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ABSTRACT

EXPERIMENTS AND MODELING OF THE
CHEMO-MECHANICALLY COUPLED BEHAVIOR OF POLYMERIC

GELS

by
Nikola Bosnjak

Polymeric materials consist of mutually entangled or chemically crosslinked long

molecular chains which form a polymer network. Due to their molecular structure, the

polymeric materials are known to undergo large deformation in response to various

environmental stimuli, such as temperature, chemical potential and light.

When a polymer network is exposed to a suitable chemical solvent, the solvent

molecules are able to diffuse inside the network, causing it to undergo a large

volumetric deformation, known as swelling. In addition to volumetric deformation,

this process involves the chemical mixing of the polymer network and solvent

molecules, and is typically environmentally responsive. A polymeric material in this

mixed and swollen state is known as a polymeric gel.

Swollen polymers, or polymeric gels, find their application in the oil industry,

soft robotics, drug delivery and microfluidic channels. Moreover, most of the organs

inside our body are gel-like in structure, which makes this class of materials important

for biomedical applications and tissue engineering.

An important distinction between biological tissues and much of the previous

literature on the mechanics of polymeric gels is that most biological tissues contain

fibers. The existence of these fibers embedded in the material, causes the properties

to be significantly different along the fiber direction.

Recent years have seen the development of a vast number of large defor-

mation continuum-level constitutive models aimed to capture the coupled diffusion-

deformation behavior of polymeric gels. However, there is an insufficient amount of

experimental data to complement such theoretical research. Thus, despite numerous



potential applications, many aspects of polymeric gel behavior remain elusive. In

addition, the diffusion-deformation behavior is known to be affected by the external

stimuli. In the current state of the art there is a lack of theoretical models and robust

simulation capabilities to account for the influence of such stimuli, hindering further

advances in technologies involving polymeric gels.

The purpose of this research is to bridge the gap between the experimental

and theoretical studies, and provide reliable finite element simulation capabilities for

polymeric gels. More specifically, the aim is to (i) experimentally characterize the

behavior of polymeric gels, (ii) develop new experimentally motivated constitutive

models and (iii) implement the models numerically for use in a finite element software.

The final result of this research is a robust finite element method (FEM) code that

can be used for simulations in the commercial software package Abaqus.

Towards the goal, an experimental procedure is designed to thoroughly inves-

tigate the behavior of polymeric gels, and provide a direction for the development

of novel constitutive models. The procedure involves mechanical testing of dry

polymeric material, free swelling with suitable solvents, and mechanical testing when

fully swollen. The experimental observations provide transformational insights in the

mechanical behavior of polymeric gels, and are utilized to develop a continuum-level

constitutive model.

Further, the presence of embedded fibers in a swellable polymer matrix leads to

anisotropy in the overall behavior. In order to capture this response, a constitutive

model for fiber-reinforced polymeric gels is developed, that explicitly takes into

account anisotropy in both the mechanical and diffusive behavior. The constitutive

model is implemented as user element subroutine (UEL) in the commercial finite

element software package Abaqus/Standard. Numerical simulations are performed to

show the behavior of the model, and qualitative comparisons are made to experiments

of a soft robotic gripper.



In addition, many polymeric gels are known to respond or activate when exposed

to a light stimulus. This light-driven alteration of the behavior is known to be caused

by the photochemical reactions occurring inside the polymer network. Thus, the

overall response of light-activated polymeric gels is affected by the mechanical stress,

solvent content, and the extent of photochemical reaction caused by light irradiation.

To account for such response of a polymeric gel, a continuum level constitutive model

is developed and numerically implemented in Abaqus/Standard as a user element

(UEL) subroutine.
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CHAPTER 1

INTRODUCTION

1.1 Background

Solid polymers and polymeric materials consist of underlying polymeric network

composed of long entangled molecular chains mutually connected with crosslinks or

non-permanent bonds. When brought in contact with a suitable solvent, the network

will absorb the solvent and swell. The mixing of the solvent and polymer network

constitutes what is known as a polymeric gel, and the volume change due to swelling

may be on the order of hundreds of percent. The amount of solvent imbibed due to

mixing and swelling, along with environmental conditions, lead to significant changes

in the volume and mechanical properties of gels compared to the dry network.

Numerous important industrial applications and scientific merits exist in

studying the coupled deformation-diffusion behavior of polymeric gels. As an

example, in the oil industry, swellable rubber materials are vulcanized onto drill

pipes to serve as what is known as packers. These packers, when in contact with

oil (or water), imbibe the oil (or water) to form a swollen gel which is used to seal

different segments of a well bore [76]. Additionally, in biomedicine, the demand for

more controlled drug delivery systems is increasing, and various types of gels are used

for that purpose [63, 128]. Due to the similarity of gels with biological materials,

polymeric gels are extensively used in tissue engineering (cf., e.g., [114, 91, 85, 80]).

Further, many polymeric gels are biocompatible and biodegradable, making them

highly suitable for drug delivery applications (cf., e.g., [28, 145]) and medical implants

[139]). Lastly, one of the most popular applications of polymeric gels is in microfluidic

channels as actuators and sensors [7, 101].

1



Also, many polymers respond to environmental stimuli such as temperature,

electric and magnetic fields, pH, and more [53, 52, 46, 116, 66, 82]. The responsiveness

of polymeric gels to environmental stimuli has been widely employed in soft robotics

[103, 136]. The applications of soft robots are vast [65], the more exotic ones include

morphing airfoils, rotary actuators, and grippers [140, 48, 10]. Newly designed

polymeric gels are being developed to enhance the performance of these systems

[147]. Further, the flexibility of soft robots and their similarity to biological systems

are utilized in bio-hybrid robotics [12]. The fast emerging development of gel-based

soft robots makes modeling of this class of materials an important task for simulating

their operation.

Historically, first important breakthrough in the research of polymeric gels was

made in the middle of 20th century. During the 1940’s, polymer chemist Paul Flory

and his research group laid a foundation for modern understanding of polymeric

gels. From current scientific perspective, two most notable products of their research

are Flory-Huggins model [42], and Flory-Rehner theory [45]. Flory-Huggins model

provides the statistical model for migration of fluid molecules inside a polymer

network. Moreover, most of the current models for polymer swelling are based on

Flory-Rehner equilibrium swelling theory. The importance of this theory lies in a

fact that this is the first attempt to combine mechanical Neo-Hookean model with

chemical mixing.

Later on in the 1970’s, Tanaka et al. [126] proposed their theory for kinetics

of polymeric gels. In addition, they obtained one of the first experimental data for

polymeric gels. This is commonly considered as a starting point for most of modern-

day research. Recent years saw an extensive number of multiphysics continuum-level

gel theories for the coupled diffusion-deformation behavior being developed (cf., e.g.,

[58, 35, 29, 16, 34, 90, 19]).
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Alongside the theoretical research, various experimental procedures have been

developed to capture the mechanical behavior of gels, some of which include

indentation [62], microscale tensile testing [67] and compression testing [37, 70]. Most

of the above mentioned experimental procedures involve a small-scale deformation

of the material. In addition, large deformation testing of gels is conducted by [113],

[135], and [141]. Although the incorporation of large deformations is common in many

modeling and computational studies, the insufficient amount of relevant experimental

data is impeding research that would push our knowledge further.

1.2 Introduction to Viscoelastic Polymeric Gels

A vast number of polymeric materials exhibit a non-linear viscoelastic behavior.

Viscoelasticity in polymeric materials is commonly considered to arise due to the

difference in time scale between rapid short-range motion and slower long-range

motion of polymeric chains, as well as the interaction between the chains [39]. Being

such a well known phenomena, the viscoelastic behavior of polymeric materials has

been thoroughly researched over the past decades. Mechanical testing of viscoelastic

polymers was performed by [122], [105] and [59]. Moreover, there have been many

notable attempts to model the time-dependent behavior of viscoelastic polymers.

Some of the initial work on modeling viscoelasticity in polymers was done by [49]

and [8], followed by the models developed by [130] and [23]. More recent constitutive

models are the work of [32], [111], [68], [33], [93] and [83].

The behavior of viscoelastic polymers is known to be affected by different

environmental conditions, such as temperature, voltage, and chemical potential.

Experimental data on temperature dependent viscoelastic behavior was published as

early as mid 1950s (cf., e.g., [138, 107, 108]) with some more recent observations

by [73] and [31]. The vast amount of experimental research is accompanied by

constitutive models to capture that behavior [110, 74, 31, 99]. In addition to
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studies on the electro-elasticity (cf., e.g.,[30, 20]), the coupled electro-mechanical

behavior of viscoelastic polymers has been shown and modeled in the literature

[131, 142, 60, 133]. The coupled chemo-mechanical behavior of viscoelastic polymers

has also been studied in recent years. In the current literature on viscoelastic gels,

one can find the experimental research by numerous groups [146, 12, 94, 72]. Further,

continuum-level constitutive models for viscoelastic gels, which take into account the

chemo-mechanical behavior have been developed [61, 15]. Nonetheless, the current

state of the literature lacks sufficient quantity of data and observations to corroborate

and calibrate the vast number of models.

It is also worth noting that recent years saw an extensive number of studies,

both experimental and theoretical, involving poroelasticity (cf., e.g., [47, 134, 62, 61]).

While these studies have provided an insight in the coupled diffusion-deformation

behavior at smaller deformations, the response of polymeric gels undergoing large

deformations is yet to be fully characterized and modeled.

1.3 Introduction to Fiber-Reinforced Polymeric Gels

An important distinction between biological tissues and much of the previous

literature on the mechanics of polymeric gels is that most biological tissues contain

fibers. The existence of these fibers embedded in the material, causes the properties to

be significantly different along the fiber direction [137, 97, 22, 106, 21]. In other words,

the presence of embedded fibers imposes pronounced anisotropy in the response of

these materials.

In the literature, one also finds a vast number of constitutive models for

capturing anisotropic behavior of fiber-reinforced polymers (cf., e.g., [57, 11, 98, 2]).

However, there are only a few notable attempts to include influence of embedded

fibers on behavior of polymeric gels in recent years (cf., e.g., [104, 95, 96]).
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1.4 Introduction to Photo-Sensitive Polymeric Gels

The photo-activation of polymeric gels is typically achieved through tethering of

photo-sensitive groups onto the polymeric backbone. The two most commonly

employed photo-sensitive groups are azobenzene and spirobenzopyran chromophores

(cf., e.g., [41, 132]). When irradiated, azobenzene undergoes trans-cis photoisomer-

ization, while the spirobenzopyran undergoes photoisomerization from a hydrophilic

open ring to a hydrophobic closed ring. Both of these processes are reversible and are

known to affect the amount of swelling of polymeric gels ([118, 24]). More recently,

the photo-induced addition-fragmentation chain transfer (AFCT) was utilized to alter

the mechanical properties of polymeric gel. In their study, [92] have shown the AFCT

has a significant impact on the viscoelastic behavior of polymeric gel.

In current literature one finds experimental studies aimed to characterize the

influence of irradiation on the response of polymeric materials and gels. The influence

of photo-induced bond formation in polymeric network has been widely studied (cf.,

e.g., [102, 54, 4, 6, 38]), as well as the photo-degradation due to bond cleavage (cf., e.g.,

[120, 112, 143]). Also, the influence of irradiation on swelling kinetics in polymeric

gels has been well documented (cf., e.g., [69, 84, 77]), and the data by [24] suggests

the reversibility of the process.

While photo-induced bond formation/cleavage and swelling kinetics have been

extensively investigated, some experimental studies suggest the effects of irradiation

go beyond the degree of swelling. The recent study by [92] suggests the viscoelastic

response of polymeric gel is affected by irradiation. Their experimental data

(discussed in further detail in Section 4.2) shows a noticeable increase in the loss

modulus while the gel is irradiated, returning to its baseline once the irradiation is

stopped.

In addition to experimental work, recent years have seen the notable attempts

to model the response of photo-sensitive gels (cf., e.g., [78, 127, 27, 14]). While
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most of the modeling studies focus on capturing the swelling kinetics, the change in

viscoelastic response due to irradiation is yet to be accounted for.
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CHAPTER 2

VISCOELASTIC POLYMERIC GELS

2.1 Introduction

The work presented in this chapter is aimed to characterize the viscoelastic response

of both dry and fully swollen polymeric gels through experimental observations and

continuum level modeling. Towards our goal, we have developed an experimental

procedure intended to capture the major aspects of the non-linear mechanical

behavior of polymeric gels, including the viscoelastic response. To complement the

experimental observations, we calibrate a constitutive model for viscoelastic polymeric

gels. In what follows, we restrict our attention to the specific cases where the material

is either completely dry, or fully swollen.

For our experiments we have chosen the commercially available material VHB

4910, since it is well known exhibit viscoelastic behavior in the absence of fluid

[59, 133]. Also, we have observed that VHB 4910 swells when in contact with

suitable solvents. Therefore, all of our experiments make use of n-Pentane, o-Xylene,

and Toluene, as solvents in conjunction with VHB 4910 to create our polymeric

gels. The continuum-level constitutive model is mechanically incompressible, includes

viscoelasticity, and does not explicitly take diffusion into account. That is to say we

consider time dependence in the mechanical response, however, not in the diffusive

response of the solvent, which is taken to be at a known and fixed degree of swelling.

The remainder of this chapter is organized as follows, in Section 2.2 we overview

some of the terminology and important details involved with mechanical testing of

swollen polymeric gels. In Section 2.3 we present our experimental procedures, as

well as analysis procedures for our measurements, and the corresponding results. In

Section 2.4, we present the constitutive model used to interpret the experimental
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results and the model is calibrated in Section 2.5. Lastly, Section 2.6 provides some

concluding remarks.

2.2 Preliminaries

It is worthwhile to make clear our assumptions used for mechanical testing polymeric

gels. First, for clarification, the nomenclature that will be used throughout is:

� Virgin — A dry sample, without any previous history of solvent exposure, or

mechanical loading, is considered virgin.

� Fully swollen — A virgin sample, exposed to ample solvent, free of mechanical

constraints, and allowed to swell until equilibrium, is considered fully swollen.

This process is termed free swelling.

� Solvent cycled — A virgin sample, first fully swollen, and then completely dried

(deswollen), is considered solvent cycled. The process of swelling following by

drying may be repeated numerous times. For example, a sample could be solvent

cycled five times, that indicates a virgin sample was fully swollen and then freely

dried five times.

When mechanically testing unswollen samples (either virgin or solvent cycled),

in a uniaxial setting the total deformation that polymer network undergoes is the

mechanical stretch λm. On the other hand, exposing that polymer network to an

ample quantity of a suitable solvent for long enough time, in the absence of mechanical

constraints or loading, will cause it to freely swell to equilibrium. The process of

free swelling yields an isotropic volumetric expansion, and on a continuum level, a

stress-free state — what we call fully swollen. The stretch caused by swelling is

denoted by λs, assumed to be spherical, and when freely swollen λs is homogeneous

inside a gel.1 For our experiments on freely swollen gels, we consider the initial

1In general, in the presence of mechanical or chemical constraints, λs need not be
homogeneous inside a polymeric gel.
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configuration for mechanical testing the freely swollen state, with a prior homogeneous

swelling stretch λs. Uniaxial mechanical testing on the freely swollen polymer gels is

achieved by displacement controlled deformation applied on the initially freely swollen

material. This is shown schematically in Figure 2.1. Further, as is common in the

literature on the mechanics of gels, we employ a multiplicative decomposition of the

total uniaxial stretch, making the total deformation of the swollen polymer gel

λ = λmλs . (2.1)

λs λm

λ = λmλs

l0

ls

l

Virgin

Fully

swollen

Fully swollen

and

mechanically

deformed

Figure 2.1 Schematic of the multiplicative decomposition of the total uniaxial
stretch into swelling and mechanical contributions.

Going further into the details, in reference with Figure 2.1, the total uniaxial

stretch is defined as

λ =
l

l0
(2.2)

where l is the deformed gauge length and l0 is the virgin gauge length. The swelling

stretch represents the ratio of the swollen length to virgin length

λs =
ls
l0
, (2.3)
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where ls is the length of swollen material. Following Figure 2.1 and relation (2.1),

the mechanical stretch is the ratio of the mechanically deformed length to the freely

swollen length, which can be written in the form

λm =
l

ls
=
ls + um

ls
= 1 +

um

ls
, (2.4)

where um is the axial displacement caused by mechanical deformation. In the case of

dry material without any swelling, we simply have λs = 1, and therefore λ = λm.

Since we are interested in assessing the rate-dependent behavior of polymeric

gels, the rate of deformation is essential. To make the analysis as useful as possible,

we use the mechanical stretch rate

λ̇m =
u̇m

ls
, (2.5)

and the total stretch rate at a fixed amount of swelling

λ̇ =
u̇m

l0
= λ̇mλs . (2.6)

The standard nominal (1st Piola) stress in uniaxial tension for dry material is

given by

P =
F

A0
(2.7)

where F is the force signal obtained by the load cell, and A0 is the dry nominal

cross sectional area. Care must be taken in the choice of a stress measure used for

fully swollen uniaxial tests. Prior to any mechanical loading, since the sample is

fully swollen, but mechanically undeformed we have λm = 1 and λs > 1, leading to

an initial stretch λ = λs > 1 prior to the application of any prescribed mechanical

deformation. Therefore, we will also report on the stress measured per freely swollen

cross sectional area, a mechanical Piola stress. Here the mechanical Piola stress is

10



denoted by

Pm =
F

As
, (2.8)

where As is the nominal cross sectional area of the fully swollen sample. Additionally,

the Cauchy stress, or true stress, is the force per unit current cross sectional area.

However since we are unable to measure the current cross sectional area during a test,

and do not want to make unnecessary assumptions, we do not report it in this work.

Lastly, we will make frequent use of the stiffness in our analysis, which

experimentally is taken simply as the slope of the uniaxial tension stress - stretch

curve, measured at a specific deformation since it is not constant. Since our

experiments are designed to obtain the material response at a fixed degree of swelling,

we assume λs is a constant, therefore,

d(•)
dλ

=
d(•)
dλm

dλm

dλ
=
d(•)
dλm

(λs)−1 . (2.9)

Accordingly, we only report on stiffnesses measured relative to mechanical defor-

mation in this work. Further, since the effective stiffness is what one would measure in

the current deformed configuration, for dry and swollen samples the effective stiffness

is

dP

dλm
, and

dPm

dλm
, (2.10)

respectively. To experimentally measure the stiffness based on experimental data, we

determine the slope of the stretch-stress curve at a specified stretch by fitting a line

to five data points centered around the specified stretch.

2.3 Experimental Procedures and Results

In this section, we report our experimental procedures for capturing the non-linear

viscoelastic behavior of virgin, fully swollen, and solvent cycled polymeric materials,

as well as the corresponding results. Our experiments are performed on the popular
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and widely known commercially available acrylic polymer VHB 4910. This material

is chosen since virgin VHB is well known to exhibit highly viscoelastic non-linear

behavior [59, 133].

The overall experimental scheme broadly consists of the following:

1. uniaxial tension, stress relaxation, and creep testing on virgin samples;

2. free swelling of virgin samples;

3. uniaxial tension and stress relaxation on fully swollen samples;

4. uniaxial tension and stress relaxation, on solvent cycled samples;

with more detail in what follows.

We commence the experimental procedure by determining the virgin baseline

behavior of the polymer. To investigate the time-independent behavior of the virgin

polymer, we perform a set of large deformation tensile tests, including load and

unload, at a very slow mechanical stretch rate, accompanied by large deformation

creep and stress relaxation testing. Next, to probe the time-dependent behavior of

the virgin polymer we perform a set of tensile tests consisting of loading followed by

unloading at various prescribed mechanical stretch rates. Further, to thoroughly

probe the relaxation behavior of the virgin polymer, we perform a set of stress

relaxation tests at a moderate prescribed stretch. After the uniaxial baseline data

for the virgin polymer is obtained, we next move onto free swelling. To determine

the swelling stretch caused by free swelling, VHB 4910 was immersed in three

different solvents, n-Pentane, o-Xylene and Toluene, until equilibrium was reached,

over 24 hours. The next step involves repeating some of the uniaxial tests mentioned

before, but now on fully swollen samples. The procedure consists of a similar set of

uniaxial tests as used for the dry virgin material, to investigate the time-independent,

time-dependent, and relaxation behavior of fully swollen VHB 4910. Lastly, virgin
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samples are freely swollen, followed by free drying of those same samples — what we

have termed solvent cycled. Then, another similar set of uniaxial tests are performed

again to determine if there is any measurable irreversible change to the mechanical

behavior due to solvent cycling.

