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ABSTRACT

COORDINATION, ADAPTATION, AND COMPLEXITY IN
DECISION FUSION

by
Weiqiang Dong

A parallel decentralized binary decision fusion architecture employs a bank of local

detectors (LDs) that access a commonly-observed phenomenon. The system makes

a binary decision about the phenomenon, accepting one of two hypotheses (H0

(“absent”) or H1 (“present”)). The kth LD uses a local decision rule to compress its

local observations yk into a binary local decision uk; uk = 0 if the kth LD accepts H0

and uk = 1 if it accepts H1. The kth LD sends its decision uk over a noiseless dedicated

channel to a Data Fusion Center (DFC). The DFC combines the local decisions it

receives from n LDs (u1, u2, . . . , un) into a single binary global decision u0 (u0 = 0

for accepting H0 or u0 = 1 for accepting H1). If each LD uses a single deterministic

local decision rule (calculating uk from the local observation yk) and the DFC uses a

single deterministic global decision rule (calculating u0 from the n local decisions), the

team receiver operating characteristic (ROC) curve is in general non-concave. The

system’s performance under a Neyman-Pearson criterion may therefore be suboptimal

in the sense that a mixed strategy may yield a higher probability of detection

when the probability of false alarm is constrained not to exceed a certain value,

α > 0. Specifically, a “dependent randomization” detection scheme can be applied

in certain circumstances to improve the system’s performance by making the ROC

curve concave. This scheme requires a coordinated and synchronized action between

the DFC and the LDs. This study specifies when dependent randomization is needed,

and discusses the proper response of the detection system if synchronization between

the LDs and the DFC is temporarily lost. In addition, the complexity of selected



parallel decentralized binary decision fusion algorithms is studied and the state of the

art in adaptive decision fusion is assessed.
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CHAPTER 1

INTRODUCTION

In this chapter, the parallel binary decision fusion architecture is introduced, along

with and the two principal performance criteria used for its design.

1.1 Parallel Decentralized Binary Decision Fusion Architecture

A parallel decentralized binary decision fusion architecture is shown in Figure 1.1.

The system uses n local detectors (LDs) to observe a binary phenomenon (“target/no

target”). The objective is to decide if a target is present (hypothesis H1) or absent

(hypothesis H0). P1 is the a priori probability that a target is present (hypothesis H1)

and P0 = 1−P1 is the a priori probability that a target is absent (hypothesis H0). The

local observations collected by the kth LD are denoted yk. All the local observations

are assumed to be statistically independent, conditioned on the hypothesis, therefore,

Pr(y1, . . . , yn|Hj) =
∏

k Pr(yk|Hj), k ∈ {1, . . . , n}, j ∈ {0, 1}. Each LD compresses

its local observations into a local decision; the local decision of the kth LD is uk =

γk(yk), uk ∈ {0, 1} and U = {u1, u2, . . . , un}. Here uk = 0 means that the kth LD

prefers hypothesis H0, and uk = 1 means that the kth LD prefers hypothesis H1.

A Data Fusion Center (DFC) combines all the local decisions to generate a global

decision u0 = γ0(U), u0 ∈ {0, 1}, where u0 = 0 indicates preference for hypothesis

H0, and u0 = 1 indicates preference for hypothesis H1. The probability of false alarm

of the DFC is Pf = Pr(u0 = 1|H0). The probability of detection of the DFC is

Pd = Pr(u0 = 1|H1). The tuple (Pf , Pd) is considered the operating point of the

detection system. Similarly, the local operating point of the kth LD is (Pfk, Pdk),

where Pfk = Pr(uk = 1|H0) and Pdk = Pr(uk = 1|H1). (PA
f , P

A
d ) is referred as

“point A”.
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This dissertation studies the design of the parallel decentralized binary decision

fusion architecture in Figure 1.1 aiming at either minimizing the Bayesian cost of the

global decision u0 or satisfying a Neyman-Pearson criterion.

To achieve this objective, the implementation tasks are to determine the local

decision rules (mapping γk from yk to uk, k = 1, . . . , n) and the global decision rule

(mapping γ0 from U to u0). The local decision rule of the kth LD, γk(.), determines

how the kth LD compresses its local observations yk into its local decision uk as

uk = γk(yk). The global decision rule, γ0, represents how the DFC integrates all the

local decisions into the global decision u0 as u0 = γ0(U). The combination of all the

local decision rules is γLD = {γ1, . . . , γn}. The combination of the global decision rule

and all the local decision rules is the detection strategy, γ = {γ0, γLD} = {γ0, . . . , γn}.

Figure 1.1 Parallel decentralized detection network.

1.2 Minimizing the Bayesian cost of the Global Decision

One performance index often used to design the architecture in Figure 1.1 is the

Bayesian criterion. The design of the system aims at minimizing the Bayesian cost
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of the global decision J , where

J =C00P (u0 = 0|H0)P0 + C01P (u0 = 0|H1)P1

+ C10P (u0 = 1|H0)P0 + C11P (u0 = 1|H1)P1.

(1.1)

Cij is the cost for the DFC to accept Hi when the true hypothesis is Hj. Pi is

the a priori probability of Hi.

Chapter 2 investigates several existing approaches for minimizing the Bayesian

cost of the global decision in parallel decentralized binary decision fusion. Among

these studies, the design in [1] fixes the local decision rule and calculates the optimal

global decision fusion rule. In [2], Hoballah and Varshney proposed a PBPO procedure

to calculate the local decision rule and the global decision rule simultaneously ([2]).

In [3], a design of the system with identical LDs was presented. In [4][5][6], variants of

the architecture in Figure 1.1 were studied which employ feedback. In these variants,

the system uses its previous global decision ut−1
0 (at time t − 1) to improve current

global decision ut0 (at time t). These designs vary in performance and complexity,

depending on the selection of objective functions and on compromises made between

global optimality and computability.

1.3 Satisfying a Neyman-Pearson Criterion

When satisfying a Neyman-Pearson criterion, the system maximizes the probability

of detection Pd while keeping the global probability of false alarm Pf no larger than

a specified value α (0 < α < 1).

Chapter 3 presents three detection strategies for the system in Figure 1.1,

under the Neyman-Pearson criterion.

(a) A deterministic strategy: each LD uses a deterministic local decision rule and
the DFC uses a deterministic global decision rule [7].
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(b) A strategy with randomization at the DFC only: each LD uses a deterministic
local decision rule and the DFC uses a randomized global decision rule [8][9].

(c) Dependent randomization: all the LDs and the DFC use randomized decision
rules. The randomization between the LDs and the DFC is coordinated and
synchronized [10].

When the DFC employs a single deterministic global decision rule and each

LD employs a single deterministic local decision rule (strategy (a)), the resulting

ROC curve is generally non-concave. If the local observations are discrete, the

resulting ROC curve may be discontinuous. The non-concavity or discontinuity of the

ROC curve imply the suboptimality of the design under a Neyman-Pearson criterion.

The introduction of the randomization makes the resulting ROC curve continuous

(strategy (b) and (c)). Meanwhile, dependent randomization promises the concavity

of the resulting ROC curve. It is shown in [11][12] that randomization is not necessary

when minimizing the Bayesian cost in (1.1). Therefore, this dissertation focuses on

deterministic strategy when the performance index is the Bayesian cost in (1.1).

Chapter 4 offers two examples (with continuous and discrete local obser-

vations) of the parallel decentralized binary decision fusion architecture. These two

cases are used to exemplify different operating conditions and decision performance

throughout the dissertation.

Chapters 5 and 6 study the impact of the loss of synchronization between

the LDs and the DFC when dependent randomization is employed (strategy (c)).

When using dependent randomization, the LDs and the DFC are coordinated

and synchronized. When the synchronization is lost, system performance usually

deteriorates. chapters 5 and 6 analyze the following cases:

(d) Dependent randomization (unsynchronized DFC) (studied in Chapter 5): all
the LDs and the DFC use randomized decision rules. The LDs are coordinated
and synchronized with each other. The DFC uses a randomized global decision
rule but is not synchronized with the LDs.

(e) Dependent randomization (unsynchronized LDs) (studied in Chapter 6) : all
the LDs and the DFC use randomized decision rules. The randomization
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between some LDs and the DFC is coordinated and synchronized. Other LDs
use randomized local decision rules independently of the other LDs and the
DFC.

Chapter 7 studies what happens when some of the probabilities needed for the

design are not available. This chapter starts with the work of Chair and Varshney

[1]. Their design requires prior knowledge of the probabilities of each hypothesis

and the performance probabilities of each sensor. When these probabilities are not

available, several adaptive fusion techniques [13][14][15][16] can be applied to estimate

them from data. An algorithm that integrates the decisions of these algorithms is

proposed, demonstrating superior performance over each algorithm acting alone.

Table 1.1 summarizes the content of the dissertation.

Table 1.1 Summary of each Chapter in the Dissertation
Chapter Problem/Subject Outcome

2 Review of designs approaches for parallel decen-

tralized binary decision fusion architecture

Understanding the tradeoff between performance

and computational complexity

3 Summary of three detection strategies studied in

the existing literature

Comparing three detection strategies, finding

conditions under which dependent randomization

is beneficial

4 Two examples of parallel decentralized binary

decision fusion

-

5 The impact of the loss of synchronization between

the DFC and the LDs group

Quantifying the effect of synchronization loss and

demonstrating how to recover (partially) from

synchronization loss

6 The impact of the partial loss of synchronization

among the LDs

Quantifying the effect of synchronization loss and

demonstrating how to recover (partially) from

synchronization loss

7 Integration of multiple adaptive fusion approaches A procedure for fusing several adaptive algorithms

8 End notes -
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CHAPTER 2

PERFORMANCE AND COMPLEXITY OF SELECTED PARALLEL
DECENTRALIZED BINARY DECISION FUSION SYSTEMS

The performance and design complexity of several parallel decentralized binary

decision fusion architecture variants are calculated and compared.

There are several existing design techniques for parallel decentralized binary

decision fusion architectures of Figure 1.1, with and without feedback. The designs

vary in performance and complexity, depending on the selection of objective functions

and on compromises between global optimality and computability. In this chapter,

the tradeoff is studied between the performance (when minimizing a Bayesian cost

(e.g., (1.1))) and the computational complexity of the design (also see [17]).

2.1 Architectures without Feedback

2.1.1 Fixed global fusion rule

When the LDs in the system are identical, each LD has the same weight, in terms of

its influence on the DFC’s final decision. In this situation, the fusion rule becomes

one of the k out of n rules, where k = 1, 2, . . . , n, and n is the number of LDs in the

system. For each “k out of n rule”, finding the local decision rule requires solving one

non-linear equation ((9) in[3]).

2.1.2 Fixed local decision rule with identical LDs

The design in [1] fixes the local decision rule and calculates the optimal global fusion

rule. The global fusion rule employs a threshold which depends on the a priori

probability of the hypothesis H0 and the parameters of the Bayesian cost Cij ((8) in

[1]).
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2.1.3 Calculating the local decision rule and the global fusion rule

simultaneously

The authors of [2] proposed a PBPO procedure to calculate the local decision rule

and the global fusion rule simultaneously. This design entails a high computational

cost. For non-identical LDs, 2n non-linear global threshold equations and n non-linear

local threshold equations need to be solved at the same time ((19, 20) in [2]).

2.1.4 Calculating local decision rule and global fusion rule exhaustively

(overall “k out of n” schemes)

The idea in [3] is to evaluate the performance of the system for every combinations

of γk and γ0 (each corresponding to a different k in the “k out of n” scheme).

The authors study each fusion rule of the “k out of n” form and develop the

local decision rule resulting for the fusion rule. When applied to a system with

identical local detectors, the exhaustive design [3] and the simultaneous design [2]

have close performance. However, the exhaustive design of [3] has significantly smaller

computational complexity. The authors launch an exhaustive search for n+ 1 “k out

of n” rules twice. Hence finding the global fusion rule require the solution of 2n + 2

non-linear equations.

2.2 Architectures with Feedback

When the hypothesis remains the same during a certain time epoch, the system

can use its previous global decision ut−1
0 (at time t − 1) to improve current global

decision ut0 (at time t). The local observations by each LD are assumed to be

statistically independent in time, conditioned on the hypothesis, i.e., y1
k, y

2
k, . . . , y

t
k are

statistically independent, conditioned on the hypothesis. The previous global decision

ut−1
0 and current global decision ut0 are therefore also independent, conditioned on the

hypothesis.
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A variation of the parallel architecture of Figure 1.1 is offered in Figure 2.1.

The DFC remembers and uses its most recent decision to generate the next decision.

Kam et al. [4] developed the optimal fusion rule for this architecture with identical

LDs and a fixed local decision rule (this is an extension of [1]).

Figure 2.1 Parallel decentralized binary decision fusion with 1-bit memory DFC,
network of [4].

Another architecture with feedback is shown in Figure 2.2. At each time step t,

the inputs of each LD are not only the local observations but also the previous global

decision, ut−1
0 . Alhakeem and Varshney [5] proposed a PBPO procedure for designing

the local decision rules and the fusion rule for this scheme simultaneously.

2.2.1 Fixed local decision rule

In [4], the LDs are assumed to be identical. The introduction of the feedback updates

the value of η0. In each time step, given the performance of the LDs and the

performance of the previous global decision, the η0 has two different possible values

since the previous global decision had two different values, each corresponding to a

different accepted hypothesis. These two values are dependent on P0 and the previous

global decision ((2) in [4]).
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Figure 2.2 Parallel decentralized binary decision fusion with feedback to LDs,
architecture of [5][6].

2.2.2 Calculating local decision rule and global fusion rule simultaneously

In [5], the feedback is introduced to all LDs, hence the local decision rule and global

fusion are coupled. When the system employs n non-identical LDs, there are 2n

non-linear global threshold equations and 2n non-linear local threshold equations

which need to be solved at the same time for each step ((2.3, 2.5) in [5]).

2.2.3 Calculating local decision rule and global fusion rule by using a

greedy scheme

The authors of [6] propose a greedy scheme to calculate the local decision rule and

the global fusion rule. Each LD minimizes the Bayesian cost of its own local decision.

In each time step, there are 2n non-linear local threshold equations and 1 non-linear

global threshold equation that need to be solved ((9, 22) in [6]).

The design of architectures with feedback requires knowledge of the performance

of previous global decision at the beginning of each time step. For architectures with

identical local detectors acquiring this knowledge means that the complexity of the
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design is linear in the number of local detectors. For architectures with non-identical

local detectors, the complexity is exponential in the number of local detectors [18].

Table 5.1 and Table 2.2 summarize the basic schemes. In Table 5.1 the schemes

have no feedback. In Table 2.2 feedback is employed.

Table 2.1 Review of Four Designs of Architectures without Feedback ( “k out of
n” Rules, [1], [2], and [3])

Method “k out of n” rule

(identical LDs)

Fixed local

decision rule

(Chair and

Varshney [1])

(identical LDs)

Calculating the whole

system simultaneously

(Hoballah and

Varshney [2])

Exhaustive search for

every pairs of ηk and

η0 (Acharya et al. [3])

(identical LDs)

ηk Need to be

calculated

Fixed, depends

on P0

Local and global

thresholds are coupled,

need to be calculated

Local threshold is

calculated for each “k

out of n” ruleη0 Fixed, depends on k

and n

Need to be

calculated

Equations

to be solved

1 non-linear equation

((9) in [3])

Constant ((8) in

[1])

2n + n non-linear

coupled equations

((19,20) in [2])

2n + 2 non-linear

coupled equations

(Table 1 in [3])

Key

properties

1. Fix γ0(.), design

γk(.)

Fix γk(.), design

γ0(.)

1. Design γk(.) and

γ0(.) simultaneously

1. Design γk(.) and

γ0(.) exhaustively

2.Fix the weight of

the LDs

2. The best detection

performance and

the most complex

computation

2. Efficient when using

identical LDs
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Table 2.2 Review of Three Designs of Architectures with Feedback ([4], [5], and
[6])

Method Fixed local decision

rule (Kam et al. [4])

(identical LDs)

Calculating the whole system

simultaneously (Alhakeem

and Varshney [5])

Designing the system with a

greedy scheme (Dong and Kam

[6])

ηk Fixed, depends on P0 Local and global thresholds are

coupled, need to be calculated

Local and global thresholds are

uncoupledη0 Need to be calculated

Equations to

be solved at

each step

Constant, depends on

P0 ((2) in [4])

2n + 2n non-linear coupled

equations ((2.3, 2.5) in [5])

2n + 1 non-linear coupled

equations ((9,22) in [6])

Key properties Fixed γk(.), design

γ0(.)

1.Design γk(.) and γ0(.)

simultaneously

1. Design γk(.) and γ0(.) by a

greedy scheme

2. The best detection

performance and the most

complex computation

2. Computationally

simpler than [5] and shows

improvement over the system

without feedback

2.3 Example - A 5 Local Detectors System

The performance of the reviewed methods is simulated using a 5 LDs system. The

Bayesian criterion is used with C00 = C11 = 0 and C01 = C10 = 1, thus the cost in

(1.1) becomes the probability of error,

Pe = P0Pf + P1(1− Pd). (2.1)

The local observations conditioned on the hypothesis are normally distributed. In

the examples, under H0 the mean is 0 and variance is 1. Under H1 the mean is 1 and

variance is 0.8.

The system employs five identical LDs. Figure 2.3 shows the probabilities of

error by four different designs for architectures with no feedback. The red curve shows

the probability of error by the method designing the whole system “simultaneously”

(Hoballah and Varshney [2]). The black curve shows the probability of error by

designing the system “exhaustively” (Acharya et al. [3]). For an architecture with
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identical LDs, [2] and [3] have nearly the same performance. The blue curve shows the

probability of error when designing the system with ηk = P0/P1 (Chair and Varshney

[1]). The green curve shows the probability of error by using majority voting (“k out

of n” rule with k = n/2).

