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ABSTRACT

DANCES AND ESCAPE OF THE VORTEX QUARTET

by
Brandon M. Behring

This dissertation considers the linear stability of a one-parameter family of periodic

solutions of the four-vortex problem known as ‘leapfrogging’ orbits. These solutions,

which consist of two pairs of identical yet oppositely-signed vortices, were known to W.

Gröbli (1877) and A. E. H. Love (1883) and can be parameterized by a dimensionless

parameter α related to the geometry of the initial configuration. Simulations by

Acheson and numerical Floquet analysis by Tophøj and Aref both indicate, to many

digits, that the bifurcation occurs when 1/α = φ2, where φ is the golden ratio.

Acheson observed that, after an initial period of aperiodic leapfrogging, the

perturbed solutions could transition into one of two behaviors: a bounded orbit he

called ‘walkabout ’ and an unbounded orbit he called ‘disintegration.’ In the walkabout

orbit, two like-signed vortices couple together, and the motion resembles a three-

vortex system. In disintegration, four vortices separate into two pairs—each pair

consisting one negative and one positive vortex—that escape to infinity along two

transverse rays.

Two goals are addressed in this dissertation:

1. Goal I To rigorously demonstrate, without numerics, the exact algebraic value
for which the Hamiltonian pitchfork bifurcation occurs.

2. Goal II Understand how, as the parameter, α is decreased, the dynamics
transitions between the various regimes and escape become first possible and
then almost inevitable, as well as identifying the structures in phase-space that
are responsible for the transition between these regimes.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Point-vortex Motion

Point-vortex motion arises in the study of concentrated vorticity in an ideal,

incompressible fluid described by Euler’s equations. The two-dimensional Euler

equations of fluid mechanics, a partial differential equation (PDE) system, support a

solution in which the vorticity is concentrated at a single point. Helmholtz derived

a system of ordinary differential equations (ODEs) that describe the motion of a set

of interacting vortices that behave as discrete particles, which approximates the fluid

motion in the case that the vorticity is concentrated in very small regions [59]. This

system of equations has continued to provide exciting questions for over 150 years.

Kirchhoff formulated these equations as a Hamiltonian system [7, 32]. This

Hamiltonian formulation has allowed researchers to apply to this system an extensive

repertoire of methods developed in the study of the gravitational N -body problem.

In this paper, we consider a configuration of vortices with vanishing total circulation,

which has no analog in the N -body problem. As such, many techniques developed for

the gravitational problem do not apply to the net-zero circulation case of the N -vortex

problem. This case of the N -vortex problem is relatively less studied, despite its

physical importance and mathematical richness, Ref. [6, 8, 21].

Bose-Einstein condensates (BEC), a quantum state of matter that exists at

ultra-low temperatures, have provided an experimental testbed in which point vortices

can be studied in the laboratory. These were first observed experimentally in Ref. [5]

in 1995, in work that led to the 2001 Nobel Prize in Physics for Cornell and Wieman,

along with Ketterle. The same group experimentally demonstrated concentrated

vortices in BECs [39]. This new experimental model has led in the last 20 years
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to a new flowering of interest in point vortices. In this experimental system, the

BEC is confined using a strong magnetic field that introduces additional terms into

the equations of motion. Ref. [43], for example, shows nicely how experiment and

mathematical theory have been used together to explore these nonlinear phenomena.

1.2 Introduction to the Leapfrogging Trajectory

The leapfrogging orbits are a remarkable one-parameter family of relative periodic

orbits known as ‘leapfrogging orbits,’ described first by Gröbli in 1877 [27] and

independently by Love (1883) [34]. It can be considered as a simple two-dimensional

model of the phenomenon of two smoke rings passing through each other periodically,

first discussed by Helmholtz in 1858 [14, 59]. The four vortices are analogous to the

four intersections that the two vortex rings made with a plane containing the axis

of propagation. Recall that a relative periodic orbit is defined as an orbit that is

periodic modulo a group orbit of a symmetry of the system, in this case, translation.

Another physical model that is simple to reproduce is the half-ring vortex

phenomenon popularized in a series of internet videos produced by “The Physics

Girl” Dianna Cowern [19] for PBS Digital Studies, see Figure 1.1. By dragging a

dinner plate along the surface of a swimming pool twice, she creates a pair of vortex

half-rings in the water, which she visualizes by pouring dye into the vortices where

the rings meet the pool’s surface. These videos provide a beautiful and tangible

visualization of the motions of vortex pairs, where the leapfrogging motion can be

observed.

The leapfrogging solution to the point-vortex system of equations is built from

simple components. As shown in Section 3.3, two vortices of equal and opposite-signed

vorticity move in parallel at a uniform speed with their common velocity inversely

proportional to the distance between them. Two vortices of equal and like-signed
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Figure 1.1 Clockwise from top left: (i) Dianna Cowern [19] drags a plate forward
into the pool and gently lifts it out at an angle. (ii) The vortex half-ring moves slowly
across the pool and is visible as two dimples on the surface of the water rotating in
opposite directions. (iii) Schematic showing the structure of the vortex half-ring.
(iv) Dianna Cowern puts food dye into the vortex half-ring to make the vortex tube
connecting the two surface dimples visible.

vorticity, by contrast, trace a circular path with a constant rotation rate proportional

to the inverse square of the distance between them, see Figure 1.2.

Remark 1.2.1. To reduce clutter, we have attempted to create a consistent graphical

language, with the trajectories of positive vortices colored red and those of negative

vortices colored blue. This language carries over in a consistent way to the reduced

systems introduced later. We thus eliminate legends in most subsequent figures.

In this dissertation, we consider the two pairs of identical point vortices, which

we call the vortex quartet. In particular, we consider an initial configuration of the

vortex quartet where the vortices arranged collinearly and symmetrically at t = 0,

with vortices of strength positive one at r+
1 and r+

2 and vortices of strength negative

one at r−1 and r−2 ; see Figure 1.3. Let the ‘breadths’ of the pairs denote the distances

d1 =
∥∥r+

1 − r−1
∥∥ and d2 =

∥∥r+
2 − r−2

∥∥ > d1 at t = 0. This symmetric collinear
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Figure 1.2 (a) Opposite-signed vortices move in parallel along straight lines.
(b) Like-signed vortices move along a circular path.

state depends, after a scaling, on only one dimensionless parameter, the ratio of the

breadths of the pairs, α = d1/d2.

With reference to Figure 1.3, the two vortices r+
2 and r−2 starting closer to the

center of symmetry initially have larger rightward velocity than the outer pair, r+
1

and r−1 . As the ‘inner pair’ propagates, the distance between them increases, causing

them to slow down. Simultaneously, the distance between the ‘outer pair’ decreases,

causing them to speed up. After half a period, the inner and outer pairs’ identities

are interchanged, and the process repeats. This relative periodic motion exists only

for a finite range of breadth-ratios α0 < α < 1 where α0 = 3− 2
√

2 ≈ 0.171573.

Figure 1.3 The curves show trajectories from a numerically-generated leapfrogging
solution, with initial particle positions and separations labeled. Motion is from left
to right with particle positions marked every half-period.
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1.3 Stability of the Leapfrogging Orbit

As α→ 1−, it is useful to think of the system as composed of two pairs of like-signed

vortices. In this limit, the separation within each pair is small relative to the distance

between the two vortex pairs. In this regime, each like-signed pair ‘coalesces’ into a

vortex of double the vorticity, when viewed from a distance, and the motion resembles

that of two oppositely-spinning vortices translating along parallel lines. As α is

decreased, the interaction between the two pairs is more pronounced.

The parameter α determines the stability of the motion. Direct numerical

simulations by Acheson suggest that the leapfrogging solution is stable only for

α > α2 = φ−2 = 3−
√

5
2
≈ 0.38, where φ is the golden ratio [2]. When the leapfrogging

orbit is merely weakly unstable, i.e., for α just below αc, nearby orbits remain close

to the leapfrogging orbit for all time; however, the motion is now chaotic, and we

observe aperiodic leapfrogging.

Acheson observed that, after an initial period of aperiodic leapfrogging, the

perturbed solutions could transition into one of two behaviors: a bounded orbit he

called ‘walkabout ’ and an unbounded orbit he called ‘disintegration.’ In the walkabout

orbit, two like-signed vortices couple together, and the motion resembles a three-

vortex system. In disintegration, four vortices separate into two pairs—each pair

consisting one negative and one positive vortex—that escape to infinity along two

transverse rays, see Figure 1.4.

Tophøj and Aref, having noticed similar behavior in the chaotic scattering

of identical point vortices [54], studied the stability problem further [55]. They

examined linearized perturbations about the periodic orbit, thereby reducing the

stability question to a Floquet problem. They confirm Acheson’s value of α2 via

the numerical solution of this Floquet problem. However, their attempt at a more

mathematical derivation of the fortuitous value of α2 depends on an ad hoc argument

based on ‘freezing’ the time-dependent coefficients at their value at t = 0, a method
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that has been known sometimes to produce incorrect results [38,40]. They note from

numerical simulations that there does not exist a value of α that precisely separates

walkabout from disintegration behavior. Instead, both can occur at the same value

of α, depending on the form of the perturbation.

More recently, Whitchurch et al. [61] examined the system through the extensive

use of numerically calculated Poincaré surfaces of section. They observe that the

bifurcation at α = α2 is of Hamiltonian pitchfork type. They also identify the third

type of breakup behavior in addition to walkabout and disintegration, which they

call braiding, see Figure 1.4(b). The existence of such a motion is implicit in the

earlier three-vortex work of Rott [51] and the chaotic scattering work of Tophøj and

Aref [54].

Figure 1.4 Motion in physical space. (a) A trajectory featuring several bouts
of walkabout motion including one extended period of three consecutive walkabout
‘dances’. (b) A trajectory featuring first walkabout orbits and later braiding orbits, as
the two negative (blue) vortices take turns orbiting the tightly bound pair of positive
(red) vortices.
(c) A leapfrogging motion that transitions to walkabout motion before disintegrating.
(d) A leapfrogging motion that disintegrates without a walkabout stage.
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1.4 Goals

We have two goals in this dissertation:

1. Goal I To demonstrate, without numerics, the exact algebraic value for which
the Hamiltonian pitchfork bifurcation occurs.

2. Goal II Understand how, as the parameter, α is decreased, the dynamics
transitions between the various regimes and escape becomes first possible and
then almost inevitable, as well as identifying the structures in phase-space that
are responsible for the transition between these regimes.

In Chapter 2, we introduce the mathematical concepts and techniques we use

throughout this dissertation. In Sections 2.1, 2.2, and 2.3 we review dynamical

systems, Hamiltonian dynamics, and the stability of periodic orbits. In Chapter 3,

in Sections 3.1, 3.2, and 3.3, we introduce the point-vortex model, its Hamiltonian

framework and present a solution to the two-vortex. In Section 4, we present a novel

reduction of the three-vortex problem zero and for the vortex quartet.

After reviewing the foundational concepts of Hamiltonian dynamical systems

and the N -vortex problem, we address Goal I in Chapter 5. We first reduce and

transform the linear stability problem to solving an explicit linear Hamiltonian system

of differential equations with periodic coefficients. We then address Goal I and provide

three distinct approaches:

1. Transforming the time-periodic linear system into one with constant coefficients
by successive Lie transforms and averaging.

2. Using the method of harmonic balance to search for a value of our parameter in
which there exists a periodic solution, indicating that the Floquet multipliers
collide on the real axis.

3. Using the conjectured bifurcation value as an ansatz and explicitly finding a
periodic solution for that value.

In order to address Goal II, in Section 4.3, we present a new reduction of the four-

vortex problem into ‘dimer ’ coordinates which are used to understand the nonlinear
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transitions. In Chapter 6, we provide a comprehensive phenomenology of the vortex

quartet, and in Chapter 7 we utilize this knowledge to understand the transitions of

the perturbed leapfrogging orbit as we vary the energy level.
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CHAPTER 2

SUMMARY OF MATHEMATICAL TOOLS AND TECHNIQUES

In this chapter, we summarize the mathematical techniques and definitions used

throughout this dissertation. This material can be read as needed. We begin

in Section 2.1 and Section 2.2 by reviewing the basic concepts and definitions of

dynamical systems in general and Hamiltonian systems in particular. This section

also serves as an opportunity to introduce terminology, notation, and conventions. In

Section 2.3, we review the concepts used in this dissertation regarding the stability of

periodic orbits: the Poincaré map, linearized perturbation equations, Floquet theory,

and the Hill’s determinant. These concepts are used in Chapter 5.

In Section 2.4, we review perturbation techniques based on the concept of Lie

transforms that are used in Chapter 5 and in Appendix C. In Section 2.5, we discuss

the nature of chaos in Hamiltonian systems and provide a brief discussion of the

relevant ideas of KAM theory needed to interpret the results of Chapters 6 and 7.

We conclude this chapter in Section 2.6 by introducing a relatively new technique in

dynamical systems to visualize invariant phase space structures known as Lagrangian

descriptors that are used throughout this dissertation.

2.1 Basic Definitions of a Dynamical System

In this section, we introduce fundamental notions of the geometric theory of

(autonomous) dynamical systems. For a complete treatment, see Meiss [40] and

for a treatment aimed towards Hamiltonian systems, see Meyer and Offin [41].

9



2.1.1 Dynamical Systems

Consider the initial value problem

dx

dt
= f (x) and x(t0) = x0 ∈ Rn, (2.1)

where the vector field f : O → Rn is a globally Lipschitz function and O is an open set

in Rn. For the remainder of this chapter, f is assumed to be smooth. The fundamental

existence and uniqueness theorem for differential equations [40, 41, 63], states that

there exists a global unique solution x(t) for t. The parameterized solution is a

trajectory while the oriented but unparameterized curve is an orbit. If x(0) = y ∈ Rn,

then the solution x(t) = ϕt(y) is a complete flow. That is ϕt(x) is a one-parameter,

differentiable mapping such that:

1. ϕ0 is the identity map ϕ0(x) = x and

2. ϕt satisfies the group property : for all t, s ∈ R,

ϕt ◦ ϕs = ϕt+s.

2.1.2 Invariant Structures

For future reference, we state a few key definitions used throughout this text.

Assuming the system (2.1):

1. The forward orbit of a point z is Γ+
x = {ϕt(x) : t ≥ 0} while the pre-orbit is

given by Γ−x = {ϕt(x) : t ≤ 0.} The full orbit x is given by taking the union of
the forward orbit and the pre-orbit, Γx = Γ−x ∪ Γ+

x .

2. A set Λ is forward (backward) invariant if ϕt(Λ) ⊂ Λ for all t > 0 ( t < 0 ). A
set is invariant if it is both forward and backward invariant.

3. A point x∗ is an equilibrium if its image under the flow consists of only that
point, i.e., Γx∗ = {x∗}. For the system described by (2.1), a point is an
equilibrium if f(x∗) = 0.
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4. A non-constant solution to (2.1), γ, is a periodic orbit if there exists T 6= 0 such
that ϕs+T (x) = ϕs(x) for all s ∈ R and x ∈ γ. If T is smallest positive number
with this property, it is known as the period of γ.

5. The stable set of an invariant set Λ is the set of points asymptotic to Λ in
forward time

W s(Λ) = {x /∈ Λ : ϕt(x)→ Λ as t→∞}

and unstable set of an invariant set Λ is the set of points asymptotic to Λ in
backward time

W u(Λ) = {x /∈ Λ : ϕt(x)→ Λ as t→ −∞}.

6. A heteroclinic orbit, Γ, is an orbit such that each x ∈ Γ is backward asymptotic
to an invariant set B and forward asymptotic to an invariant set F , i.e., Γ ⊂
W u(B) ∩W s(F ).

7. A homoclinic orbit, Γ, is an orbit such that each x ∈ Γ is backward asymptotic
and forward asymptotic to same invariant set A, i.e., Γ ⊂ W u(A) ∩W s(A).

2.1.3 Invariant Subspaces and Manifolds

We can analyze the stability of an equilibrium point x∗ by linearizing around that

point. This analysis requires computing the eigenvalues of the Jacobian at that point,

A = Df(x∗). The standard theory of stability for linear systems applies, allowing

E, the generalized eigenspace of A, to be decomposed into invariant subspaces E =

Eu
⊕

Ec
⊕

Es, where the invariant subspaces of the equilibrium point x∗ are as

follows.

1. The unstable subspace, Eu, which consists of the span of generalized eigen-
vectors with eigenvalues with a positive real part.

2. The center subspace, Ec, which consists of the span of generalized eigenvectors
with eigenvalues with real part equal to zero.

3. The stable subspace, Es, which consists of the span of generalized eigenvectors
with eigenvalues with a negative real part.
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Invariant Manifold Theorems A k-dimensional manifold is a subset of Rn that

is locally diffeomorphic to Rk where k ≤ n. That is, it can be locally represented

as a graph of a function. Assuming in (2.1) that f is smooth, i.e., f ∈ C∞(Rn),

the invariant manifolds theorems can be summarised as: For (2.1), at the fixed point

x∗ there exists a unique smooth stable invariant manifold of x∗, W s(x∗), which is

tangent to Es such that for all y ∈ W s, ϕt(y)→ x∗ as t→∞.

Similarly, there exists a unique smooth unstable invariant manifold of x∗,

W u(x∗), which is tangent to Eu such that for all y ∈ W u(x∗), ϕt(y)→ x∗ as t→ −∞.

There also exists a (non-unique) invariant manifold, W c(x∗), tangent to Ec. For a

rigorous treatment of the stable, unstable, and center manifold theorems, along with

proofs, see Chicone [18], Meiss [40] or Perko [46].

2.1.4 Discrete Dynamical Systems

The preceding definitions in Section 2.1.2 also apply to maps, which can be considered

as dynamical systems in discrete time. This is crucial when discussing the role of

Poincaré maps in the stability of periodic orbits. Consider the rule x 7→ g(x) and

define ϕn as the n-th iterate by induction, ϕn(x) = gn(x) where n is a positive

integer. If g is invertible, then g−m = (g−1)
m

. The definitions from Section 2.1.2 can

be applied to ϕ; however, if g is not invertible, only the forward asymptotic behavior

can be defined.

Assume that g is a diffeomorphism (and therefore invertible). At a fixed point

x∗, consider the linearization, A = Dg(x∗), at that point. We can decompose E, the

generalized eigenspace of A into invariant subspaces E = Eu
⊕

Ec
⊕

Es, where the

invariant subspaces of the fixed point x∗ are:

1. The unstable subspace, Eu, which consists of the span of generalized eigen-
vectors with eigenvalues with modulus greater than one.

2. The center subspace, Ec, which consists of the span of generalized eigenvectors
with eigenvalues with modulus equal to one.
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3. The stable subspace, Es, which consists of the span of generalized eigenvectors
with eigenvalues with modulus less than one.

There are analogous invariant manifold theorems for maps, allowing Es and

Eu to be continued uniquely to invariant stable and unstable manifolds W s(x∗) and

W u(x∗). The center subspace can also be continued (non-uniquely) to W c(x∗).

2.2 Hamiltonian Dynamical Systems

2.2.1 Hamiltonian Equations of Motion

Let H(q,p, t) be a smooth real-valued function defined on an open set of Rn×Rn×R.

The vectors qT = (q1, . . . , qn) and pT = (p1, . . . , pn) are called conjugate variables and

are traditionally referred to as position and momentum vectors. However, in the case

of vortex motion as discussed in Section 3.2 the canonical variables do not correspond

to position and momentum. A Hamiltonian system is a system of 2n ODEs of the

form

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

(2.2)

where i = 1, . . . , n. If H is independent of t, the system is said to be an autonomous

system with n degrees-of-freedom.

Another formulation of a Hamiltonian system is to let zT = [q,p] and define

the symplectic matrix J as

J =

 0 In

−In 0

 ,

then the system of ODEs can be written compactly as

dz

dt
= J∇H(z, t). (2.3)
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2.2.2 Poisson Brackets

Poisson brackets define an algebraic structure that can be used to generalize a

Hamiltonian system and are a powerful tool when working with canonical trans-

formations. The Poisson bracket {·, ·} for two function F and G is defined as

{F,G} =
N∑
i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
,

and for a general function f(q, p, t) we have

d

dt
f(q, p, t) =

∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
+
∂f

∂t

= {f,H}+
∂f

∂t

and the Poisson brackets of the canonical coordinates are

{pi, pj} = {qi, qj} = 0 and {qi, pj} = δij.

The Poisson bracket is a bilinear operator on a pair of functions in C2(Rn ×Rn ×R)

which is: antisymmetric, a derivation (i.e., satisfies the Leibniz rule) and satisfies the

Jacobi Identity. That is letting F,G,H ∈ C2(Rn × Rn × R), then

{F,G} = −{G,F}, (Antisymmetry)

{aF + bG,H} = a{F,H}+ b{G,H}, (Bilinearity)

{H, aF + bG} = a{H,F}+ b{H,G}, (Bilinearity)

{FH,G} = F{H,G}+H{F,G}, (Leibniz Rule)

and

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0. (Jacobi Identity)

Hamilton’s equations of motion can now be conveniently written as

dqi
dt

= +
∂H

∂pi
= {qi, H} and

dpi
dt

= −∂H
∂qi

= {pi, H}.
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Thus a quantity G is constant in time, i.e., an integral of motion if and only if

{H,G} = 0. Two quantities, F and G, are functionally independent if their Poisson

bracket vanishes. In this case we say they are involutive or in involution. This concept

is critical for the reductions in Chapter 3.

2.2.3 Integrable Systems and Conserved Quantities

Two fundamental results that are used in Chapter 3 are Noether’s Theorem and

the Liouville-Arnold Theorem. Noether’s Theorem states that if the Lagrangian

is invariant under a one-parameter group of diffeomorphisms, there exists a corre-

sponding conserved quantity. For the Hamiltonian systems under consideration this

allows us to draw three conclusions

1. Invariance under translations in time yields that the value of the Hamiltonian
is a conserved quantity (i.e., Energy is conserved).

2. Invariance under translations provides conservation of momentum.

3. Invariance under rotations provides conservation of angular momentum.

In most physical applications, the Lagrangian is the fundamental quantity, from which

the Hamiltonian is derived using a Legendre transform. However, the point-vortex

model considered in this text is the standard example of a system where the

Hamiltonian is the fundamental quantity [9]. In this case, a corresponding Lagrangian

can be found by inspection [44], and Noether’s Theorem applies to this system.

