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ABSTRACT

STUDIES OF TWO-PHASE FLOW WITH SOLUBLE SURFACTANT

by
Ryan Atwater

Numerical methods are developed for accurate solution of two-phase flow in the zero

Reynolds number limit of Stokes flow, when surfactant is present on a drop interface

and in its bulk phase interior. The methods are designed to achieve high accuracy

when the bulk Péclet number is large, or equivalently when the bulk phase surfactant

has small diffusivity.

In the limit of infinite bulk Péclet number the advection-diffusion equation that

governs evolution of surfactant concentration in the bulk is singularly perturbed,

indicating a separation of spatial scales. A hybrid numerical method based on a

leading order asymptotic reduction in this limit, that scales out the Péclet number

dependence, is adapted to resolve the drop interior flow, the bulk surfactant evolution,

and the transfer of surfactant between the bulk and surface phases.

A more traditional numerical method that solves the full governing equations

without the asymptotic reduction is also developed. This is designed to achieve high

accuracy at large Péclet number by use of complex variable techniques that map the

evolving drop shape and flow velocity onto the fixed domain of the unit disk, where a

Chebyshev-Fourier spectral method is developed to resolve the bulk phase surfactant

evolution.

Results of the two methods are compared for two-dimensional simulations of

drop dynamics, when the drop is stretched or deformed in either a strain flow or in a

shear flow. Recirculation of the interior flow and surfactant exchange on the interior

of the drop induce more intricate dynamics than when bulk surfactant is present in

the exterior phase.
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CHAPTER 1

INTRODUCTION

The word surfactant is a contraction of surface active agent, but it means specifically a

chemical compound or substance that reduces the surface tension between two phases

that are immiscible, or do not mix. The immiscible phases could be liquid-liquid, such

as oil and water, liquid-gas, such as water and air, or liquid-solid, such as a drop of

water on glass. The most common context in practice and the one thought of here is

liquid-liquid.

The molecular structure of a typical surfactant is amphiphilic, meaning that

its molecule has two distinct components or ends. One component is a relatively

small polar head group. It has an electrostatic dipole moment, similar to a water

molecule, and the polar head is termed hydrophilic because this end of the surfactant

molecule is attracted to other polar molecules such as water or a similar aqueous

phase. The other end is a relatively long, large hydrocarbon chain or tail that is

attracted to the similar hydrocarbon molecular structure of oils and is repelled by a

polar aqueous phase, so that it is termed hydrophobic. The amphiphilic structure of

a surfactant molecule means that it is energetically favored or inclined to be at the

interface between an aqueous phase and an immiscible hydrocarbon phase.

It is the dissimilar molecular structure of polar aqueous and non-polar oil phases

that leads to their being immiscible or distinct in the first place, with a surface or

interface between them that has an energy barrier that is difficult for molecules to

cross by, for example, excess thermal kinetic energy. The energy barrier between

immiscible phases manifests itself physically as surface tension. The presence of

surfactant molecules that straddle or sit across an interface lowers the height of the

energy barrier and reduces surface tension.
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Many surfactants are synthesized or man-made but they also occur in nature.

Some surfactants are chemically toxic but others are benign. The most common

domestic surfactants are used in detergents or soaps, where they enable dispersal or

removal of aliphatic compounds and other components. One such domestic surfactant

is sodium dodecyl sulfate (or sodium lauryl sulfate), which is also present in low

concentrations in toothpaste and other products and enables them to foam during

use. Surfactants are used as emulsifiers to maintain suspensions of oil in water or

water in oil, they are used in the processing of foods, and to prevent coagulation and

separation of the components of polymers in water-based paint. They are used to

disperse oil spills in the environment and to improve oil extraction from the ground.

Pulmonary surfactant occurs naturally and plays an important role in maintaining

the lungs’ ability to absorb oxygen, so much so that it is classified by the World Health

Organization as an essential medicine. Chemically similar surfactants are sometimes

used to aid in the opening of an infant’s lungs in the first moments after childbirth.

More generally, surfactants are in such widespread use that their world market value

has been estimated at $30 billion in 2016, [28].

The subject of this dissertation is the role of surfactants in drop deformation

when surfactant is present in its adsorbed phase on the drop surface or interface and

in its dissolved or bulk phase in the drop interior. The study uses a combination of

modeling, analysis, and numerical simulation that is carried out in 2D (i.e., two space

dimensions) as an example of a proof of concept for a theoretical approach to the

simulation of free and moving boundary problems when narrow diffusive boundary

layers are present.

The fundamental cause for occurrence of a boundary layer here is the large

size and shape of a typical surfactant molecule relative to the size of its host solvent

molecules. Surfactant molecules have a size range from around 200 a.m.u to 2,000

a.m.u with many types at the higher weight end, whereas many oils are of 200 a.m.u.
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or less, and an aqueous phase molecule is around 20 a.m.u. The mass and shape

of surfactant molecules means that they have low mobility or diffuse very slowly in

either the bulk or at an interface. If D denotes the diffusivity of a surfactant in water

and a is a length scale, such as a typical drop radius, and U is a typical flow speed,

then a typical diffusion speed is D/a, and the ratio of flow speed to diffusion speed

Ua/D is the Péclet number Pe. In many applications, including those at the small

scale of microfluidics, the Péclet number is of order 106 to 108.

In the bulk, surfactant is advected and diffuses as a passive scalar, and therefore

satisfies an advection-diffusion equation, in which the inverse of the Péclet number

Pe−1 is a dimensionless diffusion coefficient. The equation that governs the evolution

of the bulk surfactant concentration C is (∂t + u · ∇)C = (Pe)−1∇2C. The diffusion

coefficient Pe−1 is small, of order 10−6 to 10−8, but multiplies the highest order spatial

derivatives present in the Laplacian, ∇2. The equation is therefore referred to as

singularly perturbed, because narrow regions or layers may occur where the diffusion

term, although multiplied by a small coefficient, is sufficiently large that diffusion can

not be neglected relative to advection. This is a more or less mathematical explanation

as to how spatially small regions of large spatial gradients, termed boundary layers,

may develop.

During the deformation of a drop, which with its surroundings is almost

completely incompressible, the drop volume is fixed but its surface area can change.

If a drop is initially at rest then it has a spherical shape because of surface tension

at its interface, and the concentration of surfactant on the drop interface and the

concentration of surfactant in the bulk are in equilibrium. But the change in surface

area during deformation puts the surface and bulk phase concentrations out of

equilibrium. For example, over regions where the interface shrinks or contracts, the

surface concentration increases relative to that in the bulk nearby, so that surfactant

tends to desorb from the interface to go into solution in the bulk phase. However,
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since it diffuses very slowly in the bulk this process is impeded, and large spatial

gradients in the bulk phase concentration occur. The departure from equilibrium

between the bulk and surface phase concentrations caused by deformation is the

physical mechanism that induces a boundary layer to occur.

The type of layer structure that occurs is described here as a transition layer,

in preference to boundary layer, since it occurs next to a free and moving interface,

where the bulk concentration undergoes a rapid transition. The dynamics in the

transition layer influence the concentration of surfactant that is on the interface, and

hence the local surface tension and shape of the drop. The change in shape in turn

implies a change in the surrounding flow, so that the flow field and surfactant fields

are mutually coupled.

Two methods of solution are applied in this study. The hybrid method is based

on a matched asymptotic treatment of the singularly perturbed advection-diffusion

equation for the evolution of the bulk surfactant concentration C. This is a leading

order model that is derived in the limit Pe → ∞. It is hybrid in the sense that

it combines asymptotic methods, introduced to resolve the spatial stiffness of the

transition layer, with numerical methods. The second method is a traditional method

in the sense that it solves the full advection-diffusion equation for C, without the

asymptotic reduction. To enable solution at large values of Pe, the traditional method

uses a conformal map to map the evolving drop boundary in the z-plane to the fixed

unit circle in the ζ-plane, where high accuracy can be achieved because of the simpler

fixed geometry.

The hybrid method was introduced in [4] and has been developed in later

studies, such as [38, 39] and [37]. A difficulty that is encountered in the study of

this dissertation, where bulk surfactant is present in the drop interior as opposed to

its exterior, that was not encountered in other studies using the hybrid method, is

the continual recirculation of the interior flow. This presents new challenges that are
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both physical and technical. They are mentioned briefly here and are taken up in

more detail throughout the dissertation.

As already noted, the influence of soluble or bulk surfactant on drop dynamics

occurs via its exchange with the adsorbed or surface phase of surfactant on the

interface, where it changes the interfacial surface tension. With exterior bulk

surfactant present in a spatially uniform or constant ambient concentration, a

Lagrangian or material fluid volume that approaches and passes adjacent to the

interface always brings this same ambient value to the exchange process. During

the exchange process the bulk concentration carried by the fluid volume evolves, and

this continues until the volume begins to leave the neighborhood of the interface, at

which point it carries a final bulk concentration, different from its initial ambient

value, back into the bulk flow but never to return to interact again with the drop.

This feature has been noted in simulations reported in the previously cited references

[4, 37, 38, 39]. However, with interior bulk surfactant, when recirculation of the drop

interior flow occurs, a fluid volume that leaves a neighborhood of the interface carrying

a non-ambient bulk concentration acquired during an interaction with the interface

can return at a later time to present this acquired, non-ambient concentration

to a different part of the interface. Further, this process can repeat indefinitely.

Description of this physical effect is taken up in Section 5.1 and sketched in Figure

5.1. Interior recirculation is particularly evident for a low-viscosity drop in a strain

flow.

It turns out that with exterior bulk surfactant, in the Pe → ∞ limit of the

hybrid method, the fluid velocity only needs to be known on the interface in order

to resolve the adjacent transition layer dynamics. A surface-based Stokes flow solver,

such as a boundary integral method, can therefore be used, since there is no need

to find off-surface data. This is not the case when bulk surfactant is present in the

interior. A traditional method requires off-surface evaluation of the fluid velocity to
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find the bulk surfactant concentration when it is present in either the exterior or

interior phase. However, because of the physical mechanism for surfactant exchange

with recirculating interior flow, as just described, the hybrid method also requires

off-surface velocity data to track the bulk surfactant concentration on an interior

drop ‘core’ that is diffusion-free at leading order as Pe→∞.

Evaluation of off-surface velocity data using a boundary integral equation Stokes

flow solver is possible, by using surface data and the integral representation for the

flow velocity, but it is prohibitively slow numerically. In two space dimensions, by

using both a Goursat representation for Stokes flow and a conformal map from the

evolving z-plane drop to the fixed ζ-plane unit disk, off-surface evaluation of the fluid

velocity can be found by analytic continuation of the Goursat functions from the

circle |ζ| = 1 onto the disk interior |ζ| < 1 using a fast Fourier transform (FFT). This

is extremely quick and numerically stable. It is impeded slightly by the occurrence

of a singularity of one of the Goursat functions on |ζ| = 1, but this is circumvented

by a procedure that is described in Section 3.5. A similar method for calculation of

off-surface velocity data was introduced in [4], but it has been necessary to adapt and

extend it here, and this is a novel feature of this study.

There is a long history of studies on drop deformation, both theoretical and

experimental, that is too extensive to review here. The work of G. I. Taylor [32] was

published in 1934, and reviews that contain references to work by many authors since

then have been given by for example Rallison [27], Stone [31], and more recently by

Anna [2]. Of these, many studies also include the influence of surfactants. A short

book on aspects of interfacial fluid dynamics that contains many references to the

role of surfactants is given by de Gennes et al. [8]

This dissertation is organized as follows. The governing equations and boundary

conditions are given in Chapter 2, and Chapter 3 describes the complex variables

techniques that are used. These include the Goursat representation for Stokes flow,
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the boundary integral equation Stokes flow solver, the conformal map and its use in,

for example, mapping the advection-diffusion equation for C. A reader familiar with

the subject matter of these two chapters could enter the dissertation at Chapter 4,

which summarizes the initial boundary value problem, presents the hybrid method,

and describes the numerical implementation. The results of the numerical simulations

are given in Chapter 5, which is a major component of this study. Conclusions are

given in Chapter 6. The Appendices contain additional supporting details that are

referenced at relevant points in the text.
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CHAPTER 2

GOVERNING EQUATIONS

2.1 Governing Equations in Dimensional Form

The development of the governing equations, the interface and boundary conditions,

and the geometrical configuration are given here. It begins with the equations for

two-phase flow. Conservation of surface surfactant, i.e., adsorbed surfactant that

is confined to the interface S, is introduced next, followed by conservation of bulk

surfactant, i.e., dissolved surfactant away from the interface. Exchange of surfactant

between the surface and bulk phases is described by interfacial boundary conditions,

and the influence of surface surfactant on surface tension is described by a surface

equation of state. Far-field conditions that give the imposed flow field and bulk

surfactant distribution at infinity complete the description.

Conservation of Mass and Momentum. Let Ω1 be the drop interior with fluid

viscosity µ1, Ω2 be the unbounded drop exterior with fluid viscosity µ2, and the

interface of the drop be denoted by S. The flow is governed by the incompressible

Stokes equations

µi∇2u = ∇p, ∇ · u = 0, x ∈ Ωi, i = 1, 2 , (2.1)

written in dimensional form. These are found in the zero Reynolds number or inertia-

free limit of the Navier-Stokes equations for an incompressible Newtonian fluid.

Continuity of Velocity and the Kinematic Boundary Condition on S. The fluid

velocity is continuous across S and evolves according to the kinematic boundary

condition, so that

[u]21 = 0,
dx

dt
= (u · n)n, x ∈ S , (2.2)
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Figure 2.1 A fluid drop with viscosity µ1 occupies the region Ω1, it is surrounded
by an immiscible fluid with viscosity µ2 that occupies the unbounded region Ω2,
and S is the interface between the two fluids. The drop is deformed by an imposed
far-field flow. The interface S is traversed in the counter-clockwise direction, it has
unit tangent vector s and outward unit normal n. The angle ϑ is measured counter-
clockwise positive from the positive x1-axis to the unit tangent vector, and if s is arc
length on S then S has curvature κ = ∂ϑ

∂s
.

where [·]21 denotes the jump or difference in a quantity across S, i.e., the exterior limit

minus the interior limit, and n is the outward unit normal on S.

A sketch of the configuration is shown in Figure 2.1. For the most part, the

geometrical configuration and analysis will be in two space dimensions.

Stress-Balance Boundary Condition on S. The net hydrodynamic traction on S

due to the fluid on either side is equal to the net force due to surface tension on S.

The equivalence of these forces is known as the stress-balance boundary condition,

which is

[σ]21 · n = −(p2 − p1)n+ 2(µ2e2 − µ1e1) · n = σκn−∇sσ, x ∈ S . (2.3)

Here, a subscript indicates the region, Ω1 or Ω2, from which x approaches S, i.e.,

it denotes the interior or exterior limit, σ is the stress tensor, ei (i = 1, 2) is the

rate-of-strain tensor, σ is the surface tension at the interface, κ is the curvature of S
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(or the sum of the principal curvatures in 3D), and ∇s = ∇−n(n · ∇) is the surface

gradient operator.

On the right-hand side of equation (2.3), the first term, σκn, is called the

capillary stress and it acts in the direction normal to S. In the absence of surfactant,

the surface tension σ is a constant, or a material constant for the two immiscible

fluids in Ω1 and Ω2. In the second term, ∇sσ is called the Marangoni stress and it

acts tangentially to S. In the presence of surfactant, there is usually a gradient of

surface surfactant concentration, which in turn causes a non-zero Marangoni stress.

A derivation of the right-hand side of equation (2.3) is given in Appendix A.1, and

the direction of the Marangoni stress is discussed in Appendix A.2.

Surface Equation of State. The surface tension σ depends on the surface

concentration of surfactant Γ according to a surface equation of state σ = σ(Γ).

The nonlinear equation

σ = σc +RTΓ∞ ln

(
1− Γ

Γ∞

)
(2.4)

is often used, and is described as a Langmuir-type surface equation of state [11], the

Frumkin surface equation of state [6], or the Szyszkowski surface equation of state

[18]. The linearized version, when Γ� Γ∞, is also used,

σ = σc −RTΓ . (2.5)

Here, σc denotes the surface tension in the absence of surfactant or “clean” state, Γ∞

is a theoretical maximum monolayer surface surfactant concentration, R is the gas

constant and T is temperature.

Conservation of the Surface Concentration of Surfactant. The surface surfactant

concentration Γ satisfies the conservation law

∂Γ

∂t

∣∣∣∣
n

+∇s · (Γus) + Γκun = Ds∇2
sΓ±Dn · ∇C|S , x ∈ S. (2.6)
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Here, the left-hand side is the time rate of change of the surface concentration Γ on

a Lagrangian interface element, i.e., on an infinitesimal patch of material particles

that lie on the interface for all time as the patch moves and deforms. In the three

terms that make up the left-hand side, reading from left to right, the time derivative

∂t|n is taken in the direction of the outward normal along the moving interface. The

term ∇s · (Γus) describes the change in Γ due to advection along the interface with

tangential fluid velocity us = u−(u ·n)n, and the term Γκun describes the change in

Γ due to the local change in area of an element of the interface that occurs when the

interface is non-planar (i.e., κ 6= 0) and has a non-zero normal velocity component

un = u · n 6= 0. As in (2.3) κ is the curvature of S in 2D or the sum of the principal

curvatures in 3D.

On the right-hand side of equation (2.6), the first term describes the change

in Γ due to surface diffusion, where Ds is the surface diffusion coefficient and ∇2
s is

the surface Laplacian or Laplace-Beltrami operator. The last term is the “surfactant

exchange term” which describes the transfer of surfactant between the interface S,

where it has surface concentration Γ, and the bulk in Ω1 or Ω2, where it has bulk

or dissolved concentration C. The parameter D is the diffusivity of bulk surfactant.

With the convention that n is the outward unit normal on S (i.e., pointing from the

interior Ω1 to the exterior Ω2), the sign that multiplies the surfactant exchange term

is + for bulk surfactant in Ω2 and − for bulk surfactant in Ω1.

Conservation of Bulk Surfactant. Away from the interface, in Ω1 and Ω2,

surfactant is advected with the flow and diffuses as a passive scalar with diffusivity

D and bulk concentration C that satisfies

∂C

∂t
+ u · ∇C = D∇2C, x ∈ Ω1 or Ω2 . (2.7)
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Bulk-Interface Exchange of Surfactant. The exchange of surfactant between the

bulk and the interface satisfies the boundary condition

±Dn · ∇C|S = κa(Γ∞ − Γ)C|S − κdΓ , x ∈ S . (2.8)

The basis for this phenomenological relation is explained in detail in [11] and in the

review [6]. Both sides of the relation express the surfactant exchange flux, which has

dimensions moles per unit area per unit time (i.e., mol L−2T−1). The left-hand side is

the Fick’s law diffusive flux of bulk surfactant at the interface, where, as noted after

(2.6), since n is the outward unit normal on S, the sign is + when bulk surfactant

is present in Ω2 and − when it is present in Ω1. This is equal to, on the right-hand

side, the rate of adsorption onto the interface minus the rate of desorption from the

interface. The rate of adsorption depends on the availability of bulk surfactant at the

interface, where the concentration is C|S, and the availability of surface area that is

not occupied by surface surfactant, which is proportional to Γ∞− Γ. The adsorption

rate is modeled as the product of these two quantities times an adsorption coefficient,

κa. The rate of desorption from the interface is assumed to be independent of the

adjacent bulk concentration and to depend linearly on the surface concentration Γ

with a rate constant κd of dimensions T−1.

Initial and Far-Field Conditions. The initial distribution of bulk surfactant is

assumed to be spatially uniform, with the bulk and interface surfactant concentrations

in equilibrium, and the flow is started impulsively from rest.

When surfactant is present only in the drop interior Ω1, and the initial bulk

surfactant concentration there is C0, the initial conditions are

u(x, 0) = 0 , p =

 p2 x ∈ Ω2

p2 + σ0/a x ∈ Ω1

, (2.9a)

C(x, 0) = C0 , Γ(x, 0) = Γ0 =
Γ∞κaC0

κd + κaC0

. (2.9b)
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The expression for Γ(x, 0) follows since the surfactant exchange rate in equation (2.8)

is zero in equilibrium, and a 0-subscript denotes initial values which are also related

by the surface equation of state. If surfactant is present in the exterior Ω2, the initial

bulk concentration is equal to the constant value in the far-field, i.e., as |x| → ∞.

The flow field and drop deformation are driven by an imposed linear velocity

field. In the reference frame of the drop, which is centered at x = 0, the fluid

velocity at infinity, or far-field flow, consists of this imposed linear velocity field plus

a correction that decays far from the drop and accounts for the disturbance caused

by the drop’s presence. Since the flow is incompressible, i.e., ∇ · u = 0, the most

general flow field that is linear in x can be expressed by a matrix that has zero trace.

This gives the far-field condition for the velocity,

u(x, t)→ u∞ =

 Q B +G/2

B −G/2 −Q

 · x+O(|x|−2) as |x| → ∞ . (2.10)

The parameters Q and B define the symmetric part of the matrix and therefore

correspond to pure strains: Q, with flow Q(x1,−x2), has principal axes or eigenvectors

e1 = (1, 0) and e2 = (0, 1), and B, with flow B(x2, x1), has principal axes (1, 1) and

(1,−1). The parameter G, with flow G/2(x2,−x1), is a rotation (clockwise for G > 0)

with vorticity ω = ∇×u = −Ge3. The remainder term in equation (2.10) represents

the far-field perturbation to the imposed linear flow that is caused by the presence of

the drop, and for incompressible flow with no mass sources in 2D this is O(|x|−2) as

|x| → ∞.

2.2 Nondimensionalization

The length scale for nondimensionalization is the initial equilibrium drop radius, a,

and the scale for fluid velocity is the capillary velocity U ≡ σc/µ2. Their ratio a/U

is the scale for time, the scale for the pressure is µ2U/a, and the scale for surface

tension is the surfactant-free value σc. The surface surfactant concentration is made
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nondimensional by the maximum monolayer surface concentration Γ∞, and the bulk

surfactant concentration is made nondimensional by a reference value C∞, such as

an ambient far-field value, or initial value, or the critical micelle concentration Ccmc.

Since the formation of micelles in the bulk [11] is not included in this study, the

specific choice of reference value made here is more or less arbitrary. For ease of

reference, the variable names and flow parameters (Q,B,G) with the scales for their

nondimensionalization are listed in Table 2.1.

Table 2.1 The Independent Variables, the Dependent Variables, and the
Imposed Flow Parameters, with the Scale for Their Nondimensionalization.

Variable Dimensional scale Variable Dimensional scale

x a, initial drop
radius

σ σc, surfactant-free
surface tension

u U = σc/µ2,
capillary velocity

Γ Γ∞, maximum
surface

concentration

t a/U C C∞, reference bulk
concentration

p µ2U/a Q,B,G U/a = σc/µ2a

In nondimensional form, the governing equations contain a total of seven

dimensionless groups. These are defined and listed in Table 2.2 together with the

dimensionless version of the imposed flow parameters. Note that the dimensional

and nondimensional version of the variables and parameters are denoted by the same
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symbols: x, t,u, p, etc., and the interpretation of the dimensionless groups is described

in more detail where they appear in the description of Section 2.3 below.

Table 2.2 The Dimensionless Groups and Flow Parameters.

Symbol and
Definition

Description Symbol and
Definition

Description

Q,B,G dimensionless
imposed flow
parameters

Pe = Ua/D bulk Péclet
number

λ = µ1/µ2 viscosity ratio J =
DC∞/UΓ∞

surfactant phase
exchange
coefficient

E = RTΓ∞/σc elasticity number Bi = κda/U Biot number

Pes = Ua/Ds surface Péclet
number

K = κaC∞/κd equilibrium
partition
coefficient

2.3 Governing Equations in Nondimensional Form

In nondimensional form, the governing equations, interface boundary conditions and

far-field conditions are:

The Stokes Flow Equations and Related Interface Boundary Conditions.

The equations for Stokes flow are

λ∇2u = ∇p, ∇ · u = 0, x ∈ Ω1 , (2.11a)

∇2u = ∇p, ∇ · u = 0, x ∈ Ω2 , (2.11b)
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where λ = µ1/µ2 is the ratio of the interior to the exterior (reference) viscosity. The

related interfacial boundary conditions on S are continuity of velocity, the kinematic

condition and the stress-balance boundary condition, which respectively are

[u]21 = 0,
dx

dt
= (u · n)n , x ∈ S , (2.12a)

−(p2 − p1)n+ 2(e2 − λe1) · n = σκn−∇sσ, x ∈ S . (2.12b)

These are the underlying flow equations and interface boundary conditions. For

a given imposed far-field flow, if the surface tension σ is known for all x on S and

t > 0 these give a closed well-posed problem for the flow field and the location of

the moving interface or free boundary S. However, in the presence of surfactant, the

surface tension depends on the local concentration of surfactant that is adsorbed on

the interface, Γ(x, t).

Evolution of Surface Surfactant and the Surface Equation of State.

In nondimensional form, the Langmuir-type surface equation of state is

σ = 1 + E ln (1− Γ) , (2.13)

where the elasticity number E is defined in Table 2.2 and represents the sensitivity of

the surface tension to changes in interfacial surfactant concentration. Typical values

are in the range of 0.2 to 0.5. In the absence of surfactant on the interface, Γ = 0

and the surface tension takes the surfactant-free or “clean” constant value σ = 1.

In nondimensional form, the conservation law for evolution of the surface

concentration Γ is

∂Γ

∂t

∣∣∣∣
n

+∇s · (Γus) + Γκun =
1

Pes
∇2
sΓ± J n · ∇C|S , x ∈ S. (2.14)
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The parameters Pes and J are defined in Table 2.2. Of these, Pes is a surface

Péclet number and 1/Pes is a dimensionless measure of the surface diffusivity of

surfactant on the interface. Typical values of this dimensionless surface diffusivity

are of the order of 10−6 or less. Under almost all circumstances, near-discontinuities

or “shocks” in Γ do not occur, because the direction of the Marangoni stress term

∇sσ in the stress-balance boundary condition (2.12b) inhibits their formation. This

point is developed in Appendix A.2. As a result, the influence of surface diffusion can

usually be neglected, with Pes set to infinity or 1/Pes = 0.

