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ABSTRACT

HUMAN-ROBOT INTERACTION FOR ASSISTIVE ROBOTICS

by
Jiawei Li

This dissertation presents an in-depth study of human-robot interaction (HRI) with

application to assistive robotics. In various studies, dexterous in-hand manipulation is

included, assistive robots for Sit-To-stand (STS) assistance along with the human intention

estimation. In Chapter 1, the background and issues of HRI are explicitly discussed. In

Chapter 2, the literature review introduces the recent state-of-the-art research on HRI,

such as physical Human-Robot Interaction (HRI), robot STS assistance, dexterous in hand

manipulation and human intention estimation. In Chapter 3, various models and control

algorithms are described in detail. Chapter 4 introduces the research equipment. Chapter

5 presents innovative theories and implementations of HRI in assistive robotics, including

a general methodology of robotic assistance from the human perspective, novel hardware

design, robotic sit-to-stand (STS) assistance, human intention estimation, and control.
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“When something is important enough, you do it even if the
odds are not in your favor. I think it is possible for ordinary
people to choose to be extraordinary.”

-Elon Musk
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CHAPTER 1

INTRODUCTION

The increasing demands of Human-Robot Collaboration (HRC) in industrial field attracts

great attentions of researchers to this area, such as: [1, 2]. The studies of HRC also show a

large potential towards a wide range of home-automation tasks, such as: healthy lifestyle

support, household and care support [3]. Traditionally, industrial robots are designed to

complete a series of complicated tasks automatically. These tasks are usually simple and

repetitive. In order to deal with increasingly complex and challenging tasks, recently

researchers have brought the concept of the Human-Robot Collaboration (HRC) to this

area. This allows the robot and the human work collectively to accomplish complicated

tasks. In the field of healthy life care, the Human-Robot Interaction (HRI) has been

implemented in nursing and medical assistance for years. The most common example

is the movement support robots which are made for disabled people or elderly people. The

applications of the surgical assistive robot and doctor collaboration in the hospital can be

seen occasionally as well. With embedded the Artificial Intelligence (AI) in the robotic

systems, scholars have boosted the technology to a higher level. Nowadays, researchers try

to provide decision making abilities to robots so that these intelligent robots can be used

for operating in houses or public places as agents of household support, care support and

public services.

The Human-Robot Interaction/Collaboration (HRI/HRC) is a promising research

field. However, the HRI/HRC has safety issues since robots are required to physically

interact with humans in many applications. This could potentially endanger an operator

who is adjacent to the robot. On the other hand, the robot could be damaged during

operations as well. To ensure safety between operators and robots, many algorithms,

control approaches and sensors have been invented. For example, optical sensors and
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imaging techniques have been widely used in the HRI applications, such as gesture

recognition and motion detection. These techniques provide a visual advantage for robots

to adapt to the unpredictable environment. Acoustical sensors are also applied to the

human-robot interaction as people can easily send their phonetic orders to the robots

which decreases the chances of physically interacting with robots and increases the safety.

Recently, a new approach has been created and applied in the HRI. Researchers attempt to

combine the artificial intelligence and force/torque sensors together so that robots are able

to perceive surroundings by its tactile sense.

An intelligent robot is not only capable of communicating with people but also

capable of studying from people. The Machine Learning (ML) method and the Artificial

Neural Networks (ANNs) are mostly used in robotics. One well-known example is the

Google “Alpha-Go”. This amazing AI has already defeated many professional GO players

in the world. The reason of giving intelligence to robots is to improve the performance of

human and robot collaboration rather than using it with a vicious purpose. If robots were

to be able to obtain experience from people, then collaboration between human and robots

would become more convenient, smoother and safer.

There are a lot of research on the Human-Robot Interaction (HRI) that have been

done. However, researchers are facing some complicated and arduous issues as well. There

are some unsolved problems as listed below:

First of all, many studies of home-automation and HRI stagnate at the state of

kinematic and spatial relationship between a robot and surroundings. Although in these

type of research, control problems are simplified, interactions between a moving robot

and objects on dynamic level are neglected. Missing the dynamic feedback in pHRI and

home-automation is non-trivial since the accuracy and safety are directly affected by the

dynamics. Therefore, dynamic modelling in pHRI and home-automation is crucial.

Second, traditional studies on HRI, especially pHRI, make very simple problem

formulations, such as set-point regulation, trajectory tracking, and impedance control for

2



human-robot contact. The reason why these assumptions are made to be extremely simple

is that they can be easily converted into control problems, which are easily solved with

guaranteed stability and performance. However, this type of “low-level” human-robot

interaction has very limited applications. In reality, the collaboration between human and

robot often involves various scenarios, changing environments, which can only be solved

through high-level decision making. For example, when a robot helps an elderly people

to put clothes on, the robot must make decision on how to change the orientation and

position of the sleeves such that human can put their arms in easily. The robot should

also decide whether human arm gets jammed in the sleeves and make a recovery strategy.

The complicated scenarios involved in such type of tasks cannot be simply formulated

as low-level control problems. Thus, more realistic problem formulation capturing all

the complicated situations and uncertainties during human-robot interaction needs to

be make, which should be addressed combining low-level control law and high-level

planning/decision making algorithm together.

Third, the current state of the art of sensing, estimation, and prediction of human

motion and intention is immature. To improve the collaborative performance in a human-

robot task execution, the robot must read the human motion and understand its intention.

Current human body sensing technique is not able to meet the stringent requirement of

human-robot collaboration. For example, vision and time-of- flight sensors are subject to

occlusion issue, while inertia sensors and potentiometers only measure the motion of the

human skeleton without information on its exterior. More advanced sensing techniques

need to be developed to capture human motion accurately. Besides, the prediction of

human intention is also crucial to the success of human-robot collaborative task execution.

Current methods on human motion prediction mainly focus on the application of extended

Kalman filter, which is too simple to capture the decision process of human being during

task execution.
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Fourth, the safety between human and robot during their collaboration is not yet fully

guaranteed. There have been various studies on human-robot safety issue. Each of them

focuses on a particular aspect, such as hardware design, control design, motion planning,

and decision making. However, human-robot safety is a complicated issue involving both

low-level control and high-level intelligence. Failure to attack the safety problem from a

holistic point of view leads to a trade-off between safety and performance, i.e., the robot

has to move slowly and stay far enough to human to guarantee safety. How to ensure

safety while maximizing the performance through the incorporation of physical control

and decision making is yet to be studied.

The research aims to study physical Human-Robot Interaction (pHRI) with respect

to how a robot helps the disabled and the elderly in their daily lives. This research field has

extremely significant meanings for development and progress of modern human society

since robotics, a promising technology, acts as an alternative, yet an very important tool

for assisting people. In this dissertation, the study consists of seven chapters, which

illustrates the research from various perspectives, such as dynamics modeling, apparatus

construction and controller design. In the matter of script-writing, first of all, the study

provides theoretical background and methodologies. Such as motion/trajectory planning,

robot motion control method and robot force control algorithm, etc. The purpose of

illustrating these algorithms is to give the theoretical support for safe and reliable physical

Human-Robot Interaction (pHRI). Second, the research also provides several examples as

well as information of assistive robot setups and current research as well as experimental

results. For instance, design a human-centered control framework for robot assisted

Sit-To-Stand (STS) and perform dexterous in-hand manipulation with a three-fingered

robotic gripper. Third, the dissertation introduces the study results.
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CHAPTER 2

LITERATURE REVIEW

2.1 Dexterous In-Hand Manipulation

In 2010, the population of aged Americans who have difficulty in grasping is 2,785,000.

Among this population, 334,000 elderly people have a severe grasping issue [4].

Conventionally, medical science and neurology act as the major treatments for the

patients. Nevertheless, in recent decades, with the prosperity of robotics, robots serve

as alternative, yet effective tools for assisting those with difficulties in grasping [5].

Traditionally, robots are programmed, and are commanded for performing a series of

simple, stiff and repetitive grasping motions in factories. Nowadays, as the application

of robots to assistive living and home automation thrives, it is required that the new

generation of assistive robots can perform elaborate and dexterous hand motions in

human environment. Therefore, Dexterous Manipulation (DM), which is defined as the

“object-oriented”, multiple-fingers collaborative in-hand manipulation [6], has attracted

significant attention in the study of assistive robotics.

Many tasks in home automation and assistive living environment require a robot to

perform complicated rotational/cyclic grasping motions. For example, peeling the shell

of a boiled egg for a patient who has Parkinson’s Disease (PD), installing a bulb for a

chandelier or pulling a circular duct tape for pipe repairing. To succeed in completing

these tasks, a robot usually needs to take rolling, sliding as well as shifting motions into

consideration. This type of tasks is intuitive and natural for a human, yet very challenging

for robots as the contact modeling is extremely complicated. To bypass the difficulty, some

researchers developed a variety of soft grippers, for instance, [7–9]. As a matter of fact, soft

grippers have fine adaptive ability towards different objects and are usually easy to control.

Nevertheless, compliant grippers are not designed for performing accurate and complicated
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in-hand manipulation. Most of the compliant grippers are open-loop controlled, and the low

stiffness between the actuator and the fingertip makes the precision contact motion control

difficult.

In recent years, a fairly large number of researchers have started to use machine

learning methods for complex dexterous in-hand manipulation, since the machine leaning

methods are able to provide solutions based on massive data without the need of an explicit

model which might be very complicated for robot in-hand manipulation, in [10–12]. It

is worth noting that the machine learning methods usually reduce complexity in system

modeling, whereas the system stability, robustness and performance cannot be testified by

any means. Such a drawback may result in significant issues for assistive robots, as in home

automation and assistive living environment, a failure operation of the robotic gripper may

result in a severe injury to the human or damage to the object or home facilities. Therefore,

the safety issue of using machine learning methods is still controversial.

Another group of researchers prefer modeling based control techniques for dexterous

in-hand manipulation, as the force/dynamic model based approaches have outstanding

performance in terms of accuracy, stability and robustness, [13, 14]. However, these

research usually concern the problem of controlling the instantaneous motions of the object,

yet ignoring finger-gaits planning for different types of dexterous in-hand manipulation

tasks. Moreover, these studies usually involve complicated mathematical formulations

of the physical movements in all degrees of freedom, which cannot be easily applied in

practical tasks. In comparison, when a human executes this kind of manipulation, he/she

only cares about the object movement in some of the “main” degrees of freedom, while

other directions are controlled subconsciously. On the another hand, some researchers

devote to certain specific areas of the dexterous manipulation, such as in-hand sliding

manipulation or object re-grasping manipulation by using external contact. Some examples

are given in [15, 16].
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2.2 Robot STS Assistance

The increasing number of elderly Americans with chronic conditions or disabilities post

significant challenge on public health as the chronic conditions as well as disabilities limit

daily activities and reduce the quality of life of these people [17, 18]. Sit-To-Stand (STS),

for example, is one of the fundamental and the most performed activities in people’s daily

lives. Achieving this action requires a sturdy and healthy muscle group to perform a

series of complicated motions. According to the study [19], frequent repetition of knee

movement may lead to wearing and degenerated knee functionality even for a healthy

elderly individual, not to mention the impacts of STS motion to those with weak knees

or those who suffer from various chronic conditions or disabilities. As for the latter,

to accomplish this task successfully without giving any external assistance is incredibly

difficult.

In the fields of bio-engineering and rehabilitation, a large quantity of research

concentrates on designing and manufacturing mobile-based devices for STS assistance.

For instance, [20–23]. In general, these mobile-based devices are time-consuming to

design, expensive to manufacture and less intelligent to cope with any complicated tasks.

Sometimes, the mobility of the devices is constrained by surroundings and terrains when

the device operates at a narrow area. Additionally, an elderly or a disabled who accepts

these types of assistive devices must confine himself/herself to it for most of the time.

A more intelligent and less constrained STS assistance requires the use of a mobile

robot manipulator. A general purpose mobile robot manipulator also has potential to assist

patients with varieties of daily activities in the future, which is more economic and efficient

than having a myriad of assistive devices specific to different activities. However, the

studies of using a mobile robot manipulator for STS assistance are very few. In [24], the

authors propose an impedance controller to optimize interaction force between the human

and the robot in STS assistance. However, it does not take into account the human body

dynamics and optimize joint load of the human, which is a primary concern for people with
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weak knees and back pains. In [25], an optimal control formulation is developed to resolve

issues of task end-point accuracy, human balance, energy consumption and smoothness of

motion according to the dynamic model constructed. Nevertheless, the research does not

explicitly study different phases of STS motion as well as how to generate a robot trajectory

to achieve the proposed optimal assistance. In fact, an STS process usually contains various

stages (phases) [26]. For example, before getting up from a seated place, a person needs to

adjust the center of weight so that he/she can successfully stand up. The study of how to

control the robot movement that optimizes the joint muscle load of the human through the

entire multi-stage STS process has been lacking.

On the other hand, human intention is also a critical factor in STS assistance that has

been rarely taken into account. In most cases of physical Human-Robot Interaction (pHRI),

due to the limitation of robots’ intelligence, a human often plays as the leader, with a robot

being the follower to assist the human. Therefore, in order to guarantee performance and

safety, it is critical that a robot is able to estimate human intentions during any collaborative

tasks. Some representative examples and methods, which are used for estimating human

intention can be found in [27–30]. In a robotic STS assistance, the human intention also

plays a significant role, since the human is not only the one who needs to be assisted, but

also the master who naturally attempts to lead the entire STS motion, such as altering the

stand-up speed, or sitting back down due to a sudden change of decision. Very limited

research of robotic STS assistance has taken human intention into consideration. For

example, [31,32]. Whereas, systematically predicting and using human intention to achieve

a better STS assistance have not been investigated.

2.3 Human Intention Estimation

The increasing demands of Human-Robot Collaboration (HRC) in markets not only reveals

an enormous efficacy of intelligent robots in mass production/manufacturing, but also

exhibits a great potential in assistive tasks in people’s daily lives [33, 34]. As a matter
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of fact, the number of senile Americans who have disabilities is increasing in recent years

that brings out an evident alert to the public health [18]. For the elderly who has gonitis or

cervical osteoarthritis, for example are struggling with performing the most fundamental

activities, such as walk as well as Sit-To-Stand (STS) in their daily lives since to accomplish

these motions requires collaborations of both healthy muscles and joints. Therefore, it is

believed that assistive robots can be an effective solution for these people in their daily

lives.

Much research, for instance [20, 21, 24, 25] have studied the STS assistance.

However, the issues of safe contact and human intention detection in STS assistance

haven’t been sufficiently studied. In fact, safe and dexterous STS assistance imposes a

requirement of relatively high-level intelligence on the robot side to cope with various

complicated situations. Such situations usually involve tasks re-planning and human

intention estimation when the human partner suddenly changes his/her mind; maintaining

the contact force between human and robot in order to achieve a safe and comfortable

contact environment; Therefore, creating high efficient and intelligent robots is the pivotal

issue for researchers and engineers.

