

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

CROWDSOURCING ATOP BLOCKCHAINS

by
Yuan Lu

Traditional crowdsourcing systems, such as Amazon’s Mechanical Turk (MTurk),

though once acquiring great economic successes, have to fully rely on third-party

platforms to serve between the requesters and the workers for basic utilities. These

third-parties have to be fully trusted to assist payments, resolve disputes, protect

data privacy, manage user authentications, maintain service online, etc. Nevertheless,

tremendous real-world incidents indicate how elusive it is to completely trust these

platforms in reality, and the reduction of such over-reliance becomes desirable.

In contrast to the arguably vulnerable centralized approaches, a public blockchain

is a distributed and transparent global “consensus computer” that is highly robust.

The blockchain is usually managed and replicated by a large-scale peer-to-peer

network collectively, thus being much more robust to be fully trusted for correctness

and availability. It, therefore, becomes enticing to build novel crowdsourcing

applications atop blockchains to reduce the over-trust on third-party platforms.

However, this new fascinating technology also brings about new challenges,

which were never that severe in the conventional centralized setting. The most serious

issue is that the blockchain is usually maintained in the public Internet environment

with a broader attack surface open to anyone. This not only causes serious privacy

and security issues, but also allows the adversaries to exploit the attack surface to

hamper more basic utilities. Worse still, most existing blockchains support only light

on-chain computations, and the “smart contract” executed atop the decentralized

“consensus computer” must be simple, which incurs serious feasibility problems. In

reality, the privacy/security issue and the feasibility problem even restrain each other

and create serious tensions to hinder the broader adoption of blockchain.

The dissertation goes through the non-trivial challenges to realize secure yet

still practical decentralization (for urgent crowdsourcing use-cases), and lay down the

foundation for this line of research. In sum, it makes the next major contributions.

First, it identifies the needed security requirements in decentralized knowledge

crowdsourcing (e.g., data privacy), and initiates the research of private decentralized

crowdsourcing. In particular, the confidentiality of solicited data is indispensable to

prevent free-riders from “pirating” the others’ submissions, thus ensuring the quality

of solicited knowledge. To this end, a generic private decentralized crowdsourcing

framework is dedicatedly designed, analyzed, and implemented.

Furthermore, this dissertation leverages concretely efficient cryptographic design

to reduce the cost of the above generic framework. It focuses on decentralizing

the special use-case of Amazon MTurk, and conducts multiple specific-purpose

optimizations to remove needless generality to squeeze performance. The implemen-

tation atop Ethereum demonstrates a handling cost even lower than MTurk.

In addition, it focuses on decentralized crowdsourcing of computing power for

specific machine learning tasks. It lets a requester to place deposits in the blockchain

to recruit some workers for a designated (randomized) programs. If and only if these

workers contribute their resources to compute correctly, they would earn well-deserved

payments. For these goals, a simple yet still useful incentive mechanism is developed

atop the blockchain to deter rational workers from cheating.

Finally, the research initiates the first systematic study on crowdsourcing

blockchains’ full nodes to assist superlight clients (e.g., mobile phones and IoT

devices) to “read” the blockchain’s records. This dissertation presents a novel generic

solution through the powerful lens of game-theoretic treatments, which solves the

long-standing open problem of designing generic superlight clients for all blockchains.

CROWDSOURCING ATOP BLOCKCHAINS

by
Yuan Lu

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

August 2020

Copyright c© 2020 by Yuan Lu

ALL RIGHTS RESERVED

APPROVAL PAGE

CROWDSOURCING ATOP BLOCKCHAINS

Yuan Lu

Dr. Guiling Wang, Dissertation Advisor Date
Professor of Computer Science, NJIT

Dr. Qiang Tang, Dissertation Co-Advisor Date
Assistant Professor of Computer Science, NJIT

Dr. Baruch M. Schieber, Committee Member Date
Professor and Chair of Computer Science, NJIT

Dr. Roman Vaculin, Committee Member Date
Senior Manager and Principal Research Staff Member,
IBM Research, Yorktown Heights, NY

Dr. Jian Yang, Committee Member Date
Professor of Management Science and Information Systems,
Rutgers Business School – Newark & New Brunswick, Rutgers University, NJ

BIOGRAPHICAL SKETCH

Author: Yuan Lu

Degree: Doctor of Philosophy

Date: August 2020

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,

New Jersey Institute of Technology, NJ, US, 2020

• Master of Engineering in Electrical Engineering,
Nankai University, Tianjin, China, 2014

• Bachelor of Science in Information Science and Technology,
Nankai University, Tianjin, China, 2011

• Bachelor of Business Administration,
Tianjin University, Tianjin, China, 2011

Major: Computer Science

Presentations and Publications:

Yuan Lu, Qiang Tang, Guiling Wang, “Enhancing the Retailer Gift Card via
Blockchain: Trusted Resale and More,” in Journal of Database Management,
2020.

Yuan Lu, Qiang Tang, Guiling Wang, “Generic Superlight Client for Permissionless
Blockchains,” in the 25th European Symposium on Research in Computer
Security (ESORICS 2020), Virtual Event, UK, September 2020.

Yuan Lu, Qiang Tang, Guiling Wang, “Dragoon: Private Decentralized HITs
Made Practical,” in the 40th IEEE International Conference on Distributed
Computing Systems (ICDCS 2020), Singapore, November 2020.

Yuan Lu, Zhenliang Lu, Qiang Tang, Guiling Wang, “Dumbo-MVBA: Optimal
Multi-Valued Validated Asynchronous Byzantine Agreement, Revisited,” in
the 39th ACM Symposium on Principles of Distributed Computing (PODC
2020), Virtual Event, Italy, August 2020.

Yuan Lu, Qiang Tang, Guiling Wang, “ZebraLancer: Private and Anonymous
Crowdsourcing System atop Open Blockchain,” in the 38th IEEE International
Conference on Distributed Computing Systems (ICDCS 2018), Vienna,
Austria, July 2018.

iv

Yuan Lu, Qiang Tang, Guiling Wang, “On Enabling Machine Learning Tasks atop
Public Blockchains: a Crowdsourcing Approach,” in the 1st Workshop on
Blockchain and Sharing Economy Applications (BlockSEA 2018) co-located
with IEEE ICDM 2018, Sentosa, Singapore, November 2018.

Songlin He, Yuan Lu, Qiang Tang, Guiling Wang, Chase Wu, “FairThunder:
Fair Peer-to-Peer Content Delivery atop Blockchain,” manuscript (ready to
submit).

Yuan Lu, Qiang Tang, Guiling Wang, “Decentralized Crowdsourcing of Human
Knowledge atop Open Blockchain,” manuscript (ready to submit).

v

Dedicated to my lovely family.

vi

ACKNOWLEDGMENT

I would like to express my deepest gratitude to my dissertation advisor, Professor

Guiling Wang. Since the first day when she offered me a great opportunity to join

NJIT, she believed in me when nobody else has not, and gave me endless helps in

the PhD pursuit. On the academic level, she delivered the fundamentals on how to

conduct scientific research, and inspired me to focus on the interesting problems in

crowdsourcing area. On the personal aspect, her passionate attitude motivated me

to continue in the most difficult times. I am also deeply indebted to my dissertation

co-advisor Professor Qiang Tang. He has been a tremendous mentor for me. He has

taught me, both consciously and unconsciously, what valuable research is and how it

to be done. I deeply appreciate his time, ideas and encourages that make my research

productive. The enthusiasm that he has for scientific research was motivational for

me and helped me go through the most tough times such as when receiving the 5th

rejection letter to my game-theoretic light-client paper.

I would like to extend my sincere appreciation to the other members of my

committee: Professor Schieber Baruch, Dr. Roman Vaculin, and Professor Jian Yang

for their great support, precious time and invaluable advice. Professor Baruch brought

me a great example as a computer scientist to balance theoretic studies and real-world

applications. Dr. Roman Vaculin is an excellent expert on using the blockchain to

resolve real-world problems in machine learning, supply chain, and other business

sectors. His novel ideas on this line of research inspired me to think the future of

using blockchain in various business sectors more thoroughly. Professor Jian Yang is

the one that introduced game theory to me. The game-theory lecture taught by him

inspired me a lot, and essentially shed light on a couple of ideas to design secure yet

still efficient blockchain-based applications in the game-theoretic setting.

vii

It is worthwhile to note that without the generous support from the Department

of Computer Science, it would be impossible for me to complete the PhD degree.

In addition, the Department provides a fantastic environment that encourages

me and many enthusiastic peers to exchange our thoughts to simulate novel research

ideas. These peers that I met at NJIT are greatly thanked for tremendous fruitful

academic discussions. An incomplete list includes Dr. Long Chen, Mr. Songlin He,

Mr. Zhenliang Lu, and more. Remarkably, many of them gradually become reliable

collaborators, who work extremely hard in contributing our coauthored papers, and

deserve my deepest gratitude.

viii

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION . 1

1.1 Traditional Crowdsourcing: Over-Reliance on Platforms 1

1.2 Blockchain: High Robustness from Less Assumptions 2

1.3 Challenges: Non-Triviality due to Limits of Blockchain 3

1.4 Main Results and Dissertation Structure 5

2 PRELIMINARIES . 8

2.1 Notations and Abbreviations . 8

2.2 Cryptographic Abstraction of Blockchain 8

2.2.1 Ideal Global Ledger Model . 8

2.2.2 Smart Contracts as Ideal Functionalities 9

2.3 Other Relevant Cryptographic Primitives 10

2.3.1 Public Key Encryption . 10

2.3.2 Cryptographic Hash Function 11

2.3.3 Cryptographic Commitment 12

2.3.4 Zero-Knowledge Proof . 12

2.3.5 Verifiable Decryption . 13

2.3.6 Simulation-Based Paradigm . 14

2.4 Game-Theoretic Security . 15

2.4.1 Security in Normal-Form Game 15

2.4.2 Security in Extensive-Form Game 16

3 ON GENERIC PRIVATE KNOWLEDGE SOLICITATION 19

3.1 Background . 19

3.1.1 Motivation . 19

3.1.2 Challenges . 20

3.2 Prior Art . 21

ix

TABLE OF CONTENTS
(Continued)

Chapter Page

3.3 Problem Formulation . 24

3.3.1 Modeling Knowledge Crowdsourcing 24

3.3.2 Defining Security Goals . 27

3.4 Common-Prefix Linkable Anonymous Authentication 28

3.5 ZebraLancer: Private and Anonymous Decentralized Crowdsourcing . 34

3.5.1 Design Intuition . 35

3.5.2 Details of ZebraLancer Protocol 38

3.5.3 Security Analysis of ZebraLancer Protocol 41

3.5.4 Implementation of ZebraLancer Protocol 44

3.6 Summary . 50

4 ON PRACTICAL PRIVATE KNOWLEDGE SOLICITATION 54

4.1 Background . 54

4.1.1 Motivation . 54

4.1.2 Challenges . 55

4.2 Prior Art . 57

4.3 Problem Formalization . 58

4.3.1 Reviewing Knowledge Crowdsourcing via HITs in Reality . . . 59

4.3.2 Defining Security Goals: Decentralized HITs’ Functionality . . 60

4.4 Dragoon: Highly Efficient Private Decentralized Crowdsourcing 63

4.4.1 Proof of Quality of Encrypted Answer 63

4.4.2 HIT Contract and HIT Protocol 66

4.4.3 Instantiating Cryptographic Building Blocks 69

4.4.4 Security Analysis . 70

4.4.5 Implementation and Evaluation 72

4.5 Summary . 76

5 ON CROWDSOURCING FOR MACHINE LEARNING TASKS 78

x

TABLE OF CONTENTS
(Continued)

Chapter Page

5.1 Background . 78

5.1.1 Motivation . 78

5.1.2 Challenges . 79

5.1.3 Problem Formulation . 81

5.2 Prior Art . 84

5.3 Protocol for Crowdsourcing ML Tasks 85

5.3.1 Protocol and Analysis: Two Non-Colluding Workers 85

5.3.2 Protocol & Analysis: n Workers (|Coalition| ≤ n− 1) 90

5.4 Summary . 93

6 ON RECRUITING RELAYS FOR BLOCKCHAINS’ LIGHT CLIENTS . . 95

6.1 Background . 95

6.1.1 Motivation . 95

6.1.2 Challenges . 96

6.2 Prior Art . 97

6.3 Warmup: Security in Extensive-Form Game 99

6.3.1 Interactive Protocol as Extensive-Form Game 99

6.3.2 Security via Sequential Equilibrium 101

6.4 Problem Formulation . 102

6.4.1 System and Adversary Model 104

6.4.2 Economic Factors . 105

6.4.3 Security Goals . 107

6.5 A Simple Light-Client Protocol . 108

6.5.1 Arbiter Contract and High-Level of the Protocol 108

6.5.2 The Light-Client Protocol . 110

6.6 Adding Incentives for Security . 114

6.6.1 Challenges of Designing Incentives 114

xi

TABLE OF CONTENTS
(Continued)

Chapter Page

6.6.2 “Light-Client Game” of the Protocol 115

6.6.3 Basic Incentive Mechanism . 118

6.6.4 Security Analysis for Basic Incentive 120

6.6.5 Augmented Incentive . 122

6.6.6 Security Analysis for Augmented Incentive 123

6.7 Instantiation of the Light-Client Protocol 124

6.8 Summary . 127

7 OTHER PERTINENT RESULTS . 129

8 SUMMARY OF THE DISSERTATION . 132

8.1 Conclusion . 132

8.2 Reflection . 134

8.3 Future Vision . 136

APPENDIX A SUPPLEMENTAL MATERIALS OF CHAPTER 6 139

A.1 Merkle Tree Algorithms . 139

A.2 Deferred Formal Description of Incentive Subroutines 140

A.2.1 Basic Incentive for the Protocol with Two Relays 141

A.2.2 Basic Incentive for the Protocol with Single Relay 143

A.2.3 Augmented Incentive for the Protocol with Single Relay 144

A.3 Inductive Definition of Utility Functions 145

A.4 Deferred Proofs for Security Theorems 149

A.4.1 Proof for Theorem 4 . 149

A.4.2 Proof for Theorem 5 . 151

A.4.3 Proof for Theorem 6 . 152

REFERENCES . 153

xii

LIST OF TABLES

Table Page

3.1 Comparison between our ZebraLancer and Existing Platforms 46

3.2 Execution Time of zk-SNARK Verifications 48

4.1 Off-Chain Proving Cost of VPKE and PoQoEA 74

4.2 On-chain Verification Cost of VPKE and PoQoEA 74

4.3 On-Chain Overall Handling Fees of the Concrete ImageNet Task 75

5.1 The Game of Two Workers in Normal Form 89

5.2 Utility of an Arbitrary Coalition C (|C| ≤ n− 1) in the Game of n Workers 91

6.1 An Instantiation (Basic Incentive of One Relay for 5 Ether Transactions) 125

A.1 Recursive Definition of Utility of Γk2 146

xiii

.

LIST OF FIGURES

Figure Page

3.1 The “idealized” model of data crowdsourcing. 25

3.2 Subtle linkability of the common-prefix-linkable anonymous authenti-
cation scheme. All involved algorithms except Setup are shown in bold. 30

3.3 The schematic diagram of the ZebraLancer protocol. 38

3.4 The system-level view of ZebraLancer. 45

3.5 The time of generating common-prefix-linkable anonymous authenti-
cations in two PCs. The box plot is derived from 12 different experiments. 49

4.1 The path to realizing efficient proofs for encrypted answers’ quality. . . . 56

4.2 The (stateful) ideal functionality of coin-aided HIT FLhit. 62

4.3 The construction of PoQoEA for the quality defined in §4.3. 66

4.4 The ideal functionality of the (stateful) HITs contract. 67

4.5 The formal description of the decentralized HITs protocol Πhit. 68

4.6 The schematic diagram of Dragoon at a high-level. 73

6.1 The extensive game of an oversimplified light-client “protocol”. The
utility function is an example to clarify insecurity of the trivial idea. . 100

6.2 The contract Gac written in the conventional pseudocode notations. . . 109

6.3 The light-client protocol ΠLW among the relay(s) and client. 111

6.4 The repetition structure of the light-client game in one query: (a) two
non-cooperative relays (i.e., Γ2); (b) one single relay (i.e., Γ1). The last
actions of the client are not shown for presentation simplicity. 115

6.5 The induced game G1, if having a non-cooperative public full node. . . . 123

8.1 Trade-off between performance and decentralization. 137

A.1 BuildMT that generates a Merkle tree with root for TX = (tx1, · · · , txn). 139

A.2 GenMTP that generates a Merkle tree proof. 140

A.3 VrfyMTP that verifies a Merkle tree proof. 140

A.4 Incentive subroutine (two non-cooperative relays). 141

A.5 Payout subroutine called by Figure A.4. 142

xiv

LIST OF FIGURES
(Continued)

Figure Page

A.6 Payout′ subroutine called by Figure A.4. 143

A.7 Incentive subroutine for the protocol with (one single relay). 144

A.8 Augmented Incentive subroutine (a single relay) with assuming a non-
colluding public full node (in the whole blockchain network). 145

xv

CHAPTER 1

INTRODUCTION

1.1 Traditional Crowdsourcing: Over-Reliance on Platforms

Recently, the paradigm of crowdsourcing empowers open collaboration on problem

solving and truth finding over the Internet. One remarkable example is the solicitation

of annotated data to create machine learning benchmark: the famous ImageNet

challenge [41] was created via Amazon’s crowdsourcing marketplace, Mechanical

Turk (MTurk) [5]. Another notable example is mobile crowdsensing [56] to help

citizens’ daily life: one (called “requester”) can request a group of individuals (called

“workers”) to use mobile devices to gather information fostering data-driven mobile

applications [148, 43]. Recently, the great commercial successes of Uber [145] and

Airbnb [2] also indicate the crowdsourcing of physical resources/services as another

promising aspect.

The most critical challenge of crowdsourcing is to incentivize workers to

contribute knowledge/services on solving the tasks. For the purpose, various

monetary incentive mechanisms were introduced [151, 159, 160, 154, 120, 133, 75] to

motivate real efforts. To effectively facilitate these mechanisms, the state-of-the-art

solution necessarily requires a trusted third-party (e.g., MTurk, Uber, etc.) to host

the crowdsourcing tasks through their whole life-cycle, such that these platforms can

fulfill the fair exchange between the crowd-shared data/services and the rewards;

otherwise, the effectiveness of incentive mechanisms can be hindered by the so-called

“free-riding” (i.e., dishonest workers reap rewards without making real efforts) and

“false-reporting” (i.e., dishonest requesters try to repudiate the payment).

It is well-known that the reduction of the over-reliance on a trusted third-party

is desirable in practice, and the same goes for the case of crowdsourcing. First,

1

numerous real-world incidents reveal that the party might silently misbehave in-house

for self-interests [112]; or, some of its employees [149] or attackers [78] can compromise

its functionality. Second, the party often fails to resolve disputes. For instance,

requesters have a good chance to collect data without paying at MTurk, because the

platform is biased on requesters over workers [103]. Third, a centralized platform

inevitably inherits all the vulnerabilities of the single point failure. For example,

Waze, a crowdsourcing map app, suffered from 3 unexpected server downs and 11

scheduled service outages during 2010-2013 [148]. Worse still, a central platform

hosting all tasks also increases the worry of massive privacy breach. A most fresh

lesson to us is the tremendous data leakage of Uber [105].

Noticeably, the trivial idea of directly enhancing the robustness/security of

centralized platforms might not work well in practice. One reason is the potential

huge cost of in-house robustness/security upgrade. For example, Alibaba has to

deploy millions of servers to maintain a robust service during the course of its Singles’

Day on-line sale to handle the burst of tremendous transactions; unfortunately, most

of these servers will be idling in the daily operations after the shopping day ends,

causing significant operational overhead in the centralized system [3]. Let alone, it

could be the case that a certain centralized platform would not be trusted due to

non-technical reasons.

1.2 Blockchain: High Robustness from Less Assumptions

In contrast to the arguably vulnerable central platforms, the blockchain, in particular,

the public/open/permissionless blockchain, is a highly distributed, transparent and

immutable global “bulletin board” replicated across the whole Internet as a chain

of blocks. The chain is usually maintained by a large-scale peer-to-peer (P2P)

network collectively. Each block in the chain will include some messages committed

by network peers, and be validated by the whole P2P network according to a

2

pre-defined consensus protocol. This ensures reliable message deliveries via the

untrusted Internet. More interestingly, the messages contained in each block can

be program code, the execution of which is enforced and verified by all P2P network

peers; hence, a more exotic application called smart contract [138] is enabled on top

of the blockchain. All these benefits are achieved without assuming the existence of

any fully trusted third-party platform, and only require a very lightweight assumption

that a portion of Internet users (e.g., more than half) are honest instead.

Essentially, the smart contract can be abstracted as a decentralized global

“consensus computer” that faithfully handles all computations and message deliveries

related to a specified task (except the adversary can choose the order of messaging).

It becomes enticing to build a decentralized crowdsourcing platform atop it for

higher robustness to reduce the over-reliance on the fragile assumption of the trusted

third-party platform. Such a robust decentralized system might enjoy high availability

and correctness, where the availability means that the crowdsourcing service is always

readily on-line to serve the users and the correctness indicates that the service always

executes correctly for pre-defined functionalities (such as trustfully enforcing the

critical incentive mechanisms to motivate the participation of highly-skilled workers).

1.3 Challenges: Non-Triviality due to Limits of Blockchain

Unfortunately, the new fascinating technology of blockchain also brings about new

challenges, due to its inherent restrictions.

The first inherent limitation of blockchain is the serious privacy challenge

[76, 85, 82], which was never that severe in the centralized setting before, as one

notable feature of the blockchain is its transparency. The whole chain is replicated

by a permissionless network to ensure consistency, thus the data submitted to the

blockchain will be visible to the public, which causes the leakage of authentication

messages and crowdsourced data immediately. While in the centralized setting, users’

3

authentication history and the important data are protected by data centers (such as

the breached one of Uber’s).

Another fundamental issue of the blockchain (more particularly, smart contract)

is that the smart contract cannot support complex computations. The reason lies in

the fact that: during the blockchain mining procedure (the new block generation),

when some output of a smart contract is expected to be recorded (that might

also affect the validity of future blocks), honest miners are required to execute the

program in order to validate the correctness of the outcome. If such a program is

computationally intensive, crafty adversarial nodes may simply skip such verification

step (or ignore putting the output at all), and go ahead to propose new blocks.

Doing this gives the adversarial nodes substantial advantage of winning the chance

for proposing new blocks, as honest nodes would not be able to propose any block

until the execution of the smart contract finishes. Such an undesirable feature was

known as verifier’s dilemma [102].

Besides the previous issues, the smart contract can only validate the internal

states of blockchain, but cannot verify the events happening in the “real world”

instead of the “blockchain world” [158]. Such a critical issue can be translated as that

the blockchain is only trusted to faithfully compute, but is not trusted to rule out

fake “real-world” inputs, which unavoidably prevents the applicability of blockchains

in various interesting use-cases. For example, the blockchain cannot know whether a

particular computer is sending a valid message to another user, if the communication

is off the blockchain. That said, the crowdsourcing of physical resources is still non-

trivial, even if one has the magic smart contract technology at hand.

After all, one more challenge of implementing decentralized applications is

that mobile devices and browser environments cannot afford the cost of executing

consensus, which makes them have to rely on a blockchain node to relay the

transactions recorded by the blockchain [96, 80]. In many practical use-cases, there

4

is no such a trusted relay node, and DApp users have to suffer from the risk of being

cheated by third-party relays.

That said, the decentralized crowdsourcing, though it is highly appealing, still

suffers from the inherent restrictions of blockchain such as privacy leakage, transaction

re-ordering, fake real-world input, etc. As a consequence, meaningful decentralization

of crowdsourcing is highly non-trivial. In particular, prior to this study, most existing

attempts in the sector of decentralized crowdsourcing [21, 139, 92, 111] are arguably

problematic, since they do not incorporate proper designs against the vulnerabilities

of blockchain, thus rendering the failure of basic utilities when these publicly-known

weaknesses are exploited by any malicious nodes from the Internet.

1.4 Main Results and Dissertation Structure

It remains a challenging open problem to attain meaningfully decentralized crowd-

sourcing systems (which can not only achieve guaranteed utilities but also realize

real-world practicality). This dissertation thoroughly studies how to overcome these

urgent challenges, and finally achieves provably secure yet still highly feasible decen-

tralized systems for crowdsourcing various resources. The remaining of dissertation

is organized as follows.

Chapter 2 introduces relevant preliminaries, including a few standard crypto-

graphic building blocks, such as blockchain’s public ledger model, the definitions of

encryption, digital signature, zero-knowledge proofs, cryptographic commitments. In

addition, it introduces the needed game-theoretic notions that can be used to argue

security in cryptographic protocols among rational participants.

Chapter 3 focuses on the crowdsourcing of human knowledge, where serious

data leakage and identity breach can be caused by the transparency of blockchain.

The basic utilities of the crowdsourcing system for human knowledge will be

further harmed, as these crowdsourcing tasks can be private, valuable, and personal

5

information sensitive. To mitigate this intrinsic issue of blockchain, a private

and anonymous crowdsourcing framework called ZebraLancer is presented [98] for

generic scenarios of soliciting human knowledge. Advanced cryptographic primitives

are employed/invented to resolve data leakage and identity breach problems, more

interestingly, fair exchange and user accountability are not sacrificed.

Chapter 4 presents a follow-up study to improve the arguably cumbersome

ZebraLancer regarding efficiency. In particular, a concretely efficient system called

Dragoon is designed. Dragoon is not only provable secure to protect the privacy of

data that are submitted via the transparent blockchain, but also is highly efficiently,

because various non-trivial efficiency-driven optimizations are performed to remove

the needless generality to squeeze the most performance via concrete implementations.

Chapter 5 discusses the crowdsourcing of computing resources for running

machine learning programs. Since the “global computer” instantiated by the

blockchain can only support very simple and deterministic computations, and thus

cannot perform complex and randomized computations such as machine learning

analysis. To solve the issue, a novel and simple incentive game is designed to outsource

the computing of machine learning tasks. Through this incentive game, a class of

machine learning tasks can be executed off-chain by a few workers, and the correct

execution results will be reported by the workers to the blockchain for rationality.

Chapter 6 initiates the first systematic study on the long-existing open problem

of generic superlight client of permissionless blockchains. The proposed protocol

allows the light client to recruit some full nodes in the blockchain network, and

instantiates an incentive game between the low-capable client and the blockchains’

full nodes via dedicatedly designed smart contract. The desired Nash equilibrium

of the incentive game would ensure the full nodes to correctly forward blockchain’s

records to the resource-starved end-user.

6

Chapter 7 briefly summarizes a few relevant preliminary results that are worth

to be further explored to extend the scope of the thesis.

Finally, in Chapter 8, the dissertation ends up with a few detailed discussions to

summarize the earlier mentioned results, check out the fundamentally methodological

inspirations, and point out a few promising follow-up directions.