The parameter J = DC∞/UΓ∞ in (2.14) is a measure of the change in Γ due

to transfer or exchange of surfactant between the surface and bulk phases relative

to its change due to advection on the interface, C is the local concentration of bulk

surfactant, and n · ∇C|S is its outward normal derivative on S. In the limit when

J = 0, or when there is no surfactant present in the bulk phase so that C = 0, the

influence of surfactant solubility is absent. The governing equations and interface

conditions (2.11) to (2.14), with a given imposed flow, then form a closed problem

for the flow and moving boundary position S. When J > 0 and C > 0 the term

J n · ∇C|S is a source term in the equation for evolution of Γ and represents the

influence of surfactant solubility.

Recall that the sign that multiplies the surfactant exchange term is + for bulk

surfactant in Ω2 and − for bulk surfactant in Ω1, and it is the latter case that is

considered here.

If the interface has parameterization x = X(ξ, t) where ξ = (ξ1, ξ2) are

parametric surface coordinates on S, the time derivative in the normal direction is

given by ∂t|n = ∂t|ξ − ∂tX|ξ · ∇s. This has been explained in [36] and is taken up in

Appendix C.2 at equation (C.19). When reference to the interface parameterization

is included, the conservation law given by equation (2.14) becomes

∂Γ

∂t

∣∣∣∣
ξ
− ∂X

∂t

∣∣∣∣
ξ
· ∇sΓ +∇s · (Γus) + Γκun =

1

Pes
∇2
sΓ± J n · ∇C|S , x ∈ S. (2.15)
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Evolution of Bulk Surfactant and Bulk-Interface Exchange of Surfactant.

The conservation law for bulk or dissolved surfactant is

∂C

∂t
+ u · ∇C =

1

Pe
∇2C , x ∈ Ω1 or Ω2 , (2.16)

The parameter Pe = Ua/D is the bulk Péclet number. Since values of the bulk and

surface diffusivities of surfactant are small and of the same order of magnitude [6], the

dimensionless bulk diffusivity 1/Pe, like the dimensionless surface diffussivity 1/Pes,

is of the order of 10−6 or less.

The interface boundary condition for exchange of surfactant between the bulk

(dissolved) and the surface (adsorbed) phases is

±J n · ∇C|S = Bi (K(1− Γ)C|S − Γ) , x ∈ S . (2.17)

The role of the phase exchange parameter J and the choice of sign on the left-hand

side of this relation are as described for equation (2.14). On the right-hand side,

Bi = κda/U is the ratio of the surfactant exchange rate (or specifically, the rate of

desorption, κd) and the flow rate U/a, and K = κaC∞/κd is the ratio of the rate

of adsorption to desorption of surfactant and is often referred to as an equilibrium

partition coefficient.

As a boundary condition for the evolution equation (2.16) for C, (2.17) is a

third kind or Robin type boundary condition in general. In commercial engineering

processes, the drop size and flow rate are such that the Biot number can be very

large. In the limit Bi → ∞ with J = O(1) and K = O(1) fixed, the adsorption and

desorption processes are in equilibrium, and the boundary condition is of Dirichlet

type,

C|S =
Γ

K(1− Γ)
x ∈ S . (2.18)
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This is the limit of diffusion-controlled transport [6, 11] in which the description of

K as an equilibrium partition coefficient is more clear. In microfluidic contexts, the

length scale a is smaller and the flow rate U/a is typically larger, so that the Biot

number although possibly large is taken to be finite and the full, third kind boundary

condition is kept. This is referred to as the diffusion-kinetic or mixed kinetic model.

Values of K can vary greatly for different surfactants and fluid systems [6, 10].

Initial and Far-Field Conditions.

In nondimensional form, the initial equilibrium conditions are

u(x, 0) = 0 , p =

 p2 x ∈ Ω2

p2 + σ0 x ∈ Ω1

, (2.19a)

C(x, 0) = C0 , Γ(x, 0) = Γ0 =
KC0

1 +KC0

, (2.19b)

where the initial values C0 and Γ0 are related by (2.13).

The imposed flow at infinity remains formally unchanged, that is,

u(x, t)→ u∞ =

 Q B +G/2

B −G/2 −Q

 · x+O(|x|−2) as |x| → ∞ , (2.20)

but where the parameters (Q,B,G) have been made nondimensional by the scale

U/a = σc/µ2a noted in table 2.1. Two specific examples that are standard or

canonical, and can be set up readily in an experiment are:

(i) A pure strain or uniaxial extension, given when B = G = 0, for which the vorticity

is zero and Q is the capillary number, with dominant part

u∞ = Q(x1,−x2) . (2.21)

(ii) A simple or linear shear flow, given when Q = 0 and B = G/2. This is a

combination of a pure strain (B 6= 0) and a rotation (G 6= 0), which has vorticity

19



ω = ∇× u = −Ge3 and dominant part

u∞ = G(x2, 0) . (2.22)

The sign for G in the matrix of (2.20) follows [39]; in [38] the sign of G is reversed.

To conclude this chapter, we revisit some comments that have already been

made above. The presence of a small parameter that multiplies the highest order

derivatives in an ordinary or partial differential equation implies that the equation

is “singularly perturbed” and is an indication that its solution may, and typically

does, contain near-discontinuities with respect to coordinates of the highest derivative.

Expressions that are often used and are examples of a near-discontinuity are boundary

layer, shock, or internal layer. Both equations for the evolution of surfactant, (2.14)

for the surface concentration Γ and (2.16) for the bulk concentration C, are singularly

perturbed, because the respective diffusivities or inverse Péclet numbers 1/Pes and

1/Pe are small. However, the direction of the Marangoni stress, which is toward

regions of higher interfacial surface tension, tends to inhibit the formation of near-

discontinuities in the surface concentration Γ, so that the surface diffusivity 1/Pes

can usually be set to zero. This point is taken up further in Appendix A.2.

Neverthless, near-discontinuities in the bulk concentration can be expected to

occur, especially when the drop undergoes deformation. The mechanism for this was

pointed out in the Introduction and is restated here. During deformation, the surface

area of a region or an element of material particles on the interface can change in

time, that is, it is compressible - its surface area can either expand or contract. In

the absence of surface diffusion and solubility effects, the right-hand side of equation

(2.14) is zero and the total amount of surfactant on the element
∫
S

ΓdS is conserved,

so that the change in area causes a change in the surface concentration Γ, which tends

to take it away from equilibrium with the local bulk concentration C|S. This causes

a near-discontinuity in C to form adjacent to the interface, with large gradients in
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the direction normal to the interface, and for the gradient to be resolved the bulk

diffusivity 1/Pe and diffusion term that it multiplies in equation (2.16) must be kept.

The influence of surface diffusion and surfactant solubility both tend to restore local

equilibrium between the surface and bulk surfactant concentrations.
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CHAPTER 3

COMPLEX VARIABLE FORMULATION: THE STOKES FLOW

SOLVER AND THE CONFORMAL MAP

3.1 Overview

Complex variable techniques are used in two components of this study. In the first

component, the velocity field and pressure of Stokes flow are written in terms of

a stream function that satisfies the biharmonic equation, with suitable boundary

conditions, and in 2D this is solved by introducing a pair of complex Goursat functions

[5]. The two Goursat functions in turn can be expressed as integrals of a single

complex density over the fluid boundaries. The stress-balance boundary condition at

the fluid-fluid interface then requires that the density satisfies a particular Fredholm

second kind integral equation, which is referred to as a Sherman-Lauricella integral

equation. This Sherman-Lauricella formulation provides the basic Stokes flow solver

for flow without surfactant. Since it is a surface-based solver, it can readily be adapted

to include the effects of surfactant that is adsorbed on the interface, or insoluble. It

can then be adapted further, to include the effects of soluble or dissolved surfactant

in the limiting Pe→∞ asymptotic model of the hybrid method, and this is a central

topic of this dissertation.

To test the validity of the Pe → ∞ hybrid method, a traditional method

is developed together with or alongside it. The traditional method uses the

same Sherman Lauricella Stokes flow and surface surfactant solvers as the hybrid

method, but solves the full conservation law, equation (2.16), for the bulk surfactant

concentration C including its bulk diffusion term at large but finite bulk Péclet

number, Pe < ∞, without the asymptotic reduction of the Pe → ∞ limit. When

bulk surfactant is dissolved in the drop interior, the traditional method is therefore

designed to solve equation (2.16) with the surfactant exchange boundary condition
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(2.17) throughout the evolving drop interior Ω1, and to enable comparison with the

hybrid method, it must achieve high accuracy at large Pe. To achieve this accuracy

on an evolving domain, a conformal map is introduced that maps Ω1 onto the fixed

interior of the unit disk, where the bulk concentration is found by a spectral method.

Construction and use of the conformal map introduces a second application of complex

variable techniques to this study, separate from the Sherman-Lauricella formulation.

The Sherman-Lauricella formulation and the conformal map are combined at

one point in the traditional and hybrid methods. Since bulk surfactant is dissolved

everywhere in the drop interior Ω1, the fluid velocity u must be found at and away

from the interface to resolve its evolution there. The velocity field is needed to solve

the full advection-diffusion equation (2.16) at finite Pe for the traditional method, and

it is needed to solve the reduced diffusion-free or transport only version of equation

(2.16) for the Pe → ∞ hybrid method. To find the velocity field away from the

interface S the Goursat functions are continued analytically, via the confomal map,

away from the boundary of the unit disk onto its interior, where the solution for

C is constructed. The velocity field and bulk surfactant concentration can then be

mapped back from the unit disk to the drop interior Ω1 for visualization.

3.2 The Goursat Representation

This section is a review of fundamental background material that is included to make

the presentation self-contained, and some of its results are needed in the development

below. The material can be found in many places in the literature, for example [5]

(pages 180-182) and [21], and the notation here closely follows that of [39].

All of the dependent variables and related quantities depend on time t as well

as position x but, unless it is considered necessary, the time dependence is suppressed

in this and other sections to make the presentation more concise.
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In terms of 2D Cartesian coordinates (x1, x2), the Cartesian components of the

velocity u = (u1, u2) can be expressed in terms of a stream function ψ(x1, x2) by

(u1, u2) = (∂x2ψ,−∂x1ψ) , (3.1)

which automatically satisfies the relation ∇·u = 0 of the Stokes flow equations (2.11).

The curl of the Stokes flow momentum equation then implies that

∇4ψ = 0 , (3.2)

that is, ψ satisfies the biharmonic equation.

To construct the Goursat representation for ψ(x1, x2) note that from equation

(3.2) ∇2ψ is a harmonic function, so that

∇2ψ = Re (H(z)) , (3.3)

where H(z) = P (x1, x2) + iQ(x1, x2) is an analytic function of z = x1 + ix2 with real

and imaginary parts P (x1, x2) and Q(x1, x2). Introduce

f(z) = a(x1, x2) + ib(x1, x2) =
1

4

∫
H(z) dz , (3.4)

so that f(z) is analytic with real and imaginary parts a(x1, x2) and b(x1, x2). Then,

from the Cauchy-Riemann equations and the expression for f(z) in terms of H(z),

∂a

∂x1

=
∂b

∂x2

=
P

4
and

∂a

∂x2

= − ∂b

∂x1

= −Q
4
. (3.5)

It can now be verified directly that ψ − x1a − x2b = ψ − Re (z̄f(z)) is harmonic, so

that it in turn can be written as ψ −Re (zf(z)) = Re (h(z)) for an analytic function

h(z). This gives the Goursat representation for ψ(x1, x2),

ψ = Re (z̄f(z) + h(z)) , (3.6)
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where an overbar denotes the complex conjugate. If

Since the primitive variables u and p, and physical quantities such as the

vorticity and rate of strain tensor that are derived from them, can be written in

terms of derivatives of the stream function ψ, see for example equation (3.1), these

quantities can all be expressed in terms of a pair of analytic functions, referred to as

the Goursat functions, f(z) and g(z) = h′(z). For example, the velocity components

are given by

−u2 + iu1 = f(z) + zf ′(z) + g(z) . (3.7)

Expressions for the physical quantities in terms of the Goursat functions can be found

in for example [21, 38], and are collected for reference in Appendix B.1.

3.3 The Sherman-Lauricella Integral Equation

Since the equations of Stokes flow and the interface boundary conditions are linear

in the velocity u and the pressure p, both these dependent variables and the Goursat

functions that are used to represent them can be decomposed into the sum of two

parts, of which one corresponds to the imposed linear flow, which is itself an exact

solution of the Stokes equations in the absence of the drop, and the other part

corresponds to the modification to the flow caused by the presence of the drop. It is

shown in Appendix B.2 (equations (B.27)) that the Goursat functions are defined on

Ω1 and Ω2 by

f(z, t) =
1

2πi

∫
S

ω(ξ, t)

ξ − z dξ +
G

4
z +H(t) , (3.8a)

g(z, t) =
1

2πi

∫
S

−ω(ξ, t)dξ + ω(ξ, t)dξ

ξ − z − 1

2πi

∫
S

ξω(ξ, t)

(ξ − z)2
dξ

− (B + iQ)z −H(t) . (3.8b)

Here, ω(z, t) is the complex density, which is to be found. The integrals around the

interface S that contain ω(z, t) and its complex conjugate correspond to the flow
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induced by the presence of the drop, while the terms that are linear in z correspond

to the imposed flow field.

The Goursat functions defined by equations (3.8) are analytic on Ω1 and Ω2 but

are not given by analytic continuation across S from one domain to the other. To

see this, let τ denote an arbitrary point on the contour S and let z → τ+ denote the

exterior limit as z approaches τ ∈ S from the exterior domain Ω2, and let z → τ−

denote the interior limit as z approaches τ ∈ S from the interior domain Ω1. This

notation and terminology follow that of Appendix B.2, where more details are given.

Then from the definition (3.8a) of f(z, t), it follows from the Plemelj formulae and

equations (B.30) of Appendix B.2 that, as z crosses S from Ω2 to Ω1, f(z, t) has

a discontinuity of −ω(τ, t). In contrast, from the definition (3.8b) of g(z, t), the

first integral has two components, of which the first has discontinuity ω(τ, t) and the

second is continuous as z crosses S from Ω2 to Ω1 (see the first of equations (B.29a)

and (B.29b) of Appendix B.2). However, the second integral of (3.8b) diverges as

z → τ±, so that the Goursat function g(z, t) is singular on S.

The Sherman-Laricella integral equation for the density ω(z, t) is constructed

from the stress-balance boundary condition (2.12b). Details of the construction are

given in Appendices B.1 and B.2 and are summarized here. The stress exerted on S

by the fluid in Ω1 and Ω2 is expressed in terms of the Goursat functions, see equation

(B.19) and the text that follows it. The contributions of the fluid stress and surface

tension to the net stress-balance are each found to be perfect derivatives with respect

to the arc length s along S, per equations (B.19) and (B.21). Consequently, an

integrated form of the stress-balance boundary condition is used, which is

lim
z→τ+

{
f(z, t)− zf ′(z, t)− g(z, t)

}
− λ lim

z→τ−

{
f(z, t)− zf ′(z, t)− g(z, t)

}
=

1

2
σ
∂τ

∂s
,

(3.9)

as can be found at equation (B.22). Reading from left to right, the terms correspond

to the stress exerted by the fluid in Ω2 and Ω1 on the left-hand side, and the surface
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tension forces on the right-hand side. These represent physical quantities and are

therefore regular in the limits z → τ±, despite the non-analyticity of f(z, t) and

g(z, t) across S, and this observation will be useful later, in Section 3.5.

When the fluid stress terms are expressed as integrals over S that contain the

density ω via relations (3.8) (see the result at equation (B.28)) and the exterior and

interior limits z → τ± are formed (see equations (B.31) and (B.33)) the Sherman-

Lauricella integral equation at (B.36) is found, namely

ω(z, t)− β

2πi

∫
S

ω(ξ, t) d ln
ξ − z
ξ − z

− β

2πi

∫
S

ω(ξ, t) d
ξ − z
ξ − z

− β(B − iQ)z − 2βH(t) = −γ
2
σ(Γ)

∂z

∂s
, (3.10)

where β and γ are given in terms of the viscosity ratio λ as

β =
1− λ
1 + λ

, γ =
1

1 + λ
. (3.11)

Rank Deficiency When λ = 0 and H(t)

The function H(t) entered the analysis in finding the far-field flow and the

behavior of the Goursat function f(z, t) for large |z| at equations (B.23) and (B.24)

of Appendix B.2, from which it also enters the expression (B.26) for the Goursat

function g(z, t). The function H(t) is arbitrary, in the sense that under the map

f 7→ f +H(t) and g 7→ g −H(t) the representation of all physical quantities such as

the fluid velocity, pressure, and stress in terms of the Goursat functions is independent

of the choice of H(t).

In solving the integral equation (3.10) the function H(t) can therefore be set to

zero, H(t) = 0, with one exception. When the drop interior fluid is inviscid, so that

λ = 0 with the parameters of definitions (3.11) set to β = 1 and γ = 1, the integral

equation is rank deficient or not invertible unless a solvability condition is introduced
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[24, 25]. The choice

H(t) =
1

2

∫
S

ω(ξ, t) ds (3.12)

was introduced by Kropinski [19] to remove the rank deficiency, and it turns out that

H(t) ≡ 0 as a consequence of the conservation of area of the interior region Ω1.

The Fluid Velocity on S

The Sherman Lauricella formulation of Stokes flow is referred to as indirect

because the dependent variable or solution of the corresponding integral equation is

a density, from which the primitive variables such as the fluid velocity can be found.

In a direct formulation the dependent variable of the integral equation is itself a

primitive variable, which is usually the fluid velocity [26].

Instead of presenting it here, the expression for the fluid velocity on S in terms

of the density ω(z, t) is given in Section 3.7, at equations (3.69) and (3.70), when

describing the time update of the interface position and the equal arc length frame.

3.4 The Conformal Map From the Unit Disk |ζ| ≤ 1 to the Drop Interior

Ω1 ∪ S

The method that is adopted for construction of the conformal map is referred to as

James’s method [17] and the most detailed accounts of it that are available, although

brief, have been given by Halsey [14] and in the book by Kythe [20] (pp. 279-283).

A comment on the literature and on a similar method due to Theodorsen [33] is

included at the end of this section, but this section is mostly concerned with the map

construction.

In modulus-argument form, a general point in the z-plane is z = ρeiφ and a

general point in the ζ-plane is ζ = reiθ. James’s method constructs a conformal

map z = w(ζ, t) from a point ζ = eiθ on the disk boundary |ζ| = 1 to a point

z = ρ(θ, t)eiφ(θ,t) on the evolving drop interface or contour S. The map is then
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continued analytically so that it maps the unit disk |ζ| ≤ 1 onto the drop interior and

interface Ω1 ∪ S for all time t ≥ 0. Since the map is to be conformal, the derivative

∂w
∂ζ

exists and is non-zero on |ζ| ≤ 1. We follow a common practice, in which freedom

of choice in the Riemann mapping theorem enables construction of a map that sends

origin to origin, so that w(0, t) = 0, and positive real axis Re(ζ) > 0 to positive

real axis Re(z) > 0, so that w′(0, t) > 0 is real and positive, where a prime denotes

the derivative ′ = ∂
∂ζ

. The map is then unique. It is constructed by introducing an

auxiliary function, which for James’s method is

h(ζ, t) = ln
∂z

∂ζ
, (3.13)

or equivalently h(ζ, t) = lnw′(ζ, t), which is also analytic on the unit disk.

Application of the chain rule, written in modulus-argument form, shows that

on the disk boundary ζ = eiθ

∂z

∂ζ
=
∂z

∂θ
÷ dζ

dθ
=

(
ρ
∂φ

∂θ
− i∂ρ

∂θ

)
ei(φ−θ) , (3.14)

so that from the definition (3.13) of the auxiliary function

h(ζ = eiθ, t) = ln

√(
ρ
∂φ

∂θ

)2

+

(
∂ρ

∂θ

)2

+ i tan−1

(−1

ρ

∂ρ

∂φ

)
+ i(φ− θ) . (3.15)

This can be simplified by recalling that on S, ds2 = dρ2 + (ρdφ)2 where s

denotes arc length, and tanψ = −1
ρ
∂ρ
∂φ

, where ψ is the angle at a point on S

measured counterclockwise positive from the azimuthal direction to the tangent with

φ increasing. Hence, ∣∣∣∣∂z∂ζ
∣∣∣∣ =

∂s

∂θ
, arg

(
∂z

∂ζ

)
= ψ + φ− θ , (3.16a)

and h(ζ = eiθ, t) = ln
∂

∂θ
s(θ, t) + i(ψ(θ, t) + φ(θ, t)− θ) . (3.16b)
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A sketch showing the angle ψ is given in Figure 3.1. Now, since h(ζ, t) is analytic

on |ζ| ≤ 1, its real part u(r, θ, t) and imaginary part v(r, θ, t) are conjugate harmonic

functions on the unit disk, and equation (3.16b) implies that their boundary values

are

u(1, θ, t) = ln
∂

∂θ
s(θ, t) and v(1, θ, t) = ψ(θ, t) + φ(θ, t)− θ . (3.17)
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Figure 3.1 The interface S in the z-plane has polar equation ρ = ρ(φ). The angle ψ
is measured counter-clockwise positive from the azimuthal direction eφ to the tangent
vector, or equivalently from the radial direction eρ to the outward normal. The unit
tangent and outward normal vectors have complex variable counterparts sT = ∂z

∂s
and

n = −i∂z
∂s

respectively, where z = ρ eiφ is a point on S.

In equation (3.17) both u(1, θ, t) and v(1, θ, t) are 2π-periodic functions of θ and

therefore have Fourier series representations that are related by harmonic conjugation.

Let

u(1, θ, t) = a0 +
∞∑
n=1

an cosnθ + bn sinnθ . (3.18)

Then, to construct the conjugation operator K: u(1, θ, t) 7→ v(1, θ, t) we follow Delillo

[9] and note first that the solution of the Dirichlet problem for u(r, θ, t) on the disk
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interior is

u(r, θ, t) = a0 +
∞∑
n=1

anr
n cosnθ + bnr

n sinnθ . (3.19)

The Cauchy-Riemann equations ∂u
∂r

= 1
r
∂v
∂θ

and ∂v
∂r

= −1
r
∂u
∂θ

imply that the conjugation

operator K maps eigenfunctions of the Laplacian so that

K: rn cosnθ 7→ rn sinnθ , (3.20a)

and K: rn sinnθ 7→ −rn cosnθ , (3.20b)

where constants of integration have been set to zero without loss of generality. Hence,

on the disk interior and boundary the harmonic conjugate functions are

v(r, θ, t) = Ku(r, θ, t) =
∞∑
n=1

anr
n sinnθ − bnrn cosnθ , (3.21a)

and v(1, θ, t) = Ku(1, θ, t) =
∞∑
n=1

an sinnθ − bn cosnθ . (3.21b)

The conjugation operator and its inverse are computed via fast Fourier transforms

(FFTs).

In the discussion so far, time has only entered parametrically, but the map is

updated at each time step by knowledge of the new interface position data. In the

z-plane, let S be parameterized by z = z(α, t) where α ∈ [0, 2π) is the parameter.

The interface position data at time t + ∆t consists of the location of N mesh points

on S, and if these are chosen to be equally distributed in α,

zk,t+∆t = z(αk, t+ ∆t), αk = (k − 1)h, k = 1, 2, . . . N, with h = 2π/N. (3.22)

In practice the parameter α is often taken to be the arc length s on S rescaled to

lie in [0, 2π), although other choices may be useful. Conversely, M mesh points are

equally distributed around the fixed unit circle in the ζ-plane,

ζj = eiθj , where θj = (j − 1)
2π

M
and j = 1, 2, . . .M . (3.23)
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More details of the parameterization and time update of S are described in

Section 3.7. Note that the mesh points {zk,t : 1 ≤ k ≤ N} of definition (3.22) are

completely independent of the image of the mesh points {ζj : 1 ≤ j ≤M} of definition

(3.23) under the conformal map.

The map update consists of the following iterative procedure, which is similar

to that described by Halsey [14]. First, an initial estimate is needed, which is the

converged map data at the time t at the end of the previous time step, or the identity

z = ζ for the first step:

1. The updated interface data {zk,t+∆t : 1 ≤ k ≤ N} of definition (3.22) is used to

derive a set of curve-fit coefficients that at time t+ ∆t give

(i) polar angle vs. arc length φ = φ(s, t+ ∆t) and (3.24a)

(ii) polar distance vs. angle ρ = ρ(φ, t+ ∆t) . (3.24b)

MATLAB’s built-in cubic spline interpolation is used to find the curve-fit coefficients.

2. Use the current approximate values of
∣∣∣∂z∂ζ ∣∣∣

j
=
(
∂s
∂θ

)
j

at the equispaced mesh points

on the unit circle (3.23) to approximate the value sj of s at the current map image

of ζj = eiθj . This is given by

sj =

∫ θj

0

∣∣∣∣∂z∂ζ
∣∣∣∣
j

dθ , (3.25)

and MATLAB’s built-in trapezoidal rule is used for the integration.

3. Use the t+∆t curve-fit of step (1) to determine the values φj and ρj that correspond

to the current approximation of sj. From this, construct the current approximate

image zj = ρje
iφj of ζj, and the current approximate value of ψj from

arg(∆zj) ≡ arg(zj+1 − zj) = ψj + φj +
π

2
. (3.26)

4. Evaluate the current approximation of ψj+φj−θj, and use the inverse conjugation

operator K−1v(1, θ, t) = u(1, θ, t) to update the current approximation of ln
∣∣∣∂z∂ζ ∣∣∣

j
.
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That is, per equations (3.16) and (3.20), use FFTs to compute

ln

∣∣∣∣∂z∂ζ
∣∣∣∣
j

= K−1(ψj + φj − θj) , (3.27)

and exponentiate to update the current approximation of
∣∣∣∂z∂ζ ∣∣∣

j
=
(
∂s
∂θ

)
j
.

