

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TEAM FORMATION USING RECOMMENDATION SYSTEMS

by
Shreyas Patil

The importance of team formation has been realized since ages, but finding the most

effective team out of the available human resources is a problem that persists to

the date. Having members with complementary skills, along with a few must-have

behavioral traits, such as trust and collaborativeness among the team members are

the key ingredients behind team synergy and performance. This thesis designs and

implements two different algorithms for the team formation problem using ideas

adapted from the recommender systems literature. One of the proposed solutions uses

the Glicko-2 rating system to rate the employees’ skills which can easily separate the

skill ability and experience of the employees. The final contribution of this thesis is to

build a system with ”plug-in” capability, meaning any new recommendation algorithm

could be easily plugged in inside the system. Our extensive experimental analyses

explore nuances of data sources, data storage methodologies, as well as characteristics

of different recommendation algorithms with rating and ranking sub-systems.

TEAM FORMATION USING RECOMMENDATION SYSTEMS

by
Shreyas Patil

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Data Science

Department of Computer Science

August 2020

APPROVAL PAGE

TEAM FORMATION USING RECOMMENDATION SYSTEMS

Shreyas Patil

Dr. Craig Gotsman, Thesis Advisor Date
Dean and Distinguished Professor, Ying Wu College of Computing, New Jersey
Institute of Technology, Newark, NJ

Dr. James Geller, Committee Member Date
Professor and Former Chair, Department of Computer Science, New Jersey Institute
of Technology, Newark, NJ

Dr. Senjuti Basu Roy, Committee Member Date
Assistant Professor, Department of Computer Science, New Jersey Institute of
Technology, Newark, NJ

BIOGRAPHICAL SKETCH

Author: 	 Shreyas Patil

Degree: 	 Master of Science

Date: 	 August 2020

Undergraduate and Graduate Education:

• Bachelor of Engineering in Computer Engineering,

University of Mumbai, 2016

• Master of Science in Data Science,
New Jersey Institute of Technology, Newark, NJ, 2020

Major: 	 Data Science

iv

I dedicate this work to my Dad, Mr. Sudhakar Patil,
who fought against the odds to get me to this position; to
my Mom, Mrs. Jyoti Patil, who wouldn’t mind staying
hungry as long as my tummy is full; and to my girlfriend
& future wife, Ms. Nikita Patil, who would always be
supportive and optimistic no matter what. I know how
erratic I can sometimes be, but thank you all for always
being by my side even if my behavior may hurt you. I am
sorry for all the sufferings I caused you. I love you.

Shreyas Patil

v

ACKNOWLEDGMENT

I thank Dr. Craig Gotsman for pulling me out of a critical situation and helping me

complete my work. I also thank him for being my advisor and giving me his precious

time. I want to thank Dr. Suresh U. Kumar for being the first to believe that my

concept is practically implementable and for sharing his knowledge and expertise. I

thank him for pointing out my mistakes whenever needed and being kind enough to

keep forgiving me for the mistakes I kept making again and again. I also thank Dr.

Senjuti Basu Roy for pointing towards the right way when I was stuck on what to

do next and for sharing her research related to the topic. I thank Dr. James Geller

for a brief discussion over the existing solutions, techniques, and the red flags of such

systems, which helped me look through a different point of view. I commend all my

friends who gave me valuable inputs and critics. At last, but no the least, I thank

God for giving me this chance to serve the world in the way I can and getting me

through this literature and research.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 RELATED WORK . 3

2.1 Recommendation Systems . 3

2.2 Glicko and Glicko-2 Rating Systems 4

2.3 Variations in Team Formation Problem 5

3 PROBLEM DEFINITION AND PREPARATION 8

3.1 Technologies Used . 8

3.1.1 Database: MongoDB . 8

3.1.2 Backend Programming: Python 9

3.1.3 Web Framework: Flask . 10

3.1.4 Frontend: Bootstrap/JQuery/AJAX 10

3.1.5 Server Config: MongoDB Atlas, PythonAnywhere 10

3.2 Data . 11

3.2.1 Data Sources . 11

3.2.2 Data Collection . 11

3.3 Data Storage . 12

3.3.1 Skill Groups and Skills . 13

3.3.2 Roles . 13

3.3.3 System Variables . 14

3.3.4 Projects . 15

3.3.5 Employees . 16

3.4 Implementation . 17

3.4.1 Preparation . 17

4 RECOMMENDATION SYSTEMS . 18

4.1 Approaches . 18

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

4.1.1 Collaborative Filtering . 18

4.1.2 Content-based Filtering . 18

4.1.3 Multi-criteria Recommendation System 19

4.1.4 Hybrid Recommendation System 19

4.1.5 Others . 19

4.2 Roles, Skills and Skill Groups . 20

4.3 Skill Rating . 20

4.3.1 Introducing Glicko-2 Rating System 20

4.3.2 Selection of Scale . 21

4.3.3 Glicko-2 Rating System for Skill Level Estimation 23

4.4 Finding the Employees with Required Skills 25

4.4.1 Finding the Employees . 25

4.4.2 Mean vs. Median . 27

4.4.3 Required Skill Levels . 28

4.5 Skill Weights and Ranking . 29

4.5.1 Adding weights to skills . 29

4.5.2 Ranking System . 29

4.6 Implementation . 34

4.6.1 Ranking . 34

5 TEAM FORMATION . 36

5.1 Team Roles and Weights . 36

5.2 Team Speciality Options . 37

5.2.1 Balanced . 37

5.2.2 Skill Growth . 37

5.2.3 Quality focused . 38

5.2.4 Time Saver . 38

viii

TABLE OF CONTENTS
(Continued)

Chapter Page

5.2.5 Cost Effective . 39

5.3 Criteria Check and Teams Completion 39

5.3.1 Criterion 1: Avoiding Employee Duplication 39

5.3.2 Criterion 2: Respecting Mutual Ratings 40

5.4 Feedback . 40

5.5 Implementation . 41

5.5.1 Criteria Check . 41

5.5.2 Team Types . 43

5.5.3 Teams Formation . 44

5.5.4 Skill updates . 45

6 CONCLUSION . 47

6.1 Alternative Approaches . 48

6.1.1 Employees Recommendation 48

6.1.2 Employees Matching to Form a Team 49

6.2 Future Scope . 50

6.2.1 Skill Ratings . 50

6.2.2 Skill Cluster . 50

6.2.3 Employee Training . 50

6.2.4 Manual Employee Selection . 50

6.2.5 Handling long projects . 51

6.2.6 Beginner Employees . 51

6.2.7 Performance Evaluation and Feedback Practices 51

6.2.8 Gamification . 51

6.2.9 Freelancers and Hiring . 52

6.2.10 Project Deadline Estimation 52

6.2.11 Workload Estimation . 52

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

6.3 Challenges . 53

APPENDIX A WEB SITES & SKILLS DATASETS 55

REFERENCES . 56

x

LIST OF TABLES

Table Page

3.1 Data Filtered and Collected from the Datasets 12

4.1 Values for Levels of a Required Skill . 28

4.2 Assign a Level and A Weight to Each Skill in a Job Role 30

5.1 An Example of the Roles, Weights and Ranking Sequence 36

xi

LIST OF FIGURES

Figure Page

3.1 Document structure for roles. 14

3.2 Document structure for system variables. 14

3.3 Document structure for projects. 15

3.4 Document structure for employees. 16

3.5 Prerequisite data for team formation. 17

4.1 Difference between experience building and skill learning. 27

4.2 An example of actual employee skill rating alongside actual role skill rating. 31

4.3 Absolute scores for employees in previous figure - smaller value is better. 33

4.4 Ranking employees for a role. 34

5.1 Check if the employee is eligible to be in the team. 42

5.2 Form a team for each requested type. 44

5.3 Update skill values when an event occurs. 46

xii

CHAPTER 1

INTRODUCTION

There are many companies that are still not aware of the art of team formation. The

project managers usually form the teams greedily, which may affect an employee or

the company overall. The organizations that care about their profit optimization

think of team formation as the first thing to work on.

Not only the employees but the organization too benefits by optimizing the

team. Employees benefit by getting hassle-free work culture and the organization by

saving time, money, and unnecessary efforts and complications among the employees.

Current solutions do not focus on these factors and making the best decision regarding

team formation for the specific scenario.

The chapter two covers all the related works in the same research space or

the ones related to it which includes general recommendation systems, Glicko and

Glicko-2 rating systems, and the variants of solutions to the team formation problem.

The work hereon discusses the making of an integrative framework using a

recommendation system for team formation. Chapter three covers the problem

definition and preparation for implementation. The preparation includes the

technologies and server configurations used, data sources, and the data storage

structures. Since a NoSQL document-based database is used, the data storage

structures may be called document structures in this literature.

