-lane closure scenarios). 

Table 5.2 RMSE with Deep ANN and CNN, considering other freeway segments. 

Model Number of Lanes RMSE (mph) 

(% of testing data) 

Shoulder 

Closure 

One Lane 

Closure 

Two Lane 

Closure 

Deep 

ANN 

2 6.6 (3 %) 6.0 (13%) NA (0%) 

3 6.4 (20%) 5.8 (44%) 7.5 (2%) 

4 7.3 (3%) 6.2 (14%) 7.8 (1%) 

CNN 2 6.2 (3%) 5.8 (13%) NA (0%) 

3 5.9 (20%) 5.2 (44%) 7.4 (2%) 

4 6.7 (3%) 6.1 (14%) 7.6 (1%) 
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To further evaluate the accuracy of the CNN and the Deep ANN models, the testing 

results are analyzed in terms of weather conditions. Table 5.3 shows the comparison results 

of rain and no rain results for Deep ANN and CNN. The results indicate that in rain 

conditions, the accuracy of both the CNN model and the Deep ANN model is less, 

compared to no-rain conditions. Additionally, the accuracy of the models is assessed based 

on the distance of the segment to the work zone.  

Table 5.3 RMSE Values of Deep ANN and CNN Models in Terms of Weather 

Conditions 

Weather 

Condition 

Distance 

to Work 

Zone 

Model Number 

of Lanes  

RMSE (mph) 

(% of testing data) 

Shoulder 

Closure 

One Lane 

Closure 

Two Lane 

Closure 

Rain Less than 

5 miles 

Deep 

ANN 

2 7.4 (13%) 6.0 (9 %) NA (0%) 

3 6.5 (6%) 6.0 (5 %) NA (0 %) 

4 NA (0%) 7.9 (3%) NA (0 %) 

CNN 2 7.0 (13%) 5.6 (9%) NA (0%) 

3 6.0 (6%) 5.5 (5%) NA (0 %) 

4 NA (0%) 7.7 (3%) NA (0 %) 

Greater 

than 5 

miles 

Deep 

ANN 

2 5.1 (20%) 6.1 (14 %) NA (0%) 

3 7.5 (9%) 6.4 (8 %) NA (0 %) 

4 NA (0%) 6.5 (7%) NA (0 %) 

CNN 2 4.7 (20%) 5.9 (14%) NA (0%) 

3 7.2 (9%) 5.2 (8%) NA (0 %) 

4 NA (0%) 6.2 (7%) NA (0 %) 

No Rain Less than 

5 miles 

Deep 

ANN 

2 7.4 (25%) 6.3 (26%) NA (0%) 

3 7.5 (30%) 5.3 (28%) 8.8 (32%) 

4 7.7 (37%) 6.3 (32%) 8.5 (30%) 

CNN 2 6.9 (25%) 5.9 (26%) NA (0%) 

3 7.1 (30%) 5.0 (28%) 8.5 (32%) 

4 7.4 (37%) 5.9 (32%) 8.3 (30%) 

Greater 

than 5 

miles 

Deep 

ANN 

2 6.9 (42%) 6.0 (51%) NA (0%) 

3 6.8 (55%) 5.6 (59%) 7.3 (68 %) 

4 7.0 (63%) 6.6 (58%) 7.6 (70 %) 

CNN 2 6.2 (42%) 5.6 (51%) NA (0%) 

3 6.4 (55%) 5.2 (59%) 6.9 (68 %) 

4 6.2 (63%) 6.1 (58%) 7.3 (70 %) 
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For further evaluation of the models, Table 5.4 shows the comparison results 

between the models in terms of volume approaching work zone over work zone capacity 

denoted as (V/𝐶𝑤) ratio and the segments’ distance to the work zone. The results indicate 

that high V/𝐶𝑤 ratios corresponds to higher RMSE values.  

Table 5.4 RMSE Values of Deep ANN and CNN Models for two various V/𝐶𝑤 ratios 

categories. 