In a Hamiltonian system with n degrees of freedom (2n-dimensional phase space)

and k mutually involutive conserved quantities, one can reduce the phase space’s

dimension to 2(n − k). If k = n, the system is said to be completely integrable

and, in principle, can be solved by quadrature. This system is said to be completely

integrable in the sense of Liouville integrability.

The Liouville-Arnold Theorem further states that, under appropriate compactness

conditions, there exists a canonical transformation that maps the phase space into
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action-angle coordinates (Ii, θi) where the Hamiltonian is then a function of I alone

so that İi = 0 and is a constant of motion. For a fixed I, the angle variable θ moves

on the n-torus, Tn, with a constant frequency given by θ̇i = ωi(Ii) = ∂H
∂Ii

. Figure 2.1

shows a three-dimensional projection of a portion of phase space foliated by tori for an

integrable Hamiltonian system with two-degrees-of-freedom. Each torus represents a

separate value of I, and the frequencies on each torus may not need be the same.

Let ω = (ω1, ω2, . . . , ωn); then if there exists m ∈ Zn\0 such that ω ·m = 0,

ω is said to be commensurate. If no such m ∈ Zn\0 exists, the ω is said to be

incommensurate. If the frequency vector ω is commensurate, the motion can not be

dense on the torus Tn. We illustrate this result with a standard example. Consider the

two-degree-of-freedom Hamiltonian of an uncoupled oscillator with two frequencies ω1,

ω2,

H(I1, I2) = ω1I1 + ω2I2.

Since İ1 = İ2 = 0, both I1 and I2 are constants of motion and since θ̇i = ωi, θ1 = ω1t

and θ2 = ω2t. The motion can be visualized on the surface of a torus, where the two

motions are through and around the hole of the torus.

In two-degrees-of-freedom, the commensurability condition simplifies to the

motion being incommensurate if ω2/ω1 is an irrational number and quasi-periodic

ω2/ω1 is a rational number. If ω2/ω1 = 3/2, we say that the frequencies are in a 3-2

resonance. In Figure 2.2 (a), a trajectory moving on the surface of the torus makes

three complete revolutions through the hole of the torus and two complete revolutions

around the hole before returning to its initial condition and the motion is periodic.

However, if ω2/ω1 =
√

2, the trajectory not only does not return to its initial value, it

is dense on the surface of the torus and is said to be quasi-periodic, see Figure 2.2(b).
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Figure 2.1 Schematic of the Liouville-Arnold Theorem from Arnold’s original
paper. Source: [24].

Figure 2.2 Left: (a) ω2/ω1 = 3/2. Right: (b) ω2/ω1 =
√

2. Source: Chemistry and
Mathematics in Phase Space (CHAMPS) [4]. (Creative Commons Attribution)
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2.2.4 Canonical Transformations

Canonical (or symplectic) transformations are discussed in standard graduate textbooks

in classical mechanics [25,30] and we highlight a few of their relevant properties. For a

Hamiltonian system, say H(q, p, t), a canonical transformation to new variables (Q,P )

with new Hamiltonian K(Q,P, t) = H(q(Q,P ), p(Q,P ), t) is one that preserves the

Hamiltonian structure of the equations of motion, i.e.,

dQ

dt
=
∂K

∂P
and

dP

dt
= −∂K

∂Q
.

An equivalent formulation is that a transformation is canonical if the Poisson brackets

are preserved, i.e.

{qi, pj} = {Qi, Pj} = δij

and all others vanish,

{Qi, Qj} = {Pi, Pj} = 0.

We use canonical transformations in two distinct ways in this project. One is to

reduce the number of degrees of freedom of the system and in order to make manifest

the lower degree-of-freedom system guaranteed by the Liouville-Arnold Theorem. The

other is in perturbation theory, where we consider a system H = H0 + εH1 where H0

is an integrable system with a known solution. A canonical transformation is used to

transform H into a system that is (in some sense, to be defined later) more tractable.

In classical canonical perturbation theory, global generating functions create this

transformation for a fixed ε. This approach leads to implicit equations that involve the

new and old variables that cannot generally be inverted in a straightforward manner.

Despite this, Delaunay calculated over 505 successive canonical transformations by

hand when analyzing the motion of the Moon [12]. However, we do not discuss this
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approach further and focus on the infinitesimal approach using Lie transforms, which

can easily be implemented in a CAS.

2.2.5 Rescaling Time Parameter

As explained in Chapter 3, the Hamiltonian for the N -Vortex problem contains a

logarithmic singularity. To regularize the singularity and for algebraic convenience,

we consider the equivalent Hamiltonian f(H) where f ∈ C2(R) and f is monotonically

increasing, f ′(H) > 0. This reparameterizes time, but the trajectories and levels sets

of the corresponding systems still coincide. The new time parameter can be found by

a simple application of the chain rule. For a system

H̃ (p̃ (τ) , q̃ (τ)) = f (H (p (t) , q (t)))

with equations of motion

dp

dt
=
∂H

∂q
and

dq

dt
= −∂H

∂p
,

the chain rule

∂H̃

∂q̃
=

∂f(H)

∂H

∂H

∂q

= f ′(H)
∂H

∂q
,

together with

dq

dt
=
dq̃

dτ

dτ

dt
and

dp

dt
=
dp̃

dτ

dτ

dt

imply that

dp̃

dτ

dτ

dt
=

1

f ′(H)

∂H̃

∂q̃
and

dq̃

dτ

dτ

dt
= − 1

f ′(H)

∂H̃

∂p̃
.

If τ = 1
f ′(H)

t, the Hamiltonian structure of the equations of motion are preserved, i.e.,

dq̃

dτ
=
∂H̃

∂p̃
and

dp̃

dτ
= −∂H̃

∂q̃
.
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2.2.6 Linear Hamiltonian Systems

Linear Hamiltonian systems are ubiquitous in the study of the stability of equilibrium

and periodic orbits. When Taylor expanding around a critical point z∗ or a periodic

orbit z∗(t) in a Hamiltonian system,

H(z) = H(z∗) +
1

2
(z− z∗)TS(z− z∗) +O(||z− z∗||3) (2.4)

where S is the Hessian of H at z∗ and from (2.3), the equations of motion are

dz

dt
= JSz. (2.5)

Matrices of the form A = JS, where S is a symmetric matrix, define the set

of Hamiltonian matrices. These 2n × 2n matrices form a Lie algebra known as

sp(2n,R) [28,41]. The corresponding fundamental matrix solutions to (2.5), Z(t, t0),

with Z(t0, t0) are known as symplectic matrices and form the Lie group Sp(2n,R).

It can be shown [40,41,65] that if λ is an eigenvalue of a Hamiltonian matrix A,

then so is −λ. Moreover, the characteristic polynomial of A is even. If A is real, then

its characteristic polynomial is real and its eigenvalues come in complex conjugate

pairs. Thus the eigenvalues come in four possible groupings:

(a) Hyperbolic (saddle): λ is real. Then there is a pair of eigenvalues {λ,−λ}.

(b) Elliptic (center): λ = iω is imaginary. Then −λ = λ̄ and the eigenvalues comes
in a pair {iω,−iω}.

(c) Krein quartet: λ is complex and Re(λ) 6= 0 so that there is a quartet of
eigenvalues {λ,−λ, λ̄,−λ̄}.

(d) Parabolic: A double eigenvalue λ = 0.

2.3 Stability of Periodic Orbits

In this section, we consider four tightly related concepts: the Poincaré map, linearized

perturbation equations, Floquet theory, and Hill’s determinant. These concepts are
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interrelated and must be understood together to understand our approach to the

stability of periodic orbits.

2.3.1 Poincaré Maps

Poincaré maps are the primary tool for analyzing and visualizing behavior such as the

flow near a periodic orbit by reducing a continuous dynamical system to a discrete

dynamical system in a lower-dimensional space. Consider a general continuous

dynamical system of the form of ODE given by (2.1) with a periodic solution

x̄ (t) = x̄ (t+ T ) of period T . Take any point in which the periodic solution passes,

say x0. The Poincaré Surface of Section (PSS) at x0, Σx0 , is a (n− 1)-hypersurface

which intersects the periodic orbit transversely at x0. To guarantee transversality, we

take the surface of section to be orthogonal to the flow:

Σx0 = {x : (x− x0) · f (x0) = 0}. (2.6)

Utilizing the PSS, the Poincaré map P is defined in a neighborhood of x0 by the

first return to the surface of section under the flow given by f , see Figure 2.3. The

transversality condition (2.6) is satisfied in an open set Ux0 ∈ Σx0 but can be extended

provided that tangencies with trajectories of (2.1) can be avoided. The Poincaré map

P of first return is, therefore, a map from Ux0 7→ Ux0 , allowing for the standard theory

of discrete dynamical systems to be applied. Since, by construction, P (x0) = x0, x0

is a fixed point of P and we can examine the invariant manifolds at the fixed point

x0, Figure 2.5, see Section 2.1.4. These one-dimensional manifolds of x0 can also be

understood of projections of the two-dimensional manifolds of the periodic orbit γ

projected onto the plane Σ.

The eigenvalues of the linearization at the fixed point, DPx0, can be used to

determine the fixed point’s stability, x0.
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Figure 2.3 Schematic of a Poincaré of first return, Wiggins [63].

Figure 2.4 Schematic of Poincaré Map P : Σ → Σ with the one-dimensional
unstable manifold W u(x0) and the one-dimensional stable manifold W s(x0) of the
saddle-type fixed point at x0., Source: Wiggins [63].
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Figure 2.5 Schematic of the PSS Σ along the periodic orbit γ with the unstable
manifold W u(x0) and stable manifold W s(x0) of the saddle at x0 along with the
stable and unstable two-dimensional manifolds of the periodic orbit, γ. Source: ,
Wiggins [63].

2.3.2 Linearized Perturbation Equations

Again consider a continuous dynamical system of the form of ODE given by (2.1)

with a periodic solution x̄. Consider a perturbed trajectory

x (t) = x̄ (t) + ξ (t)

then, to first-order,

dξ

dt
= Df (x̄ (t)) ξ

where Df (x̄ (t)) is the (time-periodic) Jacobian matrix of the flow field f evaluated

along the periodic orbit x̄ (t). Following the arguments in Section 2.2.6, the linearizaed

perturbation equations of a periodic orbit x̄ (t) in a Hamiltonian system are

dξ

dt
= JS(t)ξ, (2.7)
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where S(t) is the Hessian of H evaluated along the periodic orbit x̄ (t). The behavior

of linear equations with periodic coefficients is analyzed using Floquet Theory in

Section 2.3.3.

2.3.3 Floquet Theory

In studying the stability of periodic orbits, linear systems with periodic coefficients

naturally arise through the process of linearization about the periodic solution, as

seen in Section 2.3.2. The mathematical tool used to study these systems is known

as Floquet theory. The behavior of a linear system whose coefficients are periodic

in time does not depend on the local behavior of the solutions, but rather on the

solutions integrated over one period.

Consider a general n-dimensional linear system

ẋ = A(t)x, x(t0) = x0 (2.8)

where A(t+ T ) = A(t). In particular the linearized perturbation equations (2.7) are

of this form. The general solution is represented in terms of the fundamental matrix

Φ(t, t0) which solves

Φ̇ = A(t)Φ, Φ(t0, t0) = I. (2.9)

The stability of these solutions is determined by the monodromy matrix, M = Φ(T, 0),

where M is interpreted as a discrete map describing the evolution of the solution over

one period. The eigenvalues of M are called the Floquet multipliers. In the important

case where (2.8) arises from the linearization about a periodic orbit, the monodromy

matrix is closely related to the linearization of the Poincaré map given by (2.3.1). In

general, the monodromy matrix, M is an n×n matrix which includes an eigenvalue of

1 along the direction of the periodic orbit. Switching to a basis whose first element is a
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vector perpendicular to Σx0 , the restriction of M on the remaining (n−1)-dimensional

space is the linearization of the Poincaré map.

Floquet’s theorem [18, 65] states that the fundamental solution matrix can be

decomposed as Φ(t, 0) = P (t)etF where P is a periodic matrix, P (t+T ) = P (t) for all

t, and F is independent of t. The interpretation of this theorem utilized in Section 2.4

is that P transforms (2.9) to a problem with constant coefficients. Let Y (t) = Φ(t, 0)

and consider P to be a transformation, which is invertible since solutions to equation

(2.9) are unique, into new variables Z = P−1Y . Then

dZ

dt
=

d

dt

(
P−1(t)P (t)etF

)
=

d

dt

(
etF
)

= FetF = FP−1(t)P (t)etF

= FP−1(t)Y (t) = FZ(t).

and P is a (Lyapunov) transformation that takes the linear ODE (2.9) with

time-periodic coefficients to a linear ODE with constant coefficients. We use this

perspective when discussing an algorithm that produce approximations for P and F

in Section 2.4.

Hamiltonian Floquet Theory When analyzing the stability of a periodic orbit in

a two-degree-of-freedom Hamiltonian system, the linearization will be a 4 × 4 linear

Hamiltonian system, which must have at least one-pair of eigenvalues with |λ| = 1

corresponding to the motion tangent to the periodic orbit. The system can then be

decoupled, and the stability depends on A(t), which is a 2 × 2 Hamiltonian matrix.

The Floquet multipliers of A comes in pairs λ1 and λ2 such that λ1λ2 = 1. If λ1,2

have a nonzero imaginary part, then the two multipliers must lie on the unit circle

and be conjugate. If λ1,2 are real and |λ1| 6= 1, then one multiplier lies inside the unit

circle, and the other lies outside the unit circle and the system is unstable. On the
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boundary between stability and instability, the two eigenvalues must lie on the unit

circle and be real-valued, i.e., they must satisfy λ1 = λ2 = ±1.

If the system depends continuously on the parameter α then the Floquet

multipliers of Aα depend continuously on α [65]. Therefore, bifurcations, i.e., changes

in stability, can only occur at values of α where λ1 = λ2 = ±1. The existence of a

multiplier λ = 1 (respectively λ = −1) corresponds to the existence of a periodic orbit

with period T (respectively, an anti-periodic orbit of half-period T ). The stability

or instability is easily determined by examining tr(M) = λ1 + λ2, with stability in

the case |tr(M)| < 2 and instability when |tr(M)| > 2. At the bifurcation values,

trM = 2 and trM = −2, the system (2.8) has a periodic orbit or an anti-periodic

orbit, respectively.

2.3.4 Method of Harmonic Balance and the Hill’s Determinant

As noted in Section 2.3.3, at parameter values where the system undergoes a

bifurcation, there must exist either a periodic orbit or an anti-periodic orbit. The

idea behind the method of harmonic balance is that if such an orbit exists, it has a

convergent Fourier series, which can be found if an approximate solvability condition

for its coefficients is satisfied. In this section, we provide a brief overview of the

method. For a thorough classical overview, see [62].

In his 1886 account of the motion of the lunar perigee [29], Hill considered what

has come to be known as Hill’s equation

ẍ = gα(t)x(t), where gα(t+ 2π) = g(t). (2.10)

This can be put in the standard Floquet form (2.8) with coefficient matrix A(t, α) =(
0 1

gα(t) 0

)
. Hill formally found a relationship between the trace of the required

monodromy matrix Mα and the coefficients forming the Fourier series of gα(t). Hill’s

result, in a modern notation, can be summarized as follows. If gα has Fourier
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expansion,

gα(t) =
∞∑

k=−∞

gk(α)eikt, gk ∈ C, (2.11)

then the infinite matrix, Hα = (hmk(α)), with components

hmk(α) =
k2δmk + gk−m(α)

k2 + 1
, m, k ∈ Z, (2.12)

where δij is the Kronecker delta, has determinant

|Hα| =
tr(Mα)− 2

e2π + e−2π − 2
. (2.13)

Notice that if the system (2.10) has a periodic orbit at parameter value α, then

tr(Mα) = 2 and |Hα| = 0.

In 1899, Poincaré proved the convergence of Hill’s formula and gave a rigorous

definition of the determinant of the infinite matrix Hα [47]. Hill’s infinite determinant

can also be given a variational interpretation as the Hessian of the action functional

evaluated at the critical value given by the periodic orbit. This quantity can provide

useful information regarding the stability of the periodic solution via the Morse

index [13,56].

In the study of bifurcations, the vanishing of Hill’s determinant has a natural

interpretation: it is a solvability condition for the values of the parameter α at which

there exists either a periodic orbit or an anti-periodic orbit, which indicates that

the system may undergo a change of stability. The most familiar example of an

equation in Hill’s form is Mathieu’s equation, in which the coefficient takes the form

g = c + d cos 2t. Consider the ansatz where the solution to (2.10), x(t), is periodic

and has Fourier expansion

x(t) =
∞∑

k=−∞

xme
imt, xj ∈ C. (2.14)
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We seek a solvability condition for the existence of a non-trivial solution, x(t).

Putting (2.11) and (2.14) into (2.10) and collecting harmonics yields the formal series

−ẍ(t) + g(t)x(t) =
∞∑

k=−∞

∞∑
m=−∞

(
m2 + gk(α)eikt

)
xme

imt

=
∞∑

k,m=−∞

(
k2δmk + gk−m(α)

)
xme

imt

≡
∞∑

k,m=−∞

hmk(α)xme
imt = 0.

(2.15)

This defines a matrix of infinite order, H(α) = (hkm(α)).

Consider a sequence of finite-dimensional matricesHtrunc
N obtained by truncating

this system at the Nth harmonic, i.e., only including terms k and m such that −N ≤

k,m ≤ N . The matrix Htrunc
N has dimension (2N + 1) × (2N + 1). As N → ∞, the

roots of the equation |Htrunc
N (α)| = 0 should converge to the roots of |H(α)|.1

2.4 Perturbative Techniques

2.4.1 The Lie-Deprit Algorithm

In the 1960s, Lie-Deprit methods were invented as a new approach to canonical

perturbation theory. Rather than defining the canonical transformation in terms

of mixed variables created by a generating function, the canonical transformation

is defined as the flow in ε of a new Hamiltonian W . The flow in ε is described by

a Hamiltonian to guarantee that the transformations are symplectic. This method

can be extended to non-Hamiltonian ODEs [31]; however, the Hamiltonian case is

particularly elegant as the system can be defined in terms of the scalar quantity

W . This framework can also be used to guarantee that the transformations are, for

example, unitary by having the auxiliary ODE describing the flow in ε be linear with

1Note that equations (2.12) and (2.15) differ by a factor of 1
1+k2 . This is a regularization

factor to guarantee hjj = 1 and is necessary for (2.13) to converge.
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a skew-symmetric matrix [17]. We present the algorithm as described by Meyer and

Hall [41]. For a summary of the history and different approaches, see the review

article [15].

Consider a Hamiltonian, H∗(ε, x), that has formal expansion in terms of ε,

H∗(ε, x) =
∞∑
i=0

εi

i!
H0
i (x). (2.16)

The algorithm computes how H∗ changes under the change of coordinates generated

by a given Hamiltonian W (ε, x). Consider the flows with respect to ε given by

dx

dε
= J∇W (ε, x), (2.17)

with initial conditions x(0) = y where W is a smooth function. This equation has

a smooth solution X(ε, y) such that X(0, y) = y. Since (2.17) is a Hamiltonian

system X(ε, y) induces a near-identity symplectic change of variables, i.e., X(ε, y)

is a canonical change of coordinates when x = X(ε, y) is considered as a change of

coordinates that depends on ε and X(ε, y) = y +O(ε).

Using a Lie transform, the new Hamiltonian H∗(ε, y) = H(ε,X(ε, y)) can be

expressed in the coordinates generated by the change of variables generated by (2.17).

Let

H∗(ε, y) =
∞∑
i=0

εi

i!
H i

0(y), (2.18)

W (ε, x) =
∞∑
i=0

εi

i!
Wi+1(y), (2.19)

X∗(ε, y) =
∞∑
i=0

εi

i!
X i

0(y), (2.20)

then the following fundamental recursive identities are the basis of the forward

algorithm describing the flow generated by W along ε

H i
j = H i−1

j+1 +

j∑
k=0

{H i−1
j−k,Wk+1} (2.21)
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and

X i
j = X i−1

j+1 +

j∑
k=0

{X i−1
j−k,Wk+1}. (2.22)

We ultimately want to construct H∗ and X∗ that depend on Hn
0 and Xn

0 . We

can visualize the dependencies in (2.21) (2.22) by the Lie-Deprit triangle:

H0
0

H0
1 H1

0

H0
2 H1

1 H2
0

All this assumes we know Wi, so the question remains: how do we pick Wi?

This choice depends on the choice of the form we want Hn
0 to take to be considered

‘simple”–for example removing the higher-order terms up to that order. Finding Wi

requires solving an ODE of the form

Hn
0 = Lij + {H0

0 ,Wn}, (2.23)

for Wn where Lij is a combination of known quantities from earlier iterations. This

equation is known as the homological or Lie equation and is similar in spirit to the

equations encountered at each order in ε to remove resonant terms in other methods

used to find normal forms. An explicit application of this algorithm is given in

Appendix C.
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2.4.2 The Magnus Expansion

The Magnus expansion is a method to construct a formal solution of the the form

Y (t) = exp Ω(t) of the ODE

Y ′(t) = A(t)Y (t)

with Y (0) = I. This can be contrasted with Dyson’s formal solution in terms of the

time-ordering operator T ,

Y (t) = T
(

exp

∫ t

0

A(s)ds

)

which was first used to prove the equivalence of Feynman’s, Schwinger’s, and

Tomanga’s frameworks of Quantum Electrodynamics [20].

The Magnus expansion is used to construct a formal series solution Ω(t) =∑∞
k=1 Ωk(t) by integrating the differential equation

dΩ

dt
=
∞∑
n=0

Bn

n!
adnΩA,

where Bn are the Bernoulli numbers and adΩB := [Ω, B]. The first few integrations

lead to

Ω1(t) =

∫ t

0

A(t1)dt1,

Ω2(t) =
1

2

∫ t

0

dt1

∫ t1

0

dt2[A(t1), A(t2)],

Ω3(t) =
1

6

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 ([A(t1), [A(t2), A(t3)]] + [A(t3), [A(t2), A(t1)]]) .