7

CHAPTER 2

PRELIMINARIES

2.1 Notations and Abbreviations

Here are some notations and abbreviations that we use through the dissertation:

• Negligible function. By negligible function negl(·), it denotes a function (in
some security parameter λ) for any positive polynomial function poly(·), there
exists an integer N , such that for all λ > N , |negl(λ)| < 1

poly(λ)
.

• Negligible probability and overwhelming probability. If the probability of an event
is a negligible function (in λ), it is said that the event happens with negligible
probability; If the probability of an event is 1 except with negligible probability,
the event is said with overwhelming probability.

• String concatenation. By x||y it denotes a string concatenating strings x and y.

• Uniformly sampling. By x
$← {0, 1}λ, it denotes to uniformly sample a string x

from the set of all λ-bit strings.

• Abbreviations. Through the paper, TM means Turing machine, ITM represents
interactive Turing machine, and P.P.T. is short for probabilistic polynomial-
time. For rigorous definitions about TM, ITM, P.P.T. TM, and P.P.T. ITM,
see [134] for details.

2.2 Cryptographic Abstraction of Blockchain

2.2.1 Ideal Global Ledger Model

The (permissionless) blockchain instantiates a so-called public ledger or global ledger,

which is essentially an ever-growing linearized transaction log collectively maintained

by a network of untrusted Internet nodes. An honest node in such a network, also

known as an honest full node, keeps a blockchain replica consistent with that of

all other honest ones, through following a set of pre-defined rules called consensus

protocol.

8

In general, we can view a blockchain network as an ideal public ledger that

possesses two critical properties: persistence and liveness:

• Persistence can enforce the convergence of the local replicas of all honest nodes,
i.e., if a transaction appears in the local replica of an honest node, it will
eventually be at the same position in the replica of every other honest node,
when the underlying network delay is finite.

• Liveness enables that anyone can announce valid transactions to the blockchain
network. More importantly, one can expect the transactions to be eventually
written into the local replicas of all the honest nodes, if the underlying network
can eventually delivers the transactions.

These two properties ensure that: (i) A full node, who joins and executes the

consensus protocol, can “read” the blockchain ledger from its local replica and also

“write” any valid transaction into the chain by broadcasting. (ii) Any node, who

may not participate in the consensus protocol, is able to “write” valid transactions

into the blockchain. In practice, the writing can be realized by gossiping with some

honest full nodes to “broadcast” the transactions.

2.2.2 Smart Contracts as Ideal Functionalities

Shortly after the emergence of blockchain, it was realized this fantastic technology can

achieve much more beyond a bookkeeping ledger, as the transactions can also contain

versatile program codes (e.g., Turing-complete scripts) in addition to monetary

transfer records. In particular, the blockchain could be treated as a “bulletin board”,

where a piece of script along with all needed inputs can be posted. Furthermore,

when the execution environment of the script is shared across the whole network

through the underlying consensus rules, the same executing results of these codes can

be enforced and verified by the blockchain network collectively. More interestingly,

the piece of code posted on the blockchain (a.k.a., smart contract) can even hold some

deposits (in the form of cryptocurrency) and finally pay out the deposits according

to certain execution results, making self-executing conditional payment possible.

9

The blockchain, therefore, instantiates a transparent global “consensus computer”

that can be employed by any node to faithfully handle with conditional money

transfers, Turing-complete computations and message deliveries related to a pre-

specified task. The only exception is that the blockchain cannot “send” messages

to a node who does not join the consensus, e.g., a lightweight node. More specifically,

the smart contract can be abstracted as an ideal functionality acting with Internet

users to assist the following tasks [85, 82]:

• Global clock. There is an explicit global clock that would proceed in rounds.
The rationale behind the abstraction is that the blockchain’s liveness ensures it
to grow block by block.

• Reliable delivery of messages. All messages sent to smart contract will be
delivered to all parties by the start of next clock. This is because a message sent
to the blockchain is in the form of a validly signed transaction broadcasted to the
whole blockchain network, and then it will be solicited by a block and written
into the blockchain [57] in polynomial time (under synchrony assumption).

• Correct computation. Smart contract can be seen as a state machine driven
by messages sent to it [23]. By the increment of each block, the states of
smart contract are changed according to the messages sent in the past clock
period. The transitions of states (i.e., computations) are always correct, as
being collectively validated by the while blockchain network.

• Transparency. All internal states and message deliveries will be visible to
everyone in the whole blockchain network (intuitively, anyone).

• Pseudonym (blockchain address). By default, the sender of a message in the
blockchain is referred to a pseudonym, a.k.a., blockchain address. In practice,
a blockchain address is usually bounded to the hash of a public key of a digital
signature scheme. Also, any smart contract deployed in the blockchain can
also be referred by a unique address, such that one can call the contract to be
executed, by committing a transaction pointing to this unique address.

2.3 Other Relevant Cryptographic Primitives

2.3.1 Public Key Encryption

A public key encryption scheme has a tuple of three algorithms (PKE.KGen,Enc,Dec).

PKE.KGen(λ)→ (sk, pk) is a probabilistic algorithm that takes a security parameter

10

λ as input and returns a public key pk and a secret key sk as output. Encpk(m)→ c

is a probabilistic algorithm that takes a message m and the public key pk as input

and returns a ciphertext c as output. Decsk(c)→ m is a deterministic algorithm that

takes the ciphertext c and the secret key sk as input and returns the message m as

output. Through the dissertation, the public key encryption scheme is required to

satisfy the following correctness and security properties:

• Correctness. For any message m, the probability Pr[Encsk(c) ≡ m | (sk, pk)←
PKE.KGen(λ) ∧ c ← Encpk(m)] = 1, which is taken over the random coins of
all probabilistic algorithms.

• IND-CPA security. The encryption scheme must achieve the security of indis-
tinguishability under chosen plaintext attack (IND-CPA), which is equivalent
to semantic security and essentially captures that only negligible information
about the message can be feasibly extracted from the ciphertext [77].

2.3.2 Cryptographic Hash Function

A cryptographic hash function H : {0, 1}∗ → {0, 1}λ is a function from the domain of

arbitrary bit string to the domain of λ-bit strings, where λ is the security parameter.

Usually, for a cryptographic hash function with security parameter λ, any polynomial

time algorithms: (i) cannot find two strings m and m′ (m 6= m′) such that H(m) =

H(m′) except with negligible probability in λ, which is known as the property of

collision resistance; (ii) given y, cannot find x, such that H(x) = y, with all but

negligible probability in λ, which is known as the property of preimage resistance.

In addition to the preimage resistance and collision resistance, this dissertation

sometimes considers a stronger model of cryptographic hash function, namely, the

random oracle model which is also global and programmable (by the adversary) due

to standard cryptographic practices [25].

11

2.3.3 Cryptographic Commitment

The cryptographic notion of a commitment scheme realizes a digital “locked box”, so

the committed content can be hidden, and later be uniquely opened. A commitment

scheme is a tuple of two algorithms, one of which is the commit algorithm and the

other one of which is the open algorithm.

The commit and open algorithms can be denoted by c ← Commit(m,K) and

0/1← Open(c,m′, K), respectively. Note that be K it denotes a blinding key.

The security requirements for the commitment scheme can be defined as:

• Hiding, that means the receiver seeing the commitment c learns nothing about
the committed message m.

• Binding, that means the sender cannot cheat the receiver to accept (i.e., output
1) if revealing m′ different from the previously committed message m.

Both of the above two properties shall hold will all but except negligible probably

(in the security parameter λ). In addition, the commitment notion always satisfies

the basic correctness requirement, which means if the Open algorithm would always

output 1 to accept, if it takes as input the commitment c, and the correct blinding

key K and the correct message m.

2.3.4 Zero-Knowledge Proof

A zero-knowledge proof protocol (zk-proof) is a two-party protocol between a prover

and a verifier. It allows the prover to generate a cryptographic proof convincing

the verifier that the truthness of a certain statement (x,w) ∈ L, where x is some

public input, w is some private input of the prover (i.e., witness), and L is a specific

language. Moreover, the protocol scripts (including the proof) shall not reveal any

information except that the statement is true (i.e., (x,w) ∈ L) to the verifier.

In greater detail, zk-proof shall satisfy the following security guarantees with

an overwhelming probability:

12

• Soundness, that no prover can produce a proof to convince a verifier that ∃w s.t.
(x,w) ∈ L, if @w s.t. (x,w) ∈ L; sometimes, we require a stronger soundness
that for any prover, there exists an extractor algorithm which interacts with
the prover and can actually output the witness w (a.k.a., proof-of-knowledge).

• Zero-knowledge, that the proof distribution can be simulated by a P.P.T.
simulator without seeing any secret state, i.e., it leaks only negligible infor-
mation about the witness w.

The zero-knowledge succinct non-interactive argument of knowledge (namely,

zk-SNARK) is a generic framework of zk-proof for any NP language L, which further

allows such a proof to be generated non-interactively in common-reference string

model. More importantly, the proof is succinct, i.e., the proof size is independent

on the complexity of the statement to be proved, and is always a small constant.

More precisely, zk-SNARK is a tuple of three algorithms. A setup algorithm can

output the public parameters (i.e., common-reference string) to establish a SNARK

for a NP-complete language L = {x | ∃w, s.t., C(x,w) = 1}, where C(·, ·) = 1 can be

any NP relationship. The Prover algorithm can leverage the established zk-SNARK

to generate a constant-size proof attesting the trueness of a statement x ∈ L with

witness w. The Verifier algorithm can efficiently check the validity of the proof.

2.3.5 Verifiable Decryption

Through the dissertation, it considers a specific verifiable public key encryption

(VPKE) consisting of a tuple of algorithms (KGen,Enc,Dec,Prove,Verify) with

concrete verifiability to allow the decryptor to produce the plaintext along with a

proof attesting the correct decryption [28].

In short, KGen can set up a pair of encryption-decryption algorithms (Ench,Deck),

where h and k are public and private keys respectively. We let any (Ench,Deck) ←

KGen(1λ) to be a public key encryption scheme satisfying semantic security. For

presentation simplicity, we also let (Ench,Deck) denote the public-secret key pair

(h, k). Moreover, for any (h, k) ← KGen(1λ), the Provek algorithm explicitly inputs

13

the private key k and the ciphertext c, and outputs a message m with a proof π; the

Verifyh algorithm explicitly inputs the public key h and (m, c, π), and outputs 1/0 to

accept/reject the statement that m = Deck(c).

Beside, we let VPKE to satisfy the following extra properties (i.e., a specifically

verifiable decryption):

• Completeness. Pr[Verifyh(m, c, π) = 1 | (m,π) ← Provek(c)] = 1, for ∀ c and
(h, k)← KGen(1λ);

• Soundness. For any (h, k) ← KGen(1λ) and c, any P.P.T. A cannot produce π
fooling Verifyh to accept that c is decrypted to m′ if m′ 6= Deck(c), with except
negligible probability;

• Zero-knowledge. The proof π can be simulated by a P.P.T. simulator SV PKE, on
input only public knowledgem, h and c that indeed satisfy (m, c, h) ∈ LV PKE :=
{~x := (m, c, h) | m = Deck(c) ∧ (h, k)← KGen(1λ)}, which ensures the protocol
leaks nothing more than the truthness of the statement m = Deck(c).

2.3.6 Simulation-Based Paradigm

To formalize and prove security, a real world and an ideal world can be defined and

compared: (i) in the real world, there is an actual protocol Π among the parties, some

of which can be corrupted by an adversary A; (ii) in the ideal world, an “imaginary”

trusted ideal functionality F replaces the protocol and interacts with honest parties

and a simulator S. We say that Π securely realizes F , if for ∀ P.P.T. adversary A in

the real-world, ∃ a P.P.T. simulator S in the ideal-world, s.t. the two worlds cannot

be distinguished, which means: no P.P.T. distinguisher D can attain non-negligible

advantage to distinguish “the joint distribution over the outputs of honest parties

and the adversary A in the real world” from “the joint distribution over the outputs

of honest parties and the simulator S in the ideal world”. Intuitively, all admissible

ideal-world simulators cannot break any security guarantees, as the ideal-world is

secure by default; then, the indistinguishability of real-world adversaries and ideal-

14

world simulators will immediately imply the computational security of real-world

protocol.

Moreover, we consider the static adversary through the dissertation, which

means the adversary can corrupt some parties only before the protocol starts.

Protocols proven secure in the real/ideal paradigm can be composed sequentially,

due to the transitivity of security reductions [65], which is known as sequential

composition theorem [65, 29]. The advantage of simulation-based paradigm is that all

desired behaviors of the protocol can be precisely described by the ideal functionality.

Remarkably, this approach has been widely adopted to analyze decentralized protocols

[85, 82, 17] to capture the subtle adversary in the blockchain.

2.4 Game-Theoretic Security

The security model in cryptographic settings assume that the participating parties

are either completely honest or arbitrarily malicious. In game-theoretic settings, a

party is neither honest nor malicious, but rational, and thus seeks for its best utility.

In this scenario, the “security” can then be defined as the realization of desired Nash

equilibrium or its refinements.

2.4.1 Security in Normal-Form Game

Particularly, a game Γ joined by n players, if described in normal-form, can consist

of: (i) a set of players denoted by W = {W1, . . . ,Wn}; (ii) a space of players’ pure

strategies, denoted by S = S1 × · · · × Sn, in which Si denotes the pure strategies

of player Wi, while a strategy σi of player Wi is chosen from his strategy space

(possibly by a randomized way), and we call ~σ = {σ1, . . . , σn} as a joint strategy

of the players; (iii) a utility function that defines the utility of each player under

different joint strategies. 5 A Nash equilibrium is a particular joint strategy where no

player can realize better utility by unilaterally changing his strategy. Standard Nash

15

equilibrium assumes each player makes decision independently. More generally, we

may also consider collusion among part of the players. Throughout this dissertation,

a particular refinement of Nash equilibrium that can be determined by iterated

elimination of weakly-dominated strategies will be applied, as one always can expect

a player would not play a strategy, if there is a better alternative for that strategy. In

case there exists such a refined equilibrium ~σ in Γ, we call (Γ, ~σ) a practical mechanism.

2.4.2 Security in Extensive-Form Game

Here are the deferred formal definitions of the finite incomplete-information extensive-

form game and the sequential equilibrium.

Definition 1. Finite incomplete-information extensive-form game Γ is

defined as a tuple of 〈N,H, P, fc, (ui)i∈N, (Ii)i∈N〉 [117]:

• N is a finite set representing the players.

• H is a set of sequences satisfying: (i) ∅ ∈ H; (ii) if h = 〈a1, . . . , aK〉 ∈ H, then
any prefix of h belongs to H. Each member of H is a history sequence. The
elements of a history are called actions. A history sequence h = 〈a1, . . . , aK〉 ∈
H is terminal, iff h is not a prefix of any other histories in H. .

• Let Z denote the set of terminal histories. For any non-terminal history h =
〈a1, . . . , aK〉 ∈ H \ Z, the set of actions available after h can be defined as
A(h) = {a|〈a1, . . . , aK , a〉 ∈ H}.

• P : H \ Z→ N∪{chance} is the player function to assign a player (or chance)
to move at a non-terminal history h. Particularly when P (h) = chance, a
special “player” called chance acts at the history h.

• (ui)i∈N : Z→ R|N| is the utility function that defines the utility of the players at
each terminal history (e.g., ui(h) specifies the utility of player i at the terminal
history h).

• fc is a function associating each history h ∈ {h|P (h) = chance} with a
probability measure fc(;h) on A(h), i.e., fc(a;h) determines the probability of
the occurrence of a ∈ A(h) after the history h of the player “ chance”.

• (Ii)i∈N is a set of partitions. Each Ii is a partition for the set {h|P (h) = i}, and
called as the information partition of player i; a member Ii,j of the partition Ii

16

is a set of histories, and is said to be an information set of player i. We require
A(h) = A(h′) if h and h′ are in the same information set, and then denote the
available actions of player i at an information set Ii,j ∈ Ii as A(Ii,j).

Note in our context, the strategy of a player is to choose a P.P.T. ITM, whose action

is to produce a string and feed the string to the other P.P.T. ITMs (i.e., other players)

in the cryptographic protocol.

Definition 2. A behavioral strategy (or strategy for short) of player i (denoted

by si) is a collection of independent probability measures denoted by {βi(Ii,j)}Ii,j∈Ii,

where βi(Ii,j) is a probability measure over A(Ii,j) (i.e., the available actions of player

i at his information set Ii,j). We say ~s = (s)i∈N is a behavior strategy profile (or

strategy profile for short), if every si ∈ ~s is a behavior strategy of player i. When ~s =

({βi(Ii,j)}Ii,j∈Ii)i∈N assigns positive probability to every action, it is called completely

mixed.

Definition 3. An assessment σ in an extensive game is a pair (~s, µ), where ~s is a

behavioral strategy profile and µ is a function that assigns to every information set

a probability measure on the set of histories in the information set (i.e., every). We

say the function µ is a belief system.

Definition 4. The expected utility of a player i determined by the assessment σ =

(~s, µ) conditioned on Ii,j is ūi(~s, µ|Ii,j) =
∑

h∈Ii,j µ(Ii,j)(h)
∑

z∈Z ρ(~s|h)(z)ui(z)

where h = 〈a1, . . . , aL〉 ∈ H \ Z, z = 〈a1, . . . , aK〉 ∈ Z, and ρ(~σ|h)(z) denotes the

distribution over terminal histories induced by the strategy profile ~s conditioned on

the history h being reached (for player P (h) to take an action), i.e.,

ρ(~s|h)(z) =


0, if h is not a prefix of z∏K−1

k=L βP (a1,...,ak)(a1, . . . , ak)(ak+1), otherwise

Definition 5. We say an assessment σ = (~σ, µ) is a ε-sequential equilibrium, if it is

ε-sequentially rational and consistent:

17

• (~s, µ) is ε-sequentially rational if for every play i ∈ N and his every information
set Ii,j ∈ Ii, the strategy si of player i is a best response to the others’ strategies
~s−i given his belief at Ii,j, i.e., ūi(~s, µ|Ii,j) + ε ≥ ūi((s

∗
i , ~s−i), µ|Ii,j) for every

strategy s∗i of every player i at every information set Ii,j ∈ Ii. Note that ~s−i
denotes the strategy profile ~s with its i-th element removed, and (s∗, ~s−i) denotes
~s with its i-th element replaced by s∗.

• (~s, µ) is consistent, if ∃ a sequence of assessments ((~sk, µk))∞k=1 converges to
(~s, µ), where ~sk is completely mixed and µk is derived from ~sk by Bayes’ rules.

Remark. The above definition of extensive game (along with the relevant sequential

equilibrium notion) provides a standard way to arguing the security of extensive

protocols in the rational model [71, 45, 118]. Generally speaking, the game-theoretic

analysis of an interactive protocol starts by defining an extensive game to model

the strategies (i.e., probabilistic interactive Turing machines) of each party in the

protocol. A utility function would assign every party a certain payoff, for each possible

execution induced by the strategies of all parties. Then the security is argued by the

properties of the extensive game, for example, its sequential equilibrium [69] or some

other refinements of Nash equilibria [70, 71, 45, 118, 84].

18

CHAPTER 3

ON GENERIC PRIVATE KNOWLEDGE SOLICITATION

3.1 Background

Crowdsourcing empowers open collaboration over the Internet. One remarkable

example is the solicitation of human knowledge, e.g., annotated data. The

benchmark of famous ImageNet challenge [41] was created via Amazon’s crowd-

sourcing marketplace, Mechanical Turk (MTurk) [5]. One most critical issue in

crowdsourcing is that the crowd might lack interests to contribute qualified data.

Therefore, various monetary incentive mechanisms were introduced [151, 159, 160,

154, 120, 133, 75] to motivate workers to make real efforts.

To facilitate these mechanisms, the state-of-the-art solution necessarily requires

a trusted third-party (e.g., the server of MTurk) to host crowdsourcing tasks to fulfill

the fair exchange between the crowd-shared data and the rewards; otherwise, the effec-

tiveness of incentive mechanisms can be hindered by the so-called “free-riding” (i.e.,

dishonest workers reap rewards without making real efforts) and “false-reporting”

(i.e., dishonest requesters try to repudiate the payment).

3.1.1 Motivation

It is well-known that the reduction of the reliance on a trusted third-party is desirable

in practice, and the same goes for the case of crowdsourcing.

It becomes enticing to decentralize crowdsourcing atop blockchain, as it is a

distributed, transparent and immutable public “bulletin board” organized as a chain

of blocks. The blockchain is usually managed and replicated by a peer-to-peer (P2P)

network collectively. Each block will include some messages committed by network

peers, and be validated by the whole network according to a pre-defined consensus

19

protocol. This ensures reliable message deliveries via the untrusted Internet. More

interestingly, the messages contained in each block can be program code, the execution

of which is enforced and verified by all P2P network peers; hence, a more exotic

application of smart contract [138] is enabled. Essentially, the smart contract can

be viewed as a “decentralized computer” that faithfully handles all computations

and message deliveries related to a specified task (except the adversary can choose

the order of messaging). It becomes enticing to build a decentralized crowdsourcing

platform atop.

3.1.2 Challenges

The new blockchain technology also brings about new privacy challenges [76], which

were never that severe in the centralized setting before, as one notable feature of the

blockchain is its transparency. The whole chain is replicated to the whole network to

ensure consistency, thus the data submitted to the blockchain will be visible to the

public. This causes an immediate problem violating data privacy, considering that

many of the crowdsourced data maybe sensitive. For example, even in the intuitively

“safe” image annotation tasks, if there are some special ambiguous pictures (e.g.,

Thematic Apperception Test pictures [113]), the answers to them can be used to

infer the personality profiles of workers. Sometimes, the data are simply valuable to

the requester who paid to get them. What is worse, since the block confirmation

(which corresponds to the time when the submitted answers are actually recorded

in a block) normally takes some time after the data is submitted to the network,

a malicious worker can simply copy the data committed by others, and submit the

same data as his own to run the free-riding attack. Without data confidentiality,

the incentive mechanisms could be rendered completely ineffective in decentralized

settings.

20

Furthermore, most crowdsourcing systems [5, 148] and incentive mechanisms

[159, 160, 154] implicitly require requesters/workers to authenticate to prevent

misbehaviors caused by (colluded) counterfeited identities [46]. When crowdsourcing

is decentralized, this basic requirement will cause the history of submitting/requesting

to be known by everyone via the blockchain (that was previously “protected” in a

data center such as the breached one of Uber’s). Thus considerable information about

workers/requesters [155] will leak to the public through their participation history,

which seriously impairs their privacy and even demotivates them to join. Notably, if

a user frequently joins traffic monitoring tasks, then anyone can read the blockchain

and figure out his location traces.

To address the above fundamental privacy challenges of decentralizing crowd-

sourcing, we have to resolve two natural tensions: (i) the tension between the

blockchain transparency and the data confidentiality, and (ii) the tension between

the anonymity and the accountability. Simple solutions utilizing some standard

cryptographic tools (e.g., encryption and/or group signature) to protect the data

confidentiality and the anonymity do not work well: the encryption of data

immediately prevents smart contracts from enforcing the rewards policy; to allow

fully anonymous participation will give a dishonest worker an opportunity of multiple

submissions in one crowdsourcing task, and thus he may claim more rewards than

what is supposed (similarly for a malicious requester).

3.2 Prior Art

The insufficiencies of the state-of-the-art solutions are thoroughly reviewed.

Centralized crowdsourcing systems. MTurk [5] is the most commercially

successful crowdsourcing platform. But it has a well-know vulnerability allowing

false-reporters gain short-term advantage [103]. Also, MTurk collects plaintexts of

answers, which causes considerable worry of data leakage. Last, the pseudo IDs in

21

MTurks can be trivially linked by a malicious requester. Dynamo [128] was designed

as a privacy wrapper of MTurk. Its pseudo ID can only be linked by the pseudo ID

issuer, but still it inherited all other weaknesses of MTurk. SPPEAR [64] considered

a couple of privacy issues in data crowdsourcing, and thus introduced a couple more

authorities, each of which handled a different functionality. Distributing one authority

into multiple reduces the excessive trust, but, unfortunately, it is still not clear how

to instantiate all those different authorities in practice.

Decentralized crowdsourcing. We also note there are several attempts [21, 139,

92, 111] using blockchain to decentralize crowdsourcing, but neither of them considers

privacy and anonymity which are arguably fundamental for basic utility: the authors

of [21] built up a crowd-shared service on top of the blockchain, but the system is

not compatible with incentive mechanisms and is not privacy-preserving either; the

authors of [139] leveraged the blockchain as a payment channel in their crowdsourcing

framework, but it is neither secure against malicious workers and dishonest requesters,

nor privacy-preserving; a couple of recent attempts [92, 111] took advantage of the

public blockchain to enforce incentives, but these frameworks are neither private nor

anonymous, i.e., the collected data and the unique identities (such as certificates) will

leak to the whole network of the open blockchain.

Anonymous crowdsourcing. Li and Cao [93] proposed a framework to allow

workers generate their own pseudonyms based on their device IDs. But the protocol

sacrificed the accountability of workers, because workers can forge pseudonyms

without attesting that they are associated to real IDs, which gave a malicious

worker chances to forge fake pseudo IDs and cheat for rewards. Rahaman et al.

[125] proposed an anonymous-yet-accountable protocol for crowdsourcing based on

group signature, and focused on how to revoke the anonymity of misbehaved workers.

Misbehaved workers could be identified and further revoked by the group manager.

The authors in [64] similarly relied on group signature but introduced a couple of

22

separate authorities. Our solution can be considered as a proactive version that can

prevent worker misbehavior, and without relying on a group manager.

Accountable anonymous authentication. The pioneering works in anonymous

e-cash [32, 33] firstly proposed the notion of one-time anonymous authentication.

The concept later was studied in the context of one-show anonymous credential [27].

Some works [153, 140] further extended the notion of one-time use to be k-time use,

and therefore enabled a more general accountability for anonymous authentications.

In [26], the authors considered a special flavor of accountability to periodically allow

k-time anonymous authentications. Our new primitive provides a more fine-grained

conditional linkage of anonymous authentications, which is needed for preventing

multi-submission in each crowdsourcing task.

Linkable group/ring signature. Conceptually similar to the linkability appeared

in one-show credential [27], linkable group/ring signatures [115, 95] were proposed to

allow a user to sign messages on behalf of his group unlinkably up to twice.

In the work of Man Ho et al. [8], a more general concept of event-oriented

linkable group signature was formulated to realize more fine-grained trade-off between

accountability and anonymity: a user can sign on behalf of his group unlinkably up

to k times per event, where an event could be a common reference string (e.g.,

the unique address to call a smart contract deployed in the blockchain). But its

main disadvantage is that the group manager can reveal the actual identities of

users. Similar event-oriented linkability was discussed in the context of ring signature

[143] as well. Even though that construction enjoys unbreakable anonymity, its main

drawback becomes the impracticability of “hiding” the real identity behind a large

group (mainly because the verification of signatures might require the public keys of

all group members).