In regard to human intention recognition, various approaches and models have been

made to estimate human motion/intention using Artificial Neural Networks (ANNs). In

[35], on the basis of a simplified joint position model, the authors propose a semi-adaptive

neural network to predict human joint motions in real-time. In [36], a Recurrent Neural

Network (RNN) is applied to estimate multiple and varying length action sequence using

gaze and body posture data. In [37], a visual data driven Deep Convolutional Neural

Network (DCNN) is investigated for recognition of human intended motions and context of

human actions. A common feature of these studies is that the human intention estimation

models are constructed on the similar structure which takes either current human limb/joint

trajectories or human postures as the input. It takes the future joint trajectories or future

human postures as the output. No doubt that this kind of framework is easy to understand
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and convenient to apply in the research. However, it neglects contact forces between human

and robots during the interaction process that may cause injuries of the human partner.

On the other hand, certain research, for instance [38, 39], adopts an alternative

approach which uses force/pressure or tactile sensors to control the contact force and

to anticipate human intention in HRC in consideration of simplicity of its underlying

mechanism. Furthermore, bio-signal based sensors, such as Electromyography (EMG)

or Electroencephalography (EEG) sensors are also utilized to forecast human intention

in HRC, for example, [40, 41]. Despite the convenience of using these sensors to obtain

contact force signals, its limitations are also evident. In reality, sensor readings are always

tangled with uncertainties and disturbance which may result in less accurate performance

[42].

In comparison with the above approaches, other scholars combine model-based

control method, such as impedance model, with ANNs in the research of human intention

recognition in order to involve more integrated contact models to the system meanwhile

reduce the system sensitivity to the disturbance. For example, [43–46]. In spite of

the advantages possessed in this approach, such as safe force control and real-time

human intention recognition, these studies haven’t considered a simultaneously recognition

process of contact model identification and human intention estimation. In fact, when a

person collaborates with another person in a task. The human workers are capable of

figuring out what the partner intention is and how much force is applied by the another

partner at the same time. Therefore, if the robot is able to achieve these functionalities in

collaborative tasks. Then the safety and efficiency in robot assistance will be upgraded to a

higher level.
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CHAPTER 3

METHODOLOGY AND ALGORITHM

In this chapter, various algorithms that have been used in the research are introduced. First

of all, a planar human body dynamic model that adopts a five-linked robot dynamics is

presented. The model is applied in a series of studies of robot assisted Sit-To-Stand (STS)

motion. Second, we explored the 2D frictional model for planar contact. This model is

used for research of dexterous in-hand manipulation. Third, robot motion control, robot

force control as well as hybrid control methods are introduced. Fourth, the principle of

Artificial Neural Network (ANN) is explained.

3.1 Human Body Muscular Model

This model is constructed as a 2D model, which assumes that the human body can be

depicted as a five-linked robotic system. The dynamics can be simply given as:

M(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ) = τ + J(θ)T F, (3.1)

where M(θ) ∈ R5×5 is a positive definite symmetric matrix that represents the inertia of

the robot, C(θ , θ̇)θ̇ ∈ R5 is the vector of Coriolis and centripetal forces, G(θ) ∈ R5 is the

gravitational force vector, τ ∈ R5 represents the human joint torque. The interaction force

F ∈ R2 on the human’s hand is generated indirectly from both the human joint torque and

the robot motion. The matrix J(θ) ∈ R2×5 is the Jacobian from the human joints to the

human hand.

3.2 Planar Frictional Contact

The planar Coulomb friction for surface contact is given as a wrench, which the direction

of the kinetic friction is in the same direction of the instantaneous velocity of the contact
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region. The 2D kinetic friction is formulated as the integration over the contact area A :

W ,


fx

fy

τ f

 =


µ p
∫
A

vx√
v2

x+v2
y
dA

µ p
∫
A

vy√
v2

x+v2
y
dA

µ p
∫
A

vxry−vyrx√
v2

x+v2
y

dA

 (3.2)

Where −→vx and −→vy are velocities along x and y directions at each point within the contact

region. We assume that the pressure p is isotropic in the area A . Therefore, p can be taken

out of the integration. (rx,ry) is coordinate of each point with in the area A .

3.3 Robot Motion Control

The basic robot control follows the design procedure as below:

1. Tasks.

2. Desired Trajectory or Set Point Planning.

3. Desired Torque Evaluation.

4. Voltage/Current Input Calculation.

Figure 3.1 The basic robot control design procedure.

In robotic, the traditional motion control can be divided as three basic control approaches

which are position control, velocity control and force/torque control. However, there exists

another method which is combining the three previous methods together into a hybrid

control algorithm. In position and velocity control, the objective can be divided into two
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categories: the first one can be described as trajectory tracking. Namely, trajectory tracking

task is to track a time vary desired trajectory with q(t), ˙q(t) and ¨q(t) in advance. The second

one can be depicted as set-point regulation. The set-point regulation can be described

as regulating the joint position or velocity towards a constant set-point q(t) or ˙q(t). To

accomplish position or velocity tracking, there are two approaches:

1. Decentralized Control

Decentralized control is to control each joint variable independently without considering

interaction.

B(q) ¨q(t)+C(q, ˙q(t))+Fv
˙q(t)+g(q) = T +δ (3.3)

In which, B(q) ¨q(t) represents the inertia term, the C(q, ˙q(t)) is the Coriolis force term,

Fv
˙q(t) represents the viscous friction term, g(q) is the gravity term, and T as well as δ

are actuator force and disturbance. If the interacting forces can be ignored, then the terms

B(q) and Fv can be decomposed as diagonal matrices and disturbance terms. Therefore, the

equation (3.3) can be transformed into:

¯B(q) ¨q(t)+ F̄v
˙q(t) = T +d (3.4)

Where, the term ¯B(q) ¨q(t) and F̄v
˙q(t) are diagonal matrices. The disturbance term d can be

written as:

d = ¯B(q) ¨q(t)−B(q) ¨q(t)−C(q, ˙q(t))−g(q)+δ (3.5)
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Assuming that PID controller is applied to the robotic system, then for set-point regulation

problem, the input torque can be designed as:

T = F̄v
˙q(t)+ ¯B(q) ¨q(t)(−Kpe−KI

∫
e−Kd q̇) (3.6)

In which e equates to q−qd , and qd is the desired set-point.

In the trajectory tracking problems, the PID controller can be designed from designing

e = q− qd , ė = q̇− q̇d , ë = q̈− q̈d . By substituting the equation (3.3) into ë. The state

equation is given as:

ë+Kpe+KI

∫
e+Kd ė = B̄−1d (3.7)

If the term B̄−1d is small enough, then the equation (3.7) will converge to zero, therefore

the system will tends to stable.

2. Centralized Control

The centralized control is nearly equivalent to the decentralized control, however

interactions are considered in each joint.

ë = B̄−1(T −B(q)q̈d−C(q, ˙q(t))−g(q)−Fv
˙q(t)+δ ) (3.8)

The force T can be designed as:

T = B(q)q̈d +C(q, ˙q(t))+g(q)+Fv
˙q(t)−B(q)(Kpe+KI

∫
e+Kd ė) (3.9)

Substituting equation (3.9) into (3.8), we have

ë+Kpe+KI

∫
e+Kd ė = δ (3.10)
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If the value of δ is small enough, then equation (3.10) will converge to zero, therefore the

system will tends to stable.

3.4 Force Control

The purpose of force control is to control the contact force between robot and environment.

There are two basic force control methods: direct force control and indirect force control.

Indirect force control is to construct a force-displacement model, then control the force

through displacement, while direct force control is to synthesize a feedback controller to

minimize the measured force tracking error.

1. Direct Force Control

The principle of direct force control is to design a controller to minimize the force

tracking error. Suppose the desired force is Fd , the tracking error can be depicted as F̄ =

F−Fd . Design a PID controller so that the state space equation can be transformed into:

¨̄F +Kd
˙̄F +KpF̄ +Ki

∫
F̄ = 0 (3.11)

2. Indirect Force Control

The purpose of indirect force control method is to minimize the trajectory tracking

error or set-point tracking error. The tracking error can be described as e = X −Xd . The

contact force can be designed as:

K1(Ẍ− Ẍd)+K2(Ẋ− Ẋd)+K3(X−Xd) =−F (3.12)

At steady-state, the equation (3.12) becomes as:

K3(X−Xd) =−F (3.13)
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if the force F is nearly as the same as the desired force Fd , then the force control becomes

a position control.

3. Hybrid Control

The hybrid control method focus on both force control and motion control simulta-

neously, but in different directions. Before the calculation, it is important to specify frame

of interest and convert to a singular one. For example, as can be seen from the Figure 3.2.

Figure 3.2 2D hybrid control.
Source:http://www.diag.uniroma1.it/ deluca/Teaching.php]

The task frame is represented by the red arrows, which is used for an independent definition

of the the hybrid reference values and for computing the errors driving the feedback control

law. The sensor frame is indicated by violet arrows, where the forces (Fex,Fey) on end-

effector are measured. The base frame is at the origin, in which the velocity of the end-

effector is expressed. All frames are required to be converted to the task frame.W

V

= T (s)ṡ (3.14)

In which, the equation (3.14) represents the free motions, W is the angular velocity and the

V is the linear velocity. F

M

= Y (s)α (3.15)
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Where T (s) and Y (s) are the generalized directions of the task frame. F is the force and M

is the torque.

The kinematics of the robot can be expressed as:W

V

= J(q)q̇ (3.16)

The dynamics of the robot can be represented by the equation:

B(q) ¨q(t)+C(q, ˙q(t))+g(q) =U + JT (q)

F

M

 (3.17)

The control objective is to impose S(t) approaches as close as possible to the desired value

Sd(t), and α(t) approaches as close as possible to the desired value αd(t) as well. The

control law can be designed into two steps.

The first step is to exact linearization and decoupling in the task frame by feedback. s̈

α

=

as

aα

 (3.18)

The second step is to design of as and aα so as to impose the desired dynamic behavior to

the errors es = sd− s and eα = αd−α .

J(q)q̇ = T (s)ṡ (3.19)

From equation (3.19), it can be transformed into:

q̈ = J−1(T s̈+ Ṫ ṡ− J̇q̇) (3.20)

Substituting the equation (3.20) into (3.17),

U =

[
BJ−1T −JTY

]as

aα

+BJ−1(Ṫ ṡ− J̇q̇)+ sq̇+g (3.21)
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It is sufficient to apply linear control techniques. Therefore, the equation (3.21) can be

separated into motion control part and force control part:

as = äd +Kd(ṡd− ṡ)+Kp(Sd− s) (3.22)

aα = α̈d +KI

∫
(αd−α)dt (3.23)

3.5 Artificial Neural Networks (ANN)

An Artificial Neural Network (ANN) is a type of computing model. It has layered structure

that simulates the networked structure of biological neurons and connected nodes. A neural

network is capable of learning from given data, therefore it is able to be trained to recognize

patterns, classify data, and forecast future events. A neural network that work with less than

three layers of connected neuron layers is treated as a shallow neural network. On the other

hand, a deep learning network contains many layers. As can be seen from Figure 3.3.

Figure 3.3 Typical neural network architecture.
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3.5.1 Supervised Learning

Supervised learning is defined as training networks with given sample inputs and desired

outputs. This method is particularly appropriate for system modeling, data classification,

and future events prediction.

3.5.2 Classification

Classification is a kind of supervised learning method. This algorithm is used for

identifying incoming data and labelling them into given categories.

3.5.3 Regression

Regression models construct the relationship of a output and one or more inputs.

3.5.4 Pattern Recognition

Pattern recognition is an indispensable method of Artificial Neural Networks (ANN) which

is widely used in computer vision, character recognition, and data classification. The

principle of pattern recognition can be depicted as classifying inputs into objects or classes

on the basis of different unique features. This algorithm uses either supervised learning or

unsupervised learning approaches.

3.5.5 Unsupervised Learning

Unsupervised learning is a type of training method that distinguishes from supervised

learning. This learning approach let the ANN continually tune itself to new input data

without using labeled responses.

3.5.6 Clustering

Clustering is a type of unsupervised learning method, where neural networks can be used

for finding hidden patterns of data or grouping data.
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CHAPTER 4

HARDWARE AND APPARATUS SETUP

In this section, the experimental apparatus and hardware are introduced. In particular,

we give detailed descriptions on load dependent stiffness actuator, Movable Sawyer Arm

Platform (MSAP), AUBO robot system, three-fingered robotic hand and motion capture

system.

4.1 Load Dependent Stiffness Actuator

The load dependent stiffness actuator is designed to behave like a rigid actuator during

normal operation and automatically switches to a compliant actuator in the event of an

unexpected collision, without the need of additional force sensor/estimation. As shown in

Figure 4.1. The system contains two parts, each part is driven individually by a motor. The

Figure 4.1 Prototype of semi-compliance load dependent actuator.

left part is driven by the initiative motor, and another part is driven by another motor. The

prototype is consisted of two stoppers. The load inertia is clamped tightly by two stoppers,

and the clamping force is generated by springs. The second/driven motor is connecting
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with the initiative motor by using a belt and two springs. An encoder is used to record the

rotational angles, angular velocities of the system.

4.2 Movable Sawyer Arm Platform

As can be seen from the Figure 4.2 the Movable Sawyer Arm Platform (MSASP) is

Figure 4.2 Movable Sawyer Arm Platform (MSAP).

a compound-typed robot that it contains five basic components: ‘Right-Hand’ gripper,

Sawyer robot manipulator, ‘Kinect’ sensor, ROS as well as movable platform.

4.2.1 Right-Hand Gripper

The ReFlex Takktile hand is a underactuated hand with tactile sensors and joint feedback.

The system consists of four actuators which are responsible for the movement of the

three fingers. In there are nine tactile sensors embedded each finger. The collision-safe
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mechanism is considered and designed with robust hardware. To ensure the simplicity of

installation and operation, the Robotic Operating System (ROS) is served as the interface

for the purposes of easy control and programming. As can be seen in Figure 4.3.

Figure 4.3 ReFlex Takktile hand.
Source:[https://cobotsguide.com/. Right Hand Robotics]

4.2.2 Sawyer Robotic Arm

Sawyer is a seven Degree Of Freedom (DOF), revolutionary collaborative robot designed

to execute tasks that have been impractical to automate with traditional industrial robots.

Sawyer gives manufacturers the high performance automation they need, while maintaining

the flexibility, safety and affordability synonymous with the Rethink brand. As shown in

Figure 4.4.
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Figure 4.4 Sawyer robotic arm.