Chapter four describes various approaches of a recommendation system appli-

cation and the way a recommendation system is designed for this system. The

implementation of a recommendation system includes a rating system and then a

scoring system that is used to rank and recommend the employees for a particular

role in the project.

1

The fifth chapter discusses the use of the recommendation system discussed

in chapter four to suggest Top-N employees for each role in a project. A team is

then formed for each type of team requested by the project manager by selecting an

employee from the Top-N for each role. This section also explains the criteria that

each employee has to pass through to be selected.

Chapter six is the last chapter and considers a few other approaches for

implementing a recommendation system and matching the employees to form a

team. It also covers the project’s future scope and extensions along with the

challenges the solutions to the team formation problem face. Finally, it concludes

the implementation literature for team formation using a recommendation system.

2

CHAPTER 2

RELATED WORK

2.1 Recommendation Systems

Author in the book [1] discusses the various types of recommendation systems

along with their goals. According to the author in [1], the basic principle of

recommendations is that significant dependencies exist between user and item-centric

activity. The author also explains the ways in which a recommendation problem can

be formulated among which the primary ones are Prediction version of a problem

and Ranking version of a problem. The prediction version predicts a rating value for

a user-item combination. This problem is also referred to as the matrix completion

problem because the missing values in an incompletely specified matrix of m users

and n items are predicted by the learning algorithm. On the other hand, in the

Ranking version, the prediction is not necessary. Instead, the top-k items could be

recommended to a user or determine the top-k users to target a particular item. This

problem is also referred to as the top-k recommendation problem.

The author in the book [1] has mentioned a numerous real-world recommen-

dation systems such as Amazon.com to recommend books and other products,

Netflix to recommend DVDs and streaming videos, Jester to recommend jokes,

GroupLens to recommend news, MovieLens to recommend movies, last.fm to

recommend music, Google News for news, Google Search for advertisements,

Facebook recommends friends and advertisements, Pandora for music, YouTube for

online videos, Tripadvisor for travel products, and IMDb for movies.

3

2.2 Glicko and Glicko-2 Rating Systems

In early 1960’s, Arpad Elo developed the Elo rating system which was the first chess

rating system that had probabilistic underpinnings. It was adopted by saveral chess

federations and in many other games but it has some problems. Hence, in 1995 author

of [25] created the Glicko rating system and later the Glicko-2 rating system.

The problem with the Elo rating system that the Glicko and Glicko-2 rating

systems address to is related to the reliability of a player’s rating. For example,

suppose two players, both rated 1700, played a tournament where the first player

defeats the second, according to the US Chess Federation’s version of the Elo system,

the first player would gain 16 points and the other player will lose the same. But

suppose that the first player returned to the game after many years, which makes

his rating of 1700 more unreliable rather that the second player’s rating who plays

every weekend. Hence, according to the author in [25], when the first player defeated

the second player, the first player’s rating must increase more than 16 points as it is

clear that the first player’s skill level is superior to the second player who has a more

precise rating of 1700. And on the other hand, the second player should lose less that

16 points for the same reason.

To overcome this flaw, author in [25] extends the Elo rating system in the

Glicko rating system by computing not only a rating, which is the best guess of one’s

skill level, but also a rating deviation(RD), which measures the uncertainty in the

rating where high RD corresponds to unreliable ratings. The author in [25] further

introduces a rating volatility σ in the Glicko-2 rating system which is a measure of

the degree of expected fluctuation in a player’s rating.

4

2.3 Variations in Team Formation Problem

The social networks have been the point of interest for the team formation researchers

for a while now. Researchers find the social networks as a good starting point for their

research on online or offline team formation problems. Some chose the generalized

social networks or some tried to use a specific social network that is focusing on

grouping a particular type of individuals. Either way they require a pre-built social

community as their starting point. Most of these researchers use approximation

algorithms to find a optimal team out of the network and then address or solve the

specific issues related to team formation problem. While some authors focus on the

networks such as in [31, 3, 10, 29, 16, 30, 19, 28,] to find the team fit for a task,

others focus on the issues related to the team formation problem itself such as seen

in [2].

Authors in [31] believe their work to be the first to consider the team formation

problem in the presence of a social network of individuals. They tried to find a

group from a pool of individuals with different skills to perform a task given a social

network that captures he compatibility between these individuals. The authors in [31]

try to form a team that not only meet the requirements of a task but also perform

effectively by measuring the effectiveness using the communication cost among the

team members.

Each team formation problem has a primary goal to find a best group of

individuals who meet the requirements of a task while considering a few other

important factors that come along the problem such as fairness, workload balancing,

employee compatibility, communication and cost. Authors in [2] focus on forming a

team of people fit for the task in a fair way where no-one in the team is overloaded or

singled out. They recognized the trade-off between the individual workload and the

team size while forming the team.

Authors in [3] claim this to be the first paper to address the problem of team

5

formation with a solution where all the required skills are covered by the team with

small communication overhead and load balancing together. They tried to solve the

problems addressed by the authors from [31, 2] together to find a group of individuals

from a social network that are capable of performing the given task effectively. While

keeping the primary goal of the team formation intact and using a social network, the

authors in [10] introduced a team member’s capacity in a team formation problem

while trying to balance the workload among the team members.

The authors in [29] consider the social network as a graph where a node is

an expert with the weight representing the cost for using the expert and an edge

between the nodes represents the communication between two experts where the

weight is the communication cost. They aim to find a team of experts that can

cover all the skills required for performing a task while minimizing both the expert

and communication cost for a project. One specific application of the team formation

problem was discussed by the authors in [16] where they formulated finding influential

event organizers as the problem of mining influential cover set to find a team of

organizers in social network that have the required skills to organize an event while

motivating more individuals to participate in the event.

An another bi-criteria optimization problem similar to [29] proposed by authors

in [30] is to find a team of experts from an expert network that covers all the

required skills for a given task while minimizing the communication and personnel

cost of the team. The first approach they took to solve this problem is by using the

(α, β)-approximation algorithms, where one objective is considered one after another

and the other one is to find a set of pareto optimal teams. One another attempt to

minimize the communication cost while forming top-k teams is made by authors in

[28] but with one little addition that is to find a leader for a team.

The authors in [12] noticed that the expert-centric properties such as skill are

insufficient to assemble an effective team and focus on the balance between skills and

6

collaboration instead. They address the team composition problem which consists

of expert interaction network extraction, skill profile creation, and ultimately team

formation in their work.

Similar to [29], authors in [19] consider the social network as a graph where

each node is an expert in one or more skills and the edge weights specific affinity or

collaborative compatibility between respective nodes. Their goal is to identify a team

to maximize the collaborative compatibility which is measured as the density of the

induced sub-graph on selected nodes.

A unique application of the team formation was implemented by authors in [22]

who focus on multi-agent complex networks of autonomous yet interdependent agents

such as supply chain and sensor networks. They aim to find a group of agents who

must coordinate effectively in order to solve problems and achieve collective goals.

Other works based on social networks are discussed by the respective authors in

[7, 21, 38, 14, 45]. Similarly a few experiments on team formations using optimization

algorithms were performed by respective authors in [6, 39, 18, 43, 46, 13, 35]. Authors

in [4] discuss a few algorithms for a fair team composition in an online labour

marketplace who focus mainly on the fairness aspect of the team formation problem.

One other study was described by authors in [26] where they conducted an

experiment on 530 participants who used a team formation system to assemble project

teams. They describe how users’ traits and social networks influence their teammate

searches and choices and ultimately team compositions. They found out how the final

results differ from what the users originally searched and how users’ decisions lead to

noon-diverse and segregated teams.

The few other works related to team recommendation systems are explained

in [20, 45, 9, 36] by the respective authors where they discuss the aspects like the

expertise, team formation with members from multiple disciplines, and the effects of

team recommendation systems.

7

CHAPTER 3

PROBLEM DEFINITION AND PREPARATION

The problem of team formation has persisted for ages. Many organizations, such as

MITRE and Atlassian, have been working on their team formation strategies. Though

there has been a surge in research related to team performance and active formation,

there is no such solution that has all the features and considers all the parameters

related to a team and individual employee skills. Also, no solution can evaluate and

measure an employee’s actual skill level.

Having a team that closely matches the requirements makes a big difference for

a company in terms of cost, time, and progress. It is also beneficial for the employees

working in such a team as they may get overwhelmed or underutilized otherwise.

Such systems also help the smooth growth of the employees and the organization

overall.

The problem is to find the best suitable employee e ∈ E out of the available

ones for each role R in a project P to form a complete team T . This research

aims to implement a team formation system that measures each skill for an employee

individually and then recommends the employees with the required skill levels for

a project. It also considers the team members’ compatibility and updates the skill

rating after the project is complete.

3.1 Technologies Used

3.1.1 Database: MongoDB

Database selection is a vital task as it may cause trouble later if chosen without

thinking, especially for the projects with high scaling possibilities. Due to the

unstructured nature of data in this project, a relational database is not a good option.