V/𝐶𝑤 

Ratio 

Distance 

to Work 

Zone 

Model Number 

of Lanes  

RMSE (mph) 

(% of testing data) 

Shoulder 

Closure 

One Lane 

Closure 

Two Lane 

Closure 

V/𝐶𝑤  
≥ 0.5 

Less than 

5 miles 

Deep 

ANN 

2 NA (0%) 6.3 (18 %) NA (0%) 

3 5.9 (5%) 5.6 (11 %) NA (0 %) 

4 7.5 (3%) 6.7 (15%) NA (0 %) 

CNN 2 NA (0%) 5.9 (18%) NA (0%) 

3 5.7 (5%) 5.1 (11%) NA (0 %) 

4 7.1 (3%) 6.3(15%) NA (0 %) 

Greater 

than 5 

miles 

Deep 

ANN 

2 NA (0%) 6.2 (30 %) NA (0%) 

3 6.2 (11%) 5.7 (21%) NA (0 %) 

4 7.1 (7%) 6.7 (29%) NA (0 %) 

CNN 2 NA (0%) 5.9 (30%) NA (0%) 

3 5.9 (11%) 5.3 (21%) NA (0 %) 

4 6.7 (7%) 6.3 (29%) NA (0 %) 

V/𝐶𝑤   
< 0.5 

Less than 

5 miles 

Deep 

ANN 

2 7.4 (35%) 5.9 (17%) NA (0%) 

3 10.3 (27%) 5.5 (23%) 10.5 (31%) 

4 6.9 (30%) 6.4 (20%) 10.8 (32%) 

CNN 2 7.0 (35%) 5.7 (17%) NA (0%) 

3 9.9 (27%) 5.1 (23%) 9.9 (31%) 

4 6.5 (30%) 6.1 (20%) 10.3 (32%) 

Greater 

than 5 

miles 

Deep 

ANN 

2 6.1 (65%) 5.8 (35%) NA (0%) 

3 4.8 (57%) 5.8 (45%) 6.5 (69 %) 

4 6.2 (60%) 6.1 (36%) 6.5 (68 %) 

CNN 2 5.8 (65%) 5.7 (35%) NA (0%) 

3 4.2 (57%) 5.4 (45%) 6.2 (69 %) 

4 5.9 (60%) 5.8 (36%) 6.3 (68 %) 

 

The developed deep learning models are assessed based on the location of the 

TMC segment. Two main categories of TMC segments are distinguished: Type 1, which 
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is the TMC segments on the mainline only immediate upstream to the on-ramp and Type 

2, which is all the other TMC segments on the mainline and connected freeway segments. 

Table 5.5 provides the RMSE values of both the Deep ANN and CNN models for both 

Type 1 and Type 2 TMC segments. It is worth noting that the developed models of Deep 

ANN and CNN have higher error for the Type 1 TMC segments compared to Type 2. 

Table 5.5 RMSE Values of Deep ANN and CNN Models for Two TMC Categories.  

Type of 

TMC 

segment 

Model Number 

of Lanes  

 RMSE (mph) (% of testing data) 

Shoulder 

Closure 

One Lane 

Closure 

Two Lane 

Closure 

Type 1 Deep ANN 2  11.2 (5%) 9.5 (13 %) NA (0 %) 

3  12.3 (8%) 9.1 (12 %) 10.5 (6 %) 

4 14.9 (4%) 11.0 (10 %) 11.3 (3 %) 

CNN 2  10.0 (5%) 9.2 (13%) NA (0%) 

3  11.6 (8%) 8.2 (12%) 9.9 (6 %) 

4 14.1 (4%) 10.3 (10%) 10.6 (3 %) 

Type 2 Deep ANN 2  6.4 (95%) 5.5 (87%) NA (0%) 

3  5.9 (92%) 5.4 (88%) 7.3 (94 %) 

4 7.0 (96%) 5.7 (90%) 7.7 (97 %) 

CNN 2  6.0 (95%) 5.3 (87%) NA (0%) 

3  5.4 (92%) 4.8 (88%) 7.2 (94 %) 

4 6.4 (96%) 5.8 (90%) 7.5 (97 %) 

 

Based on the previous analysis, the results indicate higher accuracy for the 

developed CNN model compared to the Deep ANN and the WIMAP-P models. Adding 

the dropout decreases the overfitting problem. However, the CNN model further mitigates 

the overfitting problem through reducing the matrix size in the hidden layers to include 

only the important features. Hence, for the available work zone data in New Jersey, the 

CNN model shows higher fidelity compared to Deep ANN and WIMAP-P, when 

conducting the model comparison in Chapter 5. 
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5.4 Applications 

The proposed CNN model is developed to predict delay cost on both the mainline and the 

connector freeway segments. The model and the developed database can be used to support 

state, local TOC, the planning agencies, and work zone contractors to: 

• Quantify the congestion costs (i.e., spatio-temporal), due to work zone activities (e.g., 

shoulder closure, lane closures) in the freeway system of the State of New Jersey. When 

the transportation agencies develop a congestion mitigation plans, the congestion on 

the connected freeways may be included by using the developed model of this research. 