Source:[https://www.rethinkrobotics.com/sawyer.]

4.2.3 Microsoft-Kinect

Microso f t − Kinect@ is an optical sensor that originally developed for video gaming.

Recently, the Kinect sensor, which can be seedn from Figure 4.5, is utilized in robotics

as it has a proprietary algorithms for feature selection, scene analysis, motion tracking,

skeletal tracking, and gesture recognition.

Figure 4.5 Microsoft-Kinect.
Source:[https://en.wikipedia.org/wiki/Kinect.]
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4.2.4 Robot Operating System

The Robot Operating System (ROS) is a flexible framework for writing robot software. It

is a collection of tools, libraries, and conventions that aims to simplify the task of creating

complex and robust robot behavior across a wide variety of robotic platforms.

4.2.5 Movable Platform

Figure 4.6 displays the mecanum wheeled robotic platform which is programmable with

‘Arduino’. It is designed for driving the Sawyer robotic arm system moving in multi-

directions. It includes the CNC cut 4WD base intended for the IG52 gear motors and nexus

mecanum wheels or omni-directional wheels. The chassis is a rigid gusseted aluminum

frame that is precisely fabricated using state of the art CNC equipment. Each wheel is

supported by two angled, double-sealed ball bearing for extra support and chain driven. It

is designed for any of planetary IG52 gear motors with or without encoders.

Figure 4.6 Mecanum wheel robot platform.

4.3 AUBO Robot System

AUBO robot, as shown in Figure 4.7 is a lightweight intelligent collaborative six degree

of freedom robots (5 kg payload) that offers variety of functions and features. Specifically,
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AUBO is easy to program and teach. It is able to work side by side with human operator

without safety fence, laser or sensors. It also provides open source architecture which

compatible with several communications, such CAN bus and ROS. The AUBO system

consists of AUBO robotic arm, controller box, control pad as well as terminal computer.

Figure 4.7 AUBO robot i5 system.
Source:[https://aubo-robotics.com/]

4.4 Three-fingered Gripper and ROBOTIS Actuator

The prototype of the three-fingered gripper is designed and manufactured to perform

dexterous in-hand manipulation. As shown in Figure 4.8. It contains 9 ROBOTIS

DYNAMIXEL motors, in which has 3 DYNAMIXEL motors that can be controlled under

the velocity mode and 6 DYNAMIXEL motors that can be directly controlled on position

level.
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Figure 4.8 Prototype of three-fingered gripper.

‘DYNAMIXEL’ series servo motors are high performance actuators that are designed

to be modular and daisy chained on robots or mechanical system for dexterous movements.

A ‘DYNAMIXEL’ motor contains a fully integrated DC (Direct Current) motor, reduction

gear-head, controller, driver and network, all in one servo module actuator. They are

programmable and are capable of communicating through networks. The actuator status

can be read and monitored through a data packet stream. In this gripper design, the motor

is used for accurate robotic joint control.

4.5 Opti-Track Motion Capture System

‘Optitrack’ is a platform that designed for various motion tracking applications. As shown

in Figure 4.9.
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Figure 4.9 Opti-Track motion capture system.

Source:[https://optitrack.com/]

It not only allows the user to capture target motions and features, but it also provides

interfaces, which is named as ‘Motive’, for both capturing and processing of 3D data. The

captured data can be simultaneously recorded or live-streamed to other system. Motive

obtains 3D information via data reconstruction, which is the procedure that compiles

multiple 2D images of markers to get 3D coordinates. Applying 3D coordinates from

tracked markers, Motive is able to obtain 6 Degree Of Freedom (DOF) data for multiple

rigid bodies as well as skeletons. It is also able to track complex movements in the 3D

space.
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CHAPTER 5

SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, the research results are introduced with respect to the following aspects:

1. Design and control a load dependent stiffness actuator.

2. Simulation of the Movable Sawyer Arm System and design of arm exoskeleton.

3. Dexterous in hand manipulation.

4. Robotic Sit-To-Stand Assistance and control framework design.

5.1 Design and Control a Load Dependent Stiffness Actuator

The actuator is designed to behave like a rigid actuator during normal operation and

automatically switches to a compliant actuator in the event of an unexpected collision,

without the need of additional force sensor/estimation. Therefore, both safety and

performance requirements can be met simultaneously. As can be seen from Figure 5.1.

Figure 5.1 Prototype of semi-compliance load dependent actuator.
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5.1.1 System Dynamics of the Actuator System

The dynamic equations of the prototype are given by:

θ̇1 = ω1,

J1ω̇1 = T1 +TSM,

θ̇2 = ω2,

J2ω̇2 = TSL +Tk2 +Tcomp +Tunexp,

θ3l = min{θ1,θ2}−θ0,

ω3l =

 ω1 if θ2 > θ1 or {θ1 = θ2 and ω2 ≥ ω1},

ω2 if θ1 > θ2 or {θ1 = θ2 and ω2 < ω1},

θ3r = max{θ1,θ2}+θ0,

ω3r =

 ω1 if θ1 > θ2 or {θ1 = θ2 and ω1 ≥ ω2},

ω2 if θ2 > θ1 or {θ1 = θ2 and ω1 < ω2},

θ̇4 = ω4,

J4ω̇4 = T2−Tk2,

(5.1)

The actuator has ten continuous states: θ1, θ2, θ3l , θ3r, θ4 and their derivatives (denoted

by replacing ”θ” with ”ω” for each variable). Comparing to the moment of inertia J1, the

moment of inertia of two stoppers are small, therefore θ3l , ω3l , θ3r, ω3r do not have their

own dynamics. The θ0 is an angle that relates to pre-compression length of the two springs

clamping the box when the system is at neutral position. J4 is the moment of inertia of the

secondary motor. Tcomp is the torque term relates to the combination of external forces such

as gravity and Coriolis force. The torque Tunexp is corresponding to the unexpected shock

acting on the actuator. Tk2 = k2(x4− x2)r is the torque generated by the spring k2 which

rotates around central axis, where r is the distance from the spring k1 to the central axis.

TSM is a net torque corresponding to the net force given by stoppers to the motor.
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5.1.2 Position Tracking of the Actuator System

The position tracking algorithm (PID controller) to be designed for the proposed actuator

(motor 1) must satisfy for the objective of tracking desired trajectory θd and the motor 2

should track the desired trajectory as close as possible. However during impacting, the θ1d

will deviate from θ2d , therefore forcing θ1d to be the same as θ2d all the time is improper.

Since the difference between θ2d and θ1d will eventually decrease towards zero due to

the damping effect between motor inertia and load inertia, θ2d will gradually converge to

θd as well. As can be seen from the Figure 5.2, motor 2 is able to tack motor 1 during

Figure 5.2 The tracking performance of θ1d and θ2d .

non-collision status and is able to absorb impacts during the collisions.

5.1.3 Simulation of Movable Sawyer Robot Arm System

In this subsection, the MAT LAB@ simulation of 7-DOF robot arm is described, the equation

of inverse differential kinematics is given and preliminary results are demonstrated. In the
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Figure 5.3 Simulation of 7 DOF Sawyer arm.

Figure 5.3, the virtual Sawyer robot arm is constructed base on the entity. At each joint, the

coordinate is attached to identify the local direction. The control target is the velocity of

the end-effector . As far as the humanoid robotic arm is concerned, it is logical to control

the end-effector instead of joints since humans are naturally using their hands to touch,

reach and grab objects. In this study, the inverse differential kinematics are applied and

programmed into the robot arm. The inverse differential kinematics can be expressed as:

q̇ = JT (JJT )−1Ve (5.2)

where the J is the Jacobian matrix and the Ve is the end-effector velocity matrix that

represents the linear velocities and rotational velocities.

In the MAT LAB@ simulation, the velocities of end-effector are controlled by a XBOX

controller and meanwhile, the movable Sawyer arm system is connected with MAT LAB@

as well, hence the system is operating under the commands of the XBOX controller. To

illustrate the control algorithm, the control results are plotted in Figure 5.4.
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Figure 5.4 Demonstration of the simulation.

5.1.4 Design of Arm Exoskeleton

The arm exoskeleton is designed for controlling the Sawyer system. It contains 4 encoders

and 1 leap motion optical sensor to record human arm joint movements. The human joint

movements are real-time recorded and streamed from these devices to Arduino board,

then at the same time, transmitted to the Sawyer robot. Therefore, an operator is able

to manipulate the robot simultaneously with his/her arm movements. As can be seen

in Figure 5.5. The design and manufacture process can be briefly described as: CREO

simulation; 3D printer parts fabrication and electronic equipment setup.
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Figure 5.5 Arm exoskeleton.

5.2 Dexterous In-Hand Manipulation

Rotating an object in the hand accurately with fingers is a dexterous manipulation skill

performed by humans everyday, and is a technique yet to be learned by robots towards

home automation and assistive living. This study presents the modeling and precision

motion control of an important class of dexterous object in-hand rotation by robots. It is

assumed that the robot hand has three fingers, two of which clamping the object and the

third one pushing the object to rotate to a desired angle. The contact friction between the

fingertip and the object is explicitly modeled, based on which a simplified planar rigid body

dynamic model is derived. To precisely regulate the object angle to its desired value while

minimizing the deviation of the object center with respect to the fingertip, we propose a

novel hybrid control structure consisting of two modules - regular tracking control module

and the motion re-planning module. The regular module generates the clamp pressure

and the pushing force of the fingers to let the object angle track a reference trajectory

as accurately as possible while minimizing the object center deviation. When the object
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center deviation is too large, the motion re-planning module is activated that optimizes a

new pushing point for the third finger and generates a new reference trajectory for the object

angle. The proposed approach naturally mimics the human motor behavior when rotating

an object to a desired angle by pushing and re-positioning the fingers. A simulation study

using a high-fidelity virtual physics engine “mujoco” is also performed that verifies the

effectiveness of the proposed approach.

5.2.1 Observations of Object In-hand Rotation by Human

The system dynamics is constructed on the basis of observations of human in-hand

manipulation. In particular, we conduct two human in-hand manipulation experiments

which involve capping a bottle lid and peeling an orange by a human. As can be seen

in Figure 5.6, in the first experiment, a human hand grasps a bottle lid with two fingers

Figure 5.6 The experiments of human in-hand manipulation. Experiment 1: Capping a lid.
Experiment 2: Peeling an orange.

clamping on the two sides. Another finger slightly pushes on the edge to rotate the lid till

an appropriate angle. In the second experiment, a person uses two hands to peel an orange.

Notice that the first two fingers are utilized as a clamp that grasps on both ends of the

orange, while with the third finger slowly rotating and peeling. From the observations

of two human in-hand manipulation experiments, we found that these type of in-hand

manipulations share some common features. These common features can be concluded
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as the followings. First, the grasped object experiences sliding motions as well as rolling

motions during the operation. Second, at least three fingers are involved in doing the tasks.

Specifically, two of the fingers act as a clamp that constrains the body, and with the third

finger rolling and re-positioning the body. Third, the rotational motion of the object is

constrained in a fixed virtual plane which is perpendicular to the line connecting the top

and bottom fingertips.

5.2.2 Schematic Model of the System and Practical Assumptions

According to the observations from the above human experiments, we present the following

schematic model of the system, as shown in Figure 5.7. In this model, we use an arbitrarily-

Figure 5.7 The schematic diagram of the proposed dynamic model.

shaped rigid body as the grasped object. Two fingers keep clamping the object from the

top and the bottom, while a third finger of the robot pushes the object to rotate. This model

can be used for representing a category of home automation tasks (or sub-tasks) that has

the similar features, such as, capping lids, flipping coins and peeling oranges.
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According to the experiments, we consider a class of planar in-hand rotation of

light weight objects. For simplification and illustration purposes, we make the following

assumptions. The rigid body translates and rotates in a 2D plane perpendicular to the

gravity direction with no out-of-plane movement. The contact between the two clamping

fingertips and the object is within an area A ⊂ O , where O is the projection of the object

onto the 2D plane of movement. The contact between the third finger and the object is

lumped at a single point C on the exterior of the object.

According to the assumptions, the contact area A between the two fingertips and

the object creates linear friction force and rotational friction torque when the object is in

motion, while the third finger only applies the pushing force (with no torque) to the object at

point C. It is reasonable to simplify the system dynamic model in 2D space. The schematic

diagram is shown in Figure 5.8:

Figure 5.8 2D schematic diagram of the proposed dynamic model.

In the figure, {O− xOyO} represents the inertia frame and {B− xByB} is the body

frame. The origin of the body frame is defined at the center of mass of the object. fx ∈ R
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and fy ∈R are the planar frictional forces along xO and yO directions. τ f ∈R is the frictional

torque. It is worth noting that the friction forces and torque are generated passively after

the pushing force F is applied. ψ is an angle between xO axis and the vector
−→
OB. θ ∈ R is

the angle of rotation of the body frame with respect to the inertia frame. γ ∈ R is the angle

between F and the inward normal vector −→n at the contact point of the third finger. α ∈ R

indicates the angle between the normal vector −→n and the vector
−→
CB. β ∈ R is the angle

between the vector
−→
BC and the xB axis.

5.2.3 Planar Friction Model

Frictional force plays an essential part in the study of dexterous manipulation. In this

subsection, we first derive the frictional force condition at point C that needs to be satisfied

by the pushing force, then we formulate a planar friction model for the clamping fingers

which considers the static friction when the object is at rest and the kinetic friction when

the object is in motion.

First of all, to ensure that maximum amount of the friction is applied to rotate the

object, it is assumed that there is no relative sliding at contact point C. Thus, the static

friction is calculated as:

fc = F sin(γ). (5.3)

However, the maximum static friction value is roughly proportional to the normal force,

i.e., fc ≤ µF cos(γ), where µ is the static friction coefficient. It follows that γ ≤ γmax, i.e.,

the total pushing force combining the friction force and the normal force should be within

a “friction cone”.

The planar frictional force at the region A is formulated depending upon whether the

object is stationary or in motion. When the pushing force is insufficient to drive the object,

the object is experiencing a static friction at the region A . In this case, the static friction
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has equal magnitude of the pushing force, yet in the opposite directions, i.e.,

fx =−F cos(θ +β −α− γ),

fy =−F sin(θ +β −α− γ),

τ f = |
−→
BC|sin(α + γ).