5. Repeat the procedure from steps (2) to (4) iteratively until the values of
∣∣∣∂z∂ζ ∣∣∣

j

converge.

Now the map z = w(ζ, t+∆t) is known in its discretized form zj = w(ζj, t+∆t)

on the unit circle ζj = eiθj via the converged data zj = ρ(φj)e
iφj where φj =

φ(θj, t+ ∆t) is known for 1 ≤ j ≤M .

Analytic Continuation of The Map z = w(ζ, t) From |ζ| = 1 Onto |ζ| ≤ 1

Analytic continuation of a function from the unit circle |ζ| = 1 onto the unit disk

|ζ| ≤ 1 can be achieved at no additional computational cost via Fourier transforms,

since the coefficients of the complex Fourier series on the circle are exactly the

coefficients of the Taylor series of the function when it is continued analytically onto

the disk.

In the present context, the map z = w(ζ, t) is known on the unit circle ζ = eiθ

for θ ∈ [0, 2π) and is necessarily 2π-periodic there. For its continuation onto |ζ| ≤ 1

to be analytic, its complex Fourier series on the circle must be of the form

w(eiθ, t) =
∞∑
k=0

ck(t)e
ikθ where ck(t) =

1

2π

∫ 2π

0

w(eiθ, t)e−ikθdθ . (3.28)

That is, for k = −1,−2, . . . the Fourier coefficients ck(t) = 0 are all zero to avoid

singularity at ζ = 0.

In [9] Delillo points out that this result can be shown directly from the Cauchy

integral formula. Namely, since w(ζ, t) is to be an analytic function of ζ in and on
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|ζ| ≤ 1, for a point on the interior |ζ| < 1,

w(ζ, t) =
1

2πi

∫
|ζ′|=1

w(ζ ′, t)

ζ ′ − ζ dζ
′ =

1

2πi

∫
|ζ′|=1

w(ζ ′, t)
∞∑
k=0

(
ζ

ζ ′

)k
dζ ′

ζ ′
.

The parameterization ζ ′ = eiθ with θ ∈ [0, 2π) gives, on justifying interchange of the

order of integration and summation,

z = w(ζ, t) =
∞∑
k=0

(
1

2π

∫ 2π

0

w(eiθ, t)e−ikθdθ

)
ζk =

∞∑
k=0

ck(t)ζ
k . (3.29)

Here, the Fourier coefficients ck(t) for k = 0, 1, . . . of definition (3.28) have been

identified, and the last sum is the Taylor series of w(ζ, t) on |ζ| ≤ 1.

This result will be used in the analytic continuation of the Goursat functions in

Section 3.5. Once the Fourier coefficients ck(t), k = 0, 1, . . ., are known on the unit

circle ζ = eiθ for θ ∈ [0, 2π) the continuation onto the disk |ζ| ≤ 1 is given simply by

setting ζ = reiθ with 0 ≤ r ≤ 1.

In the choice made earlier for uniqueness of the map: (i) It sends origin to

origin, so that w(0, t) = 0 and hence c0(t) = 0 in equations (3.28) and (3.29);

(ii) w′(0, t) > 0, so that c1(t) > 0. The map and auxiliary function are related

by the equation h(ζ, t) = ln ∂ζz, so that in terms of the map coefficients {ck(t)},

h(ζ, t) = ln c1(t) + 2c2(t)ζ/c1(t) + O(ζ2) as ζ → 0. Then in terms of its real and

imaginary parts h(ζ, t) = u(r, θ, t) + iv(r, θ, t), which implies that in expressions

(3.18) and (3.19) the coefficient a0(t) = ln c1(t), and in expressions (3.21) the term

b0(t) = 0 is absent.

Comments on the Methods of James and Theodorsen

To conclude the section, in this synopsis the time dependence of the map and its

image S are omitted. There are more accounts in the literature on conformal mapping

of a method that is similar to James’s method but which is due to Theodorsen [33],
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and for Theodorsen’s method there are also established bounds that appear to be

sharp on the conditions for which it converges.

The purpose of both methods is the same: construction of a conformal map

between a given plain simple smooth closed curve S, which is also called a Jordan

curve, and the unit circle. As noted above equation (3.13), if the map z = w(ζ)

between a curve S and the unit circle |ζ| = 1 is to be conformal on the boundary

curves and interior of the respective regions in the z and ζ-planes, and it is constrained

to map origin to origin (i.e., w(0) = 0) and real axis to real axis (i.e., w′(0) > 0 is

real and positive) then for a given curve S the map is unique. Therefore, between

different methods, any difference concerns only the class of curves S for which the

method can generate a solution, or converge, to the map.

James’s method, as has just been shown, constructs the map z = w(ζ) from the

auxiliary function h(ζ) = ln(dz
dζ

) of equation (3.13), which leads to the relations (3.16)

on the unit circle ζ = eiθ. By way of contrast, Theodorsen’s method constructs the

map from the auxiliary function

hTh(ζ) = ln

(
z

ζ

)
, which implies (3.30a)

hTh(ζ = eiθ) = ln ρ(θ) + i(φ(θ)− θ) (3.30b)

on the unit circle. The map constraints (i.e., w(0) = 0 and w′(0)) > 0) ensure that

hTh(ζ) is analytic in and on |ζ| ≤ 1, so that, for Theodorsen’s method, the real part

u(1, θ) = ln ρ(θ) and imaginary part v(1, θ) = φ(θ) − θ of hTh(ζ) on the unit circle

are now the boundary values for the pair of conjugate harmonic functions on the unit

disk.

Many accounts of Theodorsen’s method, for example that of [5] (p. 177), express

the conjugation operator K: u(1, θ) 7→ v(1, θ) as an integral operator on the unit circle

that is constructed via the Cauchy integral formula (see, e.g., [5], p. 177 and p. 47).
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This approach leads to Theodorsen’s integral equation

φ(θ)− θ =
1

2π
−
∫ 2π

0

ln ρ(φ(θ′)) cot

(
θ − θ′

2

)
dθ′ , (3.31)

in which, for given S, ρ = ρ(φ) is known, and the solution for φ = φ(θ) is to be found.

Delillo [9] applies a contraction mapping argument to the integral operator of

equation (3.31) to show that a sufficient condition for an iterative scheme to converge

to a solution for φ(θ), and hence to a solution for the map, is that

sup
φ∈[0,2π)

∣∣∣∣1ρ dρdφ
∣∣∣∣ < 1 . (3.32)

This criterion for Theodorsen’s method appears to be well-known, but an original

derivation to cite for it has proved elusive. In geometric terms, it shows that

convergence of Theodorsen’s method is assured for Jordan curves S for which |ψ| < π
4
,

where the angle ψ was introduced immediately after equation (3.15) and is illustrated

in Figure 3.1. The result appears to be sharp; an example from the same tutorial notes

as well as computations of this study show that as the bound (3.32) is approached at

any point of S the number of iterations needed to converge increases, and convergence

fails if |ψ| ≥ π
4

at any point.

Theodorsen’s method is therefore not capable of constructing a conformal map

to a curve S that is highly distorted from a circle, and for that reason it has not been

used in this dissertation. James’s method is capable of map construction for a much

larger class of elongated and distorted curves S.

From a theoretical perspective, conjugation by the integral operator or by

Fourier series are equivalent, and in the survey [9] conjugation by Fourier series is used

for the practical numerical construction of maps. The study by Halsey [14] focuses

explicitly on the comparison of Theodorsen’s method with James’s method for map

construction by Fourier series conjugation, although in the context of airfoil mapping,

where the exterior of S is mapped to the exterior of the unit disk. Halsey [14] notes
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that James’s method converges rapidly for examples of curves S that are sufficiently

distorted from a circle that Theodorsen’s method fails. The study also includes an

extreme example of a “looped” curve S that is closed and can be traversed smoothly

(i.e., it has a continuous, non-zero tangent vector) and which intersects itself, and

is therefore not simple and not a Jordan curve, but which James’s method can map

successfully to the unit circle.

The literature on conformal mapping does not appear to contain any theoretical

results on bounds for the convergence of James’s method. It is conjectured in [14]

that James’s method enables map construction for a larger class of more distorted

curves because (i) its auxiliary function (3.13) and conjugate harmonic parts (3.17)

are expressed in terms of the intrinsic coordinates s and ψ of the image curve S, and

(ii) the integral operator (3.25) tends to smooth out or reduce errors in the iterated

values of |dz
dζ
|j = ds

dθ
|j prior to convergence. Recall again the auxiliary functions

h(ζ) = ln
dz

dζ
and hTh(ζ) = ln

(
z

ζ

)

of James’s and Theodorsen’s methods, respectively. In James’s method the argument

dz
dζ

is the quotient of the tangent element dz at a point on S and its pre-image dζ,

and both are readily expressed in terms of increments in the intrinsic coordinates on

S and |ζ| = 1, specifically

dz = ds ei(ψ+φ+π
2

) and dζ = dθ ei(θ+
π
2

) , (3.33)

whereas the analog in Theodorsen’s method is z/ζ, which is the quotient of the

location of a point z on S and its pre-image. Other conformal mapping methods with

the same purpose can be constructed, and one that is due to Friberg is mentioned

in [5] (p. 177), which has auxiliary function hF = ln( ζ
z
dz
dζ

). In chronological order,

Theodorsen’s method was introduced first, followed by Friberg’s method, and later

by James’s method.
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3.5 Analytic Continuation of the Goursat Functions to Find the Fluid

Velocity on the Unit Disk |ζ| ≤ 1

To find the fluid velocity on the drop interior Ω1 requires analytic continuation of the

Goursat functions, which were defined earlier at equations (3.8) and are recalled here

as

f(z, t) =
1

2πi

∫
S

ω(ξ, t)

ξ − z dξ +
G

4
z +H(t) , (3.34a)

g(z, t) =
1

2πi

∫
S

−ω(ξ, t)dξ + ω(ξ, t)dξ

ξ − z − 1

2πi

∫
S

ξω(ξ, t)

(ξ − z)2
dξ

− (B + iQ)z −H(t) . (3.34b)

The density ω(z, t) is known on the evolving interface S, which is the boundary of

Ω1, since it is the solution of the Sherman-Lauricella integral equation. In principle,

a direct evaluation of the contour integrals around S could therefore be implemented

to find the Goursat functions at points z ∈ Ω1 but this would be prohibitively slow.

If N computational mesh points are used for the discretization of S and M mesh

points are introduced on Ω1, where typically M = O(N2), then O(MN) operations

are required to evaluate the integrals around S at each point of Ω1. Also, although

f(z, t) has an interior limit as z → τ− (i.e., as z approaches τ ∈ S from the interior

domain Ω1) which will be found below, g(z, t) does not have an interior limit, since

the second integral in its definition (3.34b) does not converge.

The procedure that is adopted for analytic continuation is first to evaluate f(z, t)

for z ∈ S via definition (3.34a), and then to evaluate a combination of f(z, t) and

g(z, t) that is bounded for z ∈ S in order to extract the principal part of g(z, t). These

boundary values are then mapped onto the boundary |ζ| = 1 of the unit disk in the

ζ-plane using the conformal map z = w(ζ, t) of section 3.4 and analytic continuation

onto the disk interior |ζ| < 1 is achieved by fast Fourier transforms (FFTs). This is
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computationally efficient and numerically stable. The map z = w(ζ, t) can be used

to find the continuation of the Goursat functions onto Ω1 in the z-plane, if needed.

The interior limit of the integral in the definition (3.34a) for f(z, t) is given at

equation (B.30b) of Appendix B.2. With z instead of τ as a representative point on

S, this gives

f(z, t) =
ω(z, t)

2
+

1

2πi
−
∫
S

ω(ξ, t)

ξ − z dξ +
G

4
z +H(t) for z ∈ S , (3.35)

where −
∫
S

denotes a Cauchy principal value integral.

The combination zf ′(z, t)+g(z, t) or its complex conjugate appears in expression

(3.7) for the complex fluid velocity, which is now rewritten as

u = u1 − iu2 = i(f(z, t) + zf ′(z, t) + g(z, t)) , (3.36)

and it also appears in the fluid stress terms of equation (3.9). Since the fluid velocity

components are continuous across S and the interior limit of f(z, t) is at least bounded

on S, the combination zf ′(z, t) + g(z, t) is also bounded on S (but it is not analytic

in a neighborhood of S since it contains a factor of z). It follows from the definitions

(3.34) that, after some re-arrangement (e.g., see identity (B.32b) of Appendix B.2)

zf ′(z, t) + g(z, t) =
−1

2πi

∫
S

ω(ξ, t) dξ

ξ − z +
1

2πi

∫
S

ω(ξ, t) d

(
ξ − z
ξ − z

)
− (B + iQ)z +

G

4
z −H(t) for z ∈ Ω1 . (3.37)

To find the interior limit of this expression, with z as a general point on S, observe

that, similar to forming the interior limit (3.35), the first integral on the right-hand

side has a local contribution given by contour indentation around z ∈ S per equation

(B.30b), while the second integral is regular, as noted at equation (B.35), with both
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results given in Appendix B.2. It follows that

zf ′(z, t) + g(z, t) = −ω(z, t)

2
− 1

2πi
−
∫
S

ω(ξ, t) dξ

ξ − z +
1

2πi

∫
S

ω(ξ, t) d

(
ξ − z
ξ − z

)
− (B + iQ)z +

G

4
z −H(t) for z ∈ S . (3.38)

The result of equation (3.38) can also be found after some straightforward

manipulation by combining equation (B.33) of Appendix B.2 for the interior limit

of the fluid stress terms and equation (3.35) above.

The boundary data for z ∈ S of equations (3.35) and (3.38) is now mapped

onto the boundary |ζ| = 1 of the unit disk. That is,

f(z, t) 7→ F (ζ, t) ≡ f(w(ζ, t), t) , (3.39a)

zf ′(z, t) + g(z, t) 7→ w(ζ, t)

(
d
dζ
F (ζ, t)

dw(ζ,t)
dζ

)
+ g(w(ζ, t), t) , (3.39b)

on |ζ| = 1, which has parameterization ζ = eiθ for θ ∈ [0, 2π). Analytic continuation

onto the interior |ζ| < 1 is now straightforward and follows the procedure of [4]. That

F (ζ, t) is analytic on |ζ| ≤ 1 follows directly from the analyticity of f(z, t) on Ω1 ∪ S

and the analyticity of w(ζ, t) on |ζ| ≤ 1, so that F (ζ, t) has a Taylor series

F (ζ, t) =
∞∑
k=0

Fk(t)ζ
k (3.40)

about ζ = 0. On the boundary |ζ| = 1, the parameterization ζ = eiθ implies that

F (ζ = eiθ, t) is 2π-periodic in θ there, and therefore has the complex Fourier series

representation

F (ζ = eiθ, t) =
∞∑
k=0

Fk(t)e
ikθ where Fk(t) =

1

2π

∫ 2π

0

F (ζ = eiθ, t)e−ikθdθ . (3.41)

In other words, the known boundary data of equation (3.39a) gives the Fourier

coefficients {Fk(t) : k = 0, 1, 2, . . .} of the series (3.41) which are also the coefficients
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of the Taylor series (3.40). The procedure is well-posed or numerically stable, since

it is directed from |ζ| = 1 to 0 ≤ |ζ| = r < 1, so that any error in the boundary data

decreases with continuation onto the interior.

The derivatives dF
dζ

, dw
dζ

, and the complex conjugate w(ζ, t) in the first group of

terms on the right-hand side of equation (3.39b), that form the pre-image of zf ′(z, t),

can now be constructed in Fourier space directly from the Fourier series of F (ζ, t) and

the map w(ζ, t) on |ζ| = 1. They are then combined and subtracted to give boundary

data on |ζ| = 1 for the pre-image

G(ζ, t) ≡ g(w(ζ, t), t) (3.42)

of the regular part of the Goursat function g(z, t). Analytic continuation of G(ζ, t)

onto |ζ| < 1 then follows the same steps through equations (3.39a), (3.40), and (3.41)

as described for the continuation of F (ζ, t), to give

G(ζ, t) =
∞∑
k=0

Gk(t)ζ
k on |ζ| ≤ 1 , (3.43a)

where Gk(t) =
1

2π

∫ 2π

0

G(ζ = eiθ, t)e−ikθdθ . (3.43b)

The pre-image of the fluid velocity in the ζ-plane can now be constructed. From

the complex conjugate of expression (3.36), we have

u = u1 + iu2 = −i
(
F (ζ, t) + w(ζ, t)

∂ζF (ζ, t)

∂ζw(ζ, t)
+G(ζ, t)

)
(3.44)

on |ζ| ≤ 1. Note that the real and imaginary parts of this expression are the Cartesian

velocity components (u1, u2) at a point in the z-plane that has been mapped to the

corresponding point ζ = w−1(z, t) in the ζ-plane. In other words, the Cartesian

velocity components on the drop interior Ω1 are given by evaluating the right-hand

side of equation (3.44) at (ζ, t) and mapping ζ back to z under the map z = w(ζ, t).
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Computational overhead in constructing the velocity field can be reduced a little

by recalling that the second integral on the right-hand side of the boundary data

(3.38) is already known at each time step as the complex conjugate of an integral in

the Sherman-Lauricella equation (3.10), specifically it is the second integral on the

left-hand side of equation (3.10). Construction of the Cauchy principal value integrals

in the boundary data of equations (3.35) and (3.38) is described in Appendix B.3.

To conclude this section, we observe that a useful check to verify the construction

of the velocity components on the drop interior is to compare the fluid velocity u =

(u1, u2) just inside the drop with its value at neighboring points that are on the

interface S. The interface data is constructed separately, and is used for the time

update of the evolving interface and the equal arc length coordinate frame.

3.6 Conservation of Bulk Surfactant on the Unit Disk |ζ| ≤ 1

Numerical solution of the initial boundary value problem for the bulk surfactant

concentration C, for both the traditional method and for the hybrid method away

from its transition layer, is carried out in the ζ-plane. This section describes

transformation of the problem for C between the z-plane and the ζ-plane.

In the physical or z-plane, the evolution is governed by the advection-diffusion

equation (2.16) which is

∂C

∂t
+ u · ∇C = κ∇2C , x ∈ Ω1, t > 0 , (3.45)

where κ = Pe−1, and the boundary condition for bulk-surface surfactant exchange

(2.17) which is

J n · ∇C|S = −F(x, t) ≡ −Bi (K(1− Γ)C|S − Γ) , x ∈ S . (3.46)

The initial condition that the bulk and surface surfactant concentrations are in

equilibrium is given by setting the net exchange on the far right-hand side of equation
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(3.67) to zero at t = 0, i.e., C|S(x, 0) = Γ(x),0
K(1−Γ(x,0))

. Here, κ and F have been

introduced temporarily for convenience. The transformation occurs under the map

of equation (3.29), namely

z = w(ζ, t) =
∞∑
k=0

ck(t)ζ
k , (3.47)

or its inverse.

It is useful to alternate between 2D vector and complex representation, and the

correspondence or equivalence of a quantity using either notation is denoted by ↔.

In the z-plane, position and fluid velocity are given by

x = x1e1 + x2e2 ↔ z = x1 + ix2 and u = u1e1 + u2e2 ↔ u = u1 + iu2 , (3.48)

where e1 and e2 are the standard Cartesian unit vectors of Cartesian coordinates

(x1, x2) and have direction fixed or independent of position. Similarly, (u1, u2) are

the Cartesian velocity components of u. In the ζ-plane, position is denoted by (r, θ)

polar coordinates, with

standard unit vectors êr and êθ , where (r, θ)↔ ζ = reiθ (3.49)

and the polar standard unit vectors êr and êθ depend on position.

The transformation is given by a change of variables between (x1, x2) and (r, θ)

under the map. However, the map induces an orthogonal curvilinear coordinate

system in the z-plane, with position x = x(r, θ) and increment

dx = l1drer + l2dθeθ = dx1e1 + dx2e2 , (3.50a)

where er =
1

l1

∂x

∂r
with l1 =

∣∣∣∣∂x∂r
∣∣∣∣ , and eθ =

1

l2

∂x

∂θ
with l2 =

∣∣∣∣∂x∂θ
∣∣∣∣ . (3.50b)

Since the map is conformal, r and θ are orthogonal curvilinear coordinates in both

the z-plane and the ζ-plane. In other words, the family of curves x = x(r, θ) with r =
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constant, which are the image of circles r = constant in the ζ-plane, are orthogonal

everywhere to curves x = x(r, θ) with θ = constant, which are the image of rays θ =

constant in the ζ-plane. Similarly, at each point, er is the image of êr and eθ is the

image of êθ, with er · eθ = 0 and êr · êθ = 0. This is sketched in Figure 3.2.

Transformation of the Fluid Velocity, u.

Consider the fluid velocity in the z-plane and its components with respect to the basis

vectors (er, eθ) and (e1, e2). Then

u = urer + uθeθ = u1e1 + u2e2 . (3.51)

The dot product of the first of these equations with er and eθ in turn gives

ur = u · er = u · 1

l1

∂x

∂r
and uθ = u · eθ = u · 1

l2

∂x

∂θ
. (3.52)

Although we see below that it is not necessary to do so, it is reassuring to express these

relations using Cartesian components and basis vectors. To do so, put x = x1e1+x2e2

in the definitions (3.50b) to find that

er =
1

l1

∂x1

∂r
e1 +

1

l1

∂x2

∂r
e2 and eθ =

1

l2

∂x1

∂θ
e1 +

1

l2

∂x2

∂θ
e2 , (3.53)

and use the Cartesian representation in equations (3.51), which gives

ur =
1

l1

(
u1
∂x1

∂r
+ u2

∂x2

∂r

)
and uθ =

1

l2

(
u1
∂x1

∂θ
+ u2

∂x2

∂θ

)
. (3.54)

To proceed to complex format, introduce the map z = w(ζ, t) explicitly where

ζ = reiθ, apply the chain rule, and if Cartesian components are used put z = x1 + ix2,

to find that

∂z

∂r
=
∂z

∂ζ

∂ζ

∂r
=
∂w

∂ζ
eiθ =

∂x1

∂r
+ i

∂x2

∂r
, (3.55a)

∂z

∂θ
=
∂z

∂ζ

∂ζ

∂θ
=
∂w

∂ζ
iζ =

∂x1

∂θ
+ i

∂x2

∂θ
. (3.55b)
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Figure 3.2 The drop interior Ω1 and interface S in the z-plane are the image under
the conformal map z = w(ζ, t) of the interior of the unit disk |ζ| < 1 and the unit
circle |ζ| = 1 in the ζ-plane, with orientation preserved. The polar unit vectors
(êr, êθ) are mapped to orthogonal unit vectors (er, eθ). At each point ζ the map
induces a magnification |∂ζw| and counterclockwise rotation arg(∂ζw).

Use of these relations shows that the orthogonal basis (er, eθ) of definitions (3.50b)

has complex counterpart

er =
1

l1

∂z

∂r
with l1 =

∣∣∣∣∂z∂r
∣∣∣∣ =

∣∣∣∣∂w∂ζ
∣∣∣∣ , and eθ =

1

l2

∂z

∂θ
with l2 =

∣∣∣∣∂z∂θ
∣∣∣∣ =

∣∣∣∣∂w∂ζ
∣∣∣∣ r (3.56)

since, in the last expression for l2, |ζ| = r. Also, recall the identity that for vectors

a = a1e1 + a2e2 ↔ a = a1 + ia2 and b = b1e1 + b2e2 ↔ b = b1 + ib2,

a · b = a1b1 + a2b2 ↔ Re(ab) (3.57)

(and b× a↔ Im(ab)).

The velocity components ur and uθ can now be written in complex format by

using the identity (3.57) with either the vector form (3.52) or the Cartesian component
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form (3.54), together with results from relations (3.55) and (3.56), to find

ur =
1

|∂rz|
Re
(
u ∂rz

)
= Re

(
u e−i arg(∂rz)

)
= Re

(
u e−i(θ+arg(∂ζw))

)
, (3.58a)

uθ =
1

|∂θz|
Re
(
u ∂θz

)
= Re

(
u e−i arg(∂θz)

)
= Re

(
u e−i(θ+arg(∂ζw)+π

2
)
)

= Im
(
u e−i(θ+arg(∂ζw))

)
. (3.58b)

Hence, ur + iuθ = u e−i(θ+arg(∂ζw)) . (3.59)

Transformation of ∇C, u · ∇C, and ∇2C.

Since r and θ are orthogonal curvilinear coordinates in the z-plane, the gradient and

Laplacian respectively are given in the z-plane by

∇C =
er
l1

∂C

∂r
+
eθ
l2

∂C

∂θ
, and ∇2C =

1

l1l2

(
∂

∂r

l2
l1

∂

∂r
+

∂

∂θ

l1
l2

∂

∂θ

)
C . (3.60)

However u = urer + uθeθ and relations (3.56) imply that l1 = |∂ζw| and l2 = r |∂ζw|,

so that the advection term is

u · ∇C =
1

|∂ζw|

(
ur
∂C

∂r
+ uθ

1

r

∂C

∂θ

)
(3.61)

where the transformed velocity components are given by equation (3.58). Similarly,

∇2C =
1

|∂ζw|2
(

1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2

)
C . (3.62)

It turns out that the transformed version of the field equation (3.45) takes a

simple form on the unit disk in the ζ-plane, where in terms of polar coordinates

r ∈ [0, 1) and θ ∈ [0, 2π) we have the familiar gradient and Laplacian operators,

denoted by

∇(r,θ) = êr
∂

∂r
+ êθ

1

r

∂

∂θ
, and ∇2

(r,θ) =
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2
. (3.63)
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The velocity û defined by

û = urêr + uθêθ (3.64)

is readily identified as the pre-image in the ζ-plane of the fluid velocity u in the z-

plane. When equations (3.45) and (3.61) to (3.64) are pieced together the transformed

advection-diffusion equation is found to be

∂C

∂t
+

1

|∂ζw|
û · ∇(r,θ)C =

κ

|∂ζw|2
∇2

(r,θ)C , |ζ| < 1 , t > 0 , (3.65)

where κ = Pe−1.