There exist recursive algorithms for this expansion [11], which are of benefit

when using symbolic manipulators. It can be shown that for all orders, Ωn is given

in terms of commutators. Thus the truncated expansions Ωn are still in the same Lie

algebra as the An’s.
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2.4.3 The Casas Algorithm

Casas and collaborators [16] have constructed a perturbative algorithm for approx-

imating the fundamental solution matrix of a linear periodic system given as an

asymptotic series. The method is the combination of three ideas explored in

this chapter—the Magnus expansion, the Lyapunov transform, and Lie transform

perturbation theory—to construct an approximation to the monodromy matrix of a

linear Hamiltonian system with periodic coefficients. There exist other algorithms to

construct solutions to the Floquet problem [65] perturbatively; however, this method

has two significant advantages. The Magnus expansion has the advantage that the

approximate fundamental solution operator is always in the same Lie algebra as the

exact operator. As the systems under consideration here are Hamiltonian, this means

the approximate fundamental solution matrix is symplectic. Additionally, since the

algorithm is based on Lie transformations, the solution procedure is also recursive

and easy to code in a CAS.

Consider the Floquet problem

∂Y (t, ε)

∂t
= A(t, ε)Y (t, ε) ∼

(
A0 +

∞∑
k=1

Ak(t)ε
k

)
Y (t, ε).

with Y (0, ε) = I and An(t+ T ) = An(t). Floquet’s theorem proves the existence of a

solution Y (t, ε) = P (t)etF where P (t) = P (t + T ) but is non-constructive. The idea

of this solution is to construct Lyapunov transformations P to a given order in ε,

Z(t, ε) = P−1(t, ε)Y (t, ε)

that will make the equation

∂Z(t, ε)

∂t
= K(t, ε)Z(t, ε).

with

K(t, ε) = P−1(t, ε)A(t, ε)P (t, ε) +
∂P−1(t, ε)

∂t
P (t, ε) (2.24)
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such that the expansion of the matrix K(t, ε) is constant-valued up to the order

constructed.

Using the idea behind Lie transforms for Hamiltonian systems, P (t, ε) is a near-

identity transformation (thus invertible) which evolve in ε according to

∂P−1(t, ε)

∂ε
= L(t, ε)P−1(t, ε) (2.25)

with P−1(t, 0) = I.

As of now, L(t, ε) is unknown. At the final step, we can obtain L by requiring

K to be independent in time to a given order in ε and forcing L to be periodic. That

is, by requiring L to be a Lyapunov transform.

We can formally solve (2.25) by use of the Magnus expansion to get

P−1(t, ε) = exp Ω(t, ε) = exp (Σ∞m=1Ωm(t, ε)) . (2.26)

Using (2.25) and differentiating (2.24) with respect to ε, we have

∂K

∂ε
= [L,K] + P−1∂A

∂ε
P +

∂L

∂t
.

It is convenient to use the identity eΩBe−Ω = eadΩB (see [28]) to write this as

∂K

∂ε
= [L,K] + eadΩ

∂A

∂ε
+
∂L

∂t
. (2.27)

We now wish to write all these expressions as power series in ε,

K(t, ε) =
∞∑
n=0

εnKn(t) (2.28)

L(t, ε) =
∞∑
n=0

εnLn+1(t) (2.29)

eadΩ
∂A

∂ε
=

∞∑
n=0

εnwn(t). (2.30)
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The wn can be solved for by inserting (2.28) into the Magnus expansion and collecting

terms. The first few terms are

w0 = A1,

w1 = 2A2 + [L1, A1],

w2 = 3A3 + 2[L1, A2] +
1

2
[L2, A1] +

1

2
[L1, [L1, A1]].

There exist recursive formulas [17] for the term wn that can be programmed into

a symbolic manipulator. In principle, once these are found, they can be stored and

reused for any problem. In practice, it is faster to write code that finds wn by putting

A into the defining recursive relations than to insert A into the explicit formula.

Putting (2.28) into (2.27) and collecting terms in ε, we arrive at an inhomo-

geneous first order linear ODE for Ln for n ≥ 1,

dLn
dt

= adA0Ln + nKn − Fn (2.31)

where K0 = A0, Fn satisfies the recursion relation

F1 := w0 = A1

Fn :=
n−1∑
j=1

[Ln−j, Kj] + wn−1.

and Kn is determined by averaging (2.31) with the requirement that Kn be time

independent. We find the forms of Ln (and thus P ) by requiring it to be a Lyapunov

transformation. Letting 〈A(t)〉 be the average of A over one period, the average of

(2.31) is

nKn = 〈Fn〉 − [A0, 〈Ln〉]. (2.32)
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We can also easily solve the ODE (2.31) and insert (2.32) with Ln(0) = 0,

Ln(t) = etadA0

∫ t

0

e−sadA0 (nKn − Fn(s)) ds

=
(
I − etadA0

)
〈Ln〉+

∫ t

0

e(t−s)adA0 (〈Fn〉 − Fn(s)) ds.

Requiring Ln to be periodic, we have Ln(T ) = 0 so that

(
eTadA0 − I

)
〈Ln〉 =

∫ T

0

e(T−s)adA0 (〈Fn〉 − Fn(s)) ds, (2.33)

which allows us to solve for 〈Ln〉 and thus Kn and Ln. The solution for 〈Ln〉 is not

unique, so we are free to pick the simplest 〈Ln〉 that solve the matrix equation (2.33).

2.5 KAM Theory and the Nature of Hamiltonian Chaos

While we will not make rigorous use of KAM theorems in this dissertation,

understanding the history and development of KAM theory and its conclusions

provides a conceptual blueprint for understanding the phenomena observed in later

Chapters where we focus on numerically computed results. However, KAM theory

will provide a conceptual blueprint for the observed phenomena. Many of the

phase space structures observed in Chapter 7 of the non-integrable Hamiltonian are

’integrable-like-behavior’ that can be understood and interpreted using the vocabulary

of KAM theory.

The standard framework for this problem is to examine the perturbation of an

integrable system. Poincaré considered understanding the nature of these systems as

the fundamental problem of dynamics [47]. In this section, we consider the standard

example of a nearly integrable Hamiltonian system which is a Hamiltonian in N

degrees-of-freedom of the form

H(θ, I) = H0(I) + εH1(θ, I) where Ii ∈ R+ and θi ∈ S1. (2.34)
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where H0 is an integrable system, ε > 0 is small, and H1 is a well-behaved function

(e.g. smooth).

2.5.1 The Problem of Small Divisors

The perturbation techniques described in Section 2.4 contains an underlying unjus-

tified assumption—that the perturbed Hamiltonian can be transformed into an

integrable one. By a process such as averaging, the system is transformed into

an integrable one. Stated geometrically, the torus, Tn, of the unperturbed system

provided by the Liouville-Arnold Theorem stays intact. In a one degree-of-freedom

system, this is not an issue since the system is necessarily integrable. However, a

priori, there is no reason to expect the perturbed system to retain this structure for

two or more degrees-of-freedom.

To see the problem that can arise, consider the first iteration of the Lie

series (2.23) applied to the system system (2.34). The homological equation becomes

H1
0 = H1(θ, I) + {H0(I),W (θ, I)}

where

{F,G} =
N∑
i=1

(
∂F

∂θi

∂G

∂Ii
− ∂F

∂Ii

∂F

∂θi

)
.

Assume that H1 and W can be expanded as Fourier series,

W (θ, I) =
∑
m

Wm(I)eiθ·m, (2.35)

H1(θ, I) =
∑
m

H1,m(I)eiθ·m, (2.36)

where the sums are taken over all sets of integers m = {m1,m2, . . . ,mn} wheremk ∈ Z

and ‖m‖ 6= 0. Putting the expansions (2.35) into the homological equation (2.5.1)
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while noting that the unperturbed frequencies are ωk = ∂H0(I)
∂Ii

and ∂H0(I)
∂θi

= 0,

H1
0 = H1(θ, I) + {H0(I),W (θ, I)}

= H1(θ, I) +
N∑
i=1

(
∂H0(I)

∂θi

∂W (θ, I)

∂Ii
− ∂H0(I)

∂Ii

∂W (θ, I)

∂θi

)

= H1(θ, I)−
N∑
i=1

ωi
∂W (θ, I)

∂θi

=
∑
m

H1,m(I)eiθ·m −
N∑
i=1

∑
m

ωimiWm(I)eiθ·m

=
∑
m

(H1,m(I)− i (ω ·m) Wm(I)) eiθ·m,

To make H1
0 independent of θ, the generating function W must have Fourier

coefficients

Wm(I) =
H1,m(I)

i (ω ·m)
. (2.37)

The central problem is now clear: if there are any resonances in the frequencies ω

(i.e., ω(I) ·m = 0), the perturbation series diverges. Even though the set of values

for which the denominator is zero is countable and can be removed, the remaining

values can still be made arbitrarily large leading to the divergence of the sum (2.35).

It is not obvious how to proceed as this roadblock originates from true resonances of

the unperturbed system, suggesting that the series can not be made to converge.

Poincaréś concerns over a series of this type drove the formulation of the modern

geometrical view of dynamical systems in 1889. However, he could not fully resolve

the question of small divisors (this would have to wait until the 1950s). He did note

that there is a real phenomenon that could lead to the divergence of these series

for an infinite number of starting conditions. This observation of this phenomenon,

now known as a homoclinic tangle, is widely considered the beginning of the modern

theory of chaos. In Poincaréś own words [47]:

37



When one tries to depict the figure formed by these two curves and their

infinity of intersections, each corresponding to a [homoclinic orbit] these

intersections form a sort of trellis, web, or infinitely tight mesh; neither

of the two curves can ever intersect itself but must fold back on itself in a

very complex way in order to intersect all the links of the mesh infinitely

many times.

One is struck by the complexity of this figure that I shall not even attempt

to draw. Nothing is better suited to give us an idea of the complexity of

the three-body problem and all of the problems of dynamics in general

where there is no uniform integral and [the perturbation] series diverge.

2.5.2 KAM Theory

Kolmogorov first elucidated a new approach to this problem in his 1954 talk to the

International Congress of Mathematics (also reprinted in Abraham and Marsden’s

Foundation of Mechanics [1]). Arnold [24] and Moser [42] filled in the details of

this program for Hamiltonian systems and maps. These results, along with later

refinements and adaptations, have become to be known as KAM theory.

The Key Ideas of Kolmogorov The central elements of a KAM Theorem are

(loosely)

1. Instead of computing corrections sequentially in a power series expansion H =
H0 + εH1 + ε2H2 + . . ., use Newton’s methods for Banach spaces to create a
sequence of approximations h0, h1, . . . that are ’superconvergent’.

2. A Diophantine criteria for when ω is poorly approximated by rationals or
insufficiently incommensurate. A vector ω is said to be Diophantine if there
exist γ > 0 and τ > n− 1 such that

ω ∈ Dγ,τ = {ω ∈ Rn : |ω ·m| > γ/ ‖ω‖τ for all m ∈ Zn}.
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3. A notion of non-degeneracy or twist condition, for example det (D2H0) = 0.
This guarantees that in a neighborhood of a given I there is exists a bijection
with the frequencies vectors ω.

A typical KAM result tells us that for a nearly integrable Hamiltonian

system (2.34) and a sufficiently nice H1, e.g. H1 is smooth, and H0 satisfies an

appropriate non-degeneracy condition, then for sufficiently small ε and an appropriate

γ > 0, there exists invariant tori whose frequencies are proportional to each ω ∈ Dγ,τ .

The perturbed flow is quasi-periodic at these frequencies, and the Lebesgue measure

of these frequencies increases to the full measure of the set as ε→ 0.

How KAM Theory is Utilized in this Dissertation The visual picture that

comes alongside KAM theory is important in Chapters 6 and 7. Not only did Arnold

provide a proof for a KAM theorem, but he also elucidates the qualitative behind

it. It is straightforward to visualize the KAM structure numerically, but remarkably,

Arnold was able to visualize this complex behavior at the heart of Hamiltonian chaos

without using numerics.

The resonances that gave Poincaré so much difficulty lead to a new phenomenon.

The circular cross-sections of the integrable Hamiltonian in Figure 2.1 have new fixed

points, alternating as saddles and centers that arise due to the perturbation, see

Figure 2.6 and Figure 2.8. These are referred to as island chains and are due do

to resonances at which the Diophantine condition fails. At the saddles, we observe

the formation of a heteroclinic tangle as the separatrix between the two saddle-type

fixed points splits into stable and unstable manifolds of the saddle which intersect

an infinite number of times, see Figure 2.7. These are the trellises that Poincaré

was able to imagine, but not able to draw. These tangles lead to chaos as they

are equivalent to a Smale horseshoe map [?]. However, this chaotic motion is, in

general, not ergodic—it remains constrained by the remaining tori. We encounter

many examples of this in Chapters 6 and 7. For the two-degree-of-freedom systems
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Figure 2.6 Schematic of KAM Tori from Arnold’s original article. Source: [24].

considered in this dissertation, these barriers constrain the motion and form barriers

to the chaotic motion.

Remark 2.5.1. Since this dissertation focuses only on one and two-degree-of-freedom

systems, the KAM tori form barriers in which points from inside can not be mapped to

the outside. In higher degrees-of-freedom, trajectories can leak out through a process

known as Arnold diffusion, albeit often only for exponentially long time scales.
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Figure 2.7 Schematic of Heteroclinic Tangles from Arnold’s original article.
Source: [24].

2.6 Lagrangian Descriptors

2.6.1 Introduction

Beginning with the modern era of the study of differential equations, which began

with Poincaré’s heralded study of the three-body problem [47], an overarching goal

of the discipline has been to understand the geometric structures in phase-space

that govern the behavior of sets of trajectories. In this dissertation, we utilize the

method of Lagrangian descriptors (LD), first introduced by Madrid and Mancho, to

describe Lagrangian transport processes in fluid dynamics [35] and later adapted to

continuous dynamical systems [36] and to discrete dynamical systems [23]. It has also

found a home in the study of chemical reactions [3]. This approach provides a way

to characterize trajectories with qualitatively distinct dynamical behavior. Unlike

traditional techniques such as Poincaré surface of section, LD renders visible the

invariant manifolds present inside the stochastic layers and the KAM tori expected

from the PSS. The LD method allows for the simultaneous visualization of both

bounded and unbounded orbits, including escape regions, in a manner not possible

with PSS.
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Figure 2.8 A three-dimensional projection of the KAM torus from Foundations of
Mechanics. Source: [1].
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2.6.2 Original Definition

To build intuition, first, consider the original formulation given by Madrid and

Mancho [35] as it best illustrates the fundamental concept behind the approach. This

method evokes the idea behind the Lagrangian description of fluid dynamics—by

selecting an initial ‘particle’ of fluid and tracking its flow with time. The simplest

definition of a Lagrangian descriptor is a function that maps each point to the

arclength of the trajectory beginning at that point, forward or backward in time

over a fixed time interval. Formally, consider a general continuous dynamical system,

dx

dt
= v(x, t) (2.38)

where v is a continuously differentiable function of x ∈ Rn and continuous in

t ∈ Rwhose. Let x(t,x0) be the unique solution to (2.38) with initial condition

x(t0) = x0 ∈ Rn. For each such initial condition x0, define non-negative scalar valued

functions M f and Mb by

M f(x0, t0, τ) =

∫ t0+τ

t0

‖v(x(t,x0), t)‖ dt.

Mb(x0, t0, τ) =

∫ t0

t0−τ
‖v(x(t,x0), t)‖ dt.

(2.39)

That is, M f(x0, t0, τ) is the arc length of the trajectory starting at x(t0) after a time

τ in forward time, and Mb(x0, t0, τ) is the arc-length in backwards time. Plotting

the forward-time (respectively, backward-time) descriptor allows visualization of the

stable (respectively, unstable) manifold. The sum of these quantities

M(x0, t0, τ) = M f(x0, t0, τ) +Mb(x0, t0, τ), (2.40)

can be used to simultaneously visualize both invariant manifolds.
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2.6.3 The p-psuedonorm

It has been observed that the original definition of Lagrangian descriptors (2.39)

are continuous but non-differentiable along with invariant structures in phase space,

allowing them to distinguish between the stable and unstable manifolds respectively.

However, it has not been analytically demonstrated that they are, in fact, singular

along with invariant manifolds. In the next section, we provide a modified definition

that is more amenable to rigorous analysis. An alternate definition, defined for p ∈

(0, 1] by

Mp(x0, τ) =
n∑
k=1

∫ t0+τ

t0−τ
|vk(x(t,x0), t)|p dt (2.41)

has been rigorously demonstrated to contain singularities in |∇Mp| [33]. However it

can not be as simply interpreted as an arclength-like-quantity as can (2.39).

Discrete Time Lagrangian Descriptors While this paper makes use of (2.41);

for many regions, the discrete time Lagrangian descriptor(DTLD) yields a more

precise visualization of the underlying phase space.

MDp(x0, N) =
N−1∑
i=−N

‖xi+1 − xi‖pp (2.42)

As with the continuous time Lagrangian descriptors, the DTLD is split into forward

and backward iterations

MDp(x0, N) = MD+
p (x0, N) +MD−p (x0, N) (2.43)

where

MD+
p (x0, N) =

N−1∑
i=0

‖xi+1 − xi‖pp

MD−p (x0, N) =
N−1∑
i=−N

‖xi+1 − xi‖pp .
(2.44)
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2.6.4 Modifications for Open Hamiltonians

For open Hamiltonians, i.e., Hamiltonian systems possessing unbounded trajectories,

the definitions must be modified in the case that solutions escape to infinity in finite

(continuous) time less than τ or discrete time less than N . In such systems, one

restricts the flow to a finite region region R, and replaces τ in upper limit of the

integral (2.41) with min(τ, tR) where tR is the minimum time for the solution to exit

the region, i.e.,

τx±0 = min
x(t±;x0)/∈R

{
τ0,
∣∣t±∣∣} .

and the definition is then modified accordingly,

Mp(x0, τ) =
n∑
k=1

∫ t0+τ
x+

0

t0−τx−0

|vk(x(t,x0), t)|p dt. (2.45)

The same modification can be made for unbounded maps, where instead of a fixed

maximum number of iterations, we choose a variable number of iterations.

Remark 2.6.1. For Lagrangian descriptors, the descriptors’ actual values, Mp,

do not provide information about the underlying phase space. Rather, it is the

singularities of the gradient of those values, |∇Mp|, that provide information about

the invariant structures. To best demonstrate changes in the gradient, we have chosen

to use a cyclic colormap rather than a sequential colormap.

2.6.5 An Example: Hamiltonian Pitchfork Bifurcation of a Periodic Orbit

We now provide an example to demonstrate the material discussed in Section 2.3,

Section 2.5, and earlier in the present section. We use as our example the bifurcation

of the leapfrogging orbit, which is the subject of Chapter 5 of this dissertation.

Whitchurch et al. [61] showed numerically that this is a Hamiltonian pitchfork

bifurcation. In this well-known phenomenon, a system possesses a stable periodic

orbit on one side of a bifurcation, and a saddle type periodic orbit flanked by two
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stable periodic orbits on the other side of the bifurcation. In the PSS, this appears as

a family of nested ellipses on one side of the bifurcation and as a figure-eight shape on

the other side. The figure-eight curve is formed by the stable and unstable manifolds

of the hyperbolic orbit. These manifolds generally split and give rise to a homoclinic

tangle as the parameter is increased further. The PSS plot does not provide a direct

visualization of this tangle, but the LD plot does.

In Chapter 5, the problem is formulated such that the bifurcation occurs when a

certain parameter h = 1
8
, with stability for smaller values. Here we present a number

of PSS and LD plots, as well as some numerically-calculated invariant manifolds, for

a sequence of increasing values of h, using a coordinate system due to Aref described

in 4.4. At h = 0.11, the Hamiltonian map has one stable fixed point, see the PSS

plot in Figure 2.9. As expected from KAM theory, this fixed point is surrounded by

resonant island chains. As h is increased beyond the bifurcation value to h = 0.126,

the stable fixed point becomes unstable, and two new fixed points are created, see

Figure 2.10. We consider h = 0.129 in Figure 2.11 and 2.12. Both the PSS and

LD plots show a small homoclinic tangle in a neighborhood the origin. The PSS

plot more clearly reveals the island chains and the KAM tori that separate them,

while the LD plot clearly indicates the existence of tangled invariant manifolds on

the exterior region. Finally, we consider h = 0.135 in Figure 2.13 and 2.14. There are

no longer any island chains around the unstable fixed point and the tangles exterior

to the figure-eight region intersect the tangles at the origin as is clearly visible in

the LD plot without having to manually calculate any invariant manifold. Without

prior knowledge of the unstable fixed point at the origin, the PSS would no longer

provide any information of the saddle; however, the invariant manifolds of the saddle

are immediately apparent from examining the LD plot.
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Figure 2.9 PSS for h = 0.11 < 0.125 when the leapfrogging orbit is a stable fixed
point.

Figure 2.10 PSS for h = 0.126 > 0.125 when the leapfrogging orbit is an unstable
fixed point.
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Figure 2.11 PSS near the Leapfrogging orbit in Aref-Eckhardt coordinates for
h = 0.129. Observe the KAM tori enclosing the three fixed points formed after the
pitchfork bifurcation. Stable and unstable manifolds of the hyperbolic or in blue and
red, respectively.

Figure 2.12 PSS near the Leapfrogging orbit in Aref-Eckhardt coordinates for
h = 0.129. Observe the lack of overlap of the resonances in the island chain between
the KAM tori.
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Figure 2.13 PSS near the Leapfrogging orbit in Aref-Eckhardt coordinates for
h = 0.135. Observe that there are no remaining island chains outside the invariant
manifolds. Stable and unstable manifolds of the hyperbolic or in blue and red,
respectively

Figure 2.14 DLD near the Leapfrogging orbit in Aref-Eckhardt coordinates for
h = 0.135.
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CHAPTER 3

THE N-VORTEX PROBLEM

In this chapter, we begin in Section 3.1 by deriving the point-vortex solution to Euler’s

equations for an ideal fluid. This derivation leads us into Kirchhoff’s Hamiltonian

formulation of point-vortex motion in Section 3.2. To build intuition for subsequent

calculations, in Section 3.3, we solve the two-vortex problem using methods that

transfer to the novel reductions in Chapter 4.

