

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

GLOBAL OPTIMIZATION ALGORITHMS FOR IMAGE
REGISTRATION AND CLUSTERING

by
Cuicui Zheng

Global optimization is a classical problem of finding the minimum or maximum

value of an objective function. It has applications in many areas, such as biological

image analysis, chemistry, mechanical engineering, financial analysis, deep learning

and image processing. For practical applications, it is important to understand the

efficiency of global optimization algorithms. This dissertation develops and analyzes

some new global optimization algorithms and applies them to practical problems,

mainly for image registration and data clustering.

First, the dissertation presents a new global optimization algorithm which

approximates the optimum using only function values. The basic idea is to use

the points at which the function has been evaluated to decompose the domain

into a collection of hyper-rectangles. At each step of the algorithm, it chooses a

hyper-rectangle according to a certain criterion and the next function evaluation

is at the center of the hyper-rectangle. The dissertation includes a proof that the

algorithm converges to the global optimum as the number of function evaluations

goes to infinity, and also establishes the convergence rate. Standard test functions

are used to experimentally evaluate the algorithm.

The second part focuses on applying algorithms from the first part to solve

some practical problems. Image processing tasks often require optimizing over some

set of parameters. In the image registration problem, one attempts to determine

the best transformation for aligning similar images. Such problems typically require

minimizing a dissimilarity measure with multiple local minima. The dissertation

describes a global optimization algorithm and applies it to the problem of identifying

the best transformation for aligning two images.

Global optimization algorithms can also be applied to the data clustering

problem. The basic purpose of clustering is to categorize data into different groups

by their similarity. The objective cost functions for clustering usually are non-convex.

k-means is a popular algorithm which can find local optima quickly but may

not obtain global optima. The different starting points for k-means can output

different local optima. This dissertation describes a global optimization algorithm

for approximating the global minimum of the clustering problem.

The third part of the dissertation presents variations of the proposed algorithm

that work with different assumptions on the available information, including a version

that uses derivatives.

GLOBAL OPTIMIZATION ALGORITHMS FOR IMAGE
REGISTRATION AND CLUSTERING

by
Cuicui Zheng

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2020

Copyright c© 2020 by Cuicui Zheng

ALL RIGHTS RESERVED

APPROVAL PAGE

GLOBAL OPTIMIZATION ALGORITHMS FOR IMAGE
REGISTRATION AND CLUSTERING

Cuicui Zheng

Dr. James Calvin, Dissertation Advisor Date
Professor of Computer Science, NJIT

Dr. Craig Gotsman, Committee Member Date
Distinguished Professor of Computer Science, NJIT

Dr. Marvin Nakayama, Committee Member Date
Professor of Computer Science, NJIT

Dr. Zhi Wei, Committee Member Date
Professor of Computer Science, NJIT

Dr. Mengchu Zhou, Committee Member Date
Distinguished Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Cuicui Zheng

Degree: Doctor of Philosophy

Date: August 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, Newark, New Jersey, 2020

• Bachelor of Science in Information Security,
Northeastern University, Shenyang, China, 2015

Major: Computer Science

Presentations and Publications:

Cuicui Zheng, James Calvin, Craig Gotsman “A DIRECT-type global optimization
algorithm for image registration” Journal of Global Optimization, 2020.

Cuicui Zheng, James Calvin, “Using simulation to approximate the minimum cost of
a finite set of alternatives” Winter Simulation Conference, Maryland, 12/2019.

James Calvin, Craig Gotsman, Cuicui Zheng, “Global Optimization for Image
Registration” Global Optimization Workshop, Netherlands, 09/21/2018.

iv

It does not matter how slowly you go as long as you do
not stop.

Confucius

v

ACKNOWLEDGMENT

When I start the journey of PhD, I didn’t know what the choice of starting PhD

would mean. Lots of words in my heart come out in the end of this journey. With

hundreds and thousands of days struggle and discussion, the dissertation was finally

completed. I cannot forget the help from those who encouraged me, supported me

and exchanged ideas with me.

I would like to express my sincere gratitude to my advisor, Prof. James Calvin

for the continuous support of my PhD study and research, for his patience, motivation,

enthusiasm, and immense knowledge. His guidance helped me through out the time

of research and writing of this dissertation. I could not have imagined having a better

advisor and mentor for my PhD study. Every time when I lost myself in self-doubt

and questioned a lot about the research, discussion with Prof. James Calvin help me

out. Thanks to the words of my advisor, it’s been like lights in my PhD life.

I would also like to thank the rest of my committee: Prof. Craig Gotsman, Prof.

Zhi Wei, Prof. Marvin Nakayama, Prof. Mengchu Zhou. For their encouragement,

insightful comments, and hard questions. I would like to thank the National Science

Foundation for financial support under Grant No. CMMI-1562466.

I thank my fellow labmates and friends in NJIT: Yanan Yang, Yajuan Li, Tian

Tian, Jie Zhang, Xin Gao, Ling Zheng, Junyi Ye, Cheng Zhong for their help with

sharing ideas and information with me. I also thank Prof. Ali Mili, Prof. Reza

Curtmola, and Prof. Cristian Borcea for all suggestions in my first year of PhD life.

Last, but not the least, I would like to thank my family: My parents, Meiqiang

Zheng and Shuizhen Li, for giving birth to me at the first place and supporting me

spiritually throughout my life and my brothers, Chao Zheng and Yuchao Zheng who

always bring happiness to my life.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

2 A NEW DIRECT TYPE GLOBAL OPTIMIZATION ALGORITHM . . . 5

2.1 Background and Related Work . 5

2.2 The Algorithm . 9

2.3 Convergence . 13

2.3.1 Convergence rate . 15

2.3.2 Discussions and comparison with DIRECT algorithm 24

2.4 Experiments . 25

3 A GLOBAL OPTIMIZATION ALGORITHM FOR IMAGE REGISTRATION
AND CLUSTERING . 31

3.1 Image Registration . 31

3.1.1 Background . 31

3.1.2 The algorithm . 35

3.1.3 Local search . 36

3.1.4 Numerical experiments . 36

3.1.5 Comparisons with other algorithms 39

3.2 Clustering . 42

3.2.1 Background . 42

3.2.2 k-means algorithm and k-means++ 45

3.2.3 Numerical experiments for clustering 47

4 A NEW GLOBAL OPTIMIZATION ALGORITHM WITH DERIVATIVES 55

4.1 The Algorithm . 55

4.1.1 Convergence rate . 56

4.1.2 Discussion on convergence rate 59

4.2 Experiments . 60

vii

TABLE OF CONTENTS
(Continued)

Chapter Page

5 DISCRETE SETTING . 62

5.1 Introduction . 62

5.2 Background . 64

5.3 The Algorithm . 66

5.4 Main Result . 68

5.5 Concentration Rate . 69

5.6 Numerical Experiments . 70

5.7 Conclusions . 72

6 CONCLUSIONS AND FUTURE WORK 73

6.1 Summary . 73

BIBLIOGRAPHY . 74

viii

LIST OF TABLES

Table Page

2.1 Description of the GKLS Test Classes Used in Numerical Experiments . 29

2.2 Error of Two Algorithms for 600 GKLS Test Functions 30

ix

LIST OF FIGURES

Figure Page

2.1 A 1-D continuous function with several local optima. 7

2.2 Normalized error for rectangle algorithm. 24

2.3 Normalized error of DIRECT algorithm. 25

2.4 Evaluation points for quadratic 2-D objective function. 26

2.5 Evaluation points of Rastrigin 2-D function. 27

2.6 Branin 2-D objective function. 28

2.7 GKLS 2-D objective function. 29

3.1 Desert image. 37

3.2 Target subimage (enclosed in red rectangle). 37

3.3 2-D image objective function. 38

3.4 Scatter plots for image registration 2-d cost function after 2,876 iterations. 39

3.5 Dog image. 40

3.6 Target subimage (enclosed in red rectangle). 40

3.7 Cost function with fixed rotation. 41

3.8 Targeted sub image and the sub-image obtained by the algorithm. . . . 42

3.9 After local search with 4,000 iterations. 42

3.10 Distribution of cost values obtained by five algorithms after 4,000 iterations. 43

3.11 Distribution of cost values obtained by rectangle and DIRECT algorithms
after 4,000 iterations. 44

3.12 Distribution of 100 points data set. 47

3.13 Centroids returned by k-means++. 48

3.14 Centroids returned by rectangle algorithm followed by one-step local search. 49

3.15 Five truncated normal populations. 50

3.16 Comparison between the rectangle algorithm and k-means++ with same
data set. 51

x

LIST OF FIGURES
(Continued)

Figure Page

3.17 Comparison between the rectangle algorithm and k-means++ with 100
different data sets. 52

3.18 Comparison between the rectangle algorithm and other global optimization
algorithms after 1,000 function evaluations. 53

3.19 Comparison between the rectangle algorithm and other global optimization
algorithms after 10,000 function evaluations. 53

3.20 Comparison between the rectangle algorithm and other global optimization
algorithms after 100,000 function evaluations. 54

4.1 Quadratic 1-D objective function. 61

4.2 Rastrigin 1-D objective function. 61

5.1 Continuous cost function (5.6). 71

5.2 Estimates of discretized cost function (5.6). 71

5.3 Normalized proportion of evaluations at sub optimal points, ν = 50. . . . 71

5.4 Normalized proportion of evaluations at sub optimal points, ν = 100. . . 71

5.5 Normalized error, ν = 50. 72

5.6 Normalized error, ν = 100. 72

xi

CHAPTER 1

INTRODUCTION

Global optimization is the task of finding minima or maxima of an objective function.

Many different engineering areas need optimization algorithms. Heuristic methods,

for example genetic algorithms, have been applied in machine learning [51, 10]. Local

optimization methods, such as gradient descent, are used in many cases because of

convenience and speed. Such local optimization methods alone cannot be relied on

when there are many local optima.

Neural network objective functions can be non-linear, non-convex and also not

smooth [39]. Variations of gradient descent algorithms are used to update parameters

that minimize the value of a loss function in neural networks. Gradient descent works

well in neural networks and finds global minima of deep neural networks [15] under

some conditions. It is confusing why local search works well in a non-convex objective

function. Convex functions can be minimized with local optimization algorithms. We

are interested in global optimization algorithms for non-convex objective functions.

We develop global optimization algorithms which are easy to use and also efficient to

find the best points which are at or near the global optima points and also analyze

their convergence rate. They approximate the optimal value without requiring inputs,

such as a good “starting point” to avoid getting trapped in a local optimum.

The theoretical foundations of commonly used global optimization algorithms

such as simulated annealing or genetic algorithms are weak. These global optimization

algorithms are applied to many different areas for solving practical problems but it

is difficult to characterize the performance of those algorithms.

How do we measure the performance of a global optimization algorithm? Let us

suppose that the unknown objective function f is a member of some class of objective

1

functions F . If the class F is sufficiently restricted, then local optimization methods

have a fast convergence rate. For example, if a univariate function f has a unique local

minimum, then there exist optimization algorithms that bracket the minimizer inside

a subinterval of width O(exp(−cn)) after n observations for some positive number c

(for example, the golden section search method [36]).

In many applications it is not reasonable to assume that f has a unique

local minimum, but it may be reasonable to assume continuity or some degree

of smoothness. If we assume only continuity, for example, then the class F is

convex and symmetric; that is, if f1, f2 ∈ F and 0 ≤ λ ≤ 1, then −f1 ∈ F and

λf1 + (1− λ)f2 ∈ F . If the class F is convex and symmetric, then adaptive methods

are not essentially better than nonadaptive methods in the worst-case; there exists

a nonadaptive method that achieves the same worst-case error bound with at most

n + 1 function evaluations as an adaptive method that uses n function evaluations

[79, 83].

Our interest is in problems with objective functions from a convex and

symmetric class, and so we do not consider the worst-case model. Two alternatives

to the worst-case complexity criterion are average-case and asymptotic-case. The

average-case complexity of an algorithm is based on the assumption of a probability

measure on the set of possible inputs. In this dissertation, we adopt the asymptotic

setting. As the number of function evaluations n becomes large, we examine

asymptotic bounds on the approximation error. We are interested in the following

question: As the number of function evaluations increases, at what asymptotic rate

does the error converge to zero?

Convergence rates are not known for many global optimization algorithms

[20]. The DIRECT algorithm [19] applies when the objective function is Lipschtz

continuous. To the best of our knowledge, there is no asymptotic analysis of the

DIRECT algorithm beyond the error coverging to 0.

2

In this dissertation, we discuss the convergence rate of a new global optimization

algorithm. The argument is based on the asymptotic analysis of [5]. Theoretical work

on the convergence of global optimization to the global minimum appears in [53, 78].

The authors provide asymptotic analyses of a simultaneous optimistic optimization

approach, which can be considered as a generalization of the DIRECT algorithm [53],

and compare its convergence rate to that of DIRECT algorithm. Some researchers

[53] have presented global optimization algorithms with errors of order exp(−c
√
n)

after n function evaluations. We conjecture that the convergence rate of the DIRECT

algorithm is also of the same order, and supply some experimental evidence in Section

2.4. Our main contribution is to provide the asymptotic convergence rate for a

new DIRECT type global optimization algorithm. We establish that the error is

of order exp(−cn/log(n)) as n → ∞. In this expression, the number c depends on

the dimension of the domain and the objective function f , but not on n. This result

is given by Theorem 2 in Section 2.3.

In addition, we use classical benchmark functions such as quadratic, Rastrigin,

and Branin functions to test the new global optimization algorithm. We also use the

GKLS [46] software package which generates objective functions with known optima.

The experiments we performed indicated that the new global optimization algorithm

works well on those functions.

We are interested in using the new global optimization algorithm on the image

registration and clustering problems. Image registration is the process of identifying

a transformation that best aligns a moving image with a fixed image. Given an

objective function that measures dissimilarity of images, registration becomes a global

optimization problem. Many registration methods [8, 63] require the specification of

a “starting point” in parameter space, from which an iterative local optimization

method proceeds. Most of these methods are sensitive to this starting point, and if

3

this point is not close enough to the global minimum, the method can get “stuck” in

a local minimum [25].

Data clustering is another problem which can be solved by global optimization

algorithms. The task of clustering is to divide the input points into different groups by

their similarities. We can use different objective cost functions, for example defined by

squared Euclidean distance [1]. With the cluster problem, we can regard the classical

k-means algorithm as a local optimization algorithm. To get a better solution for

clustering problems, we apply the proposed algorithm to find a good starting point

for the local search.

The proposed algorithm works with continuous decision variables. Similar

optimization problems exists with discrete decision variables and with noise corrupted

function evaluations. We describe an algorithm for that setting in Chapter 5.