The Boundary Condition.

The conformal map z = w(ζ, t) is constructed so that the unit circle |ζ| = 1 is mapped

to the fluid interface z ∈ S preserving orientation. The outward unit normal êr and

unit tangent êθ on |ζ| = 1 are therefore mapped to the outward unit normal er and

unit tangent eθ on S. Hence, the normal derivative in the boundary condition (3.67)

is given by

∂C

∂n

∣∣∣∣
S

≡ n · ∇C|S =
1

l1

∂C

∂r

∣∣∣∣
|ζ|=1

=
1

|∂ζw|
∂C

∂r

∣∣∣∣
|ζ|=1

, (3.66)

where l1 is given at the relations (3.56). The boundary condition on |ζ| = 1 is

therefore

J

|∂ζw|
∂C

∂r

∣∣∣∣
|ζ|=1

= −F(θ, t) ≡ −Bi
(
K(1− Γ)C||ζ|=1 − Γ

)
. (3.67)

3.7 Time Update of the Interface Position and the Two Coordinate

Frames: the Equal Arc Length Frame and the Map Frame

Description of the time update of the interface position and the distribution of

computational mesh points on it is included to make the account self-contained. It

is similar to that of earlier work [38] and has been modified from [39] mostly to
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accommodate changes in notation. The basic construction of the interface position is

due to Hou, Lowengrub, and Shelley [16]. The description of the map frame continues

the account of Section 3.4 and is specific to this dissertation.

The Interface Position and the Equal Arc Length Frame

The location of the time evolving interface S is determined by the normal

component of the fluid velocity on it, per the kinematic boundary condition, which is

the second of relations (2.12a). At an arbitrary point z in the interior of either fluid

domain Ω1 or Ω2 that is away from the interface S, from equation (3.7) or (3.36), the

fluid velocity is

u(z, t) = u1 + iu2 = −i
(
f(z, t) + zf ′(z, t) + g(z, t)

)
,

from which the definitions (3.8) of the Goursat functions f(z, t) and g(z, t) imply

that, away from the interface S,

u(z, t) = u1 + iu2 =− 1

2π

∫
S

ω(ξ, t)

(
dξ

ξ − z +
dξ

ξ − z

)
+

1

2π

∫
S

ω(ξ, t) d

(
ξ − z
ξ − z

)
+ (Q+ iB)z − iG

2
z . (3.68)

Now let z approach a general point on the interface, which is temporarily

denoted by τ , and form either the interior limit as z → τ− from Ω1 or the exterior

limit as z → τ+ from Ω2. It was noted in Sections 3.3 and 3.5 with the details

given in Appendix B.2 that the second integral on the right-hand side of equation

(3.68) is regular in the limit when z ∈ S (see equation (B.35)). In the first integral

on the right-hand side, the two components of the first integral both generate local,

simple pole contributions and Cauchy principal value integrals. However, application

of the Plemelj formulae show that for both the interior and exterior limit the pole

contributions sum to zero (see equations (B.30a) and (B.30b) for the interior limit and

equations (B.30c) and (B.30d) for the exterior limit). The velocity on the interface
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is therefore given by

u1 + iu2|S =− 1

2π
−
∫
S

ω(ξ, t)

(
dξ

ξ − z +
dξ

ξ − z

)
+

1

2π

∫
S

ω(ξ, t) d

(
ξ − z
ξ − z

)
+ (Q+ iB)z − iG

2
z z ∈ S , (3.69)

and is automatically continuous across S. Computation of the Cauchy principal value

integrals in equation (3.69) follows the same procedure described in Section 3.5 and

Appendix B.3.

In terms of its normal and tangential components, un and us, the fluid velocity

on the interface is u = unn+uss, where the complex counterparts of the unit vectors

n and s are n and sT respectively, with sT = ∂sz = in. It follows that

un = Re {(u1 + iu2) |S n} and us = Im {(u1 + iu2) |S n} (3.70)

on the interface.

The spatial parameterization of the interface S is written in terms of a general

real parameter α ∈ [0, 2π) with orientation such that S is traversed counterclockwise

as α increases, and a point z on the interface has Cartesian coordinates (x1, x2), so

that z = x1(α, t) + ix2(α, t). In complex form the unit tangent and normal are

sT = ∂sz =
∂αz

∂αs
≡ eiϑ , and (3.71a)

n = −isT = −ieiϑ , where ∂αs = |∂αz| (3.71b)

and ϑ denotes the angle from the positive real axis to the tangent sT measured

conterclockwise positive. In terms of the angles φ and ψ that are shown in Figure

3.1 of Section 3.4, ϑ = φ + ψ + π
2
. A result that will be needed later follows from

differentiating the relation ∂αz = ∂αs e
iϑ with respect to time, which implies that

∂2
αtz = ∂2

αts e
iϑ + ∂αs ∂tϑ ie

iϑ. (3.72)
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If z is a material point or Lagrangian coordinate on the interface its velocity is

equal to the local fluid velocity, so that

∂tz = use
iϑ − unieiϑ . (3.73)

However, the shape of the evolving interface is determined by the normal velocity

component un alone. Although us has physical meaning as the tangential component

of the fluid velocity, if us is replaced by any other smooth periodic function ϕ(α, t)

in equation (3.73) then z still lies on the interface but is no longer a material point.

The role of ϕ(α, t) is simply to implement a specific choice of z ∈ S and the interface

parameterization via α, without changing the interface shape or evolution.

When us is replaced by ϕ(α, t) in equation (3.73), differentiation with respect

to α gives a second relation for ∂2
αtz,

∂2
αtz = (∂αϕ+ un∂αϑ) eiϑ − (∂αun − ϕ∂αϑ) ieiϑ . (3.74)

Equating expressions (3.72) and (3.74) for ∂2
αtz, we have

∂2
αts = ∂αϕ+ un∂αϑ , (3.75a)

∂tϑ =
1

∂αs
(ϕ∂αϑ− ∂αun) , (3.75b)

where S is now described parametrically by arc length s = s(α, t) and tangent angle

ϑ = ϑ(α, t) instead of x1 = x1(α, t) and x2 = x2(α, t).

The parameterization used here takes α ∈ [0, 2π) to be a linearly rescaled arc

length, so that ∂αs is constant along the interface, although it varies in time. Hence,

∂αs is always equal to its mean or average around the interface S, and so too is its

time derivative ∂2
αts. Taking the mean of equation (3.75a) around S by integrating

with respect to α ∈ [0, 2π) and recalling that ϕ(α, t) is 2π-periodic, we find that

∂2
αts = ∂αϕ+ un∂αϑ =

1

2π

∫ 2π

0

un∂α′ϑ dα
′ . (3.76)
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Integration of the second of these equations with respect to α implies that

ϕ(α, t) =
α

2π

∫ 2π

0

un∂α′ϑ dα
′ −
∫ α

0

un∂α′ϑ dα
′ , (3.77)

where, since it is an arbitrary function of time, ϕ(α = 0, t) has been set to zero. This

gives the required tangential velocity ϕ(α, t) of the equal arc length frame.

When (3.77) is substituted into (3.75a) and (3.75b), the system by which the

dynamics of the interface is tracked becomes

∂2
αts =

1

2π

∫ 2π

0

un∂α′ϑ dα
′ , (3.78a)

∂tϑ =
1

∂αs

(
∂αϑ

{
α

2π

∫ 2π

0

un∂α′ϑ dα
′ −
∫ α

0

un∂α′ϑ dα
′
}
− ∂αun

)
. (3.78b)

At each time step equations (3.78a) and (3.78b) are integrated forward in time for each

mesh point {αk: 1 ≤ k ≤ N}, and (∂αs, ϑ) are mapped to the Cartesian coordinates

(x1, x2) of points on S. The map is given by integration of ∂αz = ∂αs e
iϑ with respect

to α, which, since ∂αs is a function of time alone and independent of α, gives

x1(α, t) = x1(0, t) + ∂αs(t)

∫ α

0

cos (ϑ(α′, t)) dα′ (3.79a)

x2(α, t) = x2(0, t) + ∂αs(t)

∫ α

0

sin (ϑ(α′, t)) dα′ , (3.79b)

where (x1(0, t), x2(0, t)) is the position of the point α = 0 at time t, which is evolved

from the kinematic condition and is given by equation (3.73) with the choice that

us(0, t) = 0 for all times t ≥ 0.

The mesh points of this construction,

zk,t = z(αk, t), αk = (k − 1)h, k = 1, 2, . . . N, with h = 2π/N , (3.80)

were mentioned earlier, at equation (3.22). It is well known that, independent of

the specific choice of parameterization of S or definition of α ∈ [0, 2π), since smooth

single valued functions defined on S are 2π-periodic in α, their integrals around S can
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be evaluated by the trapezoidal rule with spectral accuracy [35]. The specific choice

made here, that α ∈ [0, 2π) is a linearly rescaled arc length, with ∂αs constant along

the interface but varying in time, is referred to as the equal arc length frame. This is

the coordinate frame used here with trapezoidal rule quadratures for the numerical

discretization of the Sherman-Lauricella integral equation and conservation of the

surface surfactant phase.

The Map Frame

Recall that M mesh points equally distributed, or equispaced, around the fixed

unit circle in the ζ-plane were introduced in Section 3.4 at equation (3.23), namely

ζj = eiθj , where θj = (j − 1)
2π

M
and j = 1, 2, . . .M . (3.81)

This set of points {ζj = eiθj : 1 ≤ j ≤ M} is referred to as the map frame. Later,

in Chapter 4, the term map frame will be generalized to include the points {ζj,l =

rle
iθj : 1 ≤ j ≤ M, 1 ≤ l ≤ P} on the disk 0 ≤ |ζ| ≤ 1, where {rl : 1 ≤ l ≤ P} is an

ordered set of radial collocation points that is introduced to solve the PDE for the

evolution of the bulk surfactant concentration C, but in this section it refers only to

the M equispaced points of definition (3.81) on |ζ| = 1.

The image of the map frame is the set of points in the z-plane

zj,t = w(ζj = eiθj , t) for 1 ≤ j ≤M that lie on S at time t . (3.82)

Examples of the map frame image are shown in Figures 3.3 and 3.4. In both figures,

the map frame consists of M = 1024 points, of which only 16 equispaced points on

the unit disk, i.e., ζj with j = 64m and integer m = 0, 1, . . . 15, are shown in panel

(a), which is the drop interface at time t = 0. The image of these 16 map frame

points is shown at the subsequent times t = 1.0, 2.5, and 5.0 in both figures for a drop
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with viscosity ratio λ = 5, but for a pure strain with Q = 0.8 (and B = G = 0) in

Figure 3.3, and for a simple shear with G = 2B = 1 (and Q = 0) in Figure 3.4.

(a) (b)
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Figure 3.3 A viscous drop with λ = 5 is stretched in a pure strain with capillary
number Q = 0.8 (B = G = 0). The image under the conformal map z = w(ζ, t) of
equispaced points ζj = eiθj on the unit circle is shown, with j = 64m and integer
m, 0 ≤ m ≤ 15, at the sequence of times: (a) t=0, (b) t=1.0, (c) t=2.5, (d) t=5.0.
The interface S is the image of the unit circle. As time increases the image points
zj = w(ζj, t) of the map frame crowd to regions of low curvature on S.

In the computational runs for both figures the drop interface is completely

surfactant-free, and for the simple shear data of Figure 3.4 the map frame points in the

ζ-plane have all been rotated by an angle α(t) (i.e., ζj = eiθj 7→ ζje
iα(t) = ei(θj+α(t)))

which is such that the point originally at ζ = 1 at time t = 0 stays at the drop pole

or ‘nose’ in the first quadrant of the z-plane for all time.
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Figure 3.4 Similar to Figure 3.3 but for an imposed simple shear flow. A viscous
drop with λ = 5 is stretched in a simple shear with G = 2B = 1 (Q = 0). The image
under the conformal map z = w(ζ, t) of equispaced points ζj = ei(θj+α(t)) on the unit
circle is shown, with j = 64m and integer m, 0 ≤ m ≤ 15, at the sequence of times:
(a) t=0, (b) t=1.0, (c) t=2.5, (d) t=5.0. The angle α(t) is such that the image of the
point at ζ = 1 when t = 0 is at the drop pole for all t ≥ 0. As time increases the
image points zj = w(ζj, t) of the map frame crowd to regions of low curvature on S.

The figures show the phenomenon of “crowding” of the image points in the

z-plane, by which image points in the low curvature middle section of the interface

S move closer together and conversely the image points near the high curvature

poles become more sparse as time increases and the drop becomes more extended or

deformed. This is a well known feature of conformal maps between Jordan curves and

the unit disk, and the literature on numerical conformal mapping contains a number

of estimates and bounds on crowding that are reviewed in [9], in which crowding is

described as a form of ill-conditioning. While Figures 3.3 and 3.4 show crowding for
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a subset of only 16 of the total 1024 points of the map frame, crowding still limits

the resolution at which data can be displayed near the drop poles, even with the full

set of map frame points.

To solve the problem at hand, the fluid velocity u and bulk surfactant

concentration C need to be found throughout the drop interior Ω1. Although the

solution for u and C is constructed in the ζ-plane, using the map frame, the data is

to be displayed in the z-plane. To facilitate this, at each time step, once the current

equal arc length frame {zk,t = z(αk, t) : 1 ≤ k ≤ N} of definition (3.80) and the

current conformal map w(ζ, t) have been found, the inverse map is used to find the

pre-image of the equal arc length frame in the ζ-plane. The pre-image ζk,t of each

equal arc length mesh point zk,t is given by solving

W (z, ζ, t) ≡ z − w(ζ, t) = 0 (3.83)

by Newton-Raphson iteration. The iterates are given by

ζk,n+1 = ζk,n +
zk,t − w(ζk,n, t)

∂ζw(ζk,n, t)
n = 0, 1, . . . , (3.84)

where the initial estimate ζk,0 is the converged value at the previous time step, and

the map is known in terms of its Taylor series of equation (3.29), namely

w(ζ, t) =
∞∑
j=0

cj(t)ζ
j . (3.85)

Here, since the inverse map is from points zk,t on the interface S, their pre-image ζk,t

lies on the unit circle |ζ| = 1 and can be written as ζk,t = eiθk,t , but the scheme of

equations (3.83) to (3.85) can be used to find the pre-image for any point z in the

interior Ω1 if required.

The pre-image of the equal arc length frame is shown in two examples. In the

first example, Figure 3.5 shows data for the same pure strain as in Figure 3.3 (i.e.,

Q = 0.8, with B = G = 0). Now the equal arc length frame consists of N = 1024
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Figure 3.5 Similar to Figure 3.3 but showing the pre-image in the ζ-plane of
equispaced points in the equal arc length frame. The viscosity ratio λ = 5 with
strain Q = 0.8 (B = G = 0). A subset of 16 equispaced markers zk,t on the drop
interface in the z-plane is shown with k = 64n for integer n, 0 ≤ n ≤ 15. (a) Interface
and markers at time t = 1.0 with pre-image (b). (c) Interface and the same markers
in the z-plane at time t = 2.5 with pre-image (d) in the ζ-plane. The inverse map
ζ = w−1(z, t) shows the crowding phenomenon in its converse form.

points zk,t, of which only 16 equispaced points are shown with k = 64n and integer

n = 0, 1, . . . 15. Panel (a) shows the interface S and 16 equispaced markers at time

t = 1.0 with their pre-image shown in panel (b), while panel (c) shows S with the same

16 equispaced markers at time t = 2.5 with their pre-image in panel (d). These two

times and drop profiles are the same as in Figure 3.3, panels (b) and (c). The crowding

phenomenon still necessarily applies, only now in its converse form - the pre-image

of markers zk,t from regions of high curvature on S become crowded together on the
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unit circle while the pre-image from regions of low curvature are sparse, with the

redistribution becoming only more noticeable as time increases.
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Figure 3.6 Similar to Figure 3.4 but showing the pre-image in the ζ-plane of 16 (out
of a total 1024) equispaced markers zk,t in the equal arc length frame. The viscosity
ratio λ = 5 with G = 2B = 1 (Q = 0). (a) Interface and markers zk,t shown at time
t = 1.0 with their pre-image shown in (b). (c) Interface and markers zk,t shown at
time t = 2.5 with their pre-image shown in (d). The redistribution of marker points
under the inverse map follows the pattern observed for a strain in Figure 3.5.

Data for the second example is shown in Figure 3.6 for the simple shear of

Figure 3.4 (i.e., G = 2B = 1, Q = 0). The same subset of 16 equispaced points from

the total N = 1024 interface markers zk,t of the equal arc length frame are shown,

with k = 64n and integer n = 0, 1, . . . 15. Panel (a) shows the 16 equispaced interface

markers at time t = 1.0 with their pre-image shown in panel (b), while panels (c) and

(d) show the interface markers and their pre-image (respectively) at the later time of
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t = 2.5. The redistribution of points follows the same qualitative pattern that was

observed in the previous examples. That is, the pre-image of markers zk,t from regions

of high curvature on S are crowded together on the unit circle while the pre-image

from regions of low curvature are more sparse, and the redistribution becomes more

prominent with increasing time. The two times (t = 1.0 and 2.5) and drop profiles

are the same as in Figure 3.4, panels (b) and (c) .
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CHAPTER 4

THE HYBRID METHOD, THE TRADITIONAL METHOD, AND THE

NUMERICAL SOLUTION PROCEDURE

4.1 Overview

The hybrid and traditional methods share the same underlying Stokes flow solver

and method of solution for conservation of the adsorbed surfactant concentration Γ

on the interface S. They differ in the method of solution for conservation of dissolved

or bulk surfactant on the drop interior Ω1.

4.2 Summary of the Initial Boundary Value Problems for the Hybrid

and Traditional Methods and Their Numerical Implementation

The Stokes Flow Solver.

The main component of the Stokes flow solver is the Sherman-Lauricella integral

equation of Section 3.3, equation (3.10), which is

ω(z, t)− β

2πi

∫
S

ω(ξ, t) d ln
ξ − z
ξ − z

− β

2πi

∫
S

ω(ξ, t) d
ξ − z
ξ − z

− β(B − iQ)z − 2βH(t) = −γ
2
σ(Γ)

∂z

∂s
for z ∈ S . (4.1)

Here, B and Q are components of the imposed flow matrix (2.20), the parameters

β = (1 − λ)/(1 + λ) and γ = 1/(1 + λ) are known in terms of the viscosity ratio λ,

and the function H(t) can be set to zero unless λ = 0, when the integral equation is

rank-deficient and H(t) is given by equation (3.12). The dependent variable ω(z, t) is

a complex density, from which the primitive variables can be found, and the influence

of surfactant enters via the surface tension σ(Γ) alone.

Information contained in continuity of the fluid velocity across S and the stress-

balance boundary condition on S has already been used in the Goursat representation
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and formulation of the integral equation, and these conditions do not need to be

imposed further.

Update of the moving interface is determined by the kinematic condition

ẋ = (u·n)n of equation (2.12a) but its implementation is combined with construction

of the equal arc length frame for update of the computational nodes and the

parameterization of S. This was introduced in Section 3.7 and is summarized here.

The fluid velocity components on S are given by equation (3.69), namely

u1 + iu2|S =− 1

2π
−
∫
S

ω(ξ, t)

(
dξ

ξ − z +
dξ

ξ − z

)
+

1

2π

∫
S

ω(ξ, t) d

(
ξ − z
ξ − z

)
+ (Q+ iB)z − iG

2
z z ∈ S , (4.2)

where G is a component of the imposed flow matrix (2.20), from which the normal

and tangential components, un and us, are derived from knowledge of the normal

on S via equations (3.70). At each time step, the interface location is given by the

computational nodes or mesh points of the equal arc length frame, which is stored in

{(sk, ϑk) : 1 ≤ k ≤ N}. The points sk are equally spaced in arc length s, measured

counterclockwise along S from a well-defined origin on S, and ϑk is the value of the

angle ϑ there, which is measured from the positive x1-axis to the tangent vector, see

Figure 2.1 (Section 2.1) or Figure B.1 (Appendix B.1).

Since the total arc length of the interface varies in time, both s and ϑ are

parameterized by a linearly rescaled arc length α that has fixed domain [0, 2π). Hence,

∂αs(t) is a function of time alone, independent of α, with

α =
s

∂αs(t)
∈ [0, 2π) . (4.3)

The location of the nodes is updated at each time step from knowledge of the normal

fluid velocity un on S and the tangential velocity ϕ(α, t) of equation (3.77) that

maintains the equispacing of the nodes in s. This leads to equations (3.78) for the

evolution of ∂αs(t) and ϑ(α, t) at the corresponding equispaced points {αk : 1 ≤ k ≤
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N} in α. For the representation of physical data, the Cartesian coordinates of the

nodes can be found from equations (3.79).

The discretization of the Sherman-Lauricella integral equation (4.1) uses the

equal arc length frame based on the equispaced points {αk : 1 ≤ k ≤ N} with the

trapezoidal rule for the evaluation of integrals. This quadrature method is used for

the evaluation of all other integrals of smooth periodic functions around S, and gives

spectral accuracy [35].

Conservation of Surfactant on the Interface.

Evolution of the adsorbed surfactant concentration Γ on the interface is governed

by equation (2.15), where the dissolved surfactant C is present only in the drop

interior, so that

∂Γ

∂t

∣∣∣∣
ξ
− ∂X

∂t

∣∣∣∣
ξ
· ∇sΓ +∇s · (Γus) + Γκun =

1

Pes
∇2
sΓ− J n · ∇C|S , x ∈ S. (4.4)

This, like the Stokes flow solver, is solved in the equal arc length frame with the

interface parameterized by the scalar ξ = α ∈ [0, 2π). That is, x = X(α, t), so that

the velocity ∂tX|α = ϕ(α, t)s, where ϕ(α, t) is the same tangential velocity of the

interface nodes that maintains the equal arc length frame, as just described, and s is

the unit tangent vector on the interface (see, e.g., Figure 2.1).

In equation (4.4) the surface gradient operator ∇s, for example, is given in

terms of α by ∇s = s∂s = s∂α/∂αs(t). When parametrized by α, the conservation

law becomes

∂Γ

∂t

∣∣∣∣
α

− ϕ(α, t)
∂αΓ

∂αs
+
∂α(Γus)

∂αs
+ Γκun =

1

Pes

∂2
αΓ

(∂αs)2
− J ∂C

∂n

∣∣∣∣
S

on S . (4.5)

In the numerical implementation of equation (4.5), Γ(α, t) has a Fourier series

representation on S and all derivatives with respect to α are computed by FFTs. In

the diffusion term the inverse of the surface Péclet number is small and the Laplacian
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∇2
sΓ is not large, as noted in Appendix A.2, so that diffusion does not introduce

stiffness and can be treated explicitly. In fact the diffusion term can be neglected in

the simulations. The normal derivative of the bulk surfactant concentration at the

interface, ∂C
∂n

, is evaluated explicitly using Chebyshev differentiation via FFTs, in the

transition layer for the hybrid method, and using the conformal map and ζ-plane for

the traditional method. The time step is addressed in Section 4.3

Further details of the numerical discretization and implementation for the Stokes

flow solver and evolution of surface surfactant can be found in [38].

4.2.1 Solution for the Bulk Surfactant Concentration via the Traditional

Method

In the traditional numerical method, the conservation law (2.16) for evolution of the

bulk surfactant concentration C on the drop interior Ω1 is solved by first transforming

it from the physical domain in the z-plane to the fixed unit disk |ζ| < 1 in the ζ-plane

via the conformal map z = w(ζ, t) or its inverse. It is then solved on the unit disk

by a Chebyshev spectral method, and the data is mapped back to the z-plane for

presentation and interpretation.

The transformed version of equation (2.16) in the ζ-plane was found in Section

3.6 at equation (3.65), namely

∂C

∂t
+

1

|∂ζw|
û · ∇(r,θ)C =

κ

|∂ζw|2
∇2

(r,θ)C , on |ζ| < 1 , t > 0 , (4.6)

where κ is the inverse of the Péclet number Pe. Here, ∇(r,θ) and ∇2
(r,θ) are the

familiar gradient and Laplacian operators in (r, θ) polar coordinates with ζ = reiθ,

and ∂ζw(ζ, t) is the map derivative on the disk. The velocity field û is needed

throughout the disk interior whereas the Stokes flow solver is based on a boundary

integral method, so that the construction of û away from the boundaries in the z and

ζ-planes is a necessary but computationally costly component of the problem.
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To find û the pre-image of the Goursat functions f(z) and the principal part

of g(z) are mapped to the unit circle |ζ| = 1 by the construction of Section 3.5,

where their Fourier series and coefficients {Fk(t)} and {Gk(t)} are found by FFT.

Once the Fourier coefficients on the circle are known, analytic continuation onto the

interior of the disk requires function evaluation alone, and is numerically stable, see

equations (3.39) to (3.43). The Cartesian components of the fluid velocity (u1, u2)

at z are then given by evaluating the right-hand side of equation (3.44) at ζ, where

z = w(ζ, t), from which the polar velocity components (ur, uθ) at ζ are found by

the construction of Section 3.6 that leads to equation (3.59). This gives the velocity

field û =< ur, uθ > of equation (3.64). The Goursat functions, map, and velocity

component data on the disk are stored in their Fourier coefficients, and all operations

of the construction apart from multiplication and division are carried out in Fourier

space.

Written in a more explicit form, we now have the advection-diffusion equation

for C on the unit disk r ∈ [0, 1), θ ∈ [0, 2π),

∂C

∂t
+

1

|∂ζw|

(
ur
∂

∂r
+ uθ

1

r

∂

∂θ

)
C =

1

Pe |∂ζw|2
(

1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2

)
C , (4.7)

in which coefficients of the spatial derivatives can be evaluated as functions of space

and time. The transformed boundary condition (3.67) on r = 1 is

J

|∂ζw|
∂C

∂r

∣∣∣∣
r=1

= −Bi (K(1− Γ)C|r=1 − Γ) . (4.8)

The Spectral Method.

