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ABSTRACT 
MODEL-BASED DEEP SIAMESE AUTOENCODER FOR 

CLUSTERING SINGLE CELL RNA-SEQ DATA 

by 
Zixia Meng 

In the biological field, the smallest unit of organisms in most biological systems is the 

single cell, and the classification of cells is an everlasting problem. A central task for 

analysis of single-cell RNA-seq data is to identify and characterize novel cell types. 

Currently, there are several classical methods, such as K-means algorithm, spectral 

clustering, and Gaussian Mixture Models (GMMs), which are widely used to cluster the 

cells. Furthermore, typical dimensional reduction methods such as PCA, t-SNE, and ZIDA 

have been introduced to overcome “the curse of dimensionality”. A more recent method 

scDeepCluster has demonstrated improved and promising performances in clustering 

single-cell data. In this study, a clustering method is proposed to optimize scDeepCluster 

with Siamese networks, which will learn more reliable functions for mapping inputs to the 

latent space. Also, the spectral clustering based on the SpectralNet algorithm is employed 

to improve clustering performances. Extensive experiments are conducted to demonstrate 

its superior performance in comparison with the current state-of-art methods. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

In order to realize the functional consequences of a DNA sequence, we have to study its 

product which is RNA and proteins. Normally, the site of RNA or proteins are in the cell 

which is the smallest unit of organisms in any biological system� There are numerous types 

of functional RNA, and some of them play an active role within cells by catalyzing 

biological reactions, controlling gene expression, or sensing and communicating responses 

to cellular signals.1 Moreover, messenger RNA (mRNA) in which its function is to 

transport the DNA code (genetic information) into the cytoplasm where it can be translated 

into proteins. It was a quite hard work to quantify and analyze hundreds of RNA in the 

sample. However, RNA sequencing (RNA-seq) as a particular technology-based 

sequencing technique can reveal the identities of most RNA species inside a cell by using 

a variety of next-generation sequencing (NGS).2 In 2009, Tang F. et al.3 first proposed a 

single-cell genes expression profiling assay, also known as mRNA-seq, which then RNA-

seq has become one of the most promising technology to study complex biological 

questions. Standard methods such as microarrays and bulk RNA-seq utilize large 

populations of cells to analyze the expression of the RNAs. However, there are several 

limitations of microarrays and bulk RNA-seq. In microarrays, designed arrays often have 
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multiple related DNA/RNA sequences that bind to the same probe.4 That is, if we want to 

detect “gene A”, we may also detect “gene B” and “gene C”. Besides, the sequences can 

only be detected when the array is designed to detect, which means that genes that have 

not yet been annotated in a genome will not be represented. In bulk RNA-seq, the data 

formally represents an average of gene expression patterns, which may miss biological 

information differentiating between cells. Although individual cells are estimated to 

contain a huge number of molecules, the high variability of relative proportions of different 

transcript classes in a population should not be ignored.5 Thus, single cell analysis is needed. 

Single cell analysis includes the study of genomics, transcriptomics, proteomics and 

metabolomics with several purposes such as tracking the changes that occurs in populations, 

determining gene expression in each cell and understanding the activity of certain cells. 

However, this technology is particularly prone to dropout events due to the relatively 

shallow sequencing depth per cell.6 This makes clustering analysis on scRNA-seq a 

particularly challenging task.  

Normally, classical clustering methods including K-means algorithm, spectral 

clustering and Gaussian Mixture Models (GMMs) are commonly used. Very recent state-

of-the-art methods for scRNA-seq have been proposed. In 2015, Xu and Su described 

SNN-Cliq, a quasi-clique-base algorithm combined with concepts of shared nearest-

neighbor similarity measurement, which worked well especially in clustering high-

dimensional scRNA-seq datasets.7 In 2018, Sinha D. et al.8 presented dropClust as a new 
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clustering strategy, looking for nearest neighbors using Locality Sensitive Hashing (LSH). 

Although these methods have shown very decent performances, there are still some 

limitations. Some of them relied on the full graph Laplacian matrix� which usually had 

quadratic or super-quadratic complexities to compute and store.9 Decomposition of the 

Laplacian matrix may require cubic complexities.9 In 2019, Tian Tian et al.10 proposed 

scDeepCluster – a model-based deep learning approach for clustering scRNA-seq data to 

solve mentioned issues. Although scDeepCluster used the model appropriate for 

characterizing data with excessive zeros, the latent space generated from the model was 

lack of biological interpretation. Based on the research study of Tian Tian et al., this study 

furthers to present a new combined model which could represent biological meanings and 

suggest a corresponding clustering algorithm that has better potential and performance than 

scDeepCluster. 

1.2 Standard Sequencing Methods 

1.2.1 Microarrays 

Due to the rapid development and implementation of genomic microarray technologies, a 

large number of microarray data has been analyzed which has been proved and widely used 

in several fields such as cancer diagnosis11, 12 , prediction13 and prevention 14, 15 based on 

the assessment of mRNA transcript levels on a genome-wide scale.11, 16 The mRNA is an 

intermediary molecule which carries the genetic information from the cell nucleus to the 
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cytoplasm for protein synthesis.17 These mRNAs synthesize the corresponding protein by 

translation in which we can assess the genetic information or the gene expression indirectly 

by assessing the various mRNAs.17 Microarrays are based on nucleic acid hybridization 

principle where arrays are comprised of a collection of DNA probes that are spotted on a 

solid support ideally in a glass or silicon platform. They are used to detect the presence of 

gene transcripts.18 Standardized microarray dataset consists of thousands of gene 

expression and a few hundred of samples. In this technique, genomic DNA is fluorescently 

labeled and used to determine the presence of gene loss or amplification.12, 14, 19 Typical 

experimental steps for microarray is shown in Figure 1.1. Each expression measures the 

level of activity of genes within a given tissue. The small variations in the DNA sequence 

that lead to different characteristics (such as skin color, facial features, or height) are known 

as polymorphisms, and also can contribute to the development of many syndromes and 

diseases.20 By comparing the genes expressed in abnormal cancerous tissues with those in 

normal tissues, we may get a good insight into the disease pathology which allows better 

diagnosis and predictions for future samples.13 These genetic variations can be easily 

identified by the microarray technique. However, this technique has several limitations due 

to its cost and access problems of the sample. Besides, it is still not easy to analyze the 

huge amount of data generated by this technology.21 Moreover, each microarray can only 

provide information about the genes that are included in the array.22 
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Figure 1.1 Typical steps for microarray experiment. 