The structure of this dissertation is as follow. In Chapter 2, we describe the

new global optimization algorithm which approximates an optimal point after a fixed

number of iterations. We also prove that the global optimization algorithm converges

to the global optimum and the convergence rate of the proposed algorithm is provided

in Chapter 2. In Chapter 3, we apply the new global optimization algorithm to the

image registration problem and compare the algorithm with other global optimization

algorithms such as exhaustive search and simulated annealing. In addition, we also

apply it to clustering. Chapter 4 provides a discussion of a new 1-D optimization

algorithm which uses function values and derivatives and provides a proof of the

convergence rate of the algorithm. In Chapter 5, we provide an algorithm to choose

a parameter from a finite set that optimizes the long-run average performance of

a stochastic system. Chapter 6 contains a short summary and outlines the future

problems we want to solve.

4

CHAPTER 2

A NEW DIRECT TYPE GLOBAL OPTIMIZATION ALGORITHM

2.1 Background and Related Work

“Consider everything. Keep the good. Avoid evil whenever you notice it.[56]”

This quote shows the core idea about optimization. When people try to solve

problems, it’s usually with a process of optimizing a performance measure for a

model of the problem. Optimization algorithms include local optimization algorithms

and global optimization algorithms. Local optimization algorithms such as gradient

descent are easy and efficient for finding local minima but limited in their ability

to find the global optimal solution. A global optimization algorithm seeks global

solutions of a constrained or unconstrained optimization model. In contrast with local

optimization algorithms, global optimization algorithms must avoid being trapped at

local optimum. We hope to spend less resources such as running time and gain more

which is the main motivation for global optimization. There are several different

ways to organize the optimization problem. To formulate the problem of global

optimization, assume that the objective function f and the constraints are continuous

functions and the feasible set is nonempty. In a simpler version of the problem, we

begin by considering optimization with “box” constraints.

The problem itself is easy to describe: approximate the minimum of a cost

function over a feasible region. The mathematical way to present a minimization

problem is as follows. We are given a compact feasible region K ⊂ Rd for some d ≥ 1,

and a function f : K → R. We assume that f ∈ F (K) = F , for some class of

functions F . We define the global optimization problem as:

Find the couple t∗, f ∗ such that:

f ∗ = f(t∗) ≤ f(x) ∀x ∈ K. (2.1)

5

We can sequentially choose points t1, t2, · · · , ti, · · · ∈ K at which to observe some

information f [ti] about f . We mostly (for now) take f [ti] = f(ti).

A global optimization algorithm comprises:

1. A sequence of maps tj = tj(f [t1], f [t2], . . . , f [tj−1]), taking values in K, which

give the jth point to evaluate f [tj].

2. A stopping rule that determines the time T when the algorithm halts.

3. A function A(f [t1], f [t2], · · · , f [tT]) that gives our approximation of f ∗.

An algorithm is non-adaptive (passive) if the mappings tj are the same for all

f ∈ F ; otherwise the algorithm is adaptive. The algorithm is deterministic if the tj

are deterministic functions of f .

In the problem we defined above, the main purpose of the global optimization

algorithm is to approximate the best solution or the best point t∗ which satisfies (2.1).

There are many different approaches to solve global optimization problems. If

we use traditional local-scope search methods to solve this problem, then depending on

the starting point of the search, we will often find locally optimal solutions of varying

quality (the “valleys” in Figure 2.1 below could easily trap local search methods).

In order to find the globally optimal solution, a global-scope search effort is

needed. We can divide global optimization algorithms into two different tracks. One

of them is deterministic optimization and another is stochastic optimization. Some

methods to solve the global optimization problem are listed in following.

The simplest approach for approximating the optimal solution is evaluating the

function value over the whole feasible region. These include the most well-known

passive or direct sequential global optimization strategies such as uniform grid

exhaustive search [91], space covering [28] exhaustive search [61], and pure random

search [90]. They are not adaptive. These methods converge under mild assumptions

6

Figure 2.1 A 1-D continuous function with several local optima.

but, as a rule, are not practical in higher dimensional problems because of their

inefficiency.

Pure random search is a simple global random search algorithm which takes

several random independent points and evaluates the objective functions at those

points [90].

The trajectory method is based on the construction of a path along which the

gradient of the function points is in a constant direction [4]. The tunneling approach

usually includes two phases. The first phase is the minimization phase which searches

for a local minimum. The second tunneling phase finds a different point which has

the same function value as the local minima point in the first phase. Then do the

next minimization phase. The new stationary point will have a function value no

greater than the previous minimum found [34].

These methods have the “ambitious” objective of visiting all stationary points

of the objective function: this, in turn, leads to the list of all (global as well as local)

optima. This general approach includes differential equation model based, path-

following search strategies, as well as fixed-point methods and pivoting algorithms

[12].

7

These are heuristic methods, for which conditions for convergence are difficult

to determine.

Branch and bound algorithms are designed for discrete and combinational

problems [27]. It subsumes many specific approaches, and allows for a variety

of implementations. Branch and bound methods typically rely on some a priori

structural knowledge about the problem. This information may relate, for instance,

to how rapidly each function can vary, or to the availability of an analytic formulation

and guaranteed smoothness of all functions (for instance, in interval arithmetic-based

methods).

The general branch and bound methodology is applicable to broad classes

of global optimization problems, e.g., in combinatorial optimization [57], concave

minimization [26], reverse convex programs [35], and Lipschitz optimization [65].

There is another broad class of methods, based upon “exhaustive” random sampling

in the feasible set. In its basic form, it includes various random search strategies

that are convergent, with probability one. Search strategy adjustments, clustering

and deterministic solution refinement options, statistical stopping rules, etc. can

also be added as enhancements. The methodology is applicable to both discrete and

continuous global optimization problems under very mild conditions [3, 91].

Simulated annealing is based upon the physical analogy of cooling crystal

structures that spontaneously attempt to arrive at some stable (globally or locally

minimal potential energy) equilibrium. This general principle is applicable to both

discrete [40] and continuous global optimization problems under mild structural

requirements [58].

Genetic algorithms (GAs) are meta-heuristics inspired by the process of natural

selection that belong to the larger class of evolutionary algorithms (EA). In a genetic

algorithm, a population of candidate solutions (called individuals, creatures, or

phenotypes) to an optimization problem is evolved toward better solutions. Each

8

candidate solution has a set of properties (its chromosomes or genotype) which can

be mutated and altered; traditionally, solutions are represented in binary as strings

of 0’s and 1’s, but other encodings are also possible [85].

2.2 The Algorithm

There are many global optimization algorithms listed in the last section but some of

them require a good starting point and convergence rates are not always known. We

design a global optimization algorithm in this section that doesn’t requires a starting

point and only uses function values to compute the next point at which to evaluate

the function. In addition, we prove that the algorithm converges and establish its

convergence rate.

The algorithm subdivides the feasible region into subrectangles and sequentially

chooses the next subrectangle to subdivide according to a certain numerical value.

We use the rectangular subdivision introduced in [33] which is called the DIRECT

algorithm. The criteria for selecting the next subrectangle to subdivide is similar to

the criteria used in [5].

Suppose the domain K = [0, 1]d and the objective function is a continuous but

not necessarily convex unknown function f(x) where x ∈ K. The algorithm operates

by decomposing [0, 1]d into hyper-rectangles as follows. The first operation is to

evaluate f at the center of the unit hyper-cube (1/2, 1/2, . . . , 1/2). Given a current

decomposition, choose one of the hyper-rectangles (according to the maximal value

of a criterion to be defined below) and trisect it along the longest axis. The central

sub-hyperrectangle retains its central function value, while the function is evaluated

at the centers of the two other hyperrectangles.

After k iterations of the algorithm, f will have been evaluated 2k+ 1 times and

the unit hyperrectangle will have been decomposed into 2k + 1 sub-hyperrectangles.

9

It will be convenient to index quantities to be defined by the iteration number of

the algorithm, which we denote by n, instead of the number of function evaluations,

N = 2n+ 1.

After n iterations of the algorithm, let Mn = min1≤i≤N f(ci) where ci is the

center of Ri and denote the error by ∆n = Mn − f(t∗) where t∗ is a global optimizer

of f .

Define

gn(x) ≡ d (x log(n))2/d ,

for 0 < x ≤ 1/2 and g(1) = 1. Note that gn is increasing and gn(x) ↓ 0 as x ↓ 0.

The term gn(vn) where vn is the volume of smallest hyper-rectangles serves the

role of an approximate upper bound on the error. That is, eventually the global

minimum of the function should be above Mn − gn(vn). If the function is twice

continuously differentiable near the global minimizer, then the difference between Mn

and the global minimum should be proportional to the square of the diameter of the

smallest rectangle, which is approximately its volume raised to the power 2/d. The

logarithmic term ensures convergence.

Our algorithm will assign a numerical value to each hyper-rectangle in the

subdivision. After n iterations of the algorithm, for each hyper-rectangle Ri,

1 ≤ i ≤ 2n+ 1, note that |Ri| is the volume of hyper-rectangle Ri, set

ρni ≡
|Ri|2/d

f(ci)−Mn + gn(vn)
(2.2)

.

If we are about to subdivide the smallest hyper-rectangle, then

ρni ≤
|Ri|2/d

gn(vn)
=

v
2/d
n

d(vn log(n))2/d
=

1

d log(n)2/d
. (2.3)

10

The choice of gn and ρni is based on efficiency considerations; gn must be large

enough to ensure convergence yet small enough to lead to an efficient search.

The form of the criteria ρni is motivated by the Bayesian approach to

optimization, for which choosing large ρni implies a high likelihood of the minimum

over the rectangle lying below Mn − gn(vn) [5]. Let us suppose that f is a Gaussian

random function on [0, 1]d with three-times continuously differentiable sample paths.

Taylor’s formula gives

f(x+ y) ≈ f(x) +∇f(x) · y +
1

2
y′∇2f(x)y.

Then if the gradient is near 0, as is the case near a minimum, then a lower

bound on the minimum of f over a ball of radius h centered at x is

f(x)− 1

2
∇2f · h2,

where h is the maximum distance from the center to any other point in the rectangle.

Because of the partitioning scheme, which bounds the aspect ratio of the rectangles,

the maximum distance from the center to an extreme point of a rectangle with volume

V is (3/2)
√
d · V 1/d. Thus, the lower bound is

f(x)− 1

2
∇2f(3/2)2dV 2/d.

The algorithm described chooses the rectangle with the lowest such bound. If

the lower bound falls below Mn−gn, that would entail (assuming the gradient is zero)

that

f(x)− 1

2
∇2f(3/2)2dV 2/d < Mn − gn,

or

∇2f >
f(x)−Mn + gn

cV 2/d
=

1

c(ρ̂ni)d/2

11

for a constant c > 0. We choose the rectangle with the minimum of the right-hand

side, or maximum ρ̂ni . This way, as maxi ρ̂
n
i ↓ 0, the minimum over all rectangles lies

above Mn − gn unless ∇2f is increasingly large.

A more formal description of the algorithm follows. In the description, N is

the total number of function evaluations to make and j is the number of function

evaluations that have been made. Let v, the volume of the smallest hyperrectangle,

take initial value 1 and let M , the minimum of the observed function values, take

initial value f(1/2, . . . , 1/2).

The algorithm comprises the following steps.

1. We start with the hyperrectangle [0, 1]d and with the function value at the

center. Set j, the number of function evaluations (=number of hyperrectangles),

to 1.

2. For each hyperrectangle Ri in the current collection {R1, R2, . . . , Rj}, compute

ρji , keeping track of the rectangle with the lowest index γ that has the maximal

value of ρji .

3. From the hyperrectangle with maximal value ρjγ form three new hyperrectangles

as follows. Suppose that

Rγ = [a1, b1]× [a2, b2]× · · · × [ad, bd],

and that k is the smallest index with bk − ak ≥ bi − ai for 1 ≤ i ≤ d. The three

new hyperrectangles are

(a) R′γ ≡ [a1, b1]× · · · × [ak, ak + (ak + bk)/3]× · · · × [ad, bd]

(b) R′′γ ≡ [a1, b1]× · · · × [ak + (ak + bk)/3, ak + 2(ak + bk)/3]× · · · × [ad, bd]

(c) R′′′γ ≡ [a1, b1]× · · · × [ak + 2(ak + bk)/3, bk]× · · · × [ad, bd].

Evaluate f at the centers of R′ and R′′. If |Rγ| = v, then set v ← v/3, and

if the smallest of the new function values is less than the previously observed

12

minimum M , then set M to that new smallest value. Increment j by the number

of new function evaluations j ← j + 2.

4. If j < N , return to step 2.

The only stopping rule that we consider is to initially specify a fixed number

of function evaluations after which the algorithm terminates. For running time, the

hyperrectangles can be stored in a heap-based priority queue keyed on ρ values. If

either Mi or vi changes on iteration i, then the ρ values must be recomputed and the

heap re-formed, taking time Θ(i). In the worst-case, this occurs on each iteration,

resulting in a quadratic run time. If Mi or vi changes on only Kn of the iterations,

then the run time is O(nKn + n lg n). In our experiments it appeared that Kn grew

logarithmically.

The proposed global optimization algorithm is aimed at a broader class of

optimization problems and image registration is just one of the applications. The

required property of the objective function is continuity, though the algorithm should

be adjusted for the application at hand and the local search may not be appropriate

for some applications. Applications such as clustering can use global optimization

algorithms to get better clusters [29].

In the next section, we will prove that the algorithm convergences to the optimal

point when N →∞.

2.3 Convergence

Theorem 1. If f is continuous, then the error ∆n = Mn−f(t∗) converges to 0 where

Mn = min1≤i≤n f(ci).

Proof. To prove that ∆n = Mn − f(t∗) converges to 0, we need to prove that for any

x ∈ [0, 1]d, there is a subsequence of {ci} converging to x.

To obtain a contradiction, assume that there exists a point x ∈ [0, 1]d with no

subsequence of ci converging to x.

13

There will be an infinite sequence of times n1, n2, . . . at which a new smallest

rectangle is formed. Let ρnks be the ρ value for a smallest rectangle that is about to

be split at time nk. Then ρnks → 0 as k →∞.

From the definition of ρ, we know

ρnks ≡
|Rnk

s |
2/d

f(cs)−Mnk + g(vnk)
, (2.4)

where cs is the center of Rnk
s and Rnk

s = vnk . Then

ρnks =
|Rnk

s |
2/d

f(cs)−Mnk + g(vnk)
=

|vn|2/d

f(cs)−Mnk + g(vnk)
=

|vnk |
2/d

f(cs)−Mnk + d (vnk log(n))2/d
.

(2.5)

As we already know f(cs) ≥Mn, we can get

ρnks ≤
|vnk |

2/d

d (vnk log(vnk))
2/d
≤ 1

d (log(vnk))
2/d
. (2.6)

As nk →∞, we have d (vnk log(vnk))
2/d →∞, and So 1

d(log(vnk))
2/d → 0. By (3.1), we

know that ρnks → 0 when nk → 0.