(5.4)

When the pushing force overcomes the maximum force of static friction. The grasped

object starts to move and the object experiences kinetic friction. In [47,48], the researchers

proposed the planar Coulomb friction for surface contact as a wrench. Notice that the

direction of the kinetic friction is in the same direction of the instantaneous velocity of the

contact region. The two dimensional kinetic friction is formulated as the integration over

the contact area:

W ,


fx

fy

τ f

 =


µ p
∫
A

vx√
v2

x+v2
y
dA

µ p
∫
A

vy√
v2

x+v2
y
dA

µ p
∫
A

vxry−vyrx√
v2

x+v2
y

dA

 (5.5)

Where −→vx and −→vy are velocities along x and y directions at each point within the contact

region. We assume that the pressure p is isotropic in the area A , therefore p can be taken

out of the integration. (rx,ry) is coordinate of each point with in the area A . Notice that

the frictional forces and torques are upper bounded, which satisfy:

| fx| ≤ p f max
s ,

| fy| ≤ p f max
s ,

|τ f | ≤ pτmax
f .

(5.6)
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5.2.4 Dynamic Modeling

The generalized dynamic model is given as:

mẍ(t) =−F cos(θ +β −α− γ)− fx

mÿ(t) =−F sin(θ +β −α− γ)− fy

Jθ̈(t) = τin− τ f

= F sin(γ +α)|−→BC|− pµ
∫
A

vxry−vyrx√
v2

x+v2
y

dA

(5.7)

Where m is the mass of the rigid body, and J is the moment of inertia about the center

of mass. ẍ(t) ∈ R and ÿ(t) ∈ R are the linear accelerations in the inertia frame. θ̈(t) is

the angular acceleration. In the system, the control input variables are F (pushing force

magnitude), γ (pushing force angle), and p (normal pressure of the clamping fingers).

5.2.5 Controller Design

We design a controller that meets the following control objectives:

(A) Let the object angle θ converge to the desired angle θd accurately and fast.

(B) Minimize the deviation of the object center d =
√

x2 + y2.

In the human manipulation experiments, we notice that when the third finger pushes the

object to rotate towards the target, the object center starts to deviate from the two clamping

fingertips. As the pushing force of the third finger must lie in the friction cone, it can not

”pull” the object back. Thus, after a certain amount of time, the third finger needs relocate

to the other side of the object so that when a new cycle of pushing starts, the object center

is gradually pushed back.

Based on the above observation, we propose a hybrid control structure as shown in

Figure 5.9. The controller consists of two modules: a regular tracking control module and a

motion re-planning module. The regular tracking control module implements a PID control

followed by a constrained optimization algorithm to generate the pushing force magnitude,
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Figure 5.9 Flow chart of the proposed controller.

direction, and the clamping pressure force so that the object angle accurately tracks a

reference trajectory while a combination of performance indices, such as the deviation

rate of the object center, is minimized. When the object center deviation d is larger than a

threshold dmax, the motion is stopped and a motion re-planning algorithm is implemented

to generate an optimal new pushing point for the third finger, as well as the new trajectory

for the angle θ , so that the object center is pushed back while angle still travels towards the

target.

5.2.6 Simulations and Results

In this subsection, the simulations are performed to validate the proposed control framework.

Specifically, we conduct two simulations. The result of the first simulation is used to

verify the performance of the regular tracking control module. The second simulation

is implemented to verify the functionality of the proposed motion re-planning module.

That is, when the grasped object deviates away, the third finger automatically finds a new
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contact point and pushes the object back in while still keeping the object rotating. The

entire dynamic model construction and simulations are executed in ‘mujoco’, a high-fidelity

virtual physics simulation platform for multi-joint robotic systems with contact.

Figure 5.10 The diagram of ‘mujoco’ model: Three-fingered gripper and the object.

The Simulation of Trajectory Tracking As shown in Figure 5.10, a simplified model

of the three-fingered gripper is constructed by setting two cylinders (using prismatic joint

in ‘mujoco’ model) as the first and second fingers that clamp the object from the top and

bottom. The third fingertip is represented by a sphere. At the contact points/areas between

the fingers and object, normal forces, tangential friction forces and torsional friction torques

are automatically generated assuming certain flexibility, damping, and friction coefficients

in the mujoco system model. In this simulation, as shown in Figure 5.11, the third fingertip

pushes the object to track a desired S-curve trajectory. In particular, the actuating force

of the third fingertip is formulated by applying an impedance control, in such a way that

the interacting force between the fingertip and the object is capable of driving the object to

track the given angular trajectory.
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Figure 5.11 The demonstration of object trajectory tracking.

Figure 5.12 The performance of object trajectory tracking.
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As can be seen from Figure 5.12, the rotation angle of the object is able to follow the

desired signal precisely on position level and to approximately track the velocity signal on

velocity level. The velocity tracking error is acceptable since most of the home automation

tasks only demand high accuracy in position regulation, while the task may be executed in

various speed levels. Additionally, the recorded planar frictions as well as torsional friction

torque around the contact normal of the clamping fingers are given in Figure 5.13

Figure 5.13 The planar friction wrench of the clamping fingers: [ fx, fy, τz].

.

Simulation of Motion Re-planning The simulation demonstrates the motion re-planning

procedures during an in-hand manipulation task. In particular, during the trajectory

tracking task, the object gradually deviates away from the contact center. Once the center

of the object crosses the bound of the default contact region, the clamping fingers increase

the contact pressure to stop further deviation, as shown in Figure 5.14. A Then, as can be

seen from Figure 5.14. B, the third finger retreats from the object and relocates to a new
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Figure 5.14 A The object deviates away while tracking the trajectory. B The third finger is
re-positioned. C The object tracks the new trajectory and the center is pushed back in.

contact position. Next, the pushing finger tracks the new trajectory and push the object

back in, as exhibited in Figure 5.14.

5.2.7 Conclusion

This study presented the modeling and precision motion control of an important class of

dexterous object in-hand rotation by a three-fingered robotic gripper. First, on the basis of

the observations of human in-hand manipulation, a simplified planar rigid body dynamics

with contact friction modeling was derived. Then, a novel hybrid control framework was

developed that consists of two modules: a regular tracking control module and a motion re-

planning module. With the proposed control framework, it was demonstrated that the object

angle is able to follow a desired trajectory while the object center deviation is minimized.

Finally, the proposed dynamic model and the hybrid control framework were simulated by

using a virtual physics engine ‘mujoco’. The simulation results successfully verified the

effectiveness of the proposed dynamics and control method.
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5.3 Robotic Sit-To-Stand Assistance: Preliminary Study

In this research, we propose a human-centered control framework for the Sit-To-Stand

(STS) assistance by using a robot manipulator. The framework is designed to assist those

with weak knees and feeble muscles to get out of a seated position. Compared to previous

work on STS assistance, we develop a novel human-centered strategy that explicitly

optimizes the human joint loads under the human body dynamics while taking care of the

constantly-changing intention of the human during the actual STS assistance. Specifically,

we first study the human-to-human STS process and construct a human dynamic model.

Then, an optimal (nominal) robot end-effector trajectory is generated offline that minimizes

the human joint loads under a nominal human body motion. During the actual STS

process, the human may intend to move differently from the nominal motion. To deal

with the changing human intention, we design an online switching controller for the robot

end-effector. With such a controller, when the human intention is detected to be the same or

close to the nominal one, the robot end-effector will track its nominal trajectory. Otherwise

a modification is made to the end-effector trajectory to follow the detected human intention.

The control framework is capable of reducing joint loads and estimating human decisions

when the human intends to adjust his/her posture during the Sit-To-Stand (STS) assistance

in real time. Simulations and experiments are conducted to validate the proposed control

framework.

5.3.1 Formulation of the System Dynamics

The formulation of the system dynamics is based on a scenario in which a person attempts

to rise from a seated position. However, a person’s lower limbs can only output limited

torque that may be insufficient to support his/her body. A humanoid robot arm is deployed

nearby to assist the person in getting up with its end-effector clenched by the human hands.

In such a way, the lack of human joint torque can be compensated by the interaction

force between the human hand and the robot end-effector. We aim to design the motions
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(velocities and accelerations, etc.) of the robot end-effector to assist people in getting

up from a seated position instead of controlling the interaction force directly, since the

interaction force is generated passively and is difficult to control directly. We use a

five-link model to represent the human dynamics in a 2D plane, as shown in Figure 5.15.

In this simplified model, the human hand is assumed to be rigidly attached to the robot

Figure 5.15 Illustration of the human dynamic model. The green dot represents the robot
end-effector connected to the human hand.

end-effector, and the wrist joint moves passively with no actuation torque applied. This is

a realistic assumption since compared to other major joints, the wrist usually exerts a much

smaller torque, and is also more fragile. Thus, this local structure can be treated as the

human hand “pinned” to the robot end-effector, whose horizontal and vertical movements

can be freely controlled. The dynamics of the constrained five-link system is governed by

the following equation:

M(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ) = τ + J(θ)T F, (5.8)
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where M(θ) ∈ R5×5 is a positive definite symmetric matrix that represents the inertia of

the robot, C(θ , θ̇)θ̇ ∈ R5 is the vector of Coriolis and centripetal forces, G(θ) ∈ R5 is the

gravitational force vector, τ ∈ R5 represents the human joint torque. The interaction force

F ∈ R2 on the human’s hand is generated indirectly from both the human joint torque and

the robot motion. The matrix J(θ) ∈ R2×5 is the Jacobian from the human joints to the

human hand.

To see how the human motion is determined from the human torque τ as well as

the robot end-effector acceleration Ẍe, we need to eliminate the intermediate variable F

by representing it as a function of τ and Ẍe. Specifically, taking the time derivative of

the following differential kinematic equation representing the kinematic constraint of the

five-link system

Ẋe = J(θ)θ̇ , (5.9)

we can get

Ẍe = J(θ)θ̈ + ˙J(θ)θ̇ , (5.10)

where ˙J(θ) is the matrix representing the differentiation of the Jacobian matrix. Then, we

rewrite the human dynamics as:

θ̈ = M(θ)−1(τ + J(θ)T F)−M(θ)−1(C(θ , θ̇)θ̇ +G(θ)) (5.11)

From (5.10) and (5.11), the F term is represented as a function of τ and Ẍe as:

F = (J(θ)M(θ)−1J(θ)T )−1[Ẍe− ˙J(θ)θ̇ − J(θ)M(θ)−1(C(θ , θ̇)θ̇ +G(θ)− τ)] (5.12)

Substitute (5.12) into the (5.8):

M(θ)θ̈ = A1τ +A2Ẍe +A3θ̇ −A1(C(θ , θ̇)θ̇ +G(θ)) (5.13)
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where,

A1 = I− J(θ)T (J(θ)M(θ)−1J(θ)T )−1(J(θ)M(θ)−1);

A2 = J(θ)T (J(θ)M(θ)−1J(θ)T )−1;

A3 =−J(θ)T (J(θ)M(θ)−1J(θ)T )−1 ˙J(θ);

It is noted that the matrix A1 is of rank 3 (not full rank), which means that the

human joint torque cannot fully determine the body movement. In fact, Equation (5.13)

indicates that during the STS assistance, the human body movement is affected by both the

joint torque τ and the robot motion Xe, with Ẍe determining the change of the kinematic

constraint on the human body.

A specific human subject is used in our simulation and experiment. The weight

of the subject is 74.2 kg and the standing height is 1.755 m. The geometric and inertia

parameters of the human subject are estimated by referring to the table of body segment

parameters [49]. The parameters are listed in Table 5.4. Where the p(%) is the segment

Table 5.1 Body Segment Parameters

Segment p(%) m(%) I1(Kg−m2) I3(Kg−m2)

Head 0.5358 0.0730 0.0248 0.3119

Upper arm 0.4360 0.0270 0.0213 0.3119

Forearm 0.4300 0.0160 0.0760 0.3119

Hand 0.5060 0.0066 0.0005 0.3119

Trunk 0.4383 0.5080 1.3080 0.3119

Thigh 0.4330 0.0988 0.1502 0.3119

Lower leg 0.4330 0.0465 0.0505 0.3119

Foot 0.4290 0.0145 0.0038 0.3119

length as a percentage of the whole body length, the m(%) represents the segment weight

as a percentage of the whole body weight, I1 is the mass moments of inertia of the segment
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along the transverse axis, and I3 is the mass moments of inertia of the segment along the

longitudinal axis. In real applications, the geometric and inertia parameters can be set

according to different individuals to be assisted, and fed into the control algorithm.

5.3.2 Human Joint Control Mechanism

Through various human-to-human STS assistance tests, we observed that, although a

person could stand up with different speeds or with different upper body postures, the

moving trajectory of the first three joint angles (the ankle joint, the knee joint, and the hip

joint) stays almost on the same path in the 3D space. This is a natural phenomena since most

of the weight of the human body concentrates on the trunk and lower limbs. Figure 5.16

shows the averaged 3D path that we have obtained from the first three joint angles from

various STS assistance tests. Figure 5.17 shows how one person helps another in getting

up. It can be seen from the figures that the first three joint angles stay close to the averaged

path. According to such observation, we assume that during the STS process, human exerts

torque on all the five joints to control his/her first three joints to reach a desired setpoint or

to move along a fixed path in R3. While the desired speed of the first three joints changes

on the path according to the human’s intention.

To mathematically model the control of the human joint torque τ , we pre-multiply

(5.13) by M(θ)−1, and take the first three rows of the equation to represent the dynamics

of the first three joints:

θ̈123 = M(θ)−1
123[A1τ +A2Ẍe +A3θ̇ +A4(C(θ , θ̇)θ̇ +G(θ))], (5.14)

where M(θ)−1
123 is a matrix that consists of the first three rows of M(θ)−1, θ123 is the vector

of the first three joint angles of the human body.
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Figure 5.16 3D plot of the averaged path of the first three joint angles from various human-
to-human STS experiments.

Figure 5.17 Screenshots of a particular human-to-human STS experiment.
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We assume the human uses a PD controller with nonlinear compensation to regulate

its first three joints [50], i.e., τ satisfies the following relationship:

A(θ)τ = B(θ , θ̇ ,θ123d, θ̇123d, θ̈123d), (5.15)

where
A = M(θ)−1

123A1

B = −M(θ)−1
123[A3θ̇ +A4(C(θ , θ̇)θ̇ +G(θ))]

−kp(θ123−θ123d(t))− kd(θ̇123− θ̇123d(t))+ θ̈123d(t),

(5.16)

where kp and kd are 3×3 diagonal matrices of proportional and derivative gains. θ123d(t) is

the time dependent desired trajectory of the first three joints determined from the human’s

intention. From the previous analysis, it is assumed that θ123d(t) ∈ S, where S is a 1-D

curve with finite length in R3, representing the fixed path of the first three joints for the

STS motion.