 
Source:[23] 

1.2.2 Bulk Sequencing  

Bulk RNA sequencing (RNA-seq) is a technique which has been widely used to analyze 

entire genomes by its gene expression patterns at population level in the past decade.24 In 

bulk sequencing, the data points observed (observations) are not single cells, but rather 

represent bulk samples (many cells). This tends to reduce the sparsity of values within the 

expression matrix which makes the parameters richer and less susceptible to dropouts. Bulk 

RNA-seq mainly reflects the averaged gene expression from an assembly of cells25, which 

is the sum of cell type-specific gene expression weighted by cell type proportions.26 This 

bulk RNA-seq data provides reliable measurements of gene expression levels throughout 

the genome for bulk samples. With sufficient sequencing depth, even weakly expressed 

transcripts can be accurately captured by RNA-seq data. Fromer et al. (2016)27 used bulk 
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cell datasets, obtained from the prefrontal cortex of post-mortem subjects, to gain insights 

into how genetic risk variation for schizophrenia affects gene expression and likely 

generates risk for this severe psychiatric disorder. A number of approaches have been 

developed for between-sample normalization of bulk RNA-seq data, such as DESeq228and 

trimmed mean of M values (TMM).29 However, in complex tissues with multiple 

heterogeneous cell types, bulk RNA-seq require a priori knowledge, either of gene 

expression profiles of purified cell types 30-32 or of cell-type compositions.33 Recent 

advances in single-cell RNA-seq enable characterization of transcriptomic profiles with 

single-cell resolution and circumvent averaging artifacts associated with traditional bulk 

RNA-seq data.30 In Figure 1.2, we perform a schematic of bulk RNA-seq and the 

differences between Single cell RNA-seq. 

 
Figure 1.2 Schematic of bulk RNA-seq and single-cell RNA-seq. 

 
Source:[34]�

1.2.3 Single-cell Sequencing 
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The scRNA-seq is a method that examines the sequence information from individual cells 

equipped with optimized next-generation sequencing (NGS) technologies. It helps 

researchers comprehend different functions between individual cells or cell types under 

their microenvironments.35 There are six main steps in the general procedure of single cell 

sequencing: isolation of single cells; cell lysis to obtain DNA or RNA; addition of barcodes 

in single cells; amplification of DNA and RNA for sequencing; library preparation and 

sequencing; and data analysis36, as shown in Figure1.3. Typical single cell isolation 

methods, such as fluorescence-activate cell sorting (FACS), laser capture microdissection 

(LCM), allow the precise isolation of selected single cells from complex samples. 

Microfluidics is a highly integrated system used widely, and it allows sequential processing 

of small volumes of fluids in hundreds of channels to achieve single cell sequencing.37 

There are several available microfluidics platforms, such as 10X Genomics Chromium and 

Drop-seq. 
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Figure 1.3 Single-cell sequencing flow chart 

 
Source:[36] 

Current scRNA-seq protocols involve isolating single cells and their RNA, reverse 

transcription (RT), amplification, library generation and sequencing. There are several 

challenges when using scRNS-seq, including the difficulty of identifying rare transcripts38, 

and improving the efficiency of the RT reaction, which determines the amount of the cell’s 

RNA population will be eventually analyzed by the sequencer. Due to the small available 

amount of material, scRNA-seq is infeasible to obtain complete information of expression 

files. Thus, gene clustering methods are proposed to identify patterns of gene expression. 

The main goal of clustering is to find a way to determine the identity of cells that do not 
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have known genetic markers. �

The increasing size of high-dimensional scRNA-seq datasets also enhances statistic 

challenges due to the “curse of dimensionality”. Typical dimensional reduction methods, 

such as PCA and t-SNE, are introduced to solve this kind of problem. However, there are 

huge differences between normal high-dimensional data and scRNA-seq data. Particularly, 

the most frequent expression level in scRNA-seq data is zero (typically > 50%). These 

‘false’ zero count observations are caused by so-called dropout events, that could be either 

biological characteristics in which the genes may fail to express at the time of measurement, 

or technology limitation in which the sequencing tool does not detect a certain level of 

expression. In addition, high variation is another feature of scRNA-seq count data, even 

among cells from the same type. 

1.3 Dimensional Reduction and Clustering 

1.3.1 K-means 

K-means clustering is an iterative algorithm of vector quantization that tries to partition ! 

observations into "  pre-defined non-overlapped clusters # = {&!, &", … , &#}. It assigns 

data points to the cluster with the nearest mean (formally called as cluster center or cluster 

centroid). The optimization process is to make the inter-cluster points as similar (close) as 

possible while keeping the clusters as different (far) as possible. Formally, the objection is: 

argmin
$

00‖2 − 4%‖"
&∈(!

#

%)!
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where 4% is the mean of cluster &%. 

In a recent work, Zheng and colleagues39 used K-means as the method for clustering 

droplet-seq data. This method struggled to identify clusters of non-spherical shapes. The 

original K-means, which uses squared Euclidean distances, tends to cluster equal-group-

size sphere-like data. In order to perform K-means on different types of data, several 

methods of adapting distance function were proposed. DropClust8 used Locality Sensitive 

Hashing (LSH) to find nearest neighbors of individual transcriptomes. DendropSplit was 

an end-to-end framework for clustering scRNA-seq data with interpretable 

hyperparameters.40 It performed Pearson correlation distance between cells and separation 

scores between clusters which would lead to biologically meaningful hierarchical 

clustering dendrograms. However, an exhaustive nearest neighbor search requires 

quadratic time computing pair-wise distances. For large sample sizes, this approach turns 

out to be significantly slow. Thus, methods of dimensional reduction are needed to be 

performed before the clustering process. 