The ρ of smallest rectangles which are split converges to 0 when nk →∞.

For other rectangles which are not smallest, their ρ value is positive:

ρnki =
|Rnk

i |
2/d

f(ci)−Mnk + g(vnk)
=

|Rnk
i |

2/d

f(ci)−Mnnk
+ d

(
vnnk log(nnk)

)2/d
≥

|Rnk
i |

2/d

f(ci)−Mnk + d (log(nk)/nk)
2/d
,

(2.7)

When nk →∞, d (log(nk)/nk)
2/d → 0, so we have

lim inf
nk→∞

ρnki = lim inf
nk→∞

|Rnk
i |

2/d

f(ci)−Mnk + d (vnk log(nk))
2/d
≥

lim inf
nk→∞

|Rnk
i |

2/d

f(ci)− f(t∗)
> 0,

(2.8)

which means at some point, the algorithm is going to split these rectangles which

are not smallest. It means all rectangles are being split for ρnki ≤ ρnks when it’s the

14

moment to split the smallest rectangle. It is a contradiction to there are some center

points in rectangles xi which are never split. This means our assumption ∃x ∈ [0, 1]d,

there is no {ci} → x is false. Then we know ∀x ∈ [0, 1]d, there exists a subsequence

of {ci} that converges to x. We conclude that {ci} is dense in [0, 1]d.

We already have Mn = min1≤i≤n f(ci) and let c∗n be the point of first n that is

closest to an optimizer. We have thatMn ≤ f(c∗n), so ∆n = Mn−f(t∗) ≤ f(c∗n)−f(t∗).

We already know that for any x ∈ [0, 1]d, there is a subsequence of ci converging to x

and f is continuous, so f(c∗n)− f(t∗) converges to 0 when n→∞.

2.3.1 Convergence rate

This algorithm has the property that ∆n → 0 as n→∞ for any continuous function

f . In order to determine the rate at which the error converges to 0 we need to place

some assumptions on f beyond continuity.

Assume that the minimizer t∗ is unique and lies in the interior of [0, 1]d. Assume

that f is twice continuously differentiable on [0, 1]d. Let cni denote the center of

rectangle Rn
i after n iterations. Let M = f(t∗) and denote the smallest function

value after n evaluations by Mn = min1≤i≤n{f(cni)} and the error by ∆n = Mn −M .

Let vn = min1≤i≤n |Rn
i | denote the smallest rectangle volume where |Rn

i | is the volume

of the ith rectangle.

Since f ∈ C2 and t∗ is in the interior of [0, 1]d, there exists a positive number

β such that the ball of radius β is contained in [0, 1]d and f is convex on the ball

Bβ(t∗) = {t ∈ [0, 1]d : ‖t− t∗‖≤ β}.

Let ∇2f(t∗) denote the matrix of second partial derivatives at the minimizer

t∗. We assume ∇2f(t∗) is positive definite, with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λd.

Because t∗ is the minimizer, ∇f(t∗) = 0. By Taylor’s Theorem, we have f(s) ≤

f(t∗) + (s− t∗)T∇2f(t∗)(s− t∗) for s ∈ Bβ(t∗) for sufficiently small β.

15

Our main result is:

Theorem 2. Let f be twice continuously differentiable with unique global minimizer

in the interior of [0, 1]d. Then the normalized error after n evaluations is bounded

asymptotically as:

lim inf
n→∞

log(n)

n
log

(
1

∆n

)
≥ 3d−2

2γ

(
λ1

2 + 3dα

)d/2

where γ = d(2π)d/2

2Γ(1+d/2)
(det∇2f(t∗))−1/2 and α = max1≤i,j≤d maxc∈[0,1]d (|∇2f(c)i,j| , |∇f(c)j|).

To prove Theorem 2, we need a technical lemma.

Lemma 3. There exists a postive number β such that for sufficiently large n,∫
Bβ(t∗)

ds

(f(s)−M + gn(vn))d/2
≥
∫
Bβ(t∗)

ds

(f(cni)−Mn + gn(vn))d/2
(

2 + 9d3/2α
λ1

)d/2 .
Proof. For each rectangle Rn

i which is in Bβ(t∗), we have∫
Rni

ds

(f(s)−M + gn(vn))d/2

=

∫
Rni

ds

(f(cni)−Mn + gn(vn))d/2
(
f(s)−f(cni)+f(cni)−M+Mn−Mn+gn(vn)

f(cni)−Mn+gn(vn)

)d/2
≥
∫
Rni

ds

(f(cni)−Mn + gn(vn))d/2
(

1 +
|f(s)−f(cni)|+Mn−M
f(cni)−Mn+gn(vn)

)d/2 . (2.9)

By Taylor’s theorem with Peano’s form of remainder, we get

|f(s)− f(cni)|+Mn −M
f(cni)−Mn + gn(vn)

=
∇f(cni)(s− cni) + 1

2
(s− cni)T∇2f(cni)(s− cni) + o(s− cni 2) +Mn −M

f(cni)−Mn + gn(vn)
. (2.10)

Suppose that wji is the jth dimensional width of the ith rectangle. For any

s ∈ Rn
i ⊂ Bβ(t∗), we have

16

∇f(cni)(s− cni) + 1
2
(s− cni)T∇2f(cni)(s− cni) + o(s− cni 2) +Mn −M

f(cni)−Mn + gn(vn)

=
∇f(cni)(s− cni)

f(cni)−Mn + gn(vn)
+

1

2

(s− cni)∇2f(cni)(s− cni)

f(cni)−Mn + gn(vn)

+
o(s− cni 2)

f(cni)−Mn + gn(vn)
+

Mn −M
f(cni)−Mn + gn(vn)

=
∇f(cni)(s− cni)

f(cni)−Mn + gn(vn)
+

1

2
(s− cni)T∇2f(cni)(s− cni)

ρ
2/d
i

(
∏d

j=1w
j
i)

2/d
+

o(s− cni 2)

f(cni)−Mn + gn(vn)
+

Mn −M
f(cni)−Mn + gn(vn)

. (2.11)

We will discuss these terms separately.

If Rn
i ⊂ Bβ(t∗), then

1

3
(cni − t∗)Tλ1(cni − t∗) ≤ f(cni)− f(t∗) ≤ 2

3
(cni − t∗)Tλd(cni − t∗), (2.12)

and

max
j,k
∇f(cni)j,k ≤ αcni − t∗. (2.13)

Then we have

∇f(cni)(s− cni) ≤ αcni − t∗s− cni (2.14)

and

f(cni)−Mn + gn(vn) ≥ 1

3
cni − t∗

2λ1 +M −Mn + gn(vn). (2.15)

Suppose that vn =
∏d

j=1 τj and τ = min1≤j≤d τj, θ of widths are τ , and the

rest of the widths are 3τ . We have 1 ≤ θ ≤ d. Then v
2/d
n = τ 2 ∗ 3(d−θ) 2

d , so we get

that τ 2 = 3−(d−θ)∗ 2
dv

2
d
n . By our previous proof of convergence, the rectangle algorithm

17

will keep splitting rectangles which have larger ρni and when n → ∞, all rectangles’

volume will tend to 0. It means the cni∗ will eventually be contained in one of the

smallest rectangles. Then if cni∗ is contained in the one of the smallest rectangles, we

get

Mn −M ≤
1

2
λd

1

4

d∑
j=1

τ 2
j ≤

1

8
λd[θτ

2 + (d− θ)9τ 2]

=
1

8
λdτ

2[θ + (d− θ)9] ≤ 1

8
λdv

2/d
n [θ + (d− θ)9].

For θ = 1, θ + 9(d− θ) achieves the maximum 9d− 8. Then we have

1

8
λdv

2/d
n [θ + (d− θ)9] ≤ 1

8
λdv

2/d
n (9d− 8) =

9d− 8

8
λdv

2/d
n . (2.16)

By definition of gn(vn), we know that

gn(vn) = d(vn log(n))2/d = d(log n)2/dv2/d
n .

Then

1

8
λdv

2/d
n [θ + (d− θ)9] = gn(vn)

1
8
λd[θ + (d− θ)9]

d(log n)2/d

=
9d− 8

8d
gn(vn)

λd
(log n)2/d

if

9d− 8

8d

λd
(log n)2/d

≤ 1.

If log(n) ≥
(

(9d−8)λd
8d

)d/2
, then

9d− 8

8d
gn(vn)

λd
(log n)2/d

≤ gn(vn). (2.17)

18

Therefore, we conclude that Mn −M ≤ gn(vn) and combine with (2.12) to get

f(cni)−Mn + gn(vn) ≥ 1
3
cni − t∗2λ1.

We will show that

cni − t∗s− cni ≤ 3
√
dcni − t∗

2. (2.18)

As for s− cni ,

s− cni ≤

√√√√ d∑
j=1

(
1

2
wji

)
≤ 1

2

√
dmaxwji (2.19)

and

cni − t∗ ≥
1

6
max
j
wji . (2.20)

Then

s− cni ≤
1

2

√
dmax

j
wji ≤ 3

√
dcni − t∗. (2.21)

Therefore,

∇f(cni)(s− cni)

f(cni)−Mn + gn(vn)
≤ 9d3/2αcni − t∗2

λ1cni − t∗2
=

9d3/2α

λ1

.

Suppose w = minj w
j
i and maxj w

j
i ≤ 3w. As for the second term in the formula

(2.11), we get

1

2

(s− cni)T∇2f(cni)(s− cni)ρ
2/d
i

(
∏d

j=1w
j
i)

2/d
=

1

2

(s− cni)Tλi(s− cni)ρ
2/d
i

(
∏d

j=1w
j
i)

2/d

≤ 1

2

(s− cni)Tλd(s− cni)ρ
2/d
i

(
∏d

j=1w
j
i)

2/d
≤ 1

2

λd
∑d

j=1(wji)
2ρ

2/d
i

(
∏d

j=1 w
j
i)

2/d

≤ 1

18

λddw
2ρ

2/d
i

w2
=
dλdρ

2/d
i

18
.

For large enough n, the term o(s− cni 2) ≤ (s−cni)∇2f(cni)(s−cni)

2
. As for the third

term in formula (2.11), for sufficiently large n,

19

o(s− cni 2)

f(cni)−Mn + gn(vn))
≤

1
2
(s− cni)T∇2f(cni)(s− cni)

f(cni)−Mn + gn(vn)
≤ dλdρ

2/d
i

18
. (2.22)

The last term in formula (2.11) can be bounded as follows.

We know that Mn −M ≤ gn(vn) for sufficiently large n. Then

Mn −M
f(cni)−Mn + gn(vn)

≤ 1. (2.23)

We conclude that for large enough n∫
Rni

ds

(f(s)−M + gn(vn))d/2
≥
∫
Rni

ds

(f(cni)−Mn + gn(vn))d/2
(

2 + 9d3/2α
λ1

)d/2
holds for every rectangle contained in Bβ(t∗).

Therefore we cancluded that for sufficiently large n,∫
Bβ/2(t∗)

ds

(f(s)−M + gn(vn))d/2
≥
∫
Bβ/2(t∗)

ds

(f(cni)−Mn + gn(vn))d/2
(

2 + 9d3/2α
λ1

)d/2
also holds.

Then, we get∫
Bβ(t∗)

ds

(f(s)−M + gn(vn))d/2
≥
∫
Bβ(t∗)

ds

(f(cni)−Mn + gn(vn))d/2
(

2 + 9d3/2α
λ1

)d/2 .

The following proof is for Theorem 2.

Proof. From [5], we know

lim
ε→0

∫
[0,1]d

ds

(f(s)−M+ε)d/2

log(1/ε)
=

d(2π)d/2

2Γ(1 + d/2)
(det∇2f(t∗))−1/2 = γ.

20

Then,

lim
gn(vn)→0

∫
[0,1]d

ds

(f(s)−M+gn(vn))d/2

log(1/gn(vn))
= γ. (2.24)

Using the fact that

1

n

n∑
i=1

ρni =
1

n

∫
[0,1]d

ds√
f(cni)−Mn + gn(vn)

=
1

n

∫
Bβ(t∗)

ds√
f(cni)−Mn + gn(vn)

+O(1/n)

≤
(

2 + 3dα

a

)d/2
1

n

∫
Bβ(t∗)

ds√
f(s)−M + gn(vn)

+O(1/n)

≤
(

2 + 3dα

a

)d/2
1

n

∫
[0,1]d

ds√
f(s)−M + gn(vn)

+O(1/n)

= log(1/gn(vn))

(
2 + 3dα

a

)d/2
1

n

∫
[0,1]d

ds√
f(s)−M+gn(vn)

log(1/gn(vn))
+O(1/n).

Therefore, for large enough n,

1

n

n∑
i=1

ρni ≤
(

2 + 3dα

λ1

)d/2
1

n
log(1/gn(vn))γ +O(1/n). (2.25)

Suppose that s denotes the index of the subrectangle containing the minimizer.

Since this rectangle eventually has volume at most 3dvn,

ρns ≤
3dvn

2gn(vn)d/2
=

3d

2 log n
.

In the neighborhood of t∗ where f is convex, the ρ-values for each child will be at

least a third the value of the parent’s. For subrectangles outside the neighborhood

of t∗, the children of split rectangles will have ρ values about a third of the parent’s.

Thus for all sufficiently large n,

ρns ≥
3d

6 log n

21

and

1

3
≤ lim inf

n→∞

ρns
1
n

∑n
i=1 ρ

n
i

≤ lim sup
n→∞

ρns
1
n

∑n
i=1 ρ

n
i

≤ 3. (2.26)

Therefore,

3 ≥ lim sup
n→∞

ρns
1
n

∑n
i=1 ρ

n
i

≥ lim sup
n→∞

3d

6 logn(
2+3dα
λ1

)d/2
1
n

log(1/gn(vn))γ +O(1/n)

(using 2.25)

≥ lim sup
n→∞

3d−1

2 log n

{(
2+3dα
λ1

)d/2
1
n

log(1/gn(vn))γ +O(1/n)

} ,

Then

lim inf
n→∞

log n

{(
2 + 3dα

λ1

)d/2
1

n
log(1/gn(vn))γ +O(1/n)

}
≥ 3d−2/2. (2.27)

Therefore,

3d−2/2 ≤ lim inf
n→∞

log n

{(
2 + 3dα

λ1

)d/2
1

n
log(1/gn(vn))γ

}

= lim inf
n→∞

log n

{(
2 + 3dα

λ1

)d/2
1

n

(
− log d+

2

d
log

(
1

vn

)
− 2

d
log log(n)

)
γ

}
.

Then

lim inf
n→∞

log n

n

{
− log d+

2

d
log(

1

vn
)− 2

d
log log(n)

}
≥ 3d−2

2γ

(
λ1

2 + 3dα

)d/2
.