3.1 Point-Vortex Model

3.1.1 Euler’s Equation

Euler’s equation for an inviscid, incompressible flow can be derived using the

continuum assumption and the basic principles of physics—conservation of mass,

conservation of energy and Newton’s second law. Let x = (x, y, z) ∈ D ⊂ R3 denote

the position of a particle suspended in the fluid, let ẋ = u(x, t) = (u, v, w) be the

velocity field of the fluid and let ρ(x, t) be the mass density. Euler’s equations for an

inviscid, incompressible flow with no external forces are

ρ
Du

Dt
= −∇p,

Dρ

Dt
= 0,

∇ · u = 0.

These correspond to Newton’s third law, conservation of mass and incompressibility.

3.1.2 Vorticity Form of the Equations

We assume a constant density and scale the variables such that ρ = 1. A velocity

field u = (u, v, w) ∈ R3 has a corresponding vorticity field ω = ∇ × u. A velocity
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field u is said to be irrotational if ω = 0. Taking the curl and divergence of ω,

∇ · ω = ∇ · (∇× u) = 0

∇× ω = ∇× (∇× u)

= ∇(∇ · u)−∇2u = −∇2u.

That is

∇ · ω = 0

∇× ω = −∇2u.

An irrotational incompressible flow is a potential flow, i.e., there exists a potential

φ such that u = ∇φ. If the flow has a rotational component, then utilizing the

Helmholtz-Hodge decomposition, u can be written as a sum of a velocity potential

and a solenoidal vector potential

u ≡ uφ + uω = ∇φ+∇×ψ.

It then follows that

∇× u =∇× (∇φ+∇×∇ψ)

=∇×∇ψ

=∇(∇ · u)−∇2ψ = −∇2ψ,

which is just the Poisson equation

∇2ψ = −ω. (3.1)

In two dimensions, the Poisson kernel in the plane,

G(x) = − 1

2π
log ‖x‖ ,
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can be used to find ψ,

ψ(x) =

∫
G(x− y)ω(y) dy.

For two dimensional flow u = (u, v, 0), the vorticity has only one component ω =

(0, 0, ω) which is given by

ω(x, y, t) = (∇× u)z = ∂xv − ∂yu.

We can then solve the Poisson equation (3.1) to find ψ = (0, 0, ψ) and get the

equations of motion for a particle in the flow field

ẋ = u = ∇× ψ = (∂yψ,−∂xψ, 0).

3.1.3 Discrete Vortex Representations

Restricting to motion on a plane, we can solve (3.1.2) in the case of discrete point

vortex motion

ω(x) =
N∑
i=0

Γi δ(x− xi)

The resulting flow is irrotational except at the location of the point vortices at xi which

have vorticity (or circulation) Γi. This is analogous to the point-mass approximation

for the gravitational N -body problem. However, importantly, Γi can either be

positive or negative (corresponding to counter-clockwise and clockwise flows), while

Newtonian mass is strictly positive. Taking N vortices located at xα = (xα(t), yα(t))

with vorticity Γα, then the Green’s function for ψ gives

ψα(x) = − 1

2π

∫
Γα log ‖x− y‖ δ(xα − y) dy

= −Γα
2π

log ‖x− xα‖ .
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Since the velocity field is obtained by linear superposition, the motion of a

particle at x is

ẋ =
N∑
α=1

∇×ψα(x, t),

and since each point vortex moves with the local velocity field, the equations of motion

for a collection of N -vortices are

ẋβ =
N∑
α 6=β

∇×ψα(xβ, t).

The equations of motion can be written in component form using ∇ × ψ =

(∂yψ,−∂xψ) as

ẋα = − 1

2π

N∑
α 6=β

Γβ
(yα − yβ)

‖xβ − xα‖2 , (3.2a)

ẏα = +
1

2π

N∑
α 6=β

Γβ
(xα − xβ)

‖xβ − xα‖2 . (3.2b)

3.2 The Hamiltonian N-Vortex Problem

In this section, we review the Hamiltonian framework for the N -vortex problem.

Consider a system consisting of N point vortices in the plane, each with position

coordinates ri = (xi, yi) and denote their (signed) vorticities by Γi. The system of

ODEs describing the N -vortex motion can be described by the Hamiltonian [44],1

H(ri) = −
N∑
i<j

ΓiΓj log ‖ri − rj‖2 (3.3)

with the non-canonical equations of motion

Γj
dxj
dt

= +
∂H

∂yj
and Γj

dyj
dt

= −∂H
∂xj

(3.4)

1The Hamiltonian given here, and throughout this paper, is 4π times the Hamiltonian
derived by Kirchhoff. We have systematically ignored this factor throughout the paper,
which amounts to a rescaling of time.
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and where the Poisson brackets are defined by

{f, g} =
N∑
i=1

1

Γi

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
so that {xi, yj} =

1

Γi
δij.

Because the Hamiltonian (3.3) is invariant with respect to rotations and

translations in the plane, we have three integrals of motion

Q =
n∑
i=1

Γixi, P =
n∑
i=1

Γiyi and I =
n∑
i=1

Γi(x
2
i + y2

i ), (3.5)

where Q and P are the components of the linear impulse in the x and y-directions

and I is the angular impulse. In general, these quantities are not in involution

{Q,P} =
N∑
i=1

Γi, {P, I} = −2Q and {Q, I} = 2P. (3.6)

However, this dissertation considers the special case in which the net circulation

vanishes, Γ =
∑N

i Γi = 0. Therefore, {Q,P} = 0, i.e. Q and P are independent

conserved quantities. It is convenient to introduce coordinates

qj =
√
|Γj|xj and pj =

√
|Γj|sgn(Γj)yj, (3.7)

such that the Poisson bracket defined by

{f, g} =
N∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂qi

∂g

∂pi

)
.

are canonical, {qi, pj} = δij and qi and pi evolve with equations of motion

dqj
dt

= +
∂H

∂pj
and

dqj
dt

= −∂H
∂qj

. (3.8)

3.3 Two-Vortex Motion

We first consider the motion of two vortices to illustrate the principles in the last

section. In this section, we demonstrate that two vortices of equal and opposite-signed

vorticity move in parallel at a uniform speed with their common velocity inversely
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proportional to the distance between them. Two vortices of equal and like-signed

vorticity, by contrast, trace a circular path with a constant rotation rate proportional

to the inverse square of the distance between them. This result summarized in

Figure 3.1.

The solution to this system is a standard result; however, we will solve it using

canonical transformation to build intuition for understanding the reduction of the

three and four vortex configurations considered in Section 4.2 and Section 4.3.

Figure 3.1 (a) Opposite-signed vortices move in parallel along straight lines.
(b) Like-signed vortices move along a circular path.

Considering a vortex with circulation Γ1 at r1 = (x1, y1) and a second vortex

with circulation Γ2 at r2 = (x2, y2), the Hamiltonian is

H(r1, r2) = −Γ1Γ2 log ‖r1 − r2‖2 , (3.9)

The behavior depends on whether the net circulation is zero, so each case will

be considered separately.

1. The case Γ1 + Γ2 6= 0 : We make the canonical transformation into center-of-

vorticity and difference coordinates

R =
Γ1r1 + Γ2r2

Γ1 + Γ2

and r = r1 − r2. (3.10)
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where R = (X, Y ) and r = (x, y) and can be inverted as

r1 = R +
Γ2

Γ1 + Γ2

r (3.11)

r2 = R− Γ1

Γ1 + Γ2

r. (3.12)

The Poisson brackets in the center-of-vorticity coordinates are

{x, y}r,R =
Γ1 + Γ2

Γ1Γ2

:=
1

Γr
and {X, Y }r,R =

1

Γ1 + Γ2

:=
1

ΓR
.

The two-degree-of-freedom Hamiltonian (3.9) is now reduced to the one one-

degree-of-freedom in r, since R is a constant of motion

H(r) = −Γ1Γ2 log ‖r‖2 = −ΓrΓR log
(
x2 + y2)

)
.

Using canonical polar variables (J, θ) defined by the relationships x =
√

2J cos θ

and y =
√

2J sin θ where {θ, J} = 1
Γr

, the Hamiltonian can be written as

H(θ, J) = −ΓrΓR log (2J))

with equations of motion

J̇ = − 1

Γr

∂H

∂θ
= 0

θ̇ =
1

Γr

∂H

∂J
= −ΓR

J
.

Therefore, J = x2+y2

2
is a constant of motion and the frequency, ω = Γr

J
, is a

constant. If we let the distance between r1 and r2 be ‖r‖ = D, then D2 = 2J is

a constant of motion. In terms of the original units, ω = 2Γ1+Γ2

D2 . Since r moves

in a circle with frequency ω and radius D, equation (3.11) implies that the

vortices at r1 and r2 rotate on concentric circles about their center of vorticity
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located at R. If Γ = Γ1 = Γ2, then (3.11) states that

r1 −R =
1

2
r

r2 −R = −1

2
r,

and the vortices located at r1 and r2 rotate at constant speed at opposite ends

of a diameter of a circle.

2. The case Γ1 +Γ2 = 0 : Note that we cannot define the center of vorticity and

difference coordinates when considering a pair of oppositely signed vortices since

(3.10) is no longer defined. While the center-of-vorticity is not defined when

the net circulation is zero, from, (3.6) the coordinates of the linear impulse

M = (Q,P ) =
∑

Γiri are independently conserved.

Fixing the linear impulse to lie in the y direction Q = 0, P = D, and scaling the

vorticity so that Γ = Γ1 = −Γ2 = 1, the linear impulse is M = r1− r2 = (0, D).

That is, x1 = x2 and y1 = y2 +D so the difference between the x-components is

zero and that between the the y-components is D. The equations of motion (3.4)

yield ẋ1 = ẋ2 = 1
D

and ẏ1 = ẏ2 = 0. That is, the vortices move in parallel along

the x-axis with a constant speed of 1
D

.
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CHAPTER 4

HAMILTONIAN REDUCTIONS OF SPECIAL CASES OF THE

THREE AND FOUR-VORTEX PROBLEMS

4.1 Introduction

The driving inspiration for this chapter is the observation is that in both the

walkabout and braiding motions of the unstable leapfrog motion seen in Figure 1.4,

one of the pairs of like-signed orbits becomes tightly bound together and moves as

a single unit (a dimer), at least for a finite time. This is illustrated in Figure 4.1.

Therefore, the dynamics come close to that of a three-vortex system, with one vortex

of strength two, and two vortices of the opposite sign with strength one.

In any dynamical study, it is crucial to pick the coordinate system that most

illuminates the dynamics. The coordinate system used in previous studies was very

useful in understanding the dynamics in a neighborhood of the leapfrogging orbit [10,

55, 61], but we have found it less useful when one pair of of the vortices forms a

dimer. It makes sense to use a coordinate system in which one like-signed pair of

vortices is coalesced into a dimer, while no such assumption is made about the other

pair of vortices. Therefore, we construct a coordinate system in the present study

Figure 4.1 The braiding and walkabout motion for the vortex quartet along with
the corresponding three-vortex system.
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where the near-dimer dynamics are more easily visible. Such a system would resemble

a three-vortex system with vorticities in the ratio -1:-1:2, coupled to an additional

degree-of-freedom representing the dynamics within the dimer.

In Section 4.2, we study the three vortex problem with circulations -1:-1:2. The

integrability of this system was demonstrated by Aref and Rott [6, 51]. We describe

in detail the phase-space of this one-degree-of-freedom system. Understanding the

dynamics of this system allows us to interpret the fundamental motions of the vortex

quartet. We also present a new reduction using simple canonical transformations that

forms part of the reduction of the vortex quartet.

We then proceed to Section 4.3 to discuss the four-vortex problem of two

identical pairs of vortices, i.e., the vortex quartet. We write the Hamiltonian for the

vortex quartet in a way that consists of the Hamiltonian of the three-vortex system

coupled to an additional degree of freedom. This coordinate system, known as the

‘dimer’ system, is used in Chapters 6 and 7 when studying the nonlinear transitions

of the vortex quartet.

Finally, in Section 4.4, we perform an additional canonical transformation that

brings us to a new coordinate system for the vortex quartet, which is equivalent to

the one found by Aref and Eckhardt [21] and well suited for the study of the stability

of the leapfrogging orbit [10,55,61] and is used in Chapter 5.

4.2 The Three-Vortex Problem with Circulations -1:-1:2

Before analyzing the bound states of the vortex quartet, we first consider the three-

vortex problem with vortices located at r1, r2 and r3 and vorticities Γ1 = Γ2 = −1

and Γ3 = 2 respectively. The Hamiltonian for this three-vortex system is given by

H(r1, r2, r3) = − log ‖r1 − r2‖2 + 2 log ‖r1 − r3‖2 + 2 log ‖r2 − r3‖2 . (4.1)
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The linear impulse M = (Q,P ) given by (3.5) is a constant of motion. In general, Q

and P are not independent constants of motion. However, since {Q,P} =
∑3

i=1 Γi =

0, Q and P are in involution and thus independent conserved quantities, and

M = (Q,P ) =
3∑
i=1

Γiri = −r1 − r2 + 2r3

is a constant of motion.

We first switch into the center-of-vorticity coordinates of the two identical

vortices, located at r1 and r2,

R =
r1 + r2

2
and r = r1 − r2. (4.2)

In these coordinates, the conserved impulse is

M = (Q,P ) =
3∑
i=1

Γiri = 2(r3 −R),

which gives a relation between r3 and R, r3 = R + M
2
. The Hamiltonian can now be

reduced to a one-degree-of-freedom system

H(r,R) = − log ‖r1 − r2‖2 + 2 log ‖r1 − r3‖2 + 2 log ‖r2 − r3‖2

= − log ‖r‖2 + 2 log

∥∥∥∥R +
r

2
−R− M

2

∥∥∥∥2

+ 2 log

∥∥∥∥R− r

2
−R− M

2

∥∥∥∥2

= − log ‖r‖2 + 2 log ‖r−M‖2 + 2 log ‖r + M‖2 + C.

(4.3)

This Hamiltonian can be understood as that of the advection of a tracer particle

located at r moving in the flow due to three static vortices, with vorticity -2, 1

and -2 located at positions M, 0 and −M. For the general three-vortex system

with net circulation zero, the same process can be followed considering (without

loss of generality) Γ1 = −1 − λ, Γ2 = −1 + λ and Γ3 = 2 and the general

center-of-vorticity and difference coordinates (3.11); however, we only make use of the
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symmetric case and only present the λ = 0 case for clarity. Aref [8] also found this

result; however, we believe the approach that is given here, which uses elementary

canonical transformations, to be more transparent. Additionally, these canonical

transformations are critical to transforming the Hamiltonian for the four-vortex

system in Section 4.3.

Because both components of the linear impulse, M, are independently conserved,

we can choose the magnitude and direction M. The Hamiltonian (4.3), with

M = (0,−2), r = (
√

2q,
√

2p) and a time rescaling, f(H) = Ce−H , yields a canonical

Hamiltonian with,

H(q, p) =
1

2

q2 + p2(
q2 + (p−

√
2)2
)2 (

q2 + (p+
√

2)2
)2 . (4.4)

where {q, p} = 1.

The Hamiltonian (4.4) has five fixed points, (0, 0), (0,±
√

2), (±
√

6
3
, 0). The

corresponding Hessians show that these are three centers and two saddles, respec-

tively. The three center-type fixed points represent degenerate states. The phase

plane has three distinct regions and separatrices at the critical energy Hseparatrix = 33

212

The behavior of the solutions in each of the three regions are shown in Figure 4.2 along

with the representations of the corresponding vortex trajectories. All periodic orbits

in Regions I, II, and III correspond to (relative) periodic motions of the three-vortex

motion in the lab frame.

Region I is foliated by periodic motions about the origin, which correspond

to hierarchical orbits in which the two vortices of circulation -1 are bound together

and move as a pair in parallel to the vortex of circulation +2. We have borrowed

the term hierarchical from the gravitational three-body problem. The origin itself

represents a degenerate state. As the family of periodic orbits shrinks to the fixed

point at the origin, the distance between the two negative vortices of unit circulation

approaches zero while the distance between this pair and the positive vortex at r3
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Figure 4.2 The phase plane for the reduced -1:-1:2 three-vortex system (left) along
with typical trajectories in each region (right).

remains finite. In this limit, the pair of negative signed vortices behaves like a single

vortex of circulation −2, and the overall motion is the straight parallel translation of

two vortices of circulation ±2.

Each connected component of Region II is also foliated by periodic motions

about the fixed points at (0,±
√

2). In these hierarchical orbits, the vortex of

circulation +2 and one of the vortices with circulation −1 are bound together, and

this pair moves in parallel with the remaining vortex of circulation −1. Note the

similarity between this orbit and the walkabout orbit of the vortex quartet described

by Acheson. As the two families of periodic orbits shrink to the fixed points at

(0,±
√

2), the distance between the vortex of circulation +2 and one of the vortices

with circulation −1 become small, and they act like a vortex of circulation +1. The

overall motion is then the straight parallel translation of two vortices of circulation

±1.

The periodic orbits in Region III correspond to non-hierarchical vortex motions.

These periodic motions are analogous to the braiding motions seen in the vortex
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quartet. Since the vortices of circulation -1 alternate, there is no hierarchy of these

orbits that can be shrunk to a degenerate state.

The saddle type fixed points at (±
√

6
3
, 0) represent orbits in which the three

vortices form an equilateral triangle that rigidly translates at a constant velocity

parallel to the line segment connecting the two negative vortices; see Fig 4.3. These

rigidly translating triangles (RTT), are fundamental to understand the nonlinear

transitions in Chapter 7. We refer to the separatrices between Regions I and Regions

II as the interior separatrices and the separatices between Regions II and III as the

exterior separatrices. As is so often the case, we will show that understanding these

saddle points, their separatrices, and especially the splitting of the separatrices is

fundamental to explaining the dynamics.

4.3 The Dimer Coordinates for the Vortex Quartet

We established all the basic motions of the integrable three-vortex system with

circulations -1:-1:2 in Section 4.2 and progress to the four-vortex system consisting

of two pairs of vortices with circulations +1:+1:-1:-1. The goal of this section is to

write the four-vortex Hamiltonian in a way such that it consists of the Hamiltonian

of the three-vortex system in Section 4.2 coupled to an additional degree-of-freedom.

If the coupling term is small, then this can be thought of as a small perturbation.

We implement a factorization used by Smith [53] to write the Hamiltonian in a form

where two negative vortices are bound close together into a ‘dimer’ that interacts

with the remaining two vortices. We consider a system of four vortices composed of

Figure 4.3 The rigidly translating triangles (RTT) at the saddle type fixed point

at (
√

6
3
, 0) in Figure 4.2.
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two vortices of vorticity Γ = +1, with coordinates r+
1 = (x+

1 , y
+
1 ) and r+

2 = (x+
2 , y

+
2 ),

and two with vorticity Γ = −1, with coordinates r−1 = (x−1 , y
−
1 ) and r−2 = (x−2 , y

−
2 ).

The Hamiltonian then takes the form

H(r−1 , r
−
1 , r

−
2 , r

+
2 ) =− log

∥∥r+
2 − r+

1

∥∥2 − log
∥∥r−1 − r−2

∥∥2
+ log

∥∥r−1 − r+
1

∥∥2

+ log
∥∥r−2 − r+

1

∥∥2
+ log

∥∥r−1 − r+
2

∥∥2
+ log

∥∥r−2 − r+
2

∥∥2
.

(4.5)

The first step is to perform a canonical transformation that treats the two positive

vortices as a dimer. Let R+ be the center of vorticity of the vortices at r+
1 and r+

2

and let r+ be the vector difference between them,

R+ =
r+

1 + r+
2

2
and r+ = r+

1 − r+
2 . (4.6)

Putting (4.6) into the Hamiltonian (4.5),

H
(
r−1 , r

−
2 , r+,R+

)
=− log ‖r+‖2 − log

∥∥r−1 − r−2
∥∥2

+ log

∥∥∥∥r−1 −R+ −
1

2
r+

∥∥∥∥2

+ log

∥∥∥∥r−2 −R+ −
1

2
r+

∥∥∥∥2

+ log

∥∥∥∥r−1 −R+ +
1

2
r+

∥∥∥∥2

+ log

∥∥∥∥r−2 −R+ +
1

2
r+

∥∥∥∥2

.