2.3.1 Experimental Setup

All tensile tests reported here are conducted on an MTS Criterion Model 43 uniaxial

testing machine at a fixed room temperature of 24◦C. We use dog-bone shaped

specimens, and virgin samples are cut out from a roll of VHB 4910 tape using an

ASTM D638-V cutting die. The nominal length, width, and thickness of the virgin

gauge section are 9.49mm, 3.18mm, and 1mm respectively. Importantly, since there

are minute variations in the material, both thickness and width are measured prior

to the start of all experiments. When dealing with very soft materials, the use of

calipers or a micrometer can lead to false measurements due to the deformation

of the material under the caliper jaws or micrometer anvils. Therefore, we use a

non-contact measurement based on photos of dry and swollen specimens, and use

ImageJ [109] software to measure the thickness and the width of gauge section. Our

experience shows that this leads to the best dimensionally repeatable data we were

able to obtain. All the photos used for dimensional measurements reported here were

taken with a Nikon-D3200 camera mounted on a tripod for repeatability.

To measure the deformation in our tensile experiments, the non-contact Digital

Image Correlation (DIC) software Vic2D (Correlated Solutions) is employed and

integrated with a digital camera (PointGrey GRAS-50S5M-C). Due to compliance

of the testing machine, slippage, or other factors, post-processing DIC measurements

of the gauge section have been found the most reliable method to obtain deformation

data in these soft materials. Additionally, our DIC data acquisition system allows for

concurrent image capture and force signal measurement. Since VHB is transparent,
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for virgin and solvent cycled samples, a number of black lines are applied to the

gauge section with a permanent marker prior to testing to obtain color contrast for

DIC measurements. However, the permanent marker was unreliable when applied to

the surface of the fully swollen (wet) sample. Therefore, we applied fine black powder

particles (silicon carbide grit, size 60) to the wet sample surface and they provide

contrast for DIC.

To measure the force, a combination of a 5-pound load cell (Transducer

Techniques MDB-5) and 100-gram load cell (Transducer Techniques GSO-100) are

used depending on the expected load encountered. The choice is made to obtain the

best signal-to-noise ratio for each particular experiment. For example, a dry virgin

material at very large stretch requires the 5-pound load cell, however a fully swollen

load-unload tension test to moderate stretch will not exceed 100 g, and therefore the

smaller load cell is used.

When left in air for 10 minutes, samples fully swollen with solvent (n-Pentane,

o-Xylene, or Toluene) on average lost 20.7% of their mass through evaporation,

compared to just 7.1% when completely submerged in water. Therefore, to mitigate

the evaporation of solvent from the swollen gel, the tensile tests on fully swollen gels

are performed inside a fluid bath filled with water, that is mounted in the load train

of the testing machine, as shown in Figure 2.2. We have found that immersion of

the swollen gel in water significantly reduces the evaporation of the imbibed solvent,

and is our best effort to ensure the solvent concentration is homogeneous inside the

material.

In addition, the typical order of magnitude for solvent diffusivity in a polymeric

gel is approximately 10−10m2/s (cf., e.g., [25, 55]), for a length scale of 1mm, we

estimate the characteristic diffusion time of about 2.75 hours. Since the majority

of our experiments take place on a much shorter timescale, when analyzing the
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experimental data we assume the solvent concentration is constant and uniform

throughout for all of our mechanical tests.

It is important to note that, although the curvature of the fluid bath, along with

the presence of water, somewhat distorts the images used for DIC in the transverse

direction, it is not significant in the loading direction. A verification procedure is

provided in the Appendix showing that the DIC measurements are acceptable with

only minor error in this fluid bath setup. Therefore, we freely use DIC to measure

the axial extension in our uniaxial experiments on submerged specimens.

Further, when performing a mechanical test on a sample submerged in a fluid

bath, as in Figure 2.2, the data recorded by the load cell is affected by buoyancy. To

ensure the best quality force data, we include the buoyancy of the submerged grip,

load train, and sample, when processing the experimental results. To determine the

effect of buoyancy, we hold a swollen sample inside the top grip, and directly measure

the change in force at different submerged depths. The recorded force per depth

(N/m) is used when analyzing the data, allowing for the inclusion of buoyancy in the

analysis. Details of the buoyancy calibration are provided in the Appendix B.

2.3.2 Virgin Uniaxial Testing Procedure

First, the dimensions of the gauge section width and thickness of each sample

are measured using ImageJ [109] as described previously. The quasi-static large

deformation tensile tests are performed at a constant stretch rate of λ̇ = λ̇m =

10−4 s−1, based on the virgin gauge section dimensions. The crosshead displacement

is prescribed to obtain a maximum stretch of λ = λm = 10 based on the virgin

gauge length, followed by unloading to the initial stretch of λ = 1 to probe the large

deformation behavior and hysteresis in the material response. Later, DIC analysis is

performed as a post-processing step to obtain the actual deformation in the gauge

section.

15



1
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3

4

Figure 2.2 Experimental setup for mechanical testing of a sample inside a fluid
bath. Here, 1 denotes the digital camera, 2 the (5-pound) load cell, 3 an extended
fully swollen gel sample, and 4 the water level.

For load-unload tensile tests at moderate stretch rates, we prescribe the

crosshead displacement to obtain a maximum stretch of λ = λm = 2, and the

unloading displacement to return to the initial stretch of λ = λm = 1 at a

constant stretch rate. To assess rate dependency, two different rates are used

λ̇ = λ̇m = 10−2 s−1 and 10−1 s−1, with the prescribed loading profiles shown in Figure

2.3.

Next, we perform a set of stress relaxation experiments. First, samples are

loaded to a stretch λ = λm = 2, at a stretch rate of λ̇ = λ̇m = 2×10−1 s−1, the fastest

our screw driven testing machine can reliably move. After reaching the prescribed

stretch, samples are then held at that fixed stretch for 1 hour, while the force is being

recorded to determine the stress relaxation. As usual, DIC analysis is performed as

a post-processing step, used here to obtain the actual stretch in the gauge section

during the relaxation experiment.
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Lastly, to complement the quasi-static large deformation testing and to ensure

a time-independent response of the virgin material, we additionally performed:

(i) stress relaxation testing at various stretch levels, until stress equilibrium has been

reached over 24 hours; and (ii) creep testing at various constant stresses, until stretch

equilibrium has been reached over 24 hours.
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Figure 2.3 Prescribed loading-unloading stretch profile to a maximum mechanical
stretch of λm = 2.

2.3.3 Free Swelling Procedure

The free swelling procedure commences by taking the photos of virgin samples for

dimensional measurements. Then, the virgin samples are fully submerged in ample

solvent inside sealed glass jars. The sealed jars are placed inside a fume hood, and

the samples are allowed to undergo free swelling for over 24 hours. During that time,

the swelling process reaches equilibrium and samples are considered fully swollen. To

ensure that equilibrium was reached, the mass of the samples is measured periodically

using a Sartorius Practum213-1S scale.

To obtain the swelling stretch of the fully swollen samples, photos of fully swollen

samples were taken. ImageJ [109] software is then used to measure the virgin and

the fully swollen lengths, and the swelling stretch is obtained using (2.3). Assuming

spherical swelling, the fully swollen sample dimensions are obtained by scaling the
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virgin dimensions by the swelling stretch. Therefore, the cross sectional area of the

fully swollen gauge section is

As = (λst0) (λ
sw0) = (λs)2A0 . (2.11)

2.3.4 Fully Swollen Uniaxial Testing Procedure

Other than the samples being submerged in the water bath, the uniaxial testing

procedure for a fully swollen gel is essentially the same as the dry procedure described

in Subsection 2.3.2. The main differences lie in the care needed in analysis to account

for the prior swelling deformation, and the affects of the water bath such as buoyancy.

As before, DIC is used in all cases as a post processing step to assess the actual

deformation in the gauge section.

Large deformation quasi-static tensile tests are performed at a very slow

mechanical stretch rate of λ̇m = 10−4s−1, based on the swollen length of the gauge

section. Fully swollen samples were subjected to a prescribed total stretch of either

λ = 10, or just prior to failure, followed by unloading to the initial stretch of λ = λs,

which is the freely swollen stretch.

For moderate rate loading-unloading tensile tests, the sample is loaded to a

mechanical stretch of λm = 2, which corresponds to a total stretch λ = λmλs = 2λs,

followed by unloading to λm = 1, which matches the initial freely swollen total stretch

of λ = λs. To assess rate dependency, two different rates are used λ̇m = 10−2 s−1 and

10−1 s−1, and Figure 2.3 shows the prescribed stretch profiles.

Finally, we perform a set of stress relaxation tests, in which the samples are

first loaded to λm = 2 at a stretch rate λ̇m = 2 × 10−1 s−1, and held at that fixed

stretch for 1 hour, while the force is being recorded to determine the stress relaxation

behavior.
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2.3.5 Solvent Cycling Procedure

As mentioned earlier, solvent cycling is the process of swelling, followed by drying.

Following the free swelling procedure, some specimens were then allowed to freely

dry. The free swelling procedure was already described in Subsection 2.3.3, and is

followed again for solvent cycling. The free drying procedure is very similar, however

the swollen samples are set inside a petri dish, free of constraint, in a fume hood

for 48 hours. Mass measurements are taken frequently along the process as described

previously. We consider the sample to be completely dry once its mass is nearly equal

(i.e., the same value relative to the instrument precision) to that of the dry virgin

sample, implying all the solvent has evaporated from the polymer network.

2.3.6 Uniaxial Testing Procedure After Solvent Cycling

The uniaxial testing procedure of samples that underwent solvent cycling consists of

nearly the identical set of experiments used to test virgin samples. First, the large

deformation quasi-static response of the material is probed through uniaxial tensile

tests at a very slow mechanical stretch rate of λ̇m = 10−4s−1, based on the solvent

cycled gauge section length (which coincides with the virgin length). For this purpose,

the samples have been deformed to a prescribed mechanical stretch λm = 10. Next,

to determine the hysteresis in the material response, along with the rate-dependence,

we perform a set of load-unload tensile tests to a mechanical stretch of λm = 2,

employing two different deformation rates λ̇m = 10−2s−1 and 10−1s−1. Lastly, a set of

stress relaxation tests at a fixed stretch of λm = 2 were performed with a relaxation

time of over 1 hour.

2.3.7 Experimental Results

Uniaxial Results on Virgin Specimens The results of our uniaxial tests on

virgin specimens are shown in Figure 2.4. Specifically, Figure 2.4a very clearly shows

19



the large deformation response under very slow loading. Here, clear evidence of the

chain-locking behavior of VHB 4910 is observed at a uniaxial mechanical stretch

of λm ≈ 9. Further, the dry virgin material exhibits pronounced rate-dependent

behavior, which is observed in Figure 2.4a and 2.4b. The load-unload tensile tests

at two moderate rates show clear rate-dependence as well as significant hysteresis

upon unloading due to viscoelastic effects. Lastly, Figure 2.4c shows the measured

stress relaxation behavior at an applied stretch of λ = 2. From this figure one clearly

observes relaxation, going from a nominal stress of just over 110 kPa and relaxing

to just over 40 kPa over 1 hour. In Figure 2.4d the large deformation quasi-static

tension test results at a rate of 10−4s−1 are plotted along with the long term creep

and relaxation data at equilibrium. Since the large deformation quasi-static tensile

response has some hysteresis, we interpolated the creep and relaxation data (utilizing

the smooth function in MATLAB) to obtain the time-independent response of the

material.

To quantify the experimental observations and rate-dependent behavior of the

material, we measure the stiffness and hysteresis at different stretch rates. The initial

stiffness dP
dλm is measured for all three λ̇m employed in tensile testing. Additionally,

from the data obtained using a large deformation quasi-static test, we also measure

the stiffness near the maximum measurable, and midway. The amount of hysteresis

is determined by the area enclosed by the loading and unloading path on the stress-

stretch curve.

The measured effects of locking are clear, with an increase in stiffness dP
dλm

from 17.19 kPa at a stretch of 4.5 to 102.53 kPa at a stretch of 8.36. Further, the

experimental results showcase a noticeable increase in initial stiffness with an increase

in λ̇m, ranging from 60.2 kPa for the λ̇m = 10−4s−1, 170.18 kPa for the λ̇m = 10−2s−1,

to 333.31 kPa for the λ̇m = 10−1s−1. In addition to the increase in stiffness, one
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Figure 2.4 Uniaxial experimental results for dry virgin specimens. a) Large
deformation quasi-static and moderate rate load-unload uniaxial tensile tests, with
nominal stress as a function of mechanical stretch λm, which in case of dry samples is
the same as the total stretch λ. b) The same load-unload data at moderate rates in
a smaller range of stretch for clarity. c) Stress relaxation for an applied mechanical
stretch of 2. And d) comparison between the quasi-static large deformation tensile test
and the time-independent behavior obtained through combination of stress relaxation
and creep testing.

can notice an increase in hysteresis from 15.82 kPa at λ̇m = 10−2 s−1 to 31.41 kPa at

λ̇m = 10−1 s−1.

We note that the tabulated data and comparisons to the fully swollen material

is provided later in Subsection 2.3.7 when the fully swollen results are discussed.
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Free Swelling Results As mentioned previously, optical measurements of specimens

before and after free swelling of VHB 4910 in various solvents provide a reliable

measurement of the swelling stretch at equilibrium without constraints. Figure 2.5

shows the virgin dry specimen, and the corresponding fully swollen specimen for

the solvents: a) n-Pentane; b) o-Xylene; and c) Toluene. The average mass of our

virgin samples is 0.495 g prior to solvent exposure. Our measurements show that a

VHB 4910 specimen fully swollen in n-Pentane on average absorbs 0.66 g of solvent

and has a swelling stretch of λs = 1.49. Similar measurements for o-Xylene show

that it absorbs 3.47 g of solvent and has a swelling stretch of λs = 1.95. And lastly

for Toluene, 3.40 g are absorbed and the swelling stretch is λs = 1.98. To ensure the

equilibrium, the mass is measured periodically over 48 hours. Figure 2.6 clearly shows

the swelling process reaching equilibrium in about 24 hours, for all three solvents.

10mm 10mm 10mm

a) b) c)

Figure 2.5 VHB 4910 ASTM D638-V dog-bone specimens before and after free
swelling to equilibrium, and also used for uniaxial testing. a) Dry and swollen with
n-Pentane, with equilibrium swelling stretch λs = 1.49. b) Dry and swollen with
o-Xylene with equilibrium swelling stretch λs = 1.95. c) Dry and swollen with Toluene
with equilibrium swelling stretch λs = 1.98. We note that the dotted lines are drawn
along the edges of specimens to emphasize the specimen boundary for this transparent
material.

Uniaxial Results on Fully Swollen Specimens The results of our uniaxial tests

of fully swollen specimens are shown in Figure 2.7 for tension tests on VHB fully

swollen with n-Pentane, Figure 2.8 for tension tests on VHB fully swollen with o-

Xylene, Figure 2.9 for tension tests on VHB fully swollen with Toluene, and Figure

2.10 for relaxation tests on specimens fully swollen with all three solvents.
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Figure 2.6 Sample mass measured periodically over 48 hours of free swelling
indicating equilibrium is reached at 24 hours.

First considering the tensile behavior of VHB 4910 fully swollen in n-Pentane,

Figure 2.7 shows the large deformation quasi-static load-unload response, as well as

the load-unload response at a few fixed, but different, moderate stretch rates. Based

on the large deformation tensile test we can observe no hysteresis in the response

of the material, along with a decrease in the initial effective stiffness from 60.2 kPa

to 27.53 kPa, as seen in Table 2.1. Also, we find that the material does not show

any clear locking behavior when compared to the virgin material, with the stiffness

increasing from 14.41 kPa at a total stretch of 4.5 to just 17.85 kPa at a stretch of 7.73,

as shown in Table 2.2. Looking at the moderate rate load-unload data to a stretch

of 2, the measured initial effective stiffness dPm

dλm drops to 32.74 kPa at λ̇m = 10−2 s−1

and 34.29 kPa at λ̇m = 10−1 s−1. The difference in stiffness at various stretch rates is

negligible compared to the virgin material (see Table 2.1), and the samples exhibit an

almost complete absence of rate-dependency in the response. Along with the decrease

in stiffness, one can observe the lack of hysteresis, with the measured hysteresis area

going from 15.82 kPa to 0.37 kPa at λ̇m = 10−2 s−1, and from 31.41 kPa to 0.84 kPa at

λ̇m = 10−1 s−1, as seen in Table 2.3. In summary, the load-unload tensile experiments

at various rates show no signs of rate-dependence or hysteresis.
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Figure 2.7 Experimental results for samples swollen in n-Pentane. a) Large
deformation quasi-static load-unload, along with load-unload moderate rate tests
to λm = 2, with results presented as a function of total stretch λ = 1.49λm. b)
Load-unload tests to λm = 2 at moderate stretch rates and presented as a function
of mechanical stretch.

Next, considering the tensile behavior of VHB 4910 fully swollen in o-Xylene,

Figure 2.8 shows the large deformation quasi-static load-unload response, as well as

the load-unload response at a few fixed, but different, moderate stretch rates. Based

on the large deformation tensile test we can observe the absence of hysteresis in

the material response, followed by the decrease in the initial effective stiffness from

60.2 kPa to 24.73 kPa, as seen in Table 2.1. Also, we find that the material has failed

at a total stretch of 6.85, whereas the virgin material was still intact. Further, the

material does not show any clear locking behavior compared to the virgin material,

with an increase in stiffness from 19.36 kPa at a total stretch of 4.5, to 24.75 kPa at the

failure stretch, as seen in Table 2.2. Measuring the initial effective stiffness dPm

dλm for

moderate rate load-unload results, we notice the drop to 23.94 kPa at λ̇m = 10−2 s−1

and 26.59 kPa at λ̇m = 10−1 s−1. The difference in stiffness at various stretch rates is

negligible compared to the virgin material, displaying almost the complete absence

of rate-dependency in the response, as seen in Table 2.1. Along with the decrease

in stiffness, we measure almost a complete lack of hysteresis, with the measured
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hysteresis area going from 15.82 kPa to 0.18 kPa at λ̇m = 10−2 s−1, and from 31.41 kPa

to 0.46 kPa at λ̇m = 10−1 s−1, as seen in Table 2.3. Again, the load-unload tensile

experiments at various rates show no apparent signs of rate-dependence or hysteresis.
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Figure 2.8 Experimental results for samples swollen in o-Xylene. a) Large
deformation, along with load-unload testing to λm = 2, with results as a function
of total stretch λ = 1.95λm. b) Load-unload tests to λm = 2 at different mechanical
stretch rates and presented as a function of mechanical stretch. The red × indicates
failure of the sample.

Further, considering the tensile behavior of VHB 4910 fully swollen in Toluene,

Figure 2.9 shows the large deformation quasi-static load-unload response, as well

as the load-unload response at a few fixed, but different, moderate stretch rates.

Based on the large deformation tensile test we can observe the lack of hysteresis in

the material response, followed by the decreases in the initial effective stiffness from

60.2 kPa to 21.58 kPa, as seen in Table 2.1. Also, we find that the material has failed at

a total stretch of 7.81, whereas the virgin material was still intact. The material does

not show any clear locking behavior compared to the virgin material, with an increase

in stiffness from 13.16 kPa at a total stretch of 4.5, to 18.49 kPa at the failure stretch,

as shown in Table 2.2. Measuring the initial effective stiffness dPm

dλm from moderate

rate load-unload data, we observe a drop to 22.01 kPa at λ̇m = 10−2 s−1 and 21.44 kPa
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at λ̇m = 10−1 s−1. The difference in stiffness at various stretch rates is negligible

compared to the virgin material, displaying the absence of rate-dependency in the

response, as observed in Table 2.1. Along with the decrease in stiffness, we notice the

lack of hysteresis, with a decrease in the measured hysteresis area from 15.82 kPa to

0.6 kPa at λ̇m = 10−2 s−1, and from 31.41 kPa to 0.33 kPa at λ̇m = 10−1 s−1, as seen in

Table 2.3. Again, the load-unload tensile experiments at various rates show no signs

of rate-dependence or hysteresis.
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Figure 2.9 Experimental results for samples swollen in Toluene. a) Large
deformation, along with load-unload testing to λm = 2, with results as a function
of total stretch λ = 1.98λm. b) Load-unload tests to λm = 2 at different mechanical
stretch rates and presented as a function of mechanical stretch. The red × indicates
failure of the sample.