Equation (5.15) has three equations but five undetermined entries in τ . It is well

known that for such type of mechanical system with holonomic constraints, there exists

infinite solutions of torque/force input that achieve the same physical movement. We

assume that a human always chooses the set of torque values that minimizes its overall

joint load instantaneously. Specifically, we define the objective function for this joint load

minimization as

f (τ) = τ
T

Λτ, (5.17)

where Λ is a diagonal matrix consisting of the weight for each joint. Unfortunately, there is

no way we can accurately know how a person intuitively “chooses” this weighting matrix

for joint load minimization. However, based on our observation, we can formulate some

sample versions of Λ for different types of people. For example, for people with very week

knees, he or she may have a high weight on the knee joint. While for people with weak
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upper extremity, the weights for the last two joints (upper limb joints) are high. In our

research, we choose the weight of the knee joint to be 10 times the weight of other joints.

This represents a common scenario when a human intends to minimize the load on the

knees most, while still caring about other joints.

The human joint torque that minimizes f (τ) while satisfying (5.15) is given by

τ = τ(θ , θ̇ ,θ123d, θ̇123d, θ̈123d)

∆
= Λ−1AT (AΛ−1AT )−1B.

(5.18)

The dynamics of θ123 with the assumed human torque control law becomes

θ̈123 = −kp(θ123−θ123d(t))− kd(θ̇123− θ̇123d(t))

+θ̈123d(t)+M(θ)−1
123A2Ẍe,

(5.19)

5.3.3 Robot End-effector Control

From the analysis above, the human controls the first three joints along a known path while

the robot end-effector changes its end-effector motion Xe(t) that indirectly determines the

motions of the 4th and 5th joints. The choice of the desired motion Xe(t) of the robot should

satisfy the following objectives:

1. The closed-loop system is stable with all the signals bounded.

2. The joint load f (τ) is minimized during the entire STS motion.

3. The human intention is followed.

It is known that human has excellent capability of preventing instability when

interacting with the physical world. When an instability is about to happen, human can

quickly detect it and switch to a conservative control strategy with stronger damping to

dissipate the energy on his/her own side. Thus, the stability of the closed loop system is

mainly determined by the robot motion. For objective 1, it can be verified that if Xe, Ẋe and

Ẍe are all bounded, the human joint positions and velocities will also be bounded under the
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Figure 5.18 The schematics of the human-centered control framework.

human control law. Such a bounded end-effector trajectory will be generated later.

For objectives 2 and 3, since the human intention is time varying and unpredictable,

it is impossible to generate a globally optimal control that minimizes the joint load with the

human intention (the desired trajectory θ123d(t)) being a strong uncertainty. Thus, we adopt

the following two-step strategy as in Figure 5.18: For step 1, a nominal robot end-effector

trajectory Xen(t) is generated offline to minimize the joint load under the nominal trajectory

of the first three joints of human, i.e., θ123n(t). For step 2, during online implementation,

the human intention is detected in real time. If the detected human intention is close to the

nominal one, then Ẍe is designed to let Xe(t) track the nominal trajectory Xen(t). Otherwise

Ẍe(t) is modified to deal with the detected human intention.

The above two steps are referred to as the offline trajectory generation and online

control.
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5.3.4 Simulation and Experimental Results

In actual practice, it is very difficult to measure the human joint torque accurately. One

approximative way of obtaining the joint torque is to calculate the torque through a

dynamic model by assuming that the applied model is roughly close to the real human

mechanics. Therefore, to validate the control framework, we estimate the human joint

torque by implementing a numerical simulation under the proposed human dynamic model.

Specifically, we implement three simulations under three different scenarios for the STS

assistance:

(A) The human subject stands up by him/herself without any robotic assistance.

(B) The end-effector trajectory of the assistive robot is arbitrarily chosen which moves
upward and forward to ensure a successful STS process.

(C) The end-effector trajectory of the assistive robot is the same as the optimized nominal
one Xen(t).

Figure 5.19 Comparison of the knee joint torque under three different scenarios.
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In all the three scenarios, the desired trajectories of first three joints of the human

are set to be θ123n(t) for a fair comparison. The knee torque applied by human versus

time is plotted in Figure 5.19. As can be seen from the figure, with an arbitrarily chosen

end-effector trajectory, the human joint torque can be substantially reduced compared to the

case when no assistance is given. However, with the proposed optimal assistance trajectory

Xen(t), the knee torque can be further reduced, which demonstrates the effectiveness of the

joint load reduction under our proposed approach.

Next, we conduct a set of STS experiments to assess the applicability of the proposed

human-centered control framework. A 6-DOF robot manipulator is placed steadily on a

level surface to ensure that the robot has no tip-offs during the operations. The human

subject sits naturally on a seat with two hands grabbing the robot end-effector firmly.

An arm exoskeleton is put onto the subject for the purpose of real time elbow angle

measurement. The measured angle value is used for calculating the angle difference,

θ5− θ5n to determine the intention of human. Four STS tests are performed under four

different types of human intentions:

(a) The human subject wants stands up normally (standard STS).

(b) The human subject wants to stand up faster than normal (fast STS).

(c) The human subject wants to stand up slower than normal (slow STS).

(d) The human subject changes his mind during the process and wants to sit back down.

The screenshots of the four tests are shown in Figure 5.20. The actual end-effector

trajectories are plotted in Figure 5.21, while the paths followed by the end-effector (Xex

versus Xey) are shown in Figure 5.22. First of all, as shown in Figure 5.22, the robot

end-effector stays close to the nominal path Sen in all the four tests. However, the

movements along the path are very different as can be seen in Figure 5.21. For (a), where

the human subject intends to stand up normally, the actual end-effector trajectory is almost

the same as the nominal one. For (b), the human subject intends to stand up faster. Such a
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Figure 5.20 Four STS assistance with different human intentions: (a) Standard STS
assistance, (b) Fast STS assistance, (c) Slow STS assistance and (d) Human refuses to
stand up.
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change in human intention is reflected physically by a faster trunk and leg movement, which

leads to a smaller elbow angle compared to the nominal value during the STS process.

As a result, the control law drives the robot end-effector faster to follow to trend of the

human body movement. Similarly, for (c), the intention that human wants to stand up

slower results in a slower movement of the robot end-effector. Finally, in (d), since the

human wants to sit back down in the middle of the STS process, the elbow angle is much

large than the nominal value. According to the control algorithm, the robot end-effector

moves backward to capture the intention of the human. Eventually, the human subject

successfully sits back to the seat with the robot end-effector staying just in front of him.

These experimental results show that our proposed human-centered control algorithm can

effectively capture the changing intention of the human subject during the STS process,

which makes it succeed in every single STS operation.

Figure 5.21 The end-effector trajectories Xe(t) for the tests (a)-(d).
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Figure 5.22 The actual paths (Xex(t) versus Xey(t)) for the tests (a)-(d).

5.3.5 Conclusion

In this study, we proposed a human-centered control framework for the Sit-to-Stand (STS)

assistance by using a robot manipulator. We first constructed a human dynamic model,

based on which a human torque control law was assumed. Then, a two-step control strategy

was developed to minimize the human joint load while taking care of the human intention

under the assumed human torque control law. In Step 1, an optimal nominal trajectory

for the robot end-effector that minimizes the nominal joint load was generated offline

using dynamic programming. In Step 2, a real-time switching controller was constructed

and implemented online to modify the nominal trajectory of the robot end-effector once

a change of human’s intention was detected. The proposed method was capable of

minimizing the human joint load and following the constantly-changing human intention

simultaneously during the STS assistance. Various simulation and experimental results

validate the proposed design.
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5.4 An Integrated Approach for Robotic Sit-To-Stand Assistance: Control

Framework Design and Human Intention Recognition

5.4.1 Introduction

On the basis of our previous research [51], we propose an integrated approach which

combines model based control method and deep learning based human intention recog-

nition together for robotic STS assistance. The proposed algorithm features simultaneous

motion control and optimization as well as human movement prediction which minimize

the human joint loads and react to varying human intentions during the robotic STS

assistance. In particular, we first implement various experiments of human-to-human

STS assistance using motion capture sensors. Then, according to the experiments and

the recorded data, we subdivide the entire STS process into two phases: Sit-To-Perch

(STP) phase and Perch-To-Stand (PTS) phase. For each phase, we construct a human

body dynamic model that maps the joint muscle forces and contact forces to the human

body movement. To minimize the human joint muscle load while following the human’s

motion intention during the STS motion, we develop a two-step estimation/control strategy

to generate the robot end-effector motion that combines traditional model-based tracking

control, trajectory optimization, as well as a long-short term memory (LSTM) neural

network for the prediction of human’s intended velocity. Then this intended velocity is used

to modify the moving velocity and the direction of the robot end-effector along its nominal

path. Various simulations and experiments are also performed to validate the proposed

approach.

5.4.2 Dynamic Modeling of STS Assistance

In this section, we implement various human-to-human STS assistance experiments.

On account of observation and analysis of the human-to-human STS assistance, several

assumptions are given. Finally, the system dynamic models are constructed based on the

experimental results and assumptions.
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Experiments of Human-To-Human STS Assistance It is reasonable that the way of

how a robot assists a person in getting up from a seated place should learn from human

beings, as human beings naturally possess the ability of interacting with other human beings

efficiently and safely. On the other hand, the characteristics of how a human reacts and

behaves during a human-to-human STS assistance can also be seized so that the entire

system can be modeled appropriately in mathematical forms. Therefore, we conduct two

groups of studies which are summarized as:

A) Observation of human-to-human STS assistance among various subjects.

B) Human joint trajectory recording of a weak knee subject.

In the first group of human-to-human STS assistance experiments, we invite various

volunteers with different ages, genders and physical conditions to participate in the

research, as shown in Figure 5.23. Specifically, subjects are asked to sit with different

Figure 5.23 Human-to-human STS assistance among various subjects. (A) assisting an
elderly subject with STS motion; (B) assisting an male adult with STS motion; (C) assisting
a female adult with STS motion.

postures comfortably on a seated place or a chair with two hands grasped tightly by an

assistant. Then, the assistant pulls him/her up gradually to reach a proper stand-up posture.

In the second group of human-to-human STS assistance experiments, we apply

motion capture sensors to record the joint angular trajectories of a human subject who
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injured his left knee in basketball competition. The selected subject is asked to perform the

STS motions with some featured initial sitting postures under the help of another person.

As can be seen in Figure 5.24. 30 different tests are implemented, with 4650 data sets of

Figure 5.24 Human joint trajectory recording using motion capture sensors. A lean forward
sitting posture; B lean backward sitting posture; C upright sitting posture.

the human joint angles collected. The purposes of conducting these human-to-human STS

assistance experiments are to observe how the human subject behaves and reacts during

the STS process as well as to investigate and record the characteristics of how the human

joints move in the STS assistance. According to the observations as well as analysis of the

human-to-human STS assistance, we found these experiments share some common features

that can be concluded as:

• Feature 1: In the experiments, the subjects stand up in the sagittal plane as the out-
of-plane waggling movement is very minimum.

• Feature 2: Regardless of any siting postures, the subjects need to adjust the centers
of weight properly before their bodies take off from the chairs.

• Feature 3: Even though a person can get up with different speeds and upper body
stances, the moving trajectories of the ankle joint, the knee joint and the hip joint
remain almost unchanged when he/she stands up.

According to the obtained features, we make the following assumptions:
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• Assumption 1: The human body is modeled by a five-link planar mechanism with
one end (ankle joint) pinned to be ground and the other end (wrist joint) pinned to
the robot end-effector.

• Assumption 2: The STS motion is divided into two phases: The Sit-To-Perch (STP)
phase and Perch-To-Stand (PTS) phase. Particularly, STP phase is featured as a
process of shifting the center of weight before standing up from a seated place, while
PTS phase is characterized as a progress of standing up from the seated place.

Formulation of the System Dynamics for Two Phases We introduce a general scenario

of STS assistance: a person intends to stand up from a seated place under the assistance

of a robotic manipulator. The manipulator is placed adjacent to the human with the robot

end-effector grasped firmly by the human’s hands. Thus, we assume that the human wrist

joint is pinned to the robot end-effector and its motion follows those of the other joints

passively.

We first introduce the human dynamics in PTS phase since the PTS phase is the

primary phase which takes up the most of time during STS assistance, while STP phase is

considered as the transitional phase. The human body system can be treated as a five-link

mechanism whose dynamic model is formulated as (Figure 5.25):

Figure 5.25 Schematic of the system dynamic model in PTS phase.

B(q)q̈+C(q, q̇)q̇+G(q) = τ + J(q)T F. (5.20)

62



Where q = [q1,q2,q3,q4,q5]
T is the vector of joint angles, including q1 (ankle angle),

q2 (knee angle), q3 (hip angle), q4 (shoulder angle), q5 (elbow angle). B(q) ∈ R5×5 is a

positive-definite symmetric matrix, represents the inertia matrix of the human body system.

C(q, q̇)q̇ ∈ R5 is the vector of Coriolis as well as centripetal forces. G(q) ∈ R5 represents

the vector of gravitational force. τ ∈ R5 is the vector of human joint torques. J(q) ∈ R2×5

is the Jacobian matrix and F ∈ R2 is the interactive force generated between the robot

end-effector and the human hands along horizontal and vertical directions.

Since the assistive force F at the end-effector is indirectly determined by the human

and robot motions, we need to eliminate it and represent the equation only in terms of

the two control input variables: human joint torque τ and desired robot end-effector

acceleration Ẍe. In particular, we first revise (5.20) as:

q̈ = B(q)−1[τ + J(q)T F−C(q, q̇)q̇−G(q)] (5.21)

Then, taking the time derivative of the equation Ẋe = J(q)q̇ that represents the kinematic

relationship between joint space and work space, we obtain the end-effector acceleration

Ẍe as:

Ẍe = J(q)q̈+ J̇(q)q̇, (5.22)

Combining (5.21) and (5.22), the interaction force F , is formulation in terms of τ and Ẍe:

F = (J(q)B(q)−1J(q)T )−1[Ẍe− J̇(q)q̇− J(q)B(q)−1(C(q, q̇)q̇+G(q)− τ)] (5.23)

Next, substitute (5.23) into the (5.20), we can get:

B(q)q̈ = KAτ +KBẌe +KCq̇−KA(C(q, q̇)q̇+G(q)) (5.24)
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In (5.24), the coefficients KA, KB and KC are calculated as:

KA = I− J(q)T (J(q)B(q)−1J(q)T )−1(J(q)B(q)−1);

KB = J(q)T (J(q)B(q)−1J(q)T )−1;

KC =−J(q)T (J(q)B(q)−1J(q)T )−1J̇(q);

(5.25)

(5.24) shows that the human body motion in the STS assistance is affected by the joint

torque τ and the acceleration of the robot end-effector Ẍe.

In the STP phase, since the lower extremity rests on the chair, only the three upper

links need to be considered in modeling the human body dynamics (Figure 5.26):

Figure 5.26 Schematic of the system dynamic model in the STP phase.