(4.7)

Our goal is to understand the dynamics when the diameter of the positive dimer,

‖r+‖, is small. In the third term of H, we can factor out the distance between the

vortex located at r−1 and center of the dimer, R+,∥∥∥∥r−1 −R+ −
1

2
r+

∥∥∥∥2

=
〈 (

r−1 −R+

)
− 1

2
r+,
(
r−1 −R+

)
− 1

2
r+

〉
=
∥∥r−1 −R+

∥∥2 −
〈
r−1 −R+, r+

〉
+

1

4
‖r+‖2

=
∥∥r−1 −R+

∥∥2

∣∣∣∣∣1− 〈r−1 −R+, r+〉∥∥r−1 −R+

∥∥2 +
1

4

‖r+‖ |2∥∥r−1 −R+

∥∥2

∣∣∣∣∣ .
(4.8)

An analogous calculation applies for the remaining three terms of (4.7). Using

the fundamental relation between the logarithm of a product and the sum of the
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logarithms allows (4.5) to be written as H = H0 +H1 where

H0(r−1 , r
−
2 , r+,R+) = H01(r+) +H02(r−1 , r

−
2 ,R+)

=− log ‖r+‖2

− log
∥∥r−1 − r−2

∥∥2
+ 2 log

∥∥r−1 −R+

∥∥2
+ 2 log

∥∥r−2 −R+

∥∥2

and

H1 = log

∣∣∣∣∣1− 〈r−1 −R+, r+〉∥∥r−1 −R+

∥∥2 +
1

4

‖r+‖2∥∥r−1 −R+

∥∥2

∣∣∣∣∣
+ log

∣∣∣∣∣1 +
〈r−1 −R+, r+〉∥∥r−1 −R+

∥∥2 +
1

4

‖r+‖2∥∥r−1 −R+

∥∥2

∣∣∣∣∣
+ log

∣∣∣∣∣1− 〈r−2 −R+, r+〉∥∥r−2 −R+

∥∥2 +
1

4

‖r+‖2∥∥r−2 −R+

∥∥2

∣∣∣∣∣
+ log

∣∣∣∣∣1 +
〈r−2 −R+, r+〉∥∥r−2 −R+

∥∥2 +
1

4

‖r+‖2∥∥r−2 −R+

∥∥2

∣∣∣∣∣ .
The term H01 represents the internal motion of the dimer, which is decoupled from

H02, which describes the motion of vortices at r−1 , r
−
2 and R+ with vorticities -1:-1:2

respectively. The sum of three terms that form H02 is identical to the Hamiltonian

(4.1) for the -1:-1: 2 system. Therefore, we can use the same systematic canonical

transformations (4.2) on H02 to reduce the dimer system from a four to a two-degree-

of-freedom system. To do so, let

R− =
r−1 + r−2

2
and r− = r−1 − r−2 . (4.9)

The linear impulse M, is a constant of motion, equal to

M = (Q,P ) =
4∑
i=1

Γiri = 2 (R+ −R−) , (4.10)

thus R+ = R− + M
2

and (4.9) can be rewritten as r−1 = R− + r−
2

, allowing the

summands defining H02 to be rewritten as

r−1 −R+ = R− +
r−
2
−
(

R− +
M

2

)
=

1

2
(r− −M) , (4.11)
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and similarly

r−2 −R+ = −1

2
(r− + M) . (4.12)

Then the coupling term H1 can be written in terms of (r+, r−) and the conserved

quantity M,

H1(r+, r−) = log

∣∣∣∣∣1− 2
〈r+ −M, r−〉
‖r+ −M‖2 +

‖r−‖2

‖r+ −M‖2

∣∣∣∣∣
+ log

∣∣∣∣∣1 + 2
〈r+ −M, r−〉
‖r+ −M‖2 +

‖r−‖2

‖r+ −M‖2

∣∣∣∣∣
+ log

∣∣∣∣∣1− 2
〈r+ + M, r−〉
‖r+ + M‖2 +

‖r−‖2

‖r+ + M‖2

∣∣∣∣∣
+ log

∣∣∣∣∣1 + 2
〈r+ + M, r−〉
‖r+ + M‖2 +

‖r−‖2

‖r+ + M‖2

∣∣∣∣∣ .
Putting this all together, we can now write

H(r−, r+) = H01(r−) +H02(r+) +H1(r−, r+), (4.13)

where H01 is the motion of the dimer

H01(r−) = − log ‖r−‖2

and H02 can be reduced to the form given by (4.3),

H02(r+) = − log ‖r+‖2 + 2 log ‖r+ + M‖2 + 2 log ‖r+ + M‖2 .

Moreover, H1 determines the coupling between the r+ and r− degrees of freedom.

This term is small while ‖r+‖, the distance between the two positive vortices, is

small. However, as we see with the walkabout orbits, the vortex quartet can switch

back and forth from regions where ‖r+‖ is small and regions where ‖r−‖ is small.

This transition happens as the system switches from the positive-signed pairs being

close together and the negative-signed pairs being close together.
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We now choose to normalize the coordinates. The Hamiltonian (4.16) can be

be written in a standard canonical form by utilizing (3.7),

(q1, p1) =
1√
2
r+ and (q2,−p2) =

1√
2
r− (4.14)

or in the lab coordinates

q1 =
1√
2

(
x+

1 − x+
2

)
, q2 =

1√
2

(
x−2 − x−2

)
,

p1 =
1√
2

(
y+

1 − y+
2

)
, p2 =

1√
2

(
y−2 − y−1

)
.

(4.15)

With this choice, the Poisson brackets are now normalized, i.e. {qi, pj} = δij

and the he new canonical pairs with given by the coordinates of z1 = (q1, p1) and

z2 = (q2, p2).

4.4 Connection to the Aref-Eckhardt Coordinates

We derived the coordinate system and Hamiltonian appropriate for studying the

nonlinear transitions discussed in Chapter 7. In this section, we discuss another

coordinate system well-suited for studying the stability of the leapfrogging orbit,

which was used in prior studies [10, 55, 61]. Aref and Eckhardt [21] also derived

an equivalent Hamiltonian for an arbitrary collection of non-identical pairs of point

vortices.

We note that we could have used the canonical transformations (4.2) and (4.6)

and the conserved linear impulse (4.10) without employing the factorization (4.8).

Directly applying these canonical transformation yields

H(r+, r−) =− log |r+|2 − log |r−|2

+ log ‖M− (r+ + r−)‖2 + log ‖M− (r+ − r−)‖2

+ log ‖M + (r+ + r−)‖2 + log ‖M + (r+ − r−)‖2 .

(4.16)
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The benefit of the near-integrable form (4.13) is to see the relationship between

the three-vortex problem in regions where a pair of like signed vortices are close

together while (4.16) has no such physical interpretation while it is manifest in (4.13).

However, both the Hamiltonians (4.13) and (4.16) are, of course, algebraically

equivalent.

We remarked in Section 2.3.3 that coordinates such the periodic orbit is

perpendicular to the Poincaré section of surface, the analysis will be greatly simplified.

Performing an additional canonical transformation

Q1 =
1√
2

(q1 + q2) , Q2 =
1√
2

(q1 − q2) ,

P1 =
1√
2

(p1 + p2) , P2 =
1√
2

(p1 − p2)

(4.17)

and converting to lab coordinates yields

Q1 =
1

2

(
x+

1 − x+
2 + x−2 − x−2

)
, Q2 =

1

2

(
x+

1 − x+
2 − x−2 + x−2

)
,

P1 =
1

2

(
y+

1 − y+
2 − y−1 + y−2

)
, P2 =

1

2

(
y+

1 − y+
2 + y−1 − y−2

)
.

To satisfy the initial conditions of the leapfrogging orbit in Figure 4.4, we seek

a configuration symmetric with respect to reflection along the x-axis, i.e.

x−1 = x−2 , x+
1 = x+

2 ,

y−1 = −y−2 , y+
1 = −y+

2 .

(4.18)

We see that for the leapfrogging orbits, which satisfy (4.18), then the subspace Q2 =

P2 = 0 is invariant under the dynamics. Choosing the initial impulse to be M = (0, 2),

in order to agree with the conventions chosen in the previous studies, the Hamiltonian
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of the vortex quartet becomes

HAr(Q1, Q2, P1, P2) = log
(
(Q1 +Q2)2 + (P1 + P2)2

)
+ log

(
(Q1 −Q2)2 + (P1 − P2)2

)
− log

(
Q2

1 + (P2 − 1)2
)
− log

(
Q2

1 + (P2 + 1)2
)

− log
(
Q2

2 + (P1 − 1)2
)
− log

(
Q2

2 + (P1 + 1)2
)
.

Figure 4.4 The curves show trajectories from a numerically-generated leapfrogging
solution, with initial particle positions and separations labeled. Motion is from left
to right with particle positions marked every half-period.

Letting Q1 = X, P1 = Y , Q2 = 0 and P2 = 0 the coordinates (X, Y ) evolve

under the one degree-of-freedom Hamiltonian

Hleapfrog(X, Y ) =2 log
(
X2 + Y 2

)
− 2 log

(
1 +X2

)
− log

(
1− Y 2

)
− log

(
1 + Y 2

)2

= log

(
X2 + Y 2

(1 +X2) (1− Y 2)

)2

=2 log

∣∣∣∣ 1

1− Y 2
− 1

1 +X2

∣∣∣∣+ C.

In Chapter 5 the solutions to this Hamiltonian are discussed in detail.
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CHAPTER 5

STABILITY OF THE LEAPFROGGING ORBIT

5.1 Introduction

In this chapter, we discuss the bifurcation of the leapfrogging orbit using the

Hamiltonian formulation of the equations derived in Section 4.4. In Section 5.2, we

discuss the equations of motion for the leapfrogging solution introduced in Chapter 1

and summarize some of its properties. In Section 5.3, we write down the linearized

perturbation equations about the leapfrog orbit and discuss the relevant Floquet

theory needed to understand its stability. In Section 5.4, we provide a transformation

of the linearized perturbation equations so that the coefficients are given in an explicit

form. We then address Goal I and provide four approaches:

1. In Section 5.4.2, utilizing the explicit closed-form version of the Floquet,
we confirm the rational value of the bifurcation value using high precision
arithmetic to an order of 10−120.

2. In Section 5.5, we transform the time-periodic linear system into one with
constant coefficients by successive Lie transforms and averaging.

3. In Section 5.6, we use the method of harmonic balance to search for a value
of our parameter in which there exists a periodic solution, indicating that the
Floquet multipliers collide on the real axis.

4. In Section 5.7, we use the conjectured bifurcation value as an ansatz and
explicitly find a periodic solution to the Floquet problem for that value,
demonstrating the existence of a bifurcation of the leapfrogging orbit.

Approaches two and three provide systematic and semi-analytic approximations to the

bifurcation value via different techniques. Using these results as an ansatz, approach

four provides a proof that the bifurcation happens at the ostensibly fortuitous value.
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5.2 The Leapfrogging Trajectory

Consider the vortex quartet, which is system of four vortices composed of two vortices

of vorticity Γ+ = +1, with coordinates r+
1 = (x+

1 , y
+
1 ) and r+

2 = (x+
2 , y

+
2 ), and two

with vorticity Γ− = −1, with coordinates r−1 = (x−1 , y
−
1 ) and r−2 = (x−2 , y

−
2 ). As seen

in Section 4.4, the Aref-Eckhardt coordinates defined by

Q1 =
1

2

(
x+

1 − x+
2 + x−2 − x−2

)
, Q2 =

1

2

(
x+

1 − x+
2 − x−2 + x−2

)
,

P1 =
1

2

(
y+

1 − y+
2 − y−1 + y−2

)
, P2 =

1

2

(
y+

1 − y+
2 + y−1 − y−2

)
,

(5.1)

and an initial impulse of M = (0, 2), the dynamics of the vortex quartet is described

by the Hamiltonian

HAr(Q1, Q2, P1, P2) = log
(
(Q1 +Q2)2 + (P1 + P2)2

)
+ log

(
(Q1 −Q2)2 + (P1 − P2)2

)
− log

(
Q2

1 + (P2 − 1)2
)
− log

(
Q2

1 + (P2 + 1)2
)

− log
(
Q2

2 + (P1 − 1)2
)
− log

(
Q2

2 + (P1 + 1)2
)
.

(5.2)

Looking for orbits that satisfy the proper symmetry conditions when reflected

along the x-axis, (4.18), leads to the examination of the subspace Q2 = P2 = 0 for

a family of periodic orbits. Letting Q1 = X, P1 = Y , Q2 = 0 and P2 = 0, the

coordinates (X, Y ) evolve under the one degree-of-freedom Hamiltonian system with

Hamiltonian

H(X, Y ) = 2 log

(
1

1− Y 2
− 1

1 +X2

)
. (5.3)

To simplify the mathematical analysis and allow the use of standard pertur-

bation techniques, we make the following elementary observation. In Section 2.2, we

demonstrate that for a Hamiltonian system with Hamiltonian H(q, p), the modified

system with Hamiltonian H̃(q, p) = f ◦ H(q, p), where f ∈ C1 and is monotonic, is
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also canonical. The two systems have the same trajectories and equivalent dynamics

up to a reparameterization of time by a factor of f ′(H).

We apply this observation to the Hamiltonian (5.3), which we note is singular at

(X, Y ) = (0, 0). In this limit α→ 1−, in which each of the like-signed pairs coalesces

into vortex with circulation either plus or minus two. This causes the frequency of

nearby oscillations to diverge to infinity. In order to desingularize the dynamics in

this neighborhood, we redefine the Hamiltonians (5.3) using

H̃ = f(H) =
1

2
e

1
2
H ,

yielding the non-singular Hamiltonian in the invariant plane

H̃(X, Y ) = e
1
2
H(X,Y ) =

1

2

(
1

1− Y 2
− 1

1 +X2

)
(5.4)

and the new time scale

t̃ =
1

f ′(H)
t = e−

1
2
Ht. (5.5)

For ease of notation, we will drop the tildes for the remainder of the paper. We

also break with prior convention and use the value h of the Hamiltonian H in (5.4)

to parameterize the family of solutions, rather than using the ratio of the breadths of

the vortex pairs, α, as was done in previous work [2,34,55]. With regards to α, Aref’s

critical value is αc = 3−
√

5
2

and leapfrogging motion occurs for 3 − 2
√

2 < α < 1.

With respect to energy level, h, leapfrogging motions occur for 0 < h < hs = 1
2

and

the leapfrogging motion has been found numerically to be stable for 0 < h < hc = 1
8
.

The two parameters are related by h = (1−α)2

8α
. A detailed comparison of parameters

and their critical values in the literature can be found in Appendix A.
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Figure 5.1 Level sets of the one-degree-of-freedom Hamiltonian (5.4) in the X −Y
plane, including the critical energy level H = hc (bold) and the separatrix at H =
hs = 1

2
(dashed). Unbounded orbits not shown. The center at the origin corresponds

h = 0 in (5.4) and to the limiting physical state in which the pairs of like-vorticity
are at an infinitesimal distance and rotate with a divergent frequency as described by
the original Hamiltonian. Stable orbits foliate the area between this point and the
critical energy level.

The Hamiltonian (5.4) yields evolution equations

dX

dt
=

∂H

∂Y
=

Y

(1− Y 2)2 ,

dY

dt
= −∂H

∂X
= − X

(1 +X2)2 ,

(5.6)

whose phase plane is shown in Figure 5.1. In [27], Gröbli integrated the equations of

motion (5.6) to find an implicit formula for Xh(t). In our notation, this is given by

t(X) =
1

2h2
√

1− 4h2
F
(
sin−1 θ

∣∣k)− E (sin−1 θ
∣∣k)

− 1 + 2h

2h
√

(1− 2h) (2h (X2 + 1) + 1)
,

(5.7)

where θ = X
√

2h−1
2h

, k2 = 4h2

4h2−1
, and F and E are incomplete elliptic integral of the

first and second kind respectively. For details on this calculation, see Appendix B.

To study the stability of these trajectories as solutions to (5.3), it would be useful to

write X(t) and Y (t) in an explicit closed form. Unfortunately, (5.7) does not seem

to be invertible to yield an explicit formula for X(t). Nonetheless, in Section 5.4 we

reformulate the problem in order to provide an explicit formulation of the stability

problem without having to invert this formula.
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5.3 Floquet Theory and the Linearized Perturbation Equations

As discussed in Section 2.3.2, to analyze the linear stability of the periodic orbit

γh given by (Xh(t), Yh(t), 0, 0), we perturb the evolution equations corresponding to

Hamiltonian (5.2) about the leapfrogging solution (Q1, P1, Q2, P2) = (X(t), Y (t), 0, 0).

We introduce perturbation coordinates

(Q1(t), P1(t), Q2(t), P2(t)) = (X(t) + εξ+(t), Y (t) + εη−(t), εξ−(t), εη+(t))

and expand the ODE system, keeping terms of linear order in ε. The resulting

equations decouple into two 2× 2 systems,

d

dt

[
ξ+, η−

]T
= AT(X, Y )

[
ξ+, η−

]T
and (5.8a)

d

dt

[
ξ−, η+

]T
= A(X, Y )

[
ξ−, η+

]T
, (5.8b)

where A(X, Y ) is given by

A =

 XY
(X2+Y 2)(1+X2)(1−Y 2)

−3Y 4+X2Y 2+X2−Y 2

2(X2+Y 2)(1−Y 2)3

−3X4+X2Y 2−Y 2+X2

2(X2+Y 2)(1+X2)3 − XY
(X2+Y 2)(1+X2)(1−Y 2)

 .

Because these two systems depend only on quadratic terms in (X, Y ), the coefficient

matrices have period 1
2
Tleapfrog. Each is a linear Hamiltonian system since the matrix

A(t) on the right-hand side can be written as A = JH where J = ( 0 1
−1 0 ) and H is

symmetric.

In order to analyze these equations, we need to understand the behavior

of solutions to the linear system with time-periodic coefficients, dependent on a

parameter h,

Ẋ = A(t;h)X, A(t) = A(t+ T ;h), (5.9)

which is known as a Floquet problem [22, 40, 65]. To understand the behavior of

solutions of equations of the form (5.9), we must review some basic facts from Floquet
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theory from Section 2.3.3. Define the fundamental solution operator Φ(t) as the

matrix-valued solution to (5.9) with Φ(0) = I. The monodromy matrix is defined

as the solution operator evaluated at one period M = Φ(T ). The eigenvalues, λ, of

M are called the Floquet multipliers. If any multiplier λ satisfies |λ| > 1, then the

solutions of the system of equations (5.9) include an exponentially growing solution

and the system is considered unstable.

If A(t) is a 2 × 2 Hamiltonian matrix, the Floquet multipliers comes in pairs

λ1(h) and λ2(h) such that λ1λ2 = 1. If λ1,2 have a nonzero imaginary part, then

the two multipliers must lie on the unit circle and be conjugate. If λ1,2 are real and

|λ1| 6= 1, then one multiplier lies inside the unit circle, and the other lies outside the

unit circle. The system is then unstable. On the boundary between stability and

instability, the two eigenvalues must lie on the unit circle and be real-valued, i.e.,

they must satisfy λ1 = λ2 = ±1.

The Floquet multipliers depend continuously on the parameter h. Therefore,

bifurcations, i.e., changes in stability, can only occur with λ1 = λ2 = ±1 [65]. The

existence of a multiplier λ = 1 (respectively λ = −1) corresponds to the existence

of a periodic orbit with period T (respectively, an anti-periodic orbit of half-period

T ). The stability or instability is easily determined by examining tr(M) = λ1 + λ2,

with stability in the case |tr(M)| < 2 and instability when |tr(M)| > 2. At the

bifurcation values, trM = 2 and trM = −2, the system (5.9) has a periodic orbit or

an anti-periodic orbit, respectively.

We now return to the linearized perturbation equations of the leapfrogging

orbit (5.8). The coordinates (ξ+, η−) describe perturbations within the family of

periodic orbits. As such, the monodromy matrix for equation (5.8a) has eigenvalues

λ1,2 ≡ 1 which can lead to at most linear-in-time divergence of trajectories; see [55].

The question of stability is therefore determined entirely by the second system (5.8b).
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Let Z = (ξ−, η+), then (5.8b) can be written as

dZ(t)

dt
= A(Xh(t), Yh(t))Z(t), (5.10)

where

A(t) = A

(
t+

1

2
Tleapfrog(h)

)
,

and the period of the leapfrogging motion, Tleapfrog, can be found from (5.7) and is

given by

Tleapfrog(h) =
8h2

1− h2

(
h2E

(
1

h

)
+
(
1− h2

)
K

(
1

h

))
,

where E andK are complete elliptic integrals of the first and second kind, respectively.

5.4 Explicit Form of the Floquet problem

5.4.1 Reformulation in Terms of the Canonical Polar Angle

The coordinates Xh and Yh can not be solved in closed form. This is not a problem

when finding the Floquet multipliers numerically, but it will be analytically useful to

have an explicit form of the Floquet problem. To this end, we change the independent

variable in a manner inspired by the proof that bounded solutions to the gravitational

two-body problem are ellipses. Consider the canonical polar coordinates [41],

X =
√

2J cos θ and Y =
√

2J sin θ. (5.11)

This transformation preserves the Hamiltonian structure of the equations of motion,

i.e.,

dθ

dt
=
∂H

∂J
and

dJ

dt
= −∂H

∂θ
.

We rewrite (5.10) as a Floquet problem with the polar angle θ as an independent

variable. With respect to the variables θ and J , the Hamiltonian (5.4) can be rewritten
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as

H(J, θ) =
2J

2− J2 − 4J cos 2θ + J2 cos 4θ
.

At a given energy level H = h, we can solve for J ,

J± =
1 + 2h cos 2θ ±

√
1 + 4h2 + 4h cos 2θ

h(−1 + cos 4θ)
. (5.12)

Of these two roots, only J− is both positive and free from singularities. Thus from

here on, we set J = J−(h, θ). Since (5.11) is a canonical transformation, it preserves

Hamilton’s equations of motion. Therefore, θ evolves as

dθ

dt
=
∂H

∂J
=

1

2

(
1 + 4h2 + 4h cos 2θ

+ (1 + 2h cos 2θ)
√

1 + 4h2 + 4h cos 2θ
)
.

(5.13)

where we have used (5.12) to write (5.13) in terms of h and θ.

In these variables, the Floquet matrix in (5.10) is given by

A(J, θ) =

 − sin 2θ
(−1+J+J cos 2θ)(−1−J+J cos 2θ)

(2+6J) cos 2θ−J(5+cos 4θ)

2(−1−J+J cos 2θ)3

(2−6J) cos 2θ−J(5+cos 4θ)

2(−1+J+J cos 2θ)3
sin 2θ

(−1+J+J cos 2θ)(−1−J+J cos 2θ)

 . (5.14)

Using (5.12), J can be eliminated from A(J, θ) in (5.14) and it can be written

as a function Ah(θ) depending on the parameter h alone. Since

dZ(θ)

dθ

dθ

dt
= Ah(θ)Z(θ), (5.15)

equation (5.13) can be used to write this as

dZ(θ)

dθ
= Ãh(θ)Z(θ) where Ãh(θ) =

(
dθ

dt

)−1

Ah(θ). (5.16)

In what follows, we drop the tilde from this notation.
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In particular, at the apparent bifurcation value h = 1/8, the coefficient matrix

is given by

Ah= 1
8
(θ) =

1√
17 + 8 cos 2θ

 −4 sin 2θ 7+12 cos 2θ−4 cos 4θ−3
√

17+8 cos 2θ
−2+2 cos 2θ

3−4 cos 2θ−4 cos 4θ−
√

17+8 cos 2θ
2+2 cos 2θ 4 sin 2θ

 .

(5.17)

An additional benefit is that in this approach, the period is independent of h since

Ah(θ) = Ah(θ + π).