The solution in space of the initial boundary value problem (4.7) and (4.8) is

found by a 2D polar Chebshev spectral method that is described in the book by

Trefethen [34], Chapter 11, and uses a treatment of the radial coordinate attributed

to Fornberg [12].
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The method uses a Chebyshev discretization in r for r ∈ [−1, 1] with Chebyshev-

Lobatto collocation points at

r = ri = cos

(
iπ

Nr

)
, for i = 0, 1, . . . , Nr − 1 with Nr odd . (4.9)

These are dense near the boundary r = 1, where the transition layer is located, which

helps to resolve the large normal gradients that are expected there, and are relatively

sparse near the drop center r = 0, where the solution is smooth. With Nr an odd

integer there is no collocation point at r = 0, so that a possible coordinate singularity

there is avoided. A complex Fourier discretization is used in the periodic θ-direction

for θ ∈ [0, 2π), with uniformly distributed collocation points

θ = θj = (j − 1)h with h =
2π

Nθ

, for j = 1, 2, . . . , Nθ with Nθ even . (4.10)

Since the solution for C is to be single-valued on the unit disk (r, θ) ∈ [0, 1) ×

[0, 2π) but the computational domain is the rectangle (r, θ) ∈ [−1, 1] × [0, 2π) a

symmetry condition

u(r, θ) = u(−r, (θ + π) modulo 2π) (4.11)

must be imposed on the numerical solution. This is done by constructing differ-

entiation matrices that have block tensor product or Kronecker product structure.

Whereas spatial derivatives on the rectangle would require a full complement of

(Nr − 1)Nθ mesh points, the mesh of the map frame on the interior of the unit

disk consists of

Nr − 1

2
Nθ mesh points with i = 1, . . . ,

Nr − 1

2
and j = 1, 2, . . . , Nθ (4.12)

in the radial points ri of definition (4.9) and azimuthal points θj of definition (4.10).

Notice that the conformal map and map frame as described in Sections 3.4 and 3.7 is
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constructed by mapping only the domain boundary points, for which i = 0. For the

mesh points closest to the origin, i = Nr−1
2

, and the radius r = cos π
2
(1− 1

Nr
) > 0.

The azimuthal derivatives of the discretization use the Fourier spectral differen-

tiation matrix Dθ, and the radial derivatives are given by matrices of block Kronecker

product structure that are derived from the Chebyshev differentiation matrix Dr [34].

The entries of Dr and Dθ are given in Appendix C.1. This leads to the discretization

of equation (4.7) given by

∂C

∂t
+M

U
E1 ⊗

 I 0

0 I

+ E2 ⊗

 0 I

I 0


+ V (R⊗Dθ)

C

= N

(D1 +RE1)⊗

 I 0

0 I

+ (D2 +RE2)⊗

 0 I

I 0

+R2 ⊗D2
θ

C .

(4.13)

Here, all terms have been written out in the same order, reading from left to right,

as they appear in equation (4.7) but the r-derivative term of the Laplacian has been

expanded. The Kronecker product is denoted by ⊗, and I is the Nθ/2×Nθ/2 identity

matrix. The other matrices of the discretized equation (4.13) are defined as follows:

(i) From the (Nr + 1) × (Nr + 1) differentiation matrix Dr, the first and last

rows that correspond to end-points of the interval r ∈ [−1, 1] are deleted to form the

(Nr − 1)× (Nr − 1) matrix D̃r for construction of the r-derivatives of the boundary

value problem. Then E1 and E2 are the top left and right quadrants of D̃r and have

size Nr−1
2
× Nr−1

2
. The terms in E1 and E2 correspond to the first derivative ∂

∂r
.

(ii) Similarly, from the (Nr + 1)× (Nr + 1) differentiation matrix D2
r , the first

and last rows are deleted to form the (Nr − 1)× (Nr − 1) matrix D̃2
r . Then D1 and

D2 are the top left and right quadrants of D̃2
r and have size Nr−1

2
× Nr−1

2
. The terms

in D1 and D2 correspond to the second derivative ∂2

∂r2
.
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(iii) The Nθ×Nθ Fourier differentiation matrices Dθ and D2
θ correspond to the

derivatives ∂
∂θ

and ∂2

∂θ2
respectively.

(iv) The remaining matrices are all diagonal. First,

R = diag(r−1
i ), i = 1, . . . ,

Nr − 1

2
(4.14)

corresponds to the metric factor 1
r

in the θ-derivatives, and has size Nr−1
2
× Nr−1

2
. The

other diagonal matrices are

U = diag(ur,i,j) , V = diag(uθ,i,j) ,

M = diag

(
1

|∂ζwi,j|

)
, N = diag

(
1

Pe|∂ζwi,j|2
)
, (4.15)

where, for example

U = diag(ur,i,j) is such that ur,i,j = ur at (ri, θj)

=



ur,1,1

ur,1,2 0

. . .

ur,1,Nθ

0 ur,2,1

ur,2,2

. . .



(4.16)

and entries down the diagonal are in increasing values of j for 1 ≤ j ≤ Nθ before

entries in i for 1 ≤ i ≤ Nr−1
2

. These matrices have size Nr−1
2
Nθ × Nr−1

2
Nθ.

At this point the matrices M and N in equation (4.13) can be multiplied into or

combined with other matrices in the equation and then omitted from the discussion:

M is combined with U and V on the left-hand side, and on the right-hand side N is

combined with D1 +RE1, etc.. The spectral matrices for advection terms on the left

and diffusion terms on the right-hand side are of size Nr−1
2
Nθ × Nr−1

2
Nθ and act on
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the Nr−1
2
Nθ × 1 vector array for C. The time step discretization is the same for both

the traditional and hybrid methods and is described in Section 4.3.

4.2.2 Solution for the Bulk Surfactant Concentration via the Hybrid

Method

The hybrid method is based on a leading order matched asymptotic decomposition of

the advection-diffusion equation (2.16) in the limit Pe→∞. It was first introduced

in [4] and has appeared in more recent studies that are listed in the References. This

section summarizes the asymptotic model of the hybrid method.

First recall the advection diffusion equation (2.16), which is

∂C

∂t
+ u · ∇C =

1

Pe
∇2C , x ∈ Ω1 , (4.17)

and the bulk-surface surfactant exchange boundary condition (2.17), which is

J n · ∇C|S = −Bi (K(1− Γ)C|S − Γ) , x ∈ S (4.18)

when bulk surfactant is present in the drop interior alone. In the large bulk Péclet

number limit, the small expansion parameter ε defined by 0 < ε = Pe−1/2 � 1 is

introduced with a local transition or boundary layer coordinate N = O(1) defined by

n = εN , where n is the outward normal coordinate on the drop interface S.

The domain Ω1 of equation (4.17) is decomposed into:

An “Outer” Region.

This is the interior of Ω1 where the effect of diffusion is small, so that at leading

order the dynamics is governed by the diffusion-free version of equation (4.17), namely

the transport equation

(∂t + u · ∇)C = 0 , x ∈ Ω1 , (4.19)

with remainder of order O(ε).
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An “Inner” Region.

This is the reduced domain Ω1r ⊂ Ω1 of the transition layer, which is a spatially

narrow region of width ε adjacent to S, where the normal gradient of C is large like

O(1/ε) and advection and diffusion are both of order O(1) and balance each other.

An intrinsic or surface-fitted coordinate system (ξ1, ξ2, n) is introduced that is based

on S, in which ξ1 and ξ2 are distance coordinates on S and C = C(ξ1, ξ2, N, t) depends

on the stretched normal coordinate N = n/ε. At leading order as ε→ 0 the dynamics

is governed by the transition layer equation

(∂t + vs · ∇s + ∂nvp|sN∂N)C = ∂2
NC , in Ω1r , (4.20a)

where ∂nvp|s = −(κ1 + κ2)un −∇s · us , (4.20b)

with remainder of order O(ε). Some details of the transformation to the intrinsic

frame are given in Appendix C.2. In equation (4.20a), vs = us−∂tX|ξ, where S has

equation x = X(ξ1, ξ2, t) and us is the tangential fluid velocity on the interface, as in

equation (4.4), and the time derivative is taken with (ξ1, ξ2) fixed. Equivalent ways

of writing these terms are given in Appendix C.2, at equations (C.24). The quantity

∂nvp|s is the rate of extension of a fluid line element normal to S, and is written for

an incompressible fluid in terms of surface data in equation (4.20b).

In the 2D context, the transition layer equation can be simplified and expressed

with the normalized arc length α ∈ [0, 2π) as the distance coordinate on S, using the

same notation and results that led to equation (4.5) for conservation of the surface

surfactant concentration. This gives(
∂t|α + (us − ϕ(α, t))

∂α
∂αs

+ ∂nvp|sN∂N
)
C = ∂2

NC , (4.21a)

where ∂nvp|s = −κun −
∂αus
∂αs

, (4.21b)

and the spatial domain is α ∈ [0, 2π)×N ∈ (−∞, 0).
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The bulk-surface surfactant exchange boundary condition (4.18) and exchange

term in equation (4.5) need the same ε-rescaling for the normal derivative, so that

the exchange parameter J is redefined with J = εJ0 and J0 = O(1). In the hybrid

model, these become

J0 ∂NC|N=0 = −Bi (K(1− Γ)C|N=0 − Γ) , on N = 0 , (4.22)

and (
∂t|α − ϕ(α, t)

∂α
∂αs

)
Γ +

∂α(Γus)

∂αs
+ Γκun =

1

Pes

∂2
αΓ

(∂αs)2
− J0 ∂NC|N=0 (4.23)

on the spatial domain α ∈ [0, 2π).

Matching Conditions.

Asymptotic matching between the solution of equation (4.19) as n → 0− on

the “outer” region and the solution of equation (4.21) as N → −∞ on the “inner”

region is determined by the sign of ∂nvp|s. In physical terms, the matching condition

depends on the direction of the normal fluid velocity adjacent to the interface, which

is inflow when ∂nvp|s ≤ 0 and outflow when ∂nvp|s > 0. This gives the far-field

boundary condition for equation (4.21), that

as N → −∞

 C(α,N, t)→ C(α, n = 0, t) when ∂nvp|s ≤ 0

∂NC(α,N, t)→ 0 when ∂nvp|s > 0 .
(4.24)

Here, C(α, n = 0, t) is the local solution of the transport equation (4.19), which

is considered known over regions of inflow, and when outflow occurs the solution

of the transition layer equation with matching condition ∂NC → 0 gives data for

C(α, n = 0, t) as N → −∞ which is input to the transport equation.
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Summary and Numerical Implementation.

With given equilibrium initial data for C at t = 0, the initial boundary value

problem of the hybrid method is composed of:

(i) The transport equation (4.19) on Ω1, where the fluid velocity u is known.

This is solved on the unit disk in the ζ-plane using the same spectral solution for the

traditional method of Section 4.2.1 but with the diffusion term set to zero.

(ii) The transition layer equation (4.21), with boundary condition (4.22) on the

drop interface N = 0, matching condition (4.24) as N → −∞, and periodic boundary

conditions in α. The solutions for the surface concentration Γ and bulk concentration

C are coupled via the boundary condition and surfactant exchange term in equation

(4.23).

The numerical implementation on the rectangle α ∈ [0, 2π) × N ∈ (−∞, 0)

uses the same Fourier series representation for C with respect to the tangential

coordinate α that is used for the conservation law in forms (4.5) and (4.23) for Γ,

with tangential derivatives evaluated by FFT. In the normal direction a Chebyshev

spectral method is used with Chebyshev differentiation matrices. This is similar to

the spectral solution of the traditional method on the disk, and is the same as the

numerical implementation used for solution of the transition layer equation in [38],

where bulk surfactant is present in the drop exterior alone.

4.3 The Discretization for the Time Step

Time derivatives are present in the update of the free boundary or drop interface

S, which is uniquely determined by ∂αs(α, t) and ϑ(α, t), they are present in the

evolution of the surfactant concentrations, Γ(α, t) on the interface and C(x, t) in the

bulk, and are implied in the update of the conformal map z = w(ζ, t). The time
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evolution can be written as

∂t



∂αs

ϑ

w

Γ


= R (∂αs, ϑ, w,Γ, ∂nC|S) , (4.25a)

∂tC = S(∂αs, ϑ, w, C) + F (∂αs, ϑ, w, C) . (4.25b)

Here,R is defined by equations (3.78) and by equation (4.5) for the traditional method

or by equation (4.23) for the hybrid method. The operator for the evolution of C,

which is given by equation (4.13) for the traditional method or by equations (4.19)

and (4.20) for the hybrid method is split into two components. Of these, F contains

the second derivatives in the coordinates r (traditional method) or N (hybrid method)

of the diffusion term, and S contains the advection terms and all other derivatives in

the diffusion term (traditional method).

Explicitly, for the traditional method we have

S = N

RE1 ⊗

 I 0

0 I

+RE2 ⊗

 0 I

I 0

+R2 ⊗D2
θ

C

−M

U
E1 ⊗

 I 0

0 I

+ E2 ⊗

 0 I

I 0


+ V (R⊗Dθ)

C , (4.26a)

F = N

D1 ⊗

 I 0

0 I

+D2 ⊗

 0 I

I 0


C . (4.26b)

For the hybrid method, the operator for the transport equation (4.19) is given by

setting the diffusion terms, which are pre-multiplied by the map matrix N , to zero,

leaving the advection terms in S only. The operator for the transition layer equation

(4.20) is given by setting F to the differentiation matrix for ∂2
NC and setting S to

the spectral discretization of the advection terms in the Cartesian geometry. Since
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the time step is essentially the same for both methods, it will be presented primarily

for the traditional method, with modifications that are needed for the hybrid method

for the most part understood.

The notation can be eased by introducing the vector

z = (∂αs, ϑ, w,Γ)T (4.27)

into the evolution of the surface-based quantities in equations (4.25), to give the

version

∂tz = R(z, ∂nC|S) , (4.28a)

∂tC = S(z, C) + F (z, C) . (4.28b)

Here, the second equation represents the evolution of C in both the inner and outer

regions of the hybrid method.

Now let zni denote the discretization of z, with i = 1, . . . , N indexing the spatial

parameter α, and n the value at the nth time step; let Cn
ij denote the discretization

of C, with i = 1, . . . , N indexing the coordinate tangential to the interface and

j = 1, . . . , P indexing the normal coordinate, with time step indexed by n. Then

for a time step of size ∆t the discretization is given by:

(i) A predictor step, from step n to step n+ 1, using a forward Euler scheme

z̃n+1
i = zni + ∆tR(zni , ∂nC|nS,i) , (4.29a)

C̃n+1
ij = Cn

ij + ∆t (S(zni , C
n
ij) + F (zni , C̃

n+1
ij )) , (4.29b)

but where the diffusion term F (z, C) to the new time step is treated implicitly.
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(ii) Followed by a corrector step, to step n+ 1, given by

zn+1
i = zni +

∆t

2

(
R(zni , ∂nC|nS,i) +R(z̃n+1

i , ∂nC̃|n+1
S,i )

)
, (4.30a)

Cn+1
ij = Cn

ij +
∆t

2

(
S(zni , C

n
ij) + S(z̃n+1

i , C̃n+1
ij )

+F (zni , C
n
ij) + F (z̃n+1

i , Cn+1
ij )

)
, (4.30b)

where the diffusion term F (z, C) to the new time step is again treated implicitly.

The notation can be eased further by omitting the subscripts i and j for the

spatial dependence. This scheme is second order accurate, as is shown in Appendix

C.3. With respect to z the scheme is Heun’s method, and for C the implicit treatment

of the diffusion term F (z, C) is a two-step variation of the Crank-Nicolson scheme.

Matrix inversion for the implicit terms is performed by GMRES.

The numerical method that has been described is spectrally accurate in space

and second order accurate in time.

4.4 The Two Coordinate Frames and the Presentation of Data

In the traditional method, for example, the normal derivative ∂nC|S is computed

using the map frame of the ζ-plane unit disk but needs to be found at points on the

equal arc length frame in the z-plane for input to R(z, ∂nC|S) for the evolution of z,

or specifically for the evolution of Γ.

To do so, the conformal map z = w(ζ, t) is inverted using the Newton-Raphson

scheme described at equations (3.83) to (3.85) of Section 3.7 to find the pre-image of

the equal arc length frame on |ζ| = 1, see for example Figures 3.5 and 3.6. If this

set of points is ζ = eiθi then, since the solution method for C on the disk is spectral,

FFTs are used to evaluate ∂nC|S there for input to R(z, ∂nC|S). Similarly, FFTs are

used to evaluate C and other variables such as the fluid velocity u at additional points

ζij = rje
iθi on the interior of the disk for the same θi. The data are then mapped

back to the z-plane for presentation. Because of the “crowding” of points induced
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by the conformal map when the drop interface is highly deformed this gives greatly

improved resolution near the high-curvature drop poles and on radii in toward the

drop center.

In the hybrid method, since the transition layer equation is solved on the equal

arc length frame in the direction tangential to the drop interface, data for ∂nC|S can

be input directly into R(z, ∂nC|S) without the need for interpolation. However, the

transport equation is solved on the ζ-plane unit disk, so that the same FFT-based

interpolation procedure is used for the presentation of data and to find the data for

C needed in the asymptotic matching condition (4.24).

To present data from the hybrid method graphically, the solution of the

transport equation (4.19) is mapped to the z-plane in the same way as it is for the

traditional method, but with the last few columns of data set to zero to incorporate

the solution data from the transition layer equation (4.21). The number of rows that

are zeroed corresponds to the asymptotic width of the transition layer in the z-plane,

which is set to ε = Pe−1/2, and the transition layer data are written into the zeroed

columns. The data from the two regions are found to blend well, with little need for

the interpolation in the normal direction that is performed by MATLAB.
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CHAPTER 5

RESULTS OF THE NUMERICAL SIMULATIONS

5.1 Overview

The results of the numerical simulations are organized as follows. After this overview,

results of simulations where the imposed far-field flow is a pure strain are presented

in Section 5.2, and results of simulations where the imposed flow is a simple (linear)

shear are presented in Section 5.3. For each type of imposed flow, the flow parameters

of the matrix in equation (2.20) of Section 2.3 are fixed as follows:

Pure strain: capillary number Q = 0.8, (B = G = 0), (5.1)

Simple shear: parameters G = 2B = 1, (Q = 0) . (5.2)

Other parameters or dimensionless groups that are kept fixed throughout the

simulations are the elasticity number E in the surface equation of state (2.13), the

surface Péclet number Pes of equation (2.14) or (4.5), the parameters J , Bi, and K

in the surfactant exchange boundary condition (2.17) or (4.8), and the bulk Péclet

number-dependent parameter J0 = J/ε of equations (4.22) and (4.23) for the hybrid

method. The fixed values are:

E = 0.25, P es = 103, and J = K = Bi = 1 , (5.3)

where the parameters are defined in Table 2.2.

For all simulations the initial surface and bulk surfactant concentrations are in

equilibrium, with

Γ =
3

8
and C =

3

5
. (5.4)

For all computational runs the number of collocation points and the time step

for the spectral method on the unit disk in the ζ-plane, as described in Section 4.2.1,
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are kept fixed. The number of Chebyshev collocation points on r ∈ [−1, 1] is Nr = 65,

so that the number of points on the disk is Nr−1
2

= 32, and the number of uniformly

distributed Fourier collocation points in the θ-direction is Nθ = 512. A time step

∆t = 0.005 is found to keep the method numerically stable out to time t = 7.5. The

number of collocation points of the equal arc length frame for the Stokes flow solver

is set to N = 128 at early times, which is doubled when the drop shape becomes

too highly deformed, using the same criteria described in [38]. Similarly, the number

of Chebyshev collocation points used in the spectral solution of the hybrid method

transition layer equation is set to 20, [38].

Within each flow type (strain or shear) the remaining parameters that are varied

are the viscosity ratio λ and the bulk Péclet number Pe. Two general features can

be expected to occur during the evolution in each simulation as time t increases from

the initial spherical equilibrium state at t = 0: (i) the drop shape deforms, and (ii)

an internal recirculating flow develops. The overall deformation is often quantified

by the deformation number

D =
L−B
L+B

, (5.5)

where L and B are respectively the largest and smallest drop radii. Since λ is the ratio

of the internal to external fluid viscosity, and fluid viscosity is a measure of resistance

to shear, drops with small λ < 1 offer little resistance to the shearing motion induced

by the imposed flow. Their deformation or change in shape is relatively small and

reaches a near steady state fairly quickly, while an internal recirculating flow develops

early in the evolution and has relatively large magnitude. Conversely, drops with large

λ > 1 continue to a more highly deformed state with larger values of D and are slow

to reach their final steady shape. Interior recirculation begins slowly and is relatively

weak, or has small magnitude relative to the far-field flow, even after the drop shape

has reached an almost steady state.
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The variation of steady deformation number and internal recirculation with

change in λ has been noted in many studies that are reviewed in, for example, [31],

and the increase of interior recirculation with decrease in λ is a feature of the classical

Hadamard-Rybczynski solution for a spherical drop in a uniform stream [13, 29], see

also [22].

z ! ⌧+

O0

O

S

x

y

z

⇠1

⇠2

n

zs =
dz

ds

⌦1

⌦2

zs =
dz

ds

⌦1

⌦2

Figure 5.1 Sketch of the flow field in a low viscosity drop at or near steady state
in an imposed strain. Part of the drop is shown, which has four-fold symmetry. A
recirculating flow is set up with stagnation points on the interface, shown by an open
circle at the drop equator and a closed circle at the drop pole. The outer edge of
the large Péclet number transition layer is shown dotted. At the outer edge of the
transition layer, the flow is incoming near the drop equator and outgoing near the
pole.

Based on this reasoning it is anticipated that for a low viscosity drop in an

imposed strain with soluble surfactant, the recirculatory flow that begins to develop

at early times will continue to redistribute surfactant between the surface and bulk

phases via inflow to and outflow from the transition layer long before a spatially

uniform surfactant distribution and a true steady state occur. This flow configuration

is sketched in Figure 5.1.

At large bulk Péclet number, the hybrid method predicts a drop interior ‘core’

where the bulk surfactant concentration C satisfies the transport equation (∂t + u ·

∇)C = 0 with incompressible flow, ∇ · u = 0. From Reynolds’ transport theorem
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this implies that the total amount of bulk surfactant in an arbitrary material or fluid

element in the core is conserved. The bulk concentration in the interior core can

only change by exchange of fluid elements entering or leaving the transition layer.

This is however, a leading order, large Pe model, and at moderate values of Pe bulk

surfactant can also enter or leave the core by diffusion.

5.2 Imposed Strain

The imposed strain u = Q < x1,−x2 > has no vorticity, but vorticity is generated

inside and near the drop by viscous shear stress. The drop shape has four-fold

symmetry about the x1 and x2-axes and only the part in the first quadrant is shown.

(a) (b)

(c) (d)

Figure 5.2 A low viscosity drop with λ = 0.2 is stretched in a pure strain with
capillary number Q = 0.8 (B = G = 0) at Péclet number Pe = 103. Data for C are
shown at a sequence of times: (a) t=1.0, (b) t=2.5, (c) t=5.0, (d) t=7.5. A thin, high
surfactant ‘plume’ emanates from the drop pole in panel (b), then advects into the
drop interior along the x1-axis in panel (c). By the final time of panel (d) it forms a
high surfactant region near the drop equator.

Figure 5.2 shows simulation results for a low viscosity drop, with λ = 0.2, at

bulk Péclet number Pe = 103 at a sequence of times in panels: (a) t=1.0, (b) t=2.5,

78



(c) t=5.0, and (d) t=7.5. On the drop surface the flow is diverging near the equator

(which is on the x2-axis) and converging near the pole (which is on the x1-axis) for all

times. In panel (a), at t = 1.0, the stretching of the interface near the equator causes

the surface concentration Γ to decrease, so that bulk surfactant is drawn toward the

interface and is depleted from the bulk, which is seen as a nearly triangular sector

of low C ' 0.5 neighboring the x2-axis. This is complemented near the drop pole,

where contraction of the interface causes the surface concentration Γ to increase, so

that the local bulk surfactant concentration increases, as seen in a small cap near the

pole where C ' 0.8. At this early time, the interior recirculation near the coordinate

axes is about to begin.

By the time of panel (b), t = 2.5, interior recirculation has set in and begun to

advect a region of C ' 0.6 from the region near the origin or drop center into a sector

neighboring the x2-axis, while the low C ' 0.5 sector that it replaces has rotated

away from the x2-axis. Near the drop pole and along the x1-axis, two regions of high

surfactant concentration are seen. One is a broader sector that ends with C ' 0.8

at x1 ' 0.8, while the other is a narrower ‘plume’ that emanates from the pole to

x1 ' 1.3 in which C ' 0.9−.

The drop deformation continues to increase through the evolution seen in panels

(c) and (d) of the figure (i.e., Figure 5.2) but its rate slows. By the time of panel

(c), t = 5.0, the narrow surfactant plume extends to x1 ' 0.65 on the drop interior

and is leaving the pole while being stretched and advected toward the origin. A small

region of low C ' 0.5 begins to form near the interface at x1 ' 1.5. The sector of

high concentration neighboring the x2-axis strengthens and increases in size, drawing

on surfactant that has passed by the drop center. By the time of panel (d), t = 7.5,

the narrow high concentration plume has also advected into this region. There is now

a broad sector of relatively high C
>∼ 0.6 that neighbors the x2-axis and a sector of

nearly the same size that neighbors the x1-axis where C
<∼ 0.6. The position of these
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low and high concentration regions has reversed relative to their positions at t = 1.0.

At t = 7.5 the bulk concentration is higher in the region of the equator, and lower in

the region of the pole.