Figure 2.3 Probabilities of error by majority voting (2.1.1), designing the system
with fixed ηk [1] (2.1.2), designing the system simultaneously [2] (2.1.3), and designing
the system exhaustively [3] (2.1.4).

In Figure 2.3, the green curve shows the probability of error for majority voting,

the blue curve shows the probability error using the Chair and Varshney’s method

(fixed local detection). The red curve shows the probability of error using the Hoballah

and Varshney’s method (designing the whole system “simultaneously”). The black

curve shows the probability of error using the method by Acharya et al. [3] (exhaustive

search for every pair of the (finite) possible ηk and η0).

Figure 2.4 shows the ROC curves of the parallel decentralized binary fusion

architecture with several different designs. The designs that use feedback are shown

at their second time step (in other words the previous global decision was fed back
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once into the system). The blue graph and the brown graph show the ROC curve by

designing the system with fixed ηk (Chair and Varshney [1]) (ηk=0.5 in the system

shown by the blue curve, ηk=P0/P1 in the system shown by the brown curve). The

black graph shows the ROC curve by designing the whole system simultaneously

(Hoballah and Varshney [2]). The cyan graph shows the ROC curve by the design of

Acharya et al. [3]. The pink graph shows the ROC curve by designing the system

with fixed ηk and feedback (ηk=0.5) (Kam et al. [4]). The red graph shows the ROC

curve by designing the whole system simultaneously with feedback (Alhakeem and

Varshney [5]). The green curve shows the ROC curve by designing the system with

the greedy scheme of Dong and Kam [6].

As Figure 2.3 shows, the blue graph, showing the probability of error by the

design with fixed ηk (Chair and Varshney [1]), lies above the black graph (probability

of error by the design of Acharya et al. [3]) and the red graph (probability of

error by the design of Hoballah and Varshney [2]). However, the computational

complexity of the design with fixed ηk (Chair and Varshney [1]) is much lower than

the computational complexity of the design of Acharya et al. [3] and the design of

Hoballah and Varshney [2].

As Figure 2.4 shows, the introduction of feedback improves the performance of

the system (compare the design with feedback by Alhakeem and Varshney [5] to the

corresponding design without feedback by Hoballah and Varshney [2], and compare

the design with fixed ηk and feedback by Kam et al. [4] to the corresponding design

with fixed ηk and no feedback by Chair and Varshney [1]). The curves showing

the performance by the design that attempt global optimality lie above the curves

corresponding to other designs (compare the design with feedback that attempt global

optimality [5] to the corresponding design with feedback by using a greedy scheme [6],

and to the corresponding design with fixed ηk and feedback [4]; compare the design
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without feedback that attempt global optimality [2] to the corresponding design with

fixed ηk and no feedback [1]).

The graph showing the performance of the design by Acharya et al. [3] and the

graph showing the performance of the design by Hoballah and Varshney [2] almost

overlap in Figures 2.3 and 2.4. Still, the computation complexity of the “exhaustive”

design (Acharya et al. [3]) is simpler than the computational complexity of the

“simultaneous” design (Hoballah and Varshney [2]). However, the “exhaustive”

design (Acharya et al. [3]) becomes computationally inefficient when applied to a

system with non-identical LDs.

Figure 2.4 ROC curves by seven different designs, t = 2.
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CHAPTER 3

DETECTION STRATEGY FOR PARALLEL DECENTRALIZED
BINARY DECISION FUSION ARCHITECTURE

Design approaches for parallel decentralized binary decision fusion architectures are

reviewed. The concept of dependent randomization in the design is explained and

illustrated.

3.1 Deterministic Strategy

A detection strategy is deterministic if each LD uses a single deterministic local

decision rule and the DFC uses a single deterministic global decision rule. The

operating point of the system A = (PA
f , P

A
d ) is determined by the deterministic

strategy γA = {γA0 , . . . , γAn }. The corresponding operating point of the kth LD in

the system, determined by γAk , is (PA
fk, P

A
dk).

It is shown in [10] that under the assumption that the local observations

y1, . . . , yn are conditionally independent given the hypothesis H0 or H1, for satisfying

a Neyman-Pearson criterion, both γ0 and γk are likelihood ratio tests of the form

u0 = γ0(U) =

 0 Λ(U) < η0

1 Λ(U) ≥ η0,
(3.1)

uk = γk(yk) =

 0 Λ(yk) < ηk

1 Λ(yk) ≥ ηk,
(3.2)

where

Λ(x) =
P (x|H1)

P (x|H0)
. (3.3)
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η0 is the threshold of the global decision rule and ηk is the threshold of the

local decision rule of the kth LD. Under a Neyman-Pearson criterion, η0, η1, . . . ηn are

designed to maximize the probability of detection while keeping the probability of

false alarm not greater than α ∈ (0, 1).

For a parallel decentralized binary decision fusion system with n LDs, the local

decision vector U has 2n possible values, which translates into 22n possible global

decision rules. However, not every global decision rules is eligible for consideration

as a potentially optimal decision rule. According to (3.1), the global decision rule is

a likelihood ratio test and u0 is a non-decreasing function of Λ(U). Thomopoulos et

al. [8] showed that the optimal deterministic global decision rule that satisfies the

Neyman-Pearson criterion (3.1) must be a monotonic fusion rule (per Lemma 1 of [8],

function d). A fusion rule is monotonic if, for every combination of local decisions

U = {u1, . . . , un}, switching one of the local decision from 0 to 1 can only cause the

global decision u0 to switch from u0 = 0 to u0 = 1 and not from u0 = 1 to u0 = 0.

An algorithm that calculates all the monotonic fusion rules of a system with n LDs is

provided in [19]. Since some monotonic fusion rules dominate others (would always

result in better performance than others), the eligible optimal deterministic global

decision rules would be a subset of all the monotonic fusion rules.

The probability of false alarm and the probability of detection of the architecture

shown in Figure 1.1 are:

Pf = Pr(u0 = 1|H0) =
∑

Λ(U)≥η0

P (Λ(U)|H0),

Pd = Pr(u0 = 1|H1) =
∑

Λ(U)≥η0

P (Λ(U)|H1).

(3.4)
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The probability of false alarm and the probability of detection at the kth LD are:

Pfk = Pr(uk = 1|H0) =

∫
yk|Λ(yk)≥ηk

P (yk|H0)dyk,

Pdk = Pr(uk = 1|H0) =

∫
yk|Λ(yk)≥ηk

P (yk|H1)dyk.

(3.5)

When all the local operating points (Pfk, Pdk), k = 1, . . . , n are known, then

(3.4) can be written as ([18, pp. 567–568]):

Pf =
1∑

u1=0

. . .
1∑

un=0

n∏
k=1

P uk
fk (1− Pfk)(1−uk) ×U−1(

n∏
k=1

(
Pdk
Pfk

)uk(
1− Pdk
1− Pfk

)(1−uk) − η0),

Pd =
1∑

u1=0

. . .
1∑

un=0

n∏
k=1

P uk
dk (1− Pdk)(1−uk) ×U−1(

n∏
k=1

(
Pdk
Pfk

)uk(
1− Pdk
1− Pfk

)(1−uk) − η0),

(3.6)

where U−1(.) is the unit step function:

U−1(x) =

 0 x < 0

1 x ≥ 0
. (3.7)

In (3.6), the unit step function provides the global decision u0 for a given local decision

set U = {u1, . . . , un}.

If the local operating points are identical, (Pfk, Pdk) = (pf, pd), k = 1, . . . , n,

the global decision rule (3.1) becomes a “k out of n” rule, which means if k or more

LDs in the system decide ‘1’, then u0 = 1; otherwise, u0 = 0. In this circumstance,
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the probability of false alarm and the probability of detection at the DFC are:

Pf =
n∑
k

(
n

k

)
pfk(1− pf)(n−k)

Pd =
n∑
k

(
n

k

)
pdk(1− pd)(n−k).

(3.8)

There are two cases of finding a deterministic strategy, depending on the local

observation.

3.1.1 Local observations contain no point masses of probability

Hoballah and Varshney [7] studied this case, using a Person-by-Person optimization

(PBPO) approach to synthesize γ0 and γk in (3.1) and (3.2). Acharya et al. [3]

proposed a method for solving for the optimal γ0 and γk simultaneously when the

LDs are identical.

3.1.2 Local observations contain point masses of probability

if the local observations are discrete and finite, the probability distribution of the

local observations contain point masses of probability. In this case a finite set of

local operating points {(Pf1, Pd1), . . . , (Pfn, Pdn)} corresponds to the finite set of local

decision rules {γ1, . . . , γn}. For each combination of a monotonic global fusion rule and

local operating points, the operating point of the system (Pf , Pd) can be calculated by

using (3.6). Then all the operating points of the system can be calculated by running

a search on all the combinations of a monotonic global fusion rule and local operating

points and find the optimal deterministic strategy satisfying the Neyman-Pearson

criterion.
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3.2 The Potential of Randomization of Decision Rules

Since the vector U is finite-dimensional (and binary), Λ(U) in (3.4) has a finite number

of values, each with a corresponding probability of false alarm. The value of U that

corresponds to the highest probability of false alarm β that satisfies β ≤ α may have

a significant gap α− β compared to α.

Figure 3.1 shows the ROC curve of a system with discrete local observations

(this curve comes from the system which will be later introduced in Section 4.1). All

possible operating points of the system are shown as the blue circles. The probability

of false alarm constraint α is shown as the dash line. In this circumstance, the best

operating point is ω3 and P ω3
f < α.

Performance of the architecture of Figure 1.1 under the circumstance such as the

one described in Figure 3.1 can benefit from randomization. Randomization means

that one or more of the decision makers in the system (an LD or the DFC) is selecting

its decision rule (γk or γ0) at each time instant by selecting one rule from a finite set

of decision rules. The kth LD selects a rule from among {γ1
k, . . . , γ

i
k, . . . , γ

N
k }, for

some positive integer N . The rule γik is selected with probability pik and
∑N

i=1 p
i
k = 1.

The DFC selects a rule from among {γ1
0 , . . . , γ

i
0, . . . , γ

M
0 }, where γi0 is selected with

probability pi0 and
∑M

i=1 p
i
0 = 1. Randomization will be considered when the specified

probability of false alarm constraint α is not achievable by a deterministic strategy

(such as in Figure 3.1) or when the deterministic strategy achieves the values of false

alarm constraint α but the system’s ROC curve is not concave.

It is possible that only the DFC employs randomization (e.g., [8][9][20][21])

or that a subset of the of LDs and the DFC employ randomization (independently

or dependently). The term “dependent randomization” is used when both the LDs

and the DFC employ randomization, and when, in addition, their switching between

decision rules is coordinated and synchronized ([10][20][12]).
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Figure 3.1 Deterministic strategy with isolated operating points.

Figure 3.2 Randomization can improve detection performance by ‘connecting’ the
isolated operating points.

One possible design has the system of Figure 1.1 operate at one of two operating

points, A and B. At each time step, one of the two is selected (A with probabilities

20



p and B with probability 1− p). “Operation at point A” means that the DFC selects

γA0 and simultaneously each LD (k = 1, 2, . . . , n) selects γAk . “Operation at point B”

means that the DFC selects γB0 and simultaneously each LD (k = 1, 2, . . . , n) selects

γBk . By changing the value of p, the system can effectively operate anywhere along the

line segment that connects A and B (every combinations of (Pf , Pd) along this line

segment is realizable). The operating point generated by the randomized strategy is

denoted as C = (PC
f , P

C
d ), where

PC
f = pPA

f + (1− p)PB
f , (3.9)

PC
d = pPA

d + (1− p)PB
d . (3.10)

Satisfying the constraint on the probability of false alarm requires PC
f ≤ α.

When PC
f = α, the probability of selecting point A, p, is

p =
PB
f − α

PB
f − PA

f

. (3.11)

If γALD = γBLD (γAk = γBk for all k), the randomization occurs only at the DFC. If

γALD 6= γBLD and the selection of operating at point A and point B is coordinated and

synchronized between the LDs and the DFC, then the scheme is known as dependent

randomization.

Figure 3.2 shows how randomization connects the isolated operating points

shown in the ROC curve of Figure 3.1. For example, randomization allows the system

to operate at point C, rather than at ω3, thereby achieving a a higher probability

of detection while not violating the constraint on probability of false alarm. The
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red curve is the ROC curve of the system employing randomization, which consists

of straight line segments connecting all the previously-isolated operating points (the

blue circles). In this example, to achieve the highest probability of detection subject

to Pf ≤ α, A = ω3 and B = ω4 are selected. The operating point C achieved by

randomization is shown as the black circle. PC
f = α = pP ω3

f + (1 − p)P ω4
f while p is

calculated by (3.11).

3.2.1 Randomization at the DFC only

The authors of [8][9][20][21][22] studied strategies requiring that the DFC implement

randomization, when the local decision rules are deterministic (γAk = γBk = γk,∀k).

Each local decision rule is of the form (3.2). The DFC selects either γA0 or γB0 at each

time step.

Thomopoulos et al. ([8]) showed that under a Neyman-Pearson criterion, a

desired value of global false alarm α, can always be achieved by a strategy with

randomization at the DFC ([8]). In [9] and [22] examples were presented to show

that a strategy with randomization at the DFC is able to achieve higher probability

of detection than the one achieved by a deterministic detection strategy.

3.2.2 Dependent randomization

In dependent randomization (or “a scheduled test” as it is called in [20]), both the

DFC and the LDs participate in the randomization. At each time step, the system

makes a selection between two deterministic strategies, γA = {γA0 , . . . , γAn } and γB =

{γB0 , . . . , γBn } ([10][20][12]). The system can operate on the line segment connecting

any two operating points realizable by the deterministic strategy. The ROC curve of

the system with dependent randomization is the upper boundary of the convex hull

of all the operating points achieved by the deterministic strategy. In other words,

dependent randomization can make ROC curve of the system concave.

22



Dependent randomization requires a coordinated action between the DFC and

the LDs. The DFC and the LDs would switch simultaneously together, back and

forth, between γA0 (for the DFC) and γALD = {γA1 , . . . , γAn } (for the LDs); and γB0 (for

the DFC) and γBLD = {γB1 , . . . , γBn } (for the LDs). This synchronization challenge

is discussed in [10, p. 301][21][12]. Among the means to achieve synchronization

between the DFC and the LDs is the use of identical pseudo-code generators (or

stored sequences of identical pseudo-code) at the DFC and the LDs simultaneously.

Strategy with randomization at the DFC only (Section 3.2.1) can be considered

as a special case of dependent randomization, with γALD = γBLD. Randomization at

the DFC only does not require synchronization between the DFC and the LDs but it

does not necessarily result in a concave team ROC curve.

Table 3.1 summarizes the input and output of three different designs of a parallel

decentralized binary decision fusion system of Figure 1.1.

Table 3.1 Input and Output of Three Different Designs of a Parallel Decentralized
Binary Decision Fusion System of Figure 1.1 under a Neyman-Pearson Criterion

Input for the design

1. The number of local detectors, n

2. The probability of false alarm constraint, α

3. Conditional probability distributions of the local observations, P (yk|H0) and P (yk|H1), k = 1, . . . , n

Output of a design

Deterministic

strategy

1. One global operating point (Pf , Pd)

2. The corresponding local operating points, (Pfk, Pdk), k = 1, . . . , n

Randomization

at the DFC

only

1. Two global operating points A = (PA
f , P

A
d ) and

B = (PB
f , P

B
d )

2. The corresponding local operating points of

A and B: (PA
fk, P

A
dk) and (PB

fk, P
B
dk), k = 1, . . . , n

3. The probability of selecting A, p, calculated by (3.11)

4. The operating point C = (PC
f , P

C
d ), calculated by

(3.9) and (3.10)

The local operating points at A

and B are identical

(PA
fk, P

A
dk) = (PB

fk, P
B
dk), k =

1, . . . , n

Dependent

randomization

The local operating points at A

and B are different

(PA
fk, P

A
dk) 6= (PB

fk, P
B
dk), k =

1, . . . , n
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CHAPTER 4

TWO EXAMPLES OF PARALLEL DECISION FUSION

Two examples, one with two local detectors and one with three local detectors, are

provided throughout the study to illustrate performance of the parallel decentralized

binary decision fusion architecture under different strategies.

4.1 Example 1: A 2-LD System with Continuous Local Observations

A system with two LDs (n = 2) is considered. The local observations are identical

logistic random variables (as done in [20]). The conditional probability distribution

of the local observations are:

P (yk|H0) =
1

4
sech2(

yk
2

),

P (yk|H1) =
1

4
sech2(

yk − 2.5

2
)

(4.1)

The operating point (Pfk, Pdk) of the kth LD (k = 1, 2) can be calculated as:

Pfk =

∫ ∞
τk

1

4s
sech2(

yk
2

)dyk =
1

2
− 1

2
tanh(

τk
2

),

Pdk =

∫ ∞
τk

1

4s
sech2(

yk − 2.5

2
)dyk =

1

2
− 1

2
tanh(

τk − 2.5

2
),

(4.2)

where τk is a function of yk:

τk = yk|Λ(yk)=ηk . (4.3)
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The system is designed under a Neyman-Pearson criterion with α = 0.2009.

The nontrivial (monotonic) global decision rules are the AND rule (u0 = u1&u2)

and the OR rule (u0 = u1|u2) [20]. For each global decision rule, the operating

points of the two LDs are identical, (Pf1, Pd1) = (Pf2, Pd2). The system operating

points can be shown to be: (Pf , Pd) = ((Pf1)2, (Pd1)2) under the AND rule; and

(Pf , Pd) = ((Pf1)2 + 2Pf1(1− Pf1), (Pd1)2 + 2Pd1(1− Pd1)) under the OR rule.