5.4.2 Numerical Solution of the Floquet Problem

Using this explicit construction, we give two numerical checks for the critical value

of hc = 1
8
. Let Mh be the monodromy matrix of the system (5.16), and define the

function f(h) = trMh − 2. We used MATLAB’s built in rootfinder, fzero along

with the ODE Solver ode45 with a relative tolerance of 10−13, an absolute tolerance

of 10−15 to solve the equation f(hc) = 0. Using an initial value of h = 0.1, the

solver returned the numerical solution hc = 0.125 to within machine error. Note

that constructing f(h) requires the numerical solution of the Floquet problem. See

Figure 5.2(a).

Another test, which is more relevant for the approach used in Section 5.6, is

to check that the solution to (5.17) has a periodic solution with an initial value

of Z(θ) = (1, 0)T. In this formulation only a single system of two ODEs must be

integrated. Using arbitrary precision arithmetic and a 30th order Taylor method

using the Julia package TaylorIntegration.jl [48], we find that the numerical

solution satisfies ||Z(π) − Z(0)||2 < 10−120. This is consistent with the hypothesis

that Z has a periodic solution of period π and that hc is truly rational up to the

accuracy of the simulation. See Figure 5.2(b).
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Figure 5.2 (a) The trace of the monodromy matrix as a function of the energy h.
(b) The periodic orbit at h = 1

8
.

5.4.3 Expansion in h

The method of harmonic balance used in Section 5.6 requires that the Floquet matrix

Ah(θ), with explicit form (5.16), be written as a Fourier series. To accomplish this,

we expand Ah in a Maclaurin series in h and find at each order in h a finite Fourier

expansion. Letting

Ah(θ) =
∞∑
k=0

hkAk(θ),

the first few terms are given by

A0(θ) =

− sin 2θ − cos 2θ

− cos 2θ sin 2θ

 ,

A1(θ) =

 sin 4θ 3 + cos 4θ

3 + cos 4θ − sin 4θ

 ,

A2(θ) =
1

2

 sin 2θ − 3 sin 6θ −12− 9 cos 2θ − 3 cos 6θ

12 + 9 cos 2θ − 3 cos 6θ − sin 2θ + 3 sin 6θ

 .

To perform a perturbation expansion, it is preferable that the leading-order

term has constant-valued coefficients. The system can be put in such a form by

a θ-dependent change of variables known as a Lyapunov transformation, which we
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construct. First note that the matrix

B(θ) =

cos θ − sin θ

sin θ cos θ

 (5.19)

is the fundamental solution matrix of the system

dB

dθ
= A0B.

Under the canonical change of variables W (θ) = B(θ)Z(θ), the system (5.10) becomes

dW

dθ
=

dB

dθ
Z +B

dZ

dθ

=
dB

dθ
B−1W +BAZ

=

(
dB

dθ
B−1 +BAB−1

)
W.

Letting

C(θ) =
dB

dθ
B−1 +BAB−1,

then

dW

dθ
= Ch(θ)W, (5.20)

where the first few terms in the series

Ch(θ) = C0 +
∞∑
k=1

hkCk(θ) (5.21)
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are

C0(θ) =

0 −2

0 0

 ,

C1(θ) =

−2 sin 2θ 4 cos 2θ

4 cos 2θ 2 sin 2θ

 ,

C2(θ) =

 sin 4θ −8− cos 4θ

4− 4 cos 4θ − sin 4θ

 ,

C3(θ) =

 −5 sin 2θ − sin 6θ 26 cos 2θ + 6 cos 6θ

−6 cos 2θ + 6 cos 6θ 5 sin 2θ + sin 6θ

 ,

including a leading-order term that is independent of θ, as desired.

5.5 Perturbative Expansion for Monodromy Matrix

Using the expansion presented in Section 5.4.3, we implement an algorithm introduced

by Casas and collaborators [16] and introduced in Section 2.4. The method is the

combination of three ideas—the Magnus expansion, the Lyapunov transform, and Lie

transform perturbation theory—to construct an approximation to the monodromy

matrix of a linear Hamiltonian system with periodic coefficients. A Mathematica

implementation of this algorithm was made in preparation for this proposal and is

also available.

There exist other algorithms [65] to construct solutions to the Floquet problem

perturbatively and approaches using harmonic balance [52]; however, this method

has two significant advantages. The Magnus expansion has the advantage that the

approximate fundamental solution operator will always be in the same Lie algebra as

the exact operator. As the systems under consideration here are Hamiltonian, this

means the approximate fundamental solution matrix is symplectic. From the use of
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the Lie transforms, the solution procedure is also recursive and very easy to code in

a CAS.

This algorithm constructs a power series in h for P and K in the Floquet normal

form Z(t) = P (t)tK . All information on the stability of the system will be contained

in K. The change in stability will occur either when the trace of the monodromy

matrix, e2πK , equals two or, equivalently, when the determinant of K vanishes.

Let Kn represent the nth order approximation. For example, the third order

approximation is

K3(h) =

 0 −2− 12h− 63h2 − 570h3

12h2 − 72h3 0

 (5.22)

with determinant

|K3| = −K3(1, 2)K3(2, 1)

=
(
2 + 12h+ 63h2 + 570h3

) (
12h2 − 72h3

)
.

Since

d

dh

(
2 + 12h+ 63h2 + 570h3

)
= 12+126h+1710h2 = 1710

(
126

3420
+ h

)2

+
1839

190
> 0

the second factor is always increasing and must always be positive for h > 0, there the

only nonzero root occurs at h = 12
72

= 1
6
. This is close to the critical energy Ec = 1

8
.

Alternatively, analyzing the trace of the monodromy matrix,

tr
(
e2πK3(h)

)
= 2 cosh

(
2πh
√
−24 + 108h2 − 2304h3 + 41040h4

)
= 2

leads us to the same polynomial as when considering |K3|, as expected.

Our calculations show that, as for K3, Kn is always zero along the diagonal.

Therefore, for all n calculated, |Kn| = −Kn(1, 2)Kn(2, 1). However, Kn(1, 2) never
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has roots for positive h and Kn(2, 1) has a positive root only for odd n. The first few

relevant factors are:

K3(1, 2) = 12h2 − 72h3,

K5(1, 2) = 12h2 − 72h3 + 348h4 − 3240h5,

K7(1, 2) = 12h2 − 72h3 + 348h4 − 3240h5 + 19017h6 − 165942h7,

...

K17(1, 2) = 12h2 − 72h3 + 348h4 − 3240h5 + 19017h6 − 165942h7

+ 1073361h8 − 9095238h9 +
991023639

16
h10 − 4137261381

8
h11

+
58147963803

16
h12 − 240640073505

8
h13 +

13817540313693

64
h14

− 56853585645399

32
h15 +

828635606507637

64
h16

− 3395564189849295

32
h17 +

3203875950715252755

4096
h18.

and the roots are given by Table 5.1.

Table 5.1 Roots of the Averaged Monodromy Matrix

n h
(n)
c

3 0.1667

5 0.1391

7 0.1330

9 0.1305

11 0.1292

13 0.1283

15 0.1278

17 0.1274
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As n increases, the roots do seem to converge (rather slowly) to Ec = 1
8

= .125.

This convergence can also be visualized by looking at when the Floquet exponents

(the eigenvalues of K) are zero. While this approach seems to work, it is rather slow.

5.6 Method of Harmonic Balance and the Hill’s Determinant

We now present an alternate approach to Section 5.5. In this section, we apply the

method of harmonic balance (MHB) to the π-periodic differential equation (5.20). As

noted in Section 5.3, at parameter values where the system undergoes a bifurcation,

there must exist either a periodic orbit or an anti-periodic orbit. The idea behind this

method is that if such an orbit exists, then it has a convergent Fourier series, which

can be found if an approximate solvability condition for its coefficients is satisfied.

In this section, we provide a brief overview of the method. For a thorough classical

overview, see [62]. This method is discussed in detail in Section 2.3.4.

To apply the method of harmonic balance, we write the periodic solution to

system (5.20) as a Fourier series. The following two observations allow us to simplify

the form of this series. First, we observe that the first component of numerical solution

Z(θ) computed in Section 5.4.2 is an even function, and the second component is

an odd function. Second, because it has a period of π, its Fourier series contains

only even harmonics. Noting the definition of W (θ) using (5.19), this implies that

W (θ) has only odd harmonics in its Fourier expansion. These two facts imply that

W (θ) = (ξh, ηh)
T has the following Fourier expansion:1

ξh(θ) =
∞∑
n=1

an(h) cos (2n− 1) θ and ηh(θ) =
∞∑
n=1

bn(h) sin (2n− 1) θ. (5.23)

1This expansion contained only one-fourth of the possible non-zeros terms and was based
on mere observation from numerical simulations. It would, of course, be possible to proceed
with a more general Fourier ansatz. We have done this and found that the computed Hill
determinant factors into several terms. Of these terms, only the one corresponding to the
above expansion ever vanishes, so that no generality has been lost.
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We found using a trigonometric basis here to be more natural than the complex

exponential basis used in (2.14). Putting this ansatz into the Floquet system (5.20)

and collecting coefficients of the harmonics formally results in an infinite-dimensional

matrix problem M(h)a = 0 where a = [a1, b1, a2, b2, . . .]
T.

To follow the approach of Hill, we need to truncate the Fourier ansatz (5.23) to

1 ≤ n ≤ N . Simultaneously, we truncate the series (5.21) to 0 ≤ k ≤ N ,

C
(N)
h (θ) = C0 +

N∑
k=1

hkCk(θ).

We therefore consider the sequence of truncated linear systems M (N)aN = 0, where

aN = [a1, b1, a2, b2, . . . , aN , bN ]T.

This has nontrivial solutions if and only if M (N)(h) is singular, i.e., if
∣∣M (N)(h)

∣∣ = 0.

We have automated this procedure in Mathematica [64] and can compute the result

at arbitrary truncation order. The first two such truncated systems are

∣∣M (1)
∣∣ =

∣∣∣∣∣∣∣
−1 + h 2 + 2h

−2h 1− h

∣∣∣∣∣∣∣ = −1 + 6h+ 3h2,

∣∣M (2)
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 + h 2 + 2h+ 8h2 −h− h2

2
−2h− 2h2

−2h− 4h2 1− h −2h+ 2h2 −h+ h2

2

h− h2

2
−2h− 2h2 −3 2 + 8h2

−2h+ 2h2 h+ h2

2
−4h2 3

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 9− 54h− 109h2 − 210h3 − 977

2
h4

+
1049

2
h5 +

75

2
h6 + 1074h7 +

11233

16
h8.

The relevant root of
∣∣M (1)

∣∣ = 0 can be found in closed form, h
(1)
c = 2/

√
3−1 ≈ 0.1547,

but the roots of the truncations at higher order must be found numerically. We have

calculated the roots for several values of N and have tabulated them in Table 5.2.
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As expected, we observe convergence to h = 1
8
. By a least-squares fit we find that

the error,
∣∣∣h(N)

c − 1
8

∣∣∣, decays at a rate of about 4−N . Ultimately, we conclude that

this spectral approach converges more rapidly than the result from Section 5.5 which

used averaging.

5.7 Proof of Bifurcation at Ec = 1
8

The preceding results of this chapter strongly suggests that the bifurcation occurs at

exactly h = 1
8
. By the arguments in Section 5.4, if a periodic solution to the explicit

Floquet problem2 at h = 1
8

exists, the result will be proven. Finding a periodic

solution to (5.17) with initial condition Z(θ) = (1, 0)T would complete our argument.

A straightforward calculation shows that the following periodic solutions solve our

initial-value problem:

ξ−(θ) =
1

20

(
1 + 4 cos 2θ + 3

√
17 + 8 cos 2θ

)
η+(θ) = −tan θ

20

(
1 + 4 cos 2θ +

√
17 + 8 cos 2θ

)
.

2Having reduced the problem to solving an elementary system of time-periodic ODEs, this
formulation seemed to be a perfect to open source on the mathematicians’ question-and-
answer site mathstackoverflow.net. The hope was that someone had seen something
that we had missed. Remarkably, Robert Israel (Professor Emeritus, University of British
Columbia) observed that this problem could be solved in closed form with Maple [37] (we
had exclusively used Mathematica [64] as our CAS).
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Table 5.2 Roots of the Truncated Hill Determinants

N h
(N)
c

1 0.154700538379256

2 0.125362196172840

3 0.125302181592097

4 0.125039391697053

5 0.125013678063844

6 0.125002532983010

7 0.125000749452121

8 0.125000157555837

9 0.125000043690148

10 0.125000009756739

11 0.125000002617060

12 0.125000000604347

13 0.125000000158988

14 0.125000000037475

15 0.125000000009738

16 0.125000000002326

17 0.125000000000599

18 0.125000000000145

19 0.125000000000037

20 0.125000000000009
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CHAPTER 6

PHENOMENOLOGY OF THE MOTIONS OF THE FOUR-VORTEX

PROBLEM

The goal of this chapter is to describe the fundamental motions of the vortex

quartet and understand where they reside in phase-space and their relationship to the

corresponding states of the three-vortex problem discussed in Section 4.2. We begin

in Section 6.1 by discussing the regular motions of the vortex quartet–(mixed-period)

leapfrogging, walkabout and braids. We examine these motions in both the

Aref-Eckhardt and Dimer coordinates developed in Chapter 4, ultimately preferring

the Dimer coordinates to examine the phase-space of the vortex quartet. In

Section 6.2, we use the Poincaré surface of section and Lagrangian descriptors

to examine the chaotic motions, such as the chaotic transitions from aperiodic

leapfrogging, walkabouts, and braiding, see Figure 6.1(a) and (b). In particular, we

explain why the chaotic braids seen in see Figure 6.1 (b) are both rare, overlooked,

and fundamental to explaining the phase-space structure of the vortex quartet.

This overview of the phenomenology of the vortex quartet will prepare the

reader for Chapter 7, which focuses on the breakdown of the structures that are

encountered in this chapter. The breakdown of these structures is what allows

or prevents transitions from the different regimes of phase-space, such as when a

walkabout-to-disintegration or disintegration occurs, see Figure 6.1(c) and (d).

6.1 Regular Motion

In the section, we review various motions of the vortex quartet: leapfrogging,

mixed-period leapfrogging, walkabouts, and braiding, paying particular attention

to the simple form they take in the (z1, z2) := (q1, p1, q2, p2)-coordinates used

in the ‘Dimer’ Hamiltonian formulation (4.13) compared to their form in the
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(Z1,Z2) := (Q1, P1, Q2, P2)-coordinates used in the Aref-Eckhardt Hamiltonian (5.2),

and especially the suitability of the former coordinate system for Poincaré sections.

We present a series of figures showing the trajectories in physical space as well as in

both of the reduced coordinate systems.

Figure 6.1 Motion in physical space. (a) A trajectory featuring several bouts
of walkabout motion including one extended period of three consecutive walkabout
‘dances’. (b) A trajectory featuring first walkabout orbits and later braiding orbits, as
the two negative (blue) vortices take turns orbiting the tightly bound pair of positive
(red) vortices.
(c) A leapfrogging motion that transitions to walkabout motion before disintegrating.
(d) A leapfrogging motion that disintegrates without a walkabout stage.

Leapfrogging

In the Aref-Eckhardt coordinates, the Z1 coordinate of the leapfrogging orbit is

periodic while the Z2 coordinate is identically zero, while in the dimer coordinate

system, both z1 and z2 undergo nontrivial periodic motion. The dynamics in a

neighborhood of this orbit are, therefore, simpler in the Aref-Eckhardt coordinates

used in previous studies. This separation of motion makes this coordinate system

useful for studying the linear stability of the leapfrogging orbit, see Figure 6.2.
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Figure 6.2 A typical leapfrogging motion in (a) Lab coordinates (physical space)
(b) Phase space in Aref coordinates (c) Phase space in dimer coordinates (the red
and blue trajectories coincide).

Mixed-Period Leapfrogging

Figures 6.3 and 6.4 show orbits observed by Whitchurch et al. called, respectively,

two-to-one and three-to-one mixed-period leapfrogging orbits. In Figure 6.3, the

two positive-signed vortices move through two periodic motions per every periodic

motion of the negative signed vortices giving a 2:1 ratio, while Figure 6.4 shows a 3:1

ratio. The dimer coordinates here do a better job of separating the two time-scales

of the motion and providing orbits with monotonic phases useful for numerically

computing Poincaré sections. Both the leapfrogging and mixed-period leapfrogging

motions correspond to orbits in Region I of Figure 4.2.

Figure 6.3 A mixed leapfrogging motion with a ratio of two-to-one in (a) Lab
coordinates (physical space) (b) Phase-space using Aref coordinates
(c) Phase-space using dimer coordinates.

Walkabout

Walkabouts are analogous to the −1:−1:2 three-vortex motion seen in Region II of

Figure 4.2. The vortex with circulation two has been replaced by a pair of vortices
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Figure 6.4 A mixed leapfrogging motion with a ratio of three-to-one in (a) Lab
coordinates (physical space) (b) Phase-space using Aref coordinates
(c) Phase-space using dimer coordinates.

of circulation one orbiting rapidly about their common center of vorticity while the

two negative vortices move approximately to the motion seen in Figure 6.5(a). The

motion in Aref-Eckhardt coordinates seen in Figure 6.5(b) fails to separate the fast

and slow motions, whereas in the dimer coordinates seen in Figure 6.5(c), the fast

time scale of the motion of the positive vortices is separated from the slower motion

of the two negative vortices. A typical dimer will rotate at a rate of one to three

orders of magnitude than the walkabout motion frequency.

Figure 6.5 Walkabout motion in (a) Lab coordinates (b) Phase-space using Aref
coordinates (c) Phase-space using dimer coordinates.

Braiding

Braiding orbits are analogous to the −1: − 1 : 2 three-vortex motion seen in Region

III of Figure 4.2. As in the walkabouts, the vortex with circulation two is replaced

by a pair of vortices orbiting about their common center of vorticity while the two

negative vortices move along similar trajectories to those shown in Figure 6.6(a).

91



Figure 6.6 Braiding motion in (a) Lab coordinates (b) Phase-space using Aref
coordinates (c) Phase-space using dimer coordinates.

Remark 6.1.1. For typical orbits, the dimer motions rotate at a frequency one to

three orders of magnitude larger than the walkabout and braiding motions. If this

ratio is a rational number, the

6.2 Chaotic Motion and the Poincaré Surface of Section

In addition to the regular bounded motions discussed in the previous section, there

exist chaotic orbits that, depending on the energy, may spend time in one or more of

the three regions of phase space. These may, at times, resemble any of the families

of orbits previously discussed. Figure 6.7 shows the orbits from Figure 6.1 in the

dimer coordinates. Figure 6.7(a) shows bouts of leapfrog-like and walkabout-like

chaotic motion while Figure 6.7(b) shows bouts of braid-like motion as well. At

higher energies, we observe two types of escape: in the first, the vortices go through

a period of walkabout motions, as shown in Figure 6.7(c) before eventually escaping.

In the second, the vortices immediately disintegrate without going into walkabout

motion, see Figure 6.7(d).

The Poincaré surface of section A standard tool for visualizing dynamics in

more than two dimensions is to reduce the dimensions using the Poincaré Surface of

Section (PSS). The PSS provides qualitative information about essential structures

of a dynamical system such as periodic and quasi-periodic orbits, KAM tori and

their breakup, and the presence of stochastic regions. For a detailed description,
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Figure 6.7 Corresponding motions to Figure 6.1. (a) Walkabout. (b) Walkabout
with braiding. (c) Walkabout to disintegration. (d) Disintegration.

see Section 2.3.1. It does not provide information about escape nor a complete

picture of the underlying invariant manifolds that provide the skeleton of phase space.

Therefore, we complement the visualizations using the PSS with the direct numerical

computation of invariant manifolds for specific fixed points, using the method of

adaptive linear interpolation (ALI+) described by Goodman and Wróbel [26]. We also

use plots of Lagrangian descriptors to visualize the global structure of the invariant

manifolds.

For a two-degree-of-freedom Hamiltonian, each orbit lies on a three-dimensional

energy surface, Eh = {z : H(z) = h}. The PSS is created by looking at the flow on a

cross-section of this surface. This cross-section is formed by taking the hyperplane Σh,

defined by enforcing that q1 = 0 and that q1(t) is increasing to define an orientation.

For each point on the z2 = (q2, p2) ∈ Σh section, the value of the remaining coordinate

on the energy surface, p1, is found by solving H(0, p1, q2, p2) = h. The corresponding

Poincaré map is defined by following the flow on Eh of a point z2 on the PSS until

it returns to Σh. However, this map is undefined at points for which the forward

trajectory does not return to the surface. In this case, we say that the Hamiltonian

is open, and the trajectory has escaped.

In order to find a unique p1 for a given energy h, the same root ofH(0, p1, q2, p2) =

h must be chosen for each initial condition. This is achieved by transforming the
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relationship H(0, p1, q2, p2) = h into a fourth-degree polynomial in p2
1 and using a

polynomial root solver to find all solutions and consistently choosing the smallest

positive root. This gives a unique initial condition of the form (0, p1(q2, p2, h), q2, p2).

Figure 6.8 shows the PSS for progressively increasing values of h: h = 0.01,

h = 0.125, h = 0.18, and h = 0.20. For small values of h, the dynamics look much

like that of the three vortex system described in Section 4.2. As h is increased, the

topology of the PSS changes, and additional dynamical features become visible, as

expected from the KAM theory outlined in Section 2.5. The PSS can be divided

into three regions, exactly analogous to the three regions of the three-vortex problem;

see Figure 4.2. In the phase-plane of the three-vortex problem, the fixed points in

Region II are surrounded by periodic orbits, while the fixed points on the PSS are

surrounded by KAM tori corresponding to quasi-periodic walkabout motions enclosing

the fixed points. Analogous to Region III of the three-vortex problem, the PSS

features KAM tori corresponding to braiding motions, which enclose all five fixed

points. In between the KAM tori are resonant island chains; these correspond to

solutions for which the ratio of the frequency of the dimer and the frequency of

the braiding or walkabout motions is a rational number. The remainder of this

section is organized around a sequence of carefully selected images from our extensive

numerical study of this problem that best demonstrates these changes in the phase-

space dynamics and provides a catalog of the key structures in phase-space.