1.3.2 Modern Methods of Dimensional Reduction 

1.3.2.1 Principle Component Analysis 

scRNA-seq measurements are commonly affected by high levels of technical noise, posing 

challenges for data analysis and visualization.41 Unsupervised learning techniques have 

been increasingly popular and useful for exploring and analyzing scRNA-seq data. 
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Particularly, principal component analysis (PCA) is one of the most frequently used method 

by reducing the dimensionality of the data while retaining most of the variation in the data 

set through the mathematical algorithm.42 Furthermore, closely related to factor analysis 

and latent variable models, principal components (PCs) help us to identify hidden and 

unmeasured structures that arise from biological and technical sources of variation.43, 44 

However, PCA would become inefficient when an increasing size and sparsity of genomic 

data happens. Furthermore, the outcome of PCA may be easily biased by outline 

observations, which is not an expected behavior.45 Thus, several attempts of PCA or PCA 

based algorithm were developed and adapted on the scRNA-seq to achieve high 

effectiveness and denoising accuracy. In 2017, Lin P. et al. proposed a PCA-like algorithm, 

CIDR46, with the ability of ultrafast speed when handling rapid-growing datasets. In this 

algorithm, the inflation of the distance matrix caused by the dropout event was takem into 

consideration. Besides, Lin P. et al. also imputed the value of dropout candidates based on 

the given probability distribution to shrink the inflation. Y. h. Taguchi applied PCA-based 

unsupervised FE47 to gene expression profiles retrieved by scRNA-seq analysis. The 

evaluation results showed that the proposed method had identified more genes associated 

with significant biological terms enrichment than the conventional approaches.  

1.3.2.2 t-Stochastic Neighbor Embedding (t-SNE) Visualization: 

Another extensively used tool of dimensional reduction is called t-Stochastic Neighbor 
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Embedding (t-SNE)48. Compared to PCA, it handles non-linear data efficiently, for it 

constructs probability distribution in high dimensions, which means that similar points 

have a high probability of being picked, and then it defines the similar distribution in low-

dimensional space. This method is usually used as visualization, and has been applied to 

several fields, such as cell segmentation and tissue image processing49, human genetic 

association studies50 and so on. The limitation of t-SNE is the problem of computational 

complexity, for it computes pairwise conditional probabilities for each data point. 

Gisbrecht, A. et al.51 tested the ability of their model, kernel t-SNE, in comparison to 

standard t-SNE for several datasets (shown as Figure 1.4). Though they showed that the 

model could be solved in linear time, the improvement of clustering was limited. Yu, M. et 

al.52 extended t-SNE by a deep feed-forward network for target recognition, but their model 

was pre-trained using Restricted Boltzmann Machines (RBMs). 

 
Figure 1.4 Comparison of t-SNE and kernel t-SNE applied to the dataset MNIST. 
 
Source [51] 
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1.3.2.3 Unsupervised Deep Neural Network Model: Autoencoder 

Autoencoder is an unsupervised deep neural network (DNN) model which allows reducing 

the dimensionality of data53, as shown in Figure 1.5. Zhou C. and Paffenroth R. C.54 

developed “Robust Deep Autoencoder” (RDA) to deal with the outliers and noise. They 

split data into two parts, which one of them could be successfully performed by a regular 

deep autoencoder and the other contained the noise and outliers. Peng J. et al. 55 put prior 

biological knowledge and an autoencoder together to build a model named Gene Ontology 

AntoEncoder (GOAE). Instead of using the conventional mean square loss as the loss 

function in a regular autoencoder, a deep count autoencoder (DCA) chose to use a zero-

inflated negative binomial (ZINB) as the loss function.56 In their experiments, DCA 

showed it worked well in some kinds of downstream analyses. In the previous work, the 

ZINB model had been applied to microbiome sequencing data and was proved effective on 

characterizing discrete, over-dispersed and zero-inflated count data.57 
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Figure 1.5 An autoencoder with pretraining consists of learning a stack of restricted 
Boltzmann machines (RBMs). 
 
Source: [53] 

1.3.2.4 Spectral Clustering 

In recent decades, spectral clustering has become one of the most popular methods. 

Spectral clustering techniques use the spectrum (eigenvalues) of the similarity matrix of 

the data to perform dimensionality reduction before clustering in lower dimensions. 

Spectral clustering has many advantages; it is simple to implement and can be solved by 

standard linear algebra methods. Several methods have been developed to apply spectral 

clustering to large datasets. Kadim Taşdemir58 proposed a method of vector quantization to 

speed up spectral clustering by reducing the computation of the decomposition. Cao, J. et 
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al.59 suggested an improved spectral clustering method only based on local information. 

That is, only the affinity graph with local relations was needed in order to accelerate the 

algorithm. Shaham, U. et al.60 proposed a network, called SpectralNet, which used a 

procedure that involved constrained stochastic optimization. The example results are 

shown in Figure 1.6. They replaced the standard affinities with affinities learned from a 

Siamese network. Their results also showed that applying SpectralNet to transformed data 

obtained by an autoencoder allowed further improvement. 

 
Figure 1.6 Illustrative 2D and 3D examples showing the results of SpectralNet clustering 
(top) compared to typical results (bottom). 
 
Source: [60] 

1.3.3 Specific Imputation Methods for Single-cell Sequencing 

Various statistic methods are proposed to address the special characteristic of the scRNA-

seq data, for common features, such as mean, median and standard deviation, fail to depict. 

Scher, J.U. et al.61 developed a statistical test based on zero-inflated Gaussian model, with 

regard to addressing the feature of zero-inflated count data with variable library size. 

Normalizing the count data or rarefying the data into equal library sizes was commonly 
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used to deal with the problem. McMurdie, P.J., and Holmes, S.62 suggested to the direct 

application of the negative-binomial (NB) based methods for RNA-seq data, with support 

of DESeq63 and edgeR64. Meanwhile, zero-inflated models were proved to have well 

controlled Type I errors, and were more accurate and efficient when estimating parameters, 

compared with other models.65 For instance, these models assumed that the observed zero 

are consisted of ‘structural zeros’ (due to physical absence) and ‘sampling zeros’ (due to 

under-sampling), which were biological interpretable. Jun Chen et al.57 used a zero-inflated 

negative binomial (ZINB) model on analysis of microbiome sequencing data. Their 

omnibus test suggested that allowing covariate-dependent dispersion could improve 

robustness of discrete, over-dispersed and zero-inflated count data. An example of 

differential dispersion is shown in Figure 1.7. 

However, these imputation methods are not designed for clustering. Besides, 

scRNA-seq data has more dimensions than microbiome sequencing data, a new method, 

that could perform imputation clustering and dimensional reduction at the same time, is 

needed. 



 17 
 

 
Figure 1.7 An example of differential dispersion. 