For projects like these, a NoSQL database is a proper choice. Among all the NoSQL

8

options, MongoDB is perfectly suited for projects like this and fulfills all their needs.

The factors considered when selecting MongoDB as the database for this project

are:

1. MongoDB is a schema-less database that means the way a developer writes the

code defines the schema.

2. It derives a document-based data model that stores its data in the Binary-JSON

(BSON) format. It helps to store data in a natural and simple manner.

3. This efficient data storage helps simplify the otherwise complex relational

join queries. Unlike SQL, the document query language plays a vital role in

supporting dynamic queries.

4. Since it is a NoSQL database, SQL injection is not possible hence making it

more secure.

5. One of its key features is Sharding, which allows it to store the data on various

machines or a cluster. This feature makes MongoDB easy to scale horizontally.

There are many other pros of MongoDB, but the factors discussed here are sufficient

to choose this database for this system which are among the many discussed by the

author in [41].

3.1.2 Backend Programming: Python

Python is the most widely used language for data science projects. Other factors

to be considered are its simplicity, a large number of libraries like NumPy, Pandas,

SciPy, PyPlot, PyMC that make data handling, processing, and visualization very

easy. It also has high integration capabilities with other programming languages like

Java, C, and C++. Python also supports functional, procedural, object-oriented,

and aspect-oriented programming approaches. All these benefits make it a sound

programming language for this work.

9

3.1.3 Web Framework: Flask

Flask is a micro and lightweight web development framework based on python.

Being lightweight, it is speedy when it comes to a small web application like this

implementation. It is also well-suited for API management, where the backend python

processes and fulfills an API request from the browser. Flask uses Jinja2 as a template

engine to integrate the data received from the server into the HTML code. Flask is

the best way to convert a small python script into a small, user interactable, web

application.

3.1.4 Frontend: Bootstrap/JQuery/AJAX

Bootstrap is a popular framework for building responsive and mobile-friendly

websites. It is a light and elegant front-end development framework. Once a user

interface is built using bootstrap, JQuery is used to create events and make changes

to DOM as required. On the other hand, AJAX stands for Asynchronous Javascript

and XML, which handles the data management without reloading the page. AJAX

is triggered either on page load or when an event like a click, change, or hover occurs.

3.1.5 Server Config: MongoDB Atlas, PythonAnywhere

1. MongoDB Atlas Data Cluster

(a) Server: AWS M0 Sandbox

(b) Location: N. Virginia (us-east-1)

(c) RAM: 512MB, Shared

(d) vCPU: 1, Shared

(e) Cluster Nodes: 3 Replica Set (Sharding)

(f) Database Capacity: 100 databases

(g) Collection Capacity: 500 collections (all databases inclusive)

10

(h) Connection Capacity: 500 database connections

2. PythonAnywhere Flask Web App Server

(a) Python: v3.8

(b) Web workers: 3

(c) CPU Allowance: 4000 seconds

(d) Disk Space: 5GB

3.2 Data

3.2.1 Data Sources

Datasets of jobs at Google and Amazon, the jobs listed on Indeed can be found on

Kaggle, and a dataset of software developer jobs in the USA found on data.world

gave an idea of skills by groups and roles. Google and Amazon datasets consist of

the job descriptions collected from various listing sources. The job titles related to

software, web, and database development are considered for further filtration. The

descriptions include responsibilities, soft skills, and technical skills. The technical

skills are needed for this project. Similarly, the Indeed dataset includes the skills

required for the job roles related to data science projects. The data.world dataset is

not formatted correctly and contains repeated data; hence it is of little use. The next

section lists the data collected from all these datasets and their descriptions.

3.2.2 Data Collection

The data in the table below consists of the skill groups, skills and a few roles

collected from the datasets mentioned in the previous section. Since, the scope of

the implementation is still limited to a few projects types and roles, the skill groups

and skills are limited to be collected. And because this data is sufficient enough

11

for further user data generation by random combination of skills, it was collected

manually for the sake of limiting the scope of research and implementation.

Table 3.1 Data Filtered and Collected from the Datasets

Data Type Data Collected

Skill
Groups

Front-end designing, front-end development, database development,
scripting, software development, mobile application development,
and data science

Skills HTML, CSS, Visual Design, Material Design, UX, Print Design,
Adobe Photoshop, Adobe Illustrator, CoralDraw, Adobe InDesign,
Affinity Designer, Sketch, Javascript, JQuery, Wordpress,
Responsive Design, AngularJS, Bootstrap, Git, SQL, MySQL,
MongoDB, XML, JSON, PostgreSQL, Redis, MariaDB, Elastic
Search, SQLLite, ETL, Shell, Bash, NodeJS, Ruby, Python, Perl, C,
CPP, CSharp, Java, Typescript, PHP, Android SDK, Kotlin,
Android Studio, XCode, iOS API, Swift, Core Data, Linux, Machine
Learning, R, Data Mining, Data Analysis, Natural Language
Processing, Computer Vision, TensorFlow, Tableau, Hive, Spark,
Hadoop, AWS, GCP, Azure, SAS

Roles UI/UX Designer, Front-end Developer, Database Developer,
Backend Developer, Software Developer, Android Developer, iOS
Developer, Data Scientist, Full-Stack Developer

3.3 Data Storage

This section consists of document storage structures for skills, groups, roles, projects,

and employees. The data is stored in BSON format which resembles closely with the

format shown in figures below. the square brackets indicate that the value is an array.

Note: The data shown in this section is just the snapshot of what the stored

data looks like and is subject to change in the course of the implementation. Also

the data parameters are discussed and used further in the implementation sections

throughout the document.

12

3.3.1 Skill Groups and Skills

A skill may belong to one to many skill groups. For example, in the following figure,

skill Python belongs to both Scripting and Data Science skill groups. Whereas, there

may be a skill that does not belong to any group yet.

3.3.2 Roles

Each role consists of skills with their respective required level and weight. The level

can be further converted into rating and rating deviation with rating as median and

rating deviation as 75.

13

Figure 3.1 Document structure for roles.

3.3.3 System Variables

The system variable store a few global values that will be explained and used

throughout the implementation.

Figure 3.2 Document structure for system variables.

14

3.3.4 Projects

Figure 3.3 Document structure for projects.

15

3.3.5 Employees

Figure 3.4 Document structure for employees.

16

3.4 Implementation

3.4.1 Preparation

Figure 3.5 Prerequisite data for team formation.

17

CHAPTER 4

RECOMMENDATION SYSTEMS

As the name suggests, a recommendation system outputs one or many items, given

the user preferences and criteria as the inputs. For example, on an online e-commerce

website, user’s search and order history are used to recommend the relevant items

in the hope of attracting the user and eventually increasing sales. This basic use

case works just fine with most of the small online e-commerce retailers. An example

of an advanced recommendation system is Netflix’s movie recommendation system

which takes personalization to the next level. This chapter covers the fundamentals

of a recommendation system. Author in [1] covers most of them in great detail

while authors in the book [32] discuss the application of recommender systems in the

technology enhanced learning (TEL) domain.

4.1 Approaches

4.1.1 Collaborative Filtering

It assumes that people who have similar preferences are likely to continue having

similar choices in the future. This approach uses rating information of items from the

users and predicts the rating of an unexplored item for a user based on similar users’

preferences. This approach is used by Netflix to find related users.

4.1.2 Content-based Filtering

Solely based on items’ description and user’s preferences, this approach is best suited

for user-specific item recommendations considering the user history. As mentioned

earlier, a well-known example of this approach is Netflix’s movie recommendation

system.

18

4.1.3 Multi-criteria Recommendation System

This thesis focuses partially on this type of recommendation system, specifically,

the subclass called multi-criteria single-rating recommendation system. This way,

multiple item factors, as per the required criteria, are modeled into a single rating

value and generating recommendations accordingly. The authors in [23] has defined

the recommendation problem as a multi-criteria decision making (MCDM) problem

and discuss the techniques that provide recommendations by modelling a user-item

interaction as a vector of ratings along several criteria along with the algorithms that

user these ratings for predictions and recommendations.

4.1.4 Hybrid Recommendation System

A common approach for most modern recommendation systems because it has

the power to combine other strategies like collaborative filtering and content-based

filtering using hybridization techniques. A few examples of these techniques are

weighting, switching, cascading, feature combination, and feature augmentation. The

one this thesis uses is weighting with the multi-criteria single-rating recommendation

system.

4.1.5 Others

There exist many other approaches that include a risk-aware recommendation

system, a mobile recommendation system, a group recommendation system as per

author in [5], a knowledge-based recommendation system, and a critiquing-based

recommendation system. Authors in [15] the three major recommendation approaches

which includes a knowledge-based recommendation system.