6.2.1 The PSS for h = 0.01

For h = 0.01, the PSS shown in Figure 6.8(a) is remarkably similar to the phase plane

of the three-vortex problem shown in Figure 4.2. This is because (4.13) demands that

if h is small and q1 = 0 then p1 must small as well so that q2 and p2 approximately

satisfy the three-vortex equations of motion. Periodic orbits of the continuous-time

system correspond to fixed points, or periodic orbits of discrete period N , of the
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Figure 6.8 PSS for increasing values of h. Note the similarities to the phase-plane
of the three-vortex system, see Figure 4.2.
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Poincaré map of first return defined by the surface of section. Thus the leapfrogging

orbits correspond to fixed points of the Poincaré map. These are located on the p2-axis

and marked with red dots. The leapfrogging orbits correspond to two distinct fixed

points because Hamiltonian (4.13) is invariant under the re-labeling of like-signed

vortices. As h → 0, these two fixed points converge to the origin, corresponding to

the limiting case of a pair of vortices of magnitude 2 moving along parallel lines. The

fixed points representing the continuation of the rigidly translating triangles (RTT)

of the three-vortex system are marked with blue dots, and we denote the left and

right fixed points as RTTL and RTTR, respectively.

6.2.2 The PSS for h = 0.08

Next, we consider the interior region at h = 0.08. A closeup of Region I is shown in

Figure 6.9. At this value of h, the interior separatrix has split, leading to heteroclinic

tangles near the fixed points RTTL and RTTR. This splitting can be inferred from

the existence of stochastic regions near the fixed points confined to Regions I and II.

This splitting can be seen explicitly by computing the invariant manifolds of these

points. The stable (blue) and unstable (red) manifolds of the fixed points have been

computed to complement this figure, see Section 6.3 for details.

As can be seen Figure 6.9, the fixed point representing the leapfrogging orbit

(V) sits on the p2-axis along with other higher-period leapfrogging orbits including

the period-two fixed point which is a two-to-one mixed period leapfrogging orbit,

labelled (VI), and the period-three fixed point which is a three-to-one mixed period

leapfrogging orbit, labelled (VII), as shown previously in Figure 6.3 and 6.4. The

KAM tori surrounding these periodic points indicate that they are stable at this

energy level. The tori in the central region around the origin, labelled (VII), depict

walkabout orbits in which the negative-signed pairs are closely bound into a dimer. In

this region, the assumption that r+ remains small fails to hold, so that the coupling
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term H2 in the Hamiltonian (4.13) cannot be assumed small and the dynamics are

not close to those of the -1:-1:2 system of three vortices.

Figure 6.9 The PSS of the central region for h = 0.08 where (IV) is a walkabout
with two negative vortices together, (V) is the leapfrogging orbit, (VI) is a period 2
fixed point. (VII) is period three fixed point, (VIII) are RTTL and RTTR. Stable
and unstable manifolds are shown in blue and red, respectively, while heteroclinic
orbits are shown in purple.

6.2.3 The PSS for h = 0.125

For h = 0.125, Figure 6.8(b) shows a large stochastic region between Region I

and Region II. Figure 6.10(a) shows the invariant manifolds of the RTT orbits

superimposed on the Poincaré section. Here we can observe this stochastic region

corresponds to the continued splitting of the interior separatrix. However, we also

observe that the exterior separatrix dividing Regions II and III, marked in purple,

remains intact. Many tori which are present at h = 0.08 in Figure 6.9 surrounding

the mixed-period leapfrogging orbits have broken up at h = 0.125, but the KAM tori
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surrounding the leapfrogging orbit remain. The presence of these tori prevents points

in a neighborhood of leapfrogging orbit from moving into the larger stochastic region.

Figure 6.10(c) shows the LD plot of the same section. This gives a global view of the

manifolds and can be calculated without detailed knowledge of the fixed points.

6.2.4 The PSS for h = 0.18

At h = 0.18, shown Figure 6.8(c), unlike at the previously discussed lower energies,

there are visible island chains in Region III corresponding to resonant braiding orbits.

Additionally, there are no KAM tori surrounding the leapfrogging orbit. Zooming into

the fixed point RTTR, we observe that the exterior separatrix has split, as shown in

Figure 6.11. Because the exterior separatrix has split, points in the stochastic sea

can enter into braiding orbits in Region III, allowing for the perturbed leapfrogging

trajectories to enter into braiding motions, as seen in Figures 6.1(b) and 6.7(b).

However, because of the existence of KAM tori in Region III, no orbits in the interior

region can escape to infinity.

6.2.5 The PSS for h = 0.20

The KAM tori in Region III, corresponding to quasi-periodic braiding orbits, break

up between the values h = 0.18 and h = 0.20 as seen by comparing Figures 6.8(c)

and (d). At h = 0.20, no tori remain in Region III, and there is no barrier to escape

for trajectories from Regions I and II. We investigate the breakup of these tori in

more detail in Chapter 7 where we discuss the mechanisms for escape.

Figure 6.10(b), shows the invariant manifolds of the RTT points, clearly

demonstrating their splitting. However, directly computing long portions of invariant

manifolds is numerically very difficult, and this method does not allow us to visualize

the full extent of the invariant manifolds. The plot of the Lagrangian descriptors in

Figure 6.10(b) demonstrates the location and of these manifolds much more clearly.

98



Figure 6.10 PSS and LD for h = 0.125 and h = 0.20. The stable and unstable
manifolds of both RTTL and RTTR are colored in blue and red, respectively.
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Figure 6.11 Closeup showing the small separatrix splitting of the exterior separatrix
at RTTR for h = 0.18.

We can now see the manifolds winding along the edge of Region II inside the stochastic

sea. We can also see the invariant manifolds that extend throughout the escape regions

outside the KAM tori in Regions III. As we do not even know what these are invariant

manifolds of, they could not be computed using a direct approach.

We conclude by noting that there is only a narrow regime of energies in which

the splitting of the exterior separatrices and KAM tori in Region III simultaneously

exist. Because both of these features are necessary for perturbed leapfrogging orbits

to be able to transition to braiding, this explains why braids are rare and mostly

overlooked in previous studies.

6.3 A Remark on Numerics Used in This Chapter

The calculations in Section 6.2 and Chapter 7 rely heavily on numerical integration of

the Hamiltonian system. All numerical integration was done using the Julia package

DifferentialEquations.jl [49]. Using forward mode automatic differentiation

(AD), via the ForwardDiff.jl [50] package, only the Hamiltonian needs to be
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specified. The canonical equations of motion (2.2) are found by computing the

appropriate partial derivatives using AD. This approach, amazingly, leads to less

round-off error than the numerical evaluation of the complicated explicit expressions

for the equations of motion. For all numerics, as a consistency check, the change of

energy over the trajectory was computed and confirmed to be on the same order of

magnitude as expected by the prescribed tolerances.

The Lagrangian descriptors were evaluated in parallel on 128 threads with 36

million initial conditions using an equally spaced grid of 6, 000 × 6, 000 points. The

ODEs were solved using the Tsit5 algorithm (a 5th order Runge-Kutta method [57]

due to Tsitouras) with relative and absolute tolerances of 10−6 and 10−9. For creating

the initial primary segment of the invariant manifolds, double precision arithmetic

was used to find the Jacobian of the numerically defined Poincaré map. The invariant

manifolds were computed using a custom Julia implementation of the ALI+ algorithm

described by Goodman and Wróbel [26] with a curvature threshold of α = 10−4. The

primary segment was numerically integrated using the Vern9 (a 9th order Runge-

Kutta algorithm [58] due to Verner) with tolerances of 10−14 and 10−17 using double-

precision arithmetic.
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CHAPTER 7

NONLINEAR TRANSITIONS

In Chapter 6, we discussed the fundamental motions of the vortex quartet and

described their location in phase space. In the current chapter, we focus on the

role the phase space structure plays in the transitions of the quartet’s dynamics.

Ultimately, we would like to use this to understand the nature of escape. Acheson [2]

identified two distinct types of escape, walkabout-to-disintegration, and immediate

disintegration. In both cases, the vortices must escape as two opposite-signed

pairs that escape to infinity along transverse rays. We observe a third type of

escape—‘diffusive-escape’—in which the walkabout orbits disintegrate only over a

very long time scale due to overlapping resonance zones in Region III. By utilizing

the tools from the geometric theory of dynamical system, we can understand the

nature of these transitions to escape. The system undergoes six key transitions as h

increases. Sequentially, they are:

I. The breakdown of the KAM tori surrounding the leapfrogging orbit.

II. The crossing of the interior separatrices connecting RTTL and RTTR with the
invariant manifolds of the leapfrogging orbit.

III. The splitting of the exterior separatrix between Regions II and III.

IV. The breakdown of the KAM tori between the island chains in Region III. This
allows diffusive escape.

V. The disappearance of the island chains in Region III. This allows walkabout-to-
disintegration.

VI. The intersection of the invariant manifolds of the leapfrogging orbit with the
escape regions. This allows immediate disintegration.
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7.1 Escape Times

To get a bird’s eye view of the quantitative behavior of escape as h is varied, consider

a perturbed initial condition of the periodic leapfrogging orbit. On a level set of the

Hamiltonian H = h, the leapfrogging orbit on the PSS using the cross-section q1 = 0

is given by the initial condition

zlf
h(0) =

(
0, p1

(
0,

√
h

2h+ 1

)
, 0,

√
h

2h+ 1

)
.

where p1(q2, p2) is determined by the energy surface condition, H(0, p1, q2, p2) = h.

We consider a family of perturbed leapfrogging orbits with initial conditions given,

for example, by the formula

zpert
h (0) =

(
0, p1

(
10−6,

√
h

2h+ 1

)
, 10−6,

√
h

2h+ 1

)
,

and plotting their escape times in Figure 7.1. This plot provides hints as to which

values of phase space to examine, but in itself does not provide a complete picture

as it only demonstrates the behavior of a one-parameter family of perturbations as h

varies. We set a maximum numerical integration time of Tmax = 106. In this figure

we annotate two values noted by Tophøj and Aref, h ≈ 0.216 and h ≈ 0.26. The first

represents the values where they began to observe perturbed leapfrogging orbits that

first transitioned into walkabout motion before escaping and the latter where they saw

a disintegration. These escape values were found by running simulations for a variety

of initial conditions and observing the behavior. Figure 7.1 provides a refinement of

that picture. It appears that escapes begin at a smaller value energy level than the

value given by Aref, around h = 0.194, marked in the plot, although they may not

have been considering such long integration times. In Figure 7.1, observe that escape

time is not a smooth function of the energy level. We observe spikes where the escape

time appears to diverge. This behavior has a natural explanation that is discussed in

Section 7.7.
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Figure 7.1 Time to escape for typical trajectory in a neighborhood of the
leapfrogging orbit.

7.2 Transition I: Connection of Leapfrogging orbit to Region 1

In Chapter 5, we demonstrated that the leapfrogging orbit is stable for h < hc = 1
8
.

As discussed in Section 2.6.5, it is the disappearance of the last KAM tori surrounding

the two new stable fixed points created by the pitchfork bifurcation that allows for

the leapfrogging motion to transition from an aperiodic leapfrogging into walkabout

motions. Figure 7.2, shows invariant manifolds of RTTL and RTTR at h = 0.129 > hc,

and also the invariant manifolds of the unstable leapfrogging orbit.

Figure 7.2 The PSS for h = 0.129. The stable and unstable manifolds are drawn
in blue and red, respectively. Heteroclinic orbits are drawn in purple.
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Zooming in closer in Figure 7.3, we can clearly see KAM tori enclosing the

invariant manifolds of the unstable leapfrogging orbit. In Figure 7.4 we provide a

Figure 7.3 Zoomed in image of Figure 7.2 near the leapfrogging orbit. Observe the
KAM tori surrounding the invariant manifolds of the fixed point.

closer look at the homoclinic tangle. This tangle is the ‘trellis’ or ‘web’ that was

infamously imagined, but not drawn, by Poincaré. Figure 7.5 shows the central

region at slightly larger energy h = 0.135. At first appearance, this looks the same

as for h = 0.129; however, on closer inspection, we see that no tori surrounding the

leapfrogging fixed point remain, as can be seen in the closeup shown in Figure 7.6.

7.3 Transition II: Connection of Leapfrogging orbit to Region 2

At h = 0.145, the unstable manifold of the leapfrogging orbit intersects the unstable

manifold of RTTR. Figure 7.7, shows just these two invariant manifolds, along with

the intact exterior separatrix, leaving out some of the others in order to reduce clutter

and demonstrate the intersection cleanly. For larger values of h, we no longer are

concerned about the invariant manifolds of the leapfrogging orbit, as we already
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Figure 7.4 Zoomed in picture of Figure 7.3 to show the homoclinic tangle at the
fixed point.

know that it will intersect the invariant manifolds of RTTL and RTTR. Thus for the

subsequent transitions, we show only the invariant manifolds of RTTL and RTTR.

7.4 Transition III: Splitting of the Exterior Separatrix

As explained is in Section 6.2, at h = 0.18 the exterior separatrix has split. In

particular, the plot at h = 0.18 in Figure 6.11 shows that KAM tori constrain the

tangles on the interior of the island chains. It is now possible for points inside the

stochastic sea to reach the island chains. This breakup leads to perturbed leapfrogging

orbit to temporarily transition into quasi-periodic braiding motions.

7.5 Transition IV: Diffusive Escape

As discussed in Section 6.2, the exterior separatrix begins to split at around h = 0.18.

At this energy level, we begin to observe braids in the chaotic trajectories of motions

starting in a neighborhood of the leapfrogging orbit, such as in Figure 1.4(b) as they
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Figure 7.5 The PSS for h = 0.135. The stable and unstable manifolds are drawn
in blue and red, respectively. Heteroclinic orbits are drawn in purple.

escape from the chaotic sea into island chains in Region III. However, as long as there

are KAM tori enclosing Region III, the trajectories must remain bounded.

In Section 6.2, we observe that the KAM tori in Region III break up between

h = 0.18 and h = 0.20. We now provide a refinement of that observation. Figure 7.8

shows a closeup of the PSS in a neighborhood of RTTR for three values of h. We

note that as h → 0.194+, the last tori breaks down. This observation is in line with

the escape time plot in Figure 7.1. The breakdown of these island chains is due to

the overlap of the separatrices surrounding the resonant fixed points in the island

chain. Figure 7.9 shows a set of discrete-Time LD computations in a neighborhood of

RTTR with increasing values of h. These image demonstrate the gradual increase in

the resonance overlap as h increases from h = 0.188 to h = 0.195. In the first image,

the invariant manifolds are very simple and do not overlap, while in the last, we see

quite complicated overlapping tangles. The trajectory of a point inside the island

chain can now move through the resonances, ostensibly at random. This seemingly

random motion causes a diffusive drift from resonance to resonance. However, because
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Figure 7.6 Zoomed in image of Figure 7.5 near the leapfrogging orbit. Observe
that there are no KAM tori surrounding the fixed point.

of the island chains’ ‘stickiness,’ this process is slow, but it becomes faster as the

overlaps of resonances grow. This is consistent with the escape-time plot in Figure 7.1.

The resonance overlap can also be seen using classical invariant manifold and PSS

techniques. In Figure 7.10, we have plotted the PSS at the value of h = 0.191, which is

below the critical value at which the final KAM tori break up. Inside the island chain,

unstable periodic points of order k ranging from k = 9 to 27. The stable and unstable

manifolds of these hyperbolic fixed points of the kth-iterates of the Poincare map are

drawn as blue and red curves, respectively. Heteroclinic tangles surround each island

chain, but there exist KAM tori in between the island chains so that the tangles are

isolated from each other. An analogous plot at a slightly higher level h = 0.1945 is

shown in Figure 7.11, in which the KAM tori separating the island chains have all

split. The resonances now overlap, and the heteroclinic tangles surrounding adjacent

island chains of kth-order periodic points intersect, creating a path from Regions I
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Figure 7.7 The PSS for h = 0.145. The stable and unstable manifolds are drawn
in blue and red, respectively. Heteroclinic orbits are drawn in purple. Observe that
the stable manifold of RTTR crosses the unstable manifold of the leapfrogging orbit.

Figure 7.8 Breakdown of the tori in Region III near RTTR as h approaches 0.194.

and II to the escape region outside the island chain. We note here that Lagrangian

descriptors are a powerful exploratory tool—very little prior knowledge of the phase

space is needed to build a skeleton depicting all the invariant manifolds on the section.

The construction of Figures 7.10 and 7.11 required the tedious and challenging process
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Figure 7.9 The growing resonance overlap of the island chain near RTTR using
discrete-time Lagrangian descriptors. Compare to Figure 7.8.
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Figure 7.10 For h < 0.194, the stable and unstable manifolds of the nested island
chain saddles are between within the KAM Tori and do not cross.

Figure 7.11 For h > 0.194, the stable and unstable manifolds of, leading to a mode
of escape for trajectories in Regions I and II.
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of finding each periodic point and its order before we could numerically construct its

stable and unstable manifold. Even then, only a handful of points were found. When

using Lagrangian descriptors in Figure 7.9 no information is needed about the fixed

points’ location and order, nor is it necessary to compute the manifolds emanating

each fixed point.

7.6 Transition V: Walkabout-to-Disintegration

Neither PSS nor LD plots provide a viewer with immediate information about

escaping trajectories. To get a quantitative understanding of the escape regions, we

introduce the discrete-time forward escape plot for a set of initial conditions on the

PSS. In these images, each initial condition z on the section is color-coded according

to the number of times the trajectory returns to the PSS in forward time before

escape.

In this section and the following sections, we present a series of paired images

for each of the three values h indicated in Figure 7.1. The first member of each

pair uses backward and forward-time Lagrangian descriptors to show the skeleton of

invariant manifolds on the surface of section while the second shows the forward-time

Lagrangian descriptors to show only the skeleton of the stable manifolds. The third

presents the forward time escape structure for initial conditions on the section. In this

image, we also present the stable manifolds of the leapfrogging orbit and the unstable

manifolds of RTTL and RTTR to understand the relationship between the perturbed

leapfrogging orbits and the escape regions. In Figure 7.12, we observe the apparent

location of invariant manifolds corresponding to the ‘tentacles’ separating different

lobes of the hit map. In Figure 7.13, we show only the stabl manifold structure.

However,these do not provide an answer what phase space structures these invariant

manifolds emanate from. At h = 0.194, as seen in Figure 7.14, all initial conditions
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with escape times less than four hits lay outside the invariant manifolds of RTTL and

RTTR and can only be reached by the diffusion through the broken island chains.

At h = 0.216, the picture has changed, see Figure 7.15 and Figure 7.16. At

this energy level, the region of island chains is no longer present, and we see in

Figure 7.17 that the unstable manifolds of both RTTL and RTTR (shown in red)

intersect the stable manifolds of the leapfrogging orbit (shown) and enter into the

immediate escape regions (shown in green). This is the parameter value Acheson and

Aref observe walkabout-to-disintegration behavior in laboratory-frame simulations.

To complete the picture of how the invariant manifolds change with h, we have

included Figure 7.18, showing the PSS and forward-time LD for the immediate values

of h = 0.21 and h = .225.

7.7 Transition VI: Immediate Disintegration

At h = 0.26, there is now an immediate escape has grown to encompass a

neighborhood of the leapfrogging orbit, see Figures 7.19, 7.20, and 7.21. A generic

point in a neighborhood of the leapfrogging fixed points escapes without entering into

the region of walkabout motions.

There exist points that do enter into walkabouts or braids, corresponding to

the spikes in the escape times seen in Figure 7.1. When the vortices disintegrate,

they travel in pairs along transverse rays as they escape to infinity. When these

transverse rays become tangent with each other, the vortices again becoming bound,

and possibly exchange partners.

This can be understood by zooming in near the leapfrogging orbit in Figure 7.17,

see Figure 7.22. Looking at initial conditions near the perturbed leapfrogging

trajectory, we observe a generic point is in an immediate escape region. However,

this neighborhood also contains a complex structure of higher escape times,
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Figure 7.12 LD for h = 0.194 showing the skeleton of invariant manifolds.
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Figure 7.13 Forward-time LD for h = 0.194 with the stable manifolds of RTTL
and RTTR in blue.
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Figure 7.14 The forward time discrete escape plot with the stable manifolds (blue)
of the leapfrogging orbit and the unstable manifolds of RTTL and RTTR (red) for
h = 0.194.
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Figure 7.15 LD for h = 0.216 showing the skeleton of invariant manifolds.
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Figure 7.16 Forward-time LD for h = 0.216 with the stable manifolds of RTTL
and RTTR in blue.
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Figure 7.17 The forward time discrete escape plot with the stable manifolds (blue)
of the leapfrogging orbit and the unstable manifolds of RTTL and RTTR (red) for
h = 0.216.
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Figure 7.18 PSS and LD for h = 0.21 and h = 0.225. The stable and unstable
manifolds of both RTTL and RTTR are colored in blue and red, respectively.
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Figure 7.19 LD for h = 0.26 showing the skeleton of invariant manifolds.
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Figure 7.20 Forward-time LD for h = 0.26 with the stable manifolds of RTTL and
RTTR in blue.
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Figure 7.21 The forward time discrete escape plot with the stable manifolds (blue)
of the leapfrogging orbit and the unstable manifolds of RTTL and RTTR (red) for
h = 0.26.

123



Figure 7.22 The forward time-discrete escape plot with the stable manifolds (blue)
of the leapfrogging orbit and the unstable manifolds of RTTL and RTTR (red) for
h = 0.26.
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CHAPTER 8

CONCLUDING REMARKS

8.1 Conclusion

We recall the two goals laid out in Chapter 1:

1. Goal I: To demonstrate, without numerics, the exact algebraic value of the of
the Hamiltonian of pitchfork bifurcation.

2. Goal II: Understand how, as the parameter h is increased, the dynamics
transitions between the various regimes and escape becomes first possible and
then almost inevitable, as well as identifying the structures in phase-space that
are responsible for the transition between these regimes.

8.1.1 Goal I

The present paper represents our attempt to explain the fortuitous bifurcation value.