 
Source:[66] 

1.3.4 State-of-Art Clustering Approaches for scRNA-seq Data 

Wang et al. proposed to apply multi-kernel learning (SIMLR) for single-cell 

interpretation67, 68. By combining multiple kernels, SIMLR allowed to learn distance metric 

best fit the structure of scRNA-seq data. It also addressed that even under an appropriate 

distance metric, the results could be poor because of the frequent dropout events. MPSSC 

was another novel spectral clustering, which imposed a specific sparse structure on target 

matrix via L1 penalty69. Although decent performances were achieved using these methods 
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(as shown in Figure 1.8), Tian and his colleagues’ works10 showed that these spectral 

clustering-based methods relied significantly on the full graph Laplacian matrix, which 

required expensive computation and storing space. For example, in MPSSC, a machine 

with 800Gb memory was necessary for clustering thousands of cells. In addition, spectral 

clustering fails to characterize the features of scRNA-seq data such as over-dispersion and 

zero inflation. 

 
Figure 1.8 Evaluation of the eight clustering methods by NMI, implemented on the 
computing cluster (6 CPUs, 800 GB of memory). 
 
Source:[69] 
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1.4 Research Objective 

Tian Tian et al. proposed a model, named scDeepCluster10 (single-cell model-based deeply 

embedded clustering), which introduced DNNs into the ZINB-based denoising70, 71 

autoencoders as well as the KL-divergence described in DEC algorithms.72 The 

scDeepCluster model solved the main challenge in scRNA-seq data that ZINB model was 

not designed and optimized for clustering by integrating ZINB model with clustering loss 

in a principled way. However, this method could not maintain the distances between cells 

when mapping cells into latent features space. Siamese networks were first used to learn 

meaningful mappings when it was applied to face recognition problems.73 Before training 

the network, positive pairs, both of which have the same label, and negative pairs, both of 

which do not have the same label, are generated. The distances are maintained by 

maximizing the distance between the ones in negative pairs and minimizing the distance 

between the ones in positive pairs. Therefore, we propose a method that connects the 

former model with Siamese networks to learn reliable mapping functions from inputs to 

the latent space. We then perform the spectral clustering based on SpectralNet algorithm to 

improve clustering performances. 
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CHAPTER 2 

METHODS 

2.1 Preparatory Work 

2.1.1 Software and Tools  

In this study, we implement the ideas in Python 3.0. The NumPy Python library is 

frequently used for scientific computing operations. However, in order to use the power of 

GPUs, we use PyTorch instead of NumPy for flexibility and speed. From Sickit-learn, we 

import KMeans and metrics for evaluation of the clustering process. Some tools used for, 

such as, generating pairs, normalization, and loss calculations are also implemented in 

Python. Most parts of our programs are running on the NVIDIA P100 GPUs, which are 

provided under the Extreme Science and Engineering Discovery Environment (XSEDE) 

digital service by the San Diego Supercomputer Center (SDSC). 

2.1.2 Raw Count Data Pre-Processing  

We use SCANPY74 to deal with the biological data. SCANPY is a scalable toolkit for 

analyzing single-cell gene expression data. Its Python-based implementation efficiently 

deals with data sets of more than one million cells. SCANPY can perform essential pre-

process such as normalization, which will reduce data redundancy and improve data 

integrity. It introduces a general class which could handle annotated data matrices, called 
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ANNDATA. Figure 2.1 shows several functions that SCANPY is capable of, including t-

SNE visualization.  

 
Figure 2.1 Processing that SCANPY is capable of, including regressing out confounding 
variables, normalization, and identification of highly variable genes, TSNE and graph-
drawing. 
 
Source: [60] 

 

2.1.3 Real Data �

In this study, we apply our model to four datasets that are described as followings. We got 

the 10X PBMC dataset (4K PBMCs from a healthy donor) from 10X scRNA-seq 

platform75, which profiled the transcriptome of the peripheral blood mononuclear cells 

(PBMCs) from a healthy donor. PBMC 4k data were downloaded from the website of 10X 
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genomics (https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/ 

pbmc4k). Filtered gene/cell matrix and cell labels are identified by graph-based clustering 

(for the method description see https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/output/analysis). 

The mouse ES cells dataset76 was downloaded from GSE65525. Droplet-

microfluidic was used for profiling transcriptomes. We downloaded the read count matrices 

of mouse ES cells sample 1, mouse ES cells LIF - 2 days, mouse ES cells LIF - 4 days and 

mouse ES cells LIF - 7 days, from Allon and colleagues’ work76, and put them together. 

We got the mouse bladder cells dataset of the Mouse Cell Atlas project77 from the 

authors (https://figshare.com/s/865e694ad06d5857db4b). The cells were sorted by tissues 

and the table of cell assignments and we downloaded the digital expression matrix, with 

the batch gene background removed, of all 400,000 single cells. From the raw count matrix, 

cells from bladder tissue were selected. 

The worm neuron cells dataset was profiled by sci-RNA-seq (single-cell 

combinatorial indexing RNA sequencing)78. 50000 cells from nematode Caenorhabditis 

elegans at the L2 larval stage and were profiled and labeled 

(http://atlas .gs.washington.edu/worm-rna/docs/). Among them, a subset of neural cells was 

selected and labeled with “unclassified neurons” are removed. Thus, we had 4186 neural 

cells. 
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2.2 Networks of Dimensionality Reduction, Feature Selection and Spectral 
Clustering 

2.2.1 ZINB Model-Based Autoencoder  

The autoencoder is a kind of neural network model used to learn efficient coding in an 

unsupervised manner. As we presented before, the ZINB-based autoencoder used in this 

study is showed in Figure 2.2. Each autoencoder has two parts: the encoder and the decoder, 

as denoted in Figure 2.2. The aim of an autoencoder is to find a set of candidates which 

could stand for the dataset�� and the encoder part will transform the input into hidden 

features.  

Suppose that there is an autoencoder which has only one hidden layer. Let the 2% 

is one of the input vectors, 2% ∈ ℝ*, and the hidden layer ℎ has 8 units. Then the output 

of the hidden layer in the encoding process can be represented as following: 

ℎ% = 9(;2% + =), 

where ; = (?!!, … , ?+*) ∈ ℝ+×*	 is the weight matrix from the input data with A 

dimensions to each 8 units in the hidden layer; = = (=!, … , =+) is a bias vector. 

Then the output of the hidden layer in the decoding process can be represented as 

following: 

2%- = 9(;′ℎ% + =-), 

where ;- = C?-
!!, … , ?-

*+D = (?!!. , … , ?+*. ) ∈ ℝ*×+	. 