Table 2.1 Measured Initial Effective Stiffness, dP
dλm for Birgin, and dPm

dλm for Fully
Swollen Samples at Different Applied Stretch Rates.

λ̇m (s−1) 10−4 10−2 10−1

Virgin (kPa) 60.20 170.18 333.31

n-Pentane (kPa) 27.53 32.74 34.29

o-Xylene (kPa) 24.73 23.94 26.59

Toluene (kPa) 21.58 22.01 21.44
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Table 2.2 Chain-Locking Behavior Observed Through Stiffness Measurements on
Virgin ( dP

dλm ) and Fully Swollen (dP
m

dλm ) Samples with Data Taken at a Stretch Rate
of λ = 10−4s−1. For Samples Swollen with o-Xylene and Toluene, We Take the
Maximum λ to be at the Failure.

Initial (kPa) At λ = 4.5 (kPa) Near max. λ (kPa)

Virgin 60.20 17.19 102.53 at (λ = 8.36)

n-Pentane 27.53 14.41 17.85 at (λ = 7.73)

o-Xylene 24.73 19.36 24.75 at (λ = 6.85)

Toluene 21.58 13.16 18.49 at (λ = 7.81)

Table 2.3 Measured Hysteresis for a Maximum Mechanical Stretch of 2 for Virgin
and Fully Swollen Samples at Different Applied Stretch Rates.

λ̇m (s−1) 10−2 10−1

Virgin (kPa) 15.82 31.41

n-Pentane (kPa) 0.37 0.84

o-Xylene (kPa) 0.18 0.46

Toluene (kPa) 0.6 0.33

Lastly, Figure 2.10 shows the stress relaxation behavior of VHB 4910 fully

swollen in all three solvents with the virgin data superimposed. After a rapid

crosshead displacement, the mechanical stretch is held fixed at λm = 2 for 1 hour.

What is most notable about these results are that the behavior is nearly all elastic

for all fully swollen gels. VHB 4910 swollen in o-Xylene and Toluene do not even

have a measurable amount of stress relaxation, and the specimens fully swollen with

n-Pentane show a dramatically decreased amount of relaxation, over a much shorter

time span compared to the dry case.

Uniaxial Results on dry, Solvent Cycled Specimens Thus far, it is clear that

the uptake of solvent has an affect on the mechanical behavior of these materials.
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Figure 2.10 Virgin and fully swollen stress relaxation results. The virgin
experiment is plotted using the stress measure P , while the swollen experiments are
plotted using the stress measure Pm.

To assess if swelling causes irreversible changes to the mechanical behavior, we

solvent cycle — freely swell, then freely dry — and then use those samples for

uniaxial tests. Mass measurements shown in Figure 2.11 show all three solvents

completely evaporating after about 24 hours of free drying, ensuring fully dried

samples for mechanical testing. For samples that have been solvent cycled five

times, Figure 2.12 shows the reappearance of chain-locking behavior, and Figure

2.13 shows the reappearance of the viscoelastic response for uniaxial load-unload

experiments. Additionally, Figure 2.14 shows a reappearance of viscoelasticity for the

material subjected to a stress relaxation experiment. These combined results show

that prior solvent cycling has no significant residual effects on the overall response of

the polymer, which we take as an indication of the reversibility of the process.

2.3.8 Summary of the Experimental Results

Figure 2.15 shows already presented data, but now with multiple stretch-stress curves

all superimposed atop each other, and immediately the change in behavior is visible.

The behavior of virgin samples shows clear viscoelastic effects. However, the fully

swollen results show no signs of rate dependency, nor hysteresis, with load-unload
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Figure 2.11 Mass of initially fully swollen samples, measured periodically during
48 hours of free drying.
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Figure 2.12 Large deformation uniaxial tensile loading results after solvent cycling
5 times with n-Pentane, o-Xylene and Toluene, along with a virgin sample. The
results lie almost completely on top of each other.

stretch-stress curves obtained at different rates being almost completely on top of

each other. Measurements of the hysteresis, stiffness, and stress-stretch behavior

all lead toward the hypothesis that the fully swollen material has lost nearly

all viscoelasticity, and the fully swollen material behaves like a non-linear

elastic material. Further, our solvent cycling results show that prior solvent

cycling has no significant residual effects on the overall response of the

polymer, which we take as an indication of the reversibility of the process.
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Figure 2.13 Uniaxial load-unload tensile test results after solvent cycling 5 times
with n-Pentane, o-Xylene and Toluene. For ease of comparison, we also show the
virgin results.

Based on some discussions in the literature (e.g., [40, 129]) one possible

mechanism for this change in behavior is that when the polymer network is expanded

by introducing solvent molecules, the interaction between polymer chains becomes

very small because the distance of the individual chains becomes larger, resulting in

the absence of viscosity.

Additionally, the well known and prevalent [44] model predicts the effective

modulus under uniaxial tension to be E = EdJ
−1/3, where Ed is the dry elastic

modulus [100]. However, based on the quasi-static results shown in Table 2.1 we

find that the effective modulus is not a function of the swelling ratio alone

and is affected by other factors such as the specific solvent. Here o-Xylene has an

equilibrium swelling stretch of λs = 1.95 and Toluene has λs = 1.98, based on the

[44] model we should expect the ratio of moduli to be

Eo-Xylene

EToluene

=
J
−1/3
o-Xylene

J
−1/3
Toluene

=
λsToluene
λso-Xylene

=
1.98

1.95
= 1.015

however the measured ratio is 1.146, over a 10% difference.
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Figure 2.14 Stress relaxation of virgin VHB, and after five cycles of swelling with
n-Pentane, o-Xylene and Toluene. The results lie almost completely on top of each
other.

2.4 Constitutive Model

In this section we overview a continuum-level constitutive model for polymeric

gels, which aims to give particular attention to the viscoelastic response. The

large deformation time-independent response of the polymer is modeled employing

a non-Gaussian statistical mechanics model, which takes into account the limited

extensibility of polymer chains [5, 3], as well as a scaling exponent on the swelling

ratio to account for the change in effective stiffness [100, 144]. Viscous effects

are modeled following the micromechanically motivated approach by [49] and [83].

Lastly, the mixing between the polymer network and solvent is accounted for by

the Flory-Huggins model [43, 64]. The model, in it’s current form, follows from the

previous work of our research group [16, 17, 15, 18] and is summarized in this section

for clarity. However, in contrast to our previous models, we do not explicitly account

for solvent diffusion, and only consider equilibrium conditions. This assumption is

made since our experiments are not intended to probe the diffusive behavior of these

polymeric gels. Lastly, while it is well known that more complete constitutive models

exist to capture the elastic modulus of swollen elastomers (cf. e.g., [100]), we do not
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Figure 2.15 A subset of the experimental results showing the load-unload response
for moderate rates displaying the clear affect of swelling on the behavior. The virgin
experiments are plotted using the stress measure P , while the swollen experiments
are plotted using the stress measure Pm.

burden ourselves with the extra complexity since the focus here is on the viscoelastic

behavior.

2.4.1 Kinematics

The model is based on a multiplicative decomposition of the deformation gradient

into mechanical and swelling parts

F = FmFs with Fs = λs1, λs ≥ 1 . (2.12)

In (2.12) Fs(xR) represents the local distortion of the material due to swelling at

an arbitrary material point xR of the undeformed body BR, and λs is the swelling

stretch. This local deformation accounts for the swelling of the material due to

absorbed solvent molecules. Fm(xR) represents the subsequent mechanical stretching

and rotation of this coherent swollen network structure.

With respect to (2.12), the right and left Cauchy-Green tensors are

C = F⊤F = (FmFs)⊤ (FmFs) = Fm⊤Fm (λs)2 = Cm (λs)2 , and (2.13)

B = FF⊤ = (FmFs) (FmFs)⊤ = FFm⊤ (λs)2 = Bm (λs)2 , (2.14)
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respectively.

Next, we assume that the mechanical response of the solvent and polymeric

material is purely incompressible, and therefore Jm = 1. Further, we assume that the

only volume change is due to swelling caused by the solvent, which is given by

Js = 1 + ΩcR , (2.15)

where Ω is the molar volume of the solvent and cR is solvent concentration measured

in moles of fluid absorbed per unit reference volume. In addition, since

Js = detFs = (λs)3 , (2.16)

and with respect to (2.15), we may write

λs = (1 + ΩcR)
1/3 . (2.17)

2.4.2 Free Energy

The experimental observations clearly show the material to be viscoelastic when dry,

and also capable of undergoing swelling deformation in the presence of an ample

solvent. To model the features of such a material, we consider the following three

contributions to the free energy: (i) a time-independent contribution to account for

the long time mechanical behavior; (ii) a time-dependent contribution to account for

viscous effects; and (iii) a chemical mixing contribution to account for mixing between

the solvent and polymer network. Thus, our basic form of the free energy function

which accounts for the combined effects of mechanical stretching, swelling and mixing

consists of three parts

ψR = ψTI
R

+
∑

γ

ψ
TD(γ)
R + ψchem

R
(2.18)
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where ψTI
R

models time-independent response,
∑

γ ψ
TD(γ)
R models time-dependent

behavior employing γ viscous mechanisms, and ψchem
R

is the chemical free energy

of mixing between the polymer network and the solvent.

For the time-independent free energy, we adopt the statistical mechanics based

Arruda-Boyce model [5, 3] which takes into account the limited extensibility of

polymer chains, coupled with a scaling exponent to account for stiffness changes

[100],

ψTI
R

= G0λ
2
LJ

q

[(
λ̄

λL

)

β + ln

(
β

sinh β

)

−
(

1

λL

)

β0 − ln

(
β0

sinh β0

)

− 3J2/3

]

+G0λ
2
L

[
3J2/3

]
−G0

(
λLβ0
3

)

ln J . (2.19)

Here G0 is the initial shear modulus, λL is the locking stretch, and λ̄ =
√

trC/3 is

the effective stretch. Additionally, β and β0 are functions given by

β = L−1

(
λ̄

λL

)

and β0 = L−1

(
1

λL

)

, (2.20)

where L−1 is the inverse of the Langevin function, L(•) = coth(•)−1/(•). The locking

stretch, λL, is the effective stretch where the polymer network is fully extended and

cannot extend any further.

For the time-dependent contribution to the free energy, we follow the approach

of [49] and [83] which takes the form

ψ
TD(γ)
R =

1

2
G

(γ)
TD

[(
A(γ) : Cm − 3

)
− ln

(
detA(γ)

)]
(2.21)

where G
(γ)
TD are the shear moduli for each viscous mechanism γ. The evolution

equation of each tensorial internal variable A(γ) is given in the form

Ȧ(γ) =
1

τ (γ)
(
(Cm)−1 −A(γ)

)
, A (xR, t = 0) = 1 , (2.22)

where τ (γ) is the relaxation time for each γ.
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We adopt a Flory-Huggins [42, 64] model for the chemical mixing free energy

which takes into account the mixing of polymer and solvent molecules

ψchem
R

= µ0cR +RϑcR

(

ln

(
ΩcR

1 + ΩcR

)

+ χ

(
1

1 + ΩcR

))

. (2.23)

Where µ0 is the chemical potential of the solvent, R is the universal gas constant, ϑ

the absolute temperature, and χ polymer-solvent interaction parameter.

2.4.3 Cauchy Stress

The Cauchy stress T is given by

T = J−1

(

2Fm ∂ψR

∂Cm
Fm⊤ − p1

)

= J−1

[

GJq (λs)2Bm +
∑

γ

G
(γ)
TDF

mA(γ)Fm⊤ − p∗1

]

,

(2.24)

where the shear modulus G = G0

(
λL

3λ̄

)
L−1

(
λ̄
λL

)

is a function of stretch, and p a

scalar pressure field to satisfy the mechanical incompressibility constraint. The term

p∗ simply aggregates all of the spherical terms that arise.

2.4.4 Chemical Potential

Based on the thermodynamic derivation found in the previous work from our group

(c.f., e.g., [16]), and using the free energy form (2.18), the chemical potential µ is

given by

µ =
∂ψR

∂cR
− 1

3
trTΩ

= µ0 +Rϑ

(

ln

(
ΩcR

1 + ΩcR

)

+
1

1 + ΩcR
+ χ

1

(1 + ΩcR)
2

)

+ (p−G0)
Ω

1 + ΩcR
. (2.25)

Further, since we do not account for diffusion, the role of the chemical potential serves

to obtain the conditions for chemical equilibrium, which is obtained when µ = µ0. A

few examples of when this may be put to use are to obtain the parameter χ in a free

swelling experiment, or obtaining the swelling stretch for a given loading.
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2.4.5 Specialized Constitutive Equations for Uniaxial Tension and Free

Swelling/Drying

When specialized for uniaxial tension, the constitutive model reduces to a one-

dimensional set of equations, in which case the Cauchy stress takes the form

σ = J−1GJq (λs)2
[

(λm)2 − 1

λm

]

︸ ︷︷ ︸

Time-independent contribution

+ J−1
∑

γ

G
(γ)
TD

[

(λm)2A(γ) − 1

λm
√
A(γ)

]

︸ ︷︷ ︸

Time-dependent contribution

, (2.26)

where σ is the Cauchy stress in the loading direction. The evolution equation of each

A(γ) in case of uniaxial tension is given in the form

Ȧ(γ) =
1

τ (γ)
(
(λm)−2 −A(γ)

)
. (2.27)

Further, with respect to (2.7) and (2.8) we obtain the uniaxial nominal stress per unit

virgin cross sectional area

P = GJqλs
[

λm − 1

(λm)2

]

︸ ︷︷ ︸

Time-independent contribution

+
∑

γ

G
(γ)
TD (λs)−1

[

λmA(γ) − 1

(λm)2
√
A(γ)

]

︸ ︷︷ ︸

Time-dependent contribution

(2.28)

and the mechanical nominal stress per unit freely swollen cross sectional area

Pm = GJq (λs)2
[

λm − 1

(λm)2

]

︸ ︷︷ ︸

Time-independent contribution

+
∑

γ

G
(γ)
TD

[

λmA(γ) − 1

(λm)2
√
A(γ)

]

︸ ︷︷ ︸

Time-dependent contribution

, (2.29)

respectively. For clarity, here we explicitly labeled the time-independent and time-

dependent contributions to the materials behavior.

For mechanical testing and shape change measurements of all of our samples,

we assume chemical equilibrium, and accordingly µ = µ0. Therefore, following (2.25),

we obtain

Rθ
(
ln
(
1− (λs)−3)+ (λs)−3 + χ (λs)−6)+ (p−G0)Ω (λs)−3 = 0 . (2.30)
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Which as mentioned before may be used to estimate χ in free swelling, or more

generally the amount of solvent that a gel would uptake for a given loading condition.

2.5 Calibration

The constitutive model is calibrated in MATLAB for uniaxial conditions using the

built-in least squares function lsqnonlin. The model calibration consists of multiple

distinct steps that build upon each other. First, we determine the time-independent

behavior of the virgin dry material in the absence of any solvent to obtain the

time-independent material parameters G0 and λL. Those time-independent material

parameters are then held fixed for calibration of the time-dependent behavior for

the dry virgin material in the absence of any solvent to obtain the time-dependent

material parameters GTD(γ) and τ (γ), along with γ. Next, using free swelling data, the

constitutive model is calibrated to obtain the polymer-solvent interaction parameter

χ, for all of the polymer-solvent combinations in use in this paper implementing

the previously calibrated equilibrium material parameters. Further, following the

same procedure used for the virgin uniaxial tests, we calibrate our model to the

experimental data obtained in our experiments on fully swollen samples. Lastly,

also worth mentioning is that the calibration is performed separately for each of the

solvents used.

2.5.1 Calibration of the Time-Independent Behavior

Calibration of the Virgin Time-Independent Behavior To determine the

time-independent behavior of dry virgin VHB 4910, we calibrate our constitutive

model against the time-independent data obtained through the combination of stress

relaxation and creep testing, seen in Figure 2.4d. Figure 2.16a shows the calibrated

constitutive model is in a good agreement with the experimental data on dry virgin

material, and the calibrated material parameters G0 and λL are provided in Table
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2.4. We note that since the material is incompressible, and dry, the terms related to

q will not affect the response and therefore q is not yet considered.

Calibration of the Fully Swollen Time-Independent Behavior Figures 2.16b,

2.16c and 2.16d show the calibrated model along with the experimental data for

samples fully swollen in n-Pentane, o-Xylene, and Toluene, respectively. For the

samples swollen with o-Xylene and Toluene, we calibrated the model against the

experimental data from large deformation tensile testing until failure. The initial

shear modulus G0 and locking stretch λL obtained from virgin calibration are held

fixed, and the corresponding material parameter q obtained when fully swollen in

each solvent is provided in Table 2.4.

Table 2.4 Calibrated Time-Independent Material Parameters.

G0 (kPa) λL q

Virgin 15.10 7.02 N/A

n-Pentane 15.10 7.02 -1.07

o-Xylene 15.10 7.02 -0.89

Toluene 15.10 7.02 -0.95

2.5.2 Calibration of the Time-Dependent Behavior

Calibration of the Virgin Time-Dependent Behavior To calibrate the time-

dependent portion of the constitutive model, we hold the virgin time-independent

parameters fixed, and perform a least squares fit to the experimental data from load-

unload tensile tests and stress relaxation tests on virgin samples. To keep the number

of viscous mechanisms reasonably low, while still adequately modeling the behavior,

we have found that three viscous mechanisms (γ = 3) are sufficient. Figure 2.17a and
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2.17b show the calibrated model along with the experimental data. Values for the

time-dependent material parameters G
(γ)
TD and τ (γ) for virgin samples are presented

in Table 2.5.

Calibration of the Fully Swollen Time-Dependent Behavior The comparison

between the calibrated model and the loading-unloading experimental data for fully

swollen samples is shown in Figure 2.17c, 2.18a and 2.18c, and showcases the ability

of our model to account for the lack of both energy dissipation and rate dependent

behavior of fully swollen material. Further, calibration of the constitutive model

against the stress relaxation data for fully swollen samples is in a good agreement with

the experimental observation regarding the absence of stress relaxation behavior. This

can be seen in Figures 2.17d, 2.18b and 2.18d. However, there is a slight disagreement

between the calibrated model and the experimental data for samples fully swollen with

o-Xylene, as seen in Figures 2.18a and 2.18b. Although the vanishing of viscoelastic

behavior is accounted for, the stress predicted by the calibrated model is slightly

higher than the experimentally obtained values. The possible change in the locking

stretch λL due to the solvent uptake could be a reason for this discrepancy, however

that is not significant enough for us to consider in this work.

The calibrated material parameters are provided in Table 2.5. Based on the

calibrated time-dependent materials parameters, for the samples fully swollen with

n-Pentane, we observe a low utilization of viscous mechanisms with G
(1)
TD ≈ G

(2)
TD ≈ 0,

and G
(3)
TD an order of magnitude lower than the values obtained from calibration of

virgin behavior. Further, for the samples fully swollen with n-Pentane the relaxation

time of the first viscous mechanism exhibits a very fast relaxation, since τ (1) ≈ 0 s,

while the second and third viscous mechanisms exhibit a very slow relaxation, with

τ (2) ≈ 103 s and τ (3) ≈ 104 s. For the samples fully swollen with o-Xylene and Toluene,

one can observe the apparent absence of all viscous mechanisms since G
(γ)
TD ≈ 0 relative
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to the virgin material, along with the instantaneous relaxation observed as τ (γ) ≈ 0

leading to a time-independent response.

Table 2.5 Calibrated Time-Dependent Material Parameters.

G
(1)
TD(kPa) τ (1)(s) G

(2)
TD(kPa) τ (2)(s) G

(3)
TD(kPa) τ (3)(s)

Virgin 38.29 6.91 14.41 165.86 12.87 1.07×104

n-Pentane 0.33 0.26 0.08 1.57×103 1.31 9.99×103

o-Xylene 0.00 0.00 0.00 0.00 0.00 0.00

Toluene 0.47 0.00 0.00 0.00 0.00 0.00

2.5.3 Calibration of the Free Swelling Behavior

To obtain the polymer-solvent interaction parameter χ, we calibrate the constitutive

model to the free swelling data. Following (2.30), and using the experimentally

determined swelling stretch found in Subsection 2.3.7, along with the material

parameters from Table 2.4, we obtain the χ values for each polymer-solvent

combination. The values obtained through calibration are found in Table 2.6.