Toward that end, we have derived an explicit reformulation of the stability problem,

equation (5.16). We achieve this explicit form by a transformation used in solving

the Kepler problem [30]. This formulation allows us to pose the stability problem

with periodic coefficients that are given exactly, whereas previous studies considered

linearizing about a numerical solution. This simplified problem allows us to show

numerically that there is a periodic solution within an error on the scale of 10−120

We then expand the system in a Fourier-Taylor series, using the energy h

as a small parameter. We employ a classical technique from the study of lunar

motion due to G. W. Hill, which uses the method of harmonic balance, to derive a

sequence of algebraic criteria for the stability of the leapfrogging orbits. The roots

of these polynomials form a sequence of approximations that appears to converge

exponentially to hc.

We had hoped that this analysis would provide insight into a mechanism

illuminating the extraordinary algebraic critical value, perhaps in the form of an
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exact formula for the periodic orbit. However, with this framework we do prove the

existence a the bifurcation at this critical value.

8.1.2 Goal II

In the laboratory coordinates, it was possible to catalog many of the motions–some,

such as braiding, which is easy to miss. In phase-space, the distinctions between

these motions are clear- further, the structures that divide them become evident.

With the right coordinate system, the structures of phase space that dictate the

qualitative behavior of our system manifest themselves. In Chapter 6, we provide a

comprehensive phenomenology of the vortex quartet, and in Chapter 7 we utilize this

knowledge to understand the transitions of the perturbed leapfrogging orbit as we

vary the energy level.

8.2 Future Work

For example, several generalizations of the leapfrogging solution exist and may be

amenable to the techniques discussed here. First, leapfrogging solutions exist for

quartets consisting of two pairs with vorticities Γ−1 = −Γ+
1 and Γ−2 = −Γ+

2 . This

system reduces to the case studied here when Γ+
1 = Γ+

2 . In the more general case,

the critical energy level should now depend on the ratio of the vorticities, λ = Γ1

Γ2
.

Acheson reports that he has investigated this situation numerically through direct

simulations [2]. He makes a few observations about the behavior and suggests that it

would be worthwhile to conduct a systematic analysis. We believe the semi-analytic

method is especially well-suited for such an analysis as it will allow us to build the

stability curves in (h, λ) space.

Another generalization is that leapfrogging solutions exist for a system of 2N

vortices with N > 2, half with vorticity +1 and half with vorticity −1. As the

leapfrogging of four vortices models the leapfrogging of two vortex rings, so the
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leapfrogging of 2N vortices models the leapfrogging of N vortex rings, a problem

that has been studied experimentally in superfluid helium. Wacks et al. has studied

the latter system. [60]. While they found the motion to be stable in their numerical

simulations, reduction to an ODE system would allow the exploration of a larger

volume of parameter space and the application of more theoretical tools. A third

generalization is to consider a system of vortices confined to a sphere; in this case, the

leapfrogging solution is symmetric about a great circle. P. Newton [45] has simulated

these solutions, but their stability has not been analyzed.
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APPENDIX A

PARAMETER REFERENCE SHEET

The recent and classical literature: Aref and Tophøj [55], Gröbli [27] and Whitchurch

et al. [61] all use different parameters to express the initial conditions, the parame-

terization of the periodic orbits and the range of values for which these orbits exist.

We have gathered the results here.

Aref and Tophøj [55] use the Hamiltonian

H(X, Y ) = −1

2
log

(
1

1− Y 2
− 1

1 +X2

)

with equations of motion in terms of the conserved quantity h = e2H

dX

dt
= − Y (1 +X2)

(X2 + Y 2)(1− Y 2)
= −h Y

(1− Y 2)2

dY

dt
=

X(1− Y 2)

(X2 + Y 2)(1 +X2)
= h

X

(1 +X2)2

and initial conditions given in terms of the ratio of the breadths of the pairs, α,

X(0) = 0

Y (0) =
1− α
1 + α

=
1√
h+ 1

.

The conserved quantity h can be written in a few different ways

h =
4α

(1− α)2

=
(1 +X2)(1− Y 2)

X2 + Y 2

= e2H

and the relationship between α and h can be inverted

α =
2 + h± 2

√
h+ 1

h
.
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Table A.1 Comparison of Important Parameters

Author Permissible Values Critical Value

Love 3− 2
√

2 < α < 1 αc = 3−
√

5
2

Gröbli 1 < λ <∞ λc = 4

Whitchurch 0 < H <∞ Hc = log 2

Behring 0 < H̃ < 1
2

H̃c = 1
8

Gröbli [27] uses λ which is equivalent to 1
2h

. Whitchurch et al. [61] use the energy

H itself as their parameter. In this text, we use the energy level sets of a rescaled

Hamiltonian, H̃ = 1
2
e−2H = 1

2h
.

The list of permissible values for periodic motion and the critical value for

instability are summarized below in Table A.1.
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APPENDIX B

CLOSED FORM RESULTS FOR THE LEAPFROGGING SOLUTION

In this Appendix we will consider some classical results of closed-form solutions to

the Leapfrogging problem. Consider the Hamiltonian system

H(X, Y ) =
1

2

(
1

1− Y 2
− 1

1 +X2

)
(B.1)

with equations of motion

dX

dt
=

∂H

∂Y
=

Y

(1− Y 2)2
(B.2a)

dY

dt
= −∂H

∂X
= − X

(1 +X2)2
(B.2b)

and initial conditions

X(0) = 0 (B.3a)

Y (0) =

√
1

1 + h
. (B.3b)

Here, h = 1
2H(0,Y0)

is the parameter that will be related to the energy level. We

will later see periodic orbits exist for h > 1. We can then use this conserved quantity,

h, to solve for (say) Y in terms of X,

Y 2 =
1

h+ 1

1− (h− 1)X2

1 + X2

h+1

and plug this into (B.2a) to render the equation of motion for Ẋ entirely in terms of

X,

dX

dt
=

1

h2
√
h+ 1

(
1− h

h+ 1

1

1 + x2

h+1

)−2√
1− (h− 1)x2

1 + x2

h+1

. (B.4)
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B.1 Implicit Solution

We can now solve for dt using (B.4) and integrating yields

t(X) = h2
√
h+ 1

∫ X

0

(
1− h

h+ 1

1

1 + x2

h+1

)2
√

1 + x2

h+1

1− (h− 1)x2
dx

= h2

√
h+ 1

h− 1

∫ X
√
h−1

0

(
1− h

h+ 1

1

1− k2u2

)2
√

1− k2u2

1− u2
du

= h2

√
h+ 1

h− 1

[∫ X
√
h−1

0

1√
1− k2u2

√
1− u2

du

− 22h

h+ 1

∫ X
√
h−1

0

√
1− k2u2

√
1− u2

du

+
h3

(h+ 1)2

∫ X
√
h−1

0

1

(1− k2u2)
√

1− k2u2
√

1− u2
du

]

= h2

√
h+ 1

h− 1

(
F (θ, k)− 2h

h+ 1
E(θ, k) +

h2

(h+ 1)2
Π(θ, k2, k)

)
=

2h2

√
h2 − 1

(
F (arcsin(X

√
h− 1, k)− E(arcsin(X

√
h− 1, k)

)
− h+ 1√

h− 1h
√
h+X2 + 1

.

where we have used the substitutions u =
√
h− 1X, sin θ = x

√
h− 1 and k2 =

1/(1−h2). Observe that since h > 1, this choice gives an imaginary k. We have used

the identity (DLMF 19.6.3),

Π(θ, k2, k) =
1

1− k2

(
E(θ, k)− k2√

1− k2 sin2 θ

)
,

to remove the incomplete elliptic integral of the third kind.
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B.2 Period

Observing that t|x= 1√
h−1

is a quarter period allows us to compute the period in terms

of complete elliptic functions. A few equivalent expressions are

Tleapfrog =
8h3

h+ 1

√
h+ 1

h− 1

(
K

(
i√

h2 − 1

)
− E

(
i√

h2 − 1

))
(B.5a)

Tleapfrog =
8h3

h+ 1

√
h+ 1

h− 1

(√
h2 − 1

h
K

(
1

h

)
− h√

h2 − 1
E

(
1

h

))
(B.5b)

Tleapfrog = 8h2

(
K

(
1

h

)
− h2

h2 − 1
E

(
1

h

))
. (B.5c)

For these expressions, we have used DLMF 19.7.2,

K(ik/k′) = k′K(k),

E(ik/k′) =
1

k′
E(k),

with k = h and k′ =
√
h2−1
h

so k2 + k′2 = 1 to obtain expressions with a real modulus.

B.3 Action

In a similar way, we can compute the action using DLMF 19.2.4, 19.2.5 and 19.2.6

J =

∮
Y dX

= 4

∫ 1√
h−1

0

√
1 + (1− h)X2

X2 + h+ 1
dX

=
4√

h2 − 1

∫ 1

0

√
1− u2

1− k2u2
du

=
4√

h2 − 1

∫ π
2

0

1− sin2 θ√
1− k2 sin2 θ

dθ

=
4√

h2 − 1
(K(k)−D(k))

=
4√

h2 − 1

(
K(k)− 1

k2
(K(k)− E(k))

)
=

4√
h2 − 1

(
h2K(k) + (1− h2)E(k)

)
.

132



We have used DLMF 19.2.7,

D(k) ≡
∫ π

2

0

sin2 θ√
1− k2 sin2 θ

dθ

=
1

k2
(K(k)− E(k)) .

Using 19.4 of DLMF we can also write this as

J(h) = 4h

(
K

(
1

h

)
− E

(
1

h

))
. (B.6a)

J(h) = iE

(
i sinh−1

(
1

h2 − 1

)
, i
√
h2 − 1

)
. (B.6b)

This relationship also gives us another way to calculate the period. Since

∂H(J)
∂J

= ν, we can also calculate ∂J(h)
∂h

= Tlf to get the same period as found earlier.
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APPENDIX C

PERTURBATIVE EXPANSIONS OF THE LEAPFROGGING ORBIT

C.1 Poincare-Lindstedt Expansion of the Leapfrogging Orbit

In this Appendix we consider asympotitic expansion of the leapfrogging orbit. We will

first approximate the periodic orbits in the invariant subspace using the Poincaré–

Lindstedt technique. We will also arrive at the same results using Hamiltonian normal

forms; this will serve as a confirmation of those results. We can expand the equations

of motion as

dX

dt
=

Y

(1− Y 2)2
=
∞∑
n=1

nY 2n−1 (C.1a)

dY

dt
= − X

(1 +X2)2
=
∞∑
n=1

n(−1)nX2n−1 (C.1b)

Solutions on the energy level H = E with X(0) = 0 have

Y (0) =

√
2E

2E + 1
. (C.2)

In order to find a Poincaré–Linstedt expansion of the periodic solutions to this system

we let X =
√
εx and Y =

√
εy where ε will be the small parameter E. Plugging this

into (C.1) and dividing by
√
ε we find

dx

dt
=
∞∑
n=1

nεn−1y2n−1 (C.3a)

dy

dt
=
∞∑
n=1

n(−1)nεn−1x2n−1 (C.3b)

and initial conditions x(0) = 0 and

y(0) =

√
2

2ε+ 1
=
√

2
∞∑
k=1

2k
(
k − 1

2

k

)
(−1)kεk =

√
2−
√

2ε+
3
√

2

2
ε2 +O(ε3) (C.4)
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We could have changed the initial conditions as to make y(0) independent of ε;

however, that would necessitate changing the parameter, and for the moment keeping

ε = E as the small parameter makes it easy to compare the results of this section

with the previous numerics and with the results that will follow using Lie transform

methods. It also keeps the bifurcation value as Ec = εc = 1
8
. Having higher order

ε terms in y(0) does not require any additional difficulty when implementing the

algorithm in Mathematica.

Introducing the strained coordinate θ = ω(ε)t the perturbed solution will now

have period of 2π with respect to θ. Since the period with ε = 0 is 2π, ω(0) = 1

where ω is given by the asymptotic power series

ω(ε) ∼ 1 +
∞∑
n=1

εnωn. (C.5)

We also introduce the expansions

x ∼ X0 + εX1 + ε2X2 + . . . (C.6a)

y ∼ Y0 + εY1 + ε2Y2 + . . . . (C.6b)

and collect all powers of ε by inserting (C.6) and (C.5) into (C.3). Keeping all terms

relevant to order ε2

(1 + ω1ε+ ω2ε
2)
d

dθ

 X0 + εX1 + ε2X2

Y0 + εY1 + ε2Y2

 =

 0 1

−1 0


 X0 + εX1 + ε2X2

Y0 + εY1 + ε2Y2


+ ε

 2Y 3
0

2X3
0

+ ε2

 6Y 2
0 Y1 + 3Y 5

0

6X2
0X1 − 3X5

0

 .
Collecting terms of order ε0, we have

d

dθ

 X0

Y0

 =

 0 1

−1 0


 X0

Y0

 (C.7)
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with X0(0) = 0 and Y0(0) =
√

2. This gives

X0(θ) =
√

2 sin θ (C.8a)

Y0(θ) =
√

2 cos θ. (C.8b)

as expected. We will define

L =
d

dθ
−

 0 1

−1 0

 , (C.9)

with the inner product given by

〈u, v〉 =

∫ 2π

0

uTvdθ.

Then the adjoint nullspace is

kerL† = span{(cos θ,− sin θ), (sin θ, cos θ)}.

To order ε,

d

dθ

 X1

Y1

 =

 0 1

−1 0


 X1

Y1

+

 2Y 3
0

2X3
0

− ω1

 X ′0

Y ′0


=

 0 1

−1 0


 X1

Y1

−
 3
√

2 cos θ +
√

2 cos(3θ)

3
√

2 sin θ −
√

2 sin(3θ)

+ ω1

 √
2 cos θ

−
√

2 cos θ


with X1(0) = 0 and Y1(0) = −

√
2. We now require the inhomogeneous terms to be

perpendicular to the adjoint nullspace, we find ω1 = 0 and

X1(θ) =
1

2

(
3
√

2 sin θ +
√

2 sin 3θ
)

(C.10a)

Y1(θ) =
1

2

(√
2 cos 3θ − 3

√
2 cos θ

)
. (C.10b)
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This process has been coded in Mathematica and worked out to tenth order,

finding that

ω = 1− 9ε2

2
+

3ε4

2
+

17ε6

16
+

99ε8

64
+

381ε10

128
+O

(
ε12
)
.

This expansion is in agreement with the Taylor series of the complete elliptic integrals

in the expansion

ω =
T

2π
=

√
h2 − 1

h3

π

4h (E (k2)−K (k2))
.

In principle, this can be worked out to arbitrary order. However, solving a system of

linear ODEs at each step, while straightforward can become taxing at higher orders.

The Lie transform is entirely algebraic (except for averaging over trigonometric

functions) and is considerably faster.

We can analyze the error of the approximations at E = 1
4

and E = 1
8

to confirm

that the results converge to the numerical solution found with MATLAB ode45 at

the expected rate. We will use ∆E(n) as the discrete l2 norm at each mesh point to

compare the total separation of the approximation with the numerical solution. We

should expect expect ∆ 1
4
/∆ 1

8
≈ 1/4n

1/8n
= 2n, which we do indeed observe.

C.2 Normal Form for the Leapfrogging Orbits

The Hamiltonian in the invariant plane can be expanded as a geometric series as

H =
1

2

( 1

1− Y 2
− 1

1 +X2

)
=

1

2

(
Y 2 +X2

)
+
∞∑
n=2

1

2

(
Y 2n + (−1)n+1X2n

)
. (C.11)

As can be observed from the phase plane, for small X and Y this is roughly a harmonic

oscillator with circular orbits. By finding the normal form we can expand on this

observation. There are two straightforward ways to bring this Hamiltonian into a

normal form. We can put X and Y into complex coordinates

X =
z + z̄

2
, Y =

z − z̄
2i
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and find generating functions Wi that make the transformed Hamiltonian real or put

X and Y into symplectic polar coordinates

X =
√

2J cos θ, Y =
√

2J sin θ

and find generating functions Wi that make the transformed Hamiltonian independent

of θ. Both methods will produce the same result. We will use the latter.

1. Setup We can write (C.11) using symplectic polar coordinates as

H =
∞∑
n=0

εn
H0
n(θ, J)

n!
(C.12)

where,

H0
0 =

1

2

(
X2 + Y 2

)
= J,

H0
1 =

1

2

(
−X4 + Y 4

)
= −2 cos 2θJ2,

H0
2 =

2!

2

(
X6 + Y 6

)
= (5 + 3 cos 4θ) J3,

H0
3 =

3!

2

(
−X8 + Y 8

)
= −6(7 cos 2θ + cos 6θ)J4.

The transformation into the new coordinates is canonical and the Poisson

bracket in the polar variables is

{F,G} =
∂F

∂θ

∂G

∂J
− ∂F

∂J

∂G

∂θ
.

Using the scaling H → εH and J → εJ , we formally add the factor ε to keep

track of terms. We will later set ε = 1.

In this case the unperturbed problem is H = H0 = J , which is just the harmonic

oscillator with unit frequency.
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2. First Order The first row of the Lie triangle, (2.21) gives

H1
0 = H0

1 + {H0
0 ,W1}

= −2 cos 2θJ2 − ∂W1

∂θ
.

Choosing W1 to get rid of all angular dependence of H1
0 ,

∂W1

∂θ
= −2 cos 2θJ2

W1 = sin 2θJ2.

In the Mathematica code, this step is implemented by averaging both sides to

remove the θ dependence. Now, H1
0 = 0 and

H∗(ε, J, θ) = J +O(ε2).

3. Second Order The next row of the Lie triangle and (2.21) can be used to find

H2
0 ,

H2
0 = H1

1 + {H1
0 ,W1}

= H0
2 + {H0

1 ,W1}+ {H0
0 ,W2}+ {H1

0 ,W1}

= (5 + 3 cos 4θ) J3 − 8J3 − ∂W2

∂θ
.

Removing the angular dependence demands,

W2 =
3

4
J3 sin 4θ.

and

H∗(ε, J, θ) = J − 3

2
J3 +O(J4).

So far, this agrees with the series expansion for H(J).
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4. Higher Order Terms

We can run this algorithm to as high of order as we would like. Taking ε = 1,

we will summarize some of these results. The Hamiltonian is given by

H(J) = J − 3

2
J3 + 3J5 − 103

16
J7 +O

(
J9
)
.

with equations of motion

J̇ = −∂H
∂θ

= 0,

θ̇ =
∂H

∂θ
= 1− 9J2

2
+ 15J4 +

721J6

16
+O(J6).

The first few Wi are

W1 = J2 sin 2θ,

W2 =
3

4
J3 sin 4θ,

W3 = J4 (3 sin 2θ + sin 6θ) ,

W4 = J5

(
33

2
sin 4θ +

15

8
J5 sin 8θ)

)
,

W5 = 63J6 (2 sin 2θ + 165 sin 6θ + 9 sin 10θ) ,

W6 =
1

8
J7 (13605 sin 4θ + 3435 sin 8θ + 105 sin 2θ) .

In Appendix B.3, it is shown that the action is given by

J =
1

2π

∮
Y dX

=
1

πH

(
E(2H)−K(2H)

)
.

This can not be inverted to find H in terms of J analytically. However, by

using the Taylor series for complete elliptic functions, it can be shown that the
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asymptotic series for the action, J , begins as

J(H) = H+
3H3

2
+

15H5

4
+

175H7

16
+

2205H9

64
+

14553H11

128
+

99099H13

256
+O

(
H15

)
(C.13)

which can be inverted to find

H(J) = J−3

2
J3+3J5−103

16
J7+

915

64
J9−4149

128
J11+

19075

256
J13+O

(
J15
)
. (C.14)

This is consistent with our normal form result.

C.3 Change of Coordinates using Lie Transforms

The generating functions allow a change of coordinates from the unperturbed problem

to the perturbed problem. That is, Wi induces a coordinate transformation for the

new θ∗ and J∗ in terms of the old θ and J using the Lie triangle. The first few terms

are

J∗ = J − 2J2 cos 2θ +
J3

2
(8− 3 cos 4θ)− J4

4
(cos 2θ + 7 cos 6θ)) +O(J5)

and

θ∗ =θ + 2J sin 2θ +
17

8
J2 sin 4θ

+
J3

12
(37 sin 6θ − 39 sin 2θ) +

J4

48
(244 sin 8θ − 353 sin 4θ) +O(J5).

The solution to the unperturbed problem H0 = J is

X0(J, θ) =
√

2J sin θ,

Y0(J, θ) =
√

2J cos θ

where θ = t. In the transformed variables, (J∗, θ∗), X and Y are given by

X(J, θ) =
√

2J∗ sin θ∗ (C.15a)

Y (J, θ) =
√

2J∗ cos θ∗ (C.15b)
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where

θ = ωt =

(
1− 9J2

2
+ 15J4 +

721J6

16
+ . . .

)
t.

Expanding (C.15) and using (C.13) to remove J∗, we arrive at equations in the

original coordinates. To first order,

X(θ) =
√

2H

(
sin θ +

H

2
(3 sin θ + sin 3θ) +O(H2)

)
(C.16a)

Y (θ) =
√

2H

(
cos θ +

H

2
(cos 3θ − 3 cos θ) +O(H2)

)
. (C.16b)

We can analyze the error of the approximations at E = 1
4

and E = 1
8

to confirm

that the results converge to the numerical solution found with MATLAB ode45 at

the expected rate. ∆E(n) is taken to be the discrete l2 norm at each mesh point

to compare the total separation of the approximation with the numerical solution.

The error ratio should should go up by a factor of two as we add a new term to our

expansion as seen in Table C.1.
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Table C.1 Convergence of Asymptotic Expansions

Order ∆ 1
4

∆ 1
8

∆ 1
4
/∆ 1

8
log2

(
∆ 1

4
/∆ 1

8

)
1 9.259005409 1.315307630 7.04 2.81

2 0.470145680 0.028243406 16.65 4.06

3 0.291026866 0.007774063 37.44 5.22

4 0.085970168 0.001369417 62.78 5.97

5 0.038049990 0.000285269 133.38 7.06

6 0.018444049 0.000072420 254.68 7.99

7 0.008278637 0.000015669 528.34 9.04

8 0.004109456 0.000003999 1027.58 10.01

9 0.001882635 0.000000892 2111.46 11.04

10 0.000937033 0.000000227 4126.16 12.01
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