19

4.2 Roles, Skills and Skill Groups

As discussed earlier, during the preparation, each employee has a set of skills where

each skill may or may not belong to one to many skill groups. Similarly, each project

has roles where each role is required to have a specific skill set to complete the project.

Let S = {s1, s2, s3, . . . , sn} be a set of skills and P = {R1,R2,R3, . . . ,Rm} be

a set of roles in a project, where role skill set R ⊂ S.

The goal here is to create a recommendation system to recommend top-N

employees for each job role in the project. The algorithm is completed in the

implementation section of the next chapter.

Input: Project Roles P and index i.

Output: Top-N employees for role Ri.

4.3 Skill Rating

An employee’s current skill level is estimated and stored as a numerical value called

skill rating. That means every employee has their skills accompanied by a score

that determines their experience in the respective skill. This work uses the Glicko-2

rating system as per explained by author in [25] to calculate this numerical value

that estimates the change in the employee skill level. Other such rating systems

are Glicko (old version of Glicko-2) and Elo. Primarily, the Glicko-2 rating

system is used to evaluate a player’s skill level in chess and other sports like tennis.

One application other than sport of a Glicko-based algorithm is measuring in-course

learning as discussed by the author in [37].

4.3.1 Introducing Glicko-2 Rating System

The Elo, Glicko, or Glicko-2 rating systems are common in chess or other sports

tournaments. The general principle here is that every participant has a score, and

this rating is updated every one or a series of matches. This number of matches is

called the rating period. The rating update is massive if the outcome is unexpected.

20

For example, if a novice player defeats an experienced one, the novice player sees a

substantial increase while the experienced player sees a significant decrease in ratings.

On the other hand, if the obvious has to happen, that is, the veteran player defeats

the novice one, the rating updates for both the players are minimal.

4.3.2 Selection of Scale

This implementation uses the original Glicko scale instead of the Glicko-2 scale as it

is convenient to use. The ratings are easy to convert back and forth among the two

scales.

The Glicko-2 system assumes that the individual score is roughly constant

during a tournament as the players encounter each other. The complete competition

is the rating period when the matches keep accumulating, and then the score is

updated. However, the score may change for the employees working on multiple

projects at a time, setting the rating period to a single project by default, which

means every project completion updates the members’ skill ratings. But termination

of an employee as a project member can trigger this update as well.

The Glicko-2 system has three possible outcomes per match, and the system

accepts the match outcome as a numerical value - 1 for a win, 0.5 for a draw, and 0

for a loss. This work uses numerical values as it is where - 1 is for project completion;

0.5 for the project or employee termination for valid positive reasons like voluntary

employee resignation or management decided to stop the project; 0 for the project or

employee termination due to poor performance. As there is a minimal possibility of

the latter two to happen, that is the project or employee termination for any reason;

the updates must be a little slower. Also, the skill rating initialization with a lower

score than the original Glicko-2 system recommends is required.

There are two other employee attributes, a rating deviation RD and a rating

volatility σ and a system constraint τ according to the Glicko-2 rating system. The

21

rating volatility σ indicates the degree of expected fluctuation in an employee’s rating,

whereas the system constraint τ is the change in volatility over time. The value of σ

for each skill of each employee and τ must be as small as 0.05 and 0.2, respectively.

The original Glicko-2 system recommends the player rating initialization to be

1500 and the rating deviation to be 350. However, this work initializes the skill rating

for each skill of each inexperienced employee to be 1200 and RD to be 150. Lower RD

initialization is because there is less possibility of uncertainty in the skill ratings given

the reason discussed earlier. A rating of 1200 and RD of 150 implies that the system

is 95% confident that the actual employee skill rating falls between skill rating minus

twice RD and skill rating plus twice RD that is 900 and 1500. Rating Deviation

RD is also the measure of experience of the employee in that particular skill. As an

employee keeps on completing the projects, the skill RD keeps on decreasing. Hence,

a lower RD represents a higher experience in that particular skill.

Employee skills are divided into four categories: Beginner, Intermediate,

Advanced, and Expert. For employees new to this system, an initial value according

to the class, the recruiter seems the employee fits in, is assigned. It is highly not

recommended to appoint an expert level to a recruit. Let the system take its course

to move the employee to that level. As for those who are migrating to another

company using this system, the employees can carry their scores.

This work identifies the project skills difficulty in several categories: Beginner,

Intermediate, Advanced, Expert, and all those that fall between the adjacent

categories.

22

4.3.3 Glicko-2 Rating System for Skill Level Estimation

The Glicko-2 rating system comprises of eight steps.

Step 1. Start with initializing τ to 0.2 permanently across the whole system.

(a) If an employee skill is unrated, set the rating r to 1200, rating deviation RD to

150, and volatility σ to 0.05.

(b) Else, use the employee’s most recent skill rating, rating deviation, and volatility.

Step 2. Convert the rating r and rating deviation RD of both, the employee skill

and the required skill, to Glicko-2 scale rating µ and rating deviation φ using the

following formulae.

µ = (r − 1500)/173.7178 (4.1)

φ = RD/173.7178 (4.2)

The value of employee skill volatility σ remains the same. Let the Glicko-2 skill

rating for the employee be µe and required skill be µs. Similarly, let the Glicko-2

rating deviation for the employee be φe and that for the required skill be φs.

Step 3. Compute the estimated variance υ of the employee’s skill rating.

g(φs) =
1√

1 + 3φ2
s/π

2
(4.3)

E(µe, µs, φs) =
1

1 + exp(−g(φs)(µe − µs))
(4.4)

υ = [g(φs)
2E(µe, µs, φs){1− E(µe, µs, φs)}]−1 (4.5)

Step 4. Compute the estimated improvement ∆ in the employee’s skill rating.

As per the events to update the skill rating discussed earlier, the event value e is used

here. For example, project completion event sets e = 1.

∆ = υ(g(φs){e− E(µe, µs, φs)}) (4.6)

23

Step 5. An iterative computation is required to determine the new value of

volatility σ′.

1. Let a = ln(σ2), a convergence tolerance variable ε be as small as 0.000001, and

f(x) =
exp(x)(∆2 − φ2

e − υ − exp(x))

2(φ2
e + υ + exp(x))2

− x− a
τ 2

(4.7)

2. Prepare the initial values before starting the iterations.

• Set A = a

• If ∆2 > φ2
e + υ, then set B = ln(∆2 − φ2

e − υ).

Else,

(a) Let k = 1

(b) While f(a− kr) < 0,

k+ = 1

(c) Set B = a− kr

3. Let fA = f(A) and fB = f(B).

4. While |B − A| > ε,

(a) Let C = A+ (A−B)fA/(fB − fA), and fC = f(C).

(b) If fCfB < 0, then A← B and fA ← fB

Else fA ← fA/2.

(c) Set B ← C and fB ← fC .

5. Set σ′ ← exp(A/2).

Step 6. The rating deviation to the new pre-rating period value φ∗e

φ∗e =
√
φ2
e + σ′2 (4.8)

24

Step 7. Compute the new values of employee’s skill rating as µ′e and rating

deviation φ′e.

phi′e = 1/

√
1

φ∗2e
+

1

υ
(4.9)

µ′e = µe + φ′2e g(φs){e− E(µe, µs, φs)} (4.10)

Step 8. Convert the employee’s skill rating µ′e and rating deviation φ′e back to

original scale.

r′e = 173.7178µ′e + 1500 (4.11)

RD′e = 173.7178φ′e (4.12)

4.4 Finding the Employees with Required Skills

As discussed earlier in the preparation section, each project has job roles, and each

job role requires a particular skillset. But there is more to it than just that. In a

skillset, each skill needs to have a skill level and a weight.

4.4.1 Finding the Employees

Let E = {e1, e2, e3, . . . , ek} be a set of all the employees working in a domain in an

organization and R = {s1, s2, s3, . . . , sl} be the set of required skills for a job role.

The following steps determine the employees that are eligible to be ranked:

Step 1: Finding employees with required Skill s.

Es ⊆ E (4.13)

Step 2: After finding employees for each required skill in a job role, find the

intersection among them to get the employees with all the required skills.

ER
l⋂

i=1

Es,i (4.14)

25

Step 3: It’s time to check the employees for their workload. Let eel be the

workload for an employee and wl be the maximum load decided by the administrator.

if ei,el < wl, ∀e∃ER,

ER,load ⊆ ER (4.15)

Step 4: Now that all the employees with the required skills are collected,

generate a number enl for each employee. This number enl indicates the score for

required skill levels the employee satisfies. Let a(e, s, l) show if the employees e has

required skill s within level l and returns 1 if it does, otherwise, returns 0.

enl =
s∈R∑

wsa(e, s, l) (4.16)

For example, out of five skills {s1, s2, s3, s4, s5} with weights {0.2, 0.3, 0.1, 0.10.3}, if

an employee e1 has four required skills {s1, s2, s3, s4} within the respective required

skill levels and employee e2 has four required skills {s1, s2, s3, s5}, then e1,nl is {0.2×

1 + 0.3× 1 + 0.1× 1 + 0.1× 1 + 0.3× 0} that is equal to 0.7 and similarly e2,nl is 0.9.