Table 2.6 Measured Equilibrium Free Swelling Stretch, and the Calibrated Polymer-
Solvent Interaction Parameter χ for VHB 4910 in Various Solvents.

n-Pentane o-Xylene Toluene

λs 1.49 1.95 1.98

χ 0.631 0.550 0.548

2.5.4 Model Summary

The values obtained by calibrating the model for the time-independent behavior

display the change in the scaling exponent q with the solvent uptake, while keeping
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both the initial shear model G0 and locking stretch λL fixed. That allows for the

constitutive model to reduce back to the same material when dry, while the scaling

exponent q originally proposed by [100] accounts for the measured change in the

effective stiffness due to solvent. Also, as expected, the polymer-solvent interaction

parameter χ regulates the degree of swelling, such that as χ decreases the degree of

swelling increases.

Calibration of the time-dependent behavior of virgin samples, show utilization

of all viscous mechanisms. The calibrated parameters for samples fully swollen with

n-Pentane show a very low utilization of viscous mechanisms, since the G
(γ)
TD is at least

an order of magnitude lower than those obtained from virgin samples. Additionally,

in contrast to the values obtained from the time-dependent calibration of the virgin

behavior, for samples fully swollen with o-Xylene and Toluene, we find that G
(γ)
TD ≈ 0,

making all the viscous mechanism insignificant. Further, the relaxation times for all

viscous mechanisms τ (γ) ≈ 0 when fully swollen in these two solvents, reflecting the

apparent instantaneous relaxation of fully swollen VHB 4910. Thus, our constitutive

model proved capable of accounting for the apparent vanishing of rate-dependence,

hysteresis and stress relaxation behavior of viscoelastic polymeric gels.

2.6 Concluding Remarks

In this research, we have characterized the viscoelastic response of both dry and fully

swollen gels through experimental observations and continuum level modeling. Using

VHB 4910 along with three different solvents, n-Pentane, o-Xylene and Toluene, we

have measured the mechanical response in (i) quasi-static uniaxial large deformation

tension, (ii) uniaxial load-unload at multiple rates, and (iii) stress relaxation; when

virgin, fully swollen, and solvent cycled. The most notable result of these experiments

being the apparent loss of viscoelasticity in the response due to the uptake of solvent.
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Additionally, through solvent cycling, our measurements show the reappearance of

viscoelasticity, suggesting the process is reversible.

In addition, we have developed a continuum-level constitutive model for

viscoelastic polymeric gels. Our model is successfully calibrated against the obtained

experimental data, thus proving capable to replicate the major features of viscoelastic

gel behavior observed in our experiments. The calibration of our constitutive model

showed (i) low utilization of the time-dependent stress contribution for the samples

fully swollen in n-Pentane; (ii) almost complete absence of the time-dependent stress

contribution for samples fully swollen with o-Xylene and Toluene.
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Figure 2.16 Calibration of the time-independent behavior for VHB 4910 when (a)
virgin, and and fully swollen with (b) n-Pentane, (c) o-Xylene and (d) Toluene. Here,
G0 and λL is obtained from virgin calibration and it’s held constant throughout. The
model is then calibrated for q against the fully swollen data.
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Figure 2.17 Calibration of the time-dependent behavior for VHB 4910: a) and b)
are virgin ; c) and d) fully swollen with n-Pentane.
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Figure 2.18 Calibration of the time-dependent behavior for VHB 4910: a) and b)
fully swollen with o-Xylene; c) and d) fully swollen with Toluene.
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CHAPTER 3

FIBER-REINFORCED POLYMERIC GELS

3.1 Introduction

The objective of the work presented in this chapter is to develop a continuum level

coupled deformation-diffusion constitutive model for fiber-reinforced polymeric gels.

The novelty of the model is that it builds upon previous work by taking into account

the mechanical influence of fibers, as well as the anisotropic diffusion they may impart.

The behavior of the dry polymer matrix is modeled using a non-Gaussian statistical

mechanics based model that takes limited chain extensibility into account. In addition

to the behavior of dry polymer matrix, we include the contribution of embedded fibers

with a volume fraction and modulus. The mechanical behavior of polymer network

is coupled with the diffusion of solvent by implementing Flory-Huggins model for

mixing free energy between polymer network and solvent. We assume the embedded

fibers do not imbibe solvent, and accordingly there is no mixing between the fiber

and solvent. Further, we numerically implemented our multiphysics constitutive

model in commercially available finite element software package [1] by writing a user

element subroutine (UEL). The numerical implementation allows for the behavior and

capabilities of the model to be presented through boundary value problems. Lastly,

to show the usefulness of the model and it’s implementation, a qualitative comparison

is made between the model and an experimentally realized soft robotic gripper.

The remainder of this chapter is organized as follows. Section 3.2 summarizes

the continuum level framework, in Section 3.3 we presented the overview of

thermodynamics of the system, in Section 3.4 we provide basic constitutive equations

and in Section 3.5 we show the specialization of free energy for fiber-reinforced

polymeric gels. Section 3.7 shows the usefulness of our constitutive model and
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numerical simulation procedure. In Section 3.8 we show a comparison between the

operation of our diffusion activated soft gripper and its numerical simulation. We

finish with some concluding remarks in Section 4.9. In the Appendix C, we present

the governing equations and the numerical solution procedure using finite elements

required for numerical implementation.

3.2 Continuum Framework

We begin by summarizing the governing continuum level equations for coupled solvent

diffusion and large deformation of soft polymeric gels. For further details, the reader

is referred to our previous work in the literature (cf., e.g., [18]).

3.2.1 Kinematics

Consider a dry body BR identified with the region of space it occupies in a fixed

reference configuration, and denote by xR an arbitrary material point of BR. The dry

referential body BR then undergoes a motion x = χ(xR, t) to the deformed body Bt

with deformation gradient given by1

F = ∇χ, such that J = detF > 0. (3.1)

The right and left Cauchy-Green deformation tensors are given by C = F⊤F and

B = FF⊤, respectively. Additionally, to model the fibers, we assume γ different

fiber orientations may be present in the dry reference body, denoted by the term

family. Each fiber family is characterized by a direction a
(γ)
R (a unit vector), and

volume fraction f
(γ)
R in BR. At the outset, we assume that the fibers do not absorb any

solvent and remain dry, and are perfectly bonded to the polymer matrix. Following the

approach in [56], a pseudo-invariant is introduced for each family of fibers, which as

1The symbols ∇, Div and Curl denote the gradient, divergence and curl with respect to the
material point xR in the reference configuration; grad, div and curl denote these operators
with respect to the point x = χ(xR, t) in the deformed configuration.
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previously noted has been used to model the anisotropic response of fiber-reinforced

soft materials [137, 95, 96]. Specifically, we use the pseudo-invariant

I
(γ)
4 = a

(γ)
R ·Ca

(γ)
R =

(
λ(γ)
)2
, (3.2)

where λ(γ) has the physical interpretation of the stretch along the fiber family direction

a
(γ)
R for each γ.

The theory is based upon a multiplicative decomposition

F = FmFs, with Fs = λs1, (3.3)

of the deformation gradient F into a mechanical part, Fm, and a swelling part Fs,

with λs the swelling stretch. Further, this allows us to rewrite the right Cauchy-Green

tensor in the form

C = (FmFs)⊤ (FmFs) = (λs)2Fm⊤Fm = (λs)2Cm . (3.4)

Based on (3.3), the relative volume change is given by

J = detF = det (FmFs) = JmJs, with detFm = Jm > 0, and detFs = Js > 0 ,

(3.5)

where Jm is the volume change due to mechanical effects, and Js the volume change

due to swelling. As is typical in the literature [58, 16] we assume the volume change

due to swelling is given by

Js = 1 + ΩcR, and therefore λs = (1 + ΩcR)
1/3 . (3.6)

Here cR represents the solvent content measured in moles of solvent per unit reference

volume of the dry polymer, and Ω the volume of a mole of solvent.

Further, using (3.1) and (3.3), we write velocity gradient

L = ḞF−1 = Lm + FmLsFm−1 (3.7)
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with Lm and Ls, mechanical and swelling part, respectively, given by

Lm = ḞmFm−1 and Ls = ḞsFs−1 . (3.8)

Next, we define the mechanical and swelling stretching and spin tensors

Dm = symLm, Wm = skwLm,

Ds = symLs, Ws = skwLs,

(3.9)

so that Lm = Dm +Wm and Ls = Ds +Ws.

Recalling (3.3), (3.8) and (3.9) we obtain

Ds =
(

λ̇sλs−1
)

1 and Ws = 0 , (3.10)

and since

J̇s = JstrDs, (3.11)

we may write

Ds =
1

3

(

J̇sJs−1
)

1. (3.12)

3.2.2 Balance of Forces and Moments

Neglecting inertial effects, the balance of forces and moments in the referential body

BR are expressed as

divTR + bR = 0 and TRF
⊤ = FT⊤

R
(3.13)

respectively, where TR is first Piola stress and bR is an external body force per unit

referential volume. The boundary of the referential body has outward unit normal nR.

The surface traction on an element of the referential surface is given by tR = TRnR.

As common in continuum mechanics, the Piola stress is related to Cauchy stress T
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in the deformed body by

TR = JTF−⊤, therefore, T = J−1TRF
⊤. (3.14)

In the current configuration the balance of forces and moments is given in the

deformed body Bt by

divT + b = 0 and T = T⊤ , (3.15)

where b is the external body force per unit current volume. Lastly, the surface

traction on the boundary of deformed body with outward unit normal n is t = Tn.

3.2.3 Balance of Solvent Content

We assume that the intake and outflow of solvent does not involve any chemical

reactions. Therefore, the balance of solvent content in the referential and current

configurations takes the form

ċR = −Div jR and ċR = −Jdiv j , (3.16)

where jR and j are the fluid flux in referential and current configuration, respectively.

Defining the polymer volume fraction

φ
def
=

1

1 + ΩcR
= (λs)−3 = (Js)−1 (3.17)

which lies in the range 0 < φ < 1, the balance of solvent content (3.16) may be

rewritten in the referential and current forms

φ̇

Ωφ2
−Div jR = 0 and

φ̇

JΩφ2
− div j = 0. (3.18)

Here φ → 1 is simply a dry polymer, while φ < 1 is a locally swollen state. Lastly,

the surface flux into an element of the referential and current surface is given by

jR = −jR · nR and j = −j · n, respectively.
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3.3 Thermodynamics

A complete thermodynamic derivation of a model for polymeric gels is thoroughly

discussed in the earlier research published by our group. For more details regarding

thermodynamics, the reader is referred to [16, 17, 15].

Let the body BR contain an arbitrary part PR. Under isothermal conditions,

the first two laws of thermodynamics may be combined into a single free energy

imbalance. The free energy imbalance requires that the temporal increase in free

energy in any part be less than or equal to the power expended plus that which is

brought into that part from fluid transport. Specifically the free energy imbalance

takes the form

˙∫

PR

ψRdvR ≤
∫

∂PR

TRnR · χ̇daR +

∫

PR

bR · χ̇dvR −
∫

∂PR

µjR · nRdaR , (3.19)

with µ the chemical potential of the solvent. Applying the divergence theorem to the

terms in (3.19), we obtain

∫

PR

(
ψ̇R − (DivTR + bR) · χ̇−TR : Ḟ+ µDivjR + jR · ∇µ

)
dvR ≤ 0 . (3.20)

Using (3.13) and (3.16), since (3.20) must hold for every part PR, we write

ψ̇R −TR : Ḟ− µċR + jR · ∇µ ≤ 0 . (3.21)

Recalling (3.3) and (3.8), we decompose the stress power

TR : Ḟ =
(
JTFm−⊤

)
: Ḟm +

(
JFm⊤TFm−⊤

)
:Ls . (3.22)

Here, we introduce two new stress measures

Sm def
= JTFm−⊤ and Mm def

= JFm⊤TFm−⊤ , (3.23)
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as a mechanical Piola stress and Mandell stress, respectively. Further, using (3.23),

we can write (3.22) in the form

TR : Ḟ = Sm : Ḟm +Mm :Ls (3.24)

In addition, we introduce mechanical second Piola stress

Tm = JFm−1TFm−⊤ (3.25)

and since the rate of change of mechanical right Cauchy-Green tensor is Ċm =

Fm⊤Ḟm + Ḟm⊤Fm, we can write

Tm : Ċm = 2 (FmTm) : Ḟm = 2Sm : Ḟm. (3.26)

Employing (3.10) and (3.12) we can write the stress-power (3.22) in the form

TR : Ḟ =
1

2
Tm : Ċm − pJs, (3.27)

where we have defined the mean normal pressure, p̄, as p̄
def
= −1

3
JmtrT.

Applying the kinematical constraint between cR and Js given by (3.6), in (3.19),

and using (3.27), we obtain the free energy imbalance in the form

ψ̇R − 1

2
Tm : Ċm − µactcR + jR · ∇µ ≤ 0 , (3.28)

where the active chemical potential is defined as µact
def
= µ− p̄Ω.

3.4 Basic Constitutive Equations

Based on (3.28), and considering frame indifference, the basic constitutive equations

are

ψR = ψ̄R (C
m, cR)

Tm = T̄m (Cm, cR)

µact = µ̄act (C
m, cR)







(3.29)
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along with a Darcy-type relation for the spatial solvent flux

j = −M̄(Cm, cR)gradµ , (3.30)

where M̄(Cm, cR) is the mobility tensor. Here, to account for any anisotropy due to

the embedded fibers, or other sources of anisotropy, the mobility retains it’s tensorial

characteristic, and not simplified to a scalar in this work. Pushed back to the reference

body, using the standard relations jR = JF−1j and ∇µ = F⊤gradµ, we may rewrite

(3.30) in the referential form

jR = −JF−1M̄(Cm, cR)F
−⊤∇µ . (3.31)

Sufficient conditions to satisfy (3.28) using (3.29) yield relations for the Cauchy

stress

T = J−1
[

2Fm∂ψ̄R(C
m, cR)

∂Cm
Fm⊤

]

, (3.32)

and the chemical potential

µ =
∂ψ̄R(C

m, cR)

∂cR
+ Ωp̄ . (3.33)

We further note that to satisfy the thermodynamic imbalance in (3.28), the mobility

tensor M̄(Cm, cR) has to be positive definite in the presence of solvent and whenever

∇µ 6= 0.

3.5 Specialized Constitutive Equations

3.5.1 Free Energy

For ease of notation, and following the approach used to include the fiber volume

fraction in [104], we define

fR =
∑

γ

f
(γ)
R (3.34)
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such that fR is the sum of the volume fractions of all families of fibers in BR, and

therefore (1 − fR) is the total volume fraction of swellable polymer matrix in BR.

Next, we assume total free energy of the system to be additively decomposed

ψR = (1− fR)ψ
matrix
R

+ (1− fR)ψ
mixing
R

+
∑

γ

f
(γ)
R ψ

(γ),fiber
R , (3.35)

where ψmatrix
R

is the free energy of polymer matrix, ψmixing
R is the free energy of mixing

between polymer matrix and solvent, and ψ
(γ),fiber
R is the free energy of each fiber

family.

Mechanical Free Energy of the Polymer Matrix Following the literature and

using (3.6), we define the effective stretch, λ̄, which includes both mechanical and

swelling deformation, as

λ̄
def
=

√

1

3
trC =

1√
3
(1 + ΩcR)

1/3
√
trCm. (3.36)

For capturing the mechanical behavior of the polymer matrix, we use a non-Gaussian

statistical mechanics based model [5, 3], which takes into account limited extensibility

of polymer chains (also known as locking),

ψmatrix
R

= G0λ
2
L

[( λ̄

λL

)

β + ln
( β

sinh β

)

−
( 1

λL

)

β0 − ln
( β0
sinh β0

)]

−G0

(
λL
3

lnJβ0

)

+ Js

[
1

2
K ln Jm

]

, (3.37)

with β = L−1
(

λ̄
λL

)

and β0 = L−1
(

1
λL

)

, where L−1 is the inverse of the Langevin

function L(•) = coth(•) − (•)−1. This form of mechanical free energy includes two

material parameters, the initial shear modulus G0, and the locking stretch λL. The

locking stretch λL has the physical interpretation of the limiting value of the effective

stretch λ̄, when the chains are fully extended.
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Mixing Free Energy For our estimate of mixing free energy, we implement the

well known Flory-Huggins model [43, 64] which takes into account mixing of solvent

molecules and the polymer matrix in the form

ψmixing
R

= µ0cR +RϑcR

(

ln
( ΩcR
1 + ΩcR

)

+ χ
( 1

1 + ΩcR

)
)

. (3.38)

Here, µ0 is a reference chemical potential, R is the gas constant, ϑ is absolute

temperature, and χ is a dimensionless polymer-solvent interaction parameter.

Mechanical Free Energy for the Fibers To account for mechanical free energy

for the embedded fibers, we adopt the form found in [56] which is also used in [95].

Following the approach discussed in Subsection 3.2.1, the contribution due to the

fibers is modeled using

ψ
(γ),fiber
R =

1

2
E(γ)(I

(γ)
4 − 1)2 , (3.39)

with E(γ) the fiber modulus for each fiber family γ. Also, recall that I
(γ)
4 defined in

(3.2) includes the dependence on orientation. Thereby, we incorporate the influence of

different fiber families, which may have a different fiber modulus and/or orientation,

and volume fraction through f
(γ)
R as seen in (3.35).

Total Free Energy Combining the mechanical free energy of the polymer matrix

(3.37), the mechanical free energy of the embedded fibers (3.39), along with the mixing

free energy (3.38) into (3.35), we obtain the total free energy

ψR = (1− fR)

{

G0λ
2
L

[( λ̄

λL

)

β + ln
( β

sinh β

)

−
( 1

λL

)

β0 − ln
( β0
sinh β0

)]

−G0

(
λL
3

ln Jβ0

)

+µ0cR+RϑcR

(

ln
( ΩcR
1 + ΩcR

)

+ χ
( 1

1 + ΩcR

))

+Js

[
1

2
K ln Jm

]}

+
∑

γ

f
(γ)
R

1

2
E(γ)(I

(γ)
4 − 1)2 . (3.40)
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3.5.2 Cauchy Stress

Following (3.32), and using (3.40), we obtain the Cauchy stress

T = J−1

(

2Fm∂ψ̄R(C
m, cR)

∂Cm
Fm⊤

)

= J−1 (1− fR)
(
G0

(
ζφ−2/3Bm − ζ01

)
+ JsK(ln Jm)1

)

︸ ︷︷ ︸

contribution due to the polymer matrix

+ J−1
∑

γ

2f
(γ)
R E(γ)(λs)2(I

(γ)
4 − 1)Fm(a

(γ)
R ⊗ a

(γ)
R )Fm⊤

︸ ︷︷ ︸

contribution due to the fibers

, (3.41)

with

ζ
def
=
(λL
3λ̄

)

L−1
( λ̄

λL

)

and ζ0
def
=
(λL

3

)

L−1
( 1

λL

)

. (3.42)

From (3.41) it is clear that the volume fraction of embedded fibers f
(γ)
R

determines the contribution of each constituent of the system. The influence of the

polymer matrix to the Cauchy stress decreases with fR, however, the importance of

the embedded fibers increases with fR. Further, the stiffness of the polymer matrix

decreases with solvent concentration through terms related to φ. In addition, since

there is no mixing between the solvent and the embedded fibers, the embedded fibers

tend to constrain the swelling process. Lastly, it is worth noting that due to relations

found in (3.3) and (3.2), the embedded fibers have an affect on both swelling and

mechanical deformation.

56



3.5.3 Chemical Potential

Next, using (3.40) and (3.33), we obtain the chemical potential in the form

µ =
∂ψR

∂cR
− Ω

1

3
JmtrT

= (1− fR)
[

µ0 +Rϑ
(

ln(1− φ) + φ+ χφ2
)]

︸ ︷︷ ︸

mixing contribution

− (1− fR)

[

ΩK(ln Jm)− 1

2
KΩ(ln Jm)2

]

︸ ︷︷ ︸

matrix “mechanical” contribution

+fR

[
2

3
EΩ (1 + ΩcR) I4(I4 − 1)

]

︸ ︷︷ ︸

fiber “mechanical” contribution

. (3.43)

Here, it can be observed that the chemical potential is not only affected by the

mixing of polymer matrix and solvent, but also by the mechanical deformation of the

fiber-reinforced polymeric gel. The mechanical pressure and its energy, along with the

deformation of embedded fibers, contributes to the chemical potential of the system,

thus fully coupling the mechanical and chemical aspects of gel behavior.