Our new primitive can be considered as a special cryptographic notion to

formalize the subtle balance between event-oriented linkability and irrevocable

23

anonymity (within a large and dynamic group). Specifically, our scheme ensures that

no one can link the actual identity to any authenticated message (which is strictly

stronger than [8]), and also it enables a user to “hide” behind a large group of users

(i.e., all users registered at RA, which is impossible in practice via [143]).

Privacy-preserving smart contracts. Privacy-preserving smart contract is a

recent hot topic in blockchain research. Most of them are for general purpose

consideration [82, 161], and thus deploy heavy cryptographic tools including general

secure multi-party computation (MPC). Hawk [85] did provide a general framework

for privacy-preserving smart contracts using light zk-SNARK, but mainly for reward

receiver to prove to the contract. Our work can be considered as a very specially

designed MPC protocol, and a lot of dedicated optimizations of zk-SNARK exist

which can directly benefit our protocol. Last, cryptocurrencies like Zcash [73]

and Ethereum [52] also leverage zk-SNARK to build a public ledger that supports

anonymous transactions. We note that they consider more basic blockchain

infrastructures, on top of which we may build our application for crowdsourcing.

3.3 Problem Formulation

More precisely, the definitions about the problem and its security requirements will

be given as the following.

3.3.1 Modeling Knowledge Crowdsourcing

As illustrated in Figure 3.1, there are four roles in the model of data crowdsourcing,

i.e., requesters, workers, a platform and a registration authority. A requester, uniquely

identified by R, can post a task to collect a certain amount of answers from the

crowd. When announcing the task, the requester promises a concrete reward policy

to incentivize workers to contribute (see details about the definition of reward policy

below). A worker with a unique ID Wj, submits his answer Aj and expects to receive

24

the corresponding reward. The platform, a medium assisting the exchange between

requesters and workers, is either a trusted party or emulated by a network of peers.

The platform considered in this dissertation is jointly maintained by a collection of

network peers, and in particular, we will build it atop a open blockchain network.

The registration authority (RA), can play an important role of verifying and managing

unique identities of workers/requesters, by binding each identity to a unique credential

(e.g., a digital certificate).

Figure 3.1 The “idealized” model of data crowdsourcing.

We remark that the well established identities are necessary demand of real-

world crowdsourcing systems, for example MTurk and Waze, to prevent misbehaviors

such as Sybil attack. Moreover, many auction-based incentive mechanisms [160, 154]

are built upon the non-collusive game theory that implicitly requires established

identities to ensure one bid from one unique ID. We employ RA to establish identities.

In practice, a RA can be instantiated by (i) the platform itself, (ii) the certificate

authority who provides authentication service, or (iii) the hardware manufacturer

who makes trusted devices that can faithfully sign messages [129]. Our solution

should be able to inherit these established RAs in the real-world.

25

In this dissertation, w.l.o.g., we assume that each unique identity is only allowed

to submit one answer to a task. Also, we consider settings where the value of

crowd-shared answers can be evaluated by a well-defined process such as auctions

and quality-aware rewards, and also the corresponding rewards, c.f. [120, 133, 75]

about quality-aware rewards and [160, 154] about auction-based incentives. These

incentives share the same essence as follows.

Suppose an authenticated requester publishes a task T with a budget τ to

collect n answers from n workers. An authenticated worker interested in it will then

submit his answers. The reward of an answer Aj will follow a well-defined process

determined by some auxiliary variables, i.e., the reward of Aj can be defined as

Rj := R(Aj; a1, . . . , am, τ), where R is a function parameterized by some auxiliary

variables denoted by a1, . . . , am, τ . Remark that τ is the budget of the requester, and

we will use Rj := R(Aj; τ) for short.

Particularly, in some simple tasks (e.g., multiple choice problems), the quality

of an answer can be straightforwardly evaluated by all answers to the same task, i.e.,

Rj = R(Aj;A1, . . . , An, τ), with using majority voting or estimation maximization

iterations [120, 133, 75]. More generally, [9] proposed a universal method to evaluate

quality: (i) some workers are requested to answer a complex task; (ii) other different

workers are then requested to grade each answer collected in the previous stage.

What’s more, our model captures the essence of auction-based incentive mechanism

such as [154, 160], when the parameters a1, . . . , am represent the bids of workers (and

other necessary auxiliary inputs such as their reputation scores).

Our work considers the general definition above and will be extendable

to the scope of auction-based incentives, even though the protocol design and

implementations in this dissertation mainly focus on how to instantiate quality-aware

incentives. Also note that the flat-rate incentive, that is each submitted answer will

26

get a flat-rate payment [5], can be considered as a special case of the above abstraction

as well.

3.3.2 Defining Security Goals

Next, we specify the basic security requirements for our (decentralized) crowdsourcing

system on top of the existing infrastructure of open blockchain.

Data confidentiality. This property requires that the communication transcripts

(including the blocks in the blockchain) do not leak anything to anyone (except the

requester) about the input parameters a1, . . . , am of the incentive policy R. Because

these parameters might actually be confidential data or sealed bids. We can adapt the

classical semantic security [67] style definition from cryptography for this purpose:

the distribution of the public communication can be simulated with only public

knowledge.

Anonymity. Private information of worker/requester can be explored by linking

tasks they join/publish [155]. Intuitively, we might require two anonymity properties

for workers: (i) unlinkability between a submission and a particular worker and (ii)

unlinkability among all tasks joined by a particular worker. However, (i) indeed can

be implied by (ii), because the break of first one can obviously lead up to the break

of the latter one. Similarly, the anonymity of requester can be understood as the

unlinkability among all tasks published by her. The requirement of worker anonymity

can be formulated via the following game. An adversary A corrupts a requester, the

registration authority (RA), and the platform (e.g., the blockchain); suppose there

are only two honest workers, W0 and W1. In the beginning, the adversary announces

a number of n tasks. For each task Ti, suppose there are a set of participating workers

WTi . After seeing all the communications, for any Ti 6= Tj, A cannot tell whether

WTi ∩WTj = ∅ better than guessing. We note that the anonymity should hold

even if all entities, including the requester and the platform (except W0 and W1), are

27

corrupted. The requester anonymity can be defined via the above game similarly, and

we omit the details.

Security against a malicious requester. A malicious requester may avoid paying

rewards (defined by the policy R), e.g., launches the false-reporting attack. Security in

this case can be formulated via the following security game: an adversary A corrupts

the requester and executes the protocol to publish a task with a promised reward

policy R and a budget τ . Let us define a bad event B1 to be that there exists a worker

Wj, who submits answers Aj and receives a payment smaller than Rj = R(Aj; τ).

We require that for every polynomial time adversary A, the probability Pr[B1] is

negligibly small.

Security against malicious workers. A dishonest worker may try to harvest more

rewards than what he deserves. Security in this case can be formulated as follows: an

adversary A corrupts one worker,1 and participates in the protocol interacting with a

requester (and the platform). A submits some answersA := {A1, . . . , An}, n ≥ 1. Let

us define the bad event B2 as that A receives a payment greater than max{Aj∈A}Rj :=

R(Aj; τ) from the requester. We require that for all polynomial time A, Pr[B2] is

negligibly small.

We remark that the above securities against a malicious requester and malicious

workers have capture the special fairness of the exchange between crowd-shared data

and rewards.

3.4 Common-Prefix Linkable Anonymous Authentication

Before the formal description of ZebraLancer’s protocol, let us introduce the new

primitive for achieving the anonymous-yet-accountable authentication first. As briefly

shown in Figure 3.2, our new primitive can be built atop any certification procedure,

1We remark that we focus on resolving the new challenges introduced by blockchain, and put
forth the best possible security, as if there is a fully trusted third-party serving as the crowdsourcing
platform. For example, it is not quite clear how to handle the collusion of many identities, even in
the centralized setting; thus such a problem is out of the scope of this dissertation.

28

thus we include a certification generation procedure that can be inherited from any

existing one. Also, we insist on non-interactive authentication, thus all the steps

(including the authentication step) are described as algorithms instead of protocols.

Formally, a common-prefix-linkable anonymous authentication scheme is composed

of the following algorithms:

• Setup(1λ). This algorithm outputs the system’s master public key mpk, and
system’s master secret key msk, where λ is the security parameter.

• CertGen(msk, pk). This algorithm outputs a certificate cert to validate the
public key.

• Auth(m, sk, pk, cert,mpk). This algorithm generates an attestation π on a
message m that: the sender of m indeed owns a secret key corresponding to
a valid certificate.

• Verify(m,mpk, π). This algorithm outputs 0/1 to decide whether the attestation
is valid or not for the attested message, with using system’s master public key.

• Link(mpk,m1, π1,m2, π2). This algorithm takes inputs two valid message-
attestation pairs. If m1,m2 have a common-prefix with length λ, and π1, π2
are generated from a same certificate, it outputs 1; otherwise outputs 0.

We also define the properties for a common-prefix-linkable anonymous authenti-

cation. Correctness is straightforward that an honestly generated authentication can

be verified. Unforgeability also follows from the standard notion of authentications,

that if one does not own any valid certificate, she cannot authenticate any message.

We mainly focus on the formalizing the security notions of common-prefix-linkability

and anonymity.

The first one characterizes a special accountability requirement in anonymous

authentication. It requires that no efficient adversary can authenticate two messages

with a common-prefix without being linked, if using a same certificate. More generally,

if an attacker corrupts q users, she cannot authenticate q + 1 messages sharing a

common-prefix, without being noticed. Formally, consider the following cryptographic

game between a challenger C and an attacker A:

29

Figure 3.2 Subtle linkability of the common-prefix-linkable anonymous authenti-
cation scheme. All involved algorithms except Setup are shown in bold.

1. Setup. The challenger C runs the Setup algorithm and obtains the master keys.

2. CertGen queries. The adversary A submits q public keys with different identities
and obtains q different certificates: cert1, . . . , certq.

3. Auth. The adversary A chooses q + 1 messages p||m1, . . . , p||mq+1 sharing
a common-prefix p (with |p| = λ) and authenticates to the challenger C by
generating the corresponding attestations π1, . . . , πq+1.

Adversary A wins if all q + 1 authentications pass the verification, and no pair of

those authentications were linked.

Definition 6 (Common-prefix-linkability). For any probabilistic polynomial time

adversary A, Pr[A wins in the above game] is negligible in some security parameter

λ (over all random coins flipped by the challenger).

30

Next is the anonymity guarantee in normal cases. We would like to ensure the

anonymity against any party, including the public, the registration authority, and the

verifier who can ask for multiple (and potentially correlated) authentication queries.

Also, our strong anonymity requires that no one can even tell whether a user is

authenticating for different messages, if these messages have different prefixes. The

basic requirement for anonymity is that no one can recognize the real identity from

the authentication transcript. But our unlinkability requirement is strictly stronger,

as if one can recognize identity, obviously, she can link two authentications by firstly

recovering the actual identities.

To capture the unlinkability (among the authentications of different-prefix

messages), we can imagine the most stringent setting, where there are only two

honest users in the system, the adversary still cannot properly link any of them

from a sequence of authentications. Formally, consider the following game between

the challenger C and adversary A.

1. Setup. The adversary A generates the master key pair.

2. CertGen. The adversary A runs the certificate generation procedure as a
registration authority with the challenger. The challenger submits two public
keys pk0, pk1 and the adversary generates the corresponding certificates for them
cert0, cert1. A can always generate certificates for public keys generated by
herself.

3. Auth-queries. The adversaryA asks the challenger to serially use (sk0, pk0, cert0)
and (sk1, pk1, cert1) to do a sequence of authentications on messages chosen by
her. Also, the number q of authentication queries is chosen by A. The adversary
obtains 2q message-attestation pairs.

4. Challenge. The adversary A chooses a new message m∗ which does not have a
common prefix with any of the messages asked in the Auth-queries, and asks
the challenger to do one more authentication. C picks a random bit b and
authenticates on m∗ using skb, pkb, certb. After receiving the attestation πb, A
outputs her guess b′.

It is said that the adversary wins the above game, if b′ = b.

31

Definition 7 (Anonymity). An authentication scheme is unlinkable, if ∀ probabilistic

polynomial-time algorithm A, |Pr[A wins in the above game]− 1
2
| is negligible.2

Construction. Now we proceed to construct such a primitive. Same as many

anonymous authentication constructions, we will also use the zero-knowledge proof

technique towards anonymity. In particular, we will leverage zk-SNARK to give an

efficient construction. For the above concept of common-prefix-linkable anonymous

authentication, we need to further support the special accountability requirement.

The idea is as follows, since the condition that “breaks” the linkability is common-

prefix, thus the authentication will do a special treatment on the prefix. In particular,

the authentication shows a tag committing to the prefix together with the user’s secret

key, and then presents zero-knowledge proof that such a tag is properly formed, i.e.,

computed by hashing the prefix and a secret key. To ensure other basic security

notions, we will also compute the other tag that commits to the whole message. The

user will further prove in zero-knowledge that the secret key corresponds to a certified

public key.

Note that our main goal is to decentralize crowdsourcing, such a new anonymous

authentication primitive could be further studied systematically in future works.

Concretely, we present the detailed construction as follows:

1. Setup(λ). This algorithm establishes the public parameters PP that will be
needed for the zk-SNARK system. Also, the algorithm generates a key pair
(msk,mpk) which is for a digital signature scheme.3

2. CertGen(msk, pki): This algorithm runs a signing algorithm on pki,
4 and obtains

a signature σi. It outputs certi := σi.

2We remark that our definition of anonymity is strictly stronger than that definition of the
event-oriented linkable group signature [8], in which the RA can revoke user anonymity under certain
conditions.

3To be more precise, the public parameter generation could be from another algorithm. For
simplicity, we put it here. In the security game for anonymity, the adversary only generates
msk,mpk, not the public parameter.

4We assume an external identification procedure that can check the actual identity bound to
each public key, and the user key pairs are generated using common algorithms, e.g., for a digital
signature. We ignore the details here.

32

3. Auth(p||m, ski, pki, certi, PP): On inputting a message p||m having a prefix p.

The algorithm first computes two tags (or interchangeably called headers later),
t1 = H(p, ski) and t2 = H(p||m, ski), where H is a secure hash function.

Then, let ~w = (ski, pki, certi) represent the private witness, and ~x = (p||m,mpk)
be all common knowledge, the algorithm runs zk-SNARK proving algorithm
Prover(~x, ~w, PP) for the following language LT := {t1, t2, ~x = (p||m,mpk) |
∃~w = (ski, pki, certi) s.t. CertVrfy(certi, pki,mpk) = 1∧pair(pki, ski) = 1∧t1 =
H(p, ski)∧ t2 = H(p||m, ski)}, where the CertVrfy algorithm checks the validity
of the certificate using a signature verification, and pair algorithm verifies
whether two keys are a consistent public-secret key pair.

This proving algorithm yields a proof η for the statement ~x ∈ L (also for the
proof-of-knowledge of ~w). Finally, the algorithm outputs π := (t1, t2, η).

4. Verify(p||m,π,mpk, PP): this algorithm runs the verifying algorithm of zk-
SNARK Verifier on ~x, π and PP , and outputs the decision bit d ∈ {0, 1}.

5. Link(m1, π1,m2, π2): On inputting two attestations π1 := (t11, t
1
2, η1) and π2 :=

(t21, t
2
2, η2), the algorithm simply checks t11

?
= t21. If yes, output 1; otherwise,

output 0. We also use Link(π1, π2) for short.

Security analysis (sketch). Here we briefly sketch the security analysis for

the construction. As the scheme is of independent interests, we defer detailed

analyses/reductions to an extended dissertation where the scientific behind will be

formally studied. Regarding correctness, it is trivial, because of the completeness

of underlying SNARK. Regarding unforgeability, we require an uncertified attacker

cannot authenticate. The only transcripts can be seen by the adversary are headers

and the zero-knowledge attestation. Headers include one generated by hashing the

concatenation of p||m, sk. In order to provide a header, the attacker has to know the

corresponding sk, as it can be extracted in the random oracle queries. Thus there

are only two different ways for the attacker: (i) the attacker generates forges the

certificate, which clearly violates the signature security; (ii) the attacker forges the

attestation using an invalid certificate, which clearly violates the proof-of-knowledge

of the zk-SNARK.

33

Regarding the common-prefix-linkability, it is also fairly straightforward, as the

final authentication transcript contains a header computed by H(p, sk) which is an

invariable for a common prefix p using the same secret key sk.

Regarding the anonymity/unlinkability, we require that after seeing a bunch of

authentication transcripts from one user, the attacker cannot figure out whether a new

authentication comes from the same user. This holds even if the attacker can be the

registration authority that issues all the certificates. To see this, as the attacker will

not be able to figure the value of the sk from all public value, thus the headers/tags

can be considered as random values. It follows that H(p, sk) and a random value

r cannot be distinguished (similarly for H(p||m, sk)). More importantly, due to the

zero-knowledge property of zk-SNARK, given r, a simulator can simulate a valid

proof η∗ by controlling the common reference string of the zk-SNARK. That said,

the public transcript t1, t2, η can be simulated by r1, r2, η
∗ where r1, r2 are uniform

values, and η∗ is a simulated proof, all of which has nothing to do with the actual

witness sk.

Summarizing the above intuitive analyses, we have the following theorem:

Theorem 1. Conditioned on that the hash function to be modeled as a random oracle

and the zk-SNARK is zero-knowledge, the construction of the common-prefix-linkable

anonymous authentication satisfies anonymity. Conditioned on the underlying digital

signature scheme used is secure, and the zk-SNARK satisfies proof-of-knowledge,

our construction of the common-prefix-linkable anonymous authentication will be

unforgeable. It is also correct and common-prefix linkable.

3.5 ZebraLancer: Private and Anonymous Decentralized Crowdsourcing

In this section, we will construct a private and anonymous protocol to address

the critical challenges of decentralizing crowdsourcing, without sacrificing security

against “free-riders” and “false-reporters”. The procedures of crowdsourcing will be

34

decentralized atop an existing network of blockchain. More specifically, we will tackle

the new privacy and anonymity challenges brought by the blockchain.

As we briefly mentioned in previous sections, the system will implicitly has a

separate registration service that validates each participant’s unique identity before

issuing a certificate. Such setup alleviates some basic problems that every worker

is allowed to submit no more than a fixed number k of answers. For simplicity, we

consider here k = 1.

3.5.1 Design Intuition

Our basic strategy is to let the smart contract (which is hosted by the blockchain

network) to enforce the fair exchange between the submitted answers and their

corresponding rewards, but without revealing any data or any identity to the

blockchain. Let us walk through the high level ideas first.

The requester firstly codifies a reward policy parameterized by her budget (i.e.,

R(·; τ)) into a smart contract. She broadcasts a transaction containing the contract

code and the budget. Once the smart contract is included in the blockchain, it can

be referred by a unique blockchain address, and the budget should be deposited to

this address (otherwise, no one would participate). After that, any worker who is

interested in contributing could simply submit his answer to the blockchain, via a

transaction pointing to the contract’s address.

As pointed out before, we have to protect the confidentiality of the answers, in

order to ensure that answers from different workers are independent. The workers

encrypt the answers under the requester’s public key. Now the contract cannot see

the answers so it cannot calculate the corresponding rewards. But the requester

can retrieve all the encrypted answers and decrypt them off-chain, and further learn

the rewards they deserve. It would be necessary that the requester will correctly

instruct the smart contract how to proceed forward. Concretely, we will leverage

35

the practical cryptographic tool of zk-SNARK to enforce the requester to prove: she

indeed followed the pre-specified reward policy calculating the rewards. Detailedly, the

requester should prove her instruction for rewarding is computed as follows: (i) obtain

all answers by decrypting all encrypted answers using a secret key corresponding to

the public key contained in the smart contract; (ii) use all those answers and the

announced R(·; τ) to compute the quality of each answer.

A more challenging issue arises regarding anonymity-yet-accountability. Also

as briefly pointed before, we would like to achieve a balance between anonymity and

accountability. Here we put forth a new cryptographic primitive to resolve the natural

tension. A user can anonymously authenticate on messages (which are composed of

a fixed length prefix and the remaining part). But if the two authenticated messages

share a common prefix, anyone can tell whether they are done by a same user or not.

Moreover, no one can link any two message-authentication pairs, as long as these

messages have different prefixes. Having this new primitive in hand, a simple and

intuitive solution to the anonymous-yet-accountable protocol is to let each worker

anonymously authenticate on a message αC ||Ci, whenever the encrypted answer Ci =

Enc(epk,Ai) is submitted to a task contract C that can be uniquely addressed by

αC . This implies that all submissions from a same worker to one task can be linked

and then counted, but any two submissions to two different tasks will be provably

unlinkable, even if they are submitted by a same user. Also, the number of maximum

allowed submissions in each task can be easily tuned (by counting linked submissions).

Last, we also need to augment the smart contract by building the general

algorithm of verifying zero-knowledge proofs in it. In particular, when the smart

contract receives an instruction regarding rewards and its proof, the verification

algorithm will be executed. All inputs of the verification algorithm are common

knowledge stored in the open blockchain, e.g., the budget, the encrypted answers and

the public key of encryption. If a dishonest requester reports a false instruction, her

36

proof cannot be verified and the contract will simply drop the instruction. What’s

more, if the smart contract does not receive a correct instruction within a time limit,

it can directly disseminate the budget to all workers evenly as punishment (which can

be considered as part of the pre-specified incentive mechanism), since the budget has

been deposited. In this way, the requester cannot gain any benefit by deviating from

the protocol, and she will be self-enforced to respond properly and timely, resulting

in that each worker will receive the expected reward. On the other hand, a dishonest

worker can never claim more rewards than that he is supposed to get, as the reward

is calculated by the requester herself.

Now we are ready to present a general protocol for a class of crowdsourcing tasks

having proper quality-aware incentives mechanisms defined earlier. As zk-SNARK

requires a setup phase, we consider that a setup algorithm generated the public

parameters PP for this purpose, and published it as common knowledge.5 Our

descriptions focuses on the application atop the open blockchain, and therefore omits

details of sending messages through the underlying blockchain infrastructure. For

example, “one uses blockchain address α to send a message m to the blockchain”

will represent that he broadcasts a blockchain transaction containing the message

m, the public key associated to α, and the signature properly generated under the

corresponding secret key.

Remark that here we let each worker/requester to generate a different blockchain

address for each task (i.e., a one-task-only address) as a simple solution to avoid

de-anonymization in the underlying blockchain.6

5This in practice can be done via a secure multiparty computation protocol [20] to eliminate
potential backdoors.

6Our anonymous protocol mainly focuses on the application layer such as the crowdsourcing
functionality that is built on top of the blockchain infrastructure. If the underlying blockchain
layer supports anonymous transaction, such as Zcash [73], the worker and the requester can re-use
account addresses. We further remark that the anonymity in network layer are out the scope of this
dissertation, we may deploy our protocol on existing infrastructure such as Tor.

37

Figure 3.3 The schematic diagram of the ZebraLancer protocol.

3.5.2 Details of ZebraLancer Protocol

As briefly illustrated in Figure 3.3, the protocol of ZebraLancer proceeds as follows.

Register. Everyone registers at RA to get a certificate bound to his/her unique

ID, which is done off-line only once for per each participant. A requester, having a

unique ID denoted by R, creates a public-secret key pair (pkR, skR), and registers at

the registration authority (RA) to obtain a certificate certR binding pkR to R. Each

worker, having a unique ID denoted by Wi, also generates his public and secret key

pair (pki, ski), and registers his public key at RA to obtain a certificate certi binding

pki and Wi.

38

TaskPublish. A requester anonymously authenticates and publishes a task

contract with a promised reward policy. When the requester R has a crowdsourcing

task, she generates a fresh blockchain account address αR, and a key pair (epk, esk)

(which will be used for workers to encrypt submissions) for this task only. R

then prepares parameters Param, including the encryption key epk, the number

of answers to collect (denoted by n), the deadline, the budget τ , the reward

policy R, SNARK’s public parameters PP , RA’s public key mpk, and also πR =

Auth(αC ||αR, skR, pkR, certR, PP).7 The requester then codes a smart contract C

that contains all above information for her task. After compiling C , she puts

C ’s code and a transfer of the budget into a blockchain transaction, and uses the

one-task-only address αR to send the transaction into the blockchain network. When

a block containing C is appended to the blockchain, C gets an immutable blockchain

address αC to hold the budget and interact with anyone. 8 See Algorithm 1 below

for a concrete example of task contract. (The important component of verifying

zk-proofs is done by calling a library libsnark.Verifier integrated into the blockchain

infrastructure, and implementation details will be explained in Section 4.4.5).

AnswerCollection. The contract collects anonymously authenticated encrypted

answers from workers who didn’t submit before. If a registered worker Wi is

interested in contributing, he first validates the contract content (e.g., checking the

parameters), then generates a one-time blockchain address αi. He encrypts his

7We remark that the requester should authenticate on her blockchain address αR along with the
task contract, and workers will join the task only if the task contract is indeed sent from a blockchain
address as same as the authenticated αR. A malicious requester cannot “authenticate” a task by
copying other valid authentications. In addition, each worker has to authenticate on his blockchain
address αi along with his answer submission as well. The task contract will check the submission is
indeed sent from a blockchain address same to the authenticated αi. Otherwise, a malicious worker
can launch free-riding through copying and re-sending authenticated submissions that have been
broadcasted but not yet confirmed by a block.

8We emphasize that αC will be unique per each contract. In practice, αC can be computed via
H(αR||counter), where H is a secure hash function, and counter is governed by the blockchain to
be increased by exact one for each contract created by the blockchain address αR. It’s also clear
that the requester R can predicate αC before C is on-chain, such that she can compute πR off-line
and let it be a parameter of contract C .

39

answer Ai under the task’s public key epk to obtain ciphertext Ci. He then uses

common-prefix-linkable anonymous authentication scheme to generate an attestation

πi = Auth(αC ||αi||Ci, ski, pki, certi, PP).7 Then he uses his one-time address αi to

send Ci, πi to the blockchain network (with a pointer to αC , i.e., the unique address

of the contract C). Then, C runs Verify(αC ||αi||Ci, πi,mpk, PP), and also executes

Link(πi, π∗) for each valid authentication attestation π∗ that was received before

(including requester’s, namely πR). Such that, C can ensure Ci is the first submission

of a registered worker. For unauthenticated or double submissions, C simply drops

it.9 The contract C will keep on collecting answers, until it receives n answers or

the deadline (in unit of block) passes. It also records each address αi that sends Ci.

Remark that Link algorithm will be executed O(n2) times, but it is a simple equality

check over a pair of hashes, such that the cost of running it for several times will be

nearly nothing in practice.