In Figure 4.1, the ROC curves of this system, using the AND rule and the OR

rule, are shown in red and blue, respectively. The ROC curve of the AND rule is

given by

Pd = (
1

2
− 1

2
tanh

βAND − 2.5

2
)2,where

βAND = ln

√
Pf − Pf
Pf

.

(4.4)

The ROC curve of the OR rule is given by

Pd = 1− (
1

2
+

1

2
tanh

βOR − 2.5

2
)2,where

βOR = ln
1 +

√
1− Pf − Pf
Pf

.

(4.5)

Although the two individual ROC curves are both concave, the team ROC curve

of the system (which is the upper boundary of the two curves) is not. The point of

intersection of the two ROC curves is O = (PO
f , P

O
d ) = (0.1859, 0.8141).

Referring to Figure 4.1, if the 2-LD system uses a deterministic strategy to

achieve the highest possible Pd, then the DFC employs an AND rule when the desired

α is less than or equal to PO
f and employs an OR rule when the the desired α is greater

than PO
f .
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Referring to Figure 4.2 (which shows the ROC curve for Pf ∈ [0.14, 0.28]), let A

be the point where the common tangent of the two ROC curves touches the “AND

rule ROC curve.” let B be the point where the common tangent of the two ROC

curves touches the “OR rule ROC curve.” If the maximum allowable value of the

probability of false alarm, α, satisfies PA
f < α < PB

f , then dependent randomization

would be useful. The ROC curve of the system with dependent randomization as

the black curve. In Figure 4.2, for the 2-LD system, the points of tangency are A =

(PA
f , P

A
d ) = (0.1581, 0.7870) on the “AND rule ROC curve” and B = (PB

f , P
B
d ) =

(0.2437, 0.8652) on the “OR rule ROC curve.” The system operates at A when both

LDs operate at (PA
f1, P

A
d1) = (PA

f2, P
A
d2) = (0.3976, 0.8871) and simultaneously the

DFC uses the AND rule. The system operates at B when both LDs operate at

(PB
f1, P

B
d1) = (PB

f2, P
B
d2) = (0.1304, 0.6328) and simultaneously the DFC uses the OR

rule. To make the team ROC curve concave, dependent randomization is applied

whenever the desired probability of false alarm α satisfies 0.1581 = PA
f < α < PB

f =

0.2437. In this range, at each time step the system operates at A with probability

p and at B with probability 1 − p. The equivalent operating point C on the line

segment AB is provided by (3.9) and (3.10). Otherwise, if α < PA
f the AND rule is

used, and if PB
f < α the OR rule is used.

Figure 4.2 shows the operating points of the 2-LD system employing different

detection strategies. The blue circle G = (PG
f , P

G
d ) = (0.2009, 0.8217) is the operating

point of the system employing deterministic strategy. The system operates at G when

both LDs operate at (PG
f1, P

G
d1) = (PG

f2, P
G
d2) = (0.4482, 0.9065) and the DFC uses the

AND fusion rule.

In this case the operating point achieved by the system employing Randomization

at the DFC only is also G.

The value of α (α = 0.2009) in this case satisfies 0.1581 = PA
f < α < PB

f =

0.2437. Therefore, dependent randomization can improve the probability of detection
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Table 4.1 Input and Output of Three Different Designs of a 2-LD System

Input for the design

1. The number of local detectors, n = 2

2. The probability of false alarm constraint, α = 0.2009

3. Conditional probability distributions of the local observations, P (yk|H0) and P (yk|H1), k = 1, 2, shown in (4.1)

Output of a design

Deterministic

strategy

1. System operating point G = (PG
f , PG

d ) = (0.2009, 0.8217)

2. The system operates at G when both LDs operate at (PG
f1, P

G
d1) = (PG

f2, P
G
d2) = (0.4482, 0.9065)

and the DFC uses the AND fusion rule

Randomization

at the DFC

Same as deterministic strategy

(Randomization at the DFC does not improve the system performance since the local observations

are continuous)

Dependent

randomization

1. Two operating points A = (PA
f , P

A
d ) = (0.1581, 0.7870) and B = (PB

f , P
B
d ) = (0.2437, 0.8652)

2. The system operates at A when both LDs operate at (PA
f1, P

A
d1) = (PA

f2, P
A
d2) = (0.3976, 0.8871)

and the DFC uses the AND fusion rule

The system operates at B when both LDs operate at (PB
f1, P

B
d1) = (PB

f2, P
B
d2) = (0.1304, 0.6328)

and the DFC uses the OR fusion rule

3. The probability of selecting A is p = 0.5

4. The resulting operating point is C = (PC
f , PC

d ) = (0.2009, 0.8261)

of the system at that value of α. The black circle C = (PC
f , P

C
d ) = (0.2009, 0.8261) is

the operating point of the system employing dependent randomization. C is generated

by operating at A = (PA
f , P

A
d ) = (0.1581, 0.7870) with probability p = 0.5 and at

B = (PB
f , P

B
d ) = (0.2437, 0.8652) with probability 1 − p = 0.5. p = 0.2437−0.2009

0.2437−0.1581
,

calculated by (3.11).

Under the Neyman-Pearson criterion with α = 0.2009, the input and output of

three different designs of the 2-LD system (corresponding to Table 3.1) are shown in

Table 4.1. As shown in Table 4.1, dependent randomization is able to increase the

probability of detection from Pd = 0.8217 to Pd = 0.8261 with the same probability

of false alarm Pf = 0.2009.
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Figure 4.1 The ROC curves of the 2-LD system when the DFC uses an AND rule
(red curve) and when it uses an OR rule (blue curve). The upper boundary of the
two curves is the ROC curve of the system with deterministic strategy.

Figure 4.2 The operating points of the 2-LD system employing different detection
strategies (α = 0.2009): (a) deterministic strategy (and randomization at the DFC)
(blue circle); (b) dependent randomization (black circle).
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4.2 Example 2: A 3-LD System with Discrete Local Observations

A 3-LD implementation of the structure shown in Figure 1.1 (n = 3) is considered.

The local observations of the three LDs in the system have identical discrete

probability distributions, as shown in Figure 4.3, where the conditional probabilities

P (yk|Hi) are given for k = 1, 2, 3 and i = 0, 1.

Figure 4.3 The conditional probability distributions of the local observations.

The local observations are assumed to be statistically independent, conditioned

on the hypothesis. From Figure 4.3, each LD has four distinct local decision rules,

corresponding to four distinct local observation thresholds, τ1 (anywhere in the range

τ1 < 0), τ2 (0 < τ2 < 1), τ3 (1 < τ3 < 2), τ4 (τ4 > 2). At the kth LD, k = 1, 2, 3,

if τ1 is used, Pfk = 1, Pdk = 1; if τ2 is used, Pfk = 0.2, Pdk = 0.7; if τ3 is used,

Pfk = 0.1, Pdk = 0.6; if τ4 is used, Pfk = 0, Pdk = 0. Each LD therefore has four

possible local operating points (Pfk, Pdk), which are (0, 0), (0.1, 0.6), (0.2, 0.7), and

(1, 1).

4.2.1 Deterministic strategy (Section 3.1)

A 3-LD system has 20 monotonic global decision rules, which are shown in Table 4.2.

Since each LD has four (4) possible operating points, there are 43 = 64 combinations

of local operating points. Overall, the system has 43 · 20 = 1280 operating points.

Since some operating points coincide with others the total number is less than 1280.

29



Table 4.2 All Twenty Monotonic Fusion Rules of the 3-LD System in Section 4.2
and the Corresponding Pf , Pd when α = 0.1708

α = 0.1708 γ10 γ20 γ30 γ40 γ50 γ60 γ70 γ80 γ90 γ100 γ110 γ120 γ130 γ140 γ150 γ160 γ170 γ180 γ190 γ200

(u1, u2, u3) u0

(0,0,0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(0,0,1) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1

(0,1,0) 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1

(1,0,0) 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1

(0,1,1) 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1

(1,0,1) 0 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1

(1,1,0) 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1

(1,1,1) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Pf 0 0.1 0.104 0.136 0.1 1

Pd 0 0.6 0.784 0.796 0.6 1

Figure 4.4 shows all the distinct operating points of the 3-LD system with

deterministic strategy. Since the distribution of the local observations in this example

is discrete, the operating points of the system with deterministic strategy are isolated.

As a result, in most circumstances the given probability of false alarm constraint α

may not be achievable and the system will have to operate at a lower (realizable) rate

of probability of false alarm in order not to violate the constraint Pf ≤ α. The ROC

curve of the system has a the staircase form (the blue curve in Figure 4.5). Clearly,

this ROC curve is not concave.

4.2.2 Strategy with randomization at the DFC only (Section 3.2.1)

Randomization at the DFC allows the system to operate on the line segments

connecting the operating points which are generated by same combination of local

operating points. For this 3-LD system, there are overall 43 = 64 combinations of

local operating points.

When the local operating points are fixed, since there is finite number of

monotonic global decision rules, the operating points of the system would be discrete.

The authors of [12] point out that under this circumstance (fixed local operating
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Figure 4.4 All the operating points of the system with deterministic strategy (blue
circles).

Figure 4.5 The team ROC curve of the system with the deterministic strategy.

points) the ROC curve of the system of Figure 1.1 is a concave piecewise linear

curve (i.e., the upper boundary of the convex hull of the discrete operating points
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is piecewise linear concave). Figure 4.6 shows the ROC curve of the 3-LD system

when all three LDs operates at (0.1, 0.6) (which is one of the 64 combinations of local

operating points). The blue circles are the operating points of the system employing

deterministic fusion rules. The red curve is the concave piecewise linear ROC curve

of the 3-LD system when the DFC employs randomization.

Figure 4.7 shows all the ROC curves of the system when the DFC applies

randomization at each one of the 64 combinations of the local operating points.

Each ROC curve in Figure 4.7, corresponding to one of the 64 combinations of local

operating points, is concave piecewise linear (some ROC curves may coincide with

others). In Figure 4.7, all the operating points that were used to generate the 64 ROC

curves are shown as blue circles. Figure 4.8 shows the team ROC curve of the system

with DFC randomization (red piecewise linear curve). It is the upper boundary of

all the ROC curves in Figure 4.7. Figure 4.8 also shows the team ROC curve of the

system with deterministic strategy (blue). Neither ROC is concave.

4.2.3 Dependent randomization (Section 3.2.2)

Dependent randomization allows the system to operate on the line segment connecting

any two operating points generated by deterministic strategy. Therefore the ROC

curve of the system with dependent randomization is the upper boundary of the

convex hull of all the operating points in Figure 4.4.

Figure 4.9 shows the team ROC curves of the systems with three different

detection strategies: (a) deterministic strategy (blue); (b) randomization at the DFC

(red); (c) dependent randomization (black). Only the last one is concave. The

ROC curve of the strategy with dependent randomization “covers” the ROC curve

of the strategy with randomization at the DFC; the ROC curve of the strategy with

randomization at the DFC “covers” the ROC curve of the deterministic strategy. As

expected, dependent randomization performs at least as well as the strategy with
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Figure 4.6 The operating points (blue circles) and the ROC curve (red curve) of
the 3-LD system when all three LDs operates at (0.1, 0.6). When the local operating
points are fixed, the ROC curve of the system employing randomization at the DFC
is a concave piecewise linear curve.

randomization at the DFC; the strategy with randomization at the DFC performs at

least as well as the deterministic strategy.

Figure 4.10 shows the operating points of the 3-LD system employing three

different strategies: (a) deterministic strategy (G = (0.1360, 0.7960), blue circle);

(b) randomization at the DFC (E = (0.1708, 0.8208), red circle); (c) deterministic

strategy (C = (0.1708, 0.8448), black circle) under a Neyman-Pearson criterion with

the probability of false alarm constraint α = 0.1708. Table 4.2 shows the probability

of false alarm and the probability of detection of the 3-LD system for the 20 applicable

monotonic fusion rules (γ1
0 to γ20

0 ).

The operating point of the system employing deterministic strategy, G, can

be achieved by using three different deterministic strategies: (a) the LDs operate at

{(0.1, 0.6), (0.2, 0.7), (0.2, 0.7)} while the DFC uses the fusion rule γ13
0 ; (b) the LDs

operate at {(0.2, 0.7), (0.1, 0.6), (0.2, 0.7)} while the DFC uses the fusion rule γ14
0 ; (c)
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Figure 4.7 All the ROC curves of the system when applying the strategies with
randomization at the DFC only (each ROC curve connects the operating points if
they correspond to the same local operating points).

Figure 4.8 The team ROC curves of the deterministic strategy (blue) and the
strategy with randomization at the DFC only (red).
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Figure 4.9 The team ROC curves of the systems with (a) dependent randomization
(black); (b) randomization at the DFC only (red); (c) deterministic strategy (blue).

the LDs operate at {(0.2, 0.7), (0.2, 0.7), (0.1, 0.6)} while the DFC uses the fusion rule

γ15
0 .

The operating point of the system employing randomization at the DFC, E, can

be achieved when the system operates at point (0.1180, 0.768) with probability 0.2667

and operating at point (0.1900, 0.8400) with probability 0.7333. These two points used

for achieving E are generated when the LDs operate at (0.2, 0.7), (0.2, 0.7), (0.1, 0.6).

The DFC can use the fusion rule γ14
0 to achieve point (0.1180, 0.7680) and use the

fusion rule γ16
0 to achieve point (0.1900, 0.8400).

The operating point of the system employing dependent randomization C =

(0.1708, 0.8448) is achieved when the system operates at A = (0.104, 0.784) with

probability p = 0.6 and atB = (0.271, 0.936) with probability 1−p = 0.4, respectively.

A is achieved when all 3 LDs operate at (0.2, 0.7), i.e. (Pfk, Pdk) = (0.2, 0.7), k =

1, 2, 3, and the DFC uses a “2 out of 3 rule” (γ12
0 ) (namely, if any two LDs or more

decide 1, then u0 = 1; otherwise u0 = 0). B is achieved when all 3 LDs operate at
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(0.1, 0.6), i.e. (Pfk, Pdk) = (0.1, 0.6), k = 1, 2, 3, and the DFC uses a “1 out of 3 rule”

(γ19
0 ) (namely, if any one LD or more decides 1, then u0 = 1; otherwise u0 = 0.

Under the Neyman-Pearson criterion with α = 0.1708, the input and output of

three different designs of the 3-LD system (corresponding to Table 3.1) are shown in

Table 4.3.

Table 4.3 Input and Output of Three Different Designs of a 3-LD System

Input for the design

1. The number of local detectors, n = 3

2. The probability of false alarm constraint, α = 0.1708

3. Conditional probability distributions of the local observations,

P (yk|H0) and P (yk|H1), k = 1, 2, 3, shown in Figure 4.3

Output of a design

Deterministic

strategy

1. System operating point G = (PG
f , PG

d ) = (0.1360, 0.7960)

2. One way to achieve G is that the LDs operate at {(0.1, 0.6), (0.2, 0.7), (0.2, 0.7)}

while the DFC uses the fusion rule γ130

Randomization

at the DFC

1. Two operating points A = (PA
f , P

A
d ) = (0.1180, 0.7680) and B = (PB

f , P
B
d ) = (0.1900, 0.8400)

2. When the LDs operate at (0.2, 0.7), (0.2, 0.7), (0.1, 0.6), the DFC can

use the fusion rule γ140 to achieve point A = (0.1180, 0.7680) and

use the fusion rule γ160 to achieve point B = (0.1900, 0.8400).

3. The probability of selecting A is p = 0.2667

4. The resulting operating point is E = (PE
f , PE

d ) = (0.1708, 0.8208)

Dependent

randomization

1. Two operating points A = (PA
f , P

A
d ) = (0.104, 0.784) and B = (PB

f , P
B
d ) = (0.271, 0.936)

2. A is achieved when (Pfk, Pdk) = (0.2, 0.7), k = 1, 2, 3, and the DFC uses a “2 out of 3 rule” (γ120 )

B is achieved when (Pfk, Pdk) = (0.1, 0.6), k = 1, 2, 3, and the DFC uses a “1 out of 3 rule” (γ190 )

3. The probability of selecting A is p = 0.6

4. The resulting operating point is C = (PC
f , PC

d ) = (0.1708, 0.8448)
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Figure 4.10 The operating points of the 3-LD system employing different detection
strategies under the Neyman-Pearson criterion with probability of false alarm
constraint α = 0.1708: (a) deterministic strategy (blue circle); (b) randomization
at the DFC (red circle); (c) dependent randomization (black circle). The ROC curves
of the 3-LD system employing different strategies: (a) deterministic strategy (blue);
(b) randomization at the DFC (red); (c) dependent randomization (black).
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CHAPTER 5

LOSS OF SYNCHRONIZATION BETWEEN THE DFC AND THE
GROUP OF LDS

In this chapter, the consequences are studied of the loss of synchronization between

the DFC and the group of local detectors in a parallel decentralized binary decision

fusion architecture employing dependent randomization.

5.1 Effect of Synchronization Loss (DFC)

Dependent randomization assumes synchronization between all the LDs and the DFC.

When this synchronization is lost, unless a corrective action is taken, the system may

exceed the allowed probability of false alarm α for which it was designed under a

Neyman-Pearson criterion. In this chapter, the corrective action, to be taken upon

synchronization loss, is proposed and demonstrated.