3.5.4 Mobility Tensor

The solvent mobility tensor, which takes into account any possible anisotropy in

diffusion, is assumed to be temperature and concentration dependent, and is given in

the form

M = D
c

Rϑ
= D

cR
JRϑ

, (3.44)

where D and c = J−1cR represent the tensorial diffusivity and the solvent concen-

tration per unit spatial volume, respectively. The tensorial form of the diffusivity

allows for the inclusion of anisotropic diffusion response. In practice, it is generally

more convenient to use φ in place of c since φ is bounded, 0 < φ ≤ 1. Accordingly,
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using (3.17) we rewrite (3.44) in the form

M = D

(
1− φ

RϑJΩφ

)

. (3.45)

Also, as previously mentioned in Section 3.4, the mobility tensor M must be positive

definite based on the free energy imbalance (3.28). As a further consequence, we take

the diffusivity tensor D to be positive definite.

3.6 Numerical Implementation

In the absence of body forces and inertial effects, the governing partial differential

equations, expressed in the deformed body Bt, consist of the balance of forces and

the balance of solvent content. The balance of forces yields

divT = 0 in Bt, (3.46)

with the Cauchy stress T given by (3.41). And the balance of solvent content yields

φ̇

JΩφ2
+ div j = 0 in Bt, (3.47)

with the fluid flux j given by (3.30) and the mobility by (3.45). With the displacement

denoted by u(x, t), the mechanical boundary conditions on ∂Bt are given by

u = ŭ on Su, and Tn = t̆ on St, (3.48)

where ŭ and t̆ are the prescribed displacements and spatial surface tractions,

respectively, and Su and St are complementary subsurfaces of ∂Bt. The chemical

boundary conditions on ∂Bt are given by

µ = µ̆ on Sµ, and − j · n = j̆ on Sj, (3.49)

where µ̆ and j̆ are the prescribed chemical potential and spatial surface flux,

respectively, and Sµ and Sj are another set of complementary subsurfaces of ∂Bt.
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The initial conditions are taken as

u(xR, 0) = u0 and µ(xR, 0) = µ0 in BR . (3.50)

The coupled set of equations (3.46) and (3.47), along with the boundary

conditions (3.48) and (3.49), and initial conditions (3.50), represents the strong form

of the initial boundary value problem for the displacement field and the chemical

potential field.

With w1 and w2 denoting two weighting fields, the weak form of the boundary-

value problem (3.46) through (3.49) is







∫

Bt

(

T :
∂w1

∂x

)

dv =

∫

St

(
w1 · t̆

)
da,

∫

Bt

(

w2φ̇

JΩφ2

)

dv =

∫

Bt

(

j · ∂w2

∂x

)

dv +

∫

Sω

(

w2j̆
)

da .

Following our previous work [17, 18], the deformed body is approximated using finite

elements, Bt = ∪Be
t , and the nodal degrees of freedom are the displacement and the

chemical potential, which are interpolated inside each element by

u =
∑

uANA and µ =
∑

µANA, (3.51)

with the index A = 1, 2, . . . denoting the nodes of the element, uA and µA the nodal

displacements and chemical potentials, and NA the shape functions. Employing a

standard Galerkin approach, in which the weighting fields w1 and w2 are interpolated

by the same shape functions, leads to the following element-level residuals

(Ru)
A = −

∫

Be
t

(

T
∂NA

∂x

)

dv +

∫

Se

t

(
NAt̆

)
da,

(Rµ)
A =

∫

Be
t

(

NAφ̇

JΩφ2

)

dv +

∫

Be
t

(

j · ∂N
A

∂x

)

dv

+

∫

Se

j

(

NAj̆
)

da.







(3.52)
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These element-level residuals are assembled into a global residual, which represents a

non-linear system of equations for the nodal degrees of freedom.

Correspondingly, four element level tangents are required for the iterative

Newton-Raphson solution procedure. The first tangent accounts for changes in the

displacement residual with respect to the displacement, and is given by

KAB
uiuk

= −∂R
A
ui

∂uBk
=

∫

Be
t

∂NA

∂xj
Aijkl

∂NB

∂xl
dv −

∫

Se

t

NANB ∂t̆

∂uk
da , (3.53)

where the spatial tangent modulus A is related to the referential tangent modulus AR

through

Aijkl = J−1FjmFln (AR)imkn , (3.54)

and the referential tangent modulus is given by AR

def
=
∂TR

∂F
. And further,

KAB
uiµ

= −∂R
A
ui

∂µB
=

∫

Be

∂NA

∂xj

(∂Tij
∂φ

∂φ

∂µ

)

NBdv , (3.55)

KAB
µuk

= −
∂RA

µ

∂uBk
= −

∫

Be

∂NA

∂xi

(

Mil
∂µ

∂xk

)∂NB

∂xl
dv , (3.56)

and

KAB
µµ = −

∂RA
µ

∂µB
= −

∫

Be

NANB

JΩφ2

(

2
φ̇

φ

∂φ

∂µ
− ∂φ̇

∂µ

)

dv−
∫

Be

(∂ji
∂µ

∂NA

∂xi

)

dv−
∫

Se

j

(

NANB ∂j̆

∂µ

)

da .

(3.57)

Our finite-element procedures have been implemented in commercially available

software package [1] using a user-element subroutine (UEL). We have developed a

four-noded isoparametric quadrilateral plane-strain user-element, and an eight-noded

continuum brick user-element. In order to avoid issues related to volumetric-locking,

we utilize the F-bar method of [26] for fully-integrated elements. For complete details

regarding the implementation of Abaqus user-element subroutines for multi-physics

problems, readers are referred to [18].
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Table 3.1 Material Parameters Used in the Numerical Simulations.

Parameter Value

Polymer Matrix G0 1MPa

K 100MPa

λL 10.0

Solvent Ω 1× 10−4m3/mol

µ0 0.0 J/mol

Interaction χ 0.2

Fibers E(γ) 1GPa

3.7 Model Behavior Through Numerical Simulations

In this section, we present the capabilities of our anisotropic deformation-diffusion

constitutive model for polymeric gels with embedded fibers by solving various

boundary value problems. We note that details for the governing equations and finite

element implementation are provided in an Appendix C. In this section, we consider

both two dimensional plane strain swelling, and three-dimensional free swelling.

Specifically, we consider an initial dry body with a square/cube shape having an

edge length of 2mm under a constant isothermal temperature of 298K. In both cases

the body is traction free, undergoing essentially free swelling; however, in plane strain

the third dimension is constrained. The specific simulations that follow first probe

the constitutive model when i) the diffusion is anisotropic without fibers, ii) a single

family of fibers are present and the diffusion is isotropic, and lastly iii) when a single

family of fibers and anisotropic diffusion are present. Specific values for the material

parameters that remain unchanged across all the numerical simulations that follow

are provided in Table 3.1.
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3.7.1 Boundary Value Problem Setup

Here, we define the boundary value problem which will be solved to present the model

behavior. Figure 3.1 shows both plane strain and three-dimensional situations. As

shown in Figure 3.1, the body is symmetric, and therefore we only model 1/4 in plane

strain, or 1/8 in three dimensions. We note that in all simulations that follow, fiber

directions are chosen to maintain this symmetry throughout.

A

D

B

C
Solvent 2

1

2mm

A D

B C

E

F

G

H

Solvent 2

3

1

2mm

a) b)

Figure 3.1 Schematic of a initially dry 2mm a) square and b) cube, immersed in
solvent. For the numerical simulation, due to symmetry, we only mesh the portion of
the body indicated in dark grey.

For these swelling simulations, the initial dry body is immersed into a

solvent bath at a constant temperature of 298K. With reference to Figure 3.1, the

corresponding mechanical boundary conditions are:

� symmetry on all relevant planes — faces AB and AD in plane strain, and faces

ABCD, ABEF, and ADGE in 3D;

� traction free on all other faces — faces BC and CD in plane strain, and faces

BCHF, CDHG, and EFGH in 3D;

and the corresponding chemical boundary conditions are:

� no flux on all symmetry planes — faces AB and AD in plane strain, and faces

ABCD, ABEF, and ADGE in 3D;
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� a prescribed chemical potential µ̆(t) = µ0 + µ0 exp(−t/td) on faces in contact

with solvent — faces BC and CD in plane strain, and faces BCHF, CDHG,

and EFGH in 3D. Here td = 200 s is a decay time used to apply the chemical

potential boundary condition smoothly, and µ0 is the initial chemical potential

at time t = 0, obtained using (3.43).

3.7.2 Anisotropic Diffusion in the Absence of Fibers

To emphasize the affect that anisotropic diffusion has on the deformation, we simulate

a polymeric gel without embedded fibers. Thus, we take fR = 0 and prescribe the

diffusivity tensor in the form (referring to the coordinate basis as shown in Figure

3.1)

D =






10 0

0 1




× 10−9m2/s and

D =









10 0 0

0 1 0

0 0 10









× 10−9m2/s

(3.58)

for plane strain and 3D, respectively. For comparison, we show the results using

an isotropic diffusivity, D = (1× 10−81)m2/s, with the same boundary conditions

mentioned above.

Figure 3.2 shows contours of φ at a few snapshots in time for the isotropic

and anisotropic simulations. The simulation results in Figure 3.2 show the clear

difference between the behavior of the isotropic and anisotropic diffusivity in the

deformation-diffusion behavior of the polymeric gel. The decreased diffusivity in the

e2 direction leads to noticeably slower diffusion and corresponding swelling along

that direction, leading to an observable anisotropy in the overall response of a gel.
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However, as expected, after long times, where diffusion is no longer driving solvent

at equilibrium, there is no difference between the isotropic and anisotropic results.
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a) b) c)

Figure 3.2 Simulation results showing φ at a) 900 s, b) 1800 s, and c) 6 hours, in
plane strain (top) and 3D (bottom). In all cases, to help with comparison, the left
portion is the isotropic simulation, while the right portion is anisotropic diffusion in
the absence of fibers. Further, the thick dotted line indicates the initial dry body.

3.7.3 Isotropic Diffusion with Embedded Fibers

Next, we consider isotropic diffusion, but with the influence of embedded fibers. To

observe the influence of the fiber volume fraction, we consider only a single fiber

family with a fiber direction aR = e1 (referring to the coordinate basis as shown in

Figure 3.1), for both plane strain and three-dimensional simulations. For comparison,

we show the results using an isotropic gel without any fibers, and, in all cases we take

D = (1× 10−81)m2/s. Then, we vary the fiber volume fraction, choosing

fR = { 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1} .

in the simulations that follow.

64



Figure 3.3 shows contours of φ at a few snapshots in time for the isotropic and

anisotropic simulations with fR = 1 × 10−1. The results of numerical simulation in

Figure 3.3 clearly show that, due to the constrained swelling caused by the embedded

fibers, the swelling stretch along the fiber direction is significantly lower than that

in the other directions. That difference is further quantified in Figure 3.4, where

the stretch along the fiber direction λ‖ decreases with the increase in fiber volume

fraction. This is accompanied by an increase in the swelling stretch along the other

directions, indicated by λ⊥.
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Figure 3.3 Simulation results showing φ at 6 hours for a) plane strain, and b) 3D.
In both cases, to help with comparison, the left portion is the isotropic simulation,
while the right portion is anisotropic, with fiber direction aR = e1 and volume fraction
fR = 10−1. Further, the thick dotted line indicates the initial dry body.
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Figure 3.4 Simulation results showing the stretch along the fiber direction, λ‖,
and that perpendicular to it λ⊥ near equilibrium at 6 hours for various fiber volume
fractions.
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3.7.4 Anisotropic Diffusion with Embedded Fibers

In this section, we perform simulations that include both embedded fibers and

anisotropic diffusion. To keep results easy to interpret, we take a single fiber direction

with aR = e2 at a volume fraction of fR = 1× 10−1, and assume the diffusivity to be

(referring to the coordinate basis as shown in Figure 3.1)

D =






10 0

0 1




× 10−9m2/s and

D =









10 0 0

0 1 0

0 0 10









× 10−9m2/s

(3.59)

for plane strain and 3D, respectively. As previously mentioned, we assume the

embedded fibers unable to swell, causing the solvent transport to be impeded along the

fiber direction. Accordingly, we take the solvent diffusivity to be significantly slower

in the direction of embedded fibers. Similar to the simulation results presented thus

far, we again compare against an isotropic polymeric gel in the absence of embedded

fibers, using an isotropic diffusivity D = (1× 10−81)m2/s.

Figure 3.5 shows contours of φ at a few snapshots in time for the isotropic

and anisotropic simulations. The simulation results, under both plane stain and

three-dimensional conditions, display pronounced anisotropy which is easily observed

in Figure 3.5. Due to the combined influence of solvent diffusion anisotropy and the

mechanical response of embedded fibers, the deformation is significantly constrained

along the e2 direction, while the gel is allowed to freely swell in the other directions.

Opposed to the example in Subsection 3.7.2, even when the equilibrium is reached,

after 6 hours of free swelling there is a significant difference between isotropic and

anisotropic simulations, due entirely to the presence of embedded fibers.
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Figure 3.5 Simulation results showing φ at a) 900 s, b) 1800 s, and c) 6 hours, in
plane strain (top) and 3D (bottom). In all cases, to help with comparison, the left
portion is the isotropic simulation, while the right portion is anisotropic diffusion
with fiber direction aR = e2 and fR = 10−1. Further, the thick dotted line indicates
the initial dry body.

3.8 Diffusion Activated Soft Gripper: Qualitative Comparison Between

Experiment and Simulation

As a final exercise of the model, we qualitatively compare our simulation results with

experiments of a soft robotic gripper. Since the materials used in the experiment

have not yet been characterized, our comparison is only qualitative, and we continue

using the material parameters provided in Table 3.1.

The construction of the diffusion activated soft gripper consists of two arms

of fiber-reinforced polymer gel connected to a rigid glass plate. The two arms

are composed of polyethylene glycol diacrylate (PEGDA 700) and off-the-shelf

medical gauze to used for the embedded fibers. To manufacture the soft gripper, a

photo-curable precursor solution is prepared by mixing PEGDA 700, as a monomer,

and 43mM of phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide as a photo-initiator.

A piece of medical gauze, with approximately a 0.5mm thickness is placed on a

transparent glass mold. The precursor solution is then poured into the mold, up to
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1.5mm from the bottom, and polymerized using ultraviolet (UV) illumination, with

an exposure energy of 250mJ/cm2. As a result, a 1.5mm thick composite polymer

film is formed, with a 0.5mm thick fiber network embedded on the bottom as can

be seen in Figure 3.6a. The composite polymer film is cut into the 57mm long and

3.5mm wide strips as in Figure 3.6b. Two fiber-embedded composite polymer strips,

serving as gripper arms, are bonded to a glass plate using super glue. The arms are

oriented with the fiber-reinforced side facing downward, with the angle between the

arms 70◦ as shown in Figure 3.7.

PEGDA 700

PEGDA 700 with
 embedded fibers 2mm 1cm

a) b)

Figure 3.6 Manufacture of the composite gripper arm. a) Shows medical gauze
embedded in the lower portion of the body, and b) shows the two strips used to
construct the soft gripper, prior to bonding in the initial dry state.

Bottom 

       Top 

Glass plate

70°
Top 

(isotropic) 

(isotropic) 

(anisotropic) 

Figure 3.7 Schematic of the soft gripper assembly. The gripper arms are bonded
to a glass plate with the fiber-reinforced side facing downward.

In the experiment, shown in Figure 3.8, the full gripper is submerged into

solvent, in this case water, and the subsequent diffusion and anisotropic swelling

due to the embedded fibers causes the gripper arms to bend and close onto a block.

This mode of deformation is utilized for grabbing and subsequently moving the block.
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a) b) c)

Figure 3.8 Experimental results showing the operation of diffusion activated soft
gripper. a) Initially after immersion into water, b) the embedded fibers cause
anisotropic swelling to make the gripper arms close in and grab the block, and c)
lifting the block.

For the finite element simulation, due to the symmetry of the gripper, we mesh

only a quarter of the geometry, i.e., a half of one arm. The structured finite element

mesh of the gripper consists of 6,958 three-dimensional 8-node brick user-elements.

Also, since the gripper arms are constructed with embedded fibers only close to

the bottom of the arms, we model two distinct layers through the thickness — the

bottom with fibers embedded; and an isotropic top layer without fibers. Specifically,

the top layer is taken to be 1mm thick as shown in Figure 3.9; and since there are no

embedded fibers, fR = 0, with an isotropic solvent diffusivity D = (1.5× 10−81)m2/s.

The bottom layer is taken to be 0.5mm thick, and contains two families of embedded

fibers oriented perpendicular to each other with directions, a
(1)
R = e1′ and a

(2)
R = e3′ ,

written in the local coordinate system as shown in Figure 3.9. Additionally, we choose

the fiber volume fraction to be the same for both orientations, and relatively small

based on Figure 3.6c, specifically f
(1)
R = f

(2)
R = 10−2. Since the bottom layer contains
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fibers, we assume the diffusivity to be slightly anisotropic, and we take

D =









1.0 0.0 0.0

0.0 1.5 0.0

0.0 0.0 1.0









× 10−8m2/s (3.60)

in the local 1′ − 2′ − 3′ coordinate system as shown in Figure 3.9.2
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35°

Block

Figure 3.9 Schematic of the soft gripper assembly that is used in the numerical
simulation, indicating the local coordinate system used for material properties, as
well as the layers with and without fibers.

To realistically simulate the experiment, we include a non-swellable block with

edge length 2mm that will be picked up by the soft gripper. We assume the block is

much stiffer than the soft gripper and model the block as linear elastic with modulus

5GPa. The interaction between the soft gripper and the block is modeled with a

rough contact interaction, meaning no slip. For visualization purposes, a rigid body

is included in the simulation to model the glass plate from the experiment, and the

soft gripper is bonded to this glass plate in the simulation such that it may swell

along e2, but is fully constrained in e1.

2We note that both the fiber directions, and diffusivity, given here in local coordinate system
1′−2′−3′, are later rotated to the global coordinate system 1−2−3 inside the finite element
simulation.
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Considering Figure 3.9, the mechanical boundary conditions prescribed for this

simulation are:

� Symmetry boundary conditions are prescribed on the 1-2 and 2-3 planes.

� The displacement on face A-A is mechanically constrained along the 1-direction.

In addition, the top node on face A-A is pinned.

� The glass plate is fully constrained, while the block is traction free on all faces.

Next, to account for the immersion in solvent, the chemical potential is prescribed

on the external faces of the gripper, except for the face bonded to the glass plate. As

before, the chemical potential is prescribed in the form µ̆(t) = µ0 + µ0 exp(−t/td) to

smoothly apply the chemical potential boundary condition.

Figure 3.10 shows contours of φ in the simulation of the soft gripper working

at various snapshots in time. The initially dry soft gripper, shown in Figure 3.10a, is

immersed in solvent and through diffusion begins to swell and deform. The bottom

layer of the gripper, which contains the embedded fibers and has an anisotropic

diffusivity, swells less than the top layer. This constrained swelling of the bottom

layer, forces the arms to bend, and eventually close in and grab the block. Finally,

the block is picked up and may be moved elsewhere.

Comparing our numerical simulation with the experimentally observed operation

of a soft gripper, we have qualitative agreement between the two. In both cases, the

presence of the embedded fibers on the bottom side of the soft gripper leads to

constrained swelling, which in turn causes the gripper to close and grab the block.

Therefore, the constitutive model and it’s numerical implementation may provide a

qualitative tool for the design of soft robotic devices.
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Figure 3.10 Simulation results showing φ during operation of diffusion activated
soft gripper. a) The initial state immediately after immersion in water, b) the
embedded fibers cause anisotropic swelling to make the gripper arms close in and
grab the block, and c) lifting the block.

3.9 Concluding Remarks

We have developed a continuum-level model to capture the major features of

fiber-reinforced polymeric gel behavior. The anisotropic aspects of the model are

i) the influence of non-linear elastic embedded fibers that do not swell inside the

polymer matrix, and ii) anisotropic diffusion of solvent within the polymer matrix.

The mechanical response of the polymer matrix is described using a non-Gaussian

statistical-mechanical model, along with Flory-Huggins model for mixing free energy.

The constitutive model has been numerically implemented in a commercially

available software package [1] by writing a user element subroutine (UEL). That

numerical implementation was utilized for solving boundary-value problems which

showcase the capabilities of the model to simulate the behavior of fiber-reinforced

polymeric gels.