Formally, we define the encoder function as ℎ = E(F) and the decoder function as 
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F- = G(ℎ), where F = (2!, … , 2*).. Thus, the loss function of a regular autoencoder is 

defined as: 

H(2% , 2%-) = ‖2% − 2%′‖" 

Unlike the regular autoencoder, the denoising ZINB model-based autoencoder used 

in this study is enhanced to implement functions of both imputation and denoising for 

sparse count data. The denoising autoencoder is an autoencoder with high robustness to 

partially destroyed inputs and is expected to predict original uncorrupted data as its 

output.70 The empirical results show that an explicit denoising criterion does help the 

autoencoder to learn the structure of the input that are corrupted by small irrelevant noise 

in input. Therefore, the denoising autoencoder model is employed to map the input data 

from its original space to a low-dimensional embedded (latent) space as the clustering is 

processing. In the following experiments, random Gaussian noise is added into the input 

data and then the entire model is constructed with a normal fully connected layer. The 

corrupted input is noted by: 

F/0112+3 = F + I, 

where I is the random Gaussian noise. Thus, the encoder and the decoder functions are 

defined as ℎ = E(F/0112+3)  and F- = G(ℎ) , respectively. Both the encoder and the 

decoder are fully connected neural networks with rectifier activation function which is 

known as ReLUs.79 The weights of the functions are learned by the training process of 
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which minimizing the loss function: 

J(F, G(E(F/0112+3))). 

Compared with the regular autoencoder, the major improvement of the ZINB 

model-based autoencoder is that the loss function of the later one is the likelihood of a 

ZINB distribution. The dropout events in scRNA-seq can be depicted by ZINB. Formally, 

the mean (4), the dispersion (K) of the negative binomial distribution and an additional 

coefficient (L) that represents the weight of the point mass of probability at zero (the 

probability of dropout events) are used to describe ZINB: 

MN(F/0243|4, K) = 567"#$%&89:
7"#$%&!5(9)

P 9

98>
Q
9

P >

98>
Q
7"#$%&

, 

 

RSMN(F/0243|L,	4, K) = 	LT?(F/0243) + (1 − L)MN(F/0243|4, K), 

where F/0243 represents the raw counts data. The parameters L, 4, K will be estimated 

in the ZINB model-based autoencoder by appending three independent fully connected 

layer at the end of the decoder. Let F- = 	G(E(F/0112+3)) represents the last hidden layer 

of the decoder, then the functions of these three layers are denoted as: 

V = WXYG(&%) × expC;>F′D, 
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Θ = exp(W9X-), 

 

Π = &XGAbXW(;@F′), 

where V, Θ, Π are the estimations of mean, dispersion and drop probability in matrix 

form, respectively. The size factors &% in the first equation are considered as independent 

input and are calculated before the training process. Note that the activation function for 

the mean and dispersion layer is exponential because all parameters are non-negative 

values, and the activation function for the additional coefficient is sigmoid because the 

dropout probability lies between 0 and 1. Thus, the loss function is described as following: 

JABCD = −log	(RSMN(F/0243|L,	4, K)) 

 
Figure 2.2 Network architecture of ZINB-based autoencoder. 
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2.2.2 Siamese Network 

The Siamese network is one kind of similarity learning approach, which is initially used 

for image recognition. The network has two sub-networks and the outputs of both are 

aggregated together for the loss calculation. Figure 2.2 illustrates a basic model of the 

Siamese network. Let 2% and 2E be a pair of cells from a training set. Let e be a binary 

label of the pair; if the cells 2%  and 2E  are from the same category, e = 1, and e = 0 

otherwise. For the ones with labels e = 1 and those with labels e = 0 ,we usually call 

them positive pairs and negative pairs, respectively. As mentioned above, each pair will be 

sent into the Siamese network which consists of two shared-weights encoders. Suppose 

that the encoder function mentioned before maps one pair into low-dimensional latent 

space as ℎ% = E(2%) and ℎE = E(2E). 

 
Figure 2.3 Network architecture of Siamese network architecture. 

The similarity for ℎ%and ℎE, corresponding to 2% and 2E in each pair, is measured 

by means of the Euclidean distance, which is defined as following: 
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WCℎ% , 	ℎED = gℎ% − ℎEg"
" 

Hence, the total contrastive loss for minimizing is defined as: 

HC2% , 2E , eD = h
gℎ% − ℎEg"

", e = 1,

AY2(0, i − gℎ% − ℎEg"
"), e = 0,

 

where i is a predefined threshold. 

2.2.3 Spectral Clustering 

Clustering is an essential process for exploratory data analysis. In this study, spectral 

clustering algorithms are introduced into the clustering process. Based on the study of some 

practical issues, the performance of spectral clustering often exceeds that of traditional 

approaches, such as K-means or single linkage. Moreover, it is easy to implement in any 

programming language and solved by linear algebra approaches.  

SpectralNet overcomes some weak points of the spectral clustering, like scalability 

and generalization. The major step in SpectralNet is to learn the function j9 that maps 

each data points to spectral embedding space while enforcing orthogonality. Let 

?:	ℝ* × ℝ* →	 [0,∞) be a symmetric affinity function, such that ?(2% , 2E) represents 

the similarity between 2% and 2E. In this step, two points, 2% and 2E, that has large value 

of ?(2% , 2E), should be embedded as close as possible to each other. Therefore, the loss is 

defined as: 
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J(+F/3(K) = Ε P?(2% , 2E)gp% − pEg
"Q, 

where p%, pE ∈ ℝ+ represent the map function p = j9(2), K represents the parameters in 

the map function, and E represents the expectation taken with respect to i.i.d. pair elements 

drawn from the distribution of the input. To minimize the loss J(+F/3(K), we could map all 

the input points to the same output vector; but this mapping process does no help to the 

performances. We would enforce the output to be orthonormal in expectation to prevent 

the dead end: 

Ε(pp.) = S+×+, 

As the distribution of the input data remains unknown in most cases, the empirical 

analogues will replace the expectation in the equations above. In the experiments of this 

study, at each training epochs, a batch of " samples are randomly selected to calculate the 

loss: 

J(+F/3(K) =
1
""0?C2% , 2EDgp% − pEg

",
#

%,E

 

where p% = j9(2%). 

!