Figure 5.3 shows simulation results and data for the bulk concentration C for

a high viscosity drop, with λ = 5, and bulk Péclet number Pe = 103 at the same

sequence of times in panels: (a) t=1.0, (b) t=2.5, (c) t=5.0, and (d) t=7.5. The

difference in final deformation and distribution of bulk surfactant compared to the

previous data for the low viscosity (λ = 0.2) drop in the same imposed flow and at

the same sequence of times is immediately apparent.

(a) (b)

(c) (d)

Figure 5.3 A high viscosity drop with λ = 5 is stretched in a pure strain with
capillary number Q = 0.8 (B = G = 0) at Péclet number Pe = 103. Data for C
are shown at a sequence of times: (a) t=1.0, (b) t=2.5, (c) t=5.0, and (d) t=7.5.
The drop becomes highly elongated, with high bulk concentration developing near
the drop pole or tip.

When λ = 5 the drop becomes highly deformed and interior recirculation

remains nearly insignificant up to the final time shown. Through the sequence of

times of panels (a) to (d) the deformation number continues to increase, and although

its rate slows with time, the drop shape at the final time t = 7.5 of panel (d) is not
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yet close to a steady state. Ultimately, when a steady state is reached, a relatively

slow recirculation can be expected to develop in the drop interior but on a greatly

elongated domain.

In this simulation the evolution is determined primarily by local expansion and

contraction of the interface and how this influences the surface concentration Γ. This

mechanism was seen at early times up to t
<∼ 2.0 only in the simulation data of Figure

5.2 but holds throughout the duration of this simulation and becomes more clearly

defined with time. Near the equator the interface undergoes expansion, leading to a

decrease in the surface concentration Γ, away from equilibrium with the local bulk

concentration C, so that bulk surfactant is drawn into the interface from the bulk,

and the mechanism for this in this simulation appears to be diffusion alone.

Conversely, near the pole the interface contracts, leading to a high local surface

concentration, above equilibrium with the bulk concentration, so that surfactant tends

to leave the interface and enter the bulk at concentrations that are locally high. Near

the drop pole, at the time t = 5.0 of panel (c) the bulk concentration immediately

next to the interface is C ' 1.4 over a small cap region and is of the order C ' 0.9

over a narrow band next to this that extends from x1 ' 2.75 to the pole at x1 ' 2.9,

so that the normal gradient ∂nC is relatively large. This is where the hybrid method

can be expected to resolve the layer structure at large Pe. In this example, it is only

in the region around the pole where the gradient ∂nC is appreciable; elsewhere near

the interface the layer structure is not apparent. The layer width, ε = Pe−1/2 '

1/30 ' 0.03..

At the final time t = 7.5 of panel (d) the bulk concentration has increased to

C ' 1.5 immediately next to the interface over a larger region at the pole, and the

region of high bulk concentration there is larger in size. Surfactant is beginning to

be advected away from the pole by a local weak recirculation that has just begun to

develop.
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The simulation data just reported for Figures 5.2 and 5.3 uses the traditional

numerical method, without the large Pe asymptotic reduction of the hybrid method.

In the remainder of this section data for ∆C is reported, where

∆C(x, t) = |CH(x, t)− CT (x, t)| , (5.6)

and CH(x, t) and CT (x, t) are the data for the hybrid and traditional methods

respectively.

Data for ∆C versus time are shown in Figure 5.4 for simulation data at the same

parameter values and sequence of times as in Figure 5.2, i.e., for the low viscosity drop,

with λ = 0.2, and Pe = 103. The panels show that over almost all of the drop interior:

(a) ∆C < 0.5×10−3; (b) ∆C < 10−3; (c) ∆C < 0.5×10−2; and (d) mostly ∆C < 10−2.

The difference increases in time, and for example from time t = 5.0 (panel (c)) to time

t = 7.5 (panel (d)) the percentage of the drop area where ∆C
>∼ 0.5× 10−3 increases

from approximately 65% to 90%, although ∆C < 10−4 throughout the simulation

run near the x2-axis. The exception to this occurs immediately next to the interface

away from the equator, where ∆C approaches 10−1, which is seen as a faint dark line

along the interface in panels (b) to (d).

The data for ∆C has a mottled or stippled appearance. When viewed close

up, there appears to be a faint band or ribbon near the interface where the pattern

of the stippling changes slightly at the drop interior band edge, although ∆C takes

the same range of values as the interface is approached across the band. The width

of the band is approximately 1/20 = 0.05 and it marks the region of the transition

layer. It contrasts most clearly with the drop interior in panel (a), away from the

drop equator. However, note that the stippling of ∆C appears to have no spatial

correlation with features noted in the data for C in Figure 5.2, such as the surfactant

plume of Figure 5.2 panels (b) and (c), and the spatial distribution of C in Figure 5.2
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(a) (b)

(c) (d)

Figure 5.4 Data for the difference ∆C between the hybrid and traditional solution
for the bulk surfactant concentration C as it evolves in time. Parameter values and
the sequence of times are the same as for the low viscosity (λ = 0.2) drop simulation
of Figure 5.2. The sequence of times shown is: (a) t=1.0, (b) t=2.5, (c) t=5.0, and
(d) t=7.5.

panel (d). In other words, these features of the solution for C are resolved equally

well by both methods, as separate data for C obtained by the hybrid method shows.

Two examples of how ∆C changes with Pe for a strain flow are shown in Figure

5.5. For the low viscosity (λ = 0.2) drop, Figure 5.5 panel (b) is the same as Figure

5.4 panel (c), so that t = 5.0 and Pe = 103. This compares with Figure 5.5 panel

(a) which shows data at the same time but with the smaller value of Pe = 102. The

comparison between panels (a) and (b) shows that, up to minute details due to the

stippling, ∆C has decreased with increase in Pe. This is a positive outcome at this

moderately low Pe range - the traditional method has been designed to achieve high

accuracy throughout this Péclet number range and can be considered almost exact,

whereas the Pe→∞ hybrid method is becoming more accurate as Pe increases.

A similar trend is shown for the high viscosity (λ = 5) drop by comparison

of Figure 5.5 panels (c) and (d). Panel (d) of this figure shows ∆C data for the
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(a) (b)

(c) (d)

Figure 5.5 Data for ∆C at different values of the bulk Péclet number Pe with all
other quantities fixed: Panels (a) and (b), λ = 0.2 at time t = 5.0 with Pe = 102 in
(a) and Pe = 103 in (b). Panels (c) and (d), λ = 5 at time t = 5.0 with Pe = 102 in
(c) and Pe = 103 in (d). The drop is stretched in a pure strain with capillary number
Q = 0.8 (B = G = 0).

simulation of Figure 5.3 panel (c), so that t = 5.0 and Pe = 103. This compares with

Figure 5.5 panel (a) which shows ∆C at the same time and smaller Pe = 102. The

decrease in ∆C as Pe increases is clearly visible over this Péclet number range at

both values of the viscosity ratio.

5.3 Imposed Shear

A major difference between drop deformation when the imposed far-field flow is a pure

strain and when it is a simple shear, u = G < x2, 0 >, is caused by the difference

in vorticity of the imposed flow. The strain has zero vorticity, whereas the shear has

vorticity of magnitude G. Common to both types of imposed flow, the drop shape in

an imposed shear has four-fold symmetry.

Figure 5.6 shows simulation results for a low viscosity drop, with λ = 0.2, at

bulk Péclet number Pe = 102 at the same sequence of times used previously, namely:
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(a) t=1.0, (b) t=2.5, (c) t=5.0, and (d) t=7.5. All other parameters are as given at

equations (5.1) to (5.4) with the same level of numerical discretization as described

there.

(a) (b)

(c) (d)

Figure 5.6 A low viscosity drop with λ = 0.2 is stretched in a simple shear with
G = 2B = 1 (Q = 0) at bulk Péclet number Pe = 102. The bulk surfactant
concentration C is shown at a sequence of times: (a) t=1.0, (b) t=2.5, (c) t=5.0, and
(d) t=7.5. After the drop elongates and acquires high surfactant concentration caps
along its major axis, as seen in (a), it begins to rotate or tank-tread in the clockwise
direction, advecting the caps while continuing to elongate more slowly and align its
major axis with the x1-axis.

In the early stages of the evolution, up to t ' 1.2 and slightly later than the time

of panel (a), the drop begins to elongate and develops a major axis that is aligned with

polar angle φ ' π−

4
. The flow on the interface undergoes contraction near the higher

curvature poles, so that the surface concentration Γ is above the bulk equilibrium

concentration, and surfactant tends to leave the interface through a developing high

concentration transition layer and enters the bulk phase in the drop interior. Near

its lower curvature sections, along the minor axis, the flow on the interface expands,

85



so that the surface surfactant concentration decreases, and surfactant is drawn to the

interface from the bulk. Radial sectors of high and low bulk surfactant concentration

begin to develop, and are seen in their early stages in panel (a) of Figure 5.6.

At later times, t
>∼ 1.2, the entire drop is set into a circulatory motion that

is induced by the vorticity of the imposed flow and viscous stress at the interface.

The motion is such that a fluid line element or line of fluid particles that lies along a

straight ray emanating from the drop center or origin to the interface remains straight

at later times, but rotates in the clockwise direction with angular speed that, because

of incompressibility, varies with φ, and is relatively slow when the ray points to the

elongated high curvature drop poles and fast when it points toward the minor axis

low curvature regions. By the time t = 2.5 of Figure 5.6 panel (b) the regions of

high bulk concentration near the interface have rotated clockwise through an angle

∆φ ' π
2

and are aligned with the drop minor axis φ ' −π
4
.

The drop continues to elongate and align its major axis closer to the x1-axis,

but increasingly slowly through the later times of panels (c) and (d). By the final

time t = 7.5 of Figure 5.6 panel (d), the high surfactant concentration caps have

rotated clockwise through an angle ∆φ ' π relative to their initial position and are

again aligned with the drop major axis.

The Péclet number for the simulation of Figure 5.6 was chosen to be Pe = 102

instead of a larger value, such as Pe = 103, to show the high surfactant concentration

transition layer regions more clearly when presenting the data. Figure 5.7 shows the

bulk surfactant concentration C for a low viscosity (λ = 0.2) drop with all parameters

and other quantities the same except for the bulk Péclet number, which is 102 in panel

(a) and 103 in panel (b). Panel (a) of this figure is the same as Figure 5.6 panel (d).

The decrease in transition layer thickness ε = Pe−1/2 from 0.10 to 0.03 with

increase in Pe that is seen in Figure 5.7 and the change in appearance of the bulk

surfactant concentration adjacent to the interface is clearly visible near the drop poles.
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Other differences such as the drop shape, orientation, and bulk concentration in the

drop interior are imperceptible.

(a)

(b)

Figure 5.7 Change in bulk surfactant concentration C with increase in Pe for a low
viscosity (λ = 0.2) drop in a shear flow. Panel (a) is a close-up of Figure 5.6(d), while
panel (b) shows data for C with all other parameters the same except for increase in
bulk Péclet number to Pe = 103.

Figure 5.8 shows simulation results for a high viscosity drop, with λ = 5, at

bulk Péclet number Pe = 102, at the same sequence of times chosen throughout this

chapter for the presentation of time-dependence: (a) t=1.0, (b) t=2.5, (c) t=5.0, and
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(d) t=7.5. All quantities except the drop viscosity are the same as in the low viscosity

simulation of Figure 5.6, and the Péclet number is kept at Pe = 102 to make the data

for C near the interface more visible.

(a) (b)

(c) (d)

Figure 5.8 A high viscosity drop with λ = 5 is stretched in a shear with G = 2B = 1
(Q = 0) at bulk Péclet number Pe = 102. The drop shape and bulk surfactant
concentration C are shown at a sequence of times: (a) t=1.0, (b) t=2.5, (c) t=5.0,
and (d) t=7.5. After the drop elongates, the surfactant caps remain at the drop poles
throughout the time of the simulation.

In the early stages of the evolution, as seen in panel (a), the drop elongates

and acquires high surfactant concentration caps near the drop poles via the same

mechanism seen in all examples investigated. Contraction of the interface, that is,

convergence of particle paths as they migrate around the drop surface, occurs at the

drop poles, inducing a high surface concentration Γ, which then tends to leach into

the drop interior across a high bulk surfactant concentration transition layer and

enters the drop core by weak diffusion. In contrast, along the low curvature parts

of the interface, near the drop minor axis, the surface flow expands, and the reverse

surfactant exchange process occurs.
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The drop continues to elongate through the later times of panels (b) to (d),

while its major axis aligns to a steady inclination closer to the x1-axis. The drop

shape and orientation appear close to a steady state at the times t = 5.0 of panel (c)

and t = 7.5 of panel (d), but there is still a clearly visible increase in surfactant phase

exchange occurring near the poles. The high viscosity drop offers more resistance

to shear, at its interface and in its interior, so that the tank treading motion of the

interface and interior circulation are far weaker than for the previous, low viscosity

example of Figure 5.6. The decrease in circulation is sufficiently strong that the high

surfactant caps remain at the drop poles throughout the simulation, and are not

advected by the vorticity of the imposed flow that was seen previously. At the final

time of Figure 5.8 panel (d), the surface and bulk surfactant concentrations are at

the highest values encountered throughout this study, with C ' 1.6 – the pole tips

have high curvature and low surface tension.

The simulation results reported above in this section were found using the

traditional numerical method, and we now turn to the difference ∆C, defined at

equation (5.6), in simulation data for C as found by it and found by the hybrid

method.

Figure 5.9 shows simulation results for ∆C for the same conditions as the

computational run of Figure 5.6 for a low viscosity drop in a shear except that here

the bulk Péclet number is increased to Pe = 103.

The panels of Figure 5.9 show that, through the sequence of increasing times,

over the drop interior: (a) ∆C < 0.5 × 10−3; (b) ∆C < 10−3; (c) ∆C < 0.5 × 10−2;

and (d) ∆C < 0.8× 10−2. These maximum values and their trend are similar to the

results seen earlier for a low viscosity drop in an imposed strain flow in Figure 5.4.

The difference increases in time, and for example from time t = 5.0 (panel (c)) to time

t = 7.5 (panel (d)) the percentage of the drop area where ∆C
>∼ 0.5× 10−3 increases

from approximately 50% to 70%, although ∆C < 10−4 throughout the simulation
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(a) (b)

(c) (d)

Figure 5.9 The difference ∆C between the hybrid and traditional solution for C
evolves over time. Parameter values and the sequence of times are the same as for
the low viscosity drop (λ = 0.2) simulation of Figure 5.6 except that Pe = 103. The
sequence of times is: (a) t=1.0, (b) t=2.5, (c) t=5.0, and (d) t=7.5

along a band that crosses the drop and reorients in time. However, immediately next

to the interface away from the equator ∆C approaches 0.5× 10−1, which is seen as a

faint dark line along the interface in panels (b) to (d). Its width is far less that the

transition layer width.

There is a slight change in the stippling of the data for ∆C across the transition

layer that is more perceptible when the figure panels are seen in close-up. The layer

width, when seen, has width approximately 1/20 = 0.05. Considering the data for C,

there is no discernible change in features such as the position of the high surfactant

concentration caps near the interface, that are seen for Pe = 102 in Figure 5.6 and are

advected around the interface for times t
>∼ 1.2, when the Péclet number is increased

to 103. The lower Pe study is therefore a good point of reference in looking for

correlation between ∆C in Figure 5.9 and features of the underlying solution for C.
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In this comparison, there appears to be some correlation between the position

of larger values of ∆C and the position of the surfactant caps between panels (a)

and (d) of Figures 5.9 and 5.6. There is however no such correlation between panels

(b) and (c) of the two figures. This suggests that both the hybrid and traditional

methods are capable of resolving features of the solution with comparable accuracy.

Figure 5.10 shows two examples of the change in ∆C with increasing Pe for

shear flow. Panels (a) and (b) of the figure show ∆C for a low viscosity (λ = 0.2)

drop at time t = 5.0 with bulk Péclet number Pe = 102 in panel (a) and Pe = 103 in

panel (b). Panel (b) of this figure is the same as Figure 5.9 panel (c).

(a) (b)

(c) (d)

Figure 5.10 Simulation data for ∆C at different values of the bulk Péclet number
with all other conditions unchanged. In panels (a) and (b), λ = 0.2 at time t = 5.0
with Pe = 102 in panel (a) and Pe = 103 in (b). In panels (c) and (d), λ = 5 at time
t = 5.0 with Pe = 102 in (c) and Pe = 103 in (d). The drop is stretched in a shear
with G = 2B = 1 (Q = 0).

Over some range of the Péclet number we would expect or hope to see a decrease

in ∆C as Pe increases, showing convergence of the two numerical methods, with a

possible divergence or failure of the traditional method at very large values of Pe
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where the hybrid method is still valid. Over the range shown here, in panels (a) and

(b) ∆C remains almost unchanged. Note that, given ∆C is uniformly small at both

values of Pe and the error of the leading order Pe → ∞ hybrid method is of order

O(Pe−1/2) this is reasonable.

The outcome is more promising in the results for the high viscosity (λ = 5)

drop. Panels (c) and (d) show data at the same time t = 5.0, with Pe = 102 in panel

(c) and Pe = 103 in panel (d). Panel (c) therefore shows data for ∆C that correspond

to the data for C of Figure 5.8 panel (c). Larger values of the difference ∆C are found

across much of the drop area at this high viscosity setting, with ∆C slightly greater

than 10−2 near the drop poles when Pe = 102 in panel (c). However there is a notable

decrease in ∆C seen over all regions of the drop area and in particular near the drop

poles with increase of Pe to 103: compare Figure 5.10 panels (c) and (d).
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CHAPTER 6

CONCLUDING REMARKS

The main topic of this dissertation has been the development of numerical methods for

investigation of two-phase flow with soluble surfactant in the zero Reynolds number

Stokes flow limit that achieve high accuracy at large values of the bulk Péclet number

Pe when bulk phase surfactant is present in the drop interior. Two complementary

approaches have been developed: one approach uses a traditional numerical method

that solves the full set of governing equations using a spectral discretization that

is designed to be accurate at values of Pe that are large but finite, and the second

approach uses a hybrid method that is derived using techniques of matched asymptotic

expansions in the limit Pe→∞.

To facilitate accuracy of the traditional method the computations have been

restricted to two space dimensions (2D), where analytical complex variables methods

can be applied. The predictions of the traditional and hybrid methods have been

compared for simulations of drop deformation in an imposed flow that is either a pure

strain or a simple linear shear, these being the two canonical examples of imposed

flow for drop deformation studies.

Two previous studies that use the hybrid approach are [4] and [39]. Of these, the

earliest [4] took the drop interior to be inviscid or void and applied both traditional

and hybrid solution methods. The second study [39] took the drop interior to be

viscous but used the hybrid method alone. In both studies bulk surfactant was

present only in the exterior of the drop. The spatial discretization of [4] used finite

difference methods, with conformal mapping for its traditional approach. The Stokes

flow solver of [39] used a spectral discretization for the Sherman-Lauricella integral

equation and a Chebyshev spectral method for spatial discretization of the transition

93



layer equation in its version of the hybrid method. Both of these spectral methods

have been adapted to the present study.

Compared to previous studies that use the hybrid method, the main contri-

bution of this study is its consideration of bulk surfactant on the drop interior. For a

single drop in an unbounded surfactant-laden exterior phase, there is an exchange of

surfactant between the bulk and surface, with associated changes in surface tension

and drop shape, but the exterior phase particle paths pass by the drop and do not

encircle it. In the context of the hybrid method, particle paths leaving the transition

layer adjacent to the interface carry their bulk concentration away from the drop

and do not return. Particle paths entering the transition layer always carry the

same uniform ambient bulk concentration into the layer. The interaction between the

immediate neighborhood of the drop and the bulk flow is less active than it is when

bulk surfactant is present in a continually recirculating interior flow.

In this study a Chebyshev-Fourier spectral discretization has been developed to

resolve the evolution of bulk surfactant in the drop interior, which has been described

for the traditional method in Section 4.2.1. A diffusion-free version of this has also

been used in the hybrid method, which was described in Section 4.2.2. To achieve

high accuracy at large Pe in the traditional method, the drop domain in the z-

plane was mapped conformally back to the fixed unit disk in the ζ-plane. The map

construction via James’s method was described in Section 3.4. To find the fluid

velocity away from the drop boundary, on the drop interior for evaluation of the

bulk surfactant concentration, an analytic continuation method was introduced that

enables continuation on the unit disk, where it is fast and numerically stable; this

was described in Section 3.5.

The simulation results have been described for both the traditional and hybrid

methods, for an imposed pure strain in Section 5.2 and for an imposed simple shear

in Section 5.3. In each case results for a low viscosity drop have been compared with

94



contrasting results for a high viscosity drop. At low drop viscosity the recirculating

interior flow is strong, begins early in the deformation process, and advects regions of

high and low bulk surfactant concentration at a relatively high rotation rate. At high

viscosity the drop can become highly deformed before a weak interior recirculation

sets in. At both high and low viscosity, it can be expected that a true steady state is

achieved only after multiple interior flow turnover times. How this might scale with

material and flow parameters is not yet clear.

Considerations for future study are: (i) an implementation of the map

construction that is completely spectral. So far, some steps of the construction

are spectral but some polynomial spline interpolation could perhaps be replaced

by FFT. (ii) Simulations at increasingly large values of the bulk Péclet number.

This would enable a more definitive investigation of the role of the Péclet number

in drop deformation as well as comparison of the relative merits of the traditional

and hybrid methods. (iii) Comparison of the two numerical methods and validation

of the simulation data should be supplemented by presenting systematic convergence

studies. (iv) Additional comparison of data found by the traditional and hybrid

methods. Differences in the drop shape as found by the two methods was found to

be close to round-off error, so it is expected that differences in quantities such as the

surface surfactant concentration Γ, for example, will also be small, but a systematic

study of this difference and how it varies with change in Péclet number and other

parameters has not been included here.
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APPENDIX A

DERIVATION OF SOME RESULTS FROM CHAPTER 2

A.1 Derivation of the Capillary Stress and the Marangoni Stress

A derivation of the stress-balance boundary condition (2.3) with spatially varying

surface tension can be found in, for example, [22] (pages 200 to 203). The account

here includes some technical details that are omitted from [22].

The forces on an arbitrary patch Sc of the interface S are the sum of the forces

exerted by the neighboring fluid on the interface, which are expressed in terms of the

stress tensor σ as S is approached from Ω1 and from Ω2 and the outward unit normal

n, and the surface tension force on the patch Sc due to the rest of the interface S \Sc.

This acts on the perimeter C of the patch, with force per unit length σts, where σ is

the magnitude of the surface tension and ts is a unit vector on C that is tangential to

S and directed outwards from Sc to S \Sc, see Figure A.1. The unit vectors (ts, tc,n)

form a right-handed set at points on C, and tc is the oriented tangent to C, so that

Sc is to its left as C is traversed.

Since the interface has zero mass, the sum of these forces is zero , i.e.,∫∫
Sc

[σ]21 · n dS +

∮
C

σts ds = 0 . (A.1)

A generalized form of Stokes’ theorem is used to transform the line integral around

C to a surface integral over Sc. The approach given here closely follows the

generalization of Stokes’ theorem of [30] (page 66, theorem 9).

Under sufficient smoothness or regularity conditions, Stokes’ theorem transforms

the circulation line integral of a vector field v around a closed curve C into a surface
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Figure A.1 An arbitrary region or patch Sc of the fluid interface S, with Sc shown
simply connected in this illustration, is bounded by a curve C. The curve C has
unit tangent vector tc, S has outward unit normal n, and the unit vector ts is in the
tangent plane to S such that (ts, tc,n) form a right-handed set at points on C.

integral over any open surface S that has perimeter C, so that∮
C

v · t ds =

∫∫
S

(∇× v) · n dS , (A.2a)

or

∮
C

vi ti ds =

∫∫
S

εkli
∂vi
∂xl

nk dS (A.2b)

in suffix notation. Here t denotes the oriented tangent vector on C and s denotes

arc length. If v has only one non-zero component φ, let vi = φ δij where δij is the

Kronecker delta and j is any one fixed integer j = 1, 2, 3. Substitution in (A.2b) gives∮
C

φ tj ds =

∫∫
S

εklj
∂φ

∂xl
nk dS = −

∫∫
S

εjlk
∂φ

∂xl
nk dS (A.3)

or, in vector notation, ∮
C

φ t ds = −
∫∫

S

∇φ× n dS . (A.4)
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An analogous expression holds when φ is replaced by a tensor T of any rank, since

each Cartesian component of the tensor is a scalar, for which (A.4) holds. So∮
C

T ⊗ t ds = −
∫∫

S

(∇⊗ T )× n dS , (A.5)

where ⊗ denotes the tensor product, and if T has rank n the integrands of both sides

have rank n+ 1.

If T has rank 2, in suffix notation (A.5) is∮
C

Tij tk ds = −
∫∫

S

εklm
∂Tij
∂xl

nm dS , (A.6)

compare (A.3). To form the contraction of T with t, set k = j and let j be the

repeated suffix in (A.6), to find∮
C

Tij tj ds = −
∫∫

S

εjlm
∂Tij
∂xl

nm dS . (A.7)

To write this last, general result in the vector notation of [30], note that εjlm = −εmlj
in the right-hand side, to find∮

C

T · t ds =

∫∫
S

(∇× T ) · n dS . (A.8)

This is reminiscent of the familiar statement of Stokes’ theorem (A.2a) but with the

vector v (of rank 1) generalized to the tensor T (of rank n). There is no ambiguity

when the expression is written in suffix notation, as in (A.7).

To transform the circulation integral
∮
C
σtsds of (A.1) to a surface integral via

(A.7), note that ts = tc × n. The i-component of the circulation integral therefore

becomes(∮
C

σtsds

)
i

=

∮
C

εijk σ nk tcj ds = −
∫∫

S

εjlm
∂

∂xl
(εijkσnk)nm dS , (A.9)
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where in (A.7) tj = tcj and Tij = εijkσnk. Next, since −εjlmεijk = εlmjεjik = δilδkm −

δimδkl, the integrand in the surface integral of (A.9) is

∂

∂xi
(σnk)nk −

∂

∂xk
(σnk)ni =

∂σ

∂xi
− σ∂nk

∂xk
ni , (A.10)

which has been simplified: since n is a unit vector, nknk = 1 and nk∂xink = 0, and

since σ is defined only on the surface its derivative in the normal direction nk∂xkσ = 0.