Lastly, we have constructed a diffusion activated soft gripper and experimentally

observed its operation. Using the numerical implementation of the constitutive model,

we were able to simulate the operation of our soft gripper. Qualitative comparison of
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experiment and simulation shows good agreement between the two, thus displaying

the capabilities of our model to account for the major features of fiber-reinforced

polymeric gel behavior.
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CHAPTER 4

PHOTO-SENSITIVE POLYMERIC GELS

4.1 Introduction

The objective of this chapter is to develop a continuum-level constitutive model to

account for the photochemically driven changes in the swelling of polymeric gels. In

addition, we numerically implement the continuum model, for use in finite element

software allowing for the solution of general boundary value problems. This approach

enables robust and reliable finite element analysis of various devices involving photo-

sensitive polymeric gels.

To model the mechanical behavior of photo-sensitive polymeric gels, we consider

a free energy form that use the classical statistical mechanics based inverse Langevin

model for rubber-like hyperelastic materials (cf., e.g., [5, 3]). The chemical mixing

of polymeric network with the solvent is included employing the well-known Flory-

Huggins model ([42, 64]).

The photo-chemo-mechanical continuum framework involves three balance laws,

(i) the balance of forces and moments, (ii) the balance of active species, and (iii)

radiative transfer. For solving this coupled set of equations, we employ the finite

element method and numerically implement the framework in the finite element

software Abaqus/Standard ([1]) as a user element (UEL) subroutine. This finite

element implementation provides a robust simulation capability for the multiphysics

response of photo-sensitive polymeric gels.

The remainder of this chapter is organized as follows. Section 4.2 provides

the molecular mechanisms and motivate the constitutive model by providing an

overview of relevant data from the literature. Section 4.3 provides a description of

the continuum framework. Sections 4.4 and 4.5 provides the basic constitutive forms,
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thermodynamic restrictions, and the specialized constitutive relations. In Section

4.7 we present the approach for the numerical implementation of the continuum

framework and the constitutive model for use in the finite element analysis. Section

4.8 shows the results of representative numerical simulations.

4.2 Experimental Observations and Mechanisms of Photo-Activation

4.2.1 Macroscopic Experimental Results

As previously mentioned, a change in the degree of swelling has been the most

widely observed aspect of photo-activation of polymeric gels. Both the photo-induced

trans-cis isomerization of azobenzene and the photoiosomerization of spirobenzopyran

affect the swelling of gels (cf., e.g., [118, 123]). A subset of experimental data

reproduced from [24] is presented in Figure 4.1b, and shows a noticeable change

in the amount of swelling due to irradiation. To achieve this behavior, [24] used

a p(PNIPAAm) hydrogel functionalized with spirobenzopyran chromophores, thus

forming a hybrid material – p(SPNIPAAm) hydrogel. As seen in Figure 4.1b, in

the absence of light, different variations of p(SPNIPAAm) undergo swelling until

equilibrium, which is observed as the increase in the uniaxial swelling stretch. When

irradiated, spirobenzopyran chromophores form a hydrophobic closed ring, causing

deswelling of p(SPNIPAAm) and the decrease in the uniaxial swelling stretch. Also,

after removing the light source, the p(SPNIPAAm) swells again until equilibrium is

reached, thus showcasing the reversibility of this photoisomerization reaction.

In addition, the degree of swelling is well known to affect the mechanical

behavior of polymeric gels (cf., e.g., [67, 100]). These authors, among other things,

clearly point out how the degree of swelling affects the apparent stiffness of a swollen

polymeric gel at equilibrium. However, there is still a dearth of experimental data

on the large deformation changes to the mechanical behavior of photo-active gels.

Accordingly, to keep our attention focused on the objective, and only based on known
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Figure 4.1 a) Experimentally observed change in loss modulus (GL) due to
irradiation (data reproduced from [92]). b) Experimental data from [24] showing
the change in the amount of swelling in the absence of light and while irradiated.
The measurements were performed on p(SPNPIMAAm) gel swollen with 3 different
solvents. In both plots the yellow region indicates the period of active irradiation.

experimental results, we only seek to model the photo-chemo-mechanically coupled

behavior related to changes in degree of swelling due to irradiation.

4.2.2 Mechanisms of Photo-Activation

One of the most common approaches for achieving the photo-activation in polymeric

gels is through tethering azobenzene groups to the polymeric backbone (cf., e.g.,

[118, 115, 132, 119]). Upon irradiation with a blue light (wavelength 400-450 nm),

the azobenzene group undergoes cis-trans photoisomerization that induces a change

in shape, size, and polarity, as shown in Figure 4.2a. Further, the change in the

chemical structure generates a decrease in available volume in the polymeric network,

leading to loss of solvent and deswelling ([84]). On the other hand, when irradiated

with a UV light, the azobenzene reverts to cis configuration, and the gel swells again.

Another approach for for achieving the photo-activation is to anchor spiroben-

zopyran groups to the polymeric backbone (cf., e.g., [124, 123]. In the absence of light,

the spirobenzopyran chromophores assume a hydrophilic open ring configuration.

Irradiation of these chromophores by a blue light, yields a hydrophobic closed ring,
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Figure 4.2 a) Azobenzene undergoing the cis-trans photoisomerization upon
activation with a blue light, and also trans-cis photoisomerization under a UV
light. b) Spirobenzopyran group going from hydrophilic open ring configuration to a
hydrophobic closed ring when irradiated with a blue light. In the absence of light,
the spirobenzopyran reverts to an open ring configuration.

as in Figure 4.2b, thus causing the polymeric gel to undergo deswelling [78, 41]).

In addition, after removing the light, the spirobenzopyran returns to an open ring

configuration and swells again.

4.3 Continuum Framework

Following the previous work by our group (cf., e.g., [16, 17, 15, 51, 9]), in this section

we summarize the kinematic relations and the balance laws for the photo-chemo-

mechanically coupled behavior of polymeric gels.

4.3.1 Kinematics

We assume the initially dry body BR in its referential or undeformed configuration

occupies the fixed region of space, with an arbitrary material point xR. This body

then undergoes a motion leading to the current or deformed configuration Bt, which

can be expressed as x = χ(xR, t). Consequently, the deformation gradient takes the
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form

F = ∇χ, such that J = detF > 0, (4.1)

where J represents the volumetric deformation. In addition, the right and left Cauchy-

Green deformation tensors are

C = F⊤F and B = FF⊤, (4.2)

respectively. Following a widely used approach in modeling the mechanics of gels (cf.,

e.g., [34, 16]), we employ the multiplicative decomposition of deformation gradient

into mechanical and swelling part

F = FmFs, with Fs = λs1. (4.3)

Here, Fm is the mechanical part of the deformation gradient, Fs is the swelling part

of the deformation gradient, and λs the spherical swelling stretch.

Next, using (4.2) and (4.3), the right and left Cauchy-Green tensor can be

rewritten in the forms

C = (FmFs)⊤ (FmFs) = (λs)2Fm⊤Fm = (λs)2Cm , (4.4)

B = (FmFs) (FmFs)⊤ = (λs)2FmFm⊤ = (λs)2Bm , (4.5)

where Cm and Bm represent the mechanical part of the right and left Cauchy-Green

tensor, respectively.

With respect to the decomposition of deformation gradient in (4.3), the

volumetric deformation is decomposed in the form

J = detF = det (FmFs) = JmJs, (4.6)

78



where Jm and Js are the volumetric deformations due to mechanical deformation and

swelling, respectively. Before moving along, we note that based on (4.3), we have

Js = (λs)3 , and therefore λs = (Js)1/3 . (4.7)

Additionally, as is standard, one typically finds the decomposition

F = FvolFdis, with Fvol = J1/31 , and Fdis = J−1/3F (4.8)

of the deformation gradient into volumetric and distortional components. Further

consideration of the distortional term, and using (4.3) and (4.7), we define the

mechanical part of the distortional deformation gradient

Fdis =
(
Js−1/3Jm−1/3

)
(λsFm) = Jm−1/3Fm def

= Fm
dis . (4.9)

Further, using (4.9) the distortional part of the right Cauchy-Green tensor is

given by

Cdis = Cm
dis = F⊤

disFdis . (4.10)

Next, using (4.1) and (4.3), the velocity gradient can be written as

L = ḞF−1 = Lm + FmLs (Fm)−1 , (4.11)

where

Lm = Ḟm (Fm)−1 and Ls = Ḟs (Fs)−1 , (4.12)

represent the mechanical and swelling part of the velocity gradient, respectively.

We also define the mechanical and swelling stretching and spin tensors

Dm = symLm Wm = skwLm ,

Ds = symLs Ws = skwLs







(4.13)

79



such that

Lm = Dm +Wm and Ls = Ds +Ws . (4.14)

Recalling (4.3), (4.6) and (4.13), the swelling velocity gradient in (4.14) can be

rewritten as

Ls = Ds =
(

λ̇sλs−1
)

1 =
1

3

(

J̇sJs−1
)

1 (4.15)

4.3.2 Extent of Reaction

Following the recent literature ([86, 87, 117]), we take the extent of the chemical

reaction lying in the range

0 ≤ ξ(δ)(x, t) ≤ 1 , (4.16)

for each reaction δ.

To account for the change in the concentration of each chemical species β, we

introduce the rate of production/consumption for each species

r(β) =
∑

δ

νβδ ξ̇
(δ) . (4.17)

Here, νβδ represent the stoichiometric coefficients in moles per unit volume, deter-

mining the production/consupmtion of each chemical species β due to the reaction

δ.

4.3.3 Swelling Constraint and the Solvent Content

The volumetric deformation caused by swelling is assumed to be only due to the

solvent uptake, and because the solvent causes such large volume changes, we denote

it specifically by

cR
def
= c

(1)
R , (4.18)
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and therefore

Js = 1 + ΩcR, and therefore λs = (1 + ΩcR)
1/3 , (4.19)

where Ω is the molar volume of solvent, and cR is the solvent content expressed as

moles per unit reference volume of the dry polymer. Implicit in this statement is that

all other chemical species do not cause any volume change. In the literature, one

often finds the polymer volume fraction, φ, which is defined as

φ
def
=

1

1 + ΩcR
= (λs)−3 = (Js)−1 , (4.20)

and takes the range 0 < φ ≤ 1. Here φ = 1 refers to a dry polymer and φ < 1

indicates the presence of solvent.

4.3.4 Balance Laws

The photo-chemo-mechanically coupled response of light-activated polymeric gels is

affected by the (i) mechanical state (e.g., stress, deformation, etc.), (ii) the solvent

content, and (iii) the propagation of light through the body radiative transfer does not

directly take the extent of reaction into account. Therefore, we assume the response

of a light-activated polymeric gel is determined by the balance of forces and moments,

the balance of solvent content, and radiative transfer.

Balance of Forces and Moments Neglecting inertial effects, the balance of forces

and moments in the referential body BR takes the well known relations

divTR + bR = 0 and TRF
⊤ = FT⊤

R
. (4.21)

Here TR is the first Piola stress and bR is the external body force per unit reference

volume.
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Further, the first Piola stress in the undeformed body is related to the Cauchy

stress in the deformed body by

TR = JTF−⊤. (4.22)

Additionally, in the current configuration the balance of forces and moments in the

deformed body Bt takes the well known relations

divT + b = 0 and T = T⊤ , (4.23)

where b is the external body force acting on the unit current volume.

Lastly, the traction acting on the surface with the outward unit normal nR in

the referential configuration, and n in the current configuration is given by

tR = TRn and t = Tn . (4.24)

Balance of Species In general, a photo-chemically reacting polymeric gel may

contain several chemical species, such as the solvent or photosensitive groups, which

possibly diffuse and/or partake in chemical reactions causing causing swelling/deswelling

and other novel behaviors. To account for the overall balance of species in

photo-sensitive gels, we first introduce the concentration of species c(β) as the amount

of moles per unit deformed volume, where the superscript“β” represents each of the

species.

The balance of chemical species keeps track of the concentration of species, and

we denote an arbitrary subregion of the body Pt in the deformed body Bt. At this

stage of development, we allow for all species to be mobile, and all species to partake

in reactions, specific forms will be provided later in Section 4.5. Considering a region

of the body Pt, the balance of chemical species for each active mobile species is given

by
˙∫

Pt

c(β)dv = −
∫

∂Pt

j(β) · nda+
∫

Pt

r(β)dv ∀β (4.25)
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where j(β) is the flux, and r(β) the production/consumption rate of species β and is

constrained by the stoichiometry of the chemical reaction as mentioned in (4.17). Use

of the divergence theorem, along with the relation c
(β)
R = Jc(β) for the concentration

of species in moles per unit reference volume, leads to the local balance of chemical

species

ċ
(β)
R

J
= −div j(β) + r(β) ∀β . (4.26)

Lastly, using (4.17) we may rewrite (4.26) into the form

ċ
(β)
R

J
= −div j(β) +

∑

δ

νβδ ξ̇
(β) ∀β (4.27)

where we have made use of ξ as opposed to r.

We also define the species flux acting on the surface with an outward normal n

in the current configuration as

j(β) = −j(β) · n ∀β . (4.28)

Radiative Transfer When a surface of a polymeric gel is exposed to light

irradiation, a portion of the light rays will be reflected from the surface, while the

other portion is refracted and starts propagating through the body. While the light

is propagating inside the body, the energy is being carried in the form of photons.

Following the recent literature ([89, 27]) we follow a radiometric description where

electromagnetic waves are considered as a flow of radiative energy or photons.

In general, light can propagate in any direction, and at any frequency (or

equivalently wavelength) inside the body. As is typically done, the spectral radiative

intensity Iνω(x, t) is defined as the amount of energy at solid angle ω and frequency

ν. Integration over all solid angles and frequencies yields the total radiative energy

flux vector having units of power per unit deformed area, h(x, t),

h =

∫

ν

∫

4π

Iνωsdω dν , (4.29)
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where s is the direction of propagation (determined by the solid angle ω). Based

on the experiments provided in Section 4.2, typically the light is unpolarized with

only a single frequency of light is active at a time, and along a single direction d.

Accordingly, (4.29) may be simplified to

h =

∫

ν

∫

4π

Iδ(ν − ν0)δ(ω − ω0)ddω dν = Id (4.30)

where I(x, t) is the radiative intensity and δ the Dirac delta function. After applying

the product rule for divergence, we may rewrite (4.30) in the form

divh = div(Id) = Idiv(d)
︸ ︷︷ ︸

=0

+d · gradI . (4.31)

The balance of energy for a ray of light is described by radiative transfer, in a

general multidimensional form, radiative transfer is given by ([13])

1

c

∂I

∂t
+ d · gradI = − ksI

︸︷︷︸

out-scattering

+
1

4πc
ks

∫

Bt

Idv

︸ ︷︷ ︸

in-scattering

− kaI
︸︷︷︸

absorption

+ ι
︸︷︷︸

emission

. (4.32)

And one can notice the light intensity along the direction d is being attenuated by

out-scattering and absorption, with the corresponding coefficients ks and ka. Also

the emission ι and the in-scattering increase the light intensity.

Following the previous work by our group, found in [51], as well as the approach

found in [88] and [27], we propose a simplified form for the radiative transfer. The

typical time scale for transient behaviors of the light are set by the speed of light in

that medium, compared to mechanical deformations, and photo-chemical reactions,

we assume steady state conditions for light propagation. Next, we assume the

scattering and the emission to be negligible, which is true for many polymers in use

([36, 71, 75]). Therefore, with these simplifying assumptions, (4.32) can be rewritten

as

d · gradI + ΛI = 0 , (4.33)
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where Λ represents the extinction field, which takes into account the attenuation of

light in a lumped manner.

Free Energy Imbalance The first two laws of thermodynamics under isothermal

conditions take the form of the free energy imbalance, which requires the temporal

increase in the free energy to be less or equal of the power expanded on a part Pt of

the body, along with any brought into Pt though solvent diffusion or light irradiation,

as well as the photo-chemical reactions. Therefore, the free energy imbalance in the

current configuration takes the form

˙∫

Pt

ρψdv ≤
∫

∂Pt

Tn · vda+
∫

Pt

b · vdv

−
∑

β

∫

∂Pt

µ(β)j(β) · nda +
∑

β

∫

Pt

µ(β)r(β)dv −
∫

∂Pt

h · nda , (4.34)

where ψ is the free energy density per unit deformed mass, ρ the mass density, µ(β)

is the chemical potential of each chemical species, and h is the radiative flux.

Next, noting that the part Pt is arbitrary, in the absence of body forces and

inertial affects, and after applying the divergence theorem on (4.34), we arrive at the

local form

ρψ̇ ≤ T :L−
∑

β

j(β) · gradµ(β) −
∑

β

µ(β)div j(β) +
∑

β

µ(β)r(β) − divh . (4.35)

Next, using (4.27) in (4.35), we obtain

ρψ̇ ≤ T :L−
∑

β

j(β) · gradµ(β) +
∑

β

J−1µ(β)ċ
(β)
R − divh . (4.36)

Since the free-energy density per unit reference volume is related to it’s spatial

counterpart by

ψR = ρJψ (4.37)
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we may write the dissipation per unit reference volume,

ψ̇R − JT :L+ Jdivh+
∑

β

Jj(β) · gradµ(β) −
∑

β

µ(β)ċ
(β)
R ≤ 0 . (4.38)

Following standard arguments, the stress power per unit reference volume, JT :

L, admits the decomposition

JT :L = JT :
(
Lm + FmLsFm−1

)

= JT :
(

ḞmFm−1
)

+ JT :
(
FmLsFm−1

)

=
(
JTFm−⊤

)
: Ḟm +

(
JFm⊤TFm−⊤

)
:Ls

=
(
JFm−1TFm−⊤

)
:
(

Fm⊤Ḟm
)

+
(
JFm⊤TFm−⊤

)
:

(
1

3
Js−1J̇s1

)

= Tm :
1

2
Ċm +

1

3
Js−1trMmJ̇s . (4.39)

Where we have defined two new stress measures

Tm def
= JFm−1TFm−⊤ and Mm def

= JFm⊤TFm−⊤ , (4.40)

where Tm is a mechanical second Piola stress, and Mm is a mechanical Mandel stress.

We also introduce a mean normal pressure in the form

p̄
def
= −1

3
Js−1trMm = −1

3
Js−1tr

(
JFm⊤TFm−⊤

)
= −1

3
JmtrT (4.41)

such that (4.39) becomes

JT :L = Tm :
1

2
Ċm − p̄J̇s . (4.42)

Finally, using (4.42), the free energy imbalance (4.38) takes the form

ψ̇R − 1

2
Tm : Ċm − p̄J̇s + Jdivh+

∑

β

Jj(β) · gradµ(β) −
∑

β

µ(β)ċ
(β)
R ≤ 0 . (4.43)
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In light of (4.19), we have J̇s = ΩċR
(s), and therefore (4.38) can be written in

the form

ψ̇R − 1

2
Tm : Ċm −

(
µ(s) + Ωp̄

)
ċ
(s)
R + Jdivh+

∑

β

Jj(β) · gradµ(β) −
∑

β 6=1

µ(β)ċ
(β)
R ≤ 0 .

(4.44)

4.4 Basic Constitutive Equations and Thermodynamic Restrictions

Considering frame indifference and the free energy imbalance (4.44), the set basic

constitutive equations consists of

ψR = ψ̄R

(

Cm, c
(β)
R , ξ(δ)

)

Tm = T̄m
(

Cm, c
(β)
R , ξ(δ)

)

µ(β) = µ̄(β)
(

Cm, c
(β)
R , ξ(δ)

)







(4.45)

along with a Darcy-type relation for the spatial species flux

j(β) = −M̄(β)(Cm, c
(β)
R , ξ(δ))gradµ(β) ∀β . (4.46)

where M(β) is the mobility tensor for each species.