Since vn ≤ 1
n
, log(1

vn
) ≥ log(n) ≥ log log(n) ≥ 0. This implies that

lim inf
n→∞

log(n)

n

2

d
log

(
1

vn

)
≥ 3d−2

2γ

(
λ1

2 + 3dα

)d/2
. (2.28)

Then

lim inf
n→∞

log(n)

n
log

(
1

vn

)
≥ d3d−2

4γ

(
λ1

2 + 3dα

)d/2
. (2.29)

22

Recall that ∆n = Mn−M , we have for sufficiently large n that Mn−M ≤ gn(vn)

by formula (2.17).

By the definition of gn(vn), we have

log
1

gn(vn)
= log

1

d(vn log(n))2/d
. (2.30)

Then

log(n)

n
log

(
1

∆n

)
≥ log(n)

n
log

(
1

gn(vn)

)
=

log(n)

n
log

1

d(vn log(n))2/d

=
log(n)

n

(
− log(d) +

2

d
log

(
1

vn

)
− 2

d
log log(n)

)
. (2.31)

Therefore

lim inf
n→∞

log(n)

n
log

(
1

∆n

)
≥ lim inf

n→∞

log(n)

n

[
− log(d) +

2

d
log

(
1

vn

)
− 2

d
log log(n)

]
≥ lim inf

n→∞

[
− log(d) log(n)

n
+

2

d

log(n)

n
log

(
1

vn

)
−2 log(n) log log(n)

dn

]
. (2.32)

When n→∞, log(n)
n
→ 0. By formula (2.32), we get

lim inf
n→∞

log(n)

n
log

(
1

∆n

)
≥ lim inf

n→∞

[
2

d

log(n)

n
log

(
1

vn

)]
≥ 3d−2

2γ

(
λ1

2 + 3dα

)d/2
.

We tested the convergence rate bound claimed in this section. By Theorem 2,

the normalized error is bounded as:

lim inf
n→∞

log(n)

n
log

(
1

∆n

)
≥ 3d−2

2γ

(
λ1

2 + 3dα

)d/2

23

where γ = d(2π)d/2

2Γ(1+d/2)
(det∇2f(t∗))−1/2.

We calculated the theoretical bound with d = 2 by Matlab, which gave

3d−2

2γ

(
λ1

2+3dα

)d/2
= 0.6721. By running the rectangle algorithm for 1, 000 iterations,

the value logn
n

log(1
∆n

) is shown in Figure 2.2.

0 100 200 300 400 500 600 700 800 900

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 2.2 Normalized error for rectangle algorithm.

2.3.2 Discussions and comparison with DIRECT algorithm

In this subsection, we compare the convergence rates of the proposed algorithm and

other alternatives which can be used to solve global optimization problems.

There is an asymptotic analyse of deterministic optimistic optimization algorithm

provided in [53]. We are not aware of other asymptotic analyses of similar global

optimization algorithms. In the paper [53], they provide asymptotic analyse of

a simultaneous optimistic optimization approach which can be considered as a

generalization of the DIRECT algorithm. In their studies, their simultaneous

optimistic optimization approach has errors of order exp(−c
√
n) after n function

evaluations. We can see from Figure 2.3 that the DIRECT algorithm appears to

24

have normalized error 1√
n

log
(

1
∆n

)
→ c1 as n → ∞, where c1 is a positive constant

number. This gives experimental evidence that the DIRECT algorithm also has error

of order exp(−c1

√
n). As we mentioned before, the rectangle algorithm has error of

order exp(−c2
n

log(n)
) as n→∞ where c2 = 3d−2

2γ

(
λ1

2+3dα

)d/2
.

0 100 200 300 400 500 600 700 800 900 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.3 Normalized error of DIRECT algorithm.

2.4 Experiments

We tested our optimization algorithm on quadratic functions, Rastrigin functions,

Branin functions and GKLS functions in Matlab and compared the algorithm we

developed with the DIRECT algorithm on GKLS functions.

Quadratic function We use the quadratic function f(x) =
∑d

i=1(xi − 0.5)2 to

test the rectangle algorithm. The algorithm produced the following results shown in

Figure 2.4.

Rastrigin function The Rastrigin function is a non-convex function used as a

performance test problem for global optimization algorithms. It is a typical example

25

Figure 2.4 Evaluation points for quadratic 2-D objective function.

of a non-linear multimodal function. It was first proposed by Rastrigin [64] as a 2-D

function and has been generalized by Mühlenbein et al [52]. Finding the minimum

of this function is a fairly difficult problem due to its large search space and its large

number of local minima.

On a d-dimensional domain it is defined by:

f(x) = Ad+
d∑
i=1

[
x2
i − A cos(2πxi)

]
(2.33)

where A = 10 and xi ∈ [−5.12, 5.12]. It has a global minimum at x = 0 where

f(x) = 0.

We use the Rastrigin function with the domain rescaled to [0, 1]d which

normalized x̄i as x̄i = (xi + 5.12)/10.24 to test the rectangle algorithm. This makes

x̄i ∈ [0, 1] which is consistent with the algorithm as presented. For the 2-D Rastrigin

function, the algorithm produced the results shown in Figure 2.5.

Branin function The Branin function [13] is another good test function for global

optimization algorithms because there are three global minima. The Branin function

26

Figure 2.5 Evaluation points of Rastrigin 2-D function.

is defined by f(x) = a(x2− b ·x2
1 + c ·x1−r)2 +s(1− t) cos(x1)+s. The recommended

values of a, b, c, r, s and t are: a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10

and t = 1/(8π). This function is usually evaluated on the square x1 ∈ [−5, 10],

x2 ∈ [0, 15].

We define the Branin function with x̄1 = (x1 + 5)/15 and x̄2 = x2/15 to test

the rectangle algorithm. The algorithm evaluated at the points shown in Figure 2.6.

GKLS To further test the algorithm, we use the GKLS generator described in

[46] to generate other test cases. This allows the generation of smooth objective

functions, and so we use the version of the algorithm without the logarithmic term

in the numerator in the definition of ρni .

For our better understanding of GKLS objective functions, we plot a differen-

tiable function of dimension d = 2 in Figure 2.7 which has several different local

minima and a unique global minimum value of -1.

In order to obtain comparable results, the six GKLS test classes of continuously

differentiable functions of dimensions d = 2, 3, and 4 defined by the similar five

27

Figure 2.6 Branin 2-D objective function.

parameters as in [70, 71] were used (see Table 1). The GKLS generator produces

different classes of test functions with known local and global minima. We set the

number of local minima m equal to 10. The global minimum value f ∗ was set equal

to −1. We used the fixed function evaluation numbers N = 51 to track the error of

the DIRECT algorithm and the rectangle algorithm. In the following tables, D is the

distance parameter and R is the radius parameter required for generating objective

functions in GKLS. ADE is the average error for the DIRECT algorithm and ARE

is the average error for the rectangle algorithm. The error was calculated as the

minimum value obtained by the algorithm minus the known global minimum value

which is defined by the GKLS generator.

Results of numerical experiments with six GKLS tests classes appear in Table

2.1 and Table 2.2. For these experiments the average error of the rectangle algorithm

is smaller than the average error of the DIRECT algorithm.

28

Figure 2.7 GKLS 2-D objective function.

Table 2.1 Description of the GKLS Test Classes Used in Numerical Experiments

Class d m f ∗ D R

1 2 10 -1.0 0.66 0.33

2 2 10 -1.0 0.66 0.2

3 3 10 -1.0 0.66 0.33

4 3 10 -1.0 0.66 0.2

5 4 10 -1.0 0.66 0.33

6 4 10 -1.0 0.66 0.2

29

Table 2.2 Error of Two Algorithms for 600 GKLS Test Functions

Class d f ∗ D R N ADE ARE

1 2 -1.0 0.66 0.33 51 0.1114 0.1101

2 2 -1.0 0.66 0.2 51 0.417 0.3256

3 3 -1.0 0.66 0.33 51 0.6278 0.6240

4 3 -1.0 0.66 0.2 51 0.8133 0.8048

5 4 -1.0 0.66 0.33 51 0.8827 0.8366

6 4 -1.0 0.66 0.2 51 0.8952 0.8416

30

CHAPTER 3

A GLOBAL OPTIMIZATION ALGORITHM FOR IMAGE

REGISTRATION AND CLUSTERING

3.1 Image Registration

How to segment and how to register images are important tasks in image processing.

Several algorithms [82, 49, 75] are used in those areas. Image registration aligns

two or more images of the same scene taken at different times, from various sensors

and/or from multiple views [92]. Obtaining the change of the original image and

referenced image over time or from different views play a significant role in solving

many important problems. For instance, comparing a patient’s magnetic resonance

image (MRI) with the MRI which contains a kind of cancer can help determine if

the patient has the cancer or not. There are many useful applications of image

registration, for example in medical imaging, geometrical sensor image comparison

and map updating. The benefits gained from image registration and the rapid

development of image acquisition devices motivate us to explore automatic image

registration. We give a brief introduction to the main steps of image registration and

summarize the various methods to solve image registration problems. We present a

modified global optimization algorithm for image registration.

3.1.1 Background

The general steps of image registration illustrate how image registration works

[18, 75, 49]. The first step is feature detection which won’t happen in each method of

image registration. Feature detection mainly includes point detection and extraction:

identify and extract the points that carry critical information about the scene

structure through a number of control points [18]. The second step is feature

matching which includes image description, similarity measure and point selection.

31

The third step is transform model estimation. Point pattern matching establishes

correspondence between the selected points to determine the correct and incorrect

correspondences. And the last step is image resampling and transformation. There

are typical problems in each registration step.

There are multiple methods to register images. We can divide all these methods

into two classes based on image matching approaches. One of them is area-based

methods which automatically compare two or more images pixel by pixel. One

branch of these methods is based on minimizing the similarity difference. The

similarity difference of image registration tells us how much these images match.

The transformation which obtains the minimal similarity difference is the goal. The

second class is feature-based methods which mainly extract obvious features from the

image and then map the images based on the features. In feature-based algorithms,

we take advantage of identifiable landmarks to aid the alignment [16].

The methods we presented in this section belongs to area-based method.

Area-based methods, also called correlation methods or template matching methods,

usually merge the feature detection part with the matching part [32]. They match

images with detected static or salient objects such as a house or road in the image.

They use a rectangular window area to estimate the correspondence of the images.

The following are several frequently used matching methods.

One of the first articles proposing mutual information (MI) based image

registration is Viola and Wells [81]. The paper registered MR-CT and MR-PET

images of a human brain and optimized the MI using Brent’s method and the Powell’s

multi-dimensional algorithm [48]. There are comparisons of different matching

methods in [66].

The image registration problem can be viewed as the problem of maximizing

the similarity or minimizing the dissimilarity measure [75]. Exhaustive search over

the entire image is a basic and easy but inefficient way to optimize similarity. The

32

Gauss-Newton numerical minimization algorithm for minimizing the sum of squared

differences was used with projective geometric deformation in [74]. Maximization of

mutual information using gradient descent is used in [81]. Levenberg-Marquardt

optimization was used to minimize the variance in intensities of corresponding

pixels in [68]. Combination Levenbery-Marquardt method and the sum of squared

differences of the metric is described in [59]. In [76], a dissimilarity measure defined

on point pairs was minimized by means of simulated annealing.

Correlation-based methods compute a similarity measure by pixel comparisons.

A region from one image can be translated or rotated aroud the second one to get

the best alignment by optimizing the simiarity measure. The main simiarity measure

we use is the sum of squared pixel differences.

The use of mutual information as a similarity measure is surveyed in [62].

We still have efficiency, accuracy and robustness problems when applying mutual

information in image registration because the optimization algorithm we are choosing

cannot exactly get the global optimizer. Many researchers attempt to improve mutual

information with other information-theoretic measures, for example, see in [16].

We take as input two matrices of pixel intensities, possibly of different sizes.

After interpolating the pixel values, we can view the fixed and moving images as

mappings If : Ωf → R and Im : Ωm → R, respectively, where Ωf and Ωm are

suitable rectangles in R2. (For simplicity we assume gray-scale images.) We seek a

transformation T : Ωf → Ωm such that Im ◦T is “close to” If . To quantify the notion

of closeness we adopt a dissimilarity measure C and choose T to minimize C(T ; If , Im).

To obtain a tractable optimization problem, we restrict the class of transformations.

We consider rigid transformations involving translation and rotation of the moving

image.

By suitable scaling, we consider the registration problem to be a global

optimization problem over a parameter space [0, 1]d, where we take d = 2 (two

33

translation parameters) or d = 3 (two translation parameters and one rotation

parameter). We are interested in methods that are automatic in the sense that no

starting point or other parameters are required from the user.

Local optimization algorithms are often used in image registration. In [31]

the authors examined the application of global optimization approaches, showing

that local optimization schemes often did not find the optimum in their test

medical imagery. Also in large-deformation image registration, there is the issue of

large-deformation causing methods to be trapped at local minima. In [84], the authors

propose a structural Tensor and Driving force-based Log-Demons algorithm for

avoiding it and also speed up the registration process. Global optimization algorithms

such as simulated annealing or genetic algorithms are commonly-used methods

for image registration [63]. There are other derivative-free global optimization

algorithms that treat the objective function as a black box [23, 43]. To improve

efficiency, some researchers also developed global optimization algorithms that work

with Lipschitz constants of gradients [38, 71]. Some proposed partition-based

deterministic algorithms for global optimization of Lipschitz-continuous functions

work without requiring knowledge of the Lipschitz constant [33, 42, 44]. Advanced

deterministic global optimization algorithms [21, 60, 72, 73] are potential tools for

image registration.

Other approaches to image registration include soft computing-based methods

such as artificial neural networks, fuzzy sets and optimization heuristics [54]. Some

recent work explores the use of deep learning frameworks for image registration [11].

We do not address the problems of the choice of similarity measure or permissible

transformations. Rather, we focus on the problem of optimizing the similarity

measure over the chosen set of transformations. We specifically address the issue

of automatic image registration, where no special domain knowledge is required, for

example to identify landmarks, and no tuning of input parameters is required.

34

3.1.2 The algorithm

The algorithm subdivides the feasible region into subrectangles and sequentially

chooses the next subrectangle to subdivide according to a certain numerical value.

We use the rectangular subdivision introduced in [33]. The criteria for selecting the

next subrectangle to subdivide is similar to the criteria used in [5].

The algorithm operates by decomposing [0, 1]d into hyper-rectangles as follows.

The first operation is to evaluate f at the center of the unit hyper-cube (1/2, 1/2, . . . , 1/2).

Given a current decomposition, choose one of the hyper-rectangles (according to the

maximal value of a criterion to be defined below) and trisect it along the longest axis.

The central sub-hyperrectangle retains its central function value, while the function

is evaluated at the centers of the two other hyperrectangles.

After k iterations of the algorithm, f will have been evaluated 2k+ 1 times and

the unit hyperrectangle will have been decomposed into 2k + 1 sub-hyperrectangles.