Reward. The requester computes and prove how to reward properly authenticated

anonymous answers. The requester R keeps listening to the blockchain, and once

C collects n submissions, she retrieves and decrypts all of them to obtain the

corresponding answers A1, . . . , An (if there are not enough submissions when the

deadline passes, the requester simply sets the remaining answers to be ⊥ which

has been considered by the incentive mechanism R). Next, the requester computes

the reward for each answer Ri = R(Ai;A1, . . . , An, τ) as specified by the policy

codified in C . More importantly, she generates a zero knowledge proof πreward,

with the secret key esk as witness to attest the validity of the instruction. In

particular, the proof is for the following NP-language L = {R,P | ∃esk s.t.

∧nj=1Aj = Dec(esk, Cj) ∧nj=1 Rj = R(Aj;A1, . . . , An, τ) ∧ pair(esk, epk) = 1}, where

P denotes Param together with ciphertexts C1, . . . , Cn; while R := (R1, . . . , Rn) is

9We remark that our protocol can be extended trivially to allow each worker to submit some
k answers in one task by modifying the checking condition programmed in the smart contract of
crowdsourcing task.

40

the instruction about how to reward each answer. After computing R and πreward, R

puts them into a blockchain transaction, and still use her one-task-only blockchain

address αR to send the transaction to C (by using a pointer to αC). This finishes the

outsource-then-prove methodology. Once a newly proposed block contains the reward

instruction R and its attestation πreward, the contract C first checks that they are

indeed sent from αR (by verifying the digital signature of the underlying blockchain

transaction). Then it leverages SNARK’s Verifier algorithm to verify the proof πreward

regarding the correctness of R. If the verification passes, it transfers each amount Ri

to each account αi, and refunds the remaining balance to αR. Otherwise, pause. If

receiving no valid instruction after a predefined time (in unit of block), the contract

simply transfers τ/n to each αi as part of the policy R.

3.5.3 Security Analysis of ZebraLancer Protocol

Correctness and efficiency. It is clear to see that the requester will obtain data

and the workers would receive the right amount of payments. If they all follow

the protocol, under the conditions that (i) the blockchain can be modeled as an

ideal public ledger, (ii) the underlying zk-SNARK is of completeness, (iii) the public

key encryption is correct, and (iv) common-prefix-linkable anonymous authentication

satisfies correctness. Regarding efficiency, we note the on-chain computation (and

storage which are two of the major obstacles for applying blockchain in general)

is actually very light, as the contract essentially only carries a verification step.

Thanks to zk-SNARK, the verification can be efficiently executed by checking only a

few pairing equalities; moreover, the special library can be dedicatedly optimized in

various ways [15].

Security analysis (sketch). We briefly discuss security here and defer the details to

an extended version. The underlying primitives, including our common-prefix-linkable

41

Algorithm 1: Example using quality-aware incentive
Require : This contract’s address αC ; requester’s one-time blockchain address αR;

requester’s authenticating attestation πR; RA’s public key mpk; budget τ ;

public key epk for encrypting answers; SNARK’s public parameters PP ;

number of requested answers n; deadline of answering in unit of block TA;

deadline of instructing reward in unit of block TI .

1 List keeping answers’ ciphertexts, C ← ∅;
2 Map of anonymous attestations and authenticated one-time blockchain addresses of

workers, W ← ∅;
3 if getBalance(αC) < τ ∨ ¬Verify(αC ||αR, πR,mpk, PP) then

4 goto 21 ; . Budget not deposited or requester not identified.

5 timerA ← a timer expires after TA;

6 while ||C|| < n ∧ timerA NOT expired do

7 if αi sends πi, Ci then

8 if

¬Link(πi, πR) ∧ ∀π∗ ∈W .keys() ¬Link(πi, π∗) ∧ Verify(αC ||αi||Ci, πi,mpk, PP)

then

9 W .add(πi → αi); C.add(Ci);

10 timerI ← a timer expires after TI ; . Start to wait instruction

11 while timerR NOT expired do

12 if αR sends R := (R1, . . . , Rn) and πreward then

13 P ← (epk, τ, C1, . . . , Cn);

14 if libsnark.Verifier((P ,R), πreward, PP) then

15 for each (πi → αi) ∈W do

16 transfer(αC , αi, Ri);

17 goto 21;

18 R← τ/||W ||; . Reward all if no correct instruction

19 for each (πi → αi) ∈W do

20 transfer(αC , αi, R);

21 transfer(αC , αR, getBalance(αC)); . Refund the remaining

22 function getBalance(addr)

23 return the balance of addr in the blockchain ledger;

24 function transfer(src, dst, value)

25 if getBalance(src) < value then

26 return false;

27 the balance of src subtracts value in the blockchain ledger;

28 the balance of dst adds value in the blockchain ledger; return true;

29 . The correctness and availability of this task contract is governed by the blockchain

network; the contract is driven by a global “discrete” clock

30 . libsnark.Verifier is a library embedded in the runtime environment of smart contract

such as EVM

42

anonymous authentication scheme, are well abstracted, which enable us to argue

security in a modular way.

Regarding the data confidentiality of answers, all related public transcripts are

simply the ciphertexts C1, . . . , Cn, and the zk-SNARK proof π. The ciphertexts are

easily simulatable according to the semantic security of the public key encryption,

and the proof π can also be simulated without seeing the secret witness because of

the zero-knowledge property.

Regarding the anonymity, an adversary has two ways to break it: (i) link

a worker/requester through his blockchain addresses; (ii) link answers/tasks of a

worker/requester through his authenticating attestations. The first case is trivial,

simply because every worker/requester will interact with each task by a randomly

generated one-task-only blockchain address (and the corresponding public key).

The second case is more involved, but the anonymity of workers and requesters

can be derived through the anonymity of the common-prefix-linkable anonymous

authentication scheme.

Regarding the security against a malicious requester, a malicious requester has

three chances to gain advantage: (i) deny the policy announced in TaskPublish phase;

(ii) cheat in Reward phase; (iii) submit answers to intentionally downgrade others in

AnswerCollection phase. The first threat is prevented because the smart contract

is public, and the requester cannot deny it once it is posted in the immutable

blockchain. The second threat is prohibited by the soundness of the underlying

zk-SNARK, since any incorrect instruction passing the verification in the smart

contract, directly violates the proof-of-knowledge (i.e., the strong soundness). The

last threat is simply handled the unforgeability and common-prefix-linkability of our

common-prefix-linkable anonymous authentication scheme.

Security against malicious workers is straightforward, the only ways that

malicious workers can cheat are as follows: (i) to submit more than one answers

43

in AnswerCollection phase; (ii) sending the contract a fake instruction in the name

of requester in Reward phase; (iii) altering the policy specified in the contract. The

first threat is simply handled by the common-prefix-linkability and unforgeability

of common-prefix-linkable anonymous authentication. The second threat can be

approached by predicting others’ answers, and it is prevented due to the semantical

security of public key encryption. The third threat is simply handled by the security

of digital signatures. The last issue is trivial, because the blockchain security ensures

the announced policy is immutable.

Theorem 2. The data confidentiality of our protocol holds, if the underlying public

key encryption is semantically secure and the used zk-SNARK is of zero-knowledge.

The anonymity of our protocol for both workers and requesters will be satisfied, if the

underlying common-prefix-linkable anonymous authentication satisfies the anonymity

defined in Definition 7, and the zk-SNARK is zero-knowledge. Conditioned on that

the blockchain infrastructure we rely on can be modeled as an ideal public ledger, the

underlying common-prefix-linkable anonymous authentication satisfies the unforge-

ability and the common-prefix-linkability, the zk-SNARK satisfies proof-of-knowledge

and the digital signature in use is secure, our protocol satisfies: security against a

malicious requester and security against malicious workers.

3.5.4 Implementation of ZebraLancer Protocol

We implement the protocol of ZebraLancer atop Ethereum, and instantiate a series

of typical image annotation tasks [133] with using it. Furthermore, we conduct

experiments of these tasks in an Ethereum test net to evaluate the applicability.

System in a nutshell. As shown in Figure 3.4, the decentralized application

(DApp) of our system is composed of an on-chain part and an off-chain part. The

on-chain part consists of crowdsourcing task contracts and an interface contract of

the registration authority (RA). The RA’s contract simply posits the system’s master

44

Figure 3.4 The system-level view of ZebraLancer.

public key as a common knowledge stored in the blockchain. The off-chain part

consists of requester clients and worker clients. These clients can be blockchain clients

wrapped with functionalities required by our system. Specifically, a client of requester

should codify a specific task with a given incentive mechanism and announces it as

a smart contract. Note that we, as the designers of the DApp, can provide contract

templates to requesters for easier instantiation of incentive mechanisms, c.f. [55].

The clients further need an integrated zk-SNARK prover to produce the anonymous

authenticating attestations; moreover, a requester client should also leverage SNARK

prover to generate proofs attesting the correct execution of incentive policies.

This dissertation also compares ZebraLancer to existing crowdsourcing systems

in Table 3.1. The security performance of our system overwhelms others, as it

considers the most strict fairness of exchange, user anonymity and data confidentiality,

under that condition of minimum trust. For example, our design realizes the

fair exchange without leaking data to a third-party information arbiter. And

ZebraLancer also guarantees the strongest user anonymity that cannot be broken

by any third-party (even the registration authority), while the anonymity of other

systems can be broken by a third-party authority (or few colluded third-parties).

45

Remark that the identities established via a registration service are required by all

systems in Table 3.1.

Table 3.1 Comparison between our ZebraLancer and Existing Platforms

Ours MTurk Dynamo SPPEAR CrowdBC
[5] [128] [64] [92]

Prevention of false-reporting
√

× × ©
√

Prevention of free-riding
√

© © ©
√

Data confidentiality
√

× × × ×
User anonymity

√
× © © ×

Note:
√

denotes a realized functionality without using any central trust except the established
identities; © denotes a (partially) realized function by relying on a central trust (other than the
registration authority); × denotes an unrealized feature. Note that the data confidentiality is
marked as ×, if any third-party other than the requesters can access the submitted data.

Implementation challenges. The main challenge of deploying smart contracts

in general is that they can only support very light on-chain operations for both

computing and storing.10 Our protocol actually has taken this into consideration.

In particular, our on-chain computation only consists SNARK verifications, while

the heavy computation of SNARK proofs are all done off the blockchain. Even still,

building an efficient privacy-preserving DApp compatible with existing blockchain

platform such as Ethereum is not straightforward. For instance, in order to allow

smart contracts to call a zk-SNARK verification library, a contract of this library

should be thrown into a block, but this library is a general purpose tool that can be too

complex to be executed in the smart contract runtime environment, e.g., Ethereum

Virtual Machine (EVM). Alternatively, we modify the the runtime environment of

smart contracts, so that an optimized zk-SNARK verification library [15] is embedded

10We remark the communication overhead is not a serious worry, because: (i) a blockchain network
such as Ethereum does not require fully meshed connections, i.e., requesters and workers can only
connect a constant number of Ethereum peers; (ii) if necessary, requesters and workers can even
run on top of so-called light-weight nodes, which eventually allows them receive and send messages
only related to crowdsourcing tasks; (iii) even if there is a trusted arbiter facilitating incentive
mechanisms, the only saving in communication is just an instruction about how to reward answers
(and its attestation).

46

in it as a primitive operation. Our modified Ethereum client is written in Java 1.8

with Spring framework, and is available at github.com/maxilbert/ethereumj.

We remark that Ethereum project recently integrated some new cryptographic

primitives into EVM to enable SNARK verification as well [52], which ensures

our DApp can essentially inherit all Ethereum users to maintain the blockchain

infrastructure to govern the faithful execution of the smart contracts in our DApp.

Establishments of zk-SNARKs (off-line). As the feasibility of ZebraLancer

highly depends on the tininess of SNARK proofs and the efficiency of SNARK verifi-

cations, it becomes critical to establish necessary zk-SNARKs off-line. As formally

discussed before, the authentication scheme and nearly all incentive mechanisms

can be stated as some well-defined deterministic constraint relationships. We first

translate these mathematical statements into their corresponding boolean circuit

satisfiability representations. Furthermore, we establish zk-SNARK for each boolean

circuit, such that all required public parameters are generated. All the above steps

are done off-line, as they are executed for only once when the system is launched.

Note that the potential backdoors in these zk-SNARK public parameters could be

further eliminated via an off-line protocol based on secure multi-party computation

[20]. However, such an off-line setup is beyond the scope of showing our system

feasibility.

An image annotation crowdsourcing task. To showcase the usability of our

system, we implement a concrete crowdsourcing task of image annotation [133]. The

task is to solicit labels for an image which can later be used to train a learning

machine. The task requests n answers from n workers, and can be considered as a

multi-choice problem. Majority voting is used to estimate the “truth”. An answer

is seen as “correct”, if it equals to the “truth”. The reward amount of a worker

is τ/n if he answers correctly, otherwise, he receives nothing. In our terminology,

the reward Ri := R(Ai;A1, . . . , An, τ) = τ/n, if Ai equals the majority; otherwise,

47

Ri = 0. Following [133], we implement and deploy 5 contracts in the test net to

collect 3 answers, 5 answers, 7 answers, 9 answers and 11 answers from anonymous-

yet-accountable workers, respectively.

The smart contracts are written in Solidity, a high-level scripting language

translatable to smart contracts of Ethereum. We also modify Solidity compiler,

such that a programmer can write a contract involving zk-SNARK verifications at

high-level. We instantiate the encryption to be RSA-OAEP-2048, the DApp-layer

hash function to be SHA-256, and the DApp-layer digital signature to be RSA

signature. Moreover, for zk-SNARK, we choose the construction of libsnark from

[15]. We deploy a test network consisting of four PCs: three PCs are equipped with

Intel Xeon E3-1220V2 CPU (PC-As), and the other one is equipped with Intel i7-4790

CPU (PC-B); all PCs have 16 GB main memory and have Ubuntu 14.04 LTS installed.

In the test net, a PC-A and a PC-B play the role of miners, and the other two PC-As

only validate blocks (i.e., full nodes that do not mine). One full node plays the role

of the requester, and anonymously publishes crowdsourcing tasks to the blockchain;

and the other full node mimics workers, and sends each anonymously authenticated

answer from a different blockchain address. Miners are only responsible to maintain

the test net and do not involve in tasks.

Table 3.2 Execution Time of zk-SNARK Verifications

Verification for
Operands Length Time@

PC-A
Time@
PC-BProof Key Inputs

Anonymous authentication 729B 1.2KB 1.5KB 10.9ms 6.2ms

Majority (3-Worker) 729B 16.0KB 3.4KB 15.5ms 9.1ms

Majority (5-Worker) 730B 21.6KB 4.7KB 16.3ms 9.8ms

Majority (7-Worker) 731B 27.3KB 6.0KB 17.0ms 10.3ms

Majority (9-Worker) 729B 32.9KB 7.3KB 17.5ms 12.1ms

Majority (11-Worker) 730B 38.6KB 8.6KB 17.9ms 13.1ms

48

Performance evaluation. As the main bottleneck is the on-chain computation of

the smart contract, we first measure the time cost and the spatial cost of miners,

regarding the executions of zk-SNARK verifications used in the above annotation

tasks. These zk-SNARKs are established for common-prefix-linkable anonymous

authentications and incentive mechanisms, respectively. The results of time cost

are listed in Table 3.2. It is clear that zk-SNARK verifications in our system can be

efficiently executed in respect of verification time. Moreover, our experiment results

also reveal that the spatial cost of zk-SNARK verifications is constant and tiny at

both types of PCs (exactly 17MB main memory). Also, the required on-chain storage

for the task contracts is at the acceptable magnitude of kilobyte11. Therefore, the

on-chain performance of the system can be clearly practical, regarding time and space.

61

62

78

79

 @PC-A
(3.1GHz E3-1220V2)

 @PC-B
(3.6GHz i7-4790)

Ex
ec

ut
io

n
Ti

m
e

of
 G

en
er

at
in

g
At

te
st

at
io

ns

fo
r A

no
ny

m
ou

s
Au

th
en

tic
at

io
ns

 (s
ec

on
d)

Figure 3.5 The time of generating common-prefix-linkable anonymous authenti-
cations in two PCs. The box plot is derived from 12 different experiments.

We also consider the cost of anonymity, if one uses the common-prefix-linkable

anonymous authentication. We measure the running time of generating the

11Remark that the actual price of exchanging ETH fluctuates and is determined by the market.
For instance, the average cost of each kilobyte storage could be as low as 0.05 UDS in Jan 2016,
or could be as much as 15 USD in Jan 2018. Thus, to estimate the cost from an economic view
is out of scope of the dissertation. It is worthwhile to further note that there are many economic
alternatives to minimize the on-chain storage in the later implementations, e.g., to use off-chain
storages [137, 16]. These optimizations are beyond the scope of this dissertation, in which we only
focus on the technical feasibility instead.

49

authenticating attestations at PCs. As shown in Figure 3.5, our experiment results

clarify that about 78 seconds are spent on generating an anonymous attestation

with using PC-A (3.1 GHz CPU). In PC-B (3.6GHz CPU), the running time can

be shortened to about 62 seconds. Those are not ideal, but acceptable by the

anonymity-sensitive workers. We remark that our protocol can be trivially extended

to support non-anonymous mode, in case that one gives up the anonymity privilege:

s/he can generate a public-private key pair (for digital signatures), and then registers

the public key at RA to receive a certificate bound to the public key; to authenticate,

s/he can simply show the certified public key, the certificate, along with a message

properly signed under the corresponding secret key, which essentially costs nearly

nothing regarding the computational efficiency.

3.6 Summary

In this chapter, a generic blockchain-based framework is constructed, analyzed

and implemented to enable the first private and anonymous decentralized data

crowdsourcing system12. Without relying on any third-party information arbiter, the

protocol can still guarantee the faithful execution for a class of incentive mechanisms,

once they are announced as pre-specified policies in the blockchain. More importantly,

confidential data and identities are also protected from the blockchain network, while

the underlying blockchain is auditing the correct execution of crowdsourcing tasks.

Specifically, this chapter can be summarized as follows.

First, a blockchain based protocol is proposed to realize decentralized crowd-

sourcing that satisfies: (i) fair exchange between data and rewards, i.e., a worker

will be paid the correct amount according to the pre-defined policy of evaluating

data, if he submits to the blockchain; (ii) data confidentiality, i.e., the submitted

12A couple of recent attempts on decentralized crowdsourcing [21, 139, 92] have been made,
however, none of them address the fundamental privacy and anonymity issues. See section for
details about their insufficiencies.

50

data is confidential to anyone other than the requester; and (iii) anonymity and

accountability. Intuition behind the fairness and confidentiality is an outsource-

then-prove methodology that: (i) the requester is enforced to deposit the budget

of her incentive policy to a smart contract; (ii) submissions are encrypted under the

requester’s public key and will be collected by the blockchain; (iii) the evaluation of

rewards is outsourced to the requester who then needs to send an instruction about

how to reward workers. The instruction is ensured to follow the promised incentive

policy, because the requester is also required to attach a valid succinct zero-knowledge

proof. The worker anonymity of our protocol can ensure: (i) the public, including the

requester and the implicit registration authority, is not able to tell whether a data

comes from a given worker or not; (ii) if a worker joins multiple tasks announced via

the blockchain, no one can link these tasks. More importantly, we also address the

threat of multiple-submission exacerbated by anonymity misuse. In particular, if a

worker anonymously submits more than the number allowed in one task, the scheme

allows the blockchain to tell and drop these invalid submissions. Similarly, we achieve

the requesters’ accountable anonymity.

Second, to achieve the above goal of anonymity while preserving accountability,

we propose, define and construct a new cryptographic primitive, called common-

prefix-linkable anonymous authentication. In most of the time, a user can authenticate

messages and attest the validity of identity without being linked. The only exception

that anyone can link two authenticated messages is that they share the same prefix

and are authenticated by one user. To utilize the new primitive in our protocol, a

worker has to submit to a task via an anonymous authentication. The reference of the

task will be unique, and should be the common-prefix, such that the special linkability

will prevent multi-submission to a task. A requester can also use it to authenticate

in each task she publishes, and convince workers that she cannot maliciously submit

to intentionally downgrade their rewards. We remark that such a scheme can be

51

used to anonymously authenticate in a constant time independent to tasks. Such a

primitive may be of independent interests for the special flavor of its accountability-

yet-anonymity.

Finally, to showcase the feasibility of applying our protocol, we implement

the system that we call ZebraLancer for a common image annotation task on top

of Ethereum, a real-world blockchain infrastructure. Intensive experiments and

performance evaluations are conducted in a Ethereum test net. Since current smart

contracts support only primitive operations, tailoring such protocols compatible with

existing blockchain platforms is non-trivial.

Since this work is the first attempt of decentralizing crowdsourcing system

atop the real-world blockchain in a privacy-preserving way, the area remains largely

unexplored. Here we name a few open questions, and we defer solutions to them

in our future work. First, there are many incentive mechanisms using reputation

systems, can we further extend our implementations to support those incentives?

Second, as the current smart contract technology is at an infant stage and can only

allow very tiny on-chain storage, can we further optimize our implementations with

using off-chain storage [137, 16] or information oracle [158] to assist more large-scale

tasks, e.g., to collect annotations for millions of images (i.e., the scale of ImageNet

dataset)? Third, our anonymous protocol currently either relies on the underlying

blockchain to support anonymous transaction, or requires workers/requesters use

one-time blockchain account to submit data and receive reward. Can we design

a (DApp-layer) protocol to solve the drawbacks? Last, our protocol relies on a

trusted registration authority (RA) to establish identities. Although such a trusted

RA could be a reasonable assumption (in view of real-world experiences), it is

more tempting to develop an alternative methodology to remove the third-party RA

without sacrificing securities. For example, can we adapt the successful invention

52

of proof-of-work to build up a crowdsourcing framework from literally “zero” trust

without any established identity?

53

CHAPTER 4

ON PRACTICAL PRIVATE KNOWLEDGE SOLICITATION

4.1 Background

4.1.1 Motivation

To overcome blockchain’s inherent limits, prior Chapter [98] proposes the general

outsource-then-prove framework for private decentralized HITs. It enables the

requester to prove the quality of answers that are encrypted to her, without

revealing the actual answers. Such a proof becomes the crux to ensure privacy

and simultaneously deters false-reporting and free-riding. In addition, the feasibility

challenge sprouts up as the blockchain needs to verify the proof, which means the proof

size and verification cost must be small enough to meet the limited on-chain resources.

For above reasons, prior work relies on some generic zero-knowledge proof (zk-proof)

framework that is succinct in proof size and efficient for verifying, in particular

SNARK1 [60, 15, 119] to reduce the on-chain verification cost. Nonetheless, generic

zk-proofs such as SNARK inevitably inherit low performance for the convenience

of achieving generality, causing that prior private decentralized HITs suffer from an

unbearable off-chain proving cost and a still significant on-chain verifying expense.

Infeasible proving (off-chain). The proving of generic zk-proofs (e.g., SNARK)

seems inherently complex, due to the burdensome NP-reduction for generality. In

particular, prior study [99] reported 56 GB memory and 2 hours are needed to prove

whether an encrypted answer coincides with the majority of all encrypted submissions

at a very small scale, e.g., at most eleven answers. Such a performance prevents the

previous protocol from being usable by any normal requesters using regular PCs.

1Remark that though the rise of Intel SGX becomes a seemingly enticing alternative of SNARK
to go beyond many limits of blockchain by remote attestations [34], unfortunately, recent Foreshadow
attacks [146] allow the adversary to forge “attestations” by stealing the attestation key hardcoded in
any SGX Enclave, which seriously challenges the already heavy assumption of “trusted” hardware,
and makes it even more illusive to trust SGX in practice.

54

Costly verification (on-chain). Existing blockchains (e.g., Ethereum) are feasible

to verify only few types of generic zk-proofs such as SNARK, whose verification need

to compute a dozen of expensive pairings over elliptic curve [60, 15, 119]. Even worse,

the on-chain verification cost increases with the complexity of the proving statement.

As a result, the on-chain verification becomes not only computationally costly, but

also financially expensive. Currently in Ethereum, 12 pairings already spend ∼500k

gas [53], and verifying a SNARK proof costs even more (about half US dollar).

Given the insufficiencies of the prior art, the next critical problem remains open:

How to design a practical private decentralized HITs protocol
for crowdsourcing human knowledge?

4.1.2 Challenges

The major challenge of making private decentralized HITs practical is that the

blockchain must learn the quality of some encrypted answers, namely, to obtain some

properties of what a few ciphertext are encrypting. The state-of-the-art [98] proposed

to reduce the problem to generic zk-proofs, by observing the requester can decrypt

the answers, and then prove the quality of answers to the blockchain. But this

generic approach incurs impractical expenses inherently, because of the underlying

heavyweight NP-reduction for generality.

To conquer the above challenge, we follow a different path that deviates from

generic zk-proofs to explore a concretely efficient solution. At the core of our private

decentralized HITs protocol, we design a special-purpose non-interactive proof scheme

to efficiently attest the quality of encrypted answers, which removes heavyweight

general-purpose zk-proofs and then avoids the inefficiency of generality.

The ideas behind our efficient proving scheme are a variety of special-purpose

optimizations to squeeze performance by removing needless generality, such that we

reduce the problem of proving encrypted answers’ quality from generic-purpose zk-

55

Statement Reformation
1. Prove upper-bound

2. Particular zero-knowledge

 A concrete crypto
 problem between

 two parties

Reduced to verifiable
decryption by removing
all arithmetic relations

 Generic
 zk-proofs

Concrete Proving
Efficient construction of

verifiable decryption

Abstract real-world HITs
The only quality-based incentive
incorporated by Amazon's MTurk

Concretely
 efficient proof

of quality

Figure 4.1 The path to realizing efficient proofs for encrypted answers’ quality.

proof to particular verifiable decryption. As shown in Figure 4.1, our core ideas are

highlighted as following.

Abstracting real-world HITs. The first step is to well formulate an incentive

mechanism widely adopted by real-world HITs, namely, the only one incorporated by

Amazon’s MTurk [7]. Some golden standard challenges (i.e., questions with known

answers) [61] are mixed with other questions, and the quality of a worker can be

determined by her performance on the golden standards.2 We rigorously define

the problem of proving the quality of encrypted answers for the above incentive

mechanism. Then, proving the quality of a worker is reducible to a well-defined

two-party problem: where the verifier needs to output the performance of the worker

on a set of golden standard questions, given only a set of ciphertext answering

these golden standards challenges. Nevertheless, solving this two-party problem is

still challenging, as it needs to compute the property of what a set of ciphertext

are encrypting. The generic version of the issue falls into multi-input functional

encryption [66, 19], which is well known for its hardness and has no (nearly) practical

solution so far. We thus conduct the following optimizations to further reduce the

problem.

2This concrete incentive turns to be powerful, say it can capture most HITs in Amazon’s MTurk
(c.f., the official tutorial [7]) and also adopted by the impactful ImageNet [136] to create large-scale
deep learning benchmark.