#
e.e = S+×+, 

where e  is a " × 8  matrix of the outputs whose X th row is p%. . The orthogonality 

constraint is implemented by adding one linear-like layer as the last layer of the whole 
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neural network. The orthogonalization of the matrix e can be computed through its QR 

decomposition. In empirical, Cholesky decomposition is frequently performed to obtain 

the QR decomposition of one matrix r , only if r.r  is full rank. The Cholesky 

decomposition of the matrix r is denoted as r.r = JJ., where J is a lower triangular 

matrix, and setting s = r(JH!).. Thus, in this study, in order to orthogonalize e, the last 

layer multiplies e from the right side by √"(JH!).. 

In SpectralNet, a good affinity matrix is essential for the success of spectral 

clustering. Due to that our clustering process is using the data transformed by the ZINB 

model-based autoencoder, we would simply use common Gaussian kernel to generate the 

affinity matrix in our experiments. 

;%,E = expu− I&!H&'I
(

"J(
v	, if 2E is among the nearest neighbors of 2% 

2.2.4 Model-Based Deep Siamese Autoencoder 

A novel approach which brings together the ZINB model with clustering loss and Siamese 

networks with contrastive loss, ZINB model-based deep Siamese autoencoder (ZMDSAE), 

is proposed to deal with unlabeled datasets. Its architecture is shown in Figure. 2.3. The 

network has two subnetworks and their encoders and decoders have shared weights. ZINB 

loss, denoted as J1F/04, is taken into consideration in a principled way to improve the 

clustering performance while doing dimension reduction. At the end of the encoder, one or 

more layers are added to reduce the data into reasonable dimensions to calculate the 
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contrastive loss. We will call them as Siamese layer and outputs of this layer as deep 

embedded representations. Contrastive loss, denoted as J(%K*, is trying to keep distance in 

embedding space as that in the original space. The goal of training this network is to 

optimize the following loss: 

J = w(JABCD! + JABCD") + xJ(%K*, 

where w, x here are weights of different loss terms. 

Before training this network, we need to generate positive pairs and negative pairs 

since we are using unlabeled datasets. A PCA dimensional reduction is performed here to 

turn the data into a new space (normally into a low dimensional space) such that the greater 

variance appears on the top coordinates80. Afterwards, two cells in which an edge appeared 

between them will be considered as a positive pair based on the k-nearest neighbors 

algorithm (k-NN). The rest duo combinations of the whole dataset will be negative pairs. 

Then we randomly select parts of the pairs for training.�

In the first step, we use the data to train one autoencoder with merely the ZINB loss 

for the backward propagation. After hundreds of epochs, the contrastive loss will be added 

into the loss calculation that comes from the Siamese network. Although the Siamese 

network suggests two subnets, in practical, only one is stored due to that their weights are 

shared. The states of the weights of the encoder will be saved for dimensional reduction, 

when the training process of the autoencoder is completed. Finally, the spectral clustering 
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is performed for further improvement of the clustering accuracy. The output of the Siamese 

layer will be used to calculate the distance matrix in the spectral clustering. 

 
Figure 2.4 Network architecture of model-based deep Siamese autoencoder. 

 

2.3 Competing Method  

In this study, three common measures are used for numerical evaluations: the unsupervised 

clustering accuracy (CA), the normalized mutual information (NMI) ,and adjusted rand 

index (ARI). 

Assuming there are ! clusters and let T represents the contingency table with size 

of ! × !, such that y%E is the number of cells that belongs to cluster X but with predicted 

label z. CA is calculated by compared the compared the number of predicted labels and 

that of true labels, while NMI and ARI follows the following equations: 



 33 
 

MVS(e, e{) = "B(L;LN)

O(L)8O(LN)
, 

where e represents the true label, and e{ represents the predicted label. |(e) is entropy 

function and S(e; e{) is the mutual information. 

r~S =
∑ Q

)!!
( RH[∑ 6

*!
( :! ∑ Q

+'
( R' ]/6

%
(:!

,
(V∑ 6

*!
( :! 8∑ Q

+'
( R' WH[∑ 6

*!
( :! ∑ Q

+'
( R' ]/6%(:

, 

where Y% is the sum of the Xth row and =E is the sum of the zth column. The values of CA 

and NMI are between 0 and 1 while ARI may have negative values. These three metrics 

are capable to depict the concordance of two clustering label, which means the higher value 

represent the higher concordance.  

DCA, SIMLR, MPSSC, CIDR, PCA + k-means, scvis and DEC are used as 

competing methods. DCA is conducted directly by using the authors’ API functions 

(https://github.com/theislab/dca). DCA is not designed for clustering. So, we first apply the 

DCA (with the default parameters given by the authors) to denoise the raw read count data 

(impute the dropouted counts), then reduce the high-dimensional denoised read count 

matrix to the 2D space by principal component analysis (PCA). k-means clustering was 

conducted on the projected 2D space. This method is called ‘DCA + k-means’. We pre-

process the read count matrix then use the pre-processed data as the input for the SIMLR, 

PCA + k-means and MPSSC. First, the read count matrix is normalized by library size, so 

total counts are the same across cells. Next, normalized read counts are log-transformed. 
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SIMLR is a spectral clustering method, where similarities between cells are learned by 

multi-kernel. SIMLR is set to use default settings. MPSSC is a multi-kernel spectral 

clustering framework with the imposition of sparse structures on a target matrix. The 

parameters for MPSSC are rho = 0.2, lam = 0.0001, lam2 = 0.0001, eta = 1, c = 0.1. PCA 

+ k-means is a method that applies PCA to project the processed raw read count matrix to 

2D space directly, followed by k-means clustering. We follow the steps described by the 

authors for CIDR (https://github.com/VCCRI/CIDR). The input for CIDR is a scData R 

object constructed by the raw count matrix. The clustering steps for CIDR include 

determining the dropout events and imputation weighting thresholds, computing the CIDR 

dissimilarity matrix, reducing the dimensionality and clustering. We use the first two 

principal components computed by CIDR to show the latent representations. The scvis is 

a variational autoencoder50 based model used to capture the low-dimensional 

representation of scRNA-seq data. We use scvis to reduce scRNA-seq data to 2D space 

then apply k-means clustering. For scvis, we follow the pre-process steps described by the 

authors: the expression of each gene is quantified as log2(CPM/10 + 1), where ‘CPM’ 

stands for ‘counts per million’. Next, the data are projected to a 100-dimensional space by 