Hence, even though both the employees have same number required skills within the

required skills, the nl score varies depending on the skill weights. Let every employee

in set ER carry enl as ei,nl for employee i. Let ER,nl be a set of all enl values for ER.

The goal is to select the employees with the highest two numbers.

Let ER,load,levels be a set of N employees with highest nl scores from set ER,load.

ER,load,levels ⊆ ER,load (4.17)

Hence ER,load,levels consists of Top-N employees with the required skills and their

respective levels required job role and has some workload available. And for the

purpose of simplicity, let ER,load,levels be ER for job role R again from hereon.

ER = ER,load,levels (4.18)

26

Figure 4.1 Difference between experience building and skill learning.

4.4.2 Mean vs. Median

Every company or organization may have a different definition of project difficulty

levels. A challenging project for a company can be intermediate or even easy to

implement for another company. The capacity for handling the project depends on

various factors, such as employee quality, hiring requirements, and company funding.

So when a project manager states that the project difficulty level is intermediate,

then it is mostly considering the quality of relevant employees in that particular

organization. To get a better estimate of the skill level value w.r.t. to the employees’

skill levels, finding an average of all those skill levels is a valid option. But finding

a mean of those values has a drawback. It is highly sensitive to outliers and biased

27

data. For example, if a company chooses to recruit a bunch of employees, then the

mean may be pushed to the lower end of the distribution. To preserve the central

tendency, especially in a skewed distribution, finding a median is a better option. In

this work, µ̃ denotes a median.

4.4.3 Required Skill Levels

When a project manager adds a job role to a project, the job role comes with a

set of required skills. Each skill has its level requirement that specifies how good

an employee has to be at that skill for the system to consider him for the role. As

per discussed previously in the Selection of scales section, the required skill level can

either of the following:

Table 4.1 Values for Levels of a Required Skill

Level Abbr. Value Range

(i) Beginner b µ̃sb < 1350

(ii) Between Beginner and Intermediate bi µ̃sbi 1200− 1500

(iii) Intermediate i µ̃si 1350− 1650

(iv) Between Intermediate and
Advanced

ia µ̃sia 1500− 1800

(v) Advanced a µ̃sa 1650− 1950

(vi) Between Advanced and Expert ae µ̃sae 1800− 2100

(vii) Expert e µ̃se > 2100

Let n be the number of employees with the skill in the required level. Median index

28

mi can be found using the following formula:

mi =
n+ 1

2
(4.19)

Let µ̃s,level be the median value of the employee ratings for skill s with the

required level, Es,level,asc be the set of employees with skill s and required level ordered

in ascending and bmic be the value of mi when rounded to lower whole number and

dmie be the value of mi when rounded to higher whole number.

∴ µ̃s,level =
Es,level,asc(bmic) + Es,level,asc(dmie)

2
(4.20)

The rating r for the required skill is set to the level’s respective median µ̃level

and the rating deviation RD is set to 75. Therefore, the actual required skill level

lies between the median minus 150 and the median plus 150.

4.5 Skill Weights and Ranking

4.5.1 Adding weights to skills

A project manager can add weights to each required skill. These weights help to

define the job role in a better way. The sum of the weights allotted has to be equal

to 1. If the project manager chooses not to put on any weights manually, then the

skills will be equally weighted. Although the sum of the weights is still equal to 1,

the system uses 0 to identify that the skills are by default equally weighted and also

to prevent the project manager to manually putting a 0 to every skill. The rs and ws

are the rating and the weight for skill s respectively.

4.5.2 Ranking System

It is crucial to focus upon the actual rating range of an employee’s skill rather than

just the rating value because both ability and experience determine the actual skill

rating. In contrast, the skill rating alone is just a measure of ability. While talking

29

Table 4.2 Assign a Level and a Weight to Each Skill in a Job Role

Index Skill (s) Level Rating (rs) Weight (
∑
ws = 1)

(i) A bi µ̃Abi
wA

(ii) B i µ̃Bi wB

(iii) C b µ̃Cb
wC

(iv) D ia µ̃Dia wD

(v) E i µ̃Ei wE

about the range, the upper limit is above which an employee may be overwhelmed

and hence is very important. Whereas on the other hand, the lower limit is not as

necessary due to the face that a simple project won’t stress an employee even though

it’s a waste of a useful resource.

30

Figure 4.2 An example of actual employee skill rating alongside actual role skill
rating.

31

Hence, the only two factors needed to calculate how far away the employee skill

from the required skill is, are the rating value and the upper limit of the actual skill

rating.

As discussed earlier, Actual Rating Upper Limit = rating +2× rating deviation

Let d(es,Rs) be the difference between the employee skill and the required skill.

d(es,Rs) = (role skill actual rating upper limit - employee skill actual rating upper

limit) + (role skill rating - employee skill rating)

Let Rs,r, Rs,RD, es,r and es,RD be the role skill rating, role skill rating deviation,

employee skill rating and employee skill rating deviation respectively.

∴ d(es,Rs) = ((Rs,r + 2Rs,RD)− (es,r + 2es,RD)) + (Rs,r − es,r) (4.21)

Now, simplifying the equation,

d(es,Rs) = Rs,r + 2Rs,RD − es,r − 2es,RD +Rs,r − es,r (4.22)

∴ d(es,Rs) = 2Rs,r + 2Rs,RD − 2es,r − 2es,RD (4.23)

Now further removing the constants,

d(es,Rs) = Rs,r +Rs,RD − es,r − es,RD (4.24)

∴ d(es,Rs) = (Rs,r − es,r) + (Rs,RD − es,RD) (4.25)

This will calculate a score for each employee’s skill with respect to the required

role skill. Let n be the total number of required skills and ws be the weight allocated

to skill s in the role R. Now to calculate the cumulative score of an employee with

respect to the complete job role, weights are used as follows:

rank(e,R) =
n∑

i=1

wsid(esi ,Rsi) (4.26)

32

Figure 4.3 Absolute scores for employees in previous figure - smaller value is better.

33

4.6 Implementation

4.6.1 Ranking

Figure 4.4 Ranking employees for a role.

34

Algorithm 1 Ranking employees for a role

1: procedure recommend employees(role skills)

2: role skills.sort(key=weight,decending)

3: for skill s in role skills do

4: emp skill[s] = all employees with skill s

5: end for

6: emp allskills = emp skill[0].intersection(*emp skill)

7: emp available= all employees in emp allskills with workload ¡max workload

8: emp nl = []

9: for emp in emp available do

10: nl = 0

11: for skill s in role skills do

12: if emp.s.r is in range(role skills.s.level) then

13: nl += role skills.s.weight

14: end if

15: end for

16: emp nl.append([emp, nl])

17: end for

18: emp nl.sort(key=nl, decending)

19: emp final = [i[0] for i in emp nl]

20: emp final = emp final[: N]

21: emp ranked = []

22: for emp in emp final do

23: score, cr, crd = 0

24: for skill s in role skills do score += (role.s.r - emp.s.r) + (role.s.rd -

emp.s.rd) cr += role.s.weight * emp.s.r crd += role.s.weight * emp.s.rd

25: end for

26: emp ranked.append([emp, cr, crd, score])

27: end for

28: return emp ranked

29: end procedure

35

CHAPTER 5

TEAM FORMATION

As discussed earlier, a project team consists of various job roles to fulfill their

respective tasks and complete the project. Even though it sounds straightforward, the

execution is very complicated. Forming an ideal team of existing employees to serve

a common goal needs a great deal of consideration. The previous chapter successfully

recommends the list of employees for a particular job role. This chapter explores

further process using the approved employees for each role and forms multiple teams.

As stated earlier, P = {R1,R2,R3, . . . ,Rm} is a set of roles in a project.

5.1 Team Roles and Weights

As each skill in a job role had a weight to determine the most critical skills first;

similarly, each job role in a project has a weight too. These weights are to identify

the driving job roles first. The system ranks the employees for the most critical

job roles first. The default case, just like with the skills in a job role, is an equal

distribution of weights to the job roles if the weights are not given. The job roles R

are listed in descending order of their weighs in the project P .

Table 5.1 An Example of the Roles, Weights And Ranking Sequence

Index Role (R) Weight (
∑
wR = 1) Ranking Sequence

(i) A 0.4 1

(ii) C 0.3 2

(iii) D 0.2 3

(iv) B 0.1 4

36

5.2 Team Speciality Options

It’s not necessary to have a perfect team. Sometimes a bit more and special is expected

from a team. For example, sometimes, creativity can be a special requirement for

a project, or the project may need a cost-effective solution due to its low budget.