B345(q345)q̈345 +C345(q345, q̇345)q̇345 +G345(q345) = τ345 + J345(q345)
T F. (5.26)

where q345 ∈ R3 is a vector that contains the hip angle q3, the shoulder angle

q4 and the elbow angle q5. B345(q345) ∈ R3×3 is the lower-right 3× 3 matrix of B.

C345(q345, q̇345) ∈ R3 consists of the three lower rows of C. G345(q345) is vector of the

third to fifth entries of G. J345(q345) ∈ R2×3 consists of the three lower rows of J.
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Similar to the above derivation, the relationship between the human joint torque, the

desired robot end-effector acceleration, and the human motion is obtained as:

B345(q345)q̈345 = KA345τ345 +KB345Ẍe +KC345q̇345

−KA345(C345(q345, q̇345)q̇345 +G345(q345)) (5.27)

Where KA345, KB345 and KC345 have similar representations as in (5.25).

In the dynamic model, the B, C, G, and J matrices are determined by the joint

position, joint velocity, as well as the kinematic and dynamic parameters of the particular

human subject. In the experiments, the height and body weight of each individual can be

directly measured, while the kinematic and dynamic parameters of each body segment

cannot be easily determined. In this study, we use the table of body segment [49] as

shown in Table 5.2 to calculate the unknown kinematic and dynamic parameters for each

individual, and subsequently the B, C, G and J matrices.

Table 5.2 Parameters of Human Body Segment

SEGMENT P(male) P(female) M I1(Kg−m2) I3(Kg−m2)

HEAD 0.138 0.138 0.0730 0.0248 0.3119

UPPER ARM 0.172 0.193 0.0270 0.0213 0.3119

FOREARM 0.157 0.166 0.0160 0.0760 0.3119

HAND 0.104 0.104 0.0066 0.0005 0.3119

TRUNK 0.3 0.3 0.5080 1.3080 0.3119

THIGH 0.232 0.247 0.0988 0.1502 0.3119

SHANK 0.247 0.256 0.0465 0.0505 0.3119

FOOT 0.042 0.042 0.0145 0.0038 0.3119

In this table, P represents the segment length of whole body and M is the segment

weight of whole body. I1 and I3 are the mass moments of inertia of the segment along
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transverse axis and longitudinal axis accordingly. In the STS assisting experiments, all the

geometrical and inertia coefficients are selected on the basis of each individual who needs

to be assisted and substitute to the dynamic model and the controller in real-time.

5.4.3 The Mechanism of Human Joint Control

For the design of a robot end-effector controller that optimizes the STS motion, the human

joint control mechanism must be investigated first as the STS motion is a typical human-

robot collaborative task. We assume the human generates his/her joint torques from a two-

step planning and tracking strategy - a standard approach in automatic control. Specifically,

the human intends to move his/her body along a specific path with a certain speed, which

is referred to as the “planning” stage. Then, the body muscles generate joint torques that

make the body track the trajectory generated, which is referred to as the “tracking” stage.

In this section, we will conduct a full study of human joint control and propose the human

joint control models for both the PTS and STP phases.

Modeling of Human Joint Control in PTS Phase In PTS phase as shown in Figure 5.25,

from various experiments and data analyses, we notice that the moving paths of the first

three joints - the ankle joint, the knee joint and the hip joint - stay almost the same every

time a person is assisted to stand up. In Figure 5.27, we plot a nominal path for the first three

joints in 3D space, which is obtained by taking average values of the first three joint data for

all experiments. On the other hand, it is also observed that the shoulder joint and the elbow

joint move passively along with the robot end-effector, and their trajectories vary across

different experiments. Thus, it is natural to assume that human intends to control his/her

first three joints in the lower extremity, while the upper extremity holds the end-effector

to assist the lower extremity motion control. To mathematically model such a human joint

control process, we multiply Equation (5.24) by B(q)−1 and take the first three rows of the

equation:

q̈123 = B123(q)−1[KAτ +KBẌe +KCq̇−KA(C(q, q̇)q̇+G(q))], (5.28)
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Figure 5.27 The nominal motion path of the first three joints in STS assistance.

Where q123 ∈ R3 is a vector of the first three joint angles. B123(q)−1 is a matrix contains the

first three rows of B(q)−1. As in [50], the PD controller is assumed to be used by human to

regulate and stabilize his/her lower extremity motion.

Xτ = Y (q, q̇,q123n(t), q̇123n(t), q̈123n(t)), (5.29)

where
X = B123(q)−1KA

Y = −B123(q)−1[KCq̇−KA(C(q, q̇)q̇+G(q))]

−kp(q123−q123n(t))− kd(q̇123− q̇123n(t))+ q̈123n(t),

(5.30)

kp and kd are 3× 3 diagonal matrices consisting of proportional and derivative gains.

q123n(t), q̇123n(t) as well as q̈123n(t) represent the nominal trajectories of the positions,

velocities and accelerations of the first three joints individually. From the above observation

and analysis, q123n(t) ∈ S, where S is a 1D curve with finite length in R3, representing the

nominal path of the first three joints. Notice that (5.29) includes three equations with five

undetermined entries. Hence to solve the equation, we assume the human tries to minimize
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the following quadratic objective function:

min τ
T

Λ1τ (5.31)

Where Λ1 is a positive definite diagonal matrix representing the joint weights. Different

patients intuitively choose different Λ1 matrix. For example, a person with knee injury

may have a high penalty on the knee joint, while a person with waist pain may increase the

weight of the waist joint. The human joint torque that minimizes (5.31) while satisfying

(5.29) is given by:

τ = τPT S(q, q̇,q123n(t), q̇123n(t), q̈123n(t))
∆
= Λ

−1
1 XT (XΛ

−1
1 XT )−1Y.

(5.32)

Therefore the dynamics of q123 with the assumed human torque control mechanism

becomes:
q̈123 = −kp(q123−q123n(t))− kd(q̇123− q̇123n(t))

+q̈123n(t)+B123(q)−1KBẌe,
(5.33)

Modeling the Human Joint Dynamics for STP Phase The schematic diagram of the

system in STP phase is shown in Figure 5.26. According to the above analyses, the

system dynamics of STP phase is formulated without taking the movements of the lower

extremities into consideration. Therefore, it is natural to assume that human only focuses

on the motion control of the waist joint to tilt the upper body forward, whose dynamics is

given as:

q̈3 = B345(q345)
−1
3 [KA345τ345 +KB345Ẍe +KC345q̇345

−KA345(C(q345, q̇345)q̇345 +G(q345))]. (5.34)

where q3 is the hip joint angle. q345 ∈ R3 is a vector that contains the hip joint angle q3,

the shoulder joint angle q4 and the elbow joint angle q5. B345(q345)3 indicates the first row

of the matrix B345(q345). It represents the inertia terms of the hip joint. τ345 is the vector
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consisting of τ3, τ4 and τ5. Similar to the PTS phase, it is assumed that the human uses a

PD controller with nonlinear compensation terms to control the hip joint to track a desired

angle profile:

Mτ345 = N(q345, q̇345,q3n(t), q̇3n(t), q̈3n(t)), (5.35)

where
M = B345(q345)

−1
3 KA345

N = −B345(q345)
−1
3 [KC345q̇345−KA345(C(q345, q̇345)q̇345

+G(q345))]− k′p(q3−q3n(t))− k′d(q̇3− q̇3n(t))+ q̈3n(t)

(5.36)

where k′p and k′d are defined as proportional and derivative gains. q3n(t) is the nominal

trajectory of the human hip joint.

The redundancy resolution in STP phase is achieved by minimizing the following

objective function:

min τ
T
345Λ2τ345, (5.37)

Where Λ2 is a positive definite matrix that contains the weights of each joint. The human

joint torque that minimizes (5.37) while satisfying (5.35) is given by:

τ345 = τST P(q345, q̇345,q3n(t), q̇3n(t), q̈3n(t))
∆
= Λ

−1
2 MT (MΛ

−1
2 MT )−1N.

(5.38)

And the closed-loop dynamics of q3 becomes:

q̈3 = −k′p(q3−q3n(t))− k′d(q̇3− q̇3n(t))

+q̈3n(t)+B345(q345)
−1
3 KB345Ẍe,

(5.39)

5.4.4 Robot End-effector Control and Online Human Intention Estimation

According to the system dynamic Equations (5.28) and (5.34), human controls the lower

extremity to follow the intended desired trajectory during entire STS assistance, meanwhile

the motion of robot end-effector Xe(t) indirectly determines the movements of the upper
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limbs and supplies the external force to assist the person in standing up. Therefore, we

intend to design the motion of Xe(t) to achieve the following objectives:

(1) All signals are bounded and stability of the system is maintained.

(2) Joint loads are optimized during STS assistance.

(3) The assisting robot reacts to human’s intention during STS assistance.

As for the objective (1), it is well known that human beings possess outstanding ability of

maintaining stability when interacting with the physical world. Thus, the system stability

is primarily determined by the robot side. As seen from the closed-loop system dynamics

with PD controller assumed in the last section, if the robot end-effector motion signals Xe,

Ẋe and Ẍe are all bounded, then the human joint positions and velocities will be bounded as

well.

As the human intention is elusive and time-varying, the human’s desired joint

trajectories (q123n(t) in PTS phase and q3n(t) in STP phase) may vary a lot in real time

along their nominal paths. It is thus extremely difficult to design a globally optimal control

algorithm which optimizes the joint loads while taking care of any possible human intention

change during the STS assistance. To accomplish the objectives (2) and (3), we construct

a two-step control strategy as shown in Figure 5.28:

• Step 1: Given body and joint control parameters of the particular human subject
to be assisted, a nominal robot end-effector trajectory Xen(t) is generated offline to
minimize the joint loads under the nominal human motion trajectory q123n(t) in PTS
phase and q3n(t) in STP phase.

• Step 2: During the implementation, the human’s intention is estimated by feeding
the real-time human posture which is detected by motion capture sensors to a trained
long short-term memory (LSTM) network. Based on this information, a simple
proportional control law is developed to adjust the velocity of the robot end-effector
along its nominal path.

The detailed design procedure is illustrated in the following subsections.
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Figure 5.28 Schematic diagram of human intention based control framework.

Offline Trajectory Generation As mentioned above, on the basis of the experimental

data, we assume a nominal time-varying trajectory of the hip joint q3n(t), to represent the

averaged motion of how a person perches before standing up in STP phase. As can be seen

from Figure 5.29. We also assume a nominal human intended time-varying trajectory of

Figure 5.29 The angular trajectory of the hip joint in STP phase.

the first three joints q123n(t) to represent their averaged motions in PTS phase. As can be

seen from Figure 5.30.

Therefore, according to the system dynamics and the human joint control mechanism,

we construct the following optimal control problem to generate the nominal robot end-
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Figure 5.30 The angular trajectory of the first three joints in PTS phase.

effector trajectory Xen(t):

min
Xen(t)

∫ T
0 f (τn(t))dt

s.t.

In STP phase

f (·) = fST P(·),

τn(t) = τST P(q345(t), q̇345(t),q3n(t), q̇3n(t), q̈3n(t)),

B345(q345(t))3q̈345(t) = KA345τ345(t)+KB345Ẍen(t)

+KC345q̇345(t)−KA345(C345(q345(t), q̇345(t))q̇345(t)

+G345(q345(t))),

In PTS phase

f (·) = fPT S(·),

τn(t) = τPT S(q(t), q̇(t),q123n(t), q̇123n(t), q̈123n(t)),

B123(q(t))q̈(t) = KAτ +KBẌen(t)+KCq̇(t)

−KA(C(q(t), q̇(t))q̇(t)+G(q(t))),

∀t ∈ [0,T ],

Ẋen(0) = 0, Ẍen(0) = 0, Ẋen(T ) = 0 & Ẍen(T ) = 0.

(5.40)
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It is noted that q123n(t) in PTS phase and q3n(t) in STP phase are predetermined,

while q45n(t) are determined indirectly given a particular Xen(t) under the system dynamics

and human joint control law discussed in Section 5.4.3. The objective function is simply the

total joint load during the entire STS assistance process. To solve the above optimization

problem, various methods can be applied, such as dynamic programming (DP) [52, 53] or

iterative linear quadratic regulator (ILQR) [54]. In this case, we use nonlinear programming

method [55] to obtain the nominal trajectory of the end-effector in the y-direction and the

z-direction. The result obtained for assisting a particular human subject with given body

and joint control parameters is shown in Figure 5.31.

Figure 5.31 The nominal trajectory of the end-effector in y and z directions.

LSTM and Human Intention Estimation Xen(t) is defined as a nominal trajectory of the

robot end-effector that is generated under the optimization law (5.40). However, it merely

represents an average and an idealized STS motion of a human. Yet a human may attempt

to move differently from the default path, Xen(t) in reality. For instance, a person may stand

up faster or slower, or even sit back down due to a sudden alternation of intention. Suppose

that the assistive robot is incapable of responding to the varying human intention during an
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STS process. Then the person may end up with an awkward posture or even get injured.

Therefore, an agile control mechanism is needed to deal with changing human intentions.

In this research, we use Long-Short Term Memory (LSTM) network for human

intention prediction, as LSTM network is excellent in holding long term memories, or

in other words, the prediction of future state/output based on a sequence of historical

data [56–58]. In our application, the LSTM network is trained with a combination of

historical (time series) data of the ankle, knee and hip joint trajectories. In particular,

we invite human subjects to perform variety of STS motions, such as getting up from a

seated place regularly, quickly, slowly and sit back down in the middle of the STS process.

The joint trajectories are recorded by ‘Motive’ motion capture cameras and are treated

as different intentions of STS motions. It is worth mentioning that the input data are

partitioned and normalized into numerous arrays before training.

In the training process, as can be seen from Figure 5.32., the information goes

Figure 5.32 Schematic diagram of LSTM structure.

through basically three gates which are ‘forgetting gate’, ‘ignoring gate’ and ‘selection

gate’. Each gate has its own independent neuron network [59]. ‘Forgetting gate’ and

‘memory’ decide what information to be memorized and what to be forgotten. The compact
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forms of the formulations of the ‘forgetting gate’ are given as:
ft = σg(Wf xt +U f ht−1 +b f )

it = σg(Wixt +Uiht−1 +bi)

ct = ft o ct−1 = it o σc(Wcxt +Ucht−1 +bc)

(5.41)

Where, ft is the activation vector, it is the input activation vector and ct is the cell state

vector. σg is a sigmoid function, σc is a tangent function. Matrices W and U are the

weights of the networks. xt and ht−1 represents the input vector to the LSTM unit and the

hidden state vector respectively. b is the bias. The operator ‘o’ denotes the element-wise

product. The subscript t indicates the time step.