PCA and used as input for scvis. DEC (https://github.com/XifengGuo/DEC-keras) uses the 

same inputs as scDeepCluster: the raw count matrix is library-size normalized, log 

transformed, scaled and centred. The hyperparameters in DEC remain the same as the 

authors’ originals (for example, the sizes of the hidden layers are 500, 500, 2,000, 10).  
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Performance of ZINB-Model Based Autoencoder 

To evaluate the performance of this model-based Deep Siamese Autoencoder proposed in 

this study, we apply it to the real scRNA-seq datasets. The four datasets are generated from 

four sequencing platforms: PBMC 4k cells from the 10X genomics platform (10X 

PBMC)75, worm neuron cells from the sci-RNA-seq platform (worm neuron cells)78, mouse 

bladder cells from Microwell-seq platform (mouse bladder cells)77 and, mouse embryonic 

stem cells from a droplet barcoding platform (mouse ES cells)76. Three common measures, 

the unsupervised clustering accuracy (CA), the normalized mutual information (NMI) and 

adjusted rand index (ARI) are used for numerical evaluations.  

The four datasets, respectively, have 4271, 4186, 2746 and 2717 cells per sample, 

with 16653, 13488, 20670, 24175 genes after pre-processing, and form 8, 10, 16 and 4 

groups as shown in Table 3.1. After a simple PCA dimensional reduction to 2, the 

distribution of the data with the original labels are showed below in Figure 3.1 which, 

meanwhile, illustrates the difficulty of the clustering.  
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Table 3.1 Summary of Four Real ScRNA-seq Datasets 
Dataset Sequencing 

platform 
Sample size/cell 
numbers 

No. of 
genes 

No. of 
groups 

10X PBMC 10X 4271 16653 8 
Worm neuron 
cells 

Sci-RNA-seq 4186 13488 10 

Mouse bladder 
cells 

Microwell-seq 2746 20670 16 

Mouse ES cells Droplet barcoding 2717 24175 4 
We randomly sampled 2100 cells from each dataset (available at https://github.com 
/ttgump /scDeepCluster/ tree/master/scRNA-seq%20data )10. 

 

  
a b 

  
c d 

Figure 3.1 Distribution of four datasets directly using PCA. a, 10X PBMC. b, Worm 
neuron cells. c, Mouse bladder cells. d, Mouse ES cells. 

In Tian T. and his colleagues’ work, scDeepCluster, they randomly selected 2100 

cells from each cluster and compared the NMI, CA, ARI with other methods, including 
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DCA+ k-means, MPSSC, SIMLR, CIDR, PCA + k-means, Scvis + k-means, and DEC. 

The three metrics are shown in Figure 3.210, such that the performance of the deep learning 

clustering scDeepCluster is better than all of other methods in all four datasets. The latent 

space provided by scDeepCluster also shows great representation effectiveness. Figure 3.3 

– Figure 3.610 illustrate the distribution of the embedded points obtained by applying t-

SNE two-dimensional (2D) visualization for four datasets. Noted that for scDeepCluster, 

only a few points are mixed up with wrong clusters, while other methods fail to provide 

such clustering performance. Thus, in this study, we would compare the results between 

our model and scDeepCluster, including metrics of NMI, AC and ARI, and 2D 

visualization generated by t-SNE. 
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Figure 3.2 Comparison of clustering performances of scDeepCluster, DCA + k-means, MPSSC, SIMLR, CIDR, PCA + k-means, 
scvis + k-means and DEC, by NMI, CA and ARI.�
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Figure 3.3 Comparison of 2D visualization of embedded representations of 10X PBMC. 
 
Source: [10] 
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Figure 3.4 Comparison of 2D visualization of embedded representations of mouse ES cells. 
 
Source: [10] 
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Figure 3.5 Comparison of 2D visualization of embedded representations of mouse bladder cells. 
 
Source: [10] 
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Figure 3.6 Comparison of 2D visualization of embedded representations of worm neuron cells. 
 
Source: [10] 
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3.2 Performance of ZINB-Model Based Deep Siamese Autoencoder 

In our model, a PCA algorithm is first performed in order to get every dataset that has 2100 

cells each with 50 representations. Then the k-NN algorithm is used with ! = 10  to 

generate positive pairs of cells, while the rest pairs automatically become negative pairs. 

We randomly sample the equal number of negative pairs from all of them. It is noted that 

random sampling is taken with the original proportion of the positive pairs and negative 

ones. Table 3.2 summaries the detailed information of the selected pairs for every dataset. 

Table 3.2 Summary of Selected Pairs for Four Real ScRNA-seq Datasets  
Dataset Positive pairs Negative pairs Total pairs 
10X PBMC 4902 4902 9804 
Worm neuron cells 7387 7387 14774 
Mouse bladder cells 5782 5782 11564 
Mouse ES cells 5924 5924 11848 

Our experiments can be separated into 3 steps. The first step is to pre-train ZINB-

based denoising autoencoder, just like scDeepCluster. The second step is to train the same 

autoencoder with extra contrastive loss between pairs. This step would let the autoencoder 

start to learn weights in Siamese network. The third step is to perform the spectral 

clustering on deep embedded outputs of the Siamese layer. In order to evaluate how much 

improvement is achieved by each training step, we perform K-means clustering process at 

the end of each step.  

We use a %-256-64-32 autoencoder to generate latent space. Here, % means the 

original dimensions of input data, such as % = 16653  for 10X PMBC dataset. The 

Siamese layer is set as 32-8. Numbers of epochs of the pre-training and training part are 
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both set as 500. When the autoencoder is pre-training, optimizer Adam (adaptive moment 

estimation) is used with learning rate starting as 1e-3 and other parameters as default. After 

pre-training, the network will continue with extra contrastive loss. The learning rate is set 

as 1e-3 for Siamese layer and 1e-5 for the rest layers. For every 50 epochs, learning rate 

decay is set to 0.1. Early stopping is also added with patience as 100 epochs. That is, if the 

loss does not improve in 100 epochs, we will consider the model to be well trained and 

stop the process. In the loss function, we set ) = 1 and * = 2.  