In image registration problem, we modified the algorithm in Chapter 2 for

approximating a global optimal point. Use the following ρ and gn(x).

ρni ≡
|Ri|r/d ∗ log(1 + f(ci)−Mn

g(vn)
)r/d

(f(ci)−Mn + g(vn))
, (3.1)

where ci is the center of Ri and r is the smooth rate of the objective function. We

define gn(x) as

gn(x) = d(x log n)r/d.

The algorithm with the logarithmic factor in the numerator causes the

evaluation points to concentrate at a slower rate. The reason for adding this factor

is uncertainty in the smoothness of f .

The processing of the algorithm is the same with the algorithm in Chapter

2. The only stopping rule that we consider is to initially specify a fixed number

35

of function evaluations after which the algorithm terminates. The input to our

problem is discrete, but by interpolating the pixel intensities we obtain a continuous

optimization problem.

3.1.3 Local search

The algorithm described in Section 2.2 uses only function values and no local

information, such as derivatives. After the algorithm terminates, it is natural to

use a local optimization method to improve on the terminal value. The reason we use

a local optimization method is that the algorithm described in Section 2.2 approaches

the optimal value in the limit, but the solution will typically be sub-optimal after a

finite number of iterations. To improve the final solution, we will stop the algorithm

with a reasonable N and start to use a local optimization method such as gradient

descent to improve the results. We continue to assume that only function values are

available, and so finite-difference gradient approximations are used in the local search

methods. We used the following differences for our local descent method:

G(x, y, r) ≡(
f(x+ εx, y, r)− f(x, y, r)

εx
,
f(x, y + εy, r)− f(x, y, r)

εy
,
f(x, y, r + εr)− f(x, y, r)

εr

)
,

where εx, εy, and εr are chosen to be comparable to the distance between pixels.

3.1.4 Numerical experiments

We implemented the optimization algorithm for the 2-D and 3-D image registration

problems in Matlab. The 2-D image registration problem is to find the best translation

(left to right and up-down), while for the 3-D registration problem we consider

rotation in addition to translation of the image.

36

Figure 3.1 Desert image.
Figure 3.2 Target subimage
(enclosed in red rectangle).

In the 2-D image registration problem, we take the original image to have sm×sn

pixels. We use the example desert image shown in Figure 3.1, which has 500 × 500

pixels. The target size is tm × tn = 50× 50 and the optimal location is (250, 250).

The objective function we used is the sum of squared image pixel differences.

Suppose the pixel value of the target image at location (i, j) is p1(i, j), and the pixel

value of the original image at the same place is p2(i, j). Let f(x, y) be the sum of

squared image pixel difference if x is the translation along the x-axis and y is the

translation of the y-axis. The objective function of 2-D image registration is then

f(x, y) =
i=tm∑
i=1

j=tn∑
j=1

(p1(i, j)− p2(i+ x, j + y))2 (3.2)

where 1 ≤ x ≤ sm − tm and 1 ≤ y ≤ sn − tn. The objective function is shown in

Figure 3.3.

We plot all points chosen by the algorithm described in Section 5.3 with local

search in Figure 3.4. The last position we got after 4,000 iterations is exactly the

optimal position with minimum function value 0.

In the 3-D image registration problem, the size of original image is 600×600

which is the dog picture in Figure 3.5.

37

Figure 3.3 2-D image objective function.

The objective function of three-dimensional image registration is as follow.

f(x, y, r) =
i=tm∑
i=1

j=tn∑
j=1

(p1(i, j)− T (p2(i+ x, j + y), r))2 (3.3)

where 1 ≤ x ≤ sm − tm ,1 ≤ y ≤ sn − tn and 0 ≤ r ≤ 180.

The 2-D image registration problem is to find the best translation (left to right

and up-down), while for the 3-D registration problem we consider rotation in addition

to translation of the image. The objective function we used is sum of squared image

pixel intensity differences. Figure 3.7 shows the cost surface for a 2-D section of the

3-D cost function (varying x and y translations with rotation fixed) for the example

image used in our experiment.

The target size is 50×50 which is the red rectangle part of Figure 3.6 and the

optimized location is (299,299,90). In the experiment, we can get the optimized center

38

Figure 3.4 Scatter plots for image registration 2-d cost function after 2,876
iterations.

point (294.6,301.6,90) after 4,000 iterations. The piece we got by the algorithm is the

right part of Figure 3.8. The figure exactly shows the target sub image and the piece

that our algorithm found. The optimized function value that our algorithm got is

3.8936. The algorithm we designed cannot give us the optimized function value which

is 0. So we can consider the local search using the last center point. The local search

algorithm we used is gradient descent algorithm. From Figure 3.9, we see that the

gradient descent algorithm really works. It gives us optimized function value 1.0492

which is much better than without gradient descent algorithm.

3.1.5 Comparisons with other algorithms

There are many alternative global optimization algorithms that might be considered

for image registration, such as genetic algorithms [67], particle swarm optimization

[77], and simulated annealing [88].

We compared our global optimization algorithm with the following alternatives:

1) An exhaustive search (searching over a fixed equi-spaced grid of points), followed

by local descent from the best point; 2) The Matlab built-in simulated annealing

algorithm [88], followed by local descent from the best point; 3) The Matlab built-

39

Figure 3.5 Dog image.
Figure 3.6 Target subimage
(enclosed in red rectangle).

in genetic algorithm, followed by local descent from the best point; 4) DIRECT

algorithm [19, 33], followed by local descent from the best point.

We performed 4,000 iterations, followed by local descent, for all algorithms

because that resulted in a reasonable visual match of the registered image. In Figure

3.10, the x-axis indicates the smallest cost value obtained by the algorithm and the

y-axis indicates the proportion of runs for which the algorithm achieved the cost

value.

Simulated annealing and genetic algorithms are randomized algorithms with

considerable variability in the minimal cost obtained. To get a sense of the range

of solutions we ran the simulated annealing algorithm 100 times independently and

plotted the empirical cumulative distribution function of the results as the black line

in Figure 3.10. We also ran the genetic algorithm 100 times independently and plotted

the empirical cumulative distribution function of the results as the red line in Figure

3.10. The other two algorithms are deterministic. For the algorithm we proposed,

we randomized it by applying a random perturbation to the starting point. For each

of 100 independent replications we started with the center translated by a uniformly

distributed offset in [−0.05, 0.05]3. For exhaustive search,we used a three-dimensional

40

Figure 3.7 Cost function with fixed rotation.

grid of 163 = 4,096 points, and we randomly perturbed the grid by a uniformly

distributed offset in [−0.03125, 0.03125]3 for each of 100 independent replications.

(The exhaustive search performed better with a smaller random offset than we used

for the rectangle algorithm.)

Our algorithm, named “rectangle+grad” in Figure 3.10, obtained the smallest

average cost value of 1.04; the range is shown by the blue line in Figure 3.10.

The exhaustive search algorithm, which obtained a smallest cost value around 2.84,

performed as indicated by the green line. Simulated annealing, with an average cost

over 3, performed as shown by the black line in Figure 3.10. The genetic algorithm

performed worse than simulated annealing as shown in Figure 3.10. Because we

repeated simulated annealing 100 times independently (with 4,000 iterations on each

replication), there were several runs on which simulated annealing worked really well

but on average the simulated annealing algorithm obtained worse results than the

41

Figure 3.8 Targeted sub image and the sub-image obtained by the algorithm.

Figure 3.9 After local search with 4,000 iterations.

proposed algorithm. The DIRECT algorithm followed by local descent obtained a

smallest average cost value around 2.47. It performed as shown by the magenta

line in Figure 3.10, which is better than exhaustive search but still worse than the

rectangle algorithm followed by local descent.

Using the same experiment setup as used for the comparison in Figure 3.10,

we compared the rectangle and DIRECT algorithms based on 100 independent

replications of 4,000 iterations on each; the result is shown in Figure 3.11. The

red line in Figure 3.11 represent the rectangle algorithm and the blue line represents

the DIRECT algorithm. The average cost value of the rectangle algorithm is 2.43

and the average value of the DIRECT algorithm is almost the same at 2.49.

3.2 Clustering

3.2.1 Background

Clustering is a technique for classifying data points into different groups by their

similarities [14, 93, 80]. It is commonly used for statistical data analysis such

42

0 1 2 3 4 5 6 7 8 9

cost value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Empirical CDF

rectangle+ grad

exhaustive+grad

genetic +grad

simulated+grad

direct+grad

Figure 3.10 Distribution of cost values obtained by five algorithms after 4,000
iterations.

as social media data [45] but also used for machine learning, pattern recognition,

image analysis, information retrieval, bio-informatics, data compression and computer

graphics [30]. Clustering techniques are important for better visualizing large data

sets.

There are many ways to determine what constitutes a cluster and many

algorithms for efficiently grouping the data. The distances between the data or dense

areas of the data space can give us some hints about the data itself. Clustering

can be formulated as a multi-objective optimization problem because there are many

different metric functions for clustering.

Cluster analysis originated in 1932 by Driver and Kroeber [14] and further

studied by Zubin in 1938 [93] and Robert Tryon in 1939 [80]. It was famously used by

Cattell beginning in 1943 [7] for trait theory classification in personality psychology.

There are many different clustering algorithms which solving problems based

on different data quality [14, 80, 7, 30, 86]. We can divide clustering algorithms

43

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

cost value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Empirical CDF

rectangle algo

direct algo

Figure 3.11 Distribution of cost values obtained by rectangle and DIRECT
algorithms after 4,000 iterations.

into different groups based on the clustering model used. The approaches include

hierarchical clustering, centroid-based clustering, distribution-based clustering, and

density-based clustering. Hierarchical clustering starts with each data point assigned

to its own cluster. Then two nearest clusters are merged. The algorithm continues in

this way, reducing the number of clusters by one with each iteration. The centroid-

based approach is to choose a number of centroids and then assign each data point to

the nearest centroid. The question of where to locate the centroids is an optimization

problem.

Most clustering formulations involve minimizing a cost based on a distance

function. A popular approach is that of the k-means algorithm and its variants.

k-means is an iterative clustering algorithm which finds local minima of the sum of

squared Euclidean distances of the points to the nearest centroid. A good starting

point is important for the k-means algorithm for avoiding bad local minima. The

k-means++ algorithm uses a probabilistic method to find a good starting point for k-

44

means [1]. It improves the chance that k-means obtains the global minimum (though

it can still terminate at a suboptimal local minimum).

Typical clustering approaches, including k-means, converge to a local minimum

of the cost function that may be larger than the global minimum. The main

motivation for our work is to design algorithms that converge to the global minimum

cost. We describe such an optimization algorithm. The algorithm works for a general

class of distance measures (including, but not restricted to, the distance measures for

which k-means converges to a local minimum).

Other researchers have proposed methods with similar motivation to ours

[87, 69, 50]. The reference [87] summarises several different methods which combine

genetic algorithms with k-means to reduce the chance of getting stuck at a local

minimum. The k-medoids algorithm was proposed to work with more general distance

measures than k-means. In [69, 50], the authors combine simulated annealing with

k-means to improve the chance of achieving a global minimum.

3.2.2 k-means algorithm and k-means++

One of the most popular algorithms for data clustering is k-means which is efficient

and easy to use. It is an iterative clustering algorithm which aims to find local minima.

There are different distance metrics such as Euclidean distance, squared Euclidean

distance or Manhattan distance which may used in clustering algorithms. Suppose

we use squared Euclidean distance to formulate the clustering problem. Assume we

want to divide the n point set Xn = {x1, x2, · · · , xn} into k groups (1 ≤ k < n)

where xi is a d-dimensional vector (xi1, x
i
2 · · · , xid) to minimize dissimilarity metric.

Therefore it will become a d ·k dimensional problem for the rectangle algorithm. The

cost function is in equation (3.4) if we choose a centroid-method model:

cost(c) =
k∑
i=1

∑
x∈Xi

n

dist(x, ci), (3.4)

45

where dist(x, ci) is the squared Euclidean distance between the center points and

points nearest the center point. Let X i
n denote ith cluster which includes all points

closest to center point ci. It means minimizing the following formula.

dist(x, ci) =
d∑
j=1

(xj − cij)2, (3.5)

Choose k center points {c1, c2, · · · , ck} ∈ [0, 1]d for the clusters to minimize

cost(c) which is defined above. For the d-dimensional case, the ith center point is

ci = (ci1, c
i
2, · · · , cij, · · · , cid). The process which k-means algorithm works as follows.

1. Randomly choose an initial k centers C = {c1, c2, · · · , ck}

2. For each i ∈ {1, 2, · · · , k}, set the cluster Ci to points ∈ Xn which is closest to

the cluster center ci.

3. For each i ∈ {1, 2, · · · , k}, set the center ci to be the center of the all points in

Ci, that is Ci = 1
|Ci|
∑

x∈Ci x.

4. Repeat step 2 and 3 until there is no change in C.

The algorithm converges fast but sometimes it converges to a local minimum

which is not the global minimum. For getting a more reasonable output, people start

to think about finding a good start point for k-means which was the motivation for

k-means++. In k-means++ algorithm [1], there is a set up process for choosing the

initial k centers.

1. Choose a center point c1 uniformly at random from Xn.

2. For each data point x ∈ Xn, calculate the shortest distance D from the point

to the closest center already chosen.

3. Choose a new center point ci with probability which is proportional to D.

4. Repeat steps 2 and 3 until there are k cluster center points.

46

5. Do a standard k-means process.

3.2.3 Numerical experiments for clustering

In the clustering problem, we use the rectangle algorithm which is proposed in Section

2.2 followed by the local optimization. We compare the method with the k-means++

algorithm. The cost function of clustering depends on the distance measure adopted.

We use squared Euclidean distance to formulate the objective cost function of the

clustering problem.

We generated a random data set with 100 2-D points distributed as shown in

Figure 3.12. We divided the 100 points into 5 clusters using k-means++ and also

the rectangle algorithm followed by the local optimization step. The results from the

Matlab implementation of k-means++ are shown in Figure 3.13.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.12 Distribution of 100 points data set.

The different colors show the original groups of the points. The center points

found by the k-means++ algorithm are shown in Figure 3.13. The k-means++

algorithm obtained a suboptimal solution. We tried the k-means algorithm with

more independent replications which resulted in different minima values with different

47

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cluster Assignments and Centroids

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Centroids

Figure 3.13 Centroids returned by k-means++.

replications, illustrating the fact that k-means is a local optimization algorithm. As

with many other local optimization algorithms, a critical task is to choose a good

starting point. The result obtained by the rectangle algorithm followed by one-step

local search is shown in Figure 3.14. The minimum value is smaller than the minimum

value that k-means obtained.

Comparisons with other algorithms In this section we compare the proposed

algorithm with k-means++ and two global optimization algorithms using randomly

generated test problems.

The probability model used to generate the data points in [0, 1]m was as follows.