‘Ignoring gate’ and ‘selection gate’ decide what information or predictions need to

be released for the moment.

ot = σg(Woxt +Uoht−1 +bo) (5.42)

Here, ot represents the output activation vector. It is worthwhile to mention that the

objective of the entire training process is to adjust weights to get the minimized error

between the target and the prediction. This can be achieved by taking the gradient of the

error in the direction of weights. Detailed formulations are given in [60, 61].

Finally, the trained LSTM network is used to predict transitory joint trajectory in

future when the robot is assisting human in STS process. Specifically, during application,

the current joint trajectory is collected and sent into the trained network. Then, the network

estimates the future joint trajectory in every few mill-seconds. By calculating the gradient

of the predicted joint trajectory, we are able to get the human intended velocity of STS

motions in advance which indicates the human intention. Finally, this intended velocity is

utilized to adjust the velocity of the robot end-effector online. So that the robot is able to

cope with the varying human intentions during STS assistance. The entire process is given

in Figure 5.33.
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Figure 5.33 Flow-chart of human intention recognition mechanism.

Robot End-effector Control In this final step, we design a switching control algorithm

for the robot end-effector to effectively follow the human’s intended motion velocity, with

the additional condition that both the end-effector acceleration and velocity are bounded

to guarantee stability. Particularly, we enforce that the position of robot end-effector Xe(t)

always stays on the 2D curve formed by its nominal trajectory Xen(t), denoted by Sen (which

can be easily achieved by using various contour tracking algorithms in the direction normal

to the curve), while the velocity along the curve is varying to deal with the detected human’s

intention. At every time instance, the position of the robot end-effector stays on Sen, and

the arc length to the beginning of the curve is denoted as se. Now, the objective becomes

to design the acceleration of the arc length variable s̈e such that the resulting ṡe and se

generated from this acceleration follows the human’s intention. To achieve this, we first

design s̈e to let ṡe track a target velocity profile ve:

s̈e =


s̈emax, if ṡe > ve,

−s̈emax, if ṡe < ve,

v̇en(se) if ṡe = ve.

(5.43)
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Where, s̈emax is the maximum acceleration of the robot end-effector. ven(se) and v̇en(se)

are the nominal velocity as well as nominal acceleration at the point se, which are obtained

from re-parameterizing the tangential velocity and acceleration of the nominal trajectory

Xen(t) in terms of the arc length variable se.

On the velocity level, we construct the target velocity profile ve as a function of an

error between the human intended velocity vi and the nominal human motion velocity. We

first denote the 3D curve formed by the nominal trajectory of the first three joints q123 as

Shn. The current position of the human’s first three joints in 3D space is projected onto Shn

and its arc length to the beginning of the curve is denoted as sh. The nominal human motion

velocity along Shn at sh is denoted as vhn(sh), which is obtained by re-parameterizing the

velocity of the nominal joint trajectory q̇123n(t) in terms of the arc length variable sh. Then,

the target velocity profile of the robot end-effector is designed as (5.44), which is shown in

Figure. 5.34.

Figure 5.34 The target velocity profile of the robot end-effector trying to follow the
human’s intention.
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ve =



ven(se),

if vi ∈ [vhn(sh)− ε,vhn(sh)+ ε]

ven(se)+ k1(vi− vhn(sh)− ε),

if vi ∈ (vhn(sh)+ ε,vhn(sh)+β ]

ven(se)− k2(−vi + vhn(sh)− ε),

if vi ∈ [vhn(sh)−β ,vhn(sh)− ε)

ven(se)+ k1(β − ε),

if vi > β + vhn(sh)

ven(se)− k2(β − ε).

if vi < vhn(sh)−β

(5.44)

(5.44) is formulated to modify the velocity of the robot end-effector ve according to the

human intended velocity vi. In particular, if the difference between the human intended

velocity and the nominal human motion velocity vhn(sh) stays in the range of [−ε,ε], where

ε is a small positive constant, then the robot end-effector operates at the regular velocity

ven(se). If the velocity difference vi−vhn(sh) lies in the range of (ε,β ], it indicates that the

robot end-effector is assisting the human in getting up at a relative faster velocity than the

nominal one. The maximum velocity vhn(sh)+k1(β−ε) can be reached if vi−vhn(sh)> β .

Where the slope k1 is defined as a positive variable that affects how fast the robot end-

effector moves along the positive direction of Sen. β > ε is the cutoff value that determines

the maximum forward velocity of the robot end-effect during the STS assistance. When

the velocity difference vi− vhn(sh) < −ε , the robot end-effector is either decelerating or

running in the opposite direction along Sen. The maximum backward velocity is vhn(sh)−

k2(β − ε), where k2 is the slope value calculated as ven/(ε − vhn(sh)) to ensure that the

ve(0− vhn(sh)) = 0, i.e., the robot freezes if the human does not intend to move for safety

consideration.
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5.4.5 Simulation Result and Experimental Validation

Simulation and Experimental Verification of Knee Joint Load Reduction As a matter

of fact, one critical functionality of robotic STS assistance is to decrease the joint load

in STS process. To find out the effectiveness of the proposed approach of robotic STS

assistance in knee joint load reduction, we implement a simulation and an experiment to

validate the performance.

In the simulation section, we first construct human dynamic model in ‘MATLAB’.

Then, we acquire theoretical joint torque/load from simulations of three different scenarios

of STS assistance:

(1) The human subject stands up without any assistance (abbreviated as ‘without
assistance’).

(2) The human subject stands up with robotic assistance. While the trajectory of
the robot end-effector is simplified as an obliquely straight line (abbreviated as
‘simplified assistance’).

(3) The human subject stands up with robotic assistance and the trajectory of the assistive
robot end-effector is designed as the optimized trajectory, Xen(t) (abbreviated as
‘optimized assistance’).

It is worth mentioning that the joint load/torque can be estimated from human dynamics

[62]. Therefore, we evaluate and compare knee joint torque from (5.45) according to three

scenarios.

As a result showing in Figure 5.35, it is clear that the human knee joint load is

greatly alleviated when robot assists human in STS process in comparison with the scenario

of ‘without assistance’. This indicates that robot assistance is effective in STS motion.

Furthermore, when the robot end-effector tracks the optimized trajectory Xen(t), the knee

joint torque can be further reduced in contrast to the ‘simplified STS assistance’ (scenario

(2)), which validates the effectiveness of joint load deduction of the proposed method.

Next, to validate the simulation result, we conduct three tests corresponding to three

scenarios ((1)-(3)). However, it is difficult to measure the joint/muscle force directly from

a human being, therefore we use surface-detected electromyographic (S-EMG) sensors as
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Figure 5.35 The simulation of knee joint load comparison in three different scenarios:
optimized robot assistance reduces the most load acting on knee joint; Simplified robot
assistance reduces some load acting on knee joint; Standing up without any assistance
results in the heaviest load on knee joint.

an indirect method to measure the muscle activation. As variations in S-EMG signals are

utilized to infer changes in neural activity related with a muscle contraction. For example,

increasing S-EMG signal level can be associated with greater muscle force exerted [63–65].

The experimental setup is shown in Figure 5.36, where the human subject (a 70-year-

old volunteer who had knee and waist injuries in the past), is requested to sit on a chair with

an assistive robot (6-DOF ‘AUBO’ bot) placed nearby. The robot is arranged on an aclinic

surface to ensure no inclination during operations. In scenario (1), the human subject is

asked to stand up gradually with two arms overlapped on each other in front his/her chest.

In scenarios (2) and (3), the robot assists the human in getting up. It is noted that since our

robot does not have a hand with fingers, we require the subject to grasp the end-effector

(the last joint) of the robot manipulator during the STS assistance, which is kinematically

the same as the scenario of robot grasping human’s hand if a robotic hand with fingers is

available. Two S-EMG sensors are connected with ‘Arduino Mega 2560’ board and placed

adjacent to the knee joint. Since the knee joint torque includes both flexion and extension

motion torque, we attach S-EMG sensors on the positions of vastus lateralis muscles as

well as semitendinosus muscle for signal recording [66].
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Figure 5.36 The experimental setup of joint load reduction testing using Surface-EMG
(S-EMG) sensors.

The S-EMG signals measured for the three experiments are shown in Figure 5.37.

When the subject stands up without any external assistance (scenario (1)), the output of

S-EMG sensors shows a large peak signal which indicates a large joint load imposed on the

knee joint during the STS process; While in scenario (2), the amplitude of the S-EMG

signal is decreased, which shows that the knee joint load can be substantially reduced

with a simple point-to-point assistance trajectory of the robot end-effector; In scenario

(3), the output of S-EMG indicates that the knee joint load can be further reduced when

the robot end-effector tracks the optimized trajectory Xen(t) during STS assistance. In

addition, the performance indices (euclidean norms) are calculated to express the energy

levels corresponding to the scenarios (1), (2) and (3) as shown in Table. 5.3:

Table 5.3 Performance Index of Three STS Assistance Using Euclidean Norms

Scenarios/Norms (volts) ‖v‖2 : ‖v‖∞ :

Without assistance 27.4 2.1

Simplified assistance 8.7 0.8

Optimized assistance 5.8 0.4
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Figure 5.37 Rectified and integrated EMG signals obtained corresponding to the three
scenarios of STS assistance.

As can be seen clearly in Table 5.3, the scenario of ‘optimized assistance’ using the

trajectory generation proposed has the most energy efficiency among all the three scenarios,

whereas standing up without any assistance has the most energy consumption.

Experiment on Human Intention Based Control In this experiment, we testify the

applicability of the human intention recognition algorithm applied in the robot end-effector

controller. Specifically, four STS tasks are implemented under four categories of human

intentions:

(A) The human subject stands up normally (abbreviated as ‘standard STS’).

(B) The human subject intends to stand up slower than normal (abbreviated as ‘slow
STS’).

(C) The human subject intends to stand up faster than normal (abbreviated as ’fast STS’).

(D) The human subject changes his mind during STS assistance and tries to sit back down
(abbreviated as ‘sit back down’).

The experimental setup is described as the follows: the human subject is asked for

sitting naturally on a chair in the center of a matrix of ‘Motive’ motion capture cameras.

These cameras record human joint angles in real-time for intention detection. It is worth
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noting that the parameter selection corresponding to Equation (5.44) is given as follows: ε

is assigned as 0.1 (rad/s); β is assigned as 1 (rad/s) and the slope k1 is assigned as 1.

The screenshots of the four tasks are shown in Figure 5.38 and the actual trajectories

of the robot end-effector are plotted in Figure 5.39. For (A), the human subject intends to

Figure 5.38 Four STS tasks with different human intentions: (A) standard STS, (B) slow
STS, (C) fast STS, (D) human refuses to stand up and sits back down.

get up normally. The actual end-effector trajectories (a) in Figure 5.39 are almost the same

as the nominal trajectories plotted in Figure 5.31. For (B), the human subject attempts to

stand up slowly which leads to a slower movement of the robot end-effector in comparison

to (a). For (C), since the human subject wants to stand up faster, the robot effector

recognizes the human intention immediately and boosts the velocity of the end-effector

along Xen(t). For (D), the human tries to sit back down in order to adjust his posture. On

the basis of the algorithm (5.44), the robot catches the human intention and controls its

end-effector to move backward in the middle of the STS assistance. As a result, the human

subject sits back down successfully in the end. Additionally, the tasks are recorded and

attached to the link: https://youtu.be/Esidf20hTtI.
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Figure 5.39 The actual end-effector trajectories (a)-(d) plotted for the tasks (A)-(D).

5.4.6 Conclusion

In this research, we proposed an integrated approach that accommodates human dynamics,

robot control as well as LSTM network for the problem of Sit-To-Stand (STS) assistance

using a robotic manipulator. In particular, we first observed and studied the human-to-

human STS assistance. Then, on the basis of the observation and recorded data, we

formulated the average intended motion trajectories of the human lower extremities. On the

account of the joint trajectories and the formulated human body dynamics, we generated

the optimal nominal trajectory of the robot end-effector Xen(t). When the robot end-effector

travels on Xen(t) during STS assistance, the human knee joint load is greatly reduced. In

reality, the person who receives the assistance may stand up faster or slower comparatively,

or even sit back down due a sudden change of mind. Therefore, to deal with such situations

in STS assistance, we utilized LSTM network to evaluate human intentions in STS process

and used the human intention to regulate the velocity of the robot end-effector during the

assistance. Finally, we implemented simulation and experiments to validate the proposed

method in the aspects of joint load reduction and human intention recognition for robot

control. The results verified the effectiveness of the proposed algorithm that it is able
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to minimize the human joint load and deal with human’s changing intention during STS

assistance. The proposed method has a great potential in assisting the elderly, disabled, and

injured individuals in their daily lives.
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5.5 A General Control Framework for Robotic STS Assistance: Design a Novel

Estimator for Human Intention Recognition and Human-Robot Contact Model

Identification

5.5.1 Introduction

In this research, we propose a general control framework for STS assistance. The kernel

of the research is to design a task-specified human intention recognition mechanism for

assistive robots to understand different human intended motions and be able to identify the

contact model between the human partner and the robot according to different situations.

In particular, we first perform various Human-Human STS assistance. From observation

of these tasks, we extract common features and construct assumptions. On the basis of the

assumption made, we formulate the system dynamics as well as the contact model between

the human and the robot. Second, based on the proposed dynamics, a NN-based control

framework is designed to let the robot predict the contact model and the human intentions

during STS process. Third, various simulations and experiments are performed to validate

the proposed approach.

5.5.2 Dynamic Modeling of Contacts Between Human and Robot

In this section, we first perform diverse human-human STS assistance. Then, on the

basis of the observation of the human-human collaborations, a number of assumptions are

made. The system dynamics and the contact model are constructed on the account of the

experimental results and assumptions.

Observation of human-human collaboration The reason of performing human-human

collaborative experiments is that human beings naturally and deeply understand how to

interact with other human beings safely and fast which is an excellent example for an

assistive robot to learn from. On the other hand, we can also observe how a human being

reacts when another person is cooperating with the person. This helps us understand the

habits and motions of a person so that we can define and even re-shape the formulations of
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the human robot contact model as well as the human intention recognition mechanism in a

more accurate perspective. Therefore we implement the following experiments that can be

summarized as:

A) Various human-human STS assistance with different initial sitting postures.

B) Observation and investigation of human-human interactions during collaborative
STS assisted tasks.

In the first group of human-human STS assistance experiments, two volunteers are asked to

perform STS assistance together. The person who is passively assisted is request for sitting

on a stable chair comfortably with any initial postures. Then the another person is required

to hold his/her hands and help the former getting up slowly until the entire STS process is

accomplished. As can be seen in Figure 5.40.

Figure 5.40 Human-human STS assistance with different initial postures. 1. upright sitting
posture; 2. lean backward sitting posture; 3. lean forward sitting posture.