Hence, for such diversity, the system recognizes five different types of a team that

can be formed with varying specialties. This section explores every kind of team a

project manager may request.

5.2.1 Balanced

The original type of team this system tends to suggest by default. The system

designates this type when a project manager asks for a team to be as close to the

requirements as possible. In other words, the employees with the score as close as

possible to zero are selected for each role.

Let Ti be the ith member of the team who is selected for role Ri and the roles are

listed in the descending order of their weights in project P .

Tbalanced[i] = min(|ERi,ranked[score]|),∀R ∈ P (5.1)

∴ Tbalanced = {e1, e2, e3, . . . , em} is the balanced team offered for project P .

5.2.2 Skill Growth

As the name suggests, this type focuses solely on the growth of the employees,

pushing them further towards their limits. This type forms a team of employees

with skill ratings less than the required skill level. In other words, employees

with a maximum score from the ranked list of employees for each job role. Let

Tgrowth = {e1, e2, e3, . . . , em} be the team of employees who needs skill growth for

project P .

Tgrowth[i] = max(ERi,ranked[score]), ∀R ∈ P (5.2)

37

5.2.3 Quality focused

The sole purpose of this type of team is to deliver a creative solution to the project.

To be creative, one need not have experience. The experience forces a person to fit

in the pattern according to the author in [11]. Breaking the patterns is a difficult

process. Experience teaches oneself to make a linear movement, whereas creativity

demands non-linearity.

In this system, rating r of a skill defines the ability, whereas rating deviation RD

measures employee experience. Finding a creative mind means finding an employee

with highest cumulative rating of skills in Role R. Let cr(e,R) compute cumulative

rating for employee e with respect to skills in role R.

cr(e,R) =
s∈R∑

wses(r) (5.3)

Let Tquality = {e1, e2, e3, . . . , em} be the team of employees who are creative

enough for the project P .

Tquality[i] = max(cr(ERi,ranked),Ri),∀R ∈ P (5.4)

5.2.4 Time Saver

This type is similar to the previous type as this one needs employees with least

cumulative rating deviation. To save time on a project, employees need to work

linearly and procedurally. Experience, in this case, rating deviation RD is a more

important factor here than creativity. Let crd(e, R) calculate cumulative rating

deviation for employee e with respect to skills in role R.

crd(e,R) =
s∈R∑

wses(RD) (5.5)

Let Ttime = {e1, e2, e3, . . . , em} be the team of employees who can complete the project

P faster than the rest.

Ttime[i] = min(crd(ERi,ranked),Ri), ∀R ∈ P (5.6)

38

5.2.5 Cost Effective

Even though not usually recommended, an organization may need this type for limited

and low budget projects. Provided that the cost for each employee is available and

accurate, a team with low-cost employees for all the job roles can be built. Let

Tcost = {e1, e2, e3, . . . , em} be the cheapest team of employees to complete the project

P .

Tcost[i] = min(ERi,ranked[cost]),∀R ∈ P (5.7)

Respective authors in [29, 30, 31, 35] have tried to solve the team formation problem

with the focus aspect being the cost effectiveness by minimizing the expert costs and

the communication costs if any.

5.3 Criteria Check and Teams Completion

As discussed earlier, the job roles are listed in the descending order of their weights in

a project, which makes it easier to recommend employees for the most important job

roles first. The system starts checking for the following criteria while recommending

for each role after the first one. The checks are performed on the team being built,

that is, set T . The system does the workload check while recommending an employee

and hence, is not needed to be done again.

5.3.1 Criterion 1: Avoiding Employee Duplication

Currently, this system allows only one role per employee. The system can be modified

later to let the project manager decide whether an employee is allowed to have multiple

roles in a project. Multiple roles consume multiple workloads. As of now, to avoid

duplication, the recommended employees from the second job role onwards are checked

one by one if they exist in the team T . If not, they are added to the team, and if they

do, then the next possible option is selected, and the checks are performed again. Let

39

eRi
be the employee recommended for ith role R.

@eRi
∈ T ⇒ T [i] = eRi

(5.8)

5.3.2 Criterion 2: Respecting Mutual Ratings

Let c(e, T) be a compatibility function that returns the number of non-compatible

employees in team T with employee e by checking the employee relations rating stored

in the database. The function checks on the mutual rating between employee e and

each team member that has already been selected in team T and returns zero if the

employee is compatible with the other team members. The employee is added to the

team only if the compatibility function returns 0 or else the function return 1 and the

next possible employee option is suggested. This new employee has to go through the

compatibility test too.

c(eRi
, T) = 0⇒ T [i] = eRi

(5.9)

5.4 Feedback

Currently, this system relies heavily on the feedback loop for the mutual ratings among

project team members. The system asks for feedback from every team member,

including the project manager. It requests each employee to rate every other team

member after each project completion. As of now, the system only makes use of the

mutual ratings collected from the feedbacks. Other factors, such as project difficulty,

communication, and management related queries, can be asked in the feedback.

Feedback helps improve employee engagement and working relationships as per

the author in [33] Positive feedback loops are a fundamental concept in psychology.

Give people feedback about their actions promptly without fear of reprisal, and it

allows them to work toward better behaviors according to the discussion by the author

in [27]

Such feedback practices boost the collaboration where any researchers use this

employee inter-relation data for team formation experiments. Respective authors in

40

[30, 12, 19, 7, 43, 26] use collaboration as the key aspect while trying to solve the

team formation problem. These feedback loops are necessary after project completion

to free the workload for the next assignment.

5.5 Implementation

5.5.1 Criteria Check

Algorithm 2 Checking Employee Eligibility

1: procedure criteria check(emp, team)

2: if ! emp in team then

3: flag = 0

4: for member in team do

5: if emp.mutual rating.member 6= 0 & < rating threshold then

6: flag = 1

7: end if

8: end for

9: if flag == 0 then

10: return true

11: end if

12: end if

13: return false

14: end procedure

41

Figure 5.1 Check if the employee is eligible to be in the team.

42

5.5.2 Team Types

Algorithm 3 Select a team member for each team for a role

1: procedure get member(emps, team, type)

2: if type == balanced then

3: emps.sort(key = abs(score))

4: else if type == growth then

5: emps.sort(key = score, reverse = true)

6: else if type == cost then

7: emps.sort(key = cost)

8: else if type == quality then

9: emps.sort(key = cr, reverse = true)

10: else if type == time then

11: emps.sort(key = crd)

12: end if

13: i = 0

14: while !criteria check(emps[i], team) || i ≥ emps.length do

15: i++

16: end while

17: if i ≥ emps.length then

18: return null

19: else

20: return emps[i]

21: end if

22: end procedure

43

5.5.3 Teams Formation

Figure 5.2 Form a team for each requested type.

44

Algorithm 4 Form a team for each type

1: project = [[[[skill,r,rd,weight],. . .],rweight],. . .]

2: project.sort(key=weight, decending)

3: team = null

4: for type in team types do

5: team.append = []

6: end for

7: for role in project do

8: rec emps[role] = recommend employees(project[role])

9: for type in team types do

10: team[type].append(get member(rec emps[role], type, team[type]))

11: end for

12: end for

5.5.4 Skill updates

Algorithm 5 Update the skill ratings when

1: procedure update skill(emp.skill, role.skill, event)

2: if event = project complete then glicko2.skill update(emp.skill, role.skill,

1)

3: else if event = project or employee terminated then

4: if event not related to performance then glicko2.skill update(emp.skill,

role.skill, 0.5)

5: else if event related to performance then glicko2.skill update(emp.skill,

role.skill, 0)

6: end if

7: end if

8: end procedure

45

Figure 5.3 Update skill values when an event occurs.

46

CHAPTER 6

CONCLUSION

By now, it is clear that there are never-ending possibilities to expand the team

formation solution and cruises through numerous other domains of project management.

This work tried to design and implement a standard solution for the team formation

problem using a simple recommendation system. This work focuses on giving the

project manager a team as close to the requirement as possible; on the other hand, a

project to employees that they deserve.

This work creates a rating environment for skills and uses it to get the project

manager’s requirements. It then ranks the employees as per the requirements and

suggests different types of teams, each one with its unique focus. Lastly, it also sheds

some light on a few challenges that the team formation solutions overall have to face

and also discuss the plans for this work.

The implementation in this work covers designing and development of a

recommendation system based on Glicko-2 rating system which evaluates, estimates,

and updates the actual skill rating of an employee. The framework takes the project

requirements as the input and uses the recommendation system to recommend a

number of employees for each role. One of those employees is then selected for the

role which is continued for each role in the project, hence forming the complete team.