The approach to corrective action will be demonstrated on the 2-LD example

in Section 4.1 (also looked at in [21]). The ROC curves for the AND rule and the

OR rule are shown in Figures 5.1 and 5.2 (also see Figure 4.1). Recall that A and

B are, respectively, the points of tangency of the original AND rule and OR rule

ROC curves. The two LDs are assumed to be synchronized with each other, while

the synchronization between the DFC and the group of LDs was lost. Under these

circumstances, the DFC selects γA0 with probability p and γB0 with probability 1− p.

The group of LDs select γA1 , . . . , γ
A
n with probability p and γB1 , . . . , γ

B
n with probability

1− p. However the DFC selection is not coordinated with the selection of the group

of LDs. There are four possible detection strategies: (γA0 , γ
A
LD), (γB0 , γ

B
LD), (γB0 , γ

A
LD),

and (γA0 , γ
B
LD). They correspond, respectively, to the four operating points A, B,

M1 and M2, shown by green circles in Figure 5.1. Operating point A is selected

with probability p2, operating point B is selected with probability (1− p)2, operating
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point M1 is selected with probability (1 − p)p, operating point M2 is selected with

probability p(1− p).

Let W ∗ represent an equivalent operating point which results from this

combination. It is a weighted average of the four points A, B, M1 and M2. For

this operating point W ∗, the probability of false alarm PW ∗

f and the probability of

detection PW ∗

d are

PW ∗

f = p2PA
f + (1− p)2PB

f + (1− p)pPM1
f + p(1− p)PM2

f , (5.1)

PW ∗

d = p2PA
d + (1− p)2PB

d + (1− p)pPM1
d + p(1− p)PM2

d . (5.2)

In Figure 5.1, the operating point W ∗ is shown as a cyan circle. It is possible that

PW ∗

f > α, where α was the upper bound for the system’s probability of false alarm.

A special case occurs when the global fusion rules at point A and point B are

the same, γA0 = γB0 . In this case, the DFC does not participate in the randomization.

Points A and M1 would be the same; points B and M2 would be the same. The

operating point W ∗ = (PW ∗

f , PW ∗

d ), calculated by (5.1) and (5.2), would be exactly

the operating point of the system employing dependent randomization (without losing

synchronization), C = (PC
f , P

C
d ), calculated by (3.9) and (3.10). No corrective action

is needed in this situation. In all other cases, a corrective action by the DFC may

help.
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Figure 5.1 A, B, M1 and M2, shown by green circles, are the possible operating
points of the 2-LD system (Section 4.1) when the synchronization between the
LDs and the DFC is lost. The black circle, C, shows the operating point of the
synchronized system. The cyan circle, W ∗, shows the equivalent operating point of
the system when it lost synchronization. C∗ is the equivalent operating point after
the corrective action is taken.

Figure 5.2 Zooming in on the ROC curve of the 2-LD system employing dependent
randomization.
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5.2 Corrective Action after the Group of LDs Lost Synchronization

with the DFC

If the DFC realizes that the synchronization with the group of LDs was lost, it may

have the opportunity to take a corrective action to try to satisfy the probability of

false alarm constraint Pf ≤ α. The DFC can do so by changing the probability of

selecting point A from p to a certain q, 0 ≤ q ≤ 1. Let the DFC choose γA0 with

probability q (which may be different from p that was used for (5.1) and (5.2)) and

γB0 with probability 1− q. A new operating point C∗ = (PC∗

f , PC∗

d ) is created with:

PC∗

f = pqPA
f + (1− p)(1− q)PB

f + p(1− q)PM1
f + (1− p)qPM2

f , (5.3)

PC∗

d = pqPA
d + (1− p)(1− q)PB

d + p(1− q)PM1
d + (1− p)qPM2

d . (5.4)

The role of p in (5.3) and (5.4) is due to the continued use of the probability

p (calculated before the loss of synchronization) to select the local decision rules at

the operating point A by the LDs. The role of q is due to the selection of the global

decision rule at the operating point A by the DFC with probability q (calculated after

the loss of synchronization).

Let Q0 be the operating point when q = 0 and Q1 be the operating point when

q = 1:

PQ0

f (q = 0) = (1− p)PB
f + pPM1

f . (5.5)

PQ0

d (q = 0) = (1− p)PB
d + pPM1

d . (5.6)
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PQ1

f (q = 1) = pPA
f + (1− p)PM2

f . (5.7)

PQ1

d (q = 1) = pPA
d + (1− p)PM2

d . (5.8)

Q0 is located on the line segment connecting B and M1; Q1 is located on the line

segment connecting A and M2. Both PC∗

f and PC∗

d are affine functions of q (see (5.3)

and (5.4)). By changing the value of q from 0 to 1, the system operating point will

move from Q0 to Q1. Both W ∗ and C∗ are located on the line segment connecting

Q0 and Q1. By selecting an appropriate value of q to determine C∗, the probability

of false alarm constraint Pf ≤ α may still be satisfied by point C∗ (shown by cyan

square in Figure 5.1), but with a lower probability of detection (PC∗

d ) compared to

PC
d (that was calculated for the synchronized system, see (3.9) and (3.10)).

The value of q, the new probability that determines how the DFC hops between

γA0 and γB0 , can be derived from (5.3) and (5.4):

q =
PQ0

f − α
PQ0

f − P
Q1

f

=
[PB
f − p(PB

f − PM1
f )]− α

[PB
f − p(PB

f − PM1
f )]− [PM2

f + p(PA
f − PM2

f )]
. (5.9)

It is usable only if 0 ≤ q ≤ 1. Otherwise, a corrective action is not possible.

Recall that before the synchronization is lost, dependent randomization would

be useful if the probability of false alarm constraint α ∈ (PA
f , P

B
f ) (assuming PB

f >

PA
f ). Satisfying the probability of false alarm constraint after losing synchronization

(when the DFC selects γA0 with probability q) requires that α ≥ PQ0

f if PQ0

f < PQ1

f ;

or α ≥ PQ1

f if PQ1

f ≤ PQ0

f .
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Using (5.9), the conditions on the new probability of randomization at the DFC

q which satisfies PC∗

f < α after the loss of synchronization are summarized in Table

5.1.

Table 5.1 Conditions on q (Probability that the DFC Selects γA0 ) to Satisfy the
Neyman-Pearson Constraint after the DFC Loses Synchronization with the LDs
Group

Value of α Existence of q Value of PC∗
f

PQ0
f < PQ1

f

α ∈ (−∞, PQ0
f ) q does not exist -

α ∈ [PQ0
f , PQ1

f ] q ∈ [0, 1] PC∗
f = α

α ∈ (PQ1
f ,∞) q = 1 PC∗

f = PQ1
f

PQ0
f ≥ PQ1

f

α ∈ (−∞, PQ1
f ) q does not exist -

α ∈ [PQ1
f , PQ0

f ] q ∈ [0, 1] PC∗
f = α

α ∈ (PQ0
f ,∞) q = 0 PC∗

f = PQ0
f

So far the 2-LD example in Section 4.1 has been referred. In the general case,

points A and B reside on two different ROC curves (each one corresponds to a different

decision rule of the DFC). A represents the deterministic operating point of the

system with one of the possible deterministic strategy γA (the one that corresponds to

(PA
f , P

A
d )). B represents the deterministic operating point of the system with one of

the possible deterministic strategy γB (the one that corresponds to (PB
f , P

B
d )). A and

B reside on the joint tangent to the two ROC curves, and represent the end points of

a line segment on which an operating point resides that satisfies a probability of false

alarm constraint α (PA
f < α < PB

f ) while maximizing the probability of the detection

using dependent randomization. When the synchronization between the DFC and

the LDs is lost, the system can satisfy the probability of false alarm constraint α by

assigning a new probability of randomization for the DFC, q (calculated by (5.9)).

5.3 Numerical Examples

5.3.1 2-LD system

The design input and output of the 2-LD system employing dependent randomization

with α = 0.2009 was shown in Table 4.1. When the DFC lost synchronization with
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the LDs group in the 2-LD system employing dependent randomization, the input

and output of the redesign algorithm are shown in Table 5.2 and Figure 5.1. Before

the loss of synchronization the system operated at C = (0.2009, 0.8261) (Table 4.1).

After the loss of synchronization the system operates at C∗ = (0.2009, 0.7005).

In Figure 5.1, the black curve is the ROC curve of the 2-LD example in Section

4.1 when using dependent randomization. It comprises (from left to right) a segment

that corresponds to the AND fusion rule at the DFC (left of point A); a straight line

segment AB which is a common tangent of the ROC curves for the AND and OR

fusion rules at the DFC; and a segment (to the right of point B) that corresponds

to the OR fusion rule at the DFC. When α = 0.2009, the operating point of the

system is C = (PC
f , P

C
d ) = (0.2009, 0.8261), shown by the black circle. Point C

is generated by operating at A = (PA
f , P

A
d ) = (0.1581, 0.7870) with probability

p = 0.5 and at B = (PB
f , P

B
d ) = (0.2437, 0.8652) with probability 1 − p = 0.5 (p

was calculated using (3.11)). According to Section 4.1, the system operates at A

when both LDs operate at (PA
f1, P

A
d1) = (PA

f2, P
A
d2) = (0.3976, 0.8871) and the DFC

uses the AND fusion rule. The system operates at B when both LDs operate at

(PB
f1, P

B
d1) = (PB

f2, P
B
d2) = (0.1304, 0.6328) and the DFC uses the OR fusion rule.

When the synchronization between the LDs group and the DFC is lost, the system

may also operates (see Figure 5.1) at M1 = (PM1
f , PM1

d ) = (0.6371, 0.9873) and

M2 = (PM2
f , PM2

d ) = (0.0170, 0.4004). The operating point of the non-synchronized

system is W ∗ = (PW ∗

f , PW ∗

d ) = (0.2640, 0.7600), which can be calculated by equations

(5.1) and (5.2). The probability of false alarm of the non-synchronized system

PW ∗

f = 0.2640 exceeds the α = 0.2009 constraint. When the DFC realizes that

synchronization was lost, the DFC can change the probability of randomization from

p to q to satisfy the constraint on α. In this situation the system is moved to

C∗ = (0.2009, 0.7005), calculated by (5.3) and (5.4). The corresponding q = 0.6787

is calculated by (5.9). The DFC needs to run a random selection (with probability
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Table 5.2 The Output of the 2-LD System Employing Dependent Randomization
when the DFC Lost Synchronization with the LDs Group before and after a Corrective
Action is Taken

Output of the non-synchronized 2-LD system before the corrective action is taken (α = 0.2009)

1. The probability of false alarm constraint, α = 0.2009

2. The probability of selecting A, p = 0.5, calculated by (3.11)

3. Four possible operating points when the DFC lost synchronization with the LDs group,

A = (0.1581, 0.7870), B = (0.2437, 0.8652), M1 = (0.6371, 0.9873), and M2 = (0.0170, 0.4004).

4. The operating point of the non-synchronized system, W ∗ = (0.2640, 0.7600), calculated by (5.1) and (5.2).

Output of the non-synchronized 2-LD system after the corrective action is taken (α = 0.2009)

1. The new probability for the DFC selecting γA0 , q = 0.6787, calculated by (5.9)

2. The fulfillment of the prerequisite of the correction action, 0 < q < 1

3. The operating point of the non-synchronized system after the corrective action is taken, C∗ = (0.2009, 0.7005),

calculated by (5.3) and (5.4).

q = 0.6787) between the two global fusion rules (AND and OR) and the LDs run a

random selection (with probability p = 0.5) between two set of local decision rules,

independently of the DFC. Due to the loss of synchronization the probability of

detection under the constraint Pf ≤ α = 0.2009 has been reduced from 0.8261 to

0.7005.

5.3.2 3-LD system

The design input and output of the 3-LD system employing dependent randomization

with α = 0.1708 was shown in Table 4.3. When the DFC lost synchronization with

the LDs group in the 3-LD system employing dependent randomization, the input

and output of the redesign algorithm are shown in Table 5.3 and Figure 5.3. Before

the loss of synchronization the system operated at C = (0.1708, 0.8448) (Table 4.1).

After the loss of synchronization the system operates at C∗ = (0.1708, 0.7974).

In Figure 5.3, the black curve is the ROC curve of the 3-LD example in Section

4.2 when using dependent randomization (this is the curve developed in Figures 4.9

and 4.10). α = 0.1708 is in the range 0.1040 = PA
f ≤ Pf ≤ PB

f = 0.2710. When

the probability of false alarm Pf = α = 0.1708, the operating point of the system

is C = (PC
f , P

C
d ) = (0.1708, 0.8448), shown as the black circle. C is generated by
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operating at A = (PA
f , P

A
d ) = (0.1040, 0.7840) with probability p = 0.6 and at

B = (PB
f , P

B
d ) = (0.2710, 0.9360) with probability 1 − p = 0.4, respectively (p

was calculated using (3.11). A is achieved when all 3 LDs operate at (0.2, 0.7)

and the DFC uses a “2 out of 3 rule”. B is achieved when all 3 LDs operate

at (0.1, 0.6) and the DFC uses a “1 out of 3 rule”. When the synchronization

between the LDs group and the DFC is lost, the system may also operate at

M1 = (PM1
f , PM1

d ) = (0.4880, 0.9730) (all 3 LDs operate at (0.2, 0.7) and the DFC

uses “1 out of 3 rule”) and M2 = (PM2
f , PM2

d ) = (0.0280, 0.6480) (all 3 LDs operate

at (0.1, 0.6) and the DFC uses “2 out of 3 rule”). The equivalent operating point

of the non-synchronized system is W ∗ = (PW ∗

f , PW ∗

d ) = (0.2046, 0.8210), which

can be calculated by (5.1) and (5.2). The probability of false alarm constraint

Pf ≤ α = 0.1708 is no longer satisfied. When the DFC realizes that synchronization

was lost, the DFC can change the probability of randomization from p to q to satisfy

the constraint on α. In this situation C∗ = (PC∗

f , PC∗

d ) = (0.1708, 0.7974), calculated

by (5.3) and (5.4). The corresponding probability of randomization at the DFC

q = 0.7033 can be calculated by (5.9). The DFC needs to run a random selection

(with probability q = 0.7033) between two global fusion rules and the LDs run a

random selection (with probability p = 0.6) between two set of local decision rules

independently. Due to the loss of synchronization, the probability of detection under

the constraint Pf ≤ α = 0.1708 has been reduced from 0.8448 to 0.7974.
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Table 5.3 The Output of the 3-LD System Employing Dependent Randomization
when the DFC Lost Synchronization with the LDs Group before and after a Corrective
Action is Taken

Output of the non-synchronized 3-LD system before the corrective action is taken (α = 0.1708)

1. The probability of false alarm constraint, α = 0.1708

2. The probability of selecting A, p = 0.6, calculated by (3.11)

3. Four possible operating points when the DFC lost synchronization with the LDs group,

A = (0.1040, 0.7840), B = (0.2710, 0.9360), M1 = (0.4880, 0.9730), and M2 = (0.0280, 0.6480).

4. The operating point of the non-synchronized system, W ∗ = (0.2046, 0.8210), calculated by (5.1) and (5.2).

Output of the non-synchronized 3-LD system after the corrective action is taken (α = 0.1708)

1. The new probability for the DFC selecting γA0 , q = 0.7033, calculated by (5.9)

2. The fulfillment of the prerequisite of the correction action, 0 < q < 1

3. The operating point of the non-synchronized system after the corrective action is taken, C∗ = (0.1708, 0.7974),

calculated by (5.3) and (5.4).

Figure 5.3 A, B, M1 and M2, shown by green circles, are the possible operating
points of the 3-LD system (Section 4.2) when the synchronization between the
LDs and the DFC is lost. The black circle, C, shows the operating point of the
synchronized system. The cyan circle, W ∗, shows the equivalent operating point of
the system when it lost synchronization. C∗ is the equivalent operating point after
the corrective action is taken.
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CHAPTER 6

PARTIAL LOSS OF SYNCHRONIZATION AMONG THE LDS

In this chapter, the consequences are studied of the partial loss of synchronization

between the local detectors in a parallel decentralized binary decision fusion archi-

tecture employing dependent randomization.

6.1 Effect of Synchronization Loss (LDs)

This chapter assumes that a decision fusion architecture was designed per Section

3.2.2 (Dependent randomization) to maximize the probability of detection under a

probability of false alarm constraint. This approach means that the LDs and the

DFC are designed to operate at any given time at one of two operating points (say A

and B). They operate at operating point A (corresponding to deterministic strategy

γA = {γA0 , γA1 , . . . , γAn }) with probability p and at operating point B (corresponding

to deterministic strategy γB = {γB0 , γB1 , . . . , γBn }) with probability 1 − p. A and B

are on the upper boundary of the convex hull of all the operating points which are

achievable by deterministic strategies of the system. If a value of p, 0 < p < 1, exists

that would keep the probability of false alarm of the system at the maximal allowable

level, α, the resulting operating point of the system C = (PC
f = α, PC

d ) would be

optimal.

In the previous chapter (5: Loss of Synchronization between the DFC and the

LDs Group), in spite of loss of synchronization between the DFC and the LDs group,

all LDs were still synchronized with each other. Under this circumstance, the DFC

can in some cases change the probability p of hopping between A and B to satisfy

the probability of false alarm constraint, but generally at the expense of reaching a

lower probability of detection than PC
d .

This chapter assumes a synchronization failure of the following characteristics:
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(a) Only m (1 ≤ m ≤ n − 1) LDs are synchronized with the DFC and with each
other. These synchronized LDs are called group Y .

(b) The remaining n − m LDs are not synchronized with the DFC, nor are they
synchronized with each other. These non-synchronized LDs are called group Y .

(c) The DFC is aware of (a) and (b) and of the identity of members in Y and Y .
The LDs are not.