In the second group of experiments, we ask for different human subjects to perform

STS assistance, meanwhile we scrutinize and record the contact patterns as well as motions

during each STS process. As shown in Figure 5.41. According to the observations,
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Figure 5.41 The Contact patterns in human-human STS assistance among various subjects.
(A) assisting an male adult; (B) assisting a female adult; (C) assisting an elderly subject.

inquiries and analysis of the human-human collaborations, we found those experiments

possess some common features that can be seen as:

• Feature 1: In the first group of STS assistance experiments, the motions of the subject
who is assisted, stands up in a vertical 2D plane that the out-of-plane waggling
motions can be ignored.

• Feature 2: In the second group of STS assistance experiments, the human subjects
are always attempting to smooth as well as slow the assisted motions in order to
alleviate the force applied along the arms and to anticipate the partners’ movements
ahead.

According to these common features obtained, some assumptions are made as the

followings:

• Assumption 1: The human body dynamic is formulated using a five-link planar robot
model that the ankle joint is fixated to a leveled ground and the wrist joint is always
connected to the robot end-effector.

• Assumption 2: We assume an impedance contact model for human-human hand
contacts. Furthermore, we also apply this contact model to human robot contacts
at the location of the end-effectors.

Modeling of the system dynamics From above analyses, we introduce a general contact

scenario for robotic assisted STS. We assume a person who is being assisted sits on a seated

place where a commercial robotic manipulator is established firmly at the adjacent place
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in font. The person uses two hands to grasp tightly on the robot end-effector. Then, the

robot manipulator gradually assists the human in getting up from the seated place until the

person completely stands up. The schematic diagram of the system is given in Figure 5.42:

Figure 5.42 The schematic diagram of the system dynamic model.

On the human side, we assume that the human dynamics can be represented with a

five-linked structure. The mathematics model is given by:

Mh(q)q̈+Ch(q, q̇)q̇+Gh(q) = τh + Jh(q)
T f (t). (5.45)

Where the vector q = [q1,q2,q3,q4,q5]
T stands for the human joint angles. In particular, q1

is the ankle angle, q2 is the knee angle, q3 is the hip angle, q4 is the shoulder angle and q5 is

the elbow angle. Mh(q) ∈ R5×5 is a positive-definite symmetric matrix that represents the

human inertia. Ch(q, q̇)q̇∈ R5 represents the Coriolis and the centripetal forces. Gh(q)∈ R5

is the gravitational force. τh ∈ R5 is the human joint torques generated by muscles and

Jh(q) ∈ R3×5 is the Jacobian matrix. f (t) ∈ R3 describes the interactive force between the

robot end-effector and the human hands.

Since the parameters, such as Mh(q), Ch(q, q̇) and Gh(q) are difficult to be obtained

directly from measurements. Therefore, we estimate the geometric and inertia parameters
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of the human subject by referring to the table of human body segment parameters [49]. The

parameters are listed in Table 5.4.

Table 5.4 Human Body Segment Parameters

Segment L(%) M(%) I1(Kg−m2) I2(Kg−m2)

Head 0.5358 0.0730 0.0248 0.3119

Upper arm 0.4360 0.0270 0.0213 0.3119

Forearm 0.4300 0.0160 0.0760 0.3119

Hand 0.5060 0.0066 0.0005 0.3119

Trunk 0.4383 0.5080 1.3080 0.3119

Thigh 0.4330 0.0988 0.1502 0.3119

Lower leg 0.4330 0.0465 0.0505 0.3119

Foot 0.4290 0.0145 0.0038 0.3119

Where L(%) is the segment length of human body which is defined as a percentage

of the whole body length, M(%) is the segment weight of human body that is defined as

a percentage of the whole body weight, I1 is the mass moments of inertia of the segment

along the transverse axis, and I2 is the mass moments of inertia of along the longitudinal

axis. It is worth noting that the parameters must be selected by referring to each individual.

On the robot side, we introduce the mathematical model for a general n-DOF robotic

manipulator:

Mr(qn)q̈n +Cr(qn, q̇n)q̇n +Gr(qn) = τr− Jr(qn)
T f (t). (5.46)

Where the vector qn stands for the robot joint angles. Mr(qn) ∈ Rn×n is a positive-definite

symmetric matrix that represents the robot inertia. Cr(qn, q̇n)q̇n ∈ Rn represents the Coriolis

and the centripetal forces. Gr(qn) ∈ Rn is the gravitational force. τr ∈ Rn is the robot joint
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torques generated by motors and Jr(qn) ∈ R3×n is the Jacobian matrix. f (t) ∈ R3 describes

the interactive force between the robot end-effector and the human hands.

Consider that the robot kinematics in joint space has the following relationship in

Cartesian space:

X(t) = φ(qn) (5.47)

where X(t) ∈ R6 and the qn ∈ Rn are the positions/orientations in Cartesian space and the

joint space. The velocity profile can be obtained by differentiating equation (5.47):

Ẋ(t) = Jr(qn)q̇n, (5.48)

Then, taking the time derivative of the equation Ẋ(t) = Jr(qn)q̇n that represents the

kinematic relationship between the robot joint space and work space. We can obtain the

acceleration Ẍ(t) by further derive (5.48):

Ẍ(t) = Jr(qn)q̈n + J̇r(qn)q̇n, (5.49)

Since the interaction occurs at the location between the robot end-effector and the human

hands. Hence, we transform the robot dynamics (5.46) into Cartesian coordinate [43].

Mc(qn)Ẍ(t)+Cc(qn, q̇n)Ẋ(t)+Gc(qn) =U− f (t). (5.50)

Where,

Mc(qn) = Jr(qn)
−T Mr(qn)Jr(qn)

−1;

Cc(qn, q̇n) = Jr(qn)
−T (Cr(qn, q̇n)

−Mr(qn)Jr(qn)
−1J̇r(qn)Jr(qn)

−1)Jr(qn)
−1;

Gc(qn) = Jr(qn)
−1Gr(qn);

U = Jr(qn)
−1τr.

(5.51)

Notice that Mc(qn) symmetric and positive definite. Cc(qn, q̇n) is a skew-symmetric matrix.
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Contact model formulation We define the contact model between the human partner

and the assistive robot as an impedance model governed by the equation below:

Md(Ẍ(t)− Ẍd)+Cd(Ẋ(t)− Ẋd)+Kd(X(t)−Xd) = f (t). (5.52)

where Md , Cd and Kd are are the desired inertia, damping as well as stiffness matrices.

X(t) ∈ R3, Ẋ(t) ∈ R3 and Ẍ(t) ∈ R3 describe the present state variables of the robot end-

effector. Xd(t) ∈ R3, Ẋd(t) ∈ R3 and Ẍd(t) ∈ R3 are the desired targets marked at the human

hands.

5.5.3 Contact Model Identification and Human Intention Estimation

This section is dedicated to elucidate the structure of the purposed estimator and the

functionalities with respect to the contact model identification and human intention

recognition for STS assistance.

Problem statement and optimizer design Human beings are naturally sensitive to the

surroundings and be able to figure out the physical properties, such as rigidity as well as

roughness and the movements of any objects, such as positions and velocities. Therefore,

human beings are capable of interacting with surroundings safely and dexterously. This

characteristic is validated in human-human STS assistance. Therefore, inspired by this

human talent, we intend to train robots so that the robots are able to imitate what human

strategy in STS assistance. In order to simplify the problem formulation, the following

prerequisites are defined as:

1. We assume the human intended motion Ẍd , which is the desired acceleration term of
the human hands is bounded and its variation frequency is slowly in STS assistance
since the subjects being assisted are usually aged and sluggish.

2. Equation (5.52) is simplified as:

Cd(Ẋ(t)− Ẋd)+Kd(X(t)−Xd) = f (t) (5.53)

in order to reduce the calculation complexity.
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Hence, we propose a convex estimator for contact model identification and human intention

recognition under the constrains of the prerequisites.

min∑{||Ẍd||2 +λ || f (t)− (Cd(Ẋ(t)− Ẋd)+Kd(X(t)−Xd))||2} (5.54)

where λ is a Lagrange multiplier.

To identify the contact model (5.53), we need to figure out the coefficients Cd as

well as Kd . Meanwhile to estimate the human intended motions we need to figure out Ẍd .

Therefore, as long as we substitute f (t), X(t) and Ẋ(t) into (5.54) using computational

nonlinear solvers, we can get Cd , Kd and Ẍd .

NN-based human intended motion estimation To accomplish the general control

framework for STS assistance, we create the structure, as shown in Figure 5.43. The

working principle of the structure can be summarized into three procedures:

1. We first use the proposed estimator, which is given by (5.54) to identify the contact
model parameters Cd , Kd and to predict the intended human motion ̂̈Xd .

2. From ̂̈Xd we are able to get ̂̇Xd and X̂d . Then the historic data of contact force f (t),̂̇Xd and X̂d are applied for training a Neural Network (NN).

3. Based on the NN developed, we design the robot end-effector controller for the
manipulator to assist people in STS process.

Impedance control for the robot end-effector To control and achieve contact force

between the robot end-effector and the human hands in the form of Equation (5.52), we

design the control law for the robot end-effector as:

U = Mc(qn)(Ẍd(t)+M−1
d (Cd(Ẋd(t)− Ẋ(t))+Kd(Xd(t)−X(t))

+ f (t))+Cc(qn, q̇n)Ẋ(t)+Gc(qn)+ f (t)
(5.55)

To accomplish the desired contact force in the form of Equation (5.53), we can set the value

of Ẍ(t) as Ẍd(t) for the robot end-effector so that the robot end-effector can be controlled

93



Figure 5.43 Schematic diagram of the control framework.

in velocity mode without losing the authenticity of the impedance control:

Ẋ(t) =C−1
d ( f (t)−Kd(X(t)−Xd(t)))+ Ẋd(t) (5.56)

However, the contact force f (t) must be measured in real-time and feed into (5.56) as a

compensation.

5.5.4 Simulation Results

Simulation: contact model parameters identification and human intended motion

estimation Initially, we pre-generated a particular human intended motion profiles of

Xd , Ẋd and Ẍd in 1-D space. As can be seen in Figure 5.44.

Next, to testify the performance of the proposed estimator, we define the values of Cd and

Kd for two verification groups. In the first group, we set Cd = 250 and Kd = 200; In the

second group, we set Cd = 200 and Kd = 200. The results are shown in Figure. 5.45.
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Figure 5.44 The 1D profile of the human intended motion trajectories.

Figure 5.45 Test results of the contact model identification and the human intended motion
estimation. (A) Cd = 250 and Kd = 200; (B) Cd = 200 and Kd = 200.
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5.5.5 Conclusion

In this study, a general control framework for STS assistance is developed which is

able to estimate human intention and to identify the contact model between the human

partner and the robot. First of all, we conducted different Human-Human STS assistance.

From observation of these experiments, we obtained common features and constructed

assumptions. On the account of the assumption made, we formulated the human-robot

manipulator system dynamics and the contact model. Then, based on the given dynamics,

we designed a NN-based control framework which ia capable of identifying the contact

model parameters as well as recognizing the human intentions during STS process. Finally,

we preformed various simulations to validate the proposed approach.
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CHAPTER 6

CONCLUSION

In these studies, the main direction of the research concentrates on Human-Robot

Interaction (HRI), assistive robot for STS assistance and human intention estimation. The

objective is to effectively assist individuals in need to stand up from a seated position using

a robot manipulator. To achieve the goal, we propose a series studies of STS assistance,

control framework design as well as human intention recognition. In particular, we

performed and recorded a number of demonstrations of human-to-human STS assistance

using motion capture system. On the account of the observation and recorded data.

We constructed human dynamics, human limb control mechanism, impedance contact

model and force optimization algorithms for the HRI. In actual STS assistance, we

also considered that the human who is being assisted is likely to move faster or slower

from the nominal trajectories, or even sit back down. Therefore, we also developed

NNs-based controllers to estimate the ever-changing human’s intention in STS assistance,

and then adjust the motions of the robot end-effector on the basis of the predicted human

intention. Simulations and experiments are conducted in research, which demonstrated

that the proposed algorithm is indeed capable of minimizing joint load of human while

following his/her intention during the course of STS motion. The proposed algorithms can

potentially be applied to future home robots that assist elderly and disabled people with

daily activities.
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[32] F. Romano, G. Nava, M. Azad, J. Čamernik, S. Dafarra, O. Dermy, C. Latella,
M. Lazzaroni, R. Lober, M. Lorenzini, et al., “The codyco project achievements and
beyond: Toward human aware whole-body controllers for physical human robot
interaction,” IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 516–523,
2018.

[33] Y. Cheng, L. Sun, C. Liu, and M. Tomizuka, “Towards efficient human-robot collabo-
ration with robust plan recognition and trajectory prediction,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2602–2609, 2020.

[34] L. Sun, H. An, H. Ma, and J. Gao, “Real-time human intention recognition of multi-joints
based on myo,” IEEE Access, vol. 8, pp. 4235–4243, 2019.

[35] Y. Cheng, W. Zhao, C. Liu, and M. Tomizuka, “Human motion prediction using adaptable
neural networks,” arXiv preprint arXiv:1810.00781, 2018.

[36] P. Schydlo, M. Rakovic, L. Jamone, and J. Santos-Victor, “Anticipation in human-robot
cooperation: A recurrent neural network approach for multiple action sequences

100



prediction,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018, pp. 5909–5914.

[37] P. Wang, H. Liu, L. Wang, and R. X. Gao, “Deep learning-based human motion recog-
nition for predictive context-aware human-robot collaboration,” The International
Academy for Production Engineering, vol. 67, no. 1, pp. 17–20, 2018.

[38] K. Wakita, J. Huang, P. Di, K. Sekiyama, and T. Fukuda, “Human-walking-intention-based
motion control of an omnidirectional-type cane robot,” IEEE/ASME Transactions
On Mechatronics, vol. 18, no. 1, pp. 285–296, 2011.

[39] Y. Wang, Y. Sheng, J. Wang, and W. Zhang, “Human intention estimation with
tactile sensors in human-robot collaboration,” in ASME 2017 Dynamic Systems
and Control Conference. American Society of Mechanical Engineers Digital
Collection, 2017.

[40] J.-Y. Kuan, T.-H. Huang, and H.-P. Huang, “Human intention estimation method for a
new compliant rehabilitation and assistive robot,” in Proceedings of SICE Annual
Conference 2010. IEEE, 2010, pp. 2348–2353.

[41] W. Chen, S. Wang, X. Zhang, L. Yao, L. Yue, B. Qian, and X. Li, “Eeg-based motion
intention recognition via multi-task rnns,” in Proceedings of the 2018 SIAM
International Conference on Data Mining. SIAM, 2018, pp. 279–287.

[42] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, and O. Khatib,
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