Since

ψ̇R(C
m, c

(β)
R , ξ(δ)) =

∂ψR

∂Cm
: Ċm +

∑

β

∂ψR

∂c
(β)
R

ċ
(β)
R +

∑

δ

∂ψR

∂ξ(δ)
ξ̇(δ) (4.47)

use of (4.47) and (4.46) in (4.44) provides

(
∂ψ̄R

∂Cm
− 1

2
Tm

)

: Ċm +
∑

β 6=1

(
∂ψ̄R

∂c
(β)
R

− µ(β)

)

ċ
(β)
R +

(
∂ψ̄R

∂c
(s)
R

− µ(s) − Ωp̄

)

ċ
(s)
R

+
∑

δ

∂ψ̄R

∂ξ(δ)
ξ̇(δ) + Jdivh−

∑

β

J
[
gradµ(β) ·

(
M(β)gradµ(β)

)]
≤ 0 , (4.48)

which must hold for all valid constitutive equations and motions of the body. Further,

sufficient conditions for the constitutive equations to satisfy (4.48) provide the state
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relations, for the stress

T = J−1
[

2Fm∂ψ̄R(C
m, c

(β)
R , ξ(δ))

∂Cm
Fm⊤

]

, (4.49)

the chemical potential of the solvent

µ(s) =
∂ψ̄R(C

m, c
(β)
R , ξ(δ))

∂cR
+ Ωp̄ , (4.50)

and the chemical potential of all other chemical species

µ(β) =
∂ψ̄R(C

m, c
(β)
R , ξ(δ))

∂c
(β)
R

, ∀β 6= 1 . (4.51)

Next, we introduce the chemical affinity as the tendency of chemical species to

participate in reactions, given as

A(δ) = − ∂ψ̄R

∂ξ(δ)
. (4.52)

Leaving the dissipation inequality

∑

δ

A(δ)ξ̇(δ) − Jdivh+
∑

β

J
[
gradµ(β) ·

(
M(β)gradµ(β)

)]
≥ 0 . (4.53)

To satisfy (4.53), we assume the response is strictly dissipative,

gradµ(β) ·
(
M(β)gradµ(β)

)
> 0 when gradµ(β) 6= 0 ∀β , (4.54)

so that the mobility tensor is positive definite for all chemical species. Further, using

(4.31) and (4.33), the second term provides

ΛI > 0 when gradI 6= 0 , (4.55)

so therefore Λ must be positive, and

∑

δ

A(δ)ξ̇(δ) > 0 when ξ̇(δ) 6= 0 . (4.56)
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4.5 Specialized Constitutive Equations

4.5.1 Specific Photo-Chemical Reactions

In this work we consider two representative chemical mechanisms towards achieving

the photo-responsiveness of a gel. These reactions are the trans-cis isomerization of

azobenzene groups and the photo-isomerization of spirobenzopyran shown in Figures

4.2a and 4.2b, respectively.

Isomerization Reaction In this case, there is a single reaction, which is reversible,

and the molecular structure undergoes a change in configuration, while the chemical

composition remains unaltered. Therefore, we consider the chemical reaction in the

form

A⇋ B (4.57)

where A represents the reactant and B is the product after isomerization. It is

also worthwhile noting that many isomerization reactions can be thermally activated,

however, we are not considering thermal effects in this work.

Accordingly, in this special case we have three chemical species to keep track of,

the imbibed solvent and the concentrations of isomers A and B, and there is only a

single reaction. While solvent is allowed to diffuse throughout the polymeric network,

however it does not partake in chemical reactions. In contrast, both isomers A and

B are anchored to the polymeric network and therefore do not diffuse, and therefore

j(A) = j(B) = 0, however does partake in the reaction. Lastly, since there is only a

single reaction, and the stoichiometric coefficients in (4.57) are ±1, meaning a single

A turns into a single B and vise versa, we have a single extent of reaction ξ. Therefore
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(4.27) in this special case reduces to a set of 3 equations

ċ
(s)
R = Jdiv j(s)

ċ
(A)
R = −ξ̇

ċ
(B)
R = ξ̇







, (4.58)

subject to the constraint

c
(A)
R + c

(B)
R = c

(A)
0 , (4.59)

Where we assume that the initial conditions for concentrations of A and B are c
(A)
R =

c
(A)
0 and c

(B)
R = 0 everywhere in BR.

4.5.2 Free Energy

To model this coupled problem, the free energy consists of multiple contributions

that we assume are additively decomposed. The overall free energy per unit reference

volume is given by

ψR = ψmechanical
R

+ ψmix
R

+ ψreaction
R

, (4.60)

where ψmechanical
R

is the mechanical contribution, ψmix
R

the mixing contribution between

the polymer network and solvent, and ψreaction
R

is the chemical reaction contribution.

Mechanical Contribution to the Free Energy We take the mechanical

contribution following a non-Gaussian statistical mechanics based model ([5, 3]),

which accounts for the limited extensibility of polymer chains,

ψmechanical
R

= G0λ
2
L

[( λ̄

λL

)

β + ln
( β

sinh β

)

−
( 1

λL

)

β0 − ln
( β0
sinh β0

)]

−G0

(
λL
3

lnJβ0

)

+ Js

[
1

2
K ln Jm

]

. (4.61)

90



Here, we introduce the effective stretch

λ̄
def
=

√

1

3
trC =

1√
3
(1 + ΩcR)

1/3
√
trCm , (4.62)

which is a scalar representation of the three dimensional state of deformation which

includes the combined effects of mechanical and swelling deformation. Further, β =

L−1
(

λ̄
λL

)

, and β0 = L−1
(

1
λL

)

, where L−1 is the inverse of the Langevin function,

given by L(•) = coth(•)− (•)−1. This particular form accounts for locking behavior

of the polymeric network at large stretches. This specific form employs two material

parameters, the initial shear modulus G0 and the locking stretch λL.

In the current literature there has been no evidence of photoisomerization

directly affecting the mechanical response of gels directly. The evidence points to

affecting the degree of swelling only. Therefore, we consider the mechanical material

parameters constant throughout the photoisomerization reaction.

Mixing Contribution to the Free Energy The mixing contribution to the free

energy arises as a result of mixing between the polymeric network, the solvent and

the remaining chemical species. In general for the mixing free energy of standard

gels the widely used Flory-Huggins model ([43, 64]) is used, which takes into account

the difference in size and chemical interaction between the solvent molecules and the

polymer chains. It is given by

ψmix
R

= µ0cR +RϑcR

(

ln
( ΩcR
1 + ΩcR

)

+ χ
( 1

1 + ΩcR

)
)

, (4.63)

where, µ0 is the reference chemical potential of the solvent, R is the gas constant and

θ is the absolute temperature. Here, χ is the polymer-solvent interaction parameter,

which accounts for the disaffinity between the solvent molecules and the polymer

network. In other words, χ determines the amount of swelling in a polymeric gel in

the presence of a specific solvent.
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In this case, there is ample experimental evidence that isomerization affects

the degree of swelling. Accordingly, to model the experimentally observed change

in the mixing response due to irradiation shown in Section 4.2, and consider the

polymer-solvent interaction to be affected by the extent of the photochemical reaction

χ(ξ) =
1

2
(χL + χH)−

1

2
(χL − χH) tanh

(
ξ − ξT
∆

)

(4.64)

where χL and χH represent the polymer-solvent interactions below and above the

transition extent of photochemical reaction ξT , and ∆ is the width in transition. A

similar approach was employed to model the temperature-dependent polymer-solvent

interaction in [17].

To take into account the amount photo-sensitive groups tethered onto the

polymeric backbone, and consequently the impact on photo-activation, we speculate

χH = χH(c
(B)
R ). And since we currently do not have experimental evidence at hand,

we assume a very simple form

χH = χ0 + χ1c
(B)
R (4.65)

such that χH is linearly affected by the concentration of photo-sensitive groups. Using

this form, a gel with a relatively small amount of photo-senesitive groups will deswell

less than the same gel with relatively more photo-sensitive groups.

Reaction Contribution to the Free Energy Following our previous work (cf.,

e.g., [117]), we introduce a simple form for the reaction contribution to the free energy

ψreaction
R

=
1

2
H(ν − ξ)2 (4.66)

where H represents the chemical modulus, and ν the state that minimizes energy.
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4.5.3 Stress

Based on the state relation (4.49), and the specialized free energy forms (4.61), (4.63)

and (4.66), we obtain the relation for Cauchy stress

T = J−1
[
G0

(
ζφ−2/3Bm − ζ01

)
+ JsK(ln Jm)1

]
, (4.67)

where

ζ
def
=
(λL
3λ̄

)

L−1
( λ̄

λL

)

and ζ0
def
=
(λL

3

)

L−1
( 1

λL

)

. (4.68)

4.5.4 Chemical Potential

Following (4.50), and the specialized free energy forms (4.61), (4.63) and (4.66), the

chemical potential of the solvent takes the form

µ(s) = µ0 +Rϑ
(

ln(1− φ) + φ+ χφ2
)

− ΩK(ln Jm) +
1

2
KΩ(ln Jm)2 . (4.69)

Similarly, with respect to (4.51), the chemical potential of all remaining chemical

species is

µ(β) = 0+
∂ψreaction

R

∂c
(β)
R

(maybe, but we’ll have to choose a specific form for reaction free energy .)

(4.70)

4.5.5 Chemical Affinity

Following the state relation (4.52) and the overall sum of the free energy (4.60), the

general form of the chemical affinity can be written as

A = −
(

∂ψTI
R

∂ξ
+
∂ψTD

R

∂ξ
+
∂ψmixing

R

∂ξ
+
∂ψreaction

R

∂ξ

)

. (4.71)

Considering the mechanical free energy unaltered by the photoisomerization, as

well as the specialized forms for the polymer-solvent interaction (4.64) and reaction
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free energy (4.66), the chemical affinity is given by

A = −
(

0 + 0 +
∂ψmix

R

∂ξ
+
∂ψreaction

R

∂ξ

)

= RϑcR

( 1

1 + ΩcR

)1

2
(χL − χH) sech

2

(
ξ − ξT
∆

)
1

∆
+H(κ− ξ) .

(4.72)

4.5.6 Extinction Field

The polymeric gel is a solid mixture of a polymer and a solvent, each with unique

attenuation properties. Since the polymeric network involves the polymeric backbone,

along with the tethered cis and trans isomers, the polymer network extinction field

can be written as

Λp = Λbackbone + cAΛA + cBΛB , (4.73)

where Λbackbone is the extinction field of the polymeric backbone, and ΛA and ΛB

represent the extinction field of each isomer. Weighted based on the polymer volume

fraction, we take the overall gel extinction field at a material point in the form

Λ = (1− φ) Λs + φΛp

= (1− φ) Λs + φ
(
Λbackbone + cAΛA + cBΛB

)
,

(4.74)

where Λs is the solvent extinction field.

4.5.7 Mobility Tensor

The mobility tensor for each chemical species is assumed to be dependent on the

concentration (or solvent content) and the temperature, as is typical. Following the

literature ([16, 9]), we take the mobility in the form

M(β) =
c(β)D(β)

Rϑ
1 =

c
(β)
R D(β)

JRϑ
1 , (4.75)

where D(β) represents the scalar diffusivity for each chemical species.
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We note that for the typical isomerization reaction, only the solvent is able to

diffuse. Accordingly, the only mobility is that of the solvent and it takes the obvious

form

M(s) =
c
(s)
R D(s)

JRϑ
1 .

4.5.8 Photochemical Reaction Rate

The propagation of suitable light through a polymeric gel activates the photochemical

groups attached to the polymeric network, thus initiating photochemical reactions.

To capture the reaction kinetics, we introduce the photochemical reaction rate, and

specialize the forms for isomerization.

When irradiated with a UV light, the azobenzene chromophores undergo cis-

trans photoisomerization, and the reverse is true, undergoing a trans-cis photoisomer-

ization when irradiated with a visible light. For azobenzene, we denote the cis-trans

photoisomerization as the forward reaction, and the trans-cis photoisomerization as

the reverse reaction.

On the other hand, spirobenzopyran chromophores undergo a transformation

from the open ring configuration to the closed configuration when irradiated with a

visible light, and from the closed ring configuration to the open configuration in the

absence of irradiation. For spirobenzopyran, we denote the open-to-closed ring as the

forward reaction, and the closed-to-open ring as the reverse reaction.

As mentioned in Section 4.4, we assume the chemical affinity as the tendency of

chemical species to participate in the reactions, and thus we consider it the driving

force for the photochemical reactions. Following [89], and considering the balance of

reactants/products in (4.27), we assume the rate of the photochemical reaction in the

form

ξ̇ = kf
c(A)

NAchν
IA − kbI

nc(B). (4.76)
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where kf and kb are the reaction rate coefficients of forward and backward photo-

chemical reactions, respectively. In (4.76) NA is Avogadro’s number, c is the

propagation speed of the radiation, and hν is the energy of one photon with the

frequency ν. Note that we introduce the exponent n in the reverse reaction term to

account for the different mechanisms driving the reverse reaction mentioned above.

For azobenzene (and other photosensitive groups that are reversed by irradiation), we

take n = 1 and for spirobenzopyran (and other photosensitive groups that are active

in the absence of irradiation) we take n = 0.

4.6 Governing Equations

The initial boundary value problem consists of the governing differential equations

(4.23), (4.58) and (4.33), along with the boundary and initial conditions. Thus, in the

absence of body forces, and neglecting the inertial effects, the governing equations in

the deformed body Bt are:

� Balance of forces and moments






divT = 0 in Bt,

u = ŭ on Su,

Tn = t̆ on St,

, (4.77)

Here, ŭ and t̆ are the prescribed displacement and surface traction on two

complementary surfaces Su and St, respectively.

� Balance of species

– Photoisomerization 





ċ
(s)
R = Jdiv j in Bt,

µ(s) = µ̆ on Sµ,

j(s) · n = j̆ on Sj,

(4.78)
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Along with the evolution equations at each material point

ċ
(A)
R = −ξ̇

ċ
(B)
R = ξ̇

(4.79)

� Radiative transfer






d · gradI + ΛI = 0 in Bt .

I = Ĭ on S− ,

. (4.80)

Here, Ĭ is the prescribed light intensity on the irradiated surface S−

And the initial conditions are taken as

u(xR, t = 0) = u0(xR) , and µ(xR, t = 0) = µ0(xR) (4.81)

in BR, and there is no initial condition on I(xR, t = 0) since (4.80) is steady and only

depends on time via boundary conditions.

All together, this serves as a coupled initial boundary value problem for the

displacement u(x, t), the chemical potential µ(x, t), and light intensity I(x, t).

4.7 Numerical Implementation

The balance laws presented in Subsection 4.3.4, form the governing set of coupled

non-linear partial differential equations (PDEs). This set of coupled non-linear PDEs

is solved numerically, employing the Newton-Raphson iterative procedure. Newton-

Raphson method typically requires the development of weak forms for the boundary-

velue problem and specification of the element-level residuals and tangents. The

continuum framework, along with the constitutive model, is implemented in the [1]

as a user element (UEL) subroutine.
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4.7.1 Weak Forms

Based on the strong forms (4.77), (4.78) and (4.80), we obtain the relations more

suitable for the numerical implementation, known as the weak forms. It is important

to note that numerical solving the balance of forces and moments (4.77) and

the balance of solvent content (4.78) we employ the standard Galerkin approach.

However, due to the well known numerical difficulties concerning the first order

hyperbolic PDEs, for the radiative transfer (4.80) we employ the stream upwind

Petrov-Galerkin method (SUPG) (cf., e.g., [51]). The weak forms are as follows.

� Balance of forces and moments: First, we introduce the weighting field w1,

such that it vanishes on Su. Further, we apply the divergence theorem, and in

the absence of body forces and inertial effects, we obtain the weak form of the

boundary-value problem

∫

Bt

(

T :
∂w1

∂x

)

dv =

∫

St

(
w1 · t̆

)
da , . (4.82)

� Balance of solvent content: Next to obtain the weak form for the balance of

solvent content, we introduce a weighting field w2, such that it vanishes on Sµ.

After applying the divergence theorem, it can be rewritten in the form

∫

Bt

(

w2φ̇

JΩφ2

)

dv =

∫

Bt

(

j · ∂w2

∂x

)

dv +

∫

Sω

(

w2j̆
)

da . (4.83)

� Radiative transfer: Lastly, we develop the weak form for the radiative transfer

∫

Bt

w̄3 (d · gradI + ΛI) dv = 0 . (4.84)

As previously mentioned, for numerical solving of first order hyperbolic PDE

(4.80), we utilize the SUPG method, with the scalar weighting function

w̄3 = w3 + κd · gradw3 , (4.85)
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where w3 is the weighting function used in the standard Galerkin approach, and

κ is the stabilization parameter.

Element-Level Residuals Following the previous work by our group (cf., e.g., [18,

51, 9]), the body in its current configuration Bt is approximated using finite elements,

such that Bt = ∪Be
t . Further, the nodal degrees of freedom (DOF), displacement u,

chemical potential µ, and the light intensity I0, are interpolated inside each element

employing the shape functions

u =
∑

uANA , µ =
∑

µANA and I =
∑

IANA , (4.86)

where the index A = 1, 2, ... denotes the nodes of the element, uA and µA are the

nodal values of the displacement and the chemical potential, respectively, and NA is

the shape function.

First, following the standard Galerkin approach, in which the weighting

functions w1 and w2 are interpolated using the same shape functions,

w1 =
∑

wA
1N

A and w2 =
∑

wA
2 N

A , (4.87)

and based on the weak forms (4.82) and (4.83), we obtain the element-level residual

for the displacement and the chemical potential

(Ru)
A = −

∫

Be
t

(

T
∂NA

∂x

)

dv +

∫

Se

t

(
NAt̆

)
da ,

(Rµ)
A =

∫

Be
t

(

NAφ̇

JΩφ2

)

dv +

∫

Be
t

(

j · ∂N
A

∂x

)

dv +

∫

Se

j

(

NAj̆
)

da .

(4.88)

Next, employing the SUPG approach, the weighting field w̄3 is interpolated as

w̄3 =
∑(

wA
3 N

A + wA
3 κdgradN

A
)
. (4.89)
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Based on the weak form for the radiative transfer (4.84), the element-level residual

for the light intensity takes the form

(RI)
A =

∫

Be
t

NA (d · gradI + ΛI) dv +

∫

Be
t

κ
(
d · gradNA

)
(dgradI + ΛI) dv . (4.90)

Element-Level Tangents In addition to the residuals, we provide the element-

level tangents for the Newton-Raphson iterative solver. In case of the photo-chemo-

mechanically coupled problem, we define nine tangents as follows.

KAB
uiuk

= −∂R
A
ui

∂uBk
, KAB

uiµ
= −∂R

A
ui

∂µB
, KAB

uiI
= −∂R

A
ui

∂IB
,

KAB
µuk

= −
∂RA

µ

∂uBk
, KAB

µµ = −
∂RA

µ

∂µB
, KAB

µI = −
∂RA

µ

∂IB
,

KAB
Iuk

= −∂R
A
I

∂uBk
, KAB

Iµ = −∂R
A
I

∂µB
, KAB

II = −∂R
A
I

∂IB
.

(4.91)

Based on the displacement residual in (4.88), we obtain

KAB
uiuk

=

∫

Be
t

∂NA

∂xj
Aijkl

∂NB

∂xl
dv −

∫

Se
t

NANB ∂t̆

∂uk
da ,

KAB
uiµ

=

∫

Be

∂NA

∂xj

(∂Tij
∂φ

∂φ

∂µ

)

NBdv .

(4.92)

Next, taking the derivatives of the chemical potential residual in the form presented

in (4.88), the corresponding tangents are given as

KAB
µuk

= −
∫

Be

∂NA

∂xi

(

Mil
∂µ

∂xk

)∂NB

∂xl
dv ,

KAB
µµ = −

∫

Be

NANB

JΩφ2

(

2
φ̇

φ

∂φ

∂µ
− ∂φ̇

∂µ

)

dv −
∫

Be

(∂ji
∂µ

∂NA

∂xi

)

dv −
∫

Se

j

(

NANB ∂j̆

∂µ

)

da .

(4.93)
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Finally, based on (4.90), we obtain the following set of tangents.

KAB
Iui

= −
∫

Be

NA

[(

di
∂I

∂xj
+ ΛI

)

δkl − dl
∂I

∂xk
+

∂Λ

∂Fkn
FlnI

]
∂NB

∂xl
dv

−
∫

Be

τ

(

di
∂NA

∂xi

)[(

di
∂I

∂xj
+ ΛI

)

δkl − dl
∂I

∂xk
+

∂Λ

∂Fkn

FlnI

]

dv ,

KAB
II = −

∫

Be

NA

(

di
∂NB

∂xi
+ ΛNB + I

∂Λ

∂I
NB

)

dv

−
∫

Be

τ

(

di
∂NA

∂xi

)(

di
∂NB

∂xi
+ ΛNB + I

∂Λ

∂I
NB

)

dv .

(4.94)

It is worth noting the off-diagonal termsKµI andKIµ have not been implemented here,

since they only slightly contribute to the rate of convergence of the Newton-Raphson

solver.

4.8 Numerical Simulations

4.8.1 Simulations Using Spirobenzopyran for Photoactivation

Material Point Level Simulations of Spirobenzopyran Isomerization Under

Free Swelling Conditions In this section, we showcase the capabilities of our

model to simulate the kinetics of photochemical reactions at a material point,

along with its influence on the degree of swelling under free swelling conditions, for

spirobenzopyran isomerization. The model is implemented in the form of a MATLAB

code, and involves an explicit time integration for photochemical reactions.