We created P random m ×m matrices, Ap, 1 ≤ p ≤ P , with elements independent

standard normal random variates. (Such a matrix is nonsingular with probability

one.) We chose P means independently, uniformly over [0, 1]m, µp, 1 ≤ p ≤ P . We

then generated a random data point as follows:

1. Select a population p at random uniformly from 1, 2, . . . , P .

48

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cluster Assignments and Centroids

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Centroids

Figure 3.14 Centroids returned by rectangle algorithm followed by one-step local
search.

2. Generate a trial point

X = µp + 0.1 · ApZ,

where Z is a vector of independent standard normal random variates.

3. If X lies outside of [0, 1]m, then go back to step 2.

4. Stop when n points have been generated.

A sample 2-D point set is depicted in Figure 3.15.

We then repeated the following experiment 100 times.

1. Generate n random points in [0, 1]m.

2. Perform 10,000 replications of k-means, starting from independent uniformly

distributed starting centroids, keeping track of the distinct solutions (local

minima) obtained.

3. Report the average number of distinct local minima found.

For these experiments we chose the number of clusters k = 3, data dimension

m = 2, and number of data points n = 50.

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.15 Five truncated normal populations.

Running the experiments with m = 2, k-means averaged 10.94 local minima

(ranging from a minimum of 3 to a maximum of 21), while k-means++ averaged

10.76 local minima (ranging from a minimum of 3 to a maximum of 22).

In both cases, the number of local minima reported is a lower bound on the

actual number of local minima.

A typical set of local minima for k-means was

6.6, 9.9, 10.3, 11.8, 12.1, 12.4, 12.5, 12.8, 13.3, 13.8, 16.6

and for k-means++ with the same data

6.6, 9.9, 10.3, 12.1, 12.4, 12.5, 13.3, 13.8.

The average difference with k-means was 0.30 (maximum 6.11), while the

average difference with k-means++ was 0.14 (maximum 2.27). In all cases the

rectangle algorithm obtained a value at least as small as the other algorithms.

50

Comparison of rectangle algorithm with k-means++ In this subsection we

examine the percentage of time that the k-means++ algorithm obtained a worse

result than the rectangle followed by one-step local search.

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

Cost vaule

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
lit

y

rectangle algorithm

K-means++

Figure 3.16 Comparison between the rectangle algorithm and k-means++ with
same data set.

We did the experiments two different ways. First, we used one one data set with

100 points but ran this data set 100 times using two different methods. To obtain

different results with the rectangle algorithm we randomized it by applying a small

random perturbation with each run. With the same data set, the rectangle algorithm

followed by one-step local search always obtained the same result or better compared

with k-means++. In Figure 3.16, the blue line represents the rectangle algorithm

and the red line represents k-means++. The rectangle algorithm produced a better

result than k-means++ 21% of the time.

We also experimented with 100 different data sets which were generated as

described above. In Figure 3.17, the percentage of time the rectangle algorithm

performed better than k-means++ was 47%.

51

1.2 1.4 1.6 1.8 2 2.2 2.4

Cost vaule

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
lit

y

rectangle algorithm

k-means++

Figure 3.17 Comparison between the rectangle algorithm and k-means++ with
100 different data sets.

Comparison of k-means++ with simulated annealing and genetic algorithms

We also compared the algorithm with some other global optimization algorithms

such as simulated annealing [88] and genetic algorithms [17]. In Figure 3.18, the

colored lines represent the cost difference between k-means++ and different global

optimization algorithms. The blue line is the cost difference between k-means with

rectangle algorithm, showing that the rectangle algorithm obtained a smaller cost

value than the other global optimization algorithms.

In Figures 3.18, 3.19, and 3.20 we compare the optimization algorithms for

number of iterations ranging from 1,000 to 100,000.

52

-1 -0.5 0 0.5 1 1.5 2 2.5 3

Cost difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

k-means++ - rectangle alg

k-means++ - genetic alg

k-means++ - simulated annealing

Figure 3.18 Comparison between the rectangle algorithm and other global
optimization algorithms after 1,000 function evaluations.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Cost difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

k-means++ - rectangle alg

k-means++ - genetic alg

k-means++ - simulated annealing

Figure 3.19 Comparison between the rectangle algorithm and other global
optimization algorithms after 10,000 function evaluations.

53

-0.5 0 0.5 1

Cost difference

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

k-means++ - rectangle alg

k-means++ - genetic alg

k-means++ - simulated annealing

Figure 3.20 Comparison between the rectangle algorithm and other global
optimization algorithms after 100,000 function evaluations.

54

CHAPTER 4

A NEW GLOBAL OPTIMIZATION ALGORITHM WITH

DERIVATIVES

4.1 The Algorithm

In this section we describe a modification of the algorithm that uses derivatives in

addition to function values, specialized to the 1-D case. Otherwise, the algorithm is

as previously described. After n function evaluations we have a collection of intervals

{Rn
i , 1 ≤ i ≤ n}. Denote the center and half-length of the ith interval by cni and wni ,

respectively.

Denote the smallest function value after n evaluations byMn = min1≤i≤n{f(cni)}

and the error ∆n by Mn − f(t∗). Let τn = 2 min1≤i≤nw
n
i denote the smallest interval

length.

The algorithm first evaluates the function at c1
1 = 1/2. Define

gn(x) = (x log(n))2

for 0 < x ≤ 1/2.

For each interval Rn
i , define the first-order Taylor approximation

Li,n(s) = f(cni) + (s− cni)f ′(cni), s ∈ Rn
i ,

and let Ln(·) denote the piecewise linear function that coincides with Li,n(·) on the

interior of Rn
i . For n ≥ 1 and 1 ≤ i ≤ n set

ρni ≡
4wni√

f(cni)−Mn + gn(cni)− wni f ′(cni) +
√
f(cni)−Mn + gn(cni) + wni f

′(cni)
.

The equivalent integral form

ρni =

∫ cni +wni

s=cni −wni

ds√
Li,n(s)−Mn + gn(τn)

55

will be useful.

Suppose we have made n evaluations. Compute ρni , 1 ≤ i ≤ n, and let i be the

first index such that ρni ≥ ρnj for all 1 ≤ j ≤ n. We next split Rn
i into three intervals,

as described in Chapter 2, and evaluate the function at the center of two of the new

intervals.

4.1.1 Convergence rate

This algorithm has the property that ∆n → 0 as n→∞ for any continuous function

f . In order to determine the rate at which the error converges to 0 we need to place

some assumptions on f beyond continuity. Our main result is:

Theorem 4. Let f be twice continuously differentiable with unique global minimizer

t∗ ∈ (0, 1) with f ′′(t∗) > 0. Then the error is asymptotically bounded as

lim inf
n→∞

log(n)

n
log(1/∆n) ≥ f ′′(t∗)

6
√

3
. (4.1)

The rest of this section is devoted to the proof of the theorem. We can express

1

n

n∑
i=1

ρni =
1

n

∫ 1

s=0

ds√
Ln(s)−Mn + gn(τn)

=
1

n

∫ t∗

s=0

ds√
Ln(s)−Mn + gn(τn)

+
1

n

∫ 1

s=t∗

ds√
Ln(s)−Mn + gn(τn)

.

Since f ∈ C2 and f ′′(t∗) > 0, there exists a positive number β such that

0 ≤ t∗ − β < t∗ + β ≤ 1

and f is convex on [t∗ − β, t∗ + β], and furthermore

1

3
as2 ≤ f(t∗ + s)− f(t∗) ≤ 2

3
as2

56

for |s| ≤ β. By choosing β small enough, we can also ensure that

f(t) ≥ min {f(t∗ − β), f(t∗ + β)}

for t /∈ [t∗ − β, t∗ + β]. Since the minimizer t∗ is unique, f(t∗ + s)− f(t∗) is bounded

from below by a positive number for |s| > β.

By Taylor’s theorem,

f(s) = f(cni) + (s− cni)f ′(cni) + 2(wni)2f ′′(ξ), s ∈ Rn
i ,

for some ξ ∈ Rn
i . Set B ≡ max0≤s≤1 |f ′′(s)|. Then

max
s∈Rni
|Li,n(s)− f(s)| ≤ 2B(wni)2.

For large enough n, the rectangle (say Rn
s) containing the minimizer will have length

at most 3τn, and so

Mn −M
gn(τn)

≤
maxt∈Rns |Li,n(t)− f(t)|

gn(τn)
≤ 2B(wns)2

τ 2
n(log n)2

≤ 9Bτ 2
n

4τ 2
n(log n)2

→ 0.

Using these facts,

1

n

∫ 1

s=t∗

ds√
Ln(s)−Mn + gn(τn)

=
1

n

∫ t∗+β

s=t∗

ds√
Ln(s)−M + (1 + o(1))gn(τn)

+O(1/n)

≤ 1

n

∫ t∗+β

s=t∗

ds√
f(s)−M + (1 + o(1))gn(τn)

+O(1/n) by local convexity of f

≤ 1

n

∫ β

s=0

ds√
1
3
as2 + (1 + o(1))gn(τn)

+O(1/n)

≤ 1

n

√
3√
a

log

(√
a

τn log n

)
+O(1/n).

Bounding the integral from 0 to t∗ in a similar way gives the upper bound

1

n

n∑
i=1

ρni ≤
1

n

2
√

3√
a

log

(√
a

τn log n

)
+O(1/n). (4.2)

57

Recall that s denotes the index of the subinterval containing the minimizer.

Since this interval eventually has width at most 3τn,

ρns ≤
3τn

2
√
gn(τn)

=
3/2

log n
.

In the neighborhood of t∗ where f is convex, the ρ-values for each child will be at

least a third the value of the parent’s. For subintervals outside the neighborhood of

t∗, the children of split intervals will have ρ values about a third of the parent’s. Thus

for all sufficiently large n,

ρns ≥
1

2 log n

and

1

3
≤ lim inf

n→∞

ρns
1
n

∑n
i=1 ρ

n
i

≤ lim sup
n→∞

ρns
1
n

∑n
i=1 ρ

n
i

≤ 3. (4.3)

Therefore,

3 ≥ lim sup
n→∞

ρns
1
n

∑n
i=1 ρ

n
i

≥ lim sup
n→∞

1
2 logn

1
n

2
√

3√
a

log
(√

a
τn logn

)
+O(1/n)

(using 4.2)

= lim sup
n→∞

1
2 logn

1
n

2
√

3√
a
{log (

√
a)− log (τn)− log log n}+O(1/n)

,

or

lim inf
n→∞

log n

n

{
log
(√

a
)
− log (τn)− log log(1/τn)

}
≥
√
a

36
√

3
.

This implies that

lim inf
n→∞

log n

n
log(1/τn) ≥ a1/2

12
√

3
.

58

The subinterval containing the minimizer has width at most 3τn, and so for

large n the error is bounded above by

∆n ≤
2

3
a(3τn)2 = 6aτ 2

n,

and so

lim inf
n→∞

log(n)

n
log(1/∆n) ≥ lim inf

n→∞

log(n)

n
log(1/6aτ 2

n) lim inf
n→∞

log(n)

n
2 log(1/τ 2

n) ≥
√
a

6
√

3
.

(4.4)

This gives (4.1), and completes the proof of the theorem.

4.1.2 Discussion on convergence rate

The convergence rate of an algorithm for approximating the global minimum is

significant for knowing how good a global optimization algorithm is. Most algorithms

approximate the global minimum of a function using adaptively chosen function

evaluations. Some algorithms are efficient for functions with properties such as

uni-modality or convexity.

It is hard to know how to bound the error in the worst-case if there is no strong

assumption on the objective function. Suppose that the second derivative of the

objective function is bounded in absolute value by a finite number p. Then for any

algorithm A that evaluates objective function f and its derivatives, the worst-case

error is not better than exhaustive search. Define ∆n(f) as the error which is the

smallest of the first n function values minus the global minimum. We know that in

the worst-case, there exists an f ∈ Fp for which ∆n(f) ≥ c2pn−2 for a constant c.

This means for that any algorithm, the worst-case error satisfies

lim inf
n→∞

inf
f∈Fp

1

log(n)
log(1/∆n(f)) ≥ 2. (4.5)

59

If we consider the subclass of functions which have a unique local minimizer,

some algorithms such as golden section search method converge really fast. The

golden section search method uses only function evaluations. Let φ ≡ 1+
√

5
2

denote

the golden ratio. The golden search method produces a subinterval containing the

minimizer of length (1/φ)n−1 after n function evaluations.

By Taylor’s formula, we have ∆n(f) ≤ (1/2)h2
nf
′′(t∗) + o(h2

n) where h2
n =

(1/φ)n−1. We have the following result:

lim inf
n→∞

inf
f∈Fp

1

n
log(1/∆n(f)) ≥ log

(
3 +
√

5

2

)
. (4.6)

The slow convergence of (4.5) and the fast convergence of (4.6) shows the

extremes of optimization problem complexity. Our algorithm is on order of a factor

log(N) slower than the golden section algorithm. We can see that if we apply the

global optimization algorithm to a function which has a unique optimum, there is

a logarithmic slowdown compared with local optimization using the golden section

algorithm. In other words, if the local optimization algorithm requires N function

evaluations to approximate a minimum with prescribed accuracy, then the global

optimization algorithm requires on order of N log(N) evaluations to approximate the

minimum to the same accuracy.

4.2 Experiments

We perform experiments with the rectangle algorithm on quadratic and Rastrigin

functions.

Quadratic function We use the general quadratic function which f(xi) =∑n
i=1(xi − (0.5)

1
2)2 to test the rectangle algorithm. The algorithm evaluated at the

points are shown in Figure 4.1.

60

Figure 4.1 Quadratic 1-D objective function.

Rastrigin function We use the above Rastrigin function which was defined in

Chapter 2 which can work well in the algorithm we proposed. In the one dimensional

Rastrigin problem, the algorithm evaluated at the points shown in Figure 4.2.

Figure 4.2 Rastrigin 1-D objective function.

61

CHAPTER 5

DISCRETE SETTING

5.1 Introduction

In this section, we consider the problem of approximating the minimum cost of a finite

set of alternative systems. We can not directly observe the cost of the systems, but

we can estimate the cost using simulation. The simulation run lengths are adaptively

chosen for each system. We describe an optimization algorithm and establish a bound

on the error convergence rate. Compared with a single system, the error grows by

an additional factor of the square root of the logarithm of the number of systems

and the simulation budget. Consider the following optimization problem. We are

interested in choosing a parameter from a finite set that optimizes the long-run average

performance of a stochastic system. The system is too complicated to allow for

analytic treatment, but we can simulate the performance at each parameter value.