Each LD of the system (say LD k) flips a coin, and, based on the outcome, it

follows the local decision rule γAk or the other local decision rule, γBk (γAk is used with

probability p and γBk is used with probability 1 − p). If LD k belongs to Y it uses

the “joint coin” flipped simultaneously and synchronously by all the LDs in Y and

the DFC. If LD k belongs to Y then it flips its own coin, which is not synchronized

with either the “joint coin” used by the LDs in Y and the DFC, or the “separate”

n−m− 1 coins of the other members of Y .

Since n−m LDs are now unsynchronized, the resulting operating point of the

system, W ′ = (PW ′

f , PW ′

d ), is a combinations of 2n−m+1 possible operating points. If no

correction is made, PW ′

f is highly likely to exceed the level α which was satisfied (per

the constraint Pf ≤ α) before synchronization was lost. Under these circumstances,

the global fusion rules at the DFC is redesigned to satisfy Pf ≤ α, and the resulting

performance cost (the reduction in the probability of detection) is shown.

The input of the redesigned algorithm is shown in Table 6.1.

Table 6.1 Input of the Redesigned Algorithm when each LD in Y Lost
Synchronization with the DFC and each Other

Input of the redesigned algorithm

The design input of

dependent randomization

(Table 3.1)

1. The number of local detectors, n

2. The probability of false alarm constraint, α

The design output of

dependent randomization

(Table 3.1)

3. The local operating points of A and B: (PA
fk, P

A
dk) and (PB

fk, P
B
dk), k = 1, . . . , n

4. The probability of selecting A, p, calculated by (3.11)

Information of

synchronized LDs

5. Numbers of synchronized LDs, m (Y = {LD1, . . . , LDm} are synchronized)

6. Identity of all synchronized LDs, Y = {LD1, . . . , LDm}
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6.2 Calculating the Local Operating Points after the LDs in Y Lost

Synchronization

The local operating points of the m LDs in Y are {(P i
f1, P

i
d1), . . . , (P i

fm, P
i
dm)},

i ∈ {A,B}. For the jth LDs in Y (j = m + 1, . . . , n), the expected value

of the probability of false alarm is pPA
fj + (1 − p)PB

fj and the expected value of

the probability of detection by the jth LD in Y is pPA
dj + (1 − p)PB

dj . The local

operating points of the n − m LDs in Y are {(pPA
fm+1 + (1 − p)PB

fm+1, pP
A
dm+1 +

(1 − p)PB
dm+1), . . . , (pPA

fn + (1 − p)PB
fn, pP

A
dn + (1 − p)PB

dn)}. The equivalent local

operating points of the system are Φi = {(P i
f1, P

i
d1), . . . , (P i

fm, P
i
dm), (pPA

fm+1 + (1 −

p)PB
fm+1, pP

A
dm+1+(1−p)PB

dm+1), . . . , (pPA
fn+(1−p)PB

fn, pP
A
dn+(1−p)PB

dn)}. Therefore,

at each time step, system A is used, shown in Figure 6.1, with probability p, and

system B is used, shown in Figure 6.2, with probability 1 − p. The local operating

points of {LD m+ 1, . . . , LD n} in system A and system B are the same.

Figure 6.1 System A is used with probability p.
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Figure 6.2 System B is used with probability 1− p.

6.3 Calculating the ROC Curves of System A and System B

In order to satisfy the Neyman-Pearson criterion, under the new condition the system

can try to redesign the global fusion rules at the DFC. At each time step, the DFC

will now use γA
′

0 (was γA0 ) with probability p and γB
′

0 (was γB0 ) with probability 1−p.

Namely, γA
′

0 will be used by system A and γB
′

0 will be used by system B. Unlike γA0

and γB0 , which are deterministic fusion rules, γA
′

0 or γB
′

0 could be a randomized fusion

rule. γA
′

0 and γB
′

0 are selected from among the monotonic fusion rules ([8]) for both

systems. For each one of γA
′

0 and γB
′

0 , in general two monotonic fusion rules and a

randomization scheme to hop between them are needed.

The operating points, corresponding to all the monotonic fusion rules, for both

system A and system B, can be calculated by (3.6). The calculated operating points

are isolated in the Pf−Pd plane. ROC curve A (ROC curve B) is denoted as the ROC

curve of system A (system B). The ROC curve of a system with isolated operating

points in the Pf −Pd plane is the upper boundary of the convex hull of those isolated

operating points, which is a concave piecewise-linear curve. Therefore both ROC

curve A and ROC curve B are concave piecewise-linear curves. Finding the fusion

rule γA
′

0 for system A is equivalent to finding an operating point of system A on ROC
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curve A. Similarly, finding a fusion rule γB
′

0 for system B is equivalent to finding an

operating point of system B on ROC curve B.

ROC curve A can be drawn as a sequence of straight line segments ωA1 ω
A
2 ,

ωA2 ω
A
3 , . . . , ω

A
mA−1ω

A
mA, where ΩA = {ωA1 = (0, 0), ωA2 , . . . , ω

A
mA−1, ω

A
mA = (1, 1)} are

points in the Pf − Pd plane. Similarly, ΩB = {ωB1 = (0, 0), ωB2 , . . . , ω
B
mB−1, ω

B
mB =

(1, 1)} for the ROC curve B. Each of points in ΩA and ΩB is realizable by a

deterministic (monotonic) fusion rule. Meanwhile, each one of the other operating

points on ROC curve A (ROC curve B), those that are not in ΩA(ΩB), can be realized

by hopping between two points in ΩA (ΩB) by using randomization at the DFC.

In Figure 6.3, the ROC curve of the 2-LD system (Section 4.1) with dependent

randomization is shown as the black curve. Recall (Figures 4.1 and 4.2) that to create

this curve, two different ROC curves (one corresponding to an AND global decision

rule and one corresponding to an OR global decision rule) have been integrated. The

points of tangency A and B of the ROC curves for the AND rule and the OR rule

have been calculated respectively, and have been connected with a straight line. If

α ∈ (PA
f , P

B
f ) then the highest achievable probability of detection, corresponding to

α, was on the straight-line segment that joins points A and B. For α shown in Figure

4.2, the highest probability of detection is denoted PC
d , achieved at point C, which is

the the midpoint of line segment connecting A and B (in this example p = 0.5).

Suppose that LD1 and the DFC continue to be synchronized with each other

(Y = {LD1}) but LD2 lost synchronization with LD1 and with the DFC (Y =

{LD2}). Figure 6.3 shows two ROC curves for this new situation. ROC curve A

(red) is obtained when the members of Y (just LD1 in this case) select γA1 (when

this happen LD2, oblivious to LD1 and the DFC, selects γA2 with probability p and

γB2 with probability 1 − p). ROC curve B (blue) is obtained when the members of

Y (LD1) select γB1 (LD2 still selects γA2 with probability p and γB2 with probability

1 − p). In Figure 6.3, ΩA are shown by the red circles and ΩB are shown by the
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blue circles. The next task is to select the points A′ (on ROC curve A) and B′ (on

ROC curve B) such that the system can hop between them and meet the following

objectives: (a) satisfy the probability of false alarm constraint Pf ≤ α; (b) maximize

the probability of detection Pd.

Figure 6.3 The ROC curve of the system with dependent randomization is shown
by the black curve. For α ∈ (PA

f , P
B
f ), C is the desired operating point of the system

(black circle). A and B (green circles) are the operating points used to generate
C through a randomization procedure. When the second LD loses synchronization
(Y = {LD1}, Y = {LD2}), if A is selected the ROC curve A is effective (shown in
red); if B is selected the ROC curve B is effective (shown in blue).

6.4 Satisfying the Probability of False Alarm Constraint and

Maximizing the Probability of Detection

Let a = (P a
f , P

a
d ) be an operating point of system A on ROC curve A and b = (P b

f , P
b
d )

be an operating point of system B on ROC curve B. Points a and b are selected

such that upper limit of the probability of false alarm of the system, α, satisfies

P a
f ≤ α ≤ P b

f or P b
f ≤ α ≤ P a

f . In order to meet the probability of false alarm
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constraint (Pf = α), points a and b need to be found such that:

α = pP a
f + (1− p)P b

f . (6.1)

This design would yield the probability of detection

Pd = pP a
d + (1− p)P b

d . (6.2)

The resulting operating point is denoted as c = (P c
f , P

c
d ) = (α, pP a

d +(1−p)P b
d ).

The next step is to locate the specific point on ROC curve A, denoted A′ (so a = A′),

and the specific point on ROC curve B, denoted as B′ (so b = B′) that allow the

system to maximize the probability of detection while satisfying the probability of

false alarm constraint. The optimal resulting system operating point C ′ = (PC′

f , PC′

d )

is on the line segment connecting A′ and B′, where

PC′

f = pPA′

f + (1− p)PB′

f , (6.3)

PC′

d = pPA′

d + (1− p)PB′

d . (6.4)

It can be shown that for PC′

d in (6.4) to be the maximum probability of detection

either (i) A′ ∈ ΩA or (ii) B′ ∈ ΩB or both (A′ ∈ ΩA and B′ ∈ ΩB). The proof can be

found in Section A.1. Here is an intuitive explanation: The resulting operating point

of the system would be on the line segment connecting a point on ROC curve A and a

point on ROC curve B. The line segment can be “lifted” to improve the probability of
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detection of the resulting operating point. During the process of “lifting”, the length

of the line segment is adjustable to keep its endpoints on different ROC curves. The

resulting probability of detection would stop growing when the line segment is about

to “leave” its corresponding ROC curve. The line segment can only “leave” the ROC

curve A at a point in ΩA and the ROC curve B at a point in ΩB. Section 6.5 finds A′

from ΩA if A′ ∈ ΩA and B′ from ΩB if B′ ∈ ΩB. Therefore at least one of A′ and B′

can be found. Occasionally, A′ and B′ are both realizable by deterministic strategy

(both A′ ∈ ΩA and B′ ∈ ΩB are true) thus both A′ and B′ can be found by using the

procedure in Section 6.5. In most cases, one of A′ and B′ is realized by randomization

at the DFC. In this circumstance, Section 6.6 is needed to find A′ if A′ /∈ ΩA and B′

from ΩB if B′ /∈ ΩB.

6.5 Finding A′ from ΩA if A′ ∈ ΩA and B′ from ΩB if B′ ∈ ΩB (at least one

of A′ and B′ can be Found)

A′ can be found by examining every points in ΩA and B′ can be found by examining

every points in ΩB. This can be done by using the following steps:

(a) For each operating point a = (P a
f , P

a
d ) ∈ ΩA, the probability of the false

alarm of the corresponding operating point b = (P b
f , P

b
d ) on ROC curve B can be

calculated by using (6.1) (P b
f =

α−pPa
f

1−p ). Since each probability of detection is paired

with exactly one probability of false alarm on ROC curve B, P b
f can be used to

locate b on ROC curve B and define P b
d . The resulting probability of detection of the

system can be calculated by using (6.2). The resulting probability of detection and

the corresponding a and b for each a ∈ ΩA are stored.

(b) For each operating point b = (P b
f , P

b
d ) ∈ ΩB, the probability of the false

alarm of the corresponding operating point on ROC curve A (P a
f =

α−(1−p)P b
f

p
) can

be calculated by using (6.1). P a
f can be used to locate a on ROC curve A and define

P a
d . The resulting probability of detection of the system can be calculated by using
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(6.2). The resulting probability of detection and the corresponding a and b for each

b ∈ ΩB are stored.

(c) Let PC′

d be the highest probability of detection found for all the pairs

examined in steps (a) and (b). A′ and B′ are the pair of values of a and b which

corresponded to the highest PC′

d for the final design.

Computational complexity: Steps (a) and (b) examine mA + mB points (mA

points in ΩA and mB points in ΩB) in order to find A′ if A′ ∈ ΩA and B′ if B′ ∈ ΩB.

An improved procedure which requires the examination of at most log2(mA + mB)

points in ΩA and ΩB is available in Section A.2.

6.6 Finding A′ if A′ /∈ ΩA and B′ if B′ /∈ ΩB (Applying Randomization at

the DFC)

In most cases, when PC′

d is maximized, one of the points A′ and B′ is realized by

randomization at the DFC and the other is realized by a deterministic strategy (since

it is an element of ΩA or ΩB). The situation that B′ is randomized operating point

(A′ ∈ ΩA and B′ /∈ ΩB) is discussed first. In this circumstance PB′

f =
α−pPA′

f

1−p (from

(6.1)). B′ is on a line segment connecting two operating points in ΩB, denoted as ωBa

and ωBb .

Let the probabilities needed to redesign B′ by hopping between using ωBa and

ωBb be q′ and 1− q′, respectively. Then PB′

f can be expressed as:

PB′

f = q′P
ωB
a

f + (1− q′)P ωB
b

f . (6.5)

Therefore PC′

f is a weighted sum of PA
′

f , P
ωB
a

f and P
ωB
b

f :

PC′

f = pPA′

f + (1− p)[q′P ωB
a

f + (1− q′)P ωB
b

f ]. (6.6)
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Since PC′

f = α, q′ can be calculated as:

q′ =
α− pPA′

f − (1− p)P ωB
b

f

(1− p)(P ωB
a

f − P ωB
b

f )
. (6.7)

The probability of detection PC′

d is

PC′

d = pPA′

d + p[q′P
ωB
a

d + (1− q′)P ωB
b

d ]. (6.8)

Similarly, when A′ is a randomized operating point (A′ /∈ ΩA and B′ ∈ ΩB),

PC′

d becomes:

PC′

d = (1− p)PB′

d + p[q′′P
ωA
a

d + (1− q′′)P ωA
b

d ], (6.9)

ωAa and ωAb are the two end points of the line segment on the ROC curve A which A′

locates on. Let q′′ and 1− q′′ be the probabilities of using ωAa and ωAb respectively. q′′

satisfies:

α = (1− p)PB′

f + p[q′′P
ωA
a

f + (1− q′′)P ωA
b

f ]. (6.10)

q′′ is :

q′′ =
α− (1− p)PB′

f − pP
ωA
b

f

p(P
ωA
a

f − P ωA
b

f )
. (6.11)

In the case A′ ∈ ΩA and B′ ∈ ΩB, both A′ and B′ are realized by deterministic

strategies. The probability of detection can be calculated by (6.4).
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6.7 Numerical Examples

The redesign algorithm is implemented to the 2-LD system in Section 4.1 with Y =

{LD2} and the 3-LD system in Section 4.2 with Y = {LD3}. The detail of the

implementation can be found in Section A.3.

6.7.1 2-LD system

In Figure 6.4, the black curve is the ROC curve of the 2-LD example in Section

4.1 when using dependent randomization. The design input and output of the 2-LD

system employing dependent randomization with α = 0.2009 was shown in Table 4.1.

The operating point of the system is C = (0.2009, 0.8261), shown by the black circle.

C is generated by operating at A = (0.1581, 0.7870) with probability p = 0.5 and at

B = (0.2437, 0.8652) with probability 1− p.

If Y = {LD1}, Y = {LD2}, there are four possible operating points: A, B,

M1′ = (0.0518, 0.5614), and M2′ = (0.4761, 0.9586), determined by (γA0 , γ
A
1 , γ

A
2 ),

(γB0 , γ
B
1 , γ

B
2 ), (γA0 , γ

A
1 , γ

B
2 ), and (γB0 , γ

B
1 , γ

A
2 ). A, B, M1′, and M2′ are shown by the

green circles. The resulting operating point W ′ = (0.2324, 0.7930), shown by the

purple circle is calculated as

PW ′

f = p2PA
f + (1− p)2PB

f + p(1− p)PM1′

f + (1− p)pPM2′

f , (6.12)

PW ′

d = p2PA
d + (1− p)2PB

d + p(1− p)PM1′

d + (1− p)pPM2′

d . (6.13)

In this case, ΦA = {(PA
f1, P

A
d1), (pPA

f2 +(1−p)PB
f2, pP

A
d2 +(1−p)PB

d2)}. The ROC

curve A is shown as the red curve; ΦB = {(PB
f1, P

B
d1), (pPA

f2 + (1− p)PB
f2, pP

A
d2 + (1−

p)PB
d2)}. The ROC curve B is shown as the blue curve. ΩA and ΩB then can be found,

shown in Table 6.2. By using the proposed algorithm, when A′ = (0.1049, 0.6742)
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and B′ = (0.2968, 0.8410), the probability of detection is maximized. A′ ∈ ΩA and

B′ /∈ ΩB. A′ is shown as the cyan circle. It is achieved when the DFC uses the AND

fusion rule (γA
′

0 (u1, u2) = u1&u2). PB′

f can be calculated by (6.1) and B is shown by

the purple triangle. B′ is generated by the randomized fusion rule γB
′

0 , which requires

the system hopping between ωBa = (0.1304, 0.6328) and ωBb = (0.3599, 0.9199). ωBa

(achieved by the fusion rule such that u0 = u1) is used with probability q′ and ωBb

(achieved by the OR fusion rule) is used with probability 1 − q′, where q′ = 0.2748,

calculated by (6.7). ωBa and ωBb are shown as the cyan triangles.

In this example, when the DFC realizes that the LD2 loses synchronization,

if γA1 is selected at the LD1 (p = 0.5), the system operates at point A′; if γB1 is

selected at the LD1 (1− p = 0.5), the system operates at point ωBa with probability

q′ = 0.2748 and operates at point ωBb with probability 1−q′ = 0.7252. The maximized

probability of detection is PC′

d = 0.7547, calculated from (6.4). C ′ = (0.2009, 0.7547)

is shown by the purple square. Due to the loss of synchronization, the probability of

detection drops from PC
d = 0.8261 to PC′

d = 0.7547.

Table 6.2 provides a summary of the input and output of the redesign

algorithm for the 2-LD system employing dependent randomization when LD2 lost

synchronization.