The framework also tries to suggest five different teams, if requested, where each

team has it’s own benefit to the organization such as a balanced team, a employee

growth concerned team, a quality focused team, a time saver team, and a cost effective

team. This work also shows the potential to expand beyond just team formation to

hiring and outsourcing. The implementation can also guide those who are trying

to create and implement their team formation solution because the implementation

requires a lot more preparation than just the solution.

47

Hence, all research works on team formation, and its aspects such as this one

will eventually lead to better working culture, and the employees will start getting to

work on what they deserve.

6.1 Alternative Approaches

Various aspects of experts, teams, and team formation such as the ones discussed

by the author in [44] through the organizational point of view. Many other similar

yet unique works using different approaches and techniques to the same problem but

with different applications while considering various related aspects can be seen in

[3, 10, 17, 2, 22, 28, 6, 39, 18, 21, 46, 4, 38, 14, 13, 35]

6.1.1 Employees Recommendation

The authors in [24] describe the implementation of a approach that uses a standard

collaborative filtering recommendation algorithm twice to recommend employee for

the open job positions in the organization. But in this algorithm, the users and the

items are flipped. It recommends users for a given item rather than recommending

items for a given user.

First, because the users and items are flipped, skills are considered as users

and roles are considered as the items. Instead of each role associated with multiple

skills, each skill is associated with multiple roles it belongs to. A similarity matrix

is generated between each skill pair by computing the similarity between two skills

in the pair using the Tanimoto coefficient, also known as the Jaccard coefficient. It

computes the ratio of common elements in the set to the total size for the sets, which is

a measure of similarity between the two sets. The recommender then uses the nearest

neighbor approach to find Top-few skills for the skillset based on the similarity.

Now that a skillset for a role is found, an employee skillset is considered

as a user, and skills are considered as items the second time algorithm is used.

A similarity matrix is generated between skillsets, and Top-N employees with the

48

skillset are recommended. The authors in [34] describe the tools and techniques to

provide awareness of team members in the virtual collaboration environment and

automated discovery of distributed experts. The experiment resulted in embodiment

of three different solutions among which one was to support automated expertise

identification. Other such experiments and implementations were discussed in

[20, 45, 8, 9, 36] by their respective authors.

Advantages of this approach are:

1. It takes less preparation to recommend.

2. Recommends employees with potential skills and not just the ones that strictly

has them.

Disadvantages of this approach are:

1. Instead of recommending the employees who can do the job, this approach

recommends the employees you may be able to pull it off.

2. It cannot distinguish between the employees for creativity, experience, and

cannot form a balanced team.

6.1.2 Employees Matching to Form a Team

For the recommenders that recommend multiple employees rather than just one, a

simple matching algorithm to form a team is needed. A matching algorithm can

arrange the employees for each role in the order of a particular parameter or score

in ascending or descending. Depending on whether the problem is maximization or

minimization. Or another way is to form combinations of the recommended employees

and choose the team with the maximum or minimum score. All of this, while checking

for employee duplication and compatibility.

49

6.2 Future Scope

6.2.1 Skill Ratings

The current rating system can be replaced later with a machine learning prediction

algorithm when there is sufficient data to understand employee skills while working

on the projects. At first, both the algorithms, the current one, and the machine

learning may work simultaneously to help the machine learning algorithm detects the

patterns in skill rating changes. Later, it can completely replace the current glicko2

rating system.

6.2.2 Skill Cluster

Later, when the system collects enough data about the skills used, a skill cluster

can be formed to find related skills, alternative skills and help businesses grow by

recommending other projects that can be handled using current employees’ skillsets.

6.2.3 Employee Training

Skill upgrades can be done not only by handling projects but also by learning them by

taking on pieces of training and courses. Further, courses can be recommended to the

employees for their skills that need growth, and they can be added to the skill ratings.

The authors in [40] can identify the students who require attention and recommend

them the additional courses accordingly to boost their progress. Similarly, the authors

in [32] discusses the recommender systems for technology enhanced learning (TEL) to

support and enhance learning practices for individuals and organizations. Also, the

authors in [42] use various available datasets to evaluate and compare the performance

of the recommendation algorithms for TEL.

6.2.4 Manual Employee Selection

A project manager may need to include a specific employee to the team. This feature

can be added, and other team members can be selected accordingly. It can also be

50

extended to allowing the project manager to choose other alternatives recommended

by the system.

6.2.5 Handling long projects

Extended projects can be handled by splitting them into multiple small projects.

This way, it can benefit in multiple ways like regular employee skill updates and

better management of deadlines. It can also help to work on multiple small projects

simultaneously to boost the overall project completion. The team can be allowed to

be carried to another small project if needed in this case.

6.2.6 Beginner Employees

It’s highly unlikely for those starting from beginner level to being allocated a project

as there are almost negligible chances for such projects to exist in any organization.

Hence, to give them a break, they can be allocated with the existing team for training.

The rating system for them needs to be changed.

6.2.7 Performance Evaluation and Feedback Practices

A company needs to perform performance evaluations now and then. These

evaluations are intended to boost employee skill levels or promote them to the next

level of the skills. Similarly, feedback practices are equally essential after the project

is complete. Feedback includes not only the technical details but also the queries

about essential aspects like behavior, satisfaction, comfort, and management.

6.2.8 Gamification

This complete system can be converted into a game-like structure where employees

compete with each other in the skill scores and are rewarded for the reaching levels.

The reward may be something like being eligible to have a beginner level employee

51

working for the same role assisting in the project. However, this is going to need a

lot of game-like rules to be set and an experimental approach.

6.2.9 Freelancers and Hiring

This system can be extended for hiring purposes or selecting a group of freelancers

for outsourcing. This application requires the complete system to be accessible to

the public, where they can find jobs for themselves while getting picked up by the

companies at the same time.

6.2.10 Project Deadline Estimation

After sufficient data is collected, it can be used to estimate the project deadline based

on the team selected. The team members’ skill levels can be a few of the many other

vital factors to determine the approximate time to complete the project. Based on

this data, it becomes easier for the system to take some decisions like allocating the

employee to a soon starting project before the current one, which is on the verge of

ending almost ends.

6.2.11 Workload Estimation

It is imperative to estimate the workload to prevent an employee from being

overwhelmed with work and miss deadlines. This estimate can be a deciding factor to

check whether the employee can manage one more project over his existing workload.

For estimation to be possible, the system needs to be trained for workload balancing

first.

52

6.3 Challenges

Not only the system discussed here, but the team formation problem itself faces

many challenges and has various approaches to solve sub-problems. The authors in

[44] discuss a few works trying to solve the same problem with their challenges and

limitations. A few of these challenges are mentioned below:

1. A project manager plays an important role not only in the team’s success but

also for the system like this one. A project manager has to be very smart while

describing the project to the system and entering the correct data at the correct

place. A project manager’s single mistake or misunderstanding in feeding inputs

to the system can create massive differences in the expected solution. Almost

every team formation solution out there needs a project manager’s manual

intervention.

2. Always finding the best team for a specific type of project may lead to many

others far from the requirements to sit idle and never get a chance to ever work

on the type of project with the skills required they are way off from.

3. A new employee or an intern may never get a chance to work on the projects

they deserve as they would never fit in any requirements right away.

4. Skill updates won’t be accurate if the employee never actually worked or got

significant help regarding a particular skill in a project.

5. Projects can sometimes be very long to justify the skill updates post project

completion. The solution to this can be the skill updates after the regular

intervals or converting the long project into a few short ones.

6. Employee compatibility is a tougher challenge than other challenges. Many have

tried to solve it with various solutions, such as psychometric tests and regular

feedbacks.

53

7. Cold start is one of the common problems in recommendation systems because

of the insufficient data or the default data values. The employees new to the

system do not have enough data to start working on the projects they deserve.

8. One of the most sensitive topics and red flags is maintaining diversity, whether

ethnicity or gender, while forming a team.

54

APPENDIX A

WEB SITES & SKILLS DATASETS

Web Site (Cited March 3, 2020) Description

1. https://www.onetcenter.org/
dictionary/24.2/excel/
technology skills.html

A web library with the skills data.

2. https://data.world/jobspikr/
software-developer-job-listings-
from-usa

Software developer job listings from
USA.

3. https://www.kaggle.com/
elroyggj/indeed-dataset-data-
scientistanalystengineer

Indeed Dataset - Data
Scientist/Analyst/Engineer.

4. https://www.kaggle.com/
atahmasb/amazon-job-skills

Amazon Software Development Job
Skills.

5. https://www.kaggle.com/
niyamatalmass/google-job-skills

Google Job Skills.

6. http://dataatwork.org/data/ An API for skills.

55

REFERENCES

[1] Charu C Aggarwal et al. Recommender systems, volume 1. Springer, 2016.

[2] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and Stefano
Leonardi. Power in unity: Forming teams in large-scale community systems.
pages 599–608, 01 2010.