56

Statement reformation. The main obstacle of removing the generic-purpose

zk-proof framework is the arithmetic relations (i.e., some relationship unrepresentable

in the algebraic domain). Observing that, we dedicatedly reform the statement of

proving the quality of encrypted answers mainly in two ways to remove all arithmetic

relations. First, we let the requester to prove the upper bound of each worker’s

quality instead of proving the exact number, which is a relaxation to the general

cases, but does not abandon any utility, since this property is enough to prevent

any corrupted requester from paying less than what a worker deserves in our context

where the reward is an increasing function of quality. Second, we realize that given

the system’s public knowledge, a tiny and constant portion of each worker’s answer

(i.e., the part answering gold standards) is already leaked, since this little portion is

simulatable by the public knowledge; thus we can explicitly reveal these “already-

leaked” information. The above reformations allow us to reduce the problem of

proving the quality of encrypted answers to standard verifiable encryption without

sacrificing securities/utilities.

Concretely efficient proving scheme. Following the above optimizations, the

problem eventually is reduced to verifiable encryption, which becomes representable

in concrete algebraic relations. Along the way, we present a certain variant of verifiable

decryption that is concretely tailored for the scenario of HITs where the plaintexts are

short, and thus squeeze most performance out of it and boost private decentralized

HITs practically.

4.2 Prior Art

Besides the existing private decentralized HITs [99, 98] discussed earlier, here we

briefly review some pertinent generic cryptographic frameworks and discuss their

insufficiencies in the concrete context of private decentralized crowdsourcing.

57

Privacy-preserving blockchain. A variety of studies [85, 161, 31] consider

the general framework for privacy-preserving blockchain and smart contract. The

approaches are powerful in the sense of their generality, yet are expensive for concrete

use-cases in practice. For example, Hawk [85] leverages generic zk-proofs to keep

blockchain private, but incurs expensive proving expenses. As such, it is unclear how

to leverage these generic frameworks to design concretely efficient protocol for the

special-purpose of crowdsourcing [98].

Fair MPC using blockchain. Decentralized crowdsourcing is a special-purpose fair

MPC using blockchain. Kiayias, Zhou and Zikas [82] consider the generic version of

fair MPC in the presence of blockchain, but it is unclear how to adopt their generic

protocol in practice without expensively computational costs. Recently, increasing

interests focus on special-purpose variants of fair MPC in aid of blockchain. For

example, [17, 86, 40] consider poker games. But these special-purpose solutions

are over-tuned for distinct scenarios and are unclear how to be used for private

decentralized crowdsourcing.

Multi-input functional encryption. The core problem of private decentralized

crowdsourcing is to let the blockchain learn the quality of encrypted answers, which

is straightforwardly reducible to multi-input functional encryption (MIFE) [66]. But

this generic problem is known for its hardness, and all existing solutions for it are

far from being practical. Even worse, MIFE relies on indistinguishability obfuscation

[66] or multi-linear maps [19] that are even unclear how to be instantiated from the

standard cryptographic assumptions.

4.3 Problem Formalization

This section rigorously defines our security model, by giving the ideal functionality

of Human Intelligent Tasks (HITs) that captures the security/utility requirements of

the state-of-the-art HITs in reality [42, 135, 147, 126, 4, 61, 47, 120, 7, 133, 136, 144,

58

74, 103]. Our security modeling sets forth a clear security goal, that is: the HITs in

the real world shall be as “secure” as the HITs in an admissible ideal world.

4.3.1 Reviewing Knowledge Crowdsourcing via HITs in Reality

Let us briefly review the HITs adopted in reality by Amazon’s MTurk [42, 135, 147,

126, 4, 61, 47, 120, 7, 133, 136, 144, 74, 103], before presenting the abstraction of

their ideal functionality.

There are two explicit roles in a HIT, i.e., the requester and some workers.3 The

requester, uniquely identified by R, can post a task T to collect a certain amount of

answers. In the task, R also promises a concrete reward policy. The worker with a

unique identifier Wj, submits his answer aj to expect receive the reward.

A HIT consists of a sequence of questions denoted by T = (q1, · · · , qN), where

each qi is a multiple choice question and N is the number of questions in the task.

The answer of each question must lay in a particular range ⊂ N∪0 pre-specified when

T is published. W.o.l.g., we can let all questions are binary (i.e., let Range = {0, 1}).

The above HIT design is based on batched choice questions, which follows real-world

practices [42, 135, 147, 126, 4, 61, 47, 120, 7, 133, 136, 144, 74, 103] to remove

ambiguity, thus letting workers precisely understand the task. For example, Fei-fei

Li et al. [42, 127, 136] used the technique to create the deep learning benchmark

ImageNet, and Andrew Ng et al. [135] suggested it for language annotations.

The quality of an answer is induced by a function Quality(aj; sp), where

aj = (a(1,j), · · · , a(N,j)) is the answer submitted by worker Wj, and sp is some secret

3There is an implicit registration authority (RA), who is required by real-world crowdsourcing
platforms e.g., MTurk to prevent adversary forging a large number of identities (a.k.a. Sybil
attackers). In practice, RAs can be instantiated by (i) the platform itself (e.g., MTurk), and (ii) the
certificate authority who provides authentication service. Our solution can inherit these established
RAs, and we therefore omits such the implicit RAs, with assuming all identities are granted. If the
participants are interested in anonymity, anonymous-yet-accountable authentication scheme [98, 89]
can be used; however, those are orthogonal techniques out scope of this paper.

59

parameters of requester. The output of Quality(·) is denoted by χj, which is said to

be the quality of worker Wj.

The abstraction captures the quality-based incentive mechanism adopted by

real-world HITs in Amazon’s MTurk [133, 136, 7, 144]. For example, a task T consists

of N questions, out of which M questions are golden-standard questions that are

“secretly” mixed. The quality of a worker can be computed, due to her accuracy in

the M golden-standard questions. Formally, in the qualify function Quality(aj; sp),

the parameter sp = (G,GS), whereG ([1, N] represents the randomly chosen indexes

of the golden-standard questions, and GS = {si|si ∈ range}i∈G represents the known

answers of the golden-standard questions.

Following the real-world practices [133, 136, 7, 144], the quality of an answer

aj = (a(1,j), · · · , a(N,j)) is: Quality(aj, (G,GS)) =
∑

i∈G[a(i,j)≡si], where [·] is Iverson

bracket to convert any logic proposition to 1 if the proposition is true and 0 otherwise.

In short, we focus on the particularly useful and interesting mechanisms representable

in this form.

4.3.2 Defining Security Goals: Decentralized HITs’ Functionality

Now it is ready to present the security notion of HITs in the presence of cryptocurrency.

We formalize the ideal functionality of HITs (denoted by Fhit) in the L-hybrid model

as shown in Figure 4.2, where the blue text shows FLhit is proceeding synchronously

as the adversary can delay message deliveries up to next clock period [85, 82]; the

brown text means that FLhit has to proceed asynchronously as if the adversary can

arbitrarily delay messages.. Intuitively, FLhit abstracts a special-purpose multi-party

secure computation, in which: (i) a requester recruits K workers to crowdsource

some knowledge, and (ii) each worker gets a payment of B/K from the requester, if

submitting an answer meeting the minimal quality standard Θ.

60

In greater detail, the ideal functionality Fhit of HITs immediately implies the

following security properties:

• Fairness . Our ideal functionality captures a strong notion of fairness, that
means: the worker get paid, if and only if s/he puts forth a qualified answer
(instead of copying and pasting somewhere else). In greater detail, the
requester specifies a sequence of N multi-choice questions, which are multi-
choice questions having some options in range and contain |G| gold-standard
challenges.4 For each worker, s/he has to (i) meet a pre-specified quality
standard Θ and (ii) submit answers in the range of options, in order to receive
the pre-defined payment B/K.

• Audibility of gold-standards . The choice of golden standards is up to the
requester, thus making a realistic worry that a malicious requester uses some
bogus as the golden standard solutions. The ideal functionality aims to abstract
the best prior art [103, 74] regarding this issue so far, that means the golden
standards become public auditable once the HIT is done. This abstraction
“simulates” the ad-hoc reputation systems maintained by the MTurk workers
to grade the reputations of the MTurk requesters in reality [103, 74].

• Confidentiality . It means any worker cannot learn the advantage information
during the course of protocol execution. Without the property, workers can copy
and paste to free ride, indicating that privacy would be a minimal requirement
to ensure the basic usefulness of decentralized HITs. Our ideal functionality
naturally captures the property.

Adversary Model. We consider probabilistic polynomial-time adversary in the

real world. It can corrupt the requester and/or some workers statically, before the

real-world protocol begins. The uncorrupted parties are said to be honest. Following

the standard blockchain model [85, 82], we also abstract the ability of the real-world

adversary to control the communication (between the blockchain and honest parties)

as: (i) it follows the synchrony assumption [57, 85], namely, we let there is a global

clock [57, 85], and the adversary can delay any messages sent to the blockchain up to

a-priori known time (w.l.o.g., up to the next clock); (ii) the adversary can manipulate

4We explicitly consider that |G| and range are small constant in the HITs ideal functionality. Such
modeling follows real-world practices [42, 135, 147, 126, 4, 61, 47, 120, 7, 133, 136, 144, 74, 103].
In particular, |range| is a small constant in practice, because it represents few options of each
multi-choice question in HIT; and |G| is also a small constant, as it represents few gold-standard
challenges in a HIT task.

61

The ideal functionality of HIT FLhit

Given accesses to oracle L, the functionality FLhit interacts with a requester R, a set of

workers {Wj} and adversary S.

Phase 1: Publish Task

• Upon receiving (publish, N,B,K, range,Θ, G,GS) from R, leak

(publishing,R, N,B,K, range,Θ, |G|, |GS |) to S, until the beginning of next clock

period, proceed with the following delayed executions:

– send (freeze,Pi,B) to L, if return (frozen,FLhit,Pi,B):

* store N , B, K, Range, χ̄ and sp as internal states;

* initialize answers← ∅, and goto next phase;

Phase 2: Collect Answers

• Upon receiving (answer,aj) from Wj , leak the message (answering,Wj , |aj |) to S, till

receiving (approved) from S, continue with the delayed executions as follows:

– if (Wj , ·) ∈ answers, do nothing;

– else, answers← answers ∪ (Wj ,aj), send answers to R, leak (Wj , |aj |) to S, go to

phase 3 if |answers| = K.

Phase 3: Evaluate Answers

• Upon entering this phase, leak all received messages to S, until the beginning of next

clock period, proceed to run the following delayed executions for each Wj ∈ {Wj |
(Wj , ·) ∈ answers}:

– if receiving (evaluate,Wj) from R, proceed as:

* check whether Quality(aj , (G,GS)) ≥ Θ, if that is the case, send

(pay,Wj ,B/K) to L, and leak (evaluated,Wj , G,GS) to all entities including

S;

– if receiving (outrange,Wj , i) from R, proceed as:

* if a(i,j) /∈ range, leak (outranged,Wj , a(i,j)) to all entities, otherwise send

(pay,Wj ,B/K) to L.

– else, no message from R was received, proceed as:

* if aj 6= ⊥, send (pay,Wj ,B/K) to L.

Figure 4.2 The (stateful) ideal functionality of coin-aided HIT FLhit.

62

the order of so-far-undelivered messages sent to the blockchain, which is known as

the “rushing” adversary.

Expressivity of HITs’ ideal functionality. The ideal functionality Fhit not only

captures the elegant state-of-the-art of collecting image/language/video annotations

[42, 127, 136, 135, 144, 147, 133] but also reflects the common scenario of crowd-

sourcing human knowledge. Consider the next example: Alice is running a small

startup, and aims to provide a service to visualize the availabilities of street parkings.

Unfortunately, at each moment, Alice only knows the availabilities of street parkings

at quite few spots, since she cannot afford the cost of monitoring every corner around

the city. The little a-priori knowledge of Alice is her “golden standards”, and such

information is too little to boost a useful service. She can crowdsource more street

parking information from a few workers, with using her few golden standards to

control the quality of solicited data.

4.4 Dragoon: Highly Efficient Private Decentralized Crowdsourcing

This section elaborates our practical protocol for decentralized HITs. We begin with

an important building block for proving the quality of encrypted answers. Then we

showcase the smart contract functionality Chit that interacts with the workers and

the requester. Later, the detailed protocol is given in the presence of Chit. We finally

prove that our protocol securely realizes the ideal functionality Fhit of HITs.

4.4.1 Proof of Quality of Encrypted Answer

The core building block of our novel decentralized protocol is to allow the requester

efficiently prove the quality of encrypted answers. We formally define this concrete

purpose to set forth the notion called proof of quality of encrypted answers (PoQoEA),

and then present an efficient reduction from it to verifiable decryption (VPKE).

63

Defining PoQoEA. The problem we are addressing here is to prove that: an

encrypted answer cj can be decrypted to obtain some aj s.t. the quality of aj is

χ, without leaking anything other than cj, χ and the parameters of quality function.

To capture the problem, the state-of-the-art [98, 85] adopts the standard notion

of zk-proof in order to support generic quality measurements. Different from existing

solutions, we particularly tailor the notion of zk-proof to obtain a fine-tuned notion of

PoQoEA for the widely adopted quality function defined in §4.3. Namely, we consider

Quality(· ;G,Gs) where G is the index of gold-standards and Gs = {si}i∈G is the

ground truth of golden standards, and aim to remove the unnecessary generality in

the concrete setting. Precisely, given the quality function Quality(· ;G,Gs) and any

established public key encryption scheme (Ench,Deck) ← KeyGen(1λ), we can define

PoQoEA as a tuple of hereunder algorithms (Proverk,Verifierh):

1. Proverk(cj, χ,G,Gs)→ π. Given the encrypted answer cj = (c1,j, . . . , cN,j), the
quality χ, and the golden standards (G, Gs), it outputs a proof π attesting χ
is the quality of cj; it also explicitly takes the secret decryption key k as input;

2. Verifierh(cj, χ, π,G,Gs)→ 0/1. It outputs 0 (reject) or 1 (accept), according to
whether π is a valid proof attesting χ is the actual quality of cj; the algorithm
explicitly takes the public encryption key h as input;

Moreover, PoQoEA shall satisfy the following properties:

• Completeness . PoQoEA is complete, if for any G, Gs, cj, χ and (Ench,Deck)
s.t. χ = Quality(Deck(cj);G,Gs), there is Pr[Verifierh(cj, χ, π,G,Gs) = 1 | π ←
Proverk(cj, χ,G,Gs)] = 1;

• “Upper-bound” soundness . PoQoEA is upper-bound sound, if for any G, Gs, cj,
χ and (Ench,Deck), for ∀ P.P.T.A, there is Pr[Verifierh(cj, χ, π

′, G,Gs) = 1∧χ <
Quality(aj;G,Gs) ∧ aj = Deck(cj) | π′ ← A(G,Gs, χ, cj, λ,Ench,Deck)] ≤
negl(λ), where negl(λ) is a negligible function in λ, which means it is
computationally infeasible to produce a valid proof, if χ is not the upper bound
of the quality of what cj is encrypting;

• “Special” zero-knowledge. Conditioned on |G| and the range of elements in Gs

are small constants, for any G, Gs, cj, χ and (Deck,Ench), ∃ a P.P.T. simulator
S that can simulate the communication scripts of PoQoEA protocol on input
only h, G, Gs, cj, and χ.

64

Rationale behind the finely-tuned abstraction. The notion of PoQoEA is

defined to remove needless generality in the special case of HITs. Compared to the

state-of-the-art notion [98], PoQoEA is more promising to be efficiently constructed,

as it brings the following definitional advantages as follows.

First, we adopt “upper-bound” soundness to ensure that any probably corrupted

requester cannot forge the upper bound of quality of each worker. Such the tuning

stems from a basic fact that: the reward of a worker is an increasing function in

quality, so the upper bound of the worker’s quality at least reflects the well-deserved

reward of the worker. As a result, any cheating requester has to pay at least as much

as the honest requester.

Second, another major difference is the relaxed special zero-knowledge: PoQoEA

is zero-knowledge, only if |G| and range are small constants, so anything simulatable

by the gold standards can be leaked. Nevertheless, the conditions are prevalent in the

special context of HITs [42, 135, 147, 126, 4, 61, 47, 120, 7, 133, 136, 144, 74, 103].

Recall that G represents the few golden standard questions, and range means the few

options of each question in HITs, indicating that both are small constants in reality.

In sum, even though PoQoEA is seemingly over-tuned, it essentially coincides

with the generic zk-proof of the quality of encrypted answers in the context of HITs.

Construction and security analysis. Here is an efficiency-driven way to

constructing PoQoEA for the quality function Quality(aj;G,Gs) that was defined in

§4.3. We can reduce the problem to the standard notion of verifiable decryption. More

precisely, given the established VPKE scheme (Ench,Deck,Provek,Verifyh), PoQoEA

can be constructed as illustrated in Figure 4.3.

Lemma 1. Given any verifiable public key encryption VPKE, the algorithm in Figure

4.3 satisfies the definition of PoQoEA regarding the quality function defined in §4.3.

Proof. (sketch) The completeness is immediate from the definition of quality function,

the correctness of encryption, and the completeness of VPKE. To prove the upper-

65

Prover(~x, k) Verifier(~x)

Public knowledge ~x: G, Gs = {si}i∈G, χ, c = 〈c1 . . . cN 〉, h

π ← ∅
for each i in G:

(ai, πi)← Provek(c)
if ai 6= si:

π ← π ∪ (i, ai, πi)
output π for each (i, ai, πi) in π:

if ai ≡ si:
output 0

if ¬Verifyh(ai, ci, π):
output 0

χ← χ+ 1
output 1 : 0? χ ≥ |G|

π

Figure 4.3 The construction of PoQoEA for the quality defined in §4.3.

bound soundness, we assume by contradiction to let an adversary break it, then the

adversary can immediately break the soundness of VPKE. The special zero-knowledge

is also clear: considering |G| and the range of each ai are constants, the permutation(|G|
χ

)
would be constant, indicating that there exists a P.P.T. simulator S invoking at

most polynomial number of SVPKE (on input ci, h, and guessed ai ∈ range \ {si}) to

simulate all VPKE proofs [94], thus simulating the PoQoEA proof.

4.4.2 HIT Contract and HIT Protocol

Now we are ready to present our concretely efficient decentralized protocol Πhit for

HIT. Our design centers around a smart contract C Lhit, which is formally described in

Figure 4.4. The contract C Lhit is the crux to take best advantage of the rather limited

abilities of blockchain to make our protocol securely realize the ideal functionality FLhit.

Thus given contract C Lhit, our HITs protocol Πhit can be defined among the requester,

the worker and the contract, as formally illustrated in Figure 4.5. Informally, our

HIT protocol Πhit proceeds as follows.

Publishtask. The requester R announces her public key h, and publishes a task

T of N multi-choice questions to crowdsource K answers for the task. Each question

66

HITs contract functionality C Lhit
Given accesses to L, Chit interacts with R, {Wj}, and A.

Phase 1: Publish Task

• Upon receiving (publish, N,B,K, range,Θ, h, commgs) from R, leak the message and R to A,
until the beginning of next clock, proceed with the delayed executions as follows:

– send (freeze,Pi,B) to L, if returns (frozen,FLhit,Pi,B):

* store N , B, K, range, Θ, h and commgs

* initialize answers ← ∅, comms ← ∅
* send (published,R, N,B,K, range,Θ, h, commgs) to all entities, and goto phase 2-a

Phase 2-a: Collect Answers (Commit phase)

• Upon receiving (commit, commcj
) from Wj , leak the message and Wj to A, then proceed with

the following delayed executions until the beginning of next clock, with consulting A to re-order
all received commit messages:

– for each received commit message (sent from Wj):

* if (Wj , ·) /∈ comms and (·, commcj) /∈ comms:

· let comms← comms ∪ (Wj , commcj
)

· if |comms| = K, send (committed, comms) to all entities, and goto the reveal phase
Phase 2-b: Collect Answers (Reveal phase)

• Upon entering this phase, leak all received messages and their senders to A, till the next clock
period, proceed as:

– for each Wj ∈ {Wj | (Wj , ·) ∈ comms}:
* if receiving the message (reveal, cj , keyj) from Wj s.t. Open(commcj , cj , keyj) = 1:

· answers ← answers ∪ (Wj , cj)

* else answers ← answers ∪ (Wj ,⊥)

– send (revealed, answers) to all, and goto the next phase
Phase 3: Evaluate Answers

• Upon entering this phase, leak all received messages and their senders to A, till the next clock
period, proceed as:

– if receiving (golden, G,Gs, keygs) from R s.t. Open(commsgs, G||Gs, keygs) = 1:

* for each Wj ∈ {Wj | (Wj , ·) ∈ answers}:
· if receiving (outrange,Wj , i, a(i,j), πi) from R:

send (pay,Wj ,B/K) to L, if a(i,j) ∈ range or Verifyh(a(i,j), c(i,j), πi) = 0

· else if receiving (evaluate,Wj , χj , π) from R:

send (pay,Wj ,B/K) to L, if χj ≥ Θ or Verifierh(cj , χj , π,G,Gs) = 0

· else if cj 6= ⊥, send (pay,Wj ,B/K) to L
– otherwise, for each Wj ∈ {Wj | (Wj , ·) ∈ answers}, send (pay,Wj ,B/K) to L

Figure 4.4 The ideal functionality of the (stateful) HITs contract.

67

Protocol description of the HITs Πhit

Πhit is among the requester R, the workers {Wj} and Chit

Phase 1: Publish Task

• Requester R:

– (Ench,Deck)← KeyGen(1λ)

– Upon receiving the parameters G, Gs, Θ, N , range, B, K of a HIT to publish:

* keysg
$← {0, 1}λ

* commgs ← Commit(G||Gs, keysg)

* send (publish, N,B,K, range,Θ, h, commgs) to Chit

Phase 2: Collect Answers

• Worker Wj :

– Upon receiving (published,R, N,B,K, range,Θ, h, commgs) from Chit:

* get the answer aj = (a(1,j), · · · , a(N,j))
* cj ← (Ench(a(1,j)), · · · ,Ench(a(1,N)))

* commcj
← Commit(cj , keyj), where keyj

$← {0, 1}λ

* send (commit, commcj
) to Chit

– Upon receiving (committed, comms) from Chit:

* if (Wj , ·) ∈ comms, send (reveal, cj , keyj) to Chit

Phase 3: Evaluate Answers

• Requester R:

– Upon receiving (revealed, answers) from Chit:

* send (golden, G,Gs, keygs) to R
* for each (Wj , cj) ∈ answers:

· decrypt each item in cj to get aj = (a(1,j), · · · , a(N,j))
· if ∃a(i,j) ∈ aj s.t. a(i,j) /∈ range:

· (a(i,j), πi)← Provek(c(i,j))

· send (outrange,Wj , i, a(i,j), πi) to Chit

· else if χj = Quality(Dec(cj , skR);G,Gs) < Θ:

· π ← Proverk(cj , χj , G,Gs)

· send (evaluate,Wj , χj , π) to Chit

Figure 4.5 The formal description of the decentralized HITs protocol Πhit.

68

in T is specified to have some options in range. The task mixes some golden standard

questions, whose indexes G and ground truth Gs are committed to commgs. Also, R

places B as deposit to cover her budget, which promises that a worker would get a

reward of B/K, if submitting an answer beyond a specified quality standard Θ.

Commitanswer. Once the task is published, the workers can commit their

answers (encrypted to the requester) in the task. To prevent against copy-and-paste

attacks, duplicated commitments are rejected. The contract moves to the next phase,

once K distinct workers commit.

Revealanswers. After K workers commit their answers, these workers can start

to reveal their answers in form of ciphertexts encrypted to the requester. Note that

the submissions of answers explicitly contain two subphases, namely, committing and

revealing, which is the crux to prevent the network adversary from taking advantages

by adversarially scheduling the order of submissions.

Evaluateanswers. Eventually, the requester is supposed to instruct the blockchain

to correctly pay the encrypted answers for the critical fairness. To this end, the

protocol leverages our novel notion of PoQoEA. The requester can efficiently prove to

the contract to reject a certain answer, if the worker does not meet the pre-specified

quality standard Θ. If an answer is out of the specified range, the requester is allowed

to use verifiable encryption VPKE to reveal that to reject payment.

4.4.3 Instantiating Cryptographic Building Blocks

For sake of completeness, here give the constructions of cryptographic building blocks

that are called by Figures 4.4 and 4.5. Let G = 〈g〉 be a cyclic group of prime order

p, where g is a random generator of G.

Short range verifiable decryption is based on exponential ElGamal. The private

key k
$← Zp, the public key h = gk, the encryption Ench(m) = (c1, c2) = (gr, gmhr),

and the decryption Deck((c1, c2)) = log(c2/c
k
1) where log is to brute-force the short

69

plaintext range to obtain m; if decryption fails to output m ∈ range, then c2/c
k
1 is

returned. In addition, to efficiently augment the above (Ench,Deck) to be verifiable,

we adopt a variant of Schnorr protocol [130] (for Diffie-Hellman tuples) with Fiat-

Shamir transform in the random oracle model.

In detail, the Provek algorithm and the Verifyh algorithm can be described as

follows:

• Provek((c1, c2)). Run Deck((c1, c2)) to obtain m ∈ range (or gm if m /∈ range).

Let x
$← {0, 1}λ. Compute A = cx1 , B = gx, C = H(A||B||g||h||c1||c2||gm),

Z = x + kC, and π = (A,B,Z). If m ∈ range, output (m,π); else, output
(gm, π).

• Verifyh(M, (c1, c2), π). Parse π = (A,B,Z). If M ∈ range, compute C ′ =
H(A||B||g||h||c1||c2||gM), and then verify gM ·C

′ · cZ1≡A · cC
′

2 and gZ ≡ B · hC′ ,
output 1 if the verification passes and 0 otherwise; else if M ∈ G, compute
C ′ = H(A||B||g||h||c1||c2||M) and verify MC′ · cZ1≡A · cC

′
2 ∧ gZ ≡ B ·hC′ , output

1 iff the verification passes and 0 otherwise.

Proof of quality of encrypted answer is built by invoking the above VPKE in a

black-box manner, due to the reduction from PoQoEA to VPKE in subsection 4.4.1.

Commitment scheme is instantiated according to the well-known efficient

folklore construction in the random oracle model [25, 48]: (i) Commit(msg, key) =

H(msg||key); (ii) Open(comm,msg′, key′) = [H(msg′||key′) ≡ comm], where [·] is

Iverson bracket from a proposition to 1 (true) or 0 (false).

4.4.4 Security Analysis

Theorem 3. Conditioned on hardness of DDH problem and static corruptions, the

stand-alone instance of Πhit securely realizes Fhit in C Lhit-hybrid, random oracle model.

Proof. (sketch) Let C denote the set of corrupted parties controlled by the adversary

A, and let H denote the set of rest honest parties. For any P.P.T. adversary A in the

real world, we can sketch a P.P.T. simulator S in the ideal world to interact with the

ideal functionality Fhit and corrupted parties, such that S can emulate the actions of

honest parties and the contract Chit. Detailedly, S proceeds as follows.