The divergence of the normal field is the sum of the principal curvatures, so that

∂xknk = ∇ · n = κ1 + κ2, and in vector notation the integrand becomes

∇sσ − σ(κ1 + κ2)n . (A.11)

The surface integral that results from this application of Stokes’ theorem is

substituted in (A.1), the two surface integrals over Sc are then combined, and, since

the patch Sc is arbitrary, the integrand, which is assumed to be continuous, is zero.

After moving the surface tension terms to the right-hand side, the stress-balance

boundary condition (2.3) is found, namely

[σ]21 · n = σ(κ1 + κ2)n−∇sσ . (A.12)

A.2 The Direction of the Marangoni Stress

This section gives an explanation as to why the surface diffusion term in the

conservation law for evolution of the surface surfactant concentration Γ can usually

be neglected.

In nondimensional form and in the absence of surfactant solubility effects the

conservation of surface surfactant Γ is governed by equation (2.14) without the term

±J n · ∇C|S, that is, for a 2D interface S in 3D space

∂Γ

∂t

∣∣∣∣
n

+∇s · (Γus) + Γ(κ1 + κ2)un =
1

Pes
∇2
sΓ , x ∈ S. (A.13)
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where κ1 and κ2 are the principal curvatures. To estimate the surface Péclet number

Pes = Ua/Ds, we note that it is widely believed that values of the surface diffusivity

Ds and bulk surfactant diffusivity D can be considered nearly equal, and most data is

given for D, see for example [6, 10]. We therefore consider Ds = D and Pes = Pe =

Ua/D. The capillary velocity U was introduced in Table 2.2 as U = σ0/µ2, where

σ0 is the surfactant-free surface tension and µ2 is the viscosity of the exterior fluid or

continuous phase. In practice, surfactant-induced interface velocities are limited by

the viscosity of the more viscous fluid and this is observed here.

A two-phase fluid pair of water and a light oil, such as light mineral oil or olive

oil, has a surface tension σ0 ' 20 to 50 mN/m, and oils have the larger viscosity

µ ' 0.04 to 0.1 kg/m s. This gives a range of the capillary velocity U from about

0.2 to 1.25 m/s, and we choose 0.5 m/s as a typical value. For an air-water interface

σ0 ' 73 mN/m and water has the greater viscosity µ ' 1.1 × 10−3 kg/m s, which

gives a larger capillary velocity estimate of 66 m/s.

The quantity D/a is a measure of the velocity at which surfactant can diffuse.

Possibly the most comprehensive survey of surfactant data is reference [6], which gives

values of D for many surfactants that all lie in the range from 2× 10−10 to 8× 10−10

m2/s. Data for a few larger values of D are considered unreliable. This data is for

air-water, with D measured in the water phase, but of the limited data available for

D in an oil-water system reference [1], for example, gives a typical value of 4× 10−10

m2/s. Note that these small diffusivities reflect the fact that surfactant molecules

are large, typically of 200 to 2,000 amu, and have long hydrocarbon tails relative to

their lighter and more compact host solvent molecules. We take D = 5× 10−10 m2/s

as a representative value, and a size of a = 1 mm, which is larger than the scale of

many microfluidic systems but does not overestimate the diffusion velocity D/a of

most applications. This gives an estimate for the diffusion velocity in oil-water and

air-water systems of 5× 10−7 m/s.
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The result of these estimates is that both the surface and bulk Péclet numbers

are of the order of 106 for oil-water and 1.3× 108 for air-water systems. Equivalently,

the dimensionless diffusion coefficient, Pe−1
s or Pe−1, is small and of the order of

10−6 to 10−8. Because of this, the diffusion term for the evolution of the surface

concentration Γ and for the bulk concentration C only needs to be retained if it is

needed to resolve large spatial gradients (i.e., near discontinuities or “shocks”) in Γ

or C.
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Figure A.2 C1, C2, and C3 are concentric circles of material points or Lagrangian
fluid markers on a flat interface. When surfactant is introduced to the area enclosed by
C1 a surface tension gradient with Marangoni stress ∇sσ is set up that acts outward,
as shown. The subsequent flow reduces the gradient and restores equilibrium without
diffusion.
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However, the direction in which the Marangoni stress acts tends to reduce spatial

gradients in the surface concentration Γ. For large spatial gradients of Γ to form,

an externally imposed flow or other nonequilibrium condition of sufficient strength

must be in place to make it occur. A simple and familiar “kitchen sink” experiment

illustrates how Marangoni stress, when it acts on its own, reduces gradients in

surface surfactant concentration Γ and surface tension σ to restore a spatially uniform

equilibrium: a bounded container of water that is at rest below still air has a flat

air-water interface; it is driven away from this initial equilibrium state by placing

surfactant on the surface at time t = 0+. A schematic is shown in Figure A.2.

In the figure C1, C2, and C3 are concentric circles of material points or

Lagrangian fluid markers on a fluid interface that is initially flat, and remains flat

when inertia effects are neglected. So that, in equation (A.14) κ1 = κ2 = un = 0 and,

as shown in Appendix C.2, the time derivative ∂t|n = ∂t. The surfactant introduced

at time t = 0+ is placed at or near the center of C1. Surface diffusion on its own would

cause this initial distribution to spread out toward a uniform equilibrium state, but at

a velocity of order D/a, which is much slower than the capillary velocity U = σ0/µ,

as just shown. When the surface diffusion term is neglected (i.e., Pes = ∞) the

evolution equation reduces to conservation of the scalar concentration Γ in the 2D

interfacial velocity field us, namely

∂Γ

∂t
+∇s · (Γus) = 0 , x ∈ S. (A.14)

An application of the surface version of Reynold’s transport theorem [7, 23] then gives

the relations

d

dt

∫
A(t)

ΓdS = 0 , or equivalently

∫
A(t)

ΓdS = constant in time , (A.15)

where A(t) is any Lagrangian or material interface area, that is, any area on the

interface that moves with the interfacial fluid velocity us.
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The surface equation of state that relates surface surfactant concentration Γ to

surface tension σ is monotone decreasing. Thermal effects are neglected here, and

this monotinicity is independent of choice of isotherm or a specific surface equation

of state. Hence,

σ = σ(Γ) > σmin > 0 and Γ ≥ 0 with σ0 = σ(0) , (A.16)

where σmin is some positive minimum value that can be achieved in practice by use

of surfactants.

Suppose that for t < 0 the interface has some small initial uniform distribution

of surfactant Γ1 with corresponding equilibrium surface tension σ1 = σ(Γ1). When at

t = 0+ the surfactant source is supplied inside C1, the local increase in Γ leads to a

local decrease in σ. This sets up a surface gradient of surface tension with Marangoni

stress ∇sσ that is directed away or outward from C1, see Figure A.2(a). The region

of greater surface tension outside C1, around C2 and C3 for example, pulls or draws

out the interface within C1, so that, as sketched in Figure A.2(b), the surface area

within C1 increases. At the same time, the interfacial area bounded by C2 and C3

decreases.

Now observe from equation (A.15) that in the flow that develops, since the area

enclosed by C1 increases the surfactant concentration there decreases, and conversely

the surfactant concentration enclosed between C2 and C3 increases. The spatial

gradient of both Γ and σ therefore decreases, with the interface velocity beginning to

decrease until finally a new spatially uniform equilibrium is reached with us = 0 and

σeq = σ(Γeq) constant on the interface.

If the initial surfactant concentration Γ1 = 0, then
∫
C3\C2

ΓdS = 0 and in a

bounded container the area enclosed between C2 and C3 tends to zero as the final

equilibrium is reached. Also, the reasoning above would still apply to a non planar

interface that could somehow remain static throughout the motion, since then un = 0.
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For example, a spherical interface that retains its shape because the force balance is

dominated by capillary pressure, σ/a.
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APPENDIX B

DERIVATION OF SOME RESULTS FROM CHAPTER 3

B.1 Physical Quantities in Terms of Goursat Functions

This section gives the expressions for the primitive variables u and p and the other

physical quantities that are derived from them in terms of the Goursat functions,

f(z) and g(z) = h′(z). Since the time dependence of these quantities only enters

parametrically, it is suppressed here; i.e., the independent variable t is omitted from

the argument of all functions.

As noted in Section 3.3 of the main text, in fact the interior domain (Ω1) and

exterior domain (Ω2) each have distinct pairs of Goursat functions, and, because of

the viscosity mismatch, the expressions for the physical quantities in terms of their

respective Goursat functions differs. However, the difference is slight. Inspection

of the governing equations shows the only difference is that the expression for the

pressure on the interior domain is given by replacing the pressure p on the exterior

domain by p/λ, while noting the difference in Goursat functions. Cognizant of this,

the results listed here are given for the exterior domain Ω2 alone.

Equation (3.6) for the representation of the stream function ψ in terms of f(z)

and h(z) can be rewritten as

ψ =
1

2

(
zf(z) + zf(z) + h(z) + h(z)

)
. (B.1)

In general, if w(z) = u(x1, x2)+iv(x1, x2) is analytic, from the definition of analyticity

and with a prime denoting a derivative with respect to the argument

w′(z) = ∂x1(u+ iv) = −i∂x2(u+ iv) . (B.2)
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Now w(z), like z, is not analytic, but it follows from equation (B.2) that

∂x1w(z) = ∂x1u− i∂x1v = w′(z) , (B.3a)

and − i∂x2w(z) = −i∂x2u− ∂x2v = −w′(z) . (B.3b)

With g(z) ≡ h′(z), the first and second derivatives of the stream function are

therefore,

∂x1ψ(x1, x2) =
1

2

(
f(z) + zf ′(z) + f(z) + zf ′(z) + g(z) + g(z)

)
, (B.4a)

∂x2ψ(x1, x2) =
i

2

(
−f(z) + zf ′(z) + f(z)− zf ′(z) + g(z)− g(z)

)
, (B.4b)

∂2
x1
ψ(x1, x2) =

1

2

(
2f ′(z) + zf ′′(z) + 2f ′(z) + zf ′′(z) + g′(z) + g′(z)

)
, (B.4c)

∂2
x2
ψ(x1, x2) =

1

2

(
2f ′(z)− zf ′′(z) + 2f ′(z)− zf ′′(z)− g′(z)− g′(z)

)
, (B.4d)

∂2
x1x2

ψ(x1, x2) =
i

2

(
zf ′′(z)− zf ′′(z) + g′(z)− g′(z)

)
. (B.4e)

The velocity components are given in terms of the stream function by equation

(3.1), namely

u1 = ∂x2ψ and u2 = −∂x1ψ . (B.5)

A 2D vector, and here the fluid velocity is the relevant example, can be written in

terms of its Cartesian components as u = (u1, u2) or associated with its complex

counterpart u = u1 + iu2. So, for the complex velocity u, iu = −u2 + iu1 = ∂x1ψ +

i∂x2ψ, and hence, from equations (B.4a,b), in terms of the Goursat functions,

iu = −u2 + iu1 = f(z) + zf ′(z) + g(z) , (B.6)

which is equation (3.7).

In Cartesian 2D Stokes flow the fluid vorticity can be represented by a scalar q,

where ω = ∇×u = qe3, and in terms of the velocity components and stream function
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the vorticity scalar q = ∂x1u2 − ∂x2u1 = −∇2ψ. Hence, from equations (B.4c,d),

q = −2(f ′(z) + f ′(z)) = −4Re f ′(z) . (B.7)

The conjugate harmonic function of q is the pressure p in Ω2. In terms of its Cartesian

components, the Stokes momentum equation can be written as

∇2(u1, u2) = (∂x2 ,−∂x1)∇2ψ = (−∂x2 , ∂x1)q = (∂x1 , ∂x2)p , (B.8)

where sufficient smoothness to commute derivatives has been assumed. Hence, q and

p satisfy the Cauchy-Riemann equations

∂x1q = ∂x2p and ∂x2q = −∂x1p , (B.9)

and since their first partial derivatives are assumed to be continuous q + ip is an

analytic function of z. From (B.7), we have

q + ip = −4f ′(z) and p = −4 Imf ′(z) . (B.10)

The components of the rate of strain tensor for a Newtonian fluid are

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
i, j = 1, 2 . (B.11)

When these are written in terms of the stream function, via equations (B.5), and

relations (B.4c-e) are used, it is found that

e11 = ∂2
x1x2

ψ =
i

2

(
zf ′′(z)− zf ′′(z) + g′(z)− g′(z)

)
, (B.12a)

e12 =
1

2
(∂2
x2
− ∂2

x1
)ψ = −1

2

(
zf ′′(z) + zf ′′(z) + g′(z) + g′(z)

)
, (B.12b)

from which it follows that

e11 + ie12 = −i
(
zf ′′(z) + g′(z)

)
, (B.13)
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and since e21 = e12 and e11 = −e22, we have

e11 + ie12 = −e22 + ie21 . (B.14)

The Stress-Balance Boundary Condition on S

The stress exerted by the fluid in the exterior domain Ω2 on the interface S

appears as the terms on the left-hand side of the stress-balance boundary condition

(2.12b) with a 2-subscript. The subscript is dropped here, and in terms of its

Cartesian components the stress contribution is f = (f1, f2), where

fi = −pni + 2eijnj , i = 1, 2 . (B.15)

In complex form this is f = f1 + if2, and the outward unit normal is n = n1 + in2,

so that from equations (B.10), (B.13), and (B.14),

f = 4 Im (f ′(z))n− 2i
(
zf ′′(z) + g′(z)

)
n , (B.16)

where z ∈ S.

With the convention that S is traversed with arc length s increasing in the

counter-clockwise direction, at an arbitrary point z on S we have

unit tangent zs =
dz

ds
and outward unit normal n = −izs , (B.17)

as sketched in Figure B.1 (compare with Figure 2.1 of Section 2.1 and Figure 3.1 of

Section 3.4 of the main text). So that in terms of zs,

f = −2
{

(f ′(z)− f ′(z))zs − (zf ′′(z) + g′(z))zs

}
. (B.18)

In general, if w(z) is an analytic function of z then along a smooth path in the complex

plane dw
ds

= dw
dz

dz
ds

= w′(z)zs, and by forming the complex conjugate, dw
ds

= w′(z)zs.

From this, we have the exterior fluid stress

f = −2
d

ds

{
f(z)− zf ′(z)− g(z)

}
z ∈ S , (B.19)
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which is a perfect derivative with respect to the arc length s.

⌦1, µ1

⌦2, µ2

#

n

s

S

⌦1, µ1

⌦2, µ2

#

n

s

S

zs =
dz

ds

�

 

⇢

sT = zs

n = �izs

zs =
dz

ds

⌦1

⌦2

zs =
dz

ds

⌦1

⌦2

Figure B.1 The interface S is traversed with arc length s increasing in the counter-
clockwise direction, so that the unit tangent zs = dz

ds
, outward normal n = −i zs, and

angle ϑ from the positive x1-axis to the tangent are as shown.

An analogous result holds for the stress exerted by the fluid in the interior

domain Ω1 on the interface, except that: (i) since p is replaced by p/λ in equation

(B.10) and the interior viscous stress carries a factor λ, the interior fluid stress is

multiplied by a factor of λ, and (ii) the direction of the normal is reversed.

The contribution of the surface tension σ to the stress-balance boundary

condition, at equations (A.12) or (2.12b), was derived with the convention that the

principal curvatures κ1 and κ2 in 3D or the curvature κ in 2D are positive when S

is viewed from Ω2, i.e., from the side of S to which n points, which in 2D gives the

complex version of the Frenet-Serret formula

d2z

ds2
= −κn . (B.20)

In passing, we note that if the angle between the positive x1 axis and the unit tangent

zs measured counter-clockwise positive is denoted by ϑ, as sketched in Figure B.1,

109



then zs = eiϑ and the outward unit normal is n = −ieiϑ. Hence, zss = ieiϑϑs = −ϑsn,

and from equation (B.20) the relation κ = ∂ϑ
∂s

follows.

When written on the right-hand side of the stress-balance boundary condition

(2.12b) in vector form, the contribution of surface tension forces to the net stress is

σκn−∇sσ, or in complex form

σκn− dσ

ds
zs = −σzss −

dσ

ds
zs = − d

ds
(σzs) , (B.21)

where the simplification to a perfect derivative has used relation (B.20).

Recall that the interior and exterior fluid domains each have a distinct pair of

Goursat functions, in the sense that the pair that are analytic on Ω1 are not given by

analytic continuation of the pair that are analytic on Ω2 and vice-versa. Therefore, to

evaluate the fluid stress on S due to the fluid in the exterior domain Ω2 from relation

(B.19), the limit is taken as z approaches an arbitrary point on S, which we now call

τ , as z tends to τ ∈ S from Ω2. This is written lim z → τ+ and termed an exterior

limit. Similarly, for the contribution to the interior fluid stress, the limit lim z → τ−

from Ω1 is taken and termed an interior limit.

When the fluid stress and surface tension contributions to the stress-balance

(2.12b), each of which is a perfect derivative with respect to s, are pieced together,

an integration with respect to s gives the relation

lim
z→τ+

{
f(z)− zf ′(z)− g(z)

}
− λ lim

z→τ−

{
f(z)− zf ′(z)− g(z)

}
=

1

2
σ
∂τ

∂s
(B.22)

for all τ ∈ S. Here, a sign has been absorbed and freedom of choice in specifying the

Goursat functions allows a function of time that results from the integration over s

to be set to zero.
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B.2 Derivation of the Sherman-Lauricella Integral Equation

In this section, the time dependence of quantities such as the Goursat functions is

restored.

From equation (2.20) for the far-field velocity, the pressure p and vorticity scalar

q have the behavior

p = p∞ +O(|z|−3) , (B.23a)

q = −G+O(|z|−3) , (B.23b)

as |x| → ∞ and equivalently |z| → ∞. The leading terms here are given by

consideration of the imposed linear flow and the remainder terms correspond to the

presence of the drop. Also, since p∞ is a constant it can be set to zero without loss of

generality, i.e., p∞ = 0. The far-field behavior of the quantity q+ ip on the left-hand

side of equation (B.10) is therefore q + ip = −G+O(|z|−3), from which

f(z, t) =
G

4
z +H(t) +O(|z|−2) , (B.24)

where H(t) is an as yet arbitrary function of time. Similarly, the far-field velocity of

equation (2.20) implies that the quantity −u2 + iu1 on the left-hand side of equation

(B.6) has the behavior

−u2 + iu1 = (−B + iQ)z +
G

2
z +O(|z|−2) , (B.25)

as |z| → ∞, from which

g(z, t) = −(B + iQ)z −H(t) +O(|z|−2) as |z| → ∞ . (B.26)

In the Sherman-Lauricella formulation, the Goursat functions on both Ω1 and

Ω2 contain Cauchy-type integrals over S that contain a single complex density ω(z, t)

and represent the disturbance to the imposed flow caused by the presence of the drop
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exactly. To be specific, on Ω1 and Ω2,

f(z, t) =
1

2πi

∫
S

ω(ξ, t)

ξ − z dξ +
G

4
z +H(t) , (B.27a)

g(z, t) =
1

2πi

∫
S

−ω(ξ, t)dξ + ω(ξ, t)dξ

ξ − z − 1

2πi

∫
S

ξ ω(ξ, t)

(ξ − z)2
dξ

− (B + iQ)z −H(t) , (B.27b)

where the density ω(z, t) is to be found.

To find the density ω(z, t), expressions (B.27) for the Goursat functions f(z, t)

and g(z, t) are substituted into the integrated form of the stress-balance boundary

condition (B.22), and evaluated at a general point τ ∈ S in the limits z → τ+ and

z → τ− described near the end of Section B.1. The first step toward this is to

substitute expressions (B.27) into the terms of the first limit of equation (B.22). For

a general point z in Ω1 or Ω2 this gives

f(z)− zf ′(z)− g(z)

=
1

2πi

∫
S

ω(ξ, t)

ξ − z dξ −
1

2πi

∫
S

ω(ξ, t)

ξ − z
dξ +

1

2πi

∫
S

ω(ξ, t)

ξ − z
dξ

+
1

2πi

∫
S

(z − ξ)ω(ξ, t)

(ξ − z)2
dξ + (B − iQ)z + 2H(t) . (B.28)

The Cauchy-type integrals on the right-hand side of this relation have apparent

singularities that are integrable as z approaches τ ∈ S from either side of the contour,

i.e., in the limit z → τ±. To evaluate these limits, the contour S is deformed by

introducing a small semi-circular indentation, centered on z = τ with radius r and

orientation consistent with the counterclockwise orientation around the remainder of

S, as shown in Figure B.2. On the indentation ξ = τ + reiφ with τ fixed, so that

dξ

ξ − τ = i dφ and
dξ

ξ − τ
= −i dφ , (B.29a)

while
dξ

ξ − τ
= i e2iφdφ and

(τ − ξ)dξ
(ξ − τ)2

= i e2iφdφ . (B.29b)
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Figure B.2 The contour of integration S is indented as shown: (a) for the exterior
limit z → τ+, and (b) for the interior limit z → τ−. Since all integrals are taken with
S traversed counter-clockwise in the complex plane, the orientation on the indentation
is clockwise relative to τ when z → τ+ and is counter-clockwise relative to τ when
z → τ−.

On the indentation, φ either increases or decreases by π, depending on the

orientation of the path in ξ around z = τ . Assuming continuity of ω(z, t), it follows

that of the integrals on the right-hand side of relation (B.28), the first two have local

contributions from the indentation of ±ω(τ, t)/2 in the limit r → 0+, per equations

(B.29a), while the last two, per equations (B.29b), have zero local contribution since

the change in argument of the exponential is 2πi. The results for the first two integrals

are summarized by the Plemelj formulae

lim
z→τ+

1

2πi

∫
S

ω(ξ, t)

ξ − z dξ = −ω(τ, t)

2
+

1

2πi
−
∫
S

ω(ξ, t)

ξ − τ dξ (B.30a)

lim
z→τ−

1

2πi

∫
S

ω(ξ, t)

ξ − z dξ =
ω(τ, t)

2
+

1

2πi
−
∫
S

ω(ξ, t)

ξ − τ dξ (B.30b)

lim
z→τ+

1

2πi

∫
S

ω(ξ, t)

ξ − z
dξ =

ω(τ, t)

2
+

1

2πi
−
∫
S

ω(ξ, t)

ξ − τ
dξ (B.30c)

lim
z→τ−

1

2πi

∫
S

ω(ξ, t)

ξ − z
dξ = −ω(τ, t)

2
+

1

2πi
−
∫
S

ω(ξ, t)

ξ − τ
dξ (B.30d)

where −
∫
S

denotes a Cauchy principal value integral.
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The exterior limit z → τ+ of relation (B.28) can now be expressed as

lim
z→τ+

f(z)− zf ′(z)− g(z)

= −ω(τ, t) +
1

2πi

∫
S

ω(ξ, t) d ln

(
ξ − τ
ξ − τ

)
+

1

2πi

∫
S

ω(ξ, t) d

(
ξ − τ
ξ − τ

)
+ (B − iQ)τ + 2H(t) , (B.31)

where the integrals of (B.28) that contain ω(z, t) and the integrals that contain its

conjugate ω(z, t) have been grouped together via the identities

d ln
ξ − τ
ξ − τ

=
dξ

ξ − τ −
dξ

ξ − τ
, (B.32a)

d
ξ − τ
ξ − τ

=
dξ

ξ − τ
+

(τ − ξ)dξ
(ξ − τ)2

. (B.32b)

Similarly, the interior limit z → τ− of relation (B.28) is

lim
z→τ−

f(z)− zf ′(z)− g(z)

= ω(τ, t) +
1

2πi

∫
S

ω(ξ, t) d ln

(
ξ − τ
ξ − τ

)
+

1

2πi

∫
S

ω(ξ, t) d

(
ξ − τ
ξ − τ

)
+ (B − iQ)τ + 2H(t) . (B.33)

As an aside, we verify that the integrals around S on the right-hand side of

relations (B.31) and (B.33) are regular as ξ → τ , that is, the apparent singularity

at ξ = τ is removable. Introduce an arbitrary parameterization z = z(α) = x1(α) +

ix2(α) of S in the z-plane. Then τ ∈ S is fixed with τ = z(α∗) and α∗ fixed, while

ξ ∈ S traverses the contour with ξ = z(α) and the limit of interest is α→ α∗. Then,

from equation (B.32a)

lim
α→α∗

d ln
ξ − τ
ξ − τ

= lim
α→α∗

2i Im
(

(z(α)− z(α∗))z′(α)
)

|z(α)− z(α∗)|2
dα =

i Im(z′z′′)|α∗
|z′|2α∗

dα ,
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where ′ ≡ d
dα

and the limit has been evaluated by applying L’Hôpital’s rule twice. In

terms of components, this becomes

lim
α→α∗

d ln
ξ − τ
ξ − τ

= i
x′1x

′′
2 − x′2x′′1

x′21 + x′22

∣∣∣∣
α∗

dα = i κ(α∗)
ds

dα

∣∣∣∣
α∗

dα = iκds . (B.34)

From equation (B.32b)

lim
α→α∗

d
ξ − τ
ξ − τ

= lim
α→α∗

2i Im
(

(z(α)− z(α∗))z′(α)
)

(z(α)− z(α∗))2
dα =

i Im(z′z′′)|α∗
z′

2|α∗
dα ,

after applying L’Hôpital’s rule twice. In terms of components, this becomes

lim
α→α∗

d
ξ − τ
ξ − τ

= i
x′1x

′′
2 − x′2x′′1

(x′21 + x′22 )3/2

∣∣∣∣
α∗

(x′1 + ix′2)2

(x′21 + x′22 )1/2

∣∣∣∣
α∗

dα = i
κ(α∗)(

dξ
dα

)2
α∗

( ds
dα

)α∗
dα . (B.35)

The integral equation is found by substituting the exterior limit (B.31) and the

interior limit (B.33) into the integrated form of the stress-balance boundary condition

(B.22). After minor re-arrangement and restoring z instead of τ as a general point

on the interface contour S, this gives

ω(z, t)− β

2πi

∫
S

ω(ξ, t) d ln
ξ − z
ξ − z

− β

2πi

∫
S

ω(ξ, t) d
ξ − z
ξ − z

− β(B − iQ)z − 2βH(t) = −γ
2
σ(Γ)

∂z

∂s
. (B.36)

On the right-hand side here, the dependence of the surface tension σ on the surface

surfactant concentration Γ has been emphasized, and the parameters β and γ are

defined in terms of the viscosity ratio λ by

β =
1− λ
1 + λ

, γ +
1

1 + λ
. (B.37)

A Note on the Choice of Contour Orientation

Accounts of the Sherman-Lauricella integral equation often choose a clockwise

orientation for the integration around S as opposed to the counter-clockwise
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orientation chosen here. However, if the same definitions at equations (B.27) are

used for the Goursat functions f(z, t) and g(z, t), independently of the choice of

contour orientation, then reversal of contour orientation causes a change in sign of

the density ω(z, t). In other words, under the map s 7→ −s also ω(z, t) 7→ −ω(z, t).