Here, we employ our model to simulate the change in the amount of swelling

due to irradiation, and calibrate the form for polymer-solvent interaction (4.64).

In addition to our model, we utilize the MATLAB built-in least squares function

lsqnonlin to determine the parameters χL, χH , ∆, and χT .

Experimental data The experimental data obtained by light irradiation of

spirobenzopyran infused hydrogel from [81] is used to calibrate the model. The

samples are irradiated with a light of intensity I = 88.9W/m2 over 45 minutes, and
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during this period samples lost water and underwent shrinking. Next, after removing

the light, the samples reswell, and are observed over the next 16 hours.

Here, we use the experimentally determined swelling stretch during irradiation,

as well as the swelling stretch after removing the light source, shown in Figure 4.3a.

Next, assuming chemical equilibrium µ = µ0, and free swelling without mechanically

applied deformation, the constitutive relation for chemical potential (4.69) yields

Rϑ
(
ln
(
1− (λs)−3)+ (λs)−3 + χ (λs)−6) = 0 . (4.95)

We then use (4.95) along with the experimentally measured swelling stretch to

determine values of χ for all times in this experiment, and that data is shown in

Figure 4.3b.

Simulation parameters To simulate the isomerization under free swelling conditions,

initially the concentration of hydrophilic open-ring isomers is c(A)(xR, t = 0) = 69.95

mol/m3, and we consider the concentration of hydrophobic closed-ring isomers

c(B)(xR, t = 0) = 0 mol/m3, and therefore the initial extent of the photochemical

reaction ξ(xR, t = 0) = 0. During the time interval 0 < t < 45 min, the samples

are being irradiated with the light intensity I = 88.9 W/m2. At t = 45 min the

light source is removed, and thus I = 0. And for the entire time 0 < t < 45min

the photochemical reaction takes place and ξ̇ > 0. The parameters in use for the

photochemical reaction kinetics in (4.76) are shown in Table 4.1.

Results The swelling stretch and the polymer-solvent interaction parameter obtained

through model calibration are plotted on top of the experimental data in Figure

4.3a and 4.3b, respectively. The relative concentration of species and the extent

of photochemical reaction are shown in Figures 4.3c and 4.3d, respectively. The

calibrated polymer-solvent interaction parameters, along with the calibrated reaction

coefficients, are shown in Table 4.2. As suggested by the experimental evidence,
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Table 4.1 Photochemical Reaction Parameters.

NA 6.02·1023 mol−1

c 2·108 m/s

h 6.63·10−34 J·s

ν 1.11·1015 Hz

n 0

H 3.39·108 J/m3

when irradiated, the spirobenzopyran chromophores undergo a transition from the

open-ring to the closed-ring configuration. Our model successfully captured this

process, and we notice the decrease in c
(A)
R during the irradiation, accompanied by

the increase in c
(B)
R . The simulated change in concentration of chemical species

affects the polymer-solvent interaction, similar as in the experiments. Finally, the

swelling stretch simulated by the calibrated model stands in a good agreement with

the experimental observations.

Table 4.2 Calibrated Reaction Parameters, Along with the Polymer-Solvent
Interaction Parameters for Photoisomerization of Spirobenzopyran Infused Hydrogel.

kf 3.75 L3·J−1·mol−2·s−1

kb 6 ·10−5 L2·J−1·mol−1·m−1

χL 0.78

χH 6.64

ξT 0.99

∆ 0.37

Representative Simulation of a Photo-Activated Crawler With the constituive

model calibrated for spirobenzopyram, we now move to showcase the usefulness of

our model to simulate the motion of a photo-activated crawler developed by [81].
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Figure 4.3 Calibration for spirobenzopyran photoisomerization. a) Experimentally
determined swelling stretch from [81] with the calibrated model plotted on top of
the experimental data. b) Experimentally based values for the polymer-solvent
interaction parameter, along with the calibrated model. c) Relative concentration

of the chemical species c(β)/c
(A)
0 . d) Extent of the photochemical reaction. In all

cases, the red line marks the end of irradiation at t = 45 min on all four plots.

104



Design and operation In their recent study, [81] developed a 16 mm long and 0.5

mm thick crawler, with geometry shown in Figure 4.5. The device is manufactured

from a hydrogel containing spiropyran photo-sensitive groups; and the operation of

the photo-activated crawler consists of two distinct steps.

� Irradiation of the bottom surface for 30 minutes, with a light intensity of I =

88.9W/m2. During this time period, the bottom surface begins to shrink, and

the crawler undergoes bending due to the difference in the degree of swelling

between the top and bottom surface.

� The light source is removed, and the motion of the crawler is observed over 10

hours. In the absence of light, the crawler undergoes reswelling, and during this

time period the crawler flattens.

During the experiment, the crawler is placed on a ratcheted floor and utilizes the

floor geometry to achieve the desired motion. The crawler motion is driven by the

change in spacing between the crawler legs, which is coupled with the ratcheted floor

to produce a one way motion.

Numerical simulation The finite element mesh consists of 104 three-dimensional

user-defined elements applied on one quarter of the crawler geometry, with the

boundary conditions shown in Figure 4.4. Symmetry boundary conditions are applied

on the ”1-3” and ”2-3” planes denoted with dashed lines, and the displacement of

node ”N” is constrained along the ”3” direction. As in the experiments, the crawler is

swollen to equilibrium prior to light irradiation. It is then irradiated from the bottom

over 30 minutes, with the light direction vector d = 1e3 and intensity I = 88.9 W/m2.

Lastly, the light is removed (I = 0 throughout the mesh) and the crawler is kept in

dark for 10 hours.

In this simulation, we make use of the photochemical parameters and polymer-

solvent interaction parameters obtained through calibration in Subsection 4.8.1.
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Figure 4.4 Crawler geometry ([81]), along with the finite element mesh and
boundary conditions. The mesh is applied on one quarter of the crawler geometry,
with the symmetry planes ”1-3” and ”2-3” denoted with dashed lines. Node ”N” is
located at the tip of the crawler leg and its displacement is constrained along the ”3”
direction. Light is applied along the ”3” direction.

While the photochemical behavior has been thoroughly investigated, along with the

small-deformation mechanical response, the large-deformation mechanical behavior is

yet to be characterized. Therefore, based on the dynamic mechanical analysis (DMA)

data found in [81] we choose the initial shear modulus of the same order of magnitude

as the storage modulus G0 = 10 kPa, along with the locking stretch λL = 10, which is

very reasonable for this class of material. It is also worth noting the friction between

the floor and the crawler legs is undetermined, and thus we neglect the ratcheted

floor geometry and focus only on the overall body motion caused by the nonuniform

drying and reswelling.

Results Numerical simulation results have shown the photo-activated crawler

undergoing bending motion during 30 minutes of light irradiation. During this

time period, the spacing between the crawler legs decreases from the initial 15.5

mm to approximately 8.52 mm, as in Figure 4.4a. A similar motion has also been

experimentally observed in the operation of a photo-activated crawler. Further, after

10 hours in the absence of light, the crawler flattens as shown in the Figure 4.5b. The

simulation have shown the spacing between the legs is restored to approximately 15.5
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Figure 4.5 Numerical simulation of a crawler developed by [81] after a) 30 minutes
of light iraddiation and b) 10 hours in the basence of light. During the light
irradiation, the crawler bends and the spacing between the legs decreases from 15.5
mm to approximately 8.52 mm, similar to the one observed in the experiments. After
10 hours in the absence of light, the crawler flattens, and the spacing between the
legs almost completely returns to the initial 15.5 mm. The contour represents the
light intensity.

mm, as in the experiments, which produces a motion very similar to the experiments

[81].

4.8.2 Simulations Using Azobenzene for Photoactivation

4.8.3 Material Point Level Simulation of Azobenzene Isomerization

Under Free Swelling Conditions

In this section we employ the same approach as in Subsection 4.8.1 to simulate

the photochemical reaction kinetics and calibrate for the polymer-solvent interaction

parameters.

Experiments The experimental data from [118] is used for model calibration, and

the obtained swelling stretch is shown in Figure 4.6a. The samples used in this set of

experiments are 200 µm in diameter slide-rings containing 4.8 mol/m3 of Azobenzene

([121]). The samples are first irradiated with a visible light for approximately 1 hour,

undergoing shrinking. Subsequently, samples are irradiated with a UV light over 1

hour, and during this period the samples reswell. Further, spectroscopy measurements
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determined the level of isomerization reaction around 80-90%, corresponding to an

extent of the photochemical reaction similarly around ξ = 0.8− 0.9.

It is important to note when reswelling reaches equilibrium (after approximately

15 minutes), the samples undergo gradual shrinking. This phenomenon is common

in slide-rings, and the reader is referred to [118]. In this work, we neglect this

phenomena, and strictly focus attention on the reswelling induced by UV irradiation.

Simulation parameters The isomerization of the azobenzene is simulated under

free swelling conditions. The initial concentration of cis isomers is c(A)(xR, t = 0) =

4.8 mol/m3 as in the experiments; and the initial concentration of trans isomers is

c(B)(xR, t = 0) = 0 mol/m3, leading to the initial extent of the photochemical reaction

ξ(xR, t = 0) = 0. Since the light intensity is not specified, we take I = 100 W/m2

throughout the simulation. As mentioned in Subsection 4.5.8, we take n = 1 in

this case to account tor the backward reaction rate that is only active due to UV

irradiation. The remaining photochemical reaction parameters used in simulation are

provided in Table 4.1.

Results In Figure 4.6a and 4.6b we show the swelling stretch and the polymer-

solvent interaction parameter, respectively, with the calibrated model plotted on top

of the experimental data. Figure 4.6c shows the relative concentration of chemical

species. The extent of the photochemical reaction is presented in Figure 4.6d. The

calibrated values for the forward and backward reaction coefficients, as well as the

polymer-solvent interaction parameters, are shown in Table 4.3. The simulation

successfully captures the cis-trans isomerization taking place when irradiated with

a visible light, and also the trans-cis isomerization when irradiated with a UV light.

However, the maximum extent of reaction ξmax = 0.69 is slightly lower then the

one observed in spectroscopy measurements. Finally, the calibrated polymer-solvent
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interaction parameter is in good agreement with the experimental data, as well as

the swelling stretch predicted by the calibrated model.

4.8.4 Representative Simulation of a Photo-Responsive Actuator

In this section we utilize our calibrated model, along with the finite element code to

simulate the operation of a photo-responsive actuator.

Design and operation Photo-responsive actuators are commonly used in literature

to illustrate the capabilities and applications of photo-sensitive gels (cf., e.g.,

[125, 79]). These proof of concept devices are typically manufactured in the form

of a sheet, clamped on one side, and irradiated from one light source, much like

cantilever in Figure 4.7. The operation of these devices usually consists of two steps.

� Irradiation with visible light. During this step, the irradiated side shrinks, and

the actuator undergoes a bending motion.

� Irradiataion with UV light. During this step the irradiated side reswells and

the actuator moves back towards the initial configuration.

Numerical simulation We model the actuator as a 10 mm by 45 mm rectangular

sheet, with a 2 mm thickness. The finite element mesh consists of 69 three-dimensional

user elements applied on one half of the actuator geometry. The device is held

on the right side, and the boundary conditions are shown in Figure 4.7, with the

”2-3”symmetry plane denoted with a dashed line. The light is prescribed with an

intensity I = 100 W/m2 and a direction vector d = −e3. First, the actuator is

irradiated with a visible light over 60 seconds. Next, the device is irradiated with

a UV light over 1400 seconds. The polymer-solvent interaction parameters, as well

as the photochemical reaction coefficients, are obtained through model calibration in
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Figure 4.6 Calibration for azobenzene isomerization. a) Experimentally determined
swelling stretch from [118]. Calibrated model is plotted on top of the experimental
data. b) Experimentally based values for the polymer-solvent mixing parameter,
along with the calibrated model. c) Relative concentration of chemical species

c(β)/c
(A)
0 . d) Extent of the photochemical reaction. Red line denotes the end of

irradiation with a visible light and the beginning of UV irradiation.
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Figure 4.7 Actuator geometry, along with the finite element mesh and boundary
conditions used to simulate its operation. The mesh is applied on one half of
the geometry, with the symmetry plane ”1-3” denoted with dashed lines. The
displacement of the top surface is constrained along the ”1” direction, and the
displacement of node ”N” is fully constrained. Light is applied along the ”3” direction.

Subsection 4.8.3 and shown in Table 4.3. We take the mechanical material parameters

to be the same as in Subsection 4.8.1, i.e. G0 = 1 MPa and λL = 10.

Results The forward reaction takes place during 60 seconds of irradiation with

a visible light. During this time period due to uneven shrinking between the top

and bottom surface, the photo-responsive actuator undergoes a bending motion.

The deformed configuration is shown in Figure 4.8a. Further, after 1400 seconds

of UV irradiation the photo-actuator reswells and almost completely returns to the

initial configuration, as in Figure 4.8b. Similar response has been observed in the

experiments, and our numerical simulation successfully captures the operation of a

photo-responsive actuator.

4.9 Concluding Remarks

We have developed a multiphysics continuum-level framework, along with the

constitutive model which takes into account the photo-chemo-mechanically coupled

behavior of polymeric gels. The developed model is aimed to capture the experi-

mentally observed irradiation effects on the amount of swelling of polymeric gels.

The mechanical response of the polymeric gel is accounted for using the non-

Gaussian statistical mechanics based model. To account for the mixing between the
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Figure 4.8 Numerical simulation of a photo-responsive actuator. a) Results are
obtained after 60 seconds of irradiation with a visible light showing the device
undergoing bending motion due to the difference in the degree of swelling between the
top and bottom surfaces. b) Results after 1400 seconds under UV light irradiation.
The actuator almost completely returns to the initial shape. In both, the contour
represents the light intensity.

polymeric network and the solvent we employ the Flory-Huggins model. To model

the kinetics of photochemical reactions we adopt a form which takes into account the

light intensity, the concentration of chemical species and the chemical affinity.

The model is calibrated against the experimental data found in literature, and

is in good agreement with the experimental observations. Further, the continuum

framework, along with the constitutive model, is numerically implemented in the finite

element software package Abaqus/Standard by writing a UEL subroutine. Finally,

the numerical implementation allowed for reliable simulation of photo-sensitive gel

response for use in a crawler and actuator device.
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Table 4.3 Calibrated Reaction Parameters, Along with the Polymer-Solvent
Interaction Parameters for Photoisomerization of Azobenzene Infused Hydrogel.

kf 1.46 L3·J−1·mol−2·s−1

kb 2.51 ·10−5 L2·J−1·mol−1·m−1

χL 0.56

χH 5.30

ξT 0.97

∆ 0.70
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APPENDIX A

VERIFICATION OF THE DIC PROCEDURE

To verify the validity of the DIC procedure applied for the testing inside the cylindrical

fluid bath, we perform a set of mechanical tests both with and without the fluid

bath. First, virgin samples without the fluid bath are tested using the same setup

described in Subsection 2.3.1. Another set of virgin samples (without swelling in

solvent) are tested using the fluid bath full of water, and tested using the same

procedure. In all cases a prescribed displacement of u = 20.32mm at a rate of

u̇ = 20.32× 10−4mm/s is prescribed to the testing machine, which corresponds to a

mechanical stretch of λm = 2 at a stretch rate of 10−4s−1. The results presented in

Figure A.1 clearly show only a very small difference between the DIC measurements

obtained with and without the cylindrical fluid bath, with a maximum error in the

measured mechanical stretch of 0.025, which is 1.25%. Therefore, we freely use DIC

to measure the deformation of samples with the fluid bath.
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Figure A.1 Comparison of the the DIC measured mechanical stretch λm on
unswollen samples as a function of the mechanical displacement prescribed to the
testing machine with and without the fluid bath.
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APPENDIX B

BUOYANCY CALIBRATION

To account for the effect of buoyancy due to the submerged grip, load train, and

sample, we perform a calibration test to determine the change in force per unit depth

(N/m) due to buoyancy. This calibration may then be applied to the measured force

signal to remove the effect of buoyancy so our reported stress is only what is due

to the material response. To perform the calibration, we keep the sample attached

only to the top grip, and do not attach the sample to the bottom grip. The sample,

along with the grip and load train is fully submerged inside the fluid bath, with the

load cell recording the force due to buoyancy at various depths. Since the calibration

depends on the water level, care must be taken to ensure the same fill level is used in

the experiments as was used in the calibration.

Since the grips and the load train used for a 5-pound load cell are not the same

as the one in use for the 100 gram load cell, the above mentioned procedure is applied

for each of them separately. The measured calibration factor is 1.11N/m for the 5

pound load cell setup, and 0.64N/m for the 100 gram load cell setup.
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APPENDIX C

FINITE-ELEMENT VERIFICATION

The UEL is verified by comparing analytically tractable solutions against our

numerical simulations. Due to the complexity of the fully coupled-scheme in this work,

the verifications are done separately on mechanical and diffusion part, respectively.

Here, we put our emphasis on the mechanical verification for the inclusion of fibers

since the details verifying the diffusion aspects of the UEL have been previously

reported in [18].

For the mechanical verification, a simple shear motion is prescribed on a cubic

gel embedded with one fiber family with a referential direction of aR, the schematic

is shown in Figure C.1a. According to [50], the corresponding deformation is given

by

[

F

]

=









1 γ 0

0 1 0

0 0 1









, (C.1)

where γ = tan θ denotes the amount of shear. The referential fiber’s orientation may

be written in the form

aR = [a1, a2, 0]
⊤, (C.2)

with a1 and a2 denote components in the x1 and x2 directions, respectively. Also,

to make aR a unit vector, the constraint of
√

a21 + a22 = 1 has to be fulfilled. After

taking the tensor product operation of aR, the structure tensor AR is given by

[

AR

]

=









a21 a1a2 0

a1a2 a22 0

0 0 0









. (C.3)

117



Next, two further assumptions are made: 1) The complete incompressibility (i.e.,

J = 1) is assumed for the analytical solution, and 2) no fluid is present (i.e. φ = 1).

Under these assumptions, the Cauchy stress in (3.41) is now given by

T = (1− fR)(GB− P1) + 2fRE(I4 − 1)(FARF
⊤) (C.4)

with

G =
1

3
G0

(
3− (λ̄/λL)

2

1− (λ̄/λL)2

)

and

I4 = a21 + 2a1a2γ + (1 + γ2)a22.







(C.5)

Note that P in (C.4) denotes a constitutively indeterminate pressure, which is

introduced to satisfy the incompressibility constraint.

For material parameters, we again use the same parameters that are shown

in Table 3.1 and a volume fraction fR = 0.5 for the fibers. On the numerical side,

to approximate a nearly incompressible material we take K = 103G0. Since we are

interested in verifying the mechanical response in the presence of fibers, we take

three independent cases, aR = [1, 0, 0]⊤, aR = [1/
√
2, 1/

√
2, 0]⊤, and aR = [0, 1, 0]⊤, to

investigate different initial fiber orientations.

Figure C.1 compares the analytical with a single element (U3D8) simulation for

the shear stress and normal stress difference given by

T12 = (1− fR)Gγ + 2fRE(I4 − 1)(a1a2 + a22γ) (C.6)

and,

T11 − T33 = (1− fR)Gγ
2 + 2fRE(I4 − 1)(a21 + 2a1a2γ + a22γ

2) (C.7)

respectively, against the numerical solutions. We note that the stress is normalized by

the initial shear modulus G0, and the cases aR = [1, 0, 0]⊤, aR = [1/
√
2, 1/

√
2, 0]⊤, and

aR = [0, 1, 0]⊤, are shown in Figure C.1b, c and d, respectively. The solid and dashed
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lines represent the analytical solutions, and the markers the numerically calculated

results. It is worth mentioning that the case with the referential fiber orientation

of aR = [1, 0, 0]⊤ does not involve stretching along the fiber direction, which makes

the model exhibit a pure hyperelastic response. Finally, the good agreement between

analytical and numerical results indicate the mechanical portion including fibers of

our finite element implementation is verified.
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Figure C.1 Comparison between analytical and numerical solutions for simple
shear deformation. a) Schematic of a cubic gel with a single fiber family embedded
with referential orientation aR undergoing simple shear deformation. The normalized
stress T12/G0 and normal stress difference (T11 − T33)/G0 is plotted against the
amount of shear γ = tan θ for different fiber orientations b) aR = [1, 0, 0]⊤, c)
aR = [1/

√
2, 1/

√
2, 0]⊤, and d) aR = [0, 1, 0]⊤.
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