70

PublishTask (Phase 1). If R ∈ C, considering that the corrupted R sends the

publish message to Chit in the real world, S can trivially simulate that with interacting

with Fhit. If R ∈ H, when the honest R sends the publish message to Fhit, S is

informed and thus allows S to simulate the real-world scripts of publish task.

CollectAnswers (Phase 2). In the real world, the P.P.T. adversary A has the

following abilities: (i) she can corrupt a set of parties C up to including the requester

and a set of the workers, and (ii) she has to be consulted to reorder the so-far-

undelivered messages sent to Chit (till the next clock). The basic strategy to emulate

A is that: S invokes the adversary A to obtain how A is re-ordering the commit

messages (sent from workers), let W to represent the set of workers whose commit

messages are scheduled as the first K to deliver; then S delays all answer messages that

are not sent from the workers in W. Then, S internally simulates the ciphertexts sent

via reveal messages to open commitments. If R ∈ H, the ciphertexts can be simulated

as they are indistinguishable from the uniform distribution over the ciphertext space;

if R ∈ C, S is informed about all answer submissions sent from the workers, thus

can internally simulate the submissions of the workers in the real world. Moreover,

if A corrupts a worker whose commit message is scheduled in the first K to deliver

but does not send any the reveal message to open the commitment, the simulator S

can simulate that since it can let the corrupted worker to send an answer message

containing ⊥ with Fhit. In addition, it is trivial to see S can internally simulate the

parties as well as Chit, when the adversary A corrupts a worker to submit duplicated

commitment.

EvaluateAnswers (Phase 3). The simulation becomes clear, if considering the

security requirements of commitment scheme, VPKE, and PoQoEA. If the requester

R ∈ C, the simulator S invokes A to obtain all outrange and/or evaluate messages

sent to Chit, and then simulates the interactions. If the requester R ∈ H, whenever R

71

sends outrange and/or evaluate messages to Fhit, S is informed and hence is allowed

to simulate the interactions between Chit and R in the real world.

4.4.5 Implementation and Evaluation

To demonstrate the feasibility of our protocol, we implement it to build Dragoon,

and then use the system to launch a typical image annotation task for ImangeNet

[136, 127] atop Ethereum.

System overview. Dragoon consists of an on-chain part and an off-chain part:

the on-chain smart contract is deployed in Ethereum ropsten network; the requester

client and worker clients are implemented in Python 3.6. The off-chain clients are

installed in a PC that uses Ubuntu 14.04 LTS and equips Intel Xeon E3-1220V2

CPU and 16 GB main memory. We demonstrate our system through an ImageNet

task [136, 127], which is specified as: each task is made of 106 binary questions, 100

out of which are non-gold-standard questions, while the remaining 6 questions are

requester’s gold-standard challenges; 4 workers are allowed to participate; if a worker

cannot correctly answer at least four golden standard questions, his submission will

be rejected without being paid, otherwise he deserves to get the payment. The hash

function is instantiated by keccak256. We choose the cyclic group G by using the G1

subgroup of BN-128 elliptic curve, over which all concrete public key primitives are

instantiated. The code of our prototype is available at https://github.com/njit-

bc/dragoon. An experiment instance is atop Ethereum ropsten network.

Implementation details. Many non-trivial on- and off-chain optimizations are

particularly made for practicability.

The requester end warps: (i) an Ethereum node to interact with the blockchain,

e.g., publish task, download workers’ submissions, etc; (ii) the prover of verifiable

encryption to generate necessary proofs to instruct the contract to reward workers;

(iii) a Swarm API to publish the detailed questions of each crowdsourcing task. Swarm

72

Figure 4.6 The schematic diagram of Dragoon at a high-level.

[137] is an off-chain storage network, where the questions of HIT is stored; in addition,

to ensure integrity of HIT questions, the digest of the questions is committed in the

contract, which significantly reduces on-chain cost, without violating securities. The

worker client wraps Ethereum to interact with the blockchain to read task and submit

answers, and also incorporates Swarm client to allow download task questions.

We cautiously perform a few non-trivial system-level optimizations to lighten

the task contract: (i) we implement all public key schemes over G1 subgroup of

BN-128 [12], since we can use some precompiled contracts in Ethereum to do algebraic

operations there cheaply [53]; (ii) it is expensive to store ciphertexts in the contract

as internal variables, while we make the contract store their 256-bit hashes instead

and let the actual ciphertexts included in the chain as emitted event logs [152].

Evaluations. We conduct intensive experiments to measure the concrete performance,

and discuss the system feasibilities from the on-chain side and the off-chain side.

73

Off-chain costs . First, Dragoon enables the requester to manage only one

private-public key pair throughout all her tasks, because all protocol scripts are

simulatable without secret key and therefore leak nothing relevant. More importantly,

the off-chain cost of proving relevant cryptographic proofs is significantly reduced by

removing unnecessary generality.

Table 4.1 Off-Chain Proving Cost of VPKE and PoQoEA

Statement to Prove Time Peak Memory

Ours
VPKE 3 ms 53 MB

PoQoEA 10 ms 53 MB

Generic ZKP
∗ VPKE 37 s 3.9 GB

PoQoEA 112 s 10.3 GB

* Through our evaluations, generic zk-proofs are instantiated by zk-SNARK, which is the only
generic zk-proof feasibly supported by existing blockchains to our knowledge.

Table 4.1 clarifies the requester suffers from hindersome off-chain burden of

generating generic zk-proofs. The concrete construction removes the bottleneck of

proving in generic zk-proof. First, the requester can generate a proof to reject a

worker’s submission within only a few milliseconds, which costs nearly 2 minutes if

using generic zk-proof. Second, the concretely efficient constructions also save in

memory usage. For example, by generic zk-proof, rejecting a submission requires

a peak memory usage of 10 GB, which is reduced to only 53 MB by concrete

constructions.

Table 4.2 On-chain Verification Cost of VPKE and PoQoEA

Statement to Verify Verifying Time

Ours
† VPKE 1 ms

PoQoEA 2 ms

Generic ZKP
‡ VPKE 11 ms

PoQoEA 17 ms

† The implementation of BN-128 curve is from https://github.com/scipr-lab/libff.
‡ The evaluations for generic ZKP (SNARK) are performed due to constructions from 2048-bit
RSA-OAEP over Zpq instead of ElGamal over the G1 subgroup of BN-128.

74

On-chain costs . We measure the critical on-chain performance from many angles

including the cost of verifying zk-proofs and the on-chain gas usage of the whole

protocol. First, we compare the verifying cost of concrete and generic constructions

for VPKE and PoQoEA (six golden standards) in Table 4.2. The concrete proofs

are faster, even compared to the generic zk-proof (SNARK) known for efficient

verification. Moreover, the overall handling fee of running a concrete ImageNet

instance is summarized in Table 4.3. To estimate the cost of on-chain usages, we apply

a gas price at 1.5×10−9 Ether per gas, and an Ether price at 115 USD per Ether, which

are the safe-low price of gas [51] and the market price of Ether on March/17th/2020,

respectively. Under the above exchange rate, the on-chain handling fee paid by each

worker is about $0.48, which is used to submit an answer. In addition, thanks to

the efficient verification of PoQoEA, the requester can spend few cents to reject each

low-quality answer. The overall on-chain handling cost of the entire HIT is about two

US dollars. In contrast, when MTurk facilitates the same ImageNet task, it charges

a handling fee at least $4 currently [131, 6].

Table 4.3 On-Chain Overall Handling Fees of the Concrete ImageNet Task

Handling fee of Gas Usage In USD

Publish task (by requester) ∼1293 k $0.22
Submit answers (by worker) ∼2830 k $0.48
Verify PoQoEA to reject an answer ∼180 k $0.03

Overall (best-case: reject no submission) ∼12164 k $2.09
Overall (worst-case: reject all submissions) ∼12877 k $2.22

To summarize, Dragoon is practical. Our experiment even reveals that Dragoon’s

on-chain handling cost can be economically cheaper than the the handling fee charged

by third-party platforms such as MTurk. In addition, Dragoon is compatible with

many alternative chains (e.g., Cardano [30]) other than Ethereum, as long as the

blockchains are using Ethereum Virtual Machine (EVM) as the running environment

75

of smart contracts. As a consequence, our system can be deployed in these alternative

chains to further reduce the handling cost.

4.5 Summary

This Chapter answers the unresolved problem of the earlier Chapter, and presents

a practical private decentralized HITs protocol for the major tasks of crowdsourcing

human knowledge. In sum, its core technical contributions are three-fold.

First, to achieve practical private decentralized HITs, we explore various non-

trivial optimizations to avoid the cumbersome generic-purpose zk-proof framework,

and reduce the protocol to the specific verifiable decryption. As such, we attain

concrete improvements by orders of magnitude, regarding both the proving and

verification. (i) For proving, our approach is two orders of magnitude better than

generic zk-proof 5; For the same HIT, the proving in our protocol costs 50 MB memory

and 10 msec, while the generic proof costs 10 GB and 2 min. (ii) For verifying, our

result improves upon the generic solution by nearly an order of magnitude. The

on-chain cost of verifying a proof for the quality of an answer to 106 batched binary

questions is reduced to ∼180k gas in Ethereum (much smaller than verifying SNARK

proofs) and typically few US cents.

Second, we further implement our protocol to instantiate a practical private

decentralized crowdsourcing system Dragoon, the handling cost of which could be

even less than the existing centralized platforms such as MTurk. Dragoon is launched

atop Ethereum to conduct a typical HIT adopted by ImageNet [136] to solicit large-

scale image annotations. To handle the task, Dragoon attains an on-chain (handling)

cost ∼$2 US dollars at the time of writing. In comparison, for the same task, the

handling fee of MTurk is at least $4 currently [6, 131]. Our result provides an insight

that the on-chain handling fee (characterizing the users’ financial expense) in the

5Generic zk-proof refers zk-SNARK in our context, since the only generic zk-proof that can be
feasibly supported by existing blockchains is zk-SNARK.

76

decentralized setting can approximate or even less than the handling fee charged

by centralized platforms. This indicates the de facto users can financially benefit

from decentralization, though it is not contradictory to the common belief [132] that

decentralization is more expensive w.r.t. the overall computational cost of the system.

Along the way, we firstly formulate the ideal functionality of decentralized HITs.

The rigorous security model clearly defines what a HIT shall be and allows us to use

the simulation-based paradigm to prove security against subtle adversaries in the

blockchain. In contrast, existing decentralized HITs [98, 99] have quite different

property-based definitions on “securities”, which at least makes the lack of well-

defined benchmark to compare them. Even worse, many of them are “flawed”, as

failing to capture all respects of the subtle adversary in the blockchain; for example,

they allow the corrupted requester to reap data without paying, if being given the

standard ability of adversarially re-ordering message deliveries, while our approach

precisely defines the security requirement against this subtle attack.

77

CHAPTER 5

ON CROWDSOURCING FOR MACHINE LEARNING TASKS

5.1 Background

It has been a common practice for small companies and individual citizens to

crowdsource their machine learning (ML) tasks to experts [122], as these small parities

want to understand their own data but no clue on how to do that. Such an increasing

demand makes it enticing to establish a marketplace of crowdsourcing ML tasks. In

such a marketplace, the requesters can be small startups or even individuals, and

they will publish their ML tasks with promising some payments; the workers can be

resourceful experts, and can resolve the published ML tasks to earn the well-deserved

rewards. But there lacks such a trusted marketplace currently, and the crowdsourcing

of ML tasks is usually instantiated in the form of an open challenge launched by the

requester herself. Usually, the requesters have to be trusted to 1) maintain their own

challenges at web servers, and 2) pay promised rewards to the experts whoever solve

the challenges.

5.1.1 Motivation

But this challenge-based framework suffers from a couple of major issues [50]: first,

the ML challenges could be too expensive to instantiate and maintain by individual

citizens, as they have to design their own ML challenges and run their own web servers

to maintain them; second, the expert workers have to rely on that the requesters are

fully trusted, as the dishonest requesters can always lie and reject to pay workers,

which could be a rather serious concern, if the requesters are small business owners

or even individuals. The above problems are consequences of the lack of trusted

third-party in the particular use-case of crowdsourced ML, and it become natural to

78

consider the global computer , i.e., the blockchain, as the existing infrastructure to

empower the crowdsourcing of ML tasks.

This research therefore will focus on a broad variety of machine learning tasks

such as the training/validation of ML models, and proposes a simple and novel

incentive based approach to realize the crowdsourcing of such ML tasks.

5.1.2 Challenges

The smart contract in (permissionless) blockchain is still at its infant stage, and suffers

from several inherent limitations that hinder its wider adoption in crowdsourcing

of ML tasks. Among several fundamental challenges, one that we are particularly

interested in is that currently smart contract can only support very light computation:

the complexity of computation tasks of each smart contract is usually strictly

bounded. The reason lies in the fact that: during the blockchain mining procedure

(the new block generation), when some output of a smart contract is expected to

be recorded (that might also affect the validity of future blocks), honest miners are

required to execute the program in order to validate the correctness of the outcome. If

such a program is computationally intensive, crafty adversarial nodes may simply skip

such verification step (or ignore putting the output at all), and go ahead to propose

new blocks. Doing this gives the adversarial nodes substantial advantage of winning

the chance for proposing new blocks, as honest nodes would not be able to propose

any block until the execution of the smart contract finishes. Such an undesirable

feature was known as verifier’s dilemma [102].

There is another fundamental challenge for smart contracts that they cannot

support randomized computations: since randomization lets even honest nodes have

inconsistent outputs for the same program with the same input, it obviously prevents

the central goal of the blockchain to ensure the consensus among all honest nodes.

79

Those limitations of smart contracts seriously hinder the applicability to broader

interesting scenarios, especially in the settings that involve the execution of machine

learning programs. Since those machine learning tasks are often computational costly

and randomized (e.g., deep learning using stochastic gradient descent algorithm [88]),

it becomes elusive how we can enable the machine learning tasks codified to be auto-

executed in decentralized applications. The severe tension between the demands of

applications and the restrictions of smart contract is widely acknowledged.

Observing that the security of the consensus protocol restricts only the on-chain

computations, thus naturally we could turn to the area of verifiable computation

for mitigation. In particularly, one may employ advanced cryptographic tools for

verifiable computation such as SNARK [85, 98]. The full nodes could simply

“outsource” the execution of the smart contracts to some service providers, and

ask them further attach a succinct proof to the output. The full nodes now only

verify the correctness of the proof during consensus. Unfortunately, although the nice

feature of SNARK enables a cheap verification which reduces the on-chain cost (few

elliptic curve pairings essentially), the computation and memory cost of generating

the SNARK proofs in general for complex programs are still astronomically large,

which makes it in fact infeasible in the scenarios of our interests as the machine

programs are complex. Another line of researches explored the attestation capability

of recently emerged trusted hardwares such as Intel’s SGX to carry such outsourcing

[158]. The basic idea is to load the program into the protected memory (called trusted

enclave), execute the program and sign the output using the secret key hardcoded in

the chip. However, the size of the enclave is pretty small, and therefore considerable

performance penalties can be brought during attesting memory intensive tasks such

as large-scale deep learning and random forest etc. More seriously, a recent attack on

SGX could actually extract the attestation key completely [146], making the status

of secure hardware is currently unclear.

80

5.1.3 Problem Formulation

In this subsection, the problem will be presented more precisely along with the security

requirement, in the game-theory model.

The overview of system. As briefly illustrated in Figure 3.1, there are three

roles in the system. The blockchain network mimics a trusted third-party that is

also computationally-restricted. A blockchain user, called requester, can request the

blockchain to execute some small programs called smart contracts. The chain will

internally execute the programs, and “deliver” the computing results to all blockchain

users, which is fully trustful. But, the requester cannot expect the blockchain run

a computationally-intensive smart contract, as heavy smart contracts are hindered

by the intrinsic limit of the blockchain [102]. Alternatively, the blockchain/requester

would like to outsource the computations to some external off-chain service providers,

called workers.

Remark that we will consider the outsourced program has a large output space,

and the correct output is unpredictable, namely, for each given input, one cannot

guess the output without computing the program with that input. Note that for most

machine learning tasks (e.g., the training of DNN classifier for large-scale dataset),

such properties can be observed. Also note that there could be some trivial outputs

such as all zeros, all ones, the input or a part of the input etc., we remark that such

a set of common knowledge denoted by Eck (also a subset of the output space) is

considered in the dissertation to capture these publicly known false outputs.1

The blockchain is always “good” for availability and correctness [57, 85]. The

blockchain can faithfully execute some pre-specified programs called smart contracts

to compute, transfer money, and/or broadcast execution result. But, smart contracts

have to be light and deterministic, due to the intrinsic limitations of the underlying

1Remark that the correct output will not fall into the common-knowledge set Eck, as we consider
a program whose output is unpredictably placed into a large output space that is much more
considerable than |Eck|.

81

blockchain [102]. Worse still, the blockchain is transparent and promise no privacy

guarantee, as all its internal states are public to everyone. It is worth to noticing

that we consider the smart contract can detect any particular false output belonging

to Eck, as Eck is actually common knowledge. This is still a scenario much more

stringent than the presence of a TTP who has to actively show up to resolve any

dispute.

The requester requests the blockchain to execute a smart contract, which

in practice is done through sending the blockchain a transaction pointing to the

contract’s program code2. Also, the requester promises some pre-specified monetary

rewards to incentivize the blockchain to enforce the smart contract3. But the

requester cannot request the blockchain to run heavy and randomized computations

to facilitate his/her business. In such case, s/he will seek to outsource the task to

off-chain service providers. Let the outsourced program be randomized, and represent

it as ~y = P (~x;~r), where ~x is the inputs, ~y is the outputs, and ~r is the random coin. We

remark our assumption that the outputs ~y will not be predictable as P can extract

considerable entropy from the random coin ~r (or from the input ~x as in some cases

~r can be empty), which actually captures many machine learning algorithms. Also,

the requester promises an incentive mechanism pre-specified via the blockchain to

incentivize the external computation services to compute his/her task, and we can

view the requester as “good”, since all his/her behaviors are codified into self-enforced

contract.

As the blockchain cannot enforce the execution of complex and randomized

computations for the requester, the requester/blockchain will further outsource

these computation tasks to some external computing services, called workers, with

announcing a pre-specified incentive mechanism via the blockchain. When workers

2After a smart contract is deployed in the blockchain, it will have a unique blockchain address,
such that one can point it out through that address.

3In practice, the incentive mechanism of smart contract is much more detailed, c.f. the gas
mechanism of Ethereum for details.

82

claim to compute a outsourced task, they have to transfer enough deposits to

the blockchain, such that “penalties” can be applied, when the blockchain realizes

undesirable behaviors of the workers. More importantly, any worker is rational, that

means a work only prefers to maximize its utility. If some workers form a coalition,

these workers will prefers to maximize the coalition’s utility as well.

Monetary parameters. As we consider the problem in the game-theoretic setting,

the monetary parameters should be clearly defined. In the following, we will explain

the related parameters, and clarify the rationale behind:

• r represents the reward for a task, which is promised by the requester and
facilitated by the blockchain;

• d corresponds the deposit should be funded by a worker, if the worker claims
to do the outsourced task;

• c means the cost of a worker to do the task, which corresponds to the cost of
running a program in a computer.

Let us consider a situation that r � c, i.e., the payment of the requester should

be significantly larger than the cost of computing. That can be observed from the

real-world blockchain such as Ethereum, where users have to pay pretty considerable

premiums for on-chain computation resources. The requester in our case should

be fine with such a surcharge as well, because his/her purpose is to let the correct

computing result shown in the blockchain to further facilitate his/her business, which

is much more valuable than the tiny cost of computing. Therefore, we will ignore c

in the remaining of this dissertation.

Security goal. Next is to specify the security requirements for outsourcing the

expensive and randomized computation to off-chain services in the rational setting.

Detailedly, we consider that a requester outsources the execution of a compu-

tation task to n workers denoted by W1, . . . ,Wn. Our protocol and incentive design

essentially instantiate a game Γ joined by these workers, as the workers have different

utilities under different joint strategies. For a work Wk, we let its strategy set denoted

83

by Sk. Also, there is always a strategy of “always sending the true result”, denoted

by σt, in per each worker’s strategy set.

Our security requires that the joint strategy ~σ = {σt, . . . , σt} is the only one that

survives iterated elimination of weakly dominated strategies (IEWDS). The intuition

of such an IEWDS refining equilibrium is quite clear: although sending the correct

result might not always bring better utilities, when other workers do not send the

correct result, but there is always no harm for a worker to send the correct one,

and there even is a situation where sending the correct result brings the dominating

utility. At such a refined equilibrium, everyone worker will apply the strategy of

“always sending the true result”. When this security requirement is satisfied, we can

say our protocol realizes a practical mechanism (Γ, ~σ = {σt, . . . , σt}), as it can realize

the desired Nash equilibrium ~σ surviving IEWDS in the game Γ.

5.2 Prior Art

The insufficiencies of related work, such as verifiable computation, trusted hardware,

and existing game-theoretic approaches, are briefly summarized as follows.

A verifiable computation [59] allows a prover to produce an output along with

a cryptographic proof to convince a verifier that the output is obtained through

correctly executing a pre-defined computation. Recent constructive developments of

zk-SNARKs [15] enables very efficient verification with the price that proving takes

tremendous time and memory. For many heavy tasks, it is infeasible to generate the

proof in practice. For example, in [98], we use more than 250 GB memory+swap and

15 hours to prove the majority of 11 RSA-OAEP encrypted answers.

The recent rise of trusted computation hardware such as Intel SGX [36] brings

new techniques to allow people outsource their particular computation tasks [158]

to untrusted third-party. However, to “enjoy” such new developments, one has to

first trust the manufacturer. Worse still, the design rationale of SGX is a minimalist

84

trusted machine that has a restricted amount of enclave, so it becomes unclear how

to avoid the huge performance penalty during attesting memory intensive programs.

Outsourced computation have been intensively discussed in game theoretic

settings before [45, 121, 116, 14, 87]. Most of them rely on a TTP (or an implicit one

launched by the requester) to resolve disputes and de-collude coalitions [45, 14, 87].

Some of them consider the absence of TTP under more optimistic scenario where all

computing services are non-colluding [121, 116]. We will consider a more stringent

setting: n computing services can form any coalition size up to n− 1, and also there

is no TTP to resolve mismatched computing results.

5.3 Protocol for Crowdsourcing ML Tasks

5.3.1 Protocol and Analysis: Two Non-Colluding Workers

In this section, we consider a fundamental scenario where the complex and randomized

computation task is outsourced to two independent workers. Also, the absence of a

trusted third-party (TTP) arbiter is taken into consideration. We observe that the

state-of-the-art incentive mechanism will suffer from deviation by free-riding due to

the absence of TTP arbiter, which can be intuitively understood as that a worker

always prefers to copy and paste the result reported by the other worker. We present

our protocol to address this critical issue, and analyze the security in game-theoretic

setting.

Intuitions. Our basic idea is to outsource the computations of a smart contract to

two independent rational workers, such that the workers can perform the computation

off-chain and the blockchain nodes therefore get rid of doing the heavy work. At the

same time, a simple incentive mechanism should be hosted by the blockchain to

incentivize the workers submit the correct output (and prevent false output as well).

A naive solution may allow the two workers submit their computing results to

the blockchain anytime, which implies someone can submit earlier, and the other one

85

can report the computing result later. Unfortunately, the blockchain is transparent,

so the latter worker can free-ride by copying the first submission without doing any

computation; worse still, the second worker will submit the same, even if knowing the

earlier submission is wrong.

Intuitively, the major challenge is that the free-riding problem discourages the

two workers to compute the result independently. To solve this critical issue, our idea

is to ensure that the two workers reveal their computing results to the blockchain

simultaneously. For the purpose, our protocol involves a commit phase, and a

reveal phase to let the results “simultaneously” posted on the blockchain (or once

committing a result, one cannot change the value even if revealed later). Such that,

the incentive mechanism can ensure: (i) rational workers always submit their results

“simultaneously”, otherwise there will be significant penalty; (ii) rational workers

have no interest to deviate by committing a false result.

Protocol details. Our protocol can be described as follows.

TaskPublish. The requester announces the computing task via the blockchain.

When the requester R would like to run intensive computations atop the blockchain,

she sends a smart contract that clearly specifies the task and the incentive mechanism.

The computing task can be viewed as a randomized program denoted by P (~x;~r),

where ~x is the inputs and also stored on the chain, and ~r is the random coin which

will be announced by the requester in the next phase.

TaskPrepare. All participants fund enough deposits, and the random coin is

released if necessary. The budget (i.e., the promised rewards, denoted by r) of the

requester will be deposited to the same contract. Then, a worker4 that is interested

in the task should send its deposit, denoted by d. Once both two workers, denoted by

Wi,Wj, send their deposits. Random coin can be released, denoted by ~r, if necessary.

4We remark that we ignore how to select two workers out of all qualified services. Any proper
worker selection method should be compatible here, for example, we can either let the requester
randomly choose, or let the workers bid, or based on the reputation score (if there is).

86

In practice, this coin can be randomly picked by the requester, or be derived by a

future block [20]. After all these are completed, the protocol can move on. Remark

that the blockchain addresses of Wi,Wj are recorded by the contract, such that the

contract can require the workers to authenticate their transactions by signing under

the corresponding secret keys later.

Commit. The workers send the commitments encapsulating their computing

results, respectively. A worker, for example Wi, figures out a result, denoted by

~yi for the task. If the result is correctly compute, we can expect ~yi same to

~y = P (~x;~r). Then, Wi will send the commitment of ~yi, denoted by ci, to the

smart contract. The commitment ci is gotten via a standard commitment scheme5,

namely, ci = Commit(~yi, , Ki), where Ki is a randomly chosen secret of Wi until to

open the commitment. For the other worker Wj, it also commits its result to the

blockchain, which can be done through the same commitment scheme. Assuming

that all computations and commitments can be done within a-priori delay ∆c (in

unit of block number), ∆c can be pre-specified by the contract. If any worker misses

the time to commit, its deposit is taken away. We also remark that the execution of

the outsourced computation is done off-chain, which will hurt the consensus of the

underlying blockchain.

Reveal. The workers open the commitment to reveal their computing results,

respectively. When both workers commit results, a worker, e.g., Wi can reveal the

result ~yi to the blockchain. If the blockchain receives Ki, it computes Open(ci, Ki) to

get ~yi. If the Open algorithm outputs fail, Wi will lose all its deposit. Also, supposing

that reveal should be done within a-priori countdown timer ∆o, a countdown timer

can be instantiated by the contract, if any worker fails to reveal in time, its deposit

will not be returned.

5Remark that the commitment scheme itself is not necessarily non-malleable, as the transactions
encapsulating commitments are accepted by the contract only if they are validly signed by workers.