Suppose that the parameter set is Θ = {θ1, θ2, . . . , θν}, and the corresponding

performance values are {µ1, µ2, . . . , µν}. For simplicity assume that the {µi} are

distinct, and without loss of generality assume that µ1 < µ2 < · · · < µν . For each

θi we can run a simulation, observing i.i.d. random variables {Yi,j : j = 1, 2, · · ·}

with mean µi and variance σ2
i . We assume that the {Yi,j, 1 ≤ i ≤ ν, j ≥ 1} are

mutually independent and defined on a common probability space (Ω,F , P). We

further assume that for some ε > 0,

EY 2+ε
i,j <∞.

We can adaptively increase the simulation lengths ni so that the simulation

effort is concentrated on the parameter values that appear most promising over time.

Let ni denote the number of simulation iterations at the ith system; that is, we have

62

computed estimates based on {Yi,1, . . . , Yi,ni}. Let

n =
ν∑
i=1

ni.

Let µn,i denote the sample mean and σ2
n,i the sample variance for the simulation of

the ith system:

µn,i =
1

ni

ni∑
j=1

Yi,j (5.1)

and

σ2
n,i =

1

ni − 1

ni∑
j=1

(Yi,j − µn,i)2 . (5.2)

After a total of n simulation steps, we have estimates µn,i and σn,i such that

Zn,i ≡
√
ni

σn,i
(µn,i − µi)

d→ N(0, 1) (5.3)

as ni → ∞, for i = 1, 2 . . . , ν. We use the notation Xn
d→ F to indicate that the

sequence of random variables {Xn} converges in distribution to the distribution F ,

and Xn
P→ X to denote that the random variables {Xn} converge in probability to

the random variable X. We denote the standard normal distribution by N(0, 1), and

its cumulative distribution function by Φ.

Let µn,∗ = min1≤i≤ν µn,i and let i∗n be the corresponding index, so that µn,∗ =

µn,i∗n ; this will serve as our estimate of µ1 = mini µi. We will construct an algorithm

for running the simulations to efficiently estimate µ1.

Our goal is to construct a small interval [αn, βn] such that

P (αn ≤ µ1 ≤ βn)→ 1

as n→∞.

63

If we knew in advance that the first system was the best, then we could allocate

all observations to that system and the central limit theorem implies that

P

(
µn,1 −

σn,i√
n
zα ≤ µ1 ≤ µn,1 +

σn,i√
n
zα

)
→ 1− α

as n→∞, where

1− Φ(zα) =
α

2
.

Therefore, if γn is any increasing sequence going to +∞, then the probability

that µ1 is contained in an interval of half-width

σn,i√
n
γn (5.4)

tends to 1.

Without such advance knowledge, we must allocate observations to systems

2, 3, . . . , ν. We will show that the number of evaluations at sub-optimal points grows

as the logarithm of the total number of evaluations.

5.2 Background

To decide the best system using minimum cost in finite alternative systems by

stochastic simulation is the problem we focused on. The reference [37] developed

procedures for selecting the best or near-best of a finite number of simulated systems

and compared with indifference-zone procedures. The reference [47] discussed similar

problems as predicting simulation budget and guarantee probably approximately

correct selection.

Approximating the minimum cost value is related to the problem of selecting

the system with the smallest cost value. The latter problem is reviewed in [24, 41].

Our main reason for concentrating on the problem of approximating the minimum

value instead of the minimizing parameter is that selecting the best system makes

64

more sense for small, or at least finite, sets of alternatives. In cases of a continuum of

alternatives, possibly with many isolated global minimizers, selecting the best system

is not as well defined as approximating the minimum value. Nevertheless, the two

problems are clearly related.

We take as given the performance measures {µi}. An alternative is to start with

a prior probability distribution on the {µi}. This approach of Bayesian optimization

is surveyed in [9, 22].

Our approach might be called a single-stage approach, in that the algorithm does

not perform preliminary simulations that are used to plan subsequent simulations.

Such single-stage procedures are presented in [55], where the emphasis is on

constructing asymptotically valid confidence intervals for the difference of cost values.

We do not construct confidence intervals in the sense of that paper.

The algorithm described in this dissertation is similar to optimization algorithms

described in works on continuous Bayesian optimization; for example see [6]. In that

work, the goal was to minimize a continuous function defined on the unit interval.

The unknown function was assumed to be a sample path of a Wiener process. The

algorithm adaptively chooses points to evaluate the random function f , with the error

∆n(f) after n evaluations taken to be the difference between the smallest observed

function value and the global minimum. It was shown that for all r ∈ [1,∞) and for

all p ∈ [1,∞) there is a version of the algorithm (depending on those quantities) such

that

(E|∆n(f)|p)1/p ≤ c · n−r

for a constant c and for all n. That is, any polynomial error rate can be obtained.

This compares with the optimal nonadaptive error rate of n−1/2.

The main motivation is to obtain insight into the discrete optimization problem

as the number of alternatives ν → ∞. In order to formulate a reasonable version

65

of this question we impose some structure on the {µi}. In Section 5.5 we consider

a smooth cost function f : [0, 1] → R, that can only be evaluated by simulation.

We adaptively run simulations at f(i/ν), 1 ≤ i ≤ ν, according the the proposed

algorithm. As ν → ∞, we show that the rate at which the evaluations concentrate

on the minimizer depends on f through the second derivative at the minimizer.

5.3 The Algorithm

Recall that i∗n is the index of the system with the smallest estimate µn,i after n

simulation steps.

Define

gn,ν ≡
√

2 log(nν)
σn,i∗n√
ni∗n

and

ρni ≡
σ2
n,i

ni

1(
µn,i − µn,i∗n + gn,ν

)2 .

The idea of the algorithm is, at step n, to simulate the system i with the largest

ρni . Roughly, this can be thought of as maximizing the probability that the next

evaluation is below µn,i∗n − gn,ν . The “gap” gn,ν is chosen large enough that these

probabilities (and therefore the ρni) go to zero.

To simplify the exposition, we will assume that each system is initially simulated

for two steps so that the sample mean and variances are defined. The algorithm for

a simulation budget N > 2ν follows.

1. Simulate 2 steps for each of the ν systems, set ni = 2, 1 ≤ i ≤ ν, and compute

µn,i and σn,i, 1 ≤ i ≤ ν. Set i∗n to the (first) index with minimal sample mean,

and set n = 2ν.

2. Compute ρni for each i ≤ ν, and let k be the (first) index with ρnk ≥ ρni ∀i.

66

3. Simulate the kth system for one step, and update the sample mean and variance

of the kth system.

4. Set nk = nk + 1, n = n+ 1, and if n < N return to step 2.

We will only consider times at which we are about to evaluate the currently

best system; that is, when ρni∗n ≥ ρnk for all k. Note that at such a time

ρnk ≤ ρni∗n ≤
1

2 log(nν)
; (5.5)

that is, for each i,
σ2
n,i

ni

1(
µn,i − µn,i∗n + gn,ν

)2 ≤
1

2 log(nν)
.

The event that the cost of the ith system is above our lower bound µn,i∗n − gn,ν

is

{µi > µn,i∗n − gn,ν} =

{
µn,i −

σn,i√
ni
Zn,i > µn,i∗n − gn,ν

}
by (5.3)

=

{
Zn,i <

√
ni

σn,i

(
µn,i − µn,i∗n + gn,ν

)}
=

{
Zn,i <

1√
ρni

}
⊃
{
Zn,i <

√
2 log(nν)

}
by (5.5)

⊃
{
Zn,i <

√
2 log(niν)

}
.

Therefore, by (5.3),

P
(
µi > µn,i∗n − gn,ν

)
→ 1

as n→∞. It follows that

P (∆n ≤ gn,ν) = P (µn,i∗n − µ1 ≤ gn,ν)

= P

(
ν⋂
i=1

{µi > µn,i∗n − gn,ν}

)

→ 1

67

as n→∞.

The amount of simulation of the ith system satisfies

ni ≈
2 log(nν)σ2

n,i

(µn,i − µn,i∗n + gn,ν)2
,

and so for i > 1,

ni
log(nν)

P→ 2σ2
i

(µi − µ1)2

as n→∞. Also,

ni∗n
n

P→ 1.

This implies (5.3) ([2], Theorem 17.1).

5.4 Main Result

Set

H =
ν∑
i=2

σ2
i

(µi − µ1)2 .

This is a measure of how hard the optimization is. If the small µi’s are clustered

around the minimum, then the algorithm needs to spread out the effort over multiple

systems that seem promising; this corresponds to a large H. If µ2 is much larger than

the minimum µ1, then the search can concentrate on µ1 and H is small.

Then we have

ni∗n ≈ n− 2 log(nν)H

and

ni∗n
n

P→ 1.

68

The following limit theorem shows how small our interval containing the

minimizer with probability approaching one can be. This theorem, as well as Theorem

6 in the next section, are proved in [89].

Theorem 5. Consider a system with ν alternatives. Let

∆n ≡ µn,i∗n − µ1

denote the approximation error after n simulation steps. Then

lim
n→∞

P

(
− σ1√

n

√
2 log(nν)√

1− 2H log(nν)/n
≤ ∆n ≤

σ1√
n

√
2 log(nν)√

1− 2H log(nν)/n

)
= 1.

This shows the slowdown we suffer compared to (5.4). We see that whereas the

sequence γn introduced at (5.4) can grow arbitrarily slowly, for our algorithm it must

grow at rate
√

log(nν).

5.5 Concentration Rate

The {µi}, and hence H, could be quite arbitrary. In this section we consider the

case where the goal is to approximate the minimum of a continuous cost function by

simulating values at a fixed grid of points. Denote the cost function by f : [0, 1]→ R.

We estimate the values f(i/ν), i = 1, . . . , ν. With our previous notation, {µi, 1 ≤ i ≤

ν} = {f(i/ν), 1 ≤ i ≤ ν}, though the ordering is different in general.

In this section, assume that σi ≡ σ for each 1 ≤ i ≤ ν. Let us suppose that

f ∈ C2([0, 1]) with unique global minimizer t∗ ∈ (0, 1) with f ′′(t∗) > 0.

Let Πn denote the proportion of evaluations that are not at the current estimator

of the minimizer:

Πn = 1−
ni∗n
n
.

Set

B(f, ν, n) ≡ π

4
ν

√
σ√

β(f, ν)

(
2 log(nν)

n

)1/4

,

69

where β(f, ν)→ f ′′(t∗) as ν →∞.

Theorem 6. As the number of evaluations n tends to infinity,

P (Πn ≤ B(f, ν, n))→ 1.

The bound B(f, ν, n) increases roughly linearly in the discretization order ν, and

as the square root of the noise standard deviation σ. For large ν, β(f, ν) ≈ f ′′(t∗)

and so B(f, ν, n) increases as 1/
√
f ′′(t∗). For f that increases rapidly moving away

from the global minimizer, i.e., for large f ′′(t∗), the algorithm can concentrate the

evaluations more near the minimizer, thus reducing Πn.

5.6 Numerical Experiments

We did some experiments for the algorithm applied to the discretization of a smooth

cost function, as described in the last section. The cost function is

f(x) =
1

2
+ 2x− cos(12x− 9), 0 ≤ x ≤ 1, (5.6)

which is shown in Figure 5.1. Figure 5.2 shows the discrete version of the optimization

problem, where the ith system cost is f(i/ν) for ν = 30 and 1 ≤ i ≤ ν.

For a fixed number ν, our goal is to approximate the minimum of f(i/ν), 1 ≤

i ≤ ν. This will be based on evaluations

Yi,j = f(i/ν) + ξi,j,

where the ξi,j are independent standard normal random variables.

Figure 5.2 shows the results of running the algorithm on the function shown

in Figure 5.1 with ν = 30 and n = 40,000. The error bars around each estimated

function value indicate the standard deviation of the estimator.

In Figure 5.3 and 5.4, we plot the normalized error for the algorithm applied to

discretizations of ν = 50 in the left plot and ν = 100 in the right plot. From Theorem

70

0 0.2 0.4 0.6 0.8 1

-5

0

5

10

15

20

25

30

35

40

Figure 5.1 Continuous cost function
(5.6).

0 5 10 15 20 25 30

-5

0

5

10

15

20

25

30

35

40

Figure 5.2 Estimates of discretized cost
function (5.6).

0 1 2 3 4

Interation number 10
4

-5

-4

-3

-2

-1

0

1

2

Figure 5.3 Normalized proportion of
evaluations at sub optimal points, ν = 50.

0 1 2 3 4

Interation number 10
4

-5

-4

-3

-2

-1

0

1

2

Figure 5.4 Normalized proportion of
evaluations at sub optimal points, ν = 100.

5, the normalized error √
n

σ1

√
2 log(nν)

will lie in the interval [−1, 1] with probability approaching 1 as n → ∞. The

normalized error is plotted as a function of the iteration number n for ν = 50 (left

plot) and ν = 100 (right plot).

In Figure 5.5 and 5.6, we plot the proportion of evaluations made at points other

than the current estimated minimizer, Πn, divided by our upper bound B(f, ν, n) from

71

0 1 2 3 4

Interation number 10
4

0

0.2

0.4

0.6

0.8

1

Figure 5.5 Normalized error, ν = 50.

0 1 2 3 4

Interation number 10
4

0

0.2

0.4

0.6

0.8

1

Figure 5.6 Normalized error, ν = 100.

Theorem 6. We evaluate the rate Πn/B(f, ν, n) with ν = 50 and ν = 100 with σ = 1.

The total iteration number is 40, 000.

Theorem 6 implies that the ration should be below 1 with probability

approaching 1 as n→∞. The results are plotted for ν = 50 (left plot) and ν = 100

(right plot).

5.7 Conclusions

We have constructed a single-stage procedure for adaptively controlling the simulation

of multiple systems with the aim of efficiently approximating the minimum cost

measure. We constructed an interval that contains the minimum cost measure with

probability approaching 1 as the simulation budget grows. Compared with the ideal

situation of a single system, the size of the enclosing interval grows by an additional

factor of the square root of the logarithm of the number of systems and the simulation

budget.

72

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary

The dissertation presents two different global optimization algorithms, one using only

function values, the other using also derivatives. Discussions about convergence rates

of algorithms also are provided. They have good performance for many mathematical

test functions. Applying the first algorithm to automatic image registration requires

no parameters to tune the algorithm. Image registration gives rise to objective

functions that may have many local minimizers if there is no obvious object in the

images. In addition, applying the global optimization algorithm to clustering for

finding good start points for the k-means algorithm often resulted in better solutions.

We explored similar optimization problems with discrete variables and with noise

corrupted function evaluations. We present a global optimization algorithm to choose

a parameter from a finite set to optimize the long-run average performance of a

stochastic system.

Still many theoretical and practical problems remain in the continuous and

discrete settings. For example how to provide mathematical proofs and comparisons

of the DIRECT algorithm and the algorithm we proposed and how to apply those

algorithms in more realistic situations. Also, it is interesting to explore more about

the relationship between the continuous setting and discrete setting.