Figure 6.5 and Table 6.3 compare the operating points of the 2-LD system under

the Neyman-Pearson criterion with α = 0.2009 for the following detection strategies:

(a) deterministic strategy and randomization at the DFC (G, blue circle);

(b) dependent randomization (C, black circle);

(c) dependent randomization when the LDs group lost synchronization with the
DFC before the redesign algorithm is applied (W ∗ = (0.2640, 0.7600), cyan
circle)/ after the redesign algorithm is applied (C∗, cyan square);

(d) dependent randomization when the LD2 lost synchronization with the LD1
and the DFC before the redesign algorithm is applied (W ′ = (0.2324, 0.7930),
purple circle)/ after the redesign algorithm is applied (C ′, purple square); and
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Figure 6.4 C is the desired operating point of the system with dependent
randomization (black circle). When Y = {LD1} and Y = {LD2}, A, B, M1′

and M2′ are the four possible operating points (green circles). W ′ is the equivalent
operating point (purple circle). The ROC curve A is shown as the red curve. The
ROC curve B is shown as the blue curve. C ′ is the operating point with maximized
probability of detection given α = 0.2009, shown by the purple square.

(e) dependent randomization when two LDs lost synchronization with each other
and the DFC before the redesign algorithm is applied (W ′′ = (0.2044, 0.6401),
yellow circle)/ after the redesign algorithm is applied(C ′′, yellow square).

6.7.2 3-LD system

Returning to the 3-LD system (Section 4.2), Figure 6.6 shows what happen when Y =

{LD1, LD2} and Y = {LD3} and when the probability of false alarm constraint is

Pf ≤ α = 0.1708. In Figure 6.6, the black curve is the ROC curve of the 3-LD system

with dependent randomization studied in Section 4.2. The specified probability of

false alarm α = 0.1708. When the entire system is synchronized, it operates at A =

(0.104, 0.784) with probability p = 0.6 and at B = (0.271, 0.936) with probability 1−

p = 0.4, respectively, to achieve C = (0.1708, 0.8448). C is shown by the black circle.
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Table 6.2 The Output the 2-LD System Employing Dependent Randomization
Before and After a Corrective Action is Taken when Y = {LD1} and Y = {LD2}

Input of the redesign algorithm for the 2-LD system when LD2 lost synchronization

The design input of

dependent randomization

(Table 4.1)

1. The number of local detectors, n = 2

2. The probability of false alarm constraint, α = 0.2009

The design output of

dependent randomization

(Table 4.1)

3. The local operating points of A: (PA
f1, P

A
d1) = (PA

f2, P
A
d2) = (0.3976, 0.8871),

The local operating points of B: (PB
f1, P

B
d1) = (PB

f2, P
B
d2) = (0.1304, 0.6328).

4. The probability of selecting A, p = 0.5.

Information at the

synchronized LDs

5. Numbers of synchronized LDs, m = 1

6. Identity of all synchronized LDs, Y = {LD1}

Output of the redesign algorithm for the 2-LD system when LD2 lost synchronization

1. ΩA = {(0, 0), (0.1049, 0.6742), (0.3976, 0.8871), (0.5566, 0.9729), (1, 1)},

ΩB = {(0, 0), (0.0344, 0.4809), (0.1304, 0.6328), (0.3599, 0.9119), (1, 1)}

2. Two operating points A′ = (0.1049, 0.6742) ∈ ΩA and B′ = (0.2968, 0.8410) /∈ ΩB , which allow PC′
f from (6.3)

satisfying the probability of false alarm constraint α and achieving the highest probability of detection

3. The deterministic fusion rule γA
′

0 (AND fusion rule) used to achieve A′

4. The randomized fusion rule γB
′

0 used to achieve B′, which requires the system operating at

ωB
a = (0.1304, 0.6328) (achieved by the fusion rule such that u0 = u1) with probability q′ and

ωB
b = (0.3599, 0.9199) (achieved by the OR fusion rule) with probability 1− q′, where q′ = 0.2748,

calculated by (6.7)

5. The operating point of the non-synchronized system after the corrective action is taken,

C′ = (0.2009, 0.7547), calculated by (6.6) and (6.8), which is achieved by operating at A′ with probability p

and B′ with probability 1− p

Table 6.3 The Operating Points of the 2-LD System Employing Different Detection
Strategies under the Neyman-Pearson Criterion with α = 0.2009 (Corresponding to
Figure 6.5)

α = 0.2009

1 Deterministic strategy G = (0.2009, 0.8217)

2 Randomization at the DFC G = (0.2009, 0.8217)

3 Dependent randomization (synchronized) C = (0.2009, 0.8261)

4
Dependent randomization (the DFC is unsynchronized with

the LDs group)
C∗ = (0.2009, 0.7005)

5
Dependent randomization (the 2nd LD is unsynchronized with

the DFC and other LDs)
C′ = (0.2009, 0.7547)

6
Dependent randomization (all LDs and the DFC are unsyn-

chronized)
C′′ = (0.2009, 0.7008)

A is achieved when all 3 LDs operate at (0.2, 0.7), i.e. (Pfk, Pdk) = (0.2, 0.7), k =

1, 2, 3, and the DFC uses a “2 out of 3 rule”, i.e., if there exists two LDs decide
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Figure 6.5 The operating points of the 2-LD system employing different detection
strategies under the Neyman-Pearson criterion with α = 0.2009.

1, u0 = 1; otherwise u0 = 0. B is achieved when all 3 LDs operate at (0.1, 0.6),

i.e. (Pfk, Pdk) = (0.1, 0.6), k = 1, 2, 3, and the DFC uses a “1 out of 3 rule”, i.e., if

there exists one LD decides 1, u0 = 1; otherwise u0 = 0. When the 3rd LD loses

synchronization (Y = {LD1, LD2} and Y = {LD3}), the four possible operating

points are A, B, M1′, and M2′, shown by green circles. The equivalent operating

point is W ′ = (0.1826, 0.8386), shown by the purple circle. Table 6.4 summarizes the

input and output of the redesign algorithm for the 3-LD system employing dependent

randomization when LD3 lost synchronization.

Figure 6.7 compares the operating points of the 3-LD system under the Neyman-

Pearson criterion with α = 0.1708 for the following detection strategies:

(a) deterministic strategy (G, blue circle);

(b) randomization at the DFC (E, red circle);

(c) dependent randomization (C, black circle);
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Figure 6.6 C is the desired operating point of the system with dependent
randomization (black circle). When Y = {LD1, LD2} and Y = {LD3}, A, B, M1′

and M2′ are the four possible operating points (green circles). W ′ is the equivalent
operating point (purple circle). ROC curve A and ROC curve B are shown as the
red curve and the blue curve, respectively. C ′ is the operating point maximizing the
probability of detection given α = 0.1708, shown by the purple square.

(d) dependent randomization when the LDs group lost synchronization with the
DFC before the redesign algorithm is applied (W ∗ = (0.2046, 0.8210), cyan
circle)/ after the redesign algorithm is applied (C∗, cyan square);

(e) dependent randomization when the LD2 lost synchronization with the LD1
and the DFC before the redesign algorithm is applied (W ′ = (0.1826, 0.8386),
purple circle)/ after the redesign algorithm is applied (C ′, purple square); and

(f) dependent randomization when two LDs lost synchronization with each other
and the DFC before the redesign algorithm is applied (W ′′ = (0.2223, 0.8380),
yellow circle)/ after the redesign algorithm is applied (C ′′, yellow square).

Table 6.5 shows the operating points of the 3-LD system employing different

detection strategies under the Neyman-Pearson criterion with (a) α = 0.1708 and (b)

α = 0.05. In line 4 of the third column (corresponding to α = 0.05). Although

the DFC lost synchronization with the LDs group in dependent randomization,

the performance of the system has not been affected. The reason is that when
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Table 6.4 The Output the 3-LD System Employing Dependent Randomization
before and after a Corrective Action is Taken when Y = {LD1, LD2} and Y =
{LD3}

Input of the redesign algorithm for the 3-LD system when LD3 lost synchronization

The design input of

dependent randomization

(Table 4.3)

1. The number of local detectors, n = 3

2. The probability of false alarm constraint, α = 0.1708

The design output of

dependent randomization

(Table 4.3)

3. The local operating points of A: (Pfk, Pdk) = (0.2, 0.7), k = 1, 2, 3,

The local operating points of B: (Pfk, Pdk) = (0.1, 0.6), k = 1, 2, 3.

4. The probability of selecting A, p = 0.6.

Information of

synchronized LDs

5. Numbers of synchronized LDs, m = 2

6. Identity of all synchronized LDs, Y = {LD1, LD2}

Output of the redesign algorithm for the 3-LD system when LD3 lost synchronization

1. ΩA = {(0, 0), (0.0064, 0.3234), (0.0576, 0.6006), (0.0912, 0.7672), (0.1936, 0.8266), (0.4624, 0.9694), (1, 1)},

ΩB = {(0, 0), (0.0016, 0.2376), (0.0100, 0.3600), (0.0388, 0.6768), (0.1900, 0.8400), (0.3196, 0.9456), (1, 1)}

2. Two operating points A′ = (0.0912, 0.7672) ∈ ΩA and B′ = (0.2902, 0.9216) /∈ ΩB , which allow PC′
f from (6.3)

satisfying the probability of false alarm constraint α and achieving the highest probability of detection

3. The deterministic fusion rule γA
′

0 (2 out of 3 rule) used to achieve A′

4. The randomized fusion rule γB
′

0 used to achieve B′, which requires the system operating at

ωB
a = (0.1900, 0.8400) (achieved by the fusion rule such that u0 = u1|u2) with probability q′ and

ωB
b = (0.3196, 0.9456) (achieved by the 1 out of 3 rule) with probability 1− q′, where q′ = 0.2748,

calculated by (6.7)

5. The operating point of the non-synchronized system after the corrective action is taken,

C′ = (0.1708, 0.8290), calculated by (6.6) and (6.8), which is achieved by operating at A′ with probability p

and B′ with probability 1− p

α = 0.05, dependent randomization requires the 3-LD system hopping between two

operating points with the same global fusion rule. In this circumstance, dependent

randomization is “randomization at the LDs only” and the DFC does not participate

in the randomization. Therefore, the loss of synchronization between the LDs group

and the DFC has no influence to the system performance.
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Figure 6.7 The operating points of the 3-LD system employing different detection
strategies under the Neyman-Pearson criterion with α = 0.1708.

Table 6.5 The Operating Points of the 3-LD System Employing Different Detection
Strategies under the Neyman-Pearson Criterion with (a) α = 0.1708 (Corresponding
to Figure 6.7) and (b) α = 0.05

α = 0.1708 α = 0.05

1 Deterministic strategy G = (0.1360, 0.7960) (0.0460, 0.6960)

2 Randomization at the DFC E = (0.1708, 0.8208) (0.0500, 0.7000)

3 Dependent randomization (synchronized) C = (0.1708, 0.8448) (0.0500, 0.7031)

4
Dependent randomization (the DFC is unsyn-

chronized with the LDs group)
C∗ = (0.1708, 0.7974) (0.0500, 0.7031)

5
Dependent randomization (the 3rd LD is

unsynchronized with the DFC and other LDs)
C′ = (0.1708, 0.8290) (0.0500, 0.5704)

6
Dependent randomization (all LDs and the

DFC are unsynchronized)
C′′ = (0.1708, 0.8009) (0.0500, 0.5534)
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CHAPTER 7

ADAPTIVE FUSION

Some of the probabilities needed for the designs of parallel decentralized binary

decision fusion architecture may not be immediately available. These probabilities

can sometimes be estimated from the data. In this chapter, several adaptive fusion

approaches are discussed and compared. An algorithm that integrates the decisions of

these algorithms is proposed, demonstrating superior performance over each individual

algorithm acting alone.

7.1 Chair - Varshney Rule

In [1], an optimal data fusion rule for this architecture in Figure 1.1 is developed

by Chair and Varshney. They assume that the LDs use fixed decision rules and

that their observations are statistically independent conditioned on the hypothesis.

Let Pmk = Prob(uk = 0|H1) be the probability of missed detection by the kth LD

(Pmk = 1 − Pdk) and Pm = Prob(u0 = 0|H1) be the probability of missed detection

by the DFC (Pm = 1 − Pd). To implement the optimal data fusion rule, the DFC

needs to know the probabilities of false alarm and missed detection of each LD. The

probability of error (Bayes cost in (1.1) with C01 = C10 = 1 and C00 = C11 = 0) by

the global decision u0 can be expressed as:

Pe = PfP0 + (1− Pm)P1 (7.1)

The global decision u0 has the minimum probability of error if:
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u0 = U−1{
n∑
k=1

[log(
1− Pmk
Pfk

)uk + log(
1− Pfk
Pmk

)(1− uk)]− log w0} (7.2)

where w0 is the decision threshold (7.3), U−1 is the unit step function (7.4).

w0 = log(
1− P0

P0

) (7.3)

U−1(x) =

 0 if x ≤ 0

1 if x > 0
(7.4)

The weight of the kth local decision is

wk =


log(1−Pmk

Pfk
) for uk = 1

log(
1−Pfk

Pmk
) for uk = −1

(7.5)

where wk is the weight of kth LD.

7.2 Methods for Estimation of Probabilities

In practice, P0, Pfk, and Pmk in Equation (7.2), (7.3) are often unknown, requiring

estimates and approximations to complete the design. Several methods were

introduced for estimating these probabilities.

• The original version of the method by Kam & Naim (oK) [13]
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• The original version of the method by Ansari et al. (oA) [15][14]

• The modified version of the method by Kam & Naim (mK) [16]

• The modified version of the method by Ansari et al. (mA) [16]

• The original method by Mirjalily et al. (M) [16]

Kam & Naim propose an on-line estimation method (oK) to evaluate the

P0, Pfk, Pmk for distributed Bayesian detection [13]. The method tunes Pfk, Pmk

according to whether uk agrees with u0. Since the reference decision u0 is not

consistently correct, the estimates are biased. The oK algorithm uses the global

values of Pm and Pf [23] to address the problem in part.

Ansari et al. come up with an estimation approach(oA) for wk and w0 in

equations (7.3) and (7.5) [15][14]. This approach provides good estimates in some

scenarios but suffers from some of the same bias-related shortcomings of the oK

method. To reduce the bias, instead of using u0, the reference decision of one LD is

the fused decisions of the other n−1 LDs. The oA method modifies the estimation of

the LD’s probabilities only when it believes the reference decision is reliable. Decisions

believed to be unreliable are ignored. However, ignoring part of the decision-set also

results in bias.

A blind adaptive decision fusion rule (M), which takes advantage of the relation

between the unknown probabilities and the joint probabilities of the decisions of three

reference LDs, is presented by Mirjalily et al. [16]. When the system is comprised of a

small number of LDs, this method could achieve high quality performance. However,

since the estimates of the reference LDs determine the estimates of the other LDs,

the M method becomes less effective as the number of LDs increases.

Modified versions of both oK and oA are proposed in [16]. The modified version

of Kam & Naim’s method (mK) ensures that the probabilities remain in a reasonable

range and hence gains a substantial improvement in reliability. The tradeoff is that
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the method needs a longer convergence time compared with oK. The modified version

of Ansari et al.’s method (mA) greatly reduces the number of failures by adopting a

reliable initialization.

Extensive simulation shows that any one of these five methods could outperforms

the others for some effecting points of P0, Pfk, Pmk, and n. A selection algorithm that

behaves on average better than each one of the five algorithms operating alone (under

a Bayesian objective function) is desired [24]. The purpose of the sought algorithm

is to discover which of the five methods is best near the estimated effecting point.

For simplicity, the LDs in the distributed detection system discussed in this

chapter are assumed to be identical, i.e., Pfk = Pf , Pmk = Pm, ∀k.

Figure 7.1 The model of proposed algorithm.

7.3 Methodology

The model of proposed algorithm is shown in Figure 7.1. The five adaptive algorithms

are run in parallel and a selection algorithm integrates their decisions.

The five methods used in this chapter provide their estimations of P0, Pf , Pm.

Each method also produces a decision by using the Chair-Varshney rule [1]. The

output of method i is therefore these probabilities, P0i, Pfi, Pmi, and the decision

u0i, i ∈ {oA, oK,mA,mK,M}. The criterion to evaluate the performance of each
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method in simulation is the fraction of correct decisions it makes from a sequence of

observed inputs. The best method is the one which exhibits the highest fraction of

correct decisions.

7.3.1 Archival Data Base of Algorithm Performance

A data base of archival data records which method possessed the best performance

in each recorded reference point (combinations of different P0, Pf , and Pm). The

data base could be compiled off-line or “on the fly.” An excerpt from such data base

for n = 5 is shown in Figure 7.2. The archival “winners” in each reference point are

marked on the graph with their symbols, e.g., for point (P0, Pf , Pm) = (0.1, 0.15, 0.15),

mA is the “winner.” If there are multiple winners in a reference point, all their

symbols are included, e.g., both mK and M are “winners” in point (0.1, 0.15, 0.17).

A reference point is blank if all five methods have identical performance there, e.g.,

point (0.2, 0.12, 0.18).

The data base provides rough information for figuring out which methods should

be considered. For example, in Figure 7.2, the estimated effecting point P0, Pf , Pm

of a certain system is shown as the black dot. Intuitively, it is reasonable to look at

the decisions of the mA, M and mK methods in order to decide what to do at the

black-dot location. The reason is that these methods outperform the others around

this ‘black-dot’ location.

7.3.2 Selection algorithm

The proposed algorithm operates at two stages.

In the first stage, the less-reliable methods are eliminated from further

consideration according to their performance at the effecting point. After that, the

probabilities obtained from the more-reliable methods are averaged to create the

estimate, P0r, Pfr, Pmr.