87

Reward. The blockchain rewards/punishes the workers according to the results

they revealed. Once both the commitments are open or the countdown timer for

revealing stage expires, the smart contract will check the equality of result(s), and

make rewards or penalties, according to the pre-defined incentive clauses. More

detailedly, the clauses can be abstracted as:

• If any worker fails to commit or de-commit or submit a result in the common-
knowledge set Eck, it loses all deposits, and the other party gets only half of its
deposit refunded (if it submits a result); 6

• If ~ri = ~rj, the two workers will split the reward, i.e., Wi gets r/2, and Wj gets
r/2; 7

• If ~ri 6= ~rj, both the two workers will lose half of their deposits, i.e., Wi gets
−d/2, and Wj gets −d/2.

Intuitively, the blockchain can only know the following information: (i) the equality

of two results (if there are two); (ii) anyone who fails to submit a result. And our

incentive mechanism are trying to make best usage of these information to deter the

submission of incorrect results.

Security analysis (sketch). Here we briefly discuss the security of the above

protocol in game-theoretic setting. Let us firstly check all possible pure strategies

of each worker. Considering that the workers are non-colluding, there are three pure

strategies for each worker in general:

• “Do not commit a result in the Commit phase, or do not open the commitment
in the Decommit phase, or submit a result in Eck”, denoted by σe;

• “Reveal the correct result to the blockchain”, denoted by σt;

• “Reveal some false output chosen out of Eck”, denoted by σf .

6In practice, we may have valid heuristics to efficiently check weather an output is in Eck. For
example, the false ones in Eck usually have small entropy (except some cases like outputting inputs),
while the output of programs is unpredictable in our setting, which infers much more entropy. Such
that the requester can provide a list of random coins and then let the workers to compute the program
for several times under different random coins, which will allow the smart contract to easily filter
out low-entropy results as they are suspiciously chosen from the set of Eck.

7One may wonder a trivial strategy that both of workers output some junks in the set of Eck.
But these have been captured by the contract, and are seen as failures of submitting.

88

Table 5.1 The Game of Two Workers in Normal Form

Wi

Utility of Wi,Wj Wj
σe σt σf

σe −d,−d −d,−d/2 −d,−d/2
σt −d/2,−d r/2, r/2 −d/2,−d/2
σf −d/2,−d −d/2,−d/2−d/2,−d/2

Since we consider a program having large output space, where the possible correct

results are placed in an unpredictable way. When two non-colluding workers are

submitting two junks out of Eck without coordination, their best way is to sampling

random junks, as the unpredictable output makes them have no advantage other than

guessing. Also, for large output space, there is no chance for such two junks to be

the same, i.e., the contract can always find two different submissions, if both workers

makes junks out of Eck.

Now we are ready to show the security of our protocol. In Table.5.1, the utilities

of two workers are shown for different joint strategies, as the incentive clauses are

clearly defined. We can leverage IEWDS method to check our game:

• For any worker, the pure strategy of playing σe is strictly dominated (i.e., worse
utility for sure), so σe is “deleted” for both workers, i.e., both workers will at
least submit;

• For any worker, the pure strategy of playing σf is weakly dominated (i.e., not
better utility for sure), so σf is “deleted” for both workers, i.e., sending the true
result is at least not worse than sending random junk.

The only left IEWDS refining Nash equilibrium is the joint strategy {σt, σt}, i.e.,

“both workers send the correct result”, and we can claim our protocol realizes a

practical mechanism (Γ, {σt, σt}), which clearly realizes our security goal.

89

5.3.2 Protocol & Analysis: n Workers (|Coalition| ≤ n− 1)

The protocol for two workers rely on a key assumption that they are independent,

i.e., non-colluding. Now we are ready to present our protocol in a more general

scenario where n workers instead of two workers can hired to compute the outsourced

computations. More generally, we will allow the n workers to collude, as long as the

size of their coalitions is up to n− 1 (inclusively). Detailedly, in such a coalition, the

colluding workers there can make a strategy pre-agreed by all of coalition members to

deviate the game. If the coalition strategy is not weakly dominated by “always sending

the correct”, the mechanism fails. Otherwise, the mechanism is still a (n−1)-resilient

practical mechanism (Γ, ~σ = {t, . . . , t}) that can tolerate these coalitions. In this

section, we will show the existence of such a (n − 1)-resilient practical mechanism.

Remark that this more general conclusion essentially captures the situation of two

independent workers (i.e., 1-resilient practical mechanism).

Protocol brief. The protocol for n workers also has TaskPublish, TaskPrepare,

Commit, Reveal and Reward phases, which are similar to the protocol for two workers.

Therefore we only focus on the incentive mechanism for n workers, and present the

clauses only:

• If any worker fails to commit or de-commit or submit a result in the common-
knowledge set Eck, it loses all deposits, and all the other workers who submit
will only get a refund of half deposit;

• If n workers successfully report the same computing result, the n workers will
share the reward equally, i.e., each worker gets r/n;

• If n workers submit different results, i.e., there is as least one submission differs
from others, all workers will lose half of their deposits;

The above incentive mechanism for n workers is a straightforward extension of the

one for two workers. Again, the blockchain can only know the equality of reported

results, along with who fails to submit. Our incentive mechanism is designed to use

these little information to deter false results.

90

Table 5.2 Utility of an Arbitrary Coalition C (|C| ≤ n−1) in the Game of n Workers

C’s strategy

C’s utility Else’s strategy
Situation I Situation II Situation III

σ1 −kd −kd −kd

σ2 −kd/2 kr/n −kd/2

σ3 −kd/2 −kd/2 −kd/2

σ4 −pd/2− ld −pd/2− ld −pd/2− ld

σ5 −qd/2− ld −qd/2− ld −qd/2− ld

σ6 −(p+ q)d/2 −(p+ q)d/2 −(p+ q)d/2

σ7 −(p+ q)d/2− ld −(p+ q)d/2− ld −(p+ q)d/2− ld

Security analysis (sketch). Here we briefly discuss the security of the protocol for

n workers. For a coalition C of size up to k (1 ≤ k ≤ n − 1), it roughly has the

following strategies:

• Let all player in it play e, i.e., the coalition will submit nothing, denoted by σ1;

• Let all members play t, i.e., the coalition will submit all correct results, denoted
by σ2;

• Let all members “submit the same pre-agreed randomly chosen junk”, denoted
by σ3;

• Let p members send the correct results, and the other l = k − p members send
nothing, and the family of strategies can be denoted by σ4;

• Let q members send the random junks, and the other l = k − q members send
nothing, and we denote the family of strategies by σ5;

• Let p members send correct results, and the other q = k − p members send
junks, denoted by σ6;

• Let q members to send junks, some p members send correct results, and the
remaining l = k−p−q members send nothing, and this strategy family denoted
by σ7.

Notice that a coalition’s strategy can be enforced for all its member workers. For

example, the same randomly chosen junk can be agreed by all its members. But for

91

another worker who is out of the coalition C, it cannot know what the random junk

agreed within C. When C is making a decision on what a strategy to play, its utility

can be discussed by three situations. In each of the situation, the out-of-coalition

worker(s) might play different strategies:

• Situation I: there is at least one out-of-coalition worker submits nothing
(including to submit a result in Eck);

• Situation II: there is at least one out-of-coalition worker submits a randomly
chosen junk (out of Eck);

• Situation III: all out-of-coalition worker(s) submit the correct result.

When the coalition C applies different strategy in different situations, the utility

of this coalition can be derived and shown in Table 5.2. Essentially, for any coalition

formed by up to n− 1 workers, its utility can be represented in a similar table. After

performing IEWDS, the only survived joint strategy of all coalitions is “to send the

correct results”. In details, the iterative deletion of the weakly dominated strategies

can be discussed as follows:

• For any coalition, the pure strategy σ1 is strictly dominated, so σ1 is deleted,
also, situation I can be removed, as a consequence of the previous deletion;

• For any coalition, the pure strategies in σ4, σ5 and σ7 are strictly dominated,
and therefore these strategies can be removed one by one;

• For any coalition, the pure strategies in σ6 are weakly dominated, and therefore
can be removed, also after this deletion, the situation II disappears.

For any coalition C (1 ≤ |C| ≤ n − 1), the only left pure strategy is to “send all

correct result(s)” after applying IEWDS. Actually, the game even can guarantee that

no matter how a coalition plays, no single worker in that coalition can get better

utility than “sending the true result”. Here we omit the trivial steps of proving this

conclusion. As such, all n workers will submit the correct results, even if we admit

that these workers can collude to make up any coalitions size up to n − 1. In sum,

we can realize a practical mechanism (Γ, {σt, . . . , σt}) which is (n− 1) resilient.

92

5.4 Summary

To enable the feasibility of using smart contracts to crowdsource computation

intensive and sometimes randomized programs such as machine learning tasks, with

the given limitations on all existing verifiable computation, we take a game theoretic

approach. Instead of providing absolute confidence of verifying the correct execution

of outsourced “smart contract”, we design a simple incentive mechanism (that is

enforced by smart contract itself) so that dishonest execution could be deterred. We

present a general protocol to allow the chain to outsource heavy and randomized

computations to some external computing service providers (called workers). More

specifically, our contributions are threefold.

First, to enable the execution of heavy computations off-chain, we first consider

a classical (non-cooperative) game-theoretic setting with two workers that can audit

each other. The chain would take results that both workers agree on. Most

state-of-the-art solutions along this line assume an opportunistic approach that a

trusted party (TTP) comes online to arbitrate, in case an agreement on the result

cannot be reached. As opposed, we would get rid of this assumption. Besides properly

setting the incentives/payoffs, another subtle point remains due to the transparency

of the open blockchain: if one worker submits his answer, the other worker can simply

send the element without doing any work. This is known as the free-riding problem

in crowdsourcing which was also noted in previous works such as [98]. We leverage

a cryptographic tool of commitment scheme to tackle this problem. Taking all the

issues into account, we design a simple incentive mechanism and prove there is a

desirable refinement of Nash Equilibria that both workers do the correct computation

and return the right answer (c.f. Sec. 2.4 for the Equilibria refinement). We

also consider a class of randomized algorithms that can be considered as programs

taking inputs and an extra random coin (which can be supplied by the chain to

ensure the consistency for different workers). We remark that in our protocol, the

93

expensive and randomized computation is crowdsourced via the application layer

to be “asynchronously” executed and separated from the consensus layer. The full

nodes/miners can simply put the output into the coming block as the result is

submitted, they do not need to wait the execution to finish during mining, and thus

the consensus security will not be influenced.

Second, we then give two concrete instantiations regarding different type of

machine learning tasks, and apply our protocol to enable the “execution” of them over

the blockchain. The first example is about checking the quality of a crowdsourced

machine learning model, i.e., conditional payment based on the performance on

the testing data. The second example is directly for outsourcing machine learning

training via the smart contract, which can be an important piece of the social

computing puzzle. These two interesting instances capture the essence of most

potential decentralized crowdsourcing for machine learning tasks. We also note that

our solution is actually general to carry a wide range of complex (or randomized)

programs as well. Finally, we set force to consider potential coalition(s) in the general

setting of more (≥ 3) workers. In particular, we design a protocol that can tolerate

any coalition(s), as long as there is no coalition consisting of all workers.

94

CHAPTER 6

ON RECRUITING RELAYS FOR BLOCKCHAINS’ LIGHT CLIENTS

6.1 Background

6.1.1 Motivation

The emerging blockchain technology, in particular a permissionless blockchain, as nice

resultants of cryptography, distributed consensus and economic incentive, enables an

append only digital ledger to be jointly maintained and replicated consistently across

Internet peers. It enables many fantastic paradigms such as cryptocurrency and smart

contracts. As such, attractive decentralized ecosystems can be envisioned to reduce

the reliance on undesired third-parties, and therefore various promising decentralized

applications (DApps), such as novel financial instruments [114], peer-to-peer storage

outsourcing [108, 124], and data crowdsourcing [98] etc., can be implemented atop

blockchains.

Normally, a blockchain is considered as an abstracted layer so that higher layer

applications can simply interact with the ledger to read data from or write data into

the ledger [57, 85]. This basic abstraction (of reading data)1 implicitly assumes the

higher layer application is within a full node of the blockchain who has a complete

copy of the ledger thus can read data locally. A blockchain full node need always try

to download, verify, and store a replica of the ledger, so that he can catch up with

the consensus reached within the blockchain network.

On the other hand, there is a huge demand [37, 142, 98, 11] of blockchain’s

lightweight nodes (sometimes we also call them lightweight clients or light clients)

that may not have the capability to maintain the whole copy of the ledger. In the

setting of DApps, they could be hosted in smartphones, browser extensions, IoT nodes

1We remark that to write valid messages into the blockchain could be trivial, as one can always
gossip with some blockchain nodes to diffuse its messages to the whole blockchain network, and then
the liveness of the blockchain will ensure the appearance of these messages in the ledger [57].

95

or even an external blockchain’s smart contract. For example, it is highly desirable

that a user can use his mobile cryptocurrency wallet to do online sale and verify the

settlement of transactions sent to her in the blockchain. This demand calls for a

protocol specifically designed for lightweight nodes, such that they can be exempt

from running the consensus protocol to keep up with the whole ledger. What’s more,

such a desirable protocol is also promising to resolve the critical problem of efficient

“cross-chain” communication [80, 11] between two different chains (or among multiple

chains), in which a peer may not be interested to keep the complete ledger of both of

the ledgers; instead, he could be a full node of one blockchain, while plays the role as

a lightweight node of another external blockchain. Let alone for resourceful DApps

users, they have few motivations to setup full nodes to maintain a ledger, and might

also look for lightweight node protocol, as their main purpose is just to use DApps.

6.1.2 Challenges

The difficulty of designing a lightweight friendly protocol comes from the fact that

without a replica of the complete chain, a lightweight node essentially has to rely on

some full nodes to relay the blockchain’s states. Many of the existing systems simply

rely on some trusted relay nodes [104]. Two threats emerge: (i) a dishonest relay

node (especially the one has financial transactions with the lightweight client) may

simply return false information about the ledger to the lightweight client; (ii) not

like miners maintaining the ledger to obtain rewards, full nodes have little incentive

to participate in the relay service [39]. Current efforts on lightweight node protocols

[96, 80, 114, 91] have been focusing on providing succinct cryptographic proofs to

convince the lightweight nodes. The general idea is to allow the lightweight nodes to

keep with some small amount of metadata (which usually are consensus-dependent

such as the proof-of-work in Nakamoto’s blockchains [114, 80, 96]) to pick up the

correct blockchain branch.

96

These methods have several drawbacks: first, most of them require the

lightweight nodes to store and keep updating some metadata to verify the relayed

blockchain readings, which can be unfavorable in resource-starved environments such

as IoT sensors and/or the multi-chain scenarios [96]. Worse still, as these methods

usually require lightweight nodes to validate some consensus-dependent metadata, and

therefore are always specifically designed with considering the underlying consensus

protocols. For example, for proof-of-stake type of consensus, currently one of few

candidates [91] is specifically designed for Algorand [63], which is not suitable for

blockchains that utilize other proof-of-stake protocols. This also creates prohibitive

obstacles to interesting use-cases such as multi-chain clients. See Related Work below

for more detailed discussions about the insufficiencies of the current solutions.

“How to realize a lightweight protocol that is generic as well as friendly to

extremely resource-starved environments” is still a valuable open problem.

6.2 Prior Art

The SPV client is the first lightweight protocol for PoW blockchains, proposed as

early as Bitcoin [114]. Following the protocol, resource-constrained devices need to

download, verify and store a chain of block headers, and then can verify the existence

of any transaction, with the help of other full nodes. The main weaknesses of SPV

client is that the block headers to download, verify and store will grow linearly with the

number of the blocks of the chain, which nowadays corresponds 40 MB in Bitcoin and

more than 2 GB in Ethereum. For this reason, the concept of Proofs of Proof-of-Work

(PoPoW) was formulated in [80, 79], through which one can store only the genesis

block header, and then verify the existence of any transaction at a communication cost

sub-linear to the length of PoW chain. All above schemes cannot be applied to a proof-

of-stake (PoS) blockchain, because in a PoS blockchain, the validity of a block relies on

the signature(s) of stakeholder(s), whose validities further depend on the distribution

97

of all “stakes” recorded in the blockchain ledger. Some fast bootstrap methods such

as [91] was proposed for lightweight nodes, but only works for a particular PoS chain;

moreover the bootstrapping is still at a substantial cost which is still unaffortable to

most resource-constrained nodes.

Vitalik Buterin [22] proposed to avoid forks in PoS blockchain using incentives:

a selected committee will be punished if he proposed two different blocks in one

epoch. In this way, the lightweight node was claimed to be supported as receiving a

block (and then send back to the blockchain network) different with the one on chain

could be viewed as a malicious behavior of the relay node. However, as committees

rotate periodically, it is unclear whether the protocol still works if the relay node

is a committee for a recent period, while the lightweight client query is about some

“ancient” block which was generated before the relay node becomes a committee.

Another recent attempt in [39] focused on implementing a prototype protocol to

support lightweight nodes by using economic incentives way, while our work provides

a formally game-theoretic study in the more general setting.

Verifiable computation allows a prover to produce a cryptographic proof to

convince a verifier that the output is obtained through correctly executing a

pre-defined computation [59]. Recent constructive developments of zk-SNARKs [15]

enables very efficient verification with the price that proving takes tremendous time

and memory. For heavy tasks such as to prove the length (and even more complex

properties) of a blockchain, it is usually infeasible in practice [96].

Attestation via trusted hardwares has attracted many attentions recently [36,

158]. But recent Foreshadow attacks [146, 150] put SGX’s attestation keys in danger

of leakage, and thus allow the adversary to forge attestations, which hints us again

that the whole assumption of trusted hardwares could be arguable.

Outsourced computation via incentive games have been discussed earlier [121,

87]. Some recent studies even consider using the blockchain to facilitate such

98

outsourcing games [45, 141]. All these studies assume an implicit game mediator

(e.g., the blockchain) who can speak to and listen to all involving parties, including

the requester, the workers and the arbiter. However, in our setting, we have to

resolve a special issue that there is no such a game mediator, since the blockchain, as a

potential candidate, can not speak to the light node (i.e., the requester of computing).

6.3 Warmup: Security in Extensive-Form Game

Here gives a simple interactive “protocol” to exemplify the game-theoretic setting

(see Chapter 2 for more rigor definitions of the relevant game-theory preliminaries).

6.3.1 Interactive Protocol as Extensive-Form Game

Consider an oversimplified “light-client protocol”: Alice is a cashier of a pizza store;

her client asks a full node (i.e., relay) to check a transaction’s (non)existence, and

simply terminates to output what is forwarded by the relay.

Strategy, action, history, and information set. Let the oversimplified “protocol”

proceed in synchronous round. In each round, the parties will execute its strategy,

i.e., a probabilistic polynomial-time ITM in our context, to produce and feed a string

to the protocol, a.k.a., take an action. During the course of the protocol, a sequence

of actions would be made, and we say it is a history by convention of the game theory

literature; moreover, when a party acts, it might have learned some (incomplete)

information from earlier actions taken by other parties, so the notion of information

sets can be used to characterize what has and has not been learned by each party.

Concretely speaking, the oversimplified “light-client protocol” can be described by

the extensive-form game as shown in Figure 6.1, and it proceeds in the next three

rounds.

Round 1 (chance acts). A definitional virtual party called chance sets the

ground truth, namely, it determines True or False to represent whether the

99

relay
x

client

chance

x

a a'

t
f

t
f

A A' A A' A A' A A' A A' A A'

:
uclient
urelay

0
0

-v
αv

0
0

0
0

0
0

0
0

0
0

-v
βv

-v
αv

-v
βv

-v
αv

-v
βv

I1 I2I3

Figure 6.1 The extensive game of an oversimplified light-client “protocol”. The
utility function is an example to clarify insecurity of the trivial idea.

transaction exists (denoted by a or a′, respectively). To capture the uncertainty

of the ground truth, the chance acts arbitrarily.

Round 2 (relay acts). Then, the relay is activated to forward True or False

to the light client, which states whether the transaction exists or not. Note the

strategy chosen by the relay is an ITM that can produce arbitrary strings in this

round, we need to map the strings into the admissible actions, namely, t, f and x.

For definiteness, we let the string of ground truth be interpreted as the action t, the

string of the opposite of ground truth be interpreted as the action f , and all other

strings (including abort) be interpreted as x.

Round 3 (client acts). Finally, the client outputs True (denoted by A) or False

(denoted by A′) to represent whether the transaction exists or not, according to the

(incomplete) information acquired from the protocol. Note the client knows how

the relay acts, but cannot directly infer the action of chance. It faces three distinct

information sets I1, I2 and I3, which respectively represent the client receives True,

False and others in Round 2. Note that the client cannot distinguish which history

it reaches within each of its information sets.

100

Utility function. After the protocol terminates, its game reaches a so-called

terminal history. A well-defined utility function specifies the economic outcome of

each party, for each terminal history induced by the extensive game.

In practice, the utility function is determined by some economic factors of the

parties and the protocol itself [69, 45]. For example, the rationale behind the utility

function in Figure 6.1 can be understood as: (i) the relay is motivated to fool the client

to believe the nonexistence of an existing transaction, because this literally “censors”

Alice to harm her business by a loss of $v, which also brings a malicious benefit $α · v

to the relay; (ii) the relay also prefers to fool the client to believe the existence of a

non-existing transaction, so the relay gets free pizzas valued by $β · v, which causes

Alice lose $v (i.e., the amount supposed to be transacted to purchase pizzas), (iii)

after all, the oversimplified protocol itself does not facilitate any punishment/reward,

so will not affect the utility function.

6.3.2 Security via Sequential Equilibrium

Putting the game structure and the utility function together, we can argue the

(in)security due to the equilibria in the game. In particular, we can adopt the strong

notion of sequential equilibrium for extensive games [70, 71, 45, 118] to demonstrate

that the rational parties would not deviate, at each stage during the execution of the

protocol. As a negative lesson, the oversimplified “light-client game” in Figure 6.1

is insecure in the game-theoretic setting, as the relay can unilaterally deviate to fool

the client for higher utility. In contrast, if the protocol is secure in game-theoretic

settings, its game shall realize desired equilibrium, such that rational parties would

not diverge from the protocol for highest utilities.

101

6.4 Problem Formulation

The light-client protocol involves a light client, some relay full nodes (e.g., one or

two), and an ideal functionality (i.e., “arbiter” contract). The light client relies on

the relays to “read” the chain, and the relays expect to receive correct payments.

The basic functionality of our light-client protocol is to allow the resource-

starved clients to evaluate the falseness or trueness about some statements over the

blockchain [80]. This aim is subtly broader than [83], whose goal is restricted to

prevent the client from deciding trueness when the statement is actually false.

Chain predicate. The dissertation focuses on a general class of chain predicates

whose trueness (or falseness) can be induced by up to l transactions’ inclusions in

the chain, such as “whether the transaction with identifier txid is in the blockchain

C[0 : N] or not”. Formally, we focus on the chain predicate in the form of:

P`(C[0 : N]) =


False, otherwise

True, ∃C′ ⊂ C[0 : N] s.t. D`(C′) = True

or equivalently, there is Q(·) = ¬P(·):

Q`(C[0 : N]) =


False, ∃C′ ⊂ C[0 : N] s.t. D`(C′) = True

True, otherwise

where C′ is a subset of the blockchain C[0 : N], and D`(·) is a computable predicate

taking C′ as input and is writable as:

D`(C′) =



True, ∃ {txi} that |{txi}| ≤ `:

f({txi}) = 1 ∧ ∀ txi ∈ {txi},

∃ C[t] ∈ C′ and P.P.T. computable πi s.t.

VrfyMTP(C[t].root,H(txi), πi) = 1

False, otherwise

102

where f({txi}) = 1 captures that {txi} satisfies a certain relationship, e.g., “the hash

of each txi equals a specified identifier txidi”, or “each txi can pass the membership

test of a given bloom filter”, or “the overall inflow of {txi} is greater than a given

value”. We let P`N and Q`
N be short for P`(C[0 : N]) and Q`(C[0 : N]), respectively.

Examples of chain predicate. The seemingly complicated definition of chain

predicate actually has rather straightforward intuition to capture a wide range of

blockchain “readings”, as for any predicate under this category, either its trueness or

its falseness can be succinctly attested by up to ` transactions’ inclusion in the chain.

For ` = 1, some concrete examples are:

• “A certain transaction tx is included in C[0 : N]”, the trueness which can be
attested by tx’s inclusion in the chain.

• “A set of transactions {txj} are all incoming transactions sent to a particular
address in C[0 : N]”, the falseness of which can be proven, if ∃ a transaction tx
s.t.: (i) tx /∈ {txj}, (ii) tx is sent to the certain address, and (iii) tx is included
in the chain C[0 : N].

Limits. A chain predicate is a binary question, whose trueness (or falseness) is

reducible to the inclusion of some transactions. Nevertheless, its actual meaning

depends on how to concretely specify it. Intuitively, a “meaningful” chain predicate

might need certain specifications from an external party outside the system. For

example, the cashier of a pizza store can specify a transaction to evaluate its

(non)existence, only if the customer tells the txid.

“Handicapped” verifiability of chain predicate. W.lo.g., we will focus on the

chain predicate in form of P`N , namely, whose trueness is provable instead of the

falseness for presentation simplicity. Such the “handicapped” verifiability can be well

abstracted through a tuple of two algorithms (evaluate, validateTrue):

• evaluate(P`N) → σ or ⊥: The algorithm takes the replica of the blockchain as
auxiliary input and outputs σ or ⊥, where σ is a proof for P`N = True, and
⊥ represents its falseness; note the proof σ here includes: a set of transactions
{txi}, a set of Merkle proofs {πi}, and a set of blocks C′;

103

• validateTrue(σ,P`N) → 0 or 1: This algorithm takes blockhashes as auxiliary
input and outputs 1 (accept) or 0 (reject) depending on whether σ is deemed to
be a valid proof for P`N = True.

The above algorithms satisfy: (i) Correctness, that means for any chain predicate P`N ,

the probability Pr[validateTrue(evaluate(P`N), P`N) = 1 | P`N = true] is equal to 1, and

(ii) Verifiability, which means for any P.P.T. A and P`N , there is Pr[validateTrue(σ ←

A(P`), P`N) = 1 | P`N = false] ≤ negl(λ), where evaluate implicitly takes the

blockchain replica as input, and validateTrue implicitly inputs blockhashes. The

abstraction can also be slightly adapted for Q`
N whose falseness is the provable

side, though we omit that for presentation simplicity. Through the remaining of

the dissertation, evaluate can be seen as a black-box callable by any full nodes that

have the complete replica of the blockchain, and validateTrue is a subroutine that can

be invoked by the smart contracts that can access the dictionary blockhashes.

6.4.1 System and Adversary Model

The system explicitly consists of a light client, some relay(s) and an arbiter

contract. All of them are computationally bounded to perform only polynomial-time

computations. The messages between them can deliver synchronously within a-priori

known delay ∆T , via point-to-point channels. In details, each system participant can

be abstracted in the following way.