73

BIBLIOGRAPHY

[1] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding.
Proceeding SODA ’07 Proceedings of the eighteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 1027–1035, 2007.

[2] P. Billingsley. Convergence of probability measures. Wiley, New York, 1968.

[3] C. G. E. Boender and H. E. Romeijn. Stochastic methods. Handbook of Global
Optimization, 1995.

[4] F. H. Branin and S. K. Hoo. A method for finding multiple extrema of a function
of n variables. Numerical Methods of Nonlinear Optimization, pages 231–237,
1972.

[5] J. M. Calvin, G. Gimbutienė, W. O. Phillips, and A. Z̆ilinskas. On convergence rate of
a rectangular partition based global optimization algorithm. Journal of Global
Optimization, 71:165–191, 2018.

[6] J. M. Calvin, M. Hefter, and A. Herzwurm. Adaptive approximation of the minimum
of brownian motion. Journal of Complexity, 39:17–37, 2017.

[7] R. B. Cattell. The description of personality: Basic traits resolved into clusters.
Journal of Abnormal and Social Psychology, 38:476–506, 1943.

[8] Y. Chen, R. R. Brooks, S. S. Iyengar, N. S. V. Rao, and J. Barhen. Efficient global
optimization for image registration. IEEE Transactions on Knowledge and
Data Engineering, 14:79–92, 2002.

[9] S. E. Chick. Bayesian methods: Bayesian methods for simulation. In K. Kang
J. A. Joines, R. R. Barton and eds. P. A. Fishwick, editors, Proceedings of the
2000 Winter Simulation Conference, pages 109–118, Orlando, Florida, 2000.
Society for Computer Simulation International.

[10] J. H. Holland D. E. Goldberg. Genetic algorithms and machine learning. Machine
Learning, 2:95–99, 1988.

[11] B. D. de Vos, F. F.Berendsen, M. A. Viergever, H. Sokooti, M. Staring, and I.Is̆gum.
A deep learning framework for unsupervised affine and deformable image
registration. Medical Image Analysis, 52:128–143, 2019.

[12] I. Diener. Trajectory methods in global optimization. Nonconvex Optimization and
Its Applications, 2:649–668, 1995.

[13] L. C. W. Dixon and G. P. Szego. The global optimization problem: an introduction.
Towards global optimization, 2:1–15, 1978.

74

[14] H. E. Driver and A. L. Kroeber. Quantitative expression of cultural relationships.
University of California Publications in American Archaeology and Ethnology,
31:211–256, 1932.

[15] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima
of deep neural networks. Proceedings of the 36th International Conference on
Machine Learning, 2019.

[16] R. D. Eastman, N. S. Netanyahu, and Jacqueline le Moigne. Survey of image
registration methods. Image Registration for Remote Sensing, 79:157–181,
1993.

[17] H. Eduardo and E. Nelson. A genetic algorithm for cluster analysis. Intell. Data
Anal., 7:15–25, 02 2003.

[18] F. E. A. EI-Gamal, M. Elmogy, and A. Atwan. Current trends in medical image
registration and fusion. Egyptian Informatics Journal, 17:99–124, 2016.

[19] D. E. Finkel. Global optimization with the DIRECT algorithm. PhD thesis, North
Carolina State University, Raleigh, North Carolina, 2005.

[20] D. E. Finnkel and C. T. Kelley. Convergence analysis of the direct algorithm.
Technical Report CRSC-TR04-28, 2004.

[21] C. A. Floudas and P. M. Pardalos. Recent advances in global optimization. Princeton
university press, Princeton, 2014.

[22] P. I. Frazier. A tutorial on bayesian optimization. eprint arXiv, 1807.02811, 2018.

[23] A. Gimbutas and A. Z̆ilinskas. An algorithm of simplicial Lipschitz optimization
with the bi-criteria selection of simplices for the bi-section. Journal of Global
Optimization, 71:115–127, 2018.

[24] D. Goldsman, S. Kim, W. S. Marshall, and B. L. Nelson. Ranking and selection
for steady-state simulation: Procedures and perspectives. Informs Journal on
Computing, 14(1):2–19, 2002.

[25] A. Goshtasby. Image registration by local approximation methods. Image and Vision
Computing, 6:255–261, 1988.

[26] E. R. Hansen. Global optimization using interval analysis. Marcel Dekker, Inc., 1992.

[27] E.R. Hansen. Global Optimization using Interval Analysis. McGraw-Hill, Inc, New
York, 1992.

[28] R. Horst and P. M. Pardalos. Handbook of Global Optimization. 1995.

[29] D. Ikami, T. Yamasaki, and K. Aizawa. Local and global optimization techniques in
graph-based clustering. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3456–3464, 2018.

75

[30] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31:651–666, 2010.

[31] M. Jenkinson and S. Smith. A global optimisation method for robust affine
registration of brain images. Medical Image Analysis, 5:142–156, 2001.

[32] J. Joglekar and S. S. Gedam. Area based image matching methods – a survey.
International Journal of Emerging Technology and Advanced Engineering, 2,
2012.

[33] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without
the Lipschitz constant. Journal of Optimization Theory and Application,
79:157–181, 1993.

[34] A. H. G. Rinnooy Kan, C. G. E. Boender, and G. Th. Timmer. A stochastic approach
to global optimization. Computational Mathematical Programming, 15:281–
308, 1984.

[35] R.B. Kearfott and V. Kreinovich. Applications of interval computations. Applied
Optimization, 1996.

[36] J. Kiefer. Sequential minimax search for a maximum. Proc. Amer. Math. Soc.,
4:502–506, 1953.

[37] S. Kim and B. L. Nelson. A fully sequential procedure for indifference-zone selection
in simulation. ACM Transactions on Modeling and Computer Simulation,
11(3):251–273, 2001.

[38] D. E. Kvasov and Ya. D. Sergeyev. Lipschitz gradients for global optimization in a
one-point-based partitioning scheme. Journal of Computational and Applied
Mathematics, 236:4042–4054, 2012.

[39] T. Kwok and D. Yeung. Objective functions for training new hidden units in
constructive neural networks. IEEE Transaction on Neural Networks, 8, 1997.

[40] P. J. M. Laarhoven and E. H. L. Aarts. Simulated annealing: theory and applications.
1987.

[41] S. Lee and B. L. Nelson. General-purpose ranking and selection for computer
simulation. IIE Transactions, 48(6):555–564, 2016.

[42] D. Lera and Ya. D.Sergeyev. Deterministic global optimization using space-
filling curves and multiple estimates of Lipschitz and Hölder constants.
Communications in Nonlinear Science and Numerical Simulation, 23:328–342,
2015.

[43] D. Lera and Ya. D. Sergeyev. Gosh: derivative-free global optimization using multi-
dimensional space-filling curves. Journal of Global Optimization, 71:193–211,
2018.

76

[44] G. Liuzzi, S. Lucidi, and V. Piccialli. A partition-based global optimization algorithm.
Journal of Global Optimization, 48(1):113–128, 2010.

[45] X. Lu, M. Zhou, L. Qi, and H. Liu. Clustering algorithm-based analysis of rare event
evolution via social media data. IEEE Transactions on Computational Social
Systems, 6(2):301–310, 04 2019.

[46] D. Lera M. Gaviano, D. E. Kvasov and Ya. D. Sergeyev. Algorithm 829: Software for
generation of classes of test functions with known local and global minima for
global optimization. ACM Transactions on Mathematical Software, 29:469–
480, 2003.

[47] S. Ma and Shane G. Henderson. Predicting the simulation budget in ranking
and selection procedures. ACM Transactions on Modeling and Computer
Simulation, 29(3):14:1–14:25, 2019.

[48] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens. Multimodality
image registration by maximization of mutual information. IEEE Transactions
On Medical Imaging, 16:187–198, 1997.

[49] J. B. A. Maintz and M. A. Viergever. An overview of medical image registration
methods. 1996.

[50] S. Merendino and M. E. Celebi. A simulated annealing clustering algorithm based on
center perturbation using gaussian mutation. In FLAIRS Conference, 2013.

[51] D. Michie, D. J. Spiegelhalter, and C. C. Taylor. Machine learning, neural and
statistical classification. Ellis Horwood Series in Artificial Intelligence, 1994.

[52] H. Muhlenbein and D. S. Voosen. Predictive models for the breeder genetic algorithm:
continuous parameter optimization. Evolutionary Computation, 1:25–49, 1993.

[53] R. Munos. From bandits to monte-carlo tree search: The optimistic principle applied
to optimization and planning. Foundations and Trends R© in Machine Learning,
7(1):1–129, 2014.

[54] S. Nag. Image registration techniques: a survey. arXiv:1712.07540, 79:157–181, 2017.

[55] M. K. Nakayama. Asymptotically valid single-stage multiple-comparison procedures.
Journal of Statistical Planning and Inference, 139(4):1348–1356, 2009.

[56] A. Neumaier. Introduction to Global Optimization.
https://www.mat.univie.ac.at/ neum/glopt/intro.html. [Online].

[57] A. Neumaier. Interval methods for systems of equation. Encyclopedia of Mathematics
and its Applications, page 37, 1990.

[58] I. H. Osman and J. P. Kelly. Meta-heuristics:theory and applications. Kluwer
Academic Publishers, 1996.

77

[59] U. E. Ruttimann P. Thkvenaz and M. Unser. Iterative multiscale registration without
landmarks. IEEE International Conference on Image Processing, 3:228–231,
1995.

[60] R. Paulavic̆ius and J. Z̆ilinskas. Simplicial global optimization. Springer, New York,
NY, 2014.

[61] J. D. Pintér. Global Optimization in Action. 1996.

[62] J. P. Pluim, J. B. Maintz, and M. A. Viergever. Mutual-information-based registration
of medical images: a survey. IEEE Trans Medical Imaging, 22:986–1004, 2003.

[63] L. Ramirez, N. G. Durdle, and V. J. Raso. Medical image registration in
computational intelligence framework: a review. Electrical and Computer
Engineering, 2:1021–1024, 2003.

[64] L. A. Rastrigin. Systems of extremal control. Mir, Moscow, 1974.

[65] H. Ratschek and J. Rokne. Interval methods. Handbook of Global Optimization, pages
751–828, 1995.

[66] A. Roche. Unifying maximum likelihood approaches in medical image registration.
International Journal of Imaging Systems and Technology, 11:71–80, 2000.

[67] J. M. Rouet, J. J. Jacq, and C. Roux. Genetic algorithms for a robust 3-d mr-ct
registration. IEEE Engineering in Medicine and Biology Society, 4:126–136,
2000.

[68] H. S. Sawhney. True multi-image alignment and its applications to mosaicing and lens
distortion correction. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21:235–243, 1999.

[69] S. Z. Selima and K. Alsultanb. A simulated annealing algorithm for the clustering
problem. Pattern Recognition, pages 1003–1008, 1991.

[70] Ya. D. Sergeyev and D. E. Kvasov. Global search based on efficient diagonal partitions
and a set of lipschitz constants. SIAM Journal on Optimization, 16:910–937,
2006.

[71] Ya. D. Sergeyev and D. E. Kvasov. A deterministic global optimization using
smooth diagonal auxiliary functions. Communications in Nonlinear Science
and Numerical Simulation, 21:99–111, 2015.

[72] Ya. D. Sergeyev and D. E. Kvasov. Deterministic global optimization. Springer, New
York, NY, 2017.

[73] Ya. D. Sergeyev, R. G. Strongin, and D. Lera. Introduction to global optimization
exploiting space-filling curves. Springer, New York, NY, 2013.

78

[74] R. K. Sharma. Multisensor image registration. Processings of the Society for
Information Piexls, 1997.

[75] G. Song, J. Han, Y. Zhao, Z. Wang, and H. Du. A review on medical image registration
as an optimization problem. Curr Med Imaging Rev, 13(3):274–283, 2017.

[76] J. P. P. Starink and E. Backer. Finding point correspondence using simulated
annealing. Pattern Recognition, 28:231–240, 1995.

[77] A. Tangherloni, L. Rundo, and M. S. Nobile. Proactive particles in swarm
optimization: a settings-free algorithm for real-parameter single objective
optimization problems. Evolutionary Computation, pages 1940–1947, 2017.

[78] A. S. Tikhomirov. On the markov homogeneous optimization method. Computational
Mathematics and Mathematical Physics, (46):361–375, 2006.

[79] J. F. Traub, G. W. Wasilkowski, and H. Wozniakowski. Information-Based
Complexity. Academic Press, New York, 1988.

[80] R. Tryon. Cluster analysis: correlation profile and orthometric (factor) analysis for
the isolation of unities in mind and personality. Edwards Brothers, 1939.

[81] P. Viola. Alignment by maximization of mutual information. International Journal
of Computer Vision, 24:137–154, 1997.

[82] C. Wang, W. Pedrycz, J. Yang, M. Zhou, and Z. Li. Wavelet frame-based fuzzy
c-means clustering for segmenting images on graphs. IEEE Transactions on
Cybernetics, 2019.

[83] G. W. Wasilkowski. Some nonlinear problems are as easy as the approximation
problem. Comput. Math. Appl., 10:351–363, 1984.

[84] Y. Wen, L. Zhang, L. He, and M. Zhou. Incorporation of structural tensor and driving
force into log-demons for large-deformation image registration. IEEE Trans
on Image Processing, 28(12):6091–6102, 12 2019.

[85] D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4:65–85, 1994.

[86] X. Xu, J. Li, M. Zhou, J. Xu, and J. Cao. Accelerated two-stage particle swarm
optimization for clustering not-well-separated data. IEEE Transactions on
Systems, Man, and Cybernetics: Systems.

[87] D. Q. Zeebaree, H. Haron, A. M. Abdulazeez, and S. Zeebaree. Combination of
k-means clustering with genetic algorithm: A review. International Journal
of Applied Engineering Research, 12:14238–14245, 2017.

[88] C. Zhang and H.-P. Wang. Mixed-discrete nonlinear optimization with simulated
annealing. Engineering Optimization, 21:277–291, 1993.

79

[89] C. Zheng, J. Calvin, and C. Gotsman. A DIRECT-type global optimization algorithm
for image registration. Journal of Global Optimization, 2020.

[90] A. Zhigljavsky and A. Z̆ilinskas. Stochastic Global Optimization. 2008.

[91] A. A. Zhigljavsky. Theory of Global Random Search. 1991.

[92] B. Zitova and J. Flusser. Image registration methods: a survey. Image and Vision
Computing, 21:977–1000, 2003.

[93] J. Zubin. A technique for measuring like-mindedness. The Journal of Abnormal and
Social Psychology, 33(4):508–516, 1938.

80

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: A New Direct Type Global Optimization Algorithm
	Chapter 3: A Global Optimization Algorithm for Image Registration and Clustering
	Chapter 4: A New Global Optimization Algorithm with Derivatives
	Chapter 5: Discrete Setting
	Chapter 6: Conclusions and Future Work
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