[3] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and Stefano
Leonardi. Online team formation in social networks. In Proceedings of the 21st
International Conference on World Wide Web, WWW ’12, page 839–848, New
York, NY, USA, 2012. Association for Computing Machinery.

[4] Giorgio Barnabò, Adriano Fazzone, Stefano Leonardi, and Chris Schwiegelshohn.
Algorithms for fair team formation in online labour marketplaces. 02 2020.

[5] Senjuti Basu Roy, Laks V.S. Lakshmanan, and Rui Liu. From group recommendations
to group formation. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, page 1603–1616, New
York, NY, USA, 2015. Association for Computing Machinery.

[6] Adil Baykasoglu, Turkay Dereli, and Sena Das. Project team selection using fuzzy
optimization approach. Cybern. Syst., 38(2):155–185, February 2007.

[7] Michelle Cheatham and Kevin Cleereman. Application of social network analysis to
collaborative team formation. In Proceedings of the International Symposium
on Collaborative Technologies and Systems, CTS ’06, page 306–311, USA,
2006. IEEE Computer Society.

[8] Anwitaman Datta, Jackson Tan Teck Yong, and Anthony Ventresque. T-recs: Team
recommendation system through expertise and cohesiveness. In Proceedings of
the 20th International Conference Companion on World Wide Web, WWW
’11, page 201–204, New York, NY, USA, 2011. Association for Computing
Machinery.

[9] Anwitaman Datta, Jackson Tan Teck Yong, and Stefano Braghin. The zen of
multidisciplinary team recommendation. Journal of the Association for
Information Science and Technology, 65(12):2518–2533, 2014.

[10] Samik Datta, Anirban Majumder, and K. Purushotam Naidu. Capacitated team
formation problem on social networks. In KDD, 2012.

[11] Dinesh Divekar. Knowledge vs experience vs creativity.

[12] Christoph Dorn and Schahram Dustdar. Composing near-optimal expert teams: A
trade-off between skills and connectivity. pages 472–489, 12 2010.

56

[13] Bowen Du, Qian Tao, Feng Zhu, and Tianshu Song. Finding optimal team for
multiskill task based on vehicle sensors data. Journal of Sensors, 2017:1–10,
10 2017.

[14] Walaa El Ashmawi. An improved african buffalo optimization algorithm for
collaborative team formation in social network. International Journal of
Information Technology and Computer Science, 10:16–29, 05 2018.

[15] A. Felfernig, Michael Jeran, Gerald Ninaus, Florian Reinfrank, Stefan Reiterer, and
Martin Stettinger. Basic Approaches in Recommendation Systems, pages 15–
37. 12 2014.

[16] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, and Shuai Ma. In search of influential
event organizers in online social networks. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’14,
page 63–74, New York, NY, USA, 2014. Association for Computing Machinery.

[17] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, and Shuai Ma. In search of influential
event organizers in online social networks. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’14,
page 63–74, New York, NY, USA, 2014. Association for Computing Machinery.

[18] Erin L. Fitzpatrick and Ronald G. Askin. Forming effective worker teams with multi-
functional skill requirements. Comput. Ind. Eng., 48(3):593–608, May 2005.

[19] Amita Gajewar and Atish Das Sarma. Multi-skill collaborative teams based on densest
subgraphs. Computing Research Repository - CORR, 02 2011.

[20] Dawei Gao, Yongxin Tong, Jieying She, Tianshu Song, Lei Chen, and Ke Xu. Top-k
team recommendation and its variants in spatial crowdsourcing. Data Science
and Engineering, 2, 03 2017.

[21] M Gaston, John Simmons, and M DesJardins. Adapting network structure for efficient
team formation. In Proceedings of the AAAI 2004 fall symposium on artificial
multi-agent learning, 2004.

[22] Matthew E. Gaston and Marie desJardins. Agent-organized networks for dynamic
team formation. In Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’05, page 230–237,
New York, NY, USA, 2005. Association for Computing Machinery.

[23] YoungOk Kwon Gediminas Adomavicius, Nikos Manouselis. Multi-criteria recom-
mender systems.

[24] Abigail Gertner and Susan Lubar. Recommendations to support staffing decisions.
2014.

[25] Mark E. Glickman. Example of the glicko-2 system.

57

[26] Diego Gómez-Zara, Matthew Paras, Marlon Twyman, Jacqueline Ng, Leslie
Dechurch, and Noshir Contractor. Who would you like to work with? pages
1–15, 04 2019.

[27] Cord Himelstein. The importance of the employee feedback loop.

[28] Mehdi Kargar and Aijun An. Discovering top-k teams of experts with/without a
leader in social networks. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management, CIKM ’11, page
985–994, New York, NY, USA, 2011. Association for Computing Machinery.

[29] Mehdi Kargar, Aijun An, and Morteza Zihayat. Efficient bi-objective team formation
in social networks. In Peter A. Flach, Tijl De Bie, and Nello Cristianini,
editors, Machine Learning and Knowledge Discovery in Databases, pages 483–
498, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[30] Mehdi Kargar, Morteza Zihayat, and Aijun An. Finding Affordable and Collaborative
Teams from a Network of Experts, pages 587–595. 05 2013.

[31] Theodoros Lappas, Kun Liu, and Evimaria Terzi. Finding a team of experts in social
networks. In Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’09, page 467–476, New York,
NY, USA, 2009. Association for Computing Machinery.

[32] Nikos Manouselis, Hendrik Drachsler, Katrien Verbert, and Erik Duval. Recommender
systems for learning. Springer Science & Business Media, 2012.

[33] Emily Marsh. Why feedback is important in the workplace.

[34] Mark T. Maybury, Raymond J. D’Amore, and David House. Awareness of organi-
zational expertise. International Journal of Human–Computer Interaction,
14:199 – 217, 2002.

[35] Yashar Najaflou and Kris Bubendorfer. In pursuit of the wisest: Building cost-
effective teams of experts. pages 158–167, 10 2017.

[36] Z. Ning, X. Zeng, M. Fu, T. Megersa Bekele, and X. Wang. A catfish effect based team
recommendation system. In 2018 Second World Conference on Smart Trends
in Systems, Security and Sustainability (WorldS4), pages 203–208, 2018.

[37] Rachel Reddick. Using a glicko-based algorithm to measure in-course learning. In
Proceedings of The 12th International Conference on Educational Data Mining
(EDM 2019), page 754–759, 2019.

[38] Kalyani Selvarajah, Pooya Moradian Zadeh, Mehdi Kargar, and Ziad Kobti.
Identifying a team of experts in social networks using a cultural algorithm.
Procedia Computer Science, 151:477–484, 01 2019.

58

[39] Shi-Jie Chen and Li Lin. Modeling team member characteristics for the formation
of a multifunctional team in concurrent engineering. IEEE Transactions on
Engineering Management, 51(2):111–124, 2004.

[40] Kelly Spoon, Joshua Beemer, John C Whitmer, Juanjuan Fan, James P Frazee,
Jeanne Stronach, Andrew J Bohonak, and Richard A Levine. Random forests
for evaluating pedagogy and informing personalized learning. Journal of
educational data mining, 8(2), 2016.

[41] Studytonight. Advantages of mongodb.

[42] Katrien Verbert, Hendrik Drachsler, Nikos Manouselis, Martin Wolpers, Riina
Vuorikari, and Erik Duval. Dataset-driven research for improving recom-
mender systems for learning. In Proceedings of the 1st International Conference
on Learning Analytics and Knowledge, pages 44–53, 2011.

[43] Hyeongon Wi, Seungjin Oh, Jungtae Mun, and Mooyoung Jung. A team
formation model based on knowledge and collaboration. Expert Syst. Appl.,
36(5):9121–9134, July 2009.

[44] M.S.A.V.P.V. Wulf, M.S. Ackerman, A.P.C.S.C.W.S.M.V. Pipek, V. Pipek, V. Wulf,
Inc Books24x7, and P.I.S.N.M.V. Wulf. Sharing Expertise: Beyond Knowledge
Management. EBL-Schweitzer. MIT Press, 2003.

[45] Qinghai Zhou, Liangyue Li, Nan Cao, Norbou Buchler, and Hanghang Tong. Extra:
Explaining team recommendation in networks. In Proceedings of the 12th ACM
Conference on Recommender Systems, RecSys ’18, page 492–493, New York,
NY, USA, 2018. Association for Computing Machinery.

[46] ARMEN Zzkarian and Andrew Kusiak. Forming teams: an analytical approach. IIE
transactions, 31(1):85–97, 1999.

59

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Related Work
	Chapter 3: Problem Definition and Preparation
	Chapter 4: Recommendation Systems
	Chapter 5: Team Formation
	Chapter 6: Conclusion
	Appendix A: Web Sites & Skills Datasets
	References

	List of Tables
	List of Figures