The rational lightweight client LW is abstracted as follows: (i) It is rational and

selfish; (ii) It is computationally bounded, i.e., it can only take an action computable

in probabilistic polynomial-time; (iii) It opts out of consensus; to capture this, we

assume: The client can send messages to the contract due to the network diffusion

functionality [57, 85]; and the client cannot receive messages from the contract except

a short setup phase, which can be done in practice because the client user can

temporarily boost a personal full node by fast-bootstrapping protocols.

104

The rational full node Ri is modeled as: (i) It is rational, and the full node

Ri might (or might not) cooperate with another full node Rj; The cooperative

full nodes form a coalition to maximize the total utility, as they can share all

information, coordinate all actions and transfer payoffs, etc. [117]; essentially, we

follow the conventional notion to view the cooperative relays as a single party [13];

Non-cooperative full nodes maximize their own utilities independently in a selfish

manner due to the standard non-cooperative game theory, which can be understood

as that they are not allowed to choose some ITMs to communicate with each other

[90]; (ii) It can only take P.P.T. computable actions at any stage of the protocol; (iii)

It runs the consensus, such that it stores the complete replica of the latest blockchain

and can send/receive messages to/from the smart contract; (iv) It can send messages

to the light client via an off-chain private channel.2

The arbiter contract Gac follows the standard abstraction of smart contracts

[85, 82], with a few slight extensions. First, it would not send any messages to the

light client except during a short setup phase. Second, it can access a dictionary

blockhashes [106, 54], which contains the hashes of all blocks. The latter abstraction

allows the contract to invoke validateTrue to verify the proof attesting the trueness of

any predicate P`N , in case the predicate is actually true.

6.4.2 Economic Factors

It is necessary to clarify the economic parameters of the rational parties to complete

our game-theoretic model. We present those economic factors and argue the rationale

behind them as follows.

Parameter c: It represents how much the client spends to maintain its (personal)

trusted full node during the repeatable query phase. Note c does not mean the

2Such the assumption can be granted if considering the client and the relays can set up private
communication channels on demand. In practice, this can be done because (i) the client can
“broadcast” its network address via the blockchain [101], or (ii) there is a trusted name service
that tracks the network addresses of the relays.

105

security relies on a trusted full node and only characterizes the cost of maintaining

the trusted full node. For example, c → ∞ would represent that the client cannot

connect any available trusted full node, once the protocol has been set up and the

client disconnects any personal full node. Note c does not characterize the cost of the

relay full node to run the consensus, and is considered to argue that rational users are

willing to employ our protocol instead of maintaining their own personal full nodes

(or subscribing some other relaying services).

Parameter v: The factor means the “value” attached to the chain predicate

under query. If the client incorrectly evaluates the predicate, it loses v. For example,

the cashier Alice is evaluating the (non)existence of a certain transaction; if Alice

believes the existence of a non-existing transaction, she loses the amount to be

transacted; if Alice believes the nonexistence of an existing transaction, her business

is harmed by such the censorship.

Parameter vi(P`N ,C)→ [0, vi]: This function characterizes the motivation of the

relay Ri to cheat the light client. Namely, it represents the extra (malicious) utility

that the relayRi earns, if fooling the client to incorrectly evaluate the chain predicate.

We explicitly let vi(P`N ,C) to have an upper-bound vi s.t.
∑
Ri vi ≤ v, which means

the malicious utilities acquired by all relay nodes when the light client is fooled shall

not be greater than the “value” attached to the chain predicate to query.

Parameter ε: When a party chooses a strategy (i.e., a P.P.T. ITM) to break

underlying cryptosystems, we let ε represent the expected utility of such a strategy,

where ε is a negligible function in cryptographic security parameter [44].

In addition, all communications and P.P.T. computations can be done costlessly

w.r.t. the economic aspect (unless otherwise specified).

106

6.4.3 Security Goals

The aim of the light-client protocol in the game-theoretic model is to allow a rational

light client employ some rational relaying full nodes (e.g., two) to correctly evaluate a

few chain predicates, and these recruited full nodes are correctly paid as pre-specified.

In details, we require such the light-client protocol ΠLW to satisfy the following

correctness and security properties.

Correctness. If all parties are honest, we require: (i) the relay nodes are correctly

paid; (ii) the light client correctly evaluates some chain predicates under the category

of P`(·), regarding the chain C[0 : T] (i.e., the chain at the time of evaluating). Both

requirements shall hold with probability 1.

Security. We adopt a strong game-theoretic security notion of sequential

equilibrium [71, 45, 70] for incomplete-information extensive games. Consider

an extensive-form game Γ that models the light-client protocol ΠLW , and let

(Zbad,Zgood) as a partition of the terminal histories Z of the game Γ. Given a

ε-sequential equilibrium of Γ denoted by σ, the probability of reaching each terminal

history z ∈ Z can be induced, which can be denoted by ρ(σ, z). Our security goal

would require: there is a ε-sequential equilibrium σ of Γ where ε is at most a negligible

function in cryptographic security parameter λ, such that under the ε-equilibrium σ,

the game Γ always terminates in Zgood.

Remark. The traditional game-theory analysis captures only computationally

unbounded players. But it becomes natural to consider computationally-bounded

players in an interactive protocol using cryptography, so will we do through the

dissertation. In such the setting, a strategy of a party can be a P.P.T. ITM to break

the underlying cryptosystems. However, this strategy succeeds with only negligible

probability. Consequently, our security goal (i.e., ε-sequential equilibrium) can be

refined into a computational variant to state the rational players switch strategies,

only if the gain of deviation is non-negligible.

107

6.5 A Simple Light-Client Protocol

We dedicatedly design a simple light-client protocol, in which a light client (LW) can

leverage it to employ two (or one) relays to evaluate the chain predicates P`N .

6.5.1 Arbiter Contract and High-Level of the Protocol

The simple light-client protocol is centering around an arbiter smart contract Gac as

shown in Figure 6.2. It begins with letting all parties place their initial deposits in

the arbiter contract Gac. Later, the client can ask the relays to forward some readings

about the blockchain, and then feeds what it receives back to the contract. As such,

once the contract hears the feedback from the client, it can leverage the initial deposits

to facilitate some proper incentive mechanism, in order to prevent the parties from

deviating by rewards and/or punishments, which becomes the crux of our protocol.

For security in the rational setting, the incentive mechanism must be powerful

enough to precisely punish misbehaviors (and reward honesty). Our main principle to

realize such the powerful incentive is letting the arbiter contract to learn as much as

possible regarding how the protocol is actually executed off-chain, so it can precisely

punish and then deter any deviations.

Nevertheless, the contract has “handicapped” abilities. We have to carefully

design the protocol to circumvent its limits, for the convenience of designing the

powerful enough incentive mechanism later.

First, the contract Gac does not know what the relay nodes forward to the

light client off-chain. The contract Gac has to rely on the client to know what the

relays did. At the first glance, the client might cheat the contract, by claiming that it

receives nothing from the relays or even forging the relays’ messages, in order to avoid

paying. To deal with the issue, we require that: (i) the relays authenticate what they

forward to the client by digital signatures, so the contract later can verify whether

a message was originally sent from the relays, by checking the attached signatures;

108

The arbiter contract Gac for m relays (m = 1 or 2)

Init. Let state := INIT, deposits := {}, relays := {}, pubKeys := {},
ctr := 0, predicate := ∅, predicate.N := 0, Tend := 0

Setup phase

Create. On receiving the message (create, k, p, e, dL, dF ,∆T) from LW :

- assert state = INIT and ledger[LW] ≥ $k · dL
- store k, p, e, r, dL, dF , and ∆T as internal states

- ledger[LW] := ledger[LW]− $k · dL
- ctr := k and state := CREATED

- send (deployed, k, p, e, dL, dF ,∆T) to all

Join. On receiving (join, pki) from Ri for first time:

- assert state = CREATED and ledger[Ri] ≥ $k · dF
- ledger[Ri] := ledger[Ri]− $k · dF
- pubKeys := pubKeys ∪ (Ri, pki)

- state := READY, if |pubKeys| = m

Queries phase

Request. On receiving (request,P`) from LW :

- assert state = READY and ledger[LW] ≥ $(p+ e)

- ledger[LW] := ledger[LW]− $(p+ e)

- predicate := P`T //Note T is the current chain height

- Tend := T + ∆T

- send (quering, ctr, predicate) to each full node registered in
pubKeys

- state := QUERYING

Feedback. On receiving (feedback, responses) from LW for first time:

- assert state = QUERYING

- store responses for the current ctr

Timer. Upon T ≥ Tend and state := QUERYING:

- call Incentive(responses, predicate) subroutine

- let ctr := ctr − 1

- if ctr > 0 then state := READY

- else state := EXPIRED

Figure 6.2 The contract Gac written in the conventional pseudocode notations.

109

(ii) the contract requires the light client to deposit an amount of $e for each query,

which is returned to the client, only if the client reports some forwarded blockchain

readings signed by the relays.

Second, the contract has a “handicapped” verifiability, which allows it to

efficiently verify a claim of P`N = True, if being give a succinct proof σ. To leverage

the property, the protocol is designed to let the relays attach the corresponding proof

σ whenever claiming the provable trueness. Again, such the design is a simple yet still

useful way to allow the contract “learn” more about the protocol execution, which

later allows us to design powerful incentive mechanisms to precisely punish deviations.

6.5.2 The Light-Client Protocol

In the presence of the contract Gac, our light-client protocol can be formally described

as Figure 6.3. To make an oversimplified summary, it first comes with a one-time setup

phase, during which the relay(s) and client make initial deposits, which later can be

leveraged by the incentive mechanism to fine tune the payoffs. Then, the client can

work independently and request the relays to evaluate a few chain predicates up to

k times, repeatedly. Since the payoffs are well adjusted, “following the protocol”

becomes the rational choice of everyone in each query.

Setup phase. As shown in Figure 6.3, the user of a lightweight client LW connects

to a trusted full node in the setup phase, and announces an “arbiter” smart contract

Gac. After the contract Gac is deployed, some relay full nodes (e.g., one or two) are

recruited to join the protocol by depositing an amount of $k ·dF in the contract. The

public keys of the relay(s) are also recorded by contract Gac.

Once the setup phase is done, each relay full node places the initial deposits

$k ·dF and the light client deposit $k ·dL, which will be used to deter their deviations

from the protocol. At the same time, LW records the public keys of the relay(s), and

then disconnects the trusted full node to work independently.

110

The light-client protocol ΠLW (where are m relays)

Setup phase

• Protocol for the light client LW :

Create. On instantiating a protocol instance:

- decide k, p, e, dL, dF ,∆T and let ctrlw := k
- send (create, k, p, e, dL, dF ,∆T) to Gac

Off-line. On receiving (initialized, pubKeys) from Gac:
- record pubKeys and disconnect the trusted full node

. .

• Protocol for the relay Ri:

Join. On receiving (deployed, k, p, e, dL, dF ,∆T) from Gac:
- generate a key pair (ski, pki) for signature scheme
- send (join, pki) to Gac

Queries phase

• Protocol for the light client LW :

Request. On receiving a message (from the higher level app) to evaluate the
predicate P`:

- Tfeed := T + 2∆T , and send (request,P`) to Gac
Evaluate. On receiving (response, ctri, resulti, sigi) from the relay Ri:

- assert T ≤ Tfeed and ctri = ctrlw
- assert vrfySig(〈resulti, ctr〉, sigi, pki) = 1
- responses := responses ∪ (resulti, sigi)
- if |responses| = m then

output b ∈ {True, False}, if responses claim b

Feedback. Upon the global clock T = Tfeed:

- ctrlw := ctrlw − 1
- send (feedback, responses) to Gac

. .

• Protocol for the relay Ri:

Respond. On receiving (quering, ctr,P`N) from Gac:
- resulti := evaluate(P`N)

- sigi := sign(〈resulti, ctr〉, ski)
- send (response, ctr, resulti, sigi) to LW

Figure 6.3 The light-client protocol ΠLW among the relay(s) and client.

111

In practice, the setup can be done by using many fast bootstrap methods [123,

91, 80], which allows the user to efficiently launch a personal trusted full node in the

PC. The light client (e.g., a smart phone) can connect to the PC to sync. Remark

that, besides the cryptographic security parameter λ, the protocol is specified with

some other parameters:

• k: The protocol is expired, after the client requests the relay(s) to evaluate some
chain predicates for k times.

• k · dL: This is the deposit placed by the client to initialize the protocol.

• k · dF : The initial deposit of a full node to join the protocol as a relay node.

• p: Later in each query, the client shall place this amount to cover the well-
deserved payment of the relay(s).

• e: Later in each query, the client shall place this deposit e in addition to p.

Repeatable query phase. Once the setup is done, LW disconnects the trusted full

node, and can ask the relay(s) to query some chain predicates repeatedly. During the

queries, LW can message the arbiter contract, but cannot read the internal states of

Gac. Informally, each query proceeds as “request-response-evaluate-payout”.

Request. In each query, LW firstly sends a request message to the contract Gac,

which encapsulates detailed specifications of a chain predicate P`(·), along with a

deposit denoted by $(p + e), where $p is the promised payment and $e is a deposit

refundable only when LW reports what it receives from the relays. Once Gac receives

the request message from LW , Gac further parameterizes the chain predicate P` as P`N ,

where N ← T represents the current global time (i.e., the latest blockchain height).

Response. The the relay full node(s) can learn the predicate P`N under query

(whose ground truth is fixed since N is fixed and would not be flipped with the

growth of the global timer T), and the settlement of the deposit $(p+ e) by reading

the arbiter contract. Then, the relay node can evaluate the predicate P`N with using

its local blockchain replica as auxiliary input. When P`N = True, the relay node

112

shall send the client a response message including a proof σ for trueness, which can

be verified by the arbiter contract but not the light client; in case P`N = False, the

“honest” full node shall reply to the light client with a response message including

⊥. In addition, when the relay sends a response message to LW off-chain,3 it also

authenticates the message by attaching its signature (which is also bounded to an

increasing only counter to prevent replaying).

Evaluate & Feedback. Upon receiving a response message from the relay Ri,

LW firstly verifies that it is authenticated by a valid signature sigi. If sigi is valid,

LW parses the response message to check whether Ri claims P`N = True or P`N =

False. If receiving consistent response message(s) from all recruited relay(s), the light

client decides this consistently claimed True/False. Then the client sends a feedback

message to the contract Gac with containing these signed response message(s). Remark

we do not assume the client follows the protocol to output and feeds back to the

contract. Instead, we focus on proving “following the protocol to decide an output”

is the sequential rational strategy of the client.

Payout. Upon receiving the feedback message sent from the light client,

the contract Gac shall invoke the Incentive subroutine to facilitate some payoffs.

Functionality-wise, the payoff rules of the incentive subroutine would punish and/or

reward the relay node(s) and the light client, such that none of them would deviate

from the protocol.

Remark on correctness. It is immediate to see the correctness: when all parties

are honest, the relay(s) receive the payment pre-specified due to incentive mechanism

in the contract, and the client always outputs the ground truth of chain predicate.

Remark on security. The security would depend on the payoffs clauses facilitated

by the incentive subroutine, which will be elaborated in later subsections as we

3 Note that we assume the off-chain communication can be established on demand in the
dissertation, which in practice can be done through a name service or “broadcasting” encrypted
network addresses through the blockchain [101].

113

intentionally decouple the protocol and the incentive design. Intuitively, if the

incentive subroutines does nothing, there is no security to any extent; since following

the protocol is not any variant of equilibrium. Thus, the incentive mechanism must

be carefully designed to finely tune the payoffs, in order to make the sequential

equilibrium to be following the protocol.

6.6 Adding Incentives for Security

Without a proper incentive subroutine, our simple light-client protocol is seemingly

insecure to any extent, considering at least the relay nodes are well motivated to

cheat the client. To mitigate the issue, this section formally treats the light-client

protocol as an extensive game, and then studies on how to squeeze most out of the

“handicapped” abilities of the arbiter contract to design proper incentives, such that

the utility function of the game can be well adjusted to deter any party from deviating

at any stage of the protocol’s extensive game.

6.6.1 Challenges of Designing Incentives

The main challenge of designing proper incentives to prevent the parties from

deviating is the “handicapped” abilities of the arbiter contract Gac: there is no proof

for a claim of P`N = False, so Gac cannot directly catch a liar who claims bogus

P`N = False. We conquer the above issue in the rational setting, by allowing the

contract Gac to believe unverifiable claims are correctly forwarded by rational relay(s),

even if no cryptographic proofs for them. Our solution centers around the fact: if

a claim of P`N = False is actually fake, there shall exist a succinct cryptographic

proof for P`N = True, which can falsify the bogus claim of P`N = False. As such,

we derive the basic principles of designing proper incentives in different scenarios:

(i) When there are two non-cooperative relays, we create an incentive to leverage

non-cooperative parties to audit each other, so sending fake P`N = False become

114

a'

a

f

f
t

t

x

f t

x

f t

f t

xt f

xt f

t f

R1

R1

x x

x xR2	

LW

QB

	LW

chance

f

f

t

t

R

R x

LW

	LW

LW a'

a
QB chance

LW

(a)	two	non-cooperative	relays	(m=2) (b)	one	single	relay	(m=1)

Note:	the	client's	last	actions	(i.e.	feedback	&	output)	are	omitted	here	in	the	figures

xR2	

Figure 6.4 The repetition structure of the light-client game in one query: (a) two
non-cooperative relays (i.e., Γ2); (b) one single relay (i.e., Γ1). The last actions of the
client are not shown for presentation simplicity.

irrational and would not happen; (ii) When there is only one relay node (which

models that there are no non-cooperative relays at all), we somehow try an incentive

design to let the full node “audit” itself, which means: the relay would get a higher

payment, as long as it presents a verifaible claim instead of an unverifiable claim. So

the relay is somehow motivated to “audit” itself.

6.6.2 “Light-Client Game” of the Protocol

Here we present the structure of “light-client game” for the simple light-client

protocol presented in the earlier section. We would showcase how the extensive game

does capture (i) all polynomial-time computable strategies and (ii) the incomplete

information received during the course of the protocol.

Game structure for two relays. For the case of recruiting two (non-cooperative)

relays, we denote the “light-client” game as Γk2. It has a repetition structure (i.e., a

stage game Γ2) that can be repeated up to k times as shown in Figure 6.4 (a), since

the client can raise queries for up to k times in the protocol. More precisely, for each

115

query, the protocol proceeds as the incomplete-information extensive stage game Γ2

that can be described as follows.

Client acts by making a query or not. The client moves, with two optional

actions Q and B. Q denotes “sending a request message to query”, and B denotes

“others” (including abort). The game only proceeds when the light client acts Q.

Chance acts by choosing the truth. At the history Q, the special player “chance”

moves, with two possible actions a and a′. Let a represent P`N = True, and a′ for

P`N = False. The occurrence of a and a′ follows an arbitrary distribution [ρ, 1 − ρ].

Note the action of chance can be observed by the relay full nodes but not the client.

Relay acts by responding the client. At histories Q(a|a′), 4 the relay node R1

acts, with three available actions {t, f, x}:

• The action t means R1 forwards the ground truth of P`N to LW (with attaching
correct “proofs” if there are any).5

• The action f represents that R1 forwards the opposite of the ground truth of
chain predicate to LW .

• The action x means as others, including abort and some attempts to break the
cryptographic primitives.

The other relay acts by responding the relay. At histories Q(a|a′)(t|f |x), it is

the turn of R2 to move. Since R1 and R2 are non-cooperative, histories Qa(t|f |x)

make of an information set of R2 denoted by I1, and similarly, Qa′(t|f |x) is another

information set I2. At either I1 or I2, R2 has three actions {t, f, x}, which can be

understood as same as the actions ofR1 at Q(a|a′), sinceR1 andR2 are exchangeable

notations.

Client acts by feeding back and evaluating. Then the game Γ2 reaches one of

the histories Q(a|a′)(t|f |x)(t|f |x). As shown in Figure 6.4, the client LW is facing

4Remark that we are using standard regular expressions to denote the histories and information
set. For example, Q(a|a′) represents {Qa,Qa′}

5There exists another strategy to claim the truth of the predicate when the predicate is indeed
true, but with invalid proof. This strategy is strictly dominated and would not be adopted at all,
since it neither fools the client, nor get through the verification of contract to get any reward. We
therefore omit it.

116

nine information sets6: ILW1 = Q(att|a′ff), ILW2 = Q(atf |a′ft), ILW3 = Q(at|a′f)x,

ILW4 = Q(aft|a′tf), ILW5 = Q(aff |a′tt), ILW6 = Q(af |a′t)x, ILW7 = Q(axt|a′xf),

ILW8 = Q(axf |a′xt), ILW9 = Q(a|a′)xx. At these information sets, the light client

shall choose a probabilistic polynomial-time ITM to: (i) send a feedback message

back to the contract, and (ii) decide an output. As such, the available actions of the

client at each information set can be interpreted as:

• From ILW1 to ILW5 , the client receives two response messages from both relays
in time, and it can take an action out of {T, L,R,X}× {A,A′, O}: T means to
report the arbiter contract Gac both of the response; L (or R) represents that
LW reports to the contract Gac only one response message sent from R1 (or
R2); X represents others, including abort; A means to output True; A′ is to
output False; O denotes to output nothing.

• Through ILW3 to ILW8 , the client LW receives only one response message from
R1 (or R2), and can take an action out of {T,X} × {A,A′, O}: T means to
report the contract Gac the only response message that it receives; X means to
do others, including abort; A, A′ and O have the same concrete meaning as
before.

• At ILW9 , LW receives nothing from the relays in time, it can take an action out
of {T,X} × {A,A′, O}: T can be translated as to send the contract nothing
until the contract times out, X represents others (for example, trying to crack
digital signature scheme); A, A′ and O still have the same meaning as before.

After all above actions are made, the protocol completes one query, and can go to the

next query, as long as it is not expired or the client does not abort. The protocol’s

game Γk2 (capturing all k queries) can be inductively defined by repeating the above

structure up to k times.

Game structure for one relay. For the case of recruiting only one relay to request

up to k queries, we denote the protocol’s “light-client” game as Γk1. As shown in

Figure 6.4 (b), it has a repetition structure (i.e., the stage game Γ1) similar to the

game Γ2, except few differences related to the information sets and available actions of

the light client. In particular, when the client receives response from the only relay,

6Remark that the histories Qatt and Qa′ff cannot be distinguished by the light client, because
for the light client, both of them correspond that two claims of True. All the nine information sets
of the light client can be translated similarly.

117

it would face three information sets, namely, Q(at|a′f), Q(af |a′t) and Q(ax|a′x),

instead of nine in Γ2. At each information set, the client always can take an action

out of {T,X} × {A,A′, O}, which has the same interpretation in the game Γ2. Since

Γ1 is extremely similar to Γ2, we omit such details here.

What if no incentive? If the arbiter contract facilitates no incentive, the possible

execution result of the protocol can be concretely interpreted due to the economic

aspects of our model, which are:

• When the client is fooled. The client loses $v, and the relay Ri earns $vi. Note
$v is related to the value attached to the chain predicate under query, say the
transacted amount, due to our economic model; and $vi is the malicious benefit
earned by Ri if the client if fooled.

• When the client outputs the ground truth. The relay would not earn any
malicious benefit, and the client would not lose any value attached to the chain
predicate either.

• When the client outputs nothing. The relay would lose $c, which means it will
launch its own (personal) full node to query the chain predicate. In such case,
the relay would not learn any malicious benefit.

It is clear to see that without proper incentives to tune the above outcomes, the game

cannot reach a desired equilibrium to let all parties follow the protocol, because at

least the relays are well motivated to cheat the client. Thus we leverage the deposits

placed by the client and relay(s) to design simple yet still useful incentives in next

subsections, such that we can fine tune the above outcome to realize a utility function

obtaining desired equilibrium, thus achieving security.

6.6.3 Basic Incentive Mechanism

The incentive subroutine takes the feedback message sent from the client as input, and

then facilitates rewards/punishments accordingly. After that, the utility function of

the “light-client game” is supposed to be well tuned to ensure security. Here we will

present such the carefully designed incentive subroutine, and analyze the incentive

makes the “light-client game” secure to what extent.

118

Basic incentive for two relays. If two non-cooperative relays can be recruited, the

incentive subroutine takes the feedback message from the client as input, and then

facilitates the incentives following hereunder general principles:

• It firstly verifies whether the feedback from the light client indeed encapsulates
some responses that were originally sent from R1 and/or R2 (w.r.t. the current
chain predicate under query). If feedback contains two validly signed responses,
return $e to the client; If feedback contain one validly signed response, return
$e/2 to the client.

• If a relay claims P`N = True with attaching an invalid proof σ, its deposit for
this query (i.e., $dF) is confiscated and would not receive any payment.

• When a relay sends a response message containing ⊥ to claim P`N = False,
there is no succinct proof attesting the claim. The incentive subroutine checks
whether the other relay full node provides a proof attesting P`N = True. If the
other relay proves P`N = True, the cheating relay loses its deposit this query
(i.e., $dF) and would not receive any payment. For the other relay that falsifies
the cheating claim of P`N = False, the incentive subroutine assigns it some
extra bonuses (e.g., doubled payment).

• After each query, if the contract does not notice a full node is misbehaving (i.e.,
no fake proof for truthness or fake claim of falseness), it would pay the node $p/2
as the basic reward (for the honest full node). In addition, the contract returns
a portion of the client’s initial deposit (i.e., $dL). Moreover, the contract returns
a portion of each relay’s initial deposit (i.e., $dF), if the incentive subroutine
does not observe the relay cheats during this query.

The rationale behind the incentive design is straightforward. First, during any query,

the rational light client will always report to the contract whatever the relays actually

forward, since the failure of doing so always causes strictly less utility, no matter

the strategy of the relay full nodes; Second, since the two relay full nodes are non-

cooperative, they would be incentivized to audit each other, such that the attempt

of cheating the client is deterred. To demonstrate above general reward/punishment

principles of the incentive mechanism are implementable, we concretely instantiate

its pseudocode that are deferred to subsection A.2.1.

Basic incentive for one relay. When any two recruited relays might collude, the

situation turns to be pessimistic, as the light client is now requesting an unknown

119

information from only a single distrustful coalition. To argue security in such the

pessimistic case, we consider only one relay in the protocol. To deal with the

pessimistic case, we tune the incentive subroutine by incorporating the next major

tuning (different from the the incentive for two relays):

• If the relay claims P`N = False, its deposit is returned, but it receives a payment
less than $p, namely, $(p− r) where $r ∈ [0, p] is a parameter of the incentive.

• Other payoff rules are same to the basic incentive mechanism for two non-
cooperative relays.

To demonstrate the above delicately tuned incentive is implementable, we showcase

its pseudocode that is deferred to subsection A.2.2.

6.6.4 Security Analysis for Basic Incentive

Utility function. Putting the financial outcome of protocol executions together with

the incentive mechanism, we can eventually