In the spectral clustering procedure, we set architecture of SpectralNet as 256-128-

64-8. Learning rate is set as 1e-4 at the beginning and decay as 0.1. Early stopping is 

essential with the patience of 30. In this study, the input space of SpectralNet is the deep 

embedded space of Siamese layer, so we will not train another Siamese network to estimate 

affinities. We set k=12 to generate the pairwise affinity metrics using k-NN algorithm, such 

that one cell would consider the nearest 12 points as neighbors; the distances from other 

points are set as zero. 

The three metrics (NMI, AC and ARI) of clustering performance are calculated by 

performing k-means algorithm on corresponding space generated by previous process of 

each step and are visualized in Figure 3.7, which illustrates progressively improvement as 

training steps are carrying on. Detailed information about each dataset are summarized in 

Table 3.3 to Table 3.6. We observe that, the values of AC, NMI, and ARI do not drop 

significantly after the dimensional reduction operations between the latent layer and the 
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Siamese layer. Moreover, the deep embedded space has better accuracy in worm neuron 

cells and mouse ES cells. It suggests that although the deep embedded space has fewer 

dimensions than the latent space, the features captured by the Siamese layer are capable of 

depicting the differences (or similarities) between cells.  

  
  

  
Figure 3.7 Visualizations of AC, NMI, and ARI on four datasets. 

 

Table 3.3 Performance of ScDeepCluster and ZMDSAE on 10X PBMC 

Algorithm 
Dataset 

10X PBMC 
AC NMI ARI 

scDeepCluster .8276 .8024 .8088 
ZMDSAE (latent space) .8271 .8010 .8047 
ZMDSAE (deep embedded space) .8329 .7981 .7879 
ZMDSAE (deep embedded space, 
spectral clustering) 

.7533 .7626 .7041 
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Table 3.4 Performance of scDeepCluster and ZMDSAE on Worm Neuron Cells 

Algorithm 
Dataset 

Worm Neuron Cells 
AC NMI ARI 

scDeepCluster .6371 .6196 .3828 
ZMDSAE (latent space) .6333 .6175 .3778 
ZMDSAE (deep embedded space) .6567 .6412 .4111 
ZMDSAE (deep embedded space, 
spectral clustering) 

.7138 .6733 .4889 

 

Table 3.5 Performance of scDeepCluster and ZMDSAE on Mouse Bladder Cells 

Algorithm 
Dataset 

Mouse Bladder Cells 
AC NMI ARI 

scDeepCluster .6433 .7577 .5496 
ZMDSAE (latent space) .6591 .7626 .5681 
ZMDSAE (deep embedded space) .5867 .7375 .5100 
ZMDSAE (deep embedded space, 
spectral clustering) 

.7052 .7795 .6179 

 

Table 3.6 Performance of scDeepCluster and ZMDSAE on Mouse ES Cells 

Algorithm 
Dataset 

Mouse ES Cells 
AC NMI ARI 

scDeepCluster .8300 .8354 .7884 
ZMDSAE (latent space) .8295 .8340 .7871 
ZMDSAE (deep embedded space) .9081 .7860 .7887 
ZMDSAE (deep embedded space, 
spectral clustering) 

.8248 .8313 .7823 

The 2D visualizations of the latent space before and after adding contrastive loss 

are shown in Figure 3.8 – Figure 3.9.  
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10X PBMC 

  

 
Worm neuron cells 

  

Figure 3.8 2D visualization of latent space generated before (left column) and after 
(right column) adding the Siamese layer on 10X PBMC and worm neuron cells. 
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Mouse bladder cells 

  

 
Mouse ES cells 

  

Figure 3.9 2D visualization of latent space generated before (left column) and after (right 
column) adding the Siamese layer on mouse bladder cells and mouse ES cells. 

In Figure 3.8, yellow group and green group in 10X PBMC remain separable from 

other groups, as well as blue group, orange group, lime group, green group and grey group 

in worm neuron cells. In Figure 3.9, for mouse bladder cells data, green group and blue 

group mix a few points with each other, while purple group, brown group, lime group, red 

group yellow group are separable at some level. Comparing the left and the right columns, 

adding the Siamese network to our model will not weaken the clustering performances. 

We also show the 2D visualization of deep embedded space to compare with the 
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latent space before adding the Siamese layer on the four datasets in Figure 3.10 – Figure 

3.11. The visualizations suggest that although the deep embedded space has fewer 

dimensions, the information differentiating cells learned by the autoencoder can be 

successfully carried on to deep embedded space. Moreover, introducing the contrastive loss 

into our model improves the clustering performances in 2D visualizations. In Figure 3.10, 

the green group and the lime group have more distance with each other in deep embedded 

space of 10X PBMC. In Figure 3.11, the group, with dark yellow in mouse bladder cells, 

is completed separated from others in deep embedded space. Two groups in mouse ES cells, 

gluing to each other in the latent space, also show great clusters in the deep embedded 

space. Some of the outliers are also divided into appropriate groups, such as points around 

the yellow group in 10X PMBC and points around the green group in worm neuron cells. 
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10X PBMC 

  

 
Worm neuron cells 

  
Figure 3.10 2D visualization of latent space generated before adding the Siamese layer 
(left column) and deep embedded space on mouse bladder cells and mouse ES cells. 

 

 

 

 

 

 

 



 51 
 

Mouse bladder cells 

  

 
Mouse ES cells 

  

Figure 3.11 2D visualization of latent space generated before adding the Siamese layer 
(left column) and deep embedded space (right column) on mouse bladder cells and 
mouse ES cells. 
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CONCLUSION 

In this study, we have proposed a ZINB model-based deep Siamese autoencoder 

(ZMDSAE) for clustering analysis of scRNA-seq data. The approach can learn a deep 

embedded representation that is optimized for clustering high-dimensional input in a non-

linear manner. In particular, we explicitly model scRNA-seq data generation using a 

parametric model appropriate for characterizing count data with excessive zeros. Moreover, 

we introduce a clustering method based on SpectralNet which could efficiently utilizes the 

learned deep embedded representation. Comparing with our former model, scDeepCluster, 

real data applications have shown that our model could further improve the clustering 

performances. Moreover, the main challenge confronted in scRNA-seq data analysis, the 

pervasive dropout events, can be solved by our model efficiently. In contrast, other previous 

state-of-the-art spectral clustering methods (MPSSC and SIMLR) rely on multiple 

Gaussian kernels, which are proved to be less effective in characterizing sparse count data. 

As an ever-growing number of large-scale scRNA-seq datasets become available, we 

expect more applications of our method.�
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