70



Figure 7.2 A part of graph for n = 5.

R is the set of reliable methods. NR is the number of elements in R. P0i, Pfi,

Pmi are the estimated P0, Pf , Pm by method i. a, b, c serve as thresholds for checking

the reliabilities of some methods.

The estimates obtained by the mK and M algorithms were found to be more

reliable than those of other methods over a significant subset of the space {P0, Pf ,

Pm, n}. Therefore, these two methods are in the set R initially. mA is usually more

reliable when P0 is close to P1. oK is considered reliable when its estimation is close

to that of mK. oA is considered reliable when its estimation is close to mA when

mA is reliable.

Selection Algorithm

Step 1:

Initialization: R = {mK,M} %R includes mK,M at the beginning

If 1
NR

∑
(P0 − 0.5) < a, i ∈ R, then

R = R
⋃
{mA} %R includes mA if P0 is close to P1

If (|P0oK − P0mK < b| & |PfoK − PfmK
< c| & |PmoK − PmmK < c|), then
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R = R
⋃
{oK} %R includes oK if oK’s estimate is close to mK

If (|P0oA −P0mA < b| & |PfoA −PfmA
< c| & |PmoA −PmmA < c| & (mA ∈ R)), then

R = R
⋃
{oA} %R includes oA if oA’s estimate is close to mA and mA ∈ R

P0r =
1
NR

∑
P0i , Pfr =

1
NR

∑
(Pfi)

Pmr =
1
NR

∑
(Pmi), i ∈ R

The current estimate of P0r, Pfr, Pmr is referred as the “effecting point.” The

proposed algorithm consults the 4 reference points closest to the effecting point

in the data base and then determines which one represents the best method to

process the available information. Each neighboring reference point contains two

pieces of information, namely, the best method at this reference point (based on past

simulations or calculations (per [23])) and the distance between the point and the

effecting point. Method i gains a score, Cij, from the neighbor reference point j. If a

certain method was historically the best method at the reference point, Cij = 1; else,

Cij = 0. Dj is the distance between the effecting point and the neighboring reference

point j. The total score obtained by any one method is a weighted sum of the score

assigned to it by the 4 neighboring reference points closest to the effecting point. The

algorithm seeks the method with the highest score.

Step 2:

Si =
∑4

j(Cij ·
1
Dj

), i ∈ R,

Find i = arg max(Si)

An example is shown in Figure 7.3. The estimated P0r, Pfr, and Pmr (the

effecting point) is shown as the black dot on the graph. P0r = 0.21, Pfr = 0.112,

Pmr = 0.198. The 4 nearest neighbors are denoted N1, N2, N3, and N4. D1=
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√
(P0r − 0.2)2 + (Pfr − 0.11)2 + (Pmr − 0.20)2= 0.0104. Similarly, D2 = 0.0130,

D3 = 0.0130, D4 = 0.0151. SmA = 1/D4 = 66.23. SmK = 1/D2 + 1/D3 = 154.30.

SM = 1/D1 + 1/D2 + 1/D3 + 1/D4 = 316.76. SoA and SoK are 0. Therefore the

algorithm picks M , the method in [16], as the most appropriate method in this case.

Figure 7.3 An example for the proposed algorithm.

7.4 Average performance in simulations

The selection algorithm per Figure 7.1 is tested multiple times with the following

setting: P0 ∈ rand(0, 1) (P0 is a random number uniformly distributed between 0

and 1). Pf ∈ rand(0, 0.2), Pm ∈ rand(0, 0.2). In step 1 of the proposed algorithm,

a = 0.3, b = 0.1, c = 0.02. Each one of the five algorithm is applied, as well as the new

selection algorithm 2, 000 times, using 10, 000 inputs for each run. The experiments
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during which all methods had the same fraction of the 10, 000 decisions made correctly

are discarded. The comparative results are studied when the techniques differed in

performance (these are “contested runs”).

Table 7.1 Ranking Distribution of each Method for 605 Contested Runs when n = 5
n = 5 1st 2nd 3rd 4th 5th err

oA 59 62 191 187 106 5.21%

mA 108 155 212 117 3 2.30%

oK 92 139 138 163 73 4.14%

mK 191 237 119 60 8 1.06%

M 362 172 48 23 0 0.99%

New algorithm 391 173 39 2 0 0.97%

CV 529 33 43 0 0 0.97%

Table 7.2 Ranking Distribution of each Method for 443 Contested Runs when n = 7
n = 7 1st 2nd 3rd 4th 5th err

oA 31 35 142 136 99 5.36%

mA 57 55 115 212 4 3.10%

oK 104 82 78 116 63 0.68%

mK 178 111 90 64 0 0.39%

M 137 121 166 19 0 0.40%

New algorithm 206 166 69 2 0 0.40%

CV 441 0 2 0 0 0.36%

Table 7.1 compares the performance of 7 methods, i.e., the five existing adaptive

methods, the proposed selection algorithm, and the Chair-Varshney rule. In Table

7.1, n = 5, and 605 contested runs were available. Table 7.1 shows the error rate

for each method (err) as well as the number of runs when the method was the most

accurate(1st); second most accurate(2nd); etc. The sum of each column is not 605

since different methods may have the same rank. CV is the Chair-Varshney rule with

complete knowledge of the performance probabilities. In Table 7.1, the result of the

oA algorithm was the least satisfactory. It was superior to other methods in only 59

experiments out of 605. Algorithm mA was better than algorithm oA and algorithm

mK was better than algorithm oK, which indicated that the modification in [16] did

74



improve the performance of oA and oK in these simulations. Algorithm M was the

best of the existing five methods. It had the leading position in more than half of the

experiments. The proposed selection algorithm took the 1st and 2nd places more times

than algorithm M , and seldom dropped out of the top three algorithms. Table 7.1

also showed that given the full information on LD performance, the Chair-Varshney

fusion rule was (of course) the best. In Table 7.2, the best existing adaptive method

was mK, while the proposed algorithm still maintained better performance than all

existing adaptive methods.
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CHAPTER 8

END NOTES

In parallel decentralized binary decision fusion, dependent randomization can sometimes

make the team’s Receiver Operating Characteristic curve concave (if it was non-

concave under other detection schemes). This effect improves the system’s performance

under a Neyman-Pearson criterion by realizing a higher probability of detection for

the same upper bound on the probability of false alarm. Dependent randomization

requires that the DFC and the LDs be synchronized, guided by a coordinated

randomization scheme. The DFC and the LDs switch simultaneously together, back

and forth, between two set of rules, viz., γA0 (for the DFC) and γALD = {γA1 , . . . , γAn }

(for the LDs); and γB0 (for the DFC) and γBLD = {γB1 , . . . , γBn } (for the LDs). However,

if the synchronization between all decision makers in the system is lost, the system

may exceed the permitted probability of false alarm. This dissertation revealed the

consequences of synchronization loss in the following two sets of circumstances: (a) the

DFC is not synchronized with the LDs group; and (b) some LDs are not synchronized

with other LDs and with the DFC. Corrective action was devised in order to restore

the detection system to compliance with the probability of false alarm constraint, at

a cost of reduced probability of detection.

This dissertation also reviewed several design techniques for parallel decen-

tralized binary decision fusion architectures, with and without feedback. The

designs vary in performance and complexity, depending on the selection of objective

functions and on compromises made between global optimality and computability.

Several suboptimal designs exhibit relatively small loss in performance but significant

computational advantage when compared to the optimal design. Finally, scenarios

were studied where some parameters required by a design are not immediately

76



available. These parameters were then estimated from observation data, using

adaptive fusion techniques. The results of five adaptive decision fusion methods that

do not assume knowledge of these probabilities are combined, to create a decision

that appears superior performance compared to the performance of each of the five

adaptive algorithms operating alone.
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APPENDIX A

LOCATING A′ AND B′ (CHAPTER 6)

Section A.1 proves a result used in Section 6.4: PC′

d , the probability of detection at

the redesigned operating point, is the maximum probability of detection when either

(i) A′ ∈ ΩA or (ii) B′ ∈ ΩB or both (A′ ∈ ΩA and B′ ∈ ΩB). Section A.2 provides an

efficient way to locate A′ if A′ ∈ ΩA and B′ if B′ ∈ ΩB (per Section 6.5) and shows

the flowchart of the proposed corrective action in Chapter 6. Section A.3 presents

the complete algorithm of the corrective action for partial loss of synchronization

among the LDs when dependent randomization is employed (Chapter 6) and applies

the algorithm to two examples.

When the DFC only synchronizes with the m LDs in Y , the system operates

at some point on ROC curve A with probability p and some point on ROC curve

B with probability 1 − p. ROC curve A can be drawn by connecting points in

ΩA = {wA1 = (0, 0), wA2 , . . . , w
A
mA−1, w

A
mA = (1, 1)} sequentially and ROC curve B can

be drawn by connecting points in ΩB = {wB1 = (0, 0), wB2 , . . . , w
B
mB−1, w

B
mB = (1, 1)}

sequentially. The target to find a specific point on ROC curve A, denoted as A′, and

a specific point on ROC curve B, denoted as B′ that allow the system to maximize

the probability of detection while satisfying the probability of false alarm constraint.

The optimal resulting system operating point C ′ = (PC′

f , PC′

d ) is on the line segment

connecting A′ and B′.

A.1 Proof: PC′

d (6.4) is the Maximum Probability of Detection when

either (i) A′ ∈ ΩA or (ii) B′ ∈ ΩB or both (A′ ∈ ΩA and B′ ∈ ΩB)

Section A.1 shows that for PC′

d in (6.4) to be the maximum probability of detection

either (i) A′ ∈ ΩA or (ii) B′ ∈ ΩB or both (A′ ∈ ΩA and B′ ∈ ΩB).
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Point a = (P a
f , P

a
d ) is on ROC curve A, which is a concave linear ROC curve.

P a
d can be expressed as

P a
d = fA(P a

f )P a
f + bA(P a

f ). (A.1)

fA(P a
f ) and bA(P a

f ) are respectively the slope and the Pd−axis intercept of the

line segment on ROC curve A that passes through point a. fA(P a
f ) is a decreasing

piecewise-constant function of P a
f and bA(P a

f ) is an increasing piecewise-constant

function of P a
f .

Similarly, point b = (P b
f , P

b
d ) is on ROC curve B, which is a concave linear ROC

curve. P b
d can be expressed as

P b
d = fB(P b

f )P b
f + bB(P b

f ). (A.2)

fB(P b
f ) and bB(P b

f ) are respectively the slope and the Pd−axis intercept of the

line segment on ROC curve B that passes through point b. fB(P b
f ) is a decreasing

piecewise-constant function of P b
f and bB(P b

f ) is an increasing piecewise-constant

function of P b
f .

Figure A.1 shows the relation between a = (P a
f , P

a
d ) (cyan circle) on ROC curve

A, b = (P b
f , P

b
d ) (purple triangle) on ROC curve B, and the resulting operating point

c = (P c
f , P

c
d ) = (pP a

f + (1− p)P b
f = α, pP a

d + (1− p)P b
d ) (purple square), calculated by

(6.1) and (6.2), which is the intersection of Pf = α and line ab.

From (6.1), when the probability of false alarm constraint is met, P a
f is a

decreasing function of P b
f (and P b

f is a decreasing function of P a
f ):

P a
f =

α− (1− p)P b
f

p
, and, (A.3)

79



Figure A.1 The system operates at a = (P a
f , P

a
d ) (cyan circle) with probability p.

The system operates at b = (P b
f , P

b
d ) (purple triangle) with probability 1 − p. The

resulting operating point is c = (P c
f , P

c
d ) = (pP a

f + (1 − p)P b
f = α, pP a

d + (1 − p)P b
d ),

shown by the purple square.

P b
f =

α− pP a
f

1− p
. (A.4)

Combining (6.2), (A.1), and (A.2), P c
d can be expressed as

P c
d

from (6.2)
= pP a

d + (1− p)P b
d

from (A.1),(A.2)
= p(fA(P a

f )P a
f + bA(P a

f )) + (1− p)(fB(P b
f )P b

f + bB(P b
f )).

(A.5)
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From (A.4), P b
f is a decreasing function of P a

f (from (A.3), P a
f is also a decreasing

function of P b
f ). Substitute (A.4) into (A.5), P c

d can be expressed as a function of P a
f :

P c
d = sP a

f + l,where

s = p[fA(P a
f )− fB(P b

f )],

from (A.4)
= p[fA(P a

f )− fB(
α− pP a

f

1− p
)], and

l = fB(P b
f )α + pbA(P a

f ) + (1− p)bB(
α− pP a

f

1− p
)

(A.6)

which have the following properties:

Property 1: P c
d is a continuous function of P a

f .

P a
d is a continuous function of P a

f and P b
d is a continuous function of P b

f (since

a and b are points on continuous ROC curves). Meanwhile, since P b
f is a continuous

function of P a
f (from (A.4)), P b

d is a continuous function of P a
f . P c

d is a weighted sum

of P a
d and P b

d (from 6.2), therefore it is a continuous function of P a
f .

Property 2: P c
d is a piecewise-linear function of P a

f .

Since both ROC curve A and ROC curve B are composed of finite line segments,

in (A.6), fA(P a
f ), fB(

α−pPa
f

1−p ), bA(P a
f ), and bB(

α−pPa
f

1−p ) are piecewise-constant functions

of P a
f . Therefore, P c

d is a piecewise-linear function of P a
f . The graph of P c

d consists

of finite number of line segments on the P a
f − P c

d plane. The slope of each line

segment is s = fA(P a
f ) − fB(

α−pPa
f

1−p ) and the P c
d−axis intercept of each line segment

is l = fB(P b
f )α + pbA(P a

f ) + (1− p)bB(
α−pPa

f

1−p ).

Property 3: P c
d is a concave function of P a

f .

From properties 1 and 2, P c
d is a continuous piecewise-linear function of P a

f . The

slope of each line segment is s = fA(P a
f ) − fB(P b

f ). fA(P a
f ) is a decreasing function

of P a
f since ROC curve A is piecewise-linear concave. fB(P b

f ) = fB(
α−pPa

f

1−p ) is an

increasing function of P a
f since fB(P b

f ) is a decreasing function of P b
f and P b

f is a
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decreasing function of P a
f . In (A.6), s = fA(P a

f )− fB(P b
f ) is a decreasing function of

P a
f . In this circumstance, P c

d is a concave function of P a
f .

Property 4: The range of P a
f is P a

f ∈ [max(0, α+p−1
p

),min(1, α
p
)] when the

probability of false alarm constraint is satisfied.

Since points a and b are on ROC curves, P a
f ∈ [0, 1] and P b

f ∈ [0, 1]. From

(A.4), when the probability of false alarm constraint is satisfied, P b
f = 0 indicates

P a
f = α

p
and P b

f = 1 indicates P a
f = α+p−1

p
. Therefore, P b

f ∈ [0, 1] indicates that

P a
f ∈ [α+p−1

p
, α
p
]. Therefore, the range of P a

f is P a
f ∈ [max(0, α+p−1

p
),min(1, α

p
)].

From Properties 1-4, P c
d is a piecewise-linear concave function of P a

f and

its domain satisfies P a
f ∈ [max(0, α+p−1

p
),min(1, α

p
)]. Note that a piecewise-linear

concave function sometimes can be a monotonic linear function. Three different

cases about finding the maximum of P c
d are discussed: (a) P c

d is a non-decreasing

linear function of P a
f ; (b) P c

d is a non-increasing linear function of P a
f ; (c) P c

d is first

non-decreasing function and then a non-increasing function of P a
f . Figure A.2 shows

a graphical illustration of these three cases.

Case (a): s ≥ 0 when P a
f = max(0, α+p−1

p
) and when P a

f = min(1, α
p
). In this

case, P c
d is a non-decreasing function of P a

f and the maximum value of P c
d is achieved

at P a
f = min(1, α

p
). If P a

f = min(1, α
p
) = 1, since point a = (P a

f , P
a
d ) is on ROC curve

A, when P a
f = 1, P a

d = 1. Therefore, A′ = (1, 1) = ωAmA ∈ ΩA. If P a
f = min(1, α

p
) =

α
p

= α−(1−p)0
p

=
α−(1−p)PωB

1
f

p

from (A.3)
=

α−(1−p)P b
f

p
, P b

f = 0. Since point b = (P b
f , P

b
d ) is on

ROC curve B, when P b
f = 0, P b

d = 0. Therefore, B′ = (0, 0) = ωB1 ∈ ΩB

Case (b): s < 0 when P a
f = max(0, α+p−1

p
) and when P a

f = min(1, α
p
). In this

case, P c
d is a non-increasing function of P a

f and the maximum value of P c
d is achieved

at P a
f = max(0, α+p−1

p
). If P a

f = max(0, α+p−1
p

) = 0, then A′ = (0, 0) = ωA1 ∈ ΩA. If

P a
f = max(0, α+p−1

p
) = α+p−1

p
= α−(1−p)1

p
=

α−(1−p)P
ωB
mB

f

p

from (A.3)
=

α−(1−p)P b
f

p
, P b

f = 1.

Then B′ = (1, 1) = ωBmB ∈ ΩB.
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Case (c): s ≥ 0 when P a
f = max(0, α+p−1

p
) and s < 0 when P a

f = min(1, α
p
).

In this case, when P a
f increases from max(0, α+p−1

p
) to min(1, α

p
), P c

d is first a non-

decreasing function and then a non-increasing function of P a
f . The intersection of two

line segments on a piecewise-linear ROC curve is defined as a corner point of that

ROC curve. The maximum value of P c
d is achieved at a corner point on the graph of

P c
d where the slope of the left line segment at that corner point and the slope of the

right line segment at that corner point have different sign (the sign of s changes at

that corner point).