• Identify the user delay costs for each roadway connected to the freeway. Therefore, 

various road agencies can collaborate in mitigating the effect of work zone congestion. 

For instance, a connected freeway may be in the jurisdiction of another agency, 

affecting the user delay costs. If user delays are increased on the connected freeway 

segments, users might not use this route, impacting any existing toll revenues, if there 

is any. 

• Conduct a sensitivity analysis between user delay costs vis-à-vis agencies costs when 

planning for the work zone activities. When the transportation agencies schedule a 

work zone, they outline the different options to start the work zone, depending on the 

minimum value of user and agency costs combined. However, by not including other 

connected freeways, the reported user delay costs may be less than the actual one. 

Consequently, the developed model may be used to aid the agencies in reflecting more 

accurate total user delay costs. 

• Assess queue warning systems on the connected freeways that are predicted to have a 

congestion spillback, by predicting the locations of potential congestion spillbacks. The 

transportation agencies usually distribute queue warning systems upstream work zone. 

However, with a limited resources environment, the agencies can prioritize the 

locations of their queue warning systems depending on the predicted traffic speed of 

the developed model and the level of congestion of the connected freeways upstream 

work zone.  

 One example of how the developed CNN model can be deployed is by deploying 

the work zones that are scheduled during the day and predicted to have congestion 

spillback, to be during the night periods. Depending on the agency costs for deploying 

work zones during the night and the user delay costs, the work zone schedule is decided. 

The developed model can be useful for congestion mitigation plans. One of these 



 

89 

 

mitigation plans can include rerouting traffic upstream work zones, including rerouting 

upstream connected freeway segments that are predicted to have a congestion. 

5.5 Summary 

This study illustrates the functionalities of the developed model in a case study. The case 

study is chosen in which an upstream connected freeway is located upstream the work 

zone. The results are demonstrated in a heat map method to show the spatio-temporal 

variations in predicted traffic speed under work zone conditions.  

This research compares the results between Deep ANN, CNN, and the model of 

WIMAP-P. WIMAP-P is developed to predict traffic speed on the mainline segments only. 

Thus, a subset of the data is used for the comparison between the three models. It is found 

that the CNN model outperforms both the Deep ANN and the model of WIMAP-P. The 

CNN and Deep ANN models are evaluated and discussed under various scenarios (i.e., 

weather conditions, distance to work zone, and V/C ratio). 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

Predicting work zone congestion before they happen is one of the prime concerns of 

transportation agencies. With the increase of infrastructures ages, roadway rehabilitation 

and construction activities are becoming necessary. With the increase of work zone 

activities, transportation agencies need to plan their work zone activities ahead of time. 

Therefore, predicting work zone activities precisely is becoming increasingly critical. 

Additionally, work zone congestion may spillback on other freeways leading to more 

congestion. In response to this challenge, two models, the Deep ANN and the CNN models, 

for predicting work zone delay were developed using big data in this study. In the Deep 

ANN model, multiple layers are considered in addition to integrating the dropout technique 

to mitigate the overfitting problems traditional ANN model suffer. In the CNN model, 

convolutional layers are added to mitigate the overfitting by extracting the important 

features from the previous layers. The CNN model shows higher accuracy compared to the 

Deep ANN model and the ANN model used in WIMAP-P. 

  

6.1 Conclusions  

The developed CNN model for predicting traffic speed and delay cost under work zone 

conditions faced various challenges and improvements in the areas of data collection and 

the performance measurements, which is listed in the next sections. 
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6.1.1 Spatio-temporal Work Zone Delay Prediction 

The proposed CNN model uses various parameters (e.g., filter height, filter stride, number 

of layers, and number of neurons at each layer). The CNN parameters are chosen through 

sensitivity analysis, based on the freeway network in New Jersey. When evaluating the 

CNN model, the results indicate that the CNN model outperforms the Deep ANN model 

and the model used in WIMAP-P. Consequently, the CNN model is the least affected by 

the overfitting problem, especially when dropout is integrated into the model. 