When this change of contour orientation and sign of the density are implemented in

equation (B.36), and the equation is multiplied throughout by −1, the net effect is

that the first term on the left-hand side and the only term on the right-hand side

remain unchanged, while all other terms, i.e., the four terms on the left that are

multiplied by β, have their sign reversed.

B.3 Construction of the Cauchy Principal Value Integrals

This section gives a description of the numerical method used to evaluate the Cauchy

principal value integrals of equations (3.35) and (3.38). The method is usually

described as Van de Vooren desingularization, and the account here is based on that

by Hou, Lowengrub, and Krasny [15].

Both integrals have the form

I(z) =
1

2πi
−
∫
S

f(ξ)

ξ − zdξ , (B.38)

where f(z) is analytic on and in a neighborhood of the closed contour S. The

definition of the principal value integral is that it is the limit

I(z) =
1

2πi
lim
ε→0+

∫
S\Dε(z)

f(ξ)

ξ − zdξ , (B.39)

where S \Dε(z) denotes that the same ε-neighborhood to both sides of the point z is

excised or removed from the domain or path of integration before the limit is formed.

The desingularization method of [15] consists of two parts. First, a function is

subtracted from the integrand that: (i) has a simple pole at ξ = z of the same pole

strength as the integrand, (ii) is an odd function of ξ − z about the pole location

116



ξ = z, and (iii) is periodic on S. These properties ensure that the subtraction does

not alter the value of the integral as defied at (B.39). The desingularization also

ensures that near the pole the integrand has modulus of order O(1), not O(|ξ−z|−1),

which reduces numerical error. A suitable elementary function for the subtraction is

a scaled cotangent.

To implement the first step, the local behavior of the integrand near ξ = z is

needed. To evaluate it, an arbitrary parameterization of the contour S is introduced,

namely

S : ξ = ξ(α) , α ∈ [0, 2π) . At α = a , ξ(α = a) = z . (B.40)

In terms of the parameterization, the integral is

I(z) =
1

2πi
−
∫
S

f(ξ(α))

ξ(α)− z
dξ

dα
dα . (B.41)

The components of the integrand have the following expansions about α = a:

f(ξ(α)) = f(ξ(a)) + (α− a)ξ′(a)f ′(ξ(a)) +O((α− a)2) , (B.42a)

dξ

dα
(α) = ξ′(a) + (α− a)ξ′′(a) +O((α− a)2) , (B.42b)

1

ξ(α)− z
= 1

ξ(α)− ξ(a)
=

1

(α− a)ξ′(a)
− ξ′′(a)

2ξ′2(a)
+O((α− a)) , (B.42c)

from which

f(ξ(α))

ξ(α)− z
dξ

dα
=
f(ξ(a))

α− a +

(
f(ξ(a))ξ′′(a)

2ξ′(a)
+ f ′(ξ(a))ξ′(a)

)
+O(α− a) . (B.43)

The desingularized integrand is therefore,

f(ξ(α))ξ′(α)

ξ(α)− ξ(a)
− f(ξ(a))

2
cot

(
α− a

2

)
. (B.44)

The trapezoidal rule is used to evaluate the integral, with N points {αk : k =

1, 2, . . . N} evenly distributed in α, so that αk = (k − 1)h with step size h = 2π/N .

117



If the pole is located at the mesh point where k = j then αj = a and z = ξ(αj),

and this mesh point is excluded from the sum in the trapezoidal rule. Instead, at

this point the desingularized integrand (B.44) is approximated by the leading O(1)

term in its expansion, which is given by the second group of terms on the right-hand

side of equation (B.43). This gives the following expression for the trapezoidal rule

approximation of the integral (B.38)

Jh(z) =
h

2πi

N∑
k=1
k 6=j

{
f(ξ(αk))ξ

′(αk)

ξ(αk)− ξ(αj)
− f(ξ(αj))

2
cot

(
αk − αj

2

)}
+

h

2πi
F(f(ξ), ξ(αj))

where F(f(ξ), ξ(αj)) =
f(ξ(αj))ξ

′′(αj)

2ξ′(αj)
+ f ′(ξ(αj))ξ

′(αj) . (B.45)

Since the local term F(f(ξ), ξ(αj)) contains higher order derivatives it may be

difficult to compute accurately. However, it can be eliminated by using the same

quadrature with twice the step size, 2h, and half of the N mesh points. This is the

second part of the desingularization method of [15]. With N even, the sum over k

excludes the mesh point αj at which the pole z = ξ(αj) occurs, and is taken over even

integer k only when j is even and is taken over odd integer values of k only when j

is odd. This gives

J2h(z) =
2h

2πi

N∑
k even or
k odd, k 6=j

{
f(ξ(αk))ξ

′(αk)

ξ(αk)− ξ(αj)
− f(ξ(αj))

2
cot

(
αk − αj

2

)}

+
2h

2πi
F(f(ξ), ξ(αj)) . (B.46)

The linear combination 2Jh(z)− J2h(z) eliminates the local term and gives the

numerical approximation to the principal value integral

I(z) ' 2Jh(z)− J2h(z) =
h

πi


∑N/2

k=1 A(ξ(α2k−1)) j even∑N/2
k=1 A(ξ(α2k)) j odd ,

(B.47a)

where A(ξ(αk)) =
f(ξ(αk))ξ

′(αk)

ξ(αk)− ξ(αj)
− f(ξ(αj))

2
cot

(
αk − αj

2

)
. (B.47b)
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It is pointed out in [15] that the end result (B.47) is a mid-point rule quadrature

method with step size 2h, and that, like the trapezoidal rule, since the integrand is

periodic for α ∈ [0, 2π) it is spectrally accurate.
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APPENDIX C

DERIVATION OF SOME RESULTS FROM CHAPTER 4

C.1 The Fourier and Chebyshev Spectral Differentiation Matrices Dr

and Dθ

The Fourier spectral differentiation matrix Dθ of Section 4.2.1 is the matrix DN of

[34], page 5 equation (1.5), or page 21 equation (3.10). It is dense and has banded

diagonal, circulant or Toeplitz structure, and is of size Nθ ×Nθ.

It can be written as

Dθ =



...

. . . 1
2
cot(3h

2
)

. . . −1
2

cot(2h
2

)

. . . 1
2
cot(1h

2
)

0

−1
2

cot(1h
2

)
. . .

1
2
cot
(

2h
2

) . . .

−1
2

cot
(

3h
2

) . . .

...



(C.1)

where h = 2π/Nθ and Nθ (even) is the number of points in the azimuthal direction.

The Chebyshev spectral differentiation matrix Dr of Section 4.2.1 is the matrix

DN of [34], Theorem 7 page 53, with Nr substituted for N , and with the radial

coordinate r and Chebyshev-Lobatto points ri substituted for x and xi. It is of size
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(Nr + 1)× (Nr + 1) and has entries indexed from 0 to Nr as follows:

(Dr)00 = (2N2
r + 1)/6 , (Dr)NrNr = −(2N2

r + 1)/6 ,

(Dr)jj =
−rj

2(1− r2
j )
, j = 1, 2, ..., Nr − 1 ,

(Dr)ij =
ci
cj

(−1)i+j

(ri − rj)
, i 6= j, i, j = 0, 1, ..., Nr ,

where ci =

 2 i = 0 or Nr

1 otherwise
(C.2)

C.2 Expression of the Material Derivative in the Eulerian and Intrinsic

Coordinate Frames

This section describes construction of the material derivative in the intrinsic or

surface-fitted coordinate frame, given the material derivative in the Eulerian frame.

The expression in the intrinsic frame is needed for the narrow ε-layer analysis to find

the bulk surfactant concentration C in the transition layer of the hybrid method. The

final result is that in the intrinsic frame the material derivative is

∂t + vs · ∇s + ∂nvp|SN∂N +O(ε) . (C.3)

To be more specific, the terms of expression (C.3) that are written out explicitly

are the leading order terms with respect to ε, where 0 < ε � 1, of the material

derivative in the ε-layer adjacent to an evolving interface S, and vs and ∂nvp|Sn,

where n = εN , are leading order quantities in ε that are defined below. However,

ε-expansions and related subscripts are omitted, and we concentrate first on the

change of variables or change of coordinate frame in three space dimensions. The

last term, ∂nvp|SN∂N , can be recast but still contains ∂nvp|S.

1) The Eulerian (or lab) frame has origin O, Cartesian coordinates (x1, x2, x3), and

the position vector of a point P relative to O in this frame is x. The independent
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variables are therefore (x1, x2, x3, t).

2) The intrinsic or surface-fitted frame, based on a patch of the surface S, has origin

O′ and orthogonal curvilinear coordinates (ξ1, ξ2, n). The origin O′ is any point of S

that is well-defined (i.e., chosen with no ambiguity) and remains on S for all time.

The parametric surface coordinates ξ1 and ξ2 are along the principal directions on

the surface S (i.e., they are aligned with the principal directions of curvature) and n

is normal distance from S, with n > 0 in the direction of the unit outward normal

n on S. This frame has independent variables (ξ1, ξ2, n, t) and time t is the same in

both frames.

The surface S has parametric equation x = X(ξ1, ξ2, t) in the Eulerian frame,

and the position vector of an arbitrary point P can be written in both the Eulerian

and surface-fitted coordinate systems as

x = X(ξ1, ξ2, t) + nn(ξ1, ξ2, t) , (C.4)

which defines the coordinate transformation between the two frames. The notation

and terminology are the same as in, for example, [4]. Let Q be the projection of P

onto S in the normal direction. Then Q has position vector given by the equation

of S in the Eulerian frame, x = X(ξ1, ξ2, t), while in the surface fitted frame Q has

coordinates (ξ1, ξ2, n = 0) and P has coordinates (ξ1, ξ2, n). A sketch of the Eulerian

and surface-fitted frames together with their coordinates is shown in Figure C.1.

In the Eulerian frame, the material derivative (i.e., the time derivative following

the path of a fluid particle) is

D

Dt
=

∂

∂t

∣∣∣∣
x

+ u · ∇ . (C.5)
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Figure C.1 The (fixed) Eulerian frame has origin O and Cartesian coordinates
(x1, x2, x3). A patch of the surface S is shown, with the origin O′ of the intrinsic
or surface-fitted frame, which lies on S for all time. This frame has orthogonal
curvilinear coordinates (ξ1, ξ2, n), and the sketch shows the directions of the associated
surface-fitted unit vector triad (e1, e2,n) at O′.

Here and elsewhere, a bar and subscript are used to indicate quantities that are held

fixed when a partial derivative is taken. So that ∂t|x is the familiar partial derivative

with respect to time t with the position x of P fixed in space, and the u · ∇ term

accounts for its modification to become the time derivative along the path of a fluid

particle, which is given by d
dt
x = u(x, t).

In the surface-fitted frame, the time derivative ∂t|x is given by application of

the chain rule as

∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
ξ,n

+
∂ξ1

∂t

∣∣∣∣
x

∂

∂ξ1

+
∂ξ2

∂t

∣∣∣∣
x

∂

∂ξ2

+
∂n

∂t

∣∣∣∣
x

∂

∂n
. (C.6)
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On the right-hand side, bars and subscripts have been omitted on partial derivatives

that are taken in the surface-fitted frame except for the first term, ∂t|ξ,n, which is

multiplied by ∂t
∂t
|x = 1. So, for example, ∂ξ1 is taken with ξ2, n, and t fixed, and ∂n

is taken with ξ1, ξ2, and t fixed.

The terms ∂tξi|x (i = 1, 2) on the right-hand side of (C.6) are found by taking

the partial derivative of (C.4) with respect to time keeping the position x of P fixed.

This gives

0 =
∂X

∂ξ1

∂ξ1

∂t

∣∣∣∣
x

+
∂X

∂ξ2

∂ξ2

∂t

∣∣∣∣
x

+
∂X

∂t

∣∣∣∣
ξ

+
∂n

∂t

∣∣∣∣
x
n

+ n

(
∂n

∂ξ1

∂ξ1

∂t

∣∣∣∣
x

+
∂n

∂ξ2

∂ξ2

∂t

∣∣∣∣
x

+
∂n

∂t

∣∣∣∣
ξ

)
. (C.7)

Since ξ1 and ξ2 are aligned with the principal directions on the patch of the surface

S, they define an orthogonal coordinate system on it, with orthogonal unit vectors

e1 and e2, tangential to S, that are given by

∂X

∂ξi
= ai ei where ai =

∣∣∣∣∂X∂ξi
∣∣∣∣ and i = 1 or 2 . (C.8)

The orthogonal unit vector triad of the surface-fitted frame is given by including the

unit normal n = e1 × e2. Rodrigues’ formula gives the principal curvatures κi via

∂n

∂ξi
= κi

∂X

∂ξi
= ai κi ei , i = 1, 2 . (C.9)

The relations (C.8) and (C.9) imply that equation (C.7) can be recast as

0 = a1(1 + κ1n) e1
∂ξ1

∂t

∣∣∣∣
x

+ a2(1 + κ2n) e2
∂ξ2

∂t

∣∣∣∣
x

+
∂X

∂t

∣∣∣∣
ξ

+
∂n

∂t

∣∣∣∣
x
n+ n

∂n

∂t

∣∣∣∣
ξ
. (C.10)

Since the differential relation for change in position between the two frames is

dx = l1dξ1 e1 + l2dξ2 e2 + dnn where li = ai(1 + κin) , i = 1, 2 , (C.11)
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equation (C.10) can be rewritten as

l1e1
∂ξ1

∂t

∣∣∣∣
x

+ l2e2
∂ξ2

∂t

∣∣∣∣
x

= − ∂X

∂t

∣∣∣∣
ξ
− n ∂n

∂t

∣∣∣∣
ξ
− n ∂n

∂t

∣∣∣∣
x
. (C.12)

On the right-hand side, ∂tX|ξ has both normal and tangential components in general,

and since n is a unit normal ∂tn|ξ is in the tangent plane.

In the surface-fitted frame the gradient operator is

∇ = ∇t +
∂

∂n
n where ∇t =

1

l1
e1

∂

∂ξ1

+
1

l2
e2

∂

∂ξ2

. (C.13)

and ∇t is the tangential gradient operator. When the dot product of ∇t and equation

(C.12) has been formed, the right-hand side of (C.6) can be written as

∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
ξ,n

+

(
− ∂X

∂t

∣∣∣∣
ξ
− n ∂n

∂t

∣∣∣∣
ξ

)
· ∇t +

∂n

∂t

∣∣∣∣
x

∂

∂n
. (C.14)

Since the position x of P is fixed in the Eulerian frame, ∂tn|x = −un where

un is the normal speed of S in the Eulerian frame, and if S is the interface between

immiscible fluids this is also the normal speed of the fluid on S. The fluid velocity u at

P can be expressed in terms of its tangential and normal projections as u = ut+upn,

where ut is the tangential projection and up is the normal component. Hence, from

relation (C.13), u · ∇ = ut · ∇t + up∂n with the derivatives on the right-hand side

taken in the surface-fitted frame. The material derivative (C.5), with all derivatives

expressed in the surface-fitted frame, is therefore

D

Dt
=

∂

∂t

∣∣∣∣
ξ,n

+

(
ut −

∂X

∂t

∣∣∣∣
ξ
− n ∂n

∂t

∣∣∣∣
ξ

)
· ∇t + (up − un)

∂

∂n
, (C.15)

which is exact. Here, up−un ≡ vp is the normal component of the fluid velocity at P

relative to S or, more specifically, relative to the normal projection Q of P onto S.

Now construct a leading order approximation when the material derivative acts

on a scalar quantity that has a large O(ε−1) gradient in the normal direction adjacent
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to S. First consider the normal derivative term (up−un)∂n = vp∂n of relation (C.15),

and put n = εN with the rescaled normal coordinate N = O(1). If S is a material

interface then vp is zero on S and can be approximated by the first non-zero term of

its Taylor expansion near S, which is ∂nvp|sn = O(ε) with error O(ε2), and ∂nvp|s is

evaluated on S, i.e., where n = 0. The quantitiy ∂nvp|sn = ε∂nvp|sN multiplies the

large normal gradient ∂n = ε−1∂N , and the product is ∂nvp|sN∂N , which is of order

O(1). Next consider the term in relation (C.15) that contains the tangential gradient

operator ∇t. If the tangential fluid velocity ut does not have a large normal gradient

it can be approximated by its value us on S with error O(ε), and the term containing

∂tn|ξ is small like ε since n is too. From definition (C.13), the tangential gradient

operator ∇t can also be expanded, as ∇t = ∇s +O(ε), where the surface gradient ∇s

is defined by

∇s =
1

a1

∂

∂ξ1

e1 +
1

a2

∂

∂ξ2

e2 . (C.16)

This gives the leading order approximation of the material derivative (C.15), namely

D

Dt
=

∂

∂t

∣∣∣∣
ξ,n

+ vs · ∇s +
∂vp
∂n

∣∣∣∣
S

N
∂

∂N
+O(ε) , where vs ≡ us −

∂X

∂t

∣∣∣∣
ξ
. (C.17)

Here vs and ∂nvp|s are both functions of ξ = (ξ1, ξ2) and t alone. Recall that us is

tangential to S, and since ∂tX|ξ and vs are projected onto ∇s only their tangential

components contribute to the material derivative. As shown in [4], ∂nvp|s, which is

the rate of extension of an infinitesimal fluid line element based on S that is normal to

S, can be evaluated in terms of surface data by using the incompressibility condition,

∇ · u = 0. To be specific, in three space dimensions,

∂vp
∂n

∣∣∣∣
S

= −(κ1 + κ2)un −∇s · us . (C.18)
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Comparison with the Material Derivative and Evolution on a Surface.

To compare component terms in the material derivative (C.17) to terms in the

conservation law for evolution of a quantity that is confined to S, such as the surface

concentration of surfactant Γ when it is insoluble and therefore has no bulk-interface

exchange, we refer to [36].

It is shown in [36] (at equation (7)) that the time derivative ∂tΓ|n along a path

that is normal to S is related to the time derivative ∂tΓ|ξ in an arbitrary system of

orthogonal surface coordinates along a path with ξ = (ξ1, ξ2) fixed by

∂Γ

∂t

∣∣∣∣
n

=
∂Γ

∂t

∣∣∣∣
ξ
− ∂X

∂t

∣∣∣∣
ξ
· ∇sΓ , (C.19)

or as an operator

∂

∂t

∣∣∣∣
n

=
∂

∂t

∣∣∣∣
ξ
− ∂X

∂t

∣∣∣∣
ξ
· ∇s . (C.20)

To cross-refer, what we have just called a path that is normal to S is referred

to in [36], first paragraph, as a path with (“fixed”) surface coordinates that advance

only normal to the surface. Also, in [36] the notation [∂tΓ]n is used to denote the

time derivative along the normal path, and the surface coordinates are denoted by ū1

and ū2, so that equation (7) of [36] is in fact[
∂Γ

∂t

]
n

=

[
∂Γ

∂t

]
u

− Ẋ · ∇sΓ , (C.21)

where Ẋ ≡ ∂tX|u.

In the present notation, of equation (C.19), the conservation law for Γ in a form

that includes reference to the surface parameterization is (see [36], equation (8))

∂Γ

∂t

∣∣∣∣
ξ
− ∂X

∂t

∣∣∣∣
ξ
· ∇sΓ + Γ(κ1 + κ2)un +∇s · (Γus) = Ds∇2

sΓ , (C.22)

or equivalently in coordinate-free form via (C.19)

∂Γ

∂t

∣∣∣∣
n

+ Γ(κ1 + κ2)un +∇s · (Γus) = Ds∇2
sΓ on S . (C.23)
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We can now compare terms in the material derivative (C.17), which holds for a

volumetric quantity in a boundary layer adjacent to S, to derivative terms acting on

Γ on the left-hand side of equations (C.22) and (C.23). First, to recover the material

derivative of a surface quantity from (C.17) the normal coordinate n = εN = 0 is

fixed and variation in the normal direction is removed, so that ∂N = 0, the O(ε)

remainder is absent, and the time derivative ∂t|ξ,n = ∂t|ξ. The material derivative of

a surface quantity can therefore be expressed in equivalent ways as

D

Dt
=

∂

∂t

∣∣∣∣
ξ

+ vs · ∇s , (C.24a)

=

(
∂

∂t

∣∣∣∣
ξ
− ∂X

∂t

∣∣∣∣
ξ
· ∇s

)
+ us · ∇s , (C.24b)

=
∂

∂t

∣∣∣∣
n

+ us · ∇s . (C.24c)

Of these expressions (C.24a) has been recovered directly from the material derivative

at (C.17), (C.24b) follows from the definition that vs ≡ us − ∂tX|ξ, and (C.24c)

follows from the equivalence at (C.20).

This can be used to confirm our interpretation of the conservation law (C.22)

or (C.23) for Γ. From the form of the surface material derivative at (C.24c) and the

vector identity for the surface divergence that ∇s · (φus) = us · ∇sφ+ φ∇s · us for a

scalar φ and surface vector field us, the conservation law can be written as

DΓ

Dt
+ Γ (∇s · us + (κ1 + κ2)un) = Ds∇2Γ . (C.25)

Here, the quantity ∇s ·us+ (κ1 +κ2)un represents the net time rate of change of area

of an infinitesimal Lagrangian surface element, i.e., an infinitesimal area element that

consists of material particles on the interface. It is caused by ‘sources’ or the surface

divergence of the tangential fluid velocity us and by the motion of the interface along

its normal when the mean curvature (κ1 + κ2)/2 is non-zero. As seen from equation

(C.18), for a fluid that is incompressible this rate of area change is of equal magnitude
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and opposite sign to the rate of extension of a Lagrangian line element that is normal

to the interface.

C.3 The Order of Accuracy of the Time Step

The time evolution of z and C is given by equation (4.28) of Section 4.3, which are

∂tz = R(z, ∂nC|S) , (C.26a)

∂tC = S(z, C) + F (z, C) . (C.26b)

The discretization for the time step is given by equation (4.29) for the first or predictor

step, which are

z̃n+1 = zn + ∆tR(zn, ∂nC|nS) , (C.27a)

C̃n+1 = Cn + ∆t (S(zn, Cn) + F (zn, C̃n+1)) , (C.27b)

and by equations (4.30) for the second or corrector step, which are

zn+1 = zn +
∆t

2

(
R(zn, ∂nC|nS) +R(z̃n+1, ∂nC̃|n+1

S )
)
, (C.28a)

Cn+1 = Cn +
∆t

2

(
S(zn, Cn) + S(z̃n+1, C̃n+1)

+F (zn, Cn) + F (z̃n+1, Cn+1)
)
, (C.28b)

where the indices i and j of the spatial coordinates have been omitted, as they will

be throughout this section since they are fixed for each mesh point during the time

step.

As noted in the main text, the time step for z uses Heun’s method, which is

second order accurate in time [3]. It turns out that the same result holds for the time

step for C, which follows similar reasoning. Both results are shown here.
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Taylor expansion of the functionals R, S, and F using the predictor step (C.27)

shows that for the following components that appear in the corrector step, we have

R(z̃n+1, ∂nC̃|n+1
S ) = R(zn, ∂nC|nS) +R(zn, ∂nC|nS) · ∇zR|zn,Cn∆t

+ ∂CR|zn,Cn(S(zn, Cn) + F (zn, Cn))∆t+O(∆t2)

= R(zn, ∂nC|nS) +
∂2z

∂t2

∣∣∣∣
tn

∆t+O(∆t2) , (C.29a)

S(z̃n+1, C̃n+1) = S(zn, Cn) +R(zn, ∂nC|nS) · ∇zS|zn,Cn∆t

+ ∂CS|zn,Cn(S(zn, Cn) + F (zn, Cn))∆t+O(∆t2)

= S(zn, Cn) +
∂S

∂t

∣∣∣∣
tn

∆t+O(∆t2) , (C.29b)

and F (z̃n+1, Cn+1) = F (zn, Cn) +
∂F

∂t

∣∣∣∣
tn

∆t+O(∆t2) , (C.29c)

where equation (C.26a) has been used to simplify the result at equation (C.29a).

When these expressions are substituted into the corrector step (C.28), and the exact

equations (C.26) and their time derivatives are used, we have

zn+1 = zn +
∂z

∂t

∣∣∣∣
tn

∆t +
∂2z

∂t2

∣∣∣∣
tn

∆t2

2
+O(∆t3) , (C.30a)

Cn+1 = Cn +
∂C

∂t

∣∣∣∣
tn

∆t +
∂2C

∂t2

∣∣∣∣
tn

∆t2

2
+O(∆t3) . (C.30b)

Here the terms on the right-hand side up to and including order O(∆t2) are the same

as those of the Taylor expansion of the exact solution at time tn+1 = tn + ∆t about

t = tn, so the method is shown to have local accuracy of second order at each time

step.
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