Figure A.2 A graphical illustration of cases (a), (b), and (c) (from left to right).

In cases (a) and (b), P c
d is a monotonic function of P a

f , its maximum is achieved

when one of the points a and b is at (0, 0) or (1, 1). Since ωA1 = ωB1 = (0, 0) and

ωAmA = ωBmA = (1, 1), either A′ ∈ ΩA or B′ ∈ ΩB (or both). In case (c), P c
d is

maximized when the sign of s changes from positive to negative. In the expression

of s, p ∈ (0, 1), fA(.) changes only when a is a corner point of ROC curve A (A′ ∈

{ωA2 . . . ωAmA−1} ⊂ ΩA), fB(.) changes only when b is a corner point of ROC curve B

(B′ ∈ {ωB2 . . . ωBmB−1} ⊂ ΩB). Therefore, PC′

d is the maximum probability of detection

when either (i) A′ ∈ ΩA or (ii) B′ ∈ ΩB or both (A′ ∈ ΩA and B′ ∈ ΩB).

A.2 Finding A′ from ΩA if A′ ∈ ΩA and B′ from ΩB if B′ ∈ ΩB (Improved

Version)

In Chapter 6, a 2-step procedure to find A′ and B′ is proposed: Step 1 - Finding A′

from ΩA if A′ ∈ ΩA and B′ from ΩB if B′ ∈ ΩB (Section 6.5); Step 2 - Finding A′ if
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A′ /∈ ΩA and B′ if B′ /∈ ΩB (Section 6.6). Step 1 requires examining all the points in

ΩA and ΩB (mA + mB points). In this section, a more efficient way to realize Step

1 is proposed.

The previous section discusses three different cases about finding the maximum

of P c
d , PC′

d . The calculation the value of s in (A.6) when P a
f = max(0, α+p−1

p
) and

when P a
f = min(1, α

p
) is required to determine which case is encountered.

Case (a) P c
d is a non-decreasing function of P a

f and the maximum of P c
d achieved

when P a
f = min(1, α

p
), shown as the first graph in Figure A.2. PC′

d is the maximum

of probability of detection indicates that either A′ = (PA′

f , PA′

d ) = (1, 1) or B′ =

(PB′

f , PB′

d ) = (0, 0) (or both).

Case (b) P c
d is non-increasing function of P a

f and the maximum of P c
d is achieved at

P a
f = max(0, α+p−1

p
), shown as the second graph in Figure A.2. PC′

d is the maximum

of probability of detection indicates that either A′ = (PA′

f , PA′

d ) = (0, 0) or B′ =

(PB′

f , PB′

d ) = (1, 1) (or both).

Case (c) P c
d is first a non-decreasing function and then a non-increasing function of

P a
f . The slope of each line segment of P c

d is s = p[fA(P a
f )−fB(P b

f )] (from (A.6)). The

target is to find a = A′ ∈ ΩA or b = B′ ∈ ΩB such that the sign of fA(P a
f )− fB(P b

f )

changes from positive to negative.

Let FA = {P ωA
1

f , .., P
ωA
mA

f } be the probabilities of false alarm of the operating

points in ΩA = {ωA1 . . . ωmA1 }. A′ ∈ ΩA when PA′

f ∈ FA.

Let FB = {P ωB
1

f , .., P
ωB
mB

f } be the probabilities of false alarm of the operating

points in ΩB = {ωB1 . . . ωmB1 }. B′ ∈ ΩB when PB′

f ∈ FB.

In order to meet the probability of false alarm constraint α, from (A.4), when

PB′

f ∈ FB = {P ωB
1

f , .., P
ωB
mB

f }, the probability of false alarm of point A′ satisfies

PA′

f ∈ GA = {α+(p−1)P
ωB
1

f

p
, . . .

α+(p−1)P
ωB
mB

f

p
}.
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Let H = FA
⋃
GA, when A′ ∈ ΩA or B′ ∈ ΩB (or both), PA′

f ∈ H. Therefore,

the target now is to find PA′

f ∈ H such that the sign of fA(P a
f )−fB(P b

f ) changes from

positive to negative at P a
f = PA′

f ∈ H.

Recall that fa(P
a
f ) represents the slopes of all straight line segments wA1 w

A
2 ,

wA2 w
A
3 , . . . , w

A
mA−1w

A
mA composing ROC curve A. fa(P

a
f ) can be expressed as a

decreasing piecewise-constant function of P a
f :

fA(P a
f ) =



P
ωA
j+1

d − P ωA
j

d

P
ωA
j+1

f − P ωA
j

f

, P a
f ∈ [P

ωA
j

f , P
ωA
j+1

f ), j = 1, . . . ,mA − 1

P
ωA
mA

d − P
ωA
mA−1

d

P
ωA
mA

f − P
ωA
mA−1

f

, P a
f = P

ωA
mA

f

. (A.7)

Similarly, fb(P
b
f ) represents the slopes of all straight line segments wB1 w

B
2 ,

wB2 w
B
3 , . . . , w

B
mB−1w

B
mB composing ROC curve B. fb(P

b
f ) can be expressed as a

decreasing piecewise-constant function of P b
f :

fB(P b
f ) =



P
ωB
j+1

d − P ωB
j

d

P
ωB
j+1

f − P ωB
j

f

, P b
f ∈ (P

ωB
j

f , P
ωB
j+1

f ], j = 1, . . . ,mB − 1

P
ωB
2

d − P ωB
1

d

P
ωB
2

f − P ωB
1

f

, P b
f = P

ωB
1

f

. (A.8)

From (A.4), when the probability of false alarm constraint is met P c
f = α,

P b
f =

α−pPa
f

1−p . fB(P b
f ) can be expressed as a function of P a

f , where fB(P b
f ) =

fB(
α−pPa

f

1−p ) = gA(P a
f ). From (A.3), P a

f =
α−(1−p)P b

f

p
. When P b

f ∈ (P
ωB
j

f , P
ωB
j+1

f ],

P a
f ∈ [

α+(p−1)P
ωB
j+1

f

p
,
α+(p−1)P

ωB
j

f

p
). gA(.) can be expressed as:
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gA(P
a
f ) = fB(

α− pP af
1− p

) =



P
ωB
j+1

d − P
ωB
j

d

P
ωB
j+1

f − P
ωB
j

f

,P af ∈ [
α+ (p− 1)P

ωB
j+1

f

p
,
α+ (p− 1)P

ωB
j

f

p
),

j = mB − 1, . . . , 1

P
ωB
2

d − Pω
B
1

d

P
ωB
2

f − Pω
B
1

f

,P af =
α+ (p− 1)P

ωB
1

f

p

(A.9)

gA(P a
f ) calculates the slope of the line segment on ROC curve B intersecting

the vertical line Pf = P b
f =

α−pPa
f

1−p (the line segment on ROC curve B passing through

point b = (P b
f =

α−pPa
f

1−p , P b
d )). gA(P a

f ) is a piecewise increasing constant function of

P a
f .

Therefore, in case (c), the target becomes finding PA′

f ∈ H such that the sign

of fA(P a
f )− gA(P a

f ) changes from positive to negative at P a
f = PA′

f .

fA(P a
f )− gA(P a

f ) is a piecewise decreasing constant function of P a
f and its value

only changes when PA′

f ∈ H. Since each one of the constant functions composing

fA(P a
f )−gA(P a

f ) is defined on a left-closed right-open interval, when fA(P a
f )−gA(P a

f )

changes from positive to negative, PA′

f can be found as the smallest value of P a
f in H

such that fA(P a
f )− gA(P a

f ) < 0.

One way to find P a
f = PA′

f ∈ H is using a common binary search algorithm

which contains following steps:

(a) Sort the elements in H

(b) Calculate fA(P a
f )− gA(P a

f ) for the middle element in H

(if H has an even number of elements, use the smaller one of the middle two
elements)

(c) If the result is negative: eliminate the latter half of H (excluding the middle
element); Otherwise: eliminate the former half of H (including the middle
element)

(d) Repeat steps b) and c) until H has only one element, which is PA′

f
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Since H = FA
⋃
GA contains at most mA + mB elements (mA elements in FA and

mB elements in GA), the binary search algorithm performs at most log(mA + mB)

iterations.

When PA′

f is found, if PA′

f ∈ FA, PA′

f can be used to find A′ in ΩA; if PA′

f ∈ GA,

PB′

f can be calculated as PB′

f =
α−pPA′

f

1−p (from (A.4)), then PB′

f can be used to find B′

in ΩB.

After finding A′ if A′ ∈ ΩA and B′ if B′ ∈ ΩB, the procedure in Section 6.6 can

be used to find A′ if A′ /∈ ΩA and B′ if B′ /∈ ΩB.

A.3 Complete Algorithm of the Corrective Action

The flowcharts of the complete algorithm of the corrective action for partial loss of

synchronization among the LDs when dependent randomization is employed (Chapter

6) are shown as Figures A.3 and A.4. In the flowcharts, Step 1 is the input of the

corrective action (Table 6.1). Step 2 calculates the local operating points of System

A and System B (Section 6.2). Step 3 calculates and stores the local operating points

in ΩA and ΩB and their corresponding global fusion rules (Section 6.3). Steps 4-7

belong to Section A.2, which find A′ if A′ ∈ ΩA and B′ if B′ ∈ ΩB. Step 8 is used to

obtains A′ if A′ /∈ ΩA or B′ if B′ /∈ ΩB (Section 6.6).

A.3.1 Redesign the 2-LD system shown in Section 4.1 after the 2nd LD

lost synchronization

Figure A.5 and Figure A.6 show the detail of applying the proposed algorithm to

redesign the 2-LD system shown in Section 4.1.

Before the loss of synchronization, the design output of dependent random-

ization is shown in Table 4.1. The system operates at A = (0.1581, 0.7870) with

probability p = 0.5 and at B = (0.2437, 0.8652) with probability 1− p = 0.5 in order

to operates at C = (0.2009, 0.8261), which satisfies the Neyman-Pearson criterion
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Figure A.3 The preliminary of the algorithm of the corrective action after LDs in
Y lost synchronization.

with α = 0.2009 (Step 1 in Figure A.5). After the 2nd LD loses synchronization

(Y = {LD1}, Y = {LD2}), when γA1 is selected by LD1 (the members in Y ), the

local operating points of the system are ΦA = {(0.3976, 0.8871), (0.2640, 0.7600)};
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Figure A.4 The algorithm of the corrective action after LDs in Y lost synchro-
nization.
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when γB1 is selected by LD1 (the members in Y ), the local operating points of the

system are ΦB = {(0.1304, 0.6328), (0.2640, 0.7600)} (Step 2 Figure A.5). For a 2-LD

system, there are totally six monotonic fusion rules [8] (u0 = u1, u0 = u2, u0 = 0, u0 =

1, u0 = u1&u2, u0 = u1|u2), corresponding to six operating points (some may overlap).

In Figure A.7 (Figure A.8), all possible operating points of the system given ΦA (ΦB)

are shown as the x-marks; ROC curve A(ROC curve B) is shown by using the red

(blue) curve and the operating points ΩA (ΩB) are shown as the red (blue) circles

(Step 3 in Figure A.5). The slopes of the line segments composing the ROC curve

A(ROC curve B), fA(P a
f )(gA(P a

f )), can be expressed as a piecewise constant function

of P a
f (Step 4 in Figure A.5).

From Property 4 in Section A.1, P a
f ∈ [max(0, α+p−1

p
),min(1, α

p
)] = [0, 0.4018].

fA(P a
f )−gA(P a

f ) ≥ 0 at P a
f = 0 and fA(P a

f )−gA(P a
f ) < 0 at P a

f = 0.4018 (Steps 5a and

5b in Figure A.6). The sign of fA(P a
f )−gA(P a

f ) changes at P a
f = PA′

f = 0.1049, which

is the probability of false alarm of one of the operating points in ΩA. PB′

f =
α−pPA′

f

1−p =

0.2968, which is not the probability of false alarm of any one of the operating points

in ΩB (Step 6 in Figure A.6). Therefore, A′ ∈ ΩA, B′ ∈ ΩB (Steps 7a and 7b in Figure

A.6). B′ = (PB′

f , PB′

d ) = (0.2968, 0.8352) is generated by two operating points in ΩB,

which are ωBa = (0.1304, 0.6328), ωBb = (0.3599, 0.9119). When the system operates

on the ROC curve B, ωBa is used with probability q′ =
α−pPA′

f −(1−p)P
ωB
b

f

(1−p)(PωB
a

f −P
ωB
b

f )
= 0.2748

while ωBb is used with probability 1 − p = 0.7252. PB′

d = q′P
ωB
a

d + (1 − q′)P
ωB
b

d =

0.8352 (Step 8b in the algorithm shown in Figure A.6). The maximal probability of

detection can be calculated as PC′

d = pPA′

d + (1− p)PB′

d = 0.7547, which is achieved

by C ′ = (α, PC′

d ) = (0.2009, 0.7547) (output of the algorithm shown in Figure A.6).
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Figure A.5 The preliminary of the proposed algorithm for redesigning the 2-LD
system shown in Section 4.1 after the 2nd LD lost synchronization.

A.3.2 Redesign the 3-LD system shown in Section 4.2 after the 3rd LD

lost synchronization

Figure A.9 and Figure A.10 show the detail of applying the proposed algorithm to

redesign the 3-LD system shown in Section 4.2.

Before the loss of synchronization, the design output of dependent random-

ization is shown in Table 4.3. The system operates at A = (0.104, 0.784) with

probability p = 0.6 and at B = (0.271, 0.936) with probability 1 − p = 0.4 in order

to operates at C = (0.1708, 0.8448), which satisfies the Neyman-Pearson criterion

with α = 0.1708 (Step 1 in Figure A.9). After the 3rd LD lost synchronization

(Y = {LD1, LD2}, Y = {LD3}), when {γA1 , γA2 } are selected by {LD1, LD2}, the
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local operating points of the system are ΦA = {(0.2, 0.7), (0.2, 0.7), (0.16, 0.66)}; when

{γB1 , γB2 } are selected by {LD1, LD2}, the local operating points of the system are

ΦB = {(0.1, 0.6), (0.1, 0.6), (0.16, 0.66)} (Step 2 in Figure A.9). For a 3-LD system,

there are totally twenty monotonic fusion rules (see Table 4.2), corresponding to

twenty operating points (some may overlap). In Figure 6.1 (Figure 6.2), all possible

operating points of the system given ΦA (ΦB) are shown as the x-marks; ROC curve

A(ROC curve B) is shown by the red (blue) curve and the operating points ΩA

(ΩB) are shown as the red (blue) circles (Step 3 in Figure A.9). The slopes of the

line segments composing the ROC curve A(ROC curve B), fA(P a
f )(gA(P a

f )), can be

expressed as a piecewise constant function of P a
f (Step 4 in Figure A.9).

From Property 4 in Section A.1, P a
f ∈ [max(0, α+p−1

p
),min(1, α

p
)] = [0, 0.2847].

fA(P a
f ) − gA(P a

f ) ≥ 0 at P a
f = 0 and fA(P a

f ) − gA(P a
f ) < 0 at P a

f = 0.2847 (Steps

5a and 5b in Figure A.10). The sign of fA(P a
f ) − gA(P a

f ) changes at P a
f = PA′

f =

0.0912, which is the probability of false alarm of one of the operating points in ΩA.

PB′

f =
α−pPA′

f

1−p = 0.2902, which is not the probability of false alarm of any one of the

operating points in ΩB (Step 6 in Figure A.10). Therefore, A′ = (0.1049, 0.6742) ∈

ΩA, B′ ∈ ΩB (Steps 7a and 7b in Figure A.10). B′ = (0.2968, 0.8410) is generated by

two operating points in ΩB, which are ωBa = (0.1900, 0.8400), ωBb = (0.3196, 0.9456).

When the system operates on the ROC curve B, ωBa is used with probability q′ =

α−pPA′
f −(1−p)P

ωB
b

f

(1−p)(PωB
a

f −P
ωB
b

f )
= 0.2269 while ωBb is used with probability 1 − p = 0.7731. PB′

d =

q′P
ωB
a

d + (1 − q′)P ωB
b

d = 0.9216(Step 8b in Figure A.10). The maximal probability of

detection can be calculated as PC′

d = pPA′

d + (1− p)[q′P ωB
a

d + (1− q′)P ωB
b

d ] = 0.8290,

which is achieved by C ′ = (α, PC′

d ) = (0.1708, 0.8290) (output of the algorithm shown

in Figure A.10).
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Figure A.6 Applying the proposed algorithm to redesign the 2-LD system shown
in Section 4.1 after the 2nd LD lost synchronization.
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Figure A.7 The 2-LD system with the 2nd LD loses synchronization. x-marks: all
possible deterministic operating points given ΦA; red circles: all the operating points
in ΩA; red curve: ROC curve A.

Figure A.8 The 2-LD system with the 2nd LD loses synchronization. x-marks: all
possible deterministic operating points given ΦB; blue circles: all the operating points
in ΩB; blue curve: ROC curve B.
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Figure A.9 The preliminary of the proposed algorithm for redesigning the 3-LD
system shown in Section 4.2 after the 3rd LD lost synchronization.
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Figure A.10 Applying the proposed algorithm to redesign the 3-LD system shown
in Section 4.2 after the 3rd LD lost synchronization.
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Figure A.11 The 3-LD system with the 3rd LD loses synchronization. x-marks: all
possible deterministic operating points given ΦA; red circles: all the operating points
in ΩA; red curve: ROC curve A.

Figure A.12 The 3-LD system with the 3rd LD loses synchronization. x-marks:
all possible deterministic operating points given ΦB; blue circles: all the operating
points in ΩB; blue curve: ROC curve B.
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