 The developed CNN model can be deployed to help aiding transportation agencies 

in predicting traffic congestion upstream work zone, including plans for connected 

freeways. The model can be helpful for planning purposes, including determining the start 

and end timing of work zone, including the connected freeways as a decision variable. 

Moreover, contractor penalties can be assessed to reflect more accurate user delay costs. 

On the other hand, contractors may have reward incentives that are more precise. 

6.1.2 Big Data Analysis in Work Zone Impact Studies 

With the technological advancement in collecting data, data analysis has become a focal 

point in any modeling. The increase of the amount of the collected data over the recent 

years has led to big data analysis that is able to uncover hidden information in the datasets. 

Transportation agencies can analyze enormous information and make decisions according 

to the data insights. 

 In the freeway work zone analysis, the available datasets include various 

inconsistent data. Therefore, a big data analysis is required to extract the accurate 

information. Deep ANN and CNN models require data for training and validation purposes. 

Unlike deterministic approaches and other traditional ANN approaches, the CNN model 
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can predict the work zone impact more accurately than the other ones. Big data analysis 

offers flexibilities in managing and transforming the data between different models. Hence, 

transportation agencies can invest in these new technologies to enhance and improve the 

work zone operation management aspects and reduce the users delay costs. 

6.1.3 Research Findings 

This research develops a CNN model to predict traffic speed under work zone conditions 

for mainline and connector freeway segments. The major findings of the research is 

summarized:  

• The developed model is affected by the closeness to the work zone and the by the 

proximity to the mainline links immediate upstream on the on-ramp. 

• Traffic speed is collected from INRIX database, which reports the speed using 

longitude and latitude systems. However, the freeway geometric information is defined 

using the milepost systems. Thus, matching the INRIX database with the milepost 

system requires substantial amount of time, in which some of the segments are matched 

manually. 

• The traffic volume information is vital for predicting traffic congestion on the upstream 

segments, which is not available in most roadways. Therefore, NJCMS dataset is used 

for model development. 

• Weather data is used to evaluate the models. However, when more work zone is 

available under adverse weather conditions, weather data can be considered in the 

inputs of the model in the development processes. 

• Driver behavior is not considered as an input in the model. For instance, delay can vary 

between commuter routes and recreational routes. 

• The ramps are not illustrated in NJSLD, making the identification of the ramp segment 

names in INRIX a difficult task. Additionally, the ramps intersection points with the 

freeway segments needs to be identified. In this study, after the identification the 

intersection points and the ramp segments, each freeway would have a new developed 

network identifying all the connected segments and the intersection points. However, 

as INRIX is adding new segments, the mapping needs to be done again. 
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6.2 Future Research 

The developed CNN model for predicting traffic speed under work zone conditions can be 

enhanced in the following areas: 

 The traffic volume is calculated using NJCMS, identifying new sources for 

updating the traffic volume to reflect the actual traffic volume would enhance the accuracy 

of the CNN model. Moreover, incorporating a simulated model to estimate the work zone 

capacity can advance the developed CNN model. The improvement in the OpenReach data, 

by incorporating more agencies in addition to the precise location would enhance the 

training of the CNN model and the quality of the data. Thus, transportation agencies would 

be able to identify the starting and ending time of the work zone more accurately. 

 The databases are growing, making downloading big data using traditional 

techniques burdensome. Consequently, automating the databases through repositories 

would ease the data analysis for new products and developments. Additionally, the privacy 

issues for data sharing can be excluded for research purposes, allowing assessment of the 

databases in terms of accuracy. Databases can be open-sourced, for research purposes, to 

ease the collaboration between different agencies. 

 INRIX XD database can be used to enhance the accuracy of the model, as the 

granularity of this database can reach to 0.1-mile TMC segment length. Furthermore, 

integrating traffic volume and other geometric information would be useful for matching 

the databases. Other crowdsourcing datasets can be considered to enhance the accuracy of 

the model (e.g., WAZE). A comparison analysis between various datasets can enrich the 

understanding of the advantages and disadvantages of the datasets. Additionally, with the 

availability of high granularity data, the model can be enhanced to predict traffic 

congestion on the opposite traffic direction (i.e., opposite bound). 
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 The CNN model, in this study, is used to predict traffic speed on the upstream 

mainline and connected freeways, under work zone conditions. The proposed CNN model 

can be extended to include the following functionalities: (a) an optimal work zone 

scheduling with rerouting plans (b) work zone staging optimization (c) combination of 

work zone and accidents prediction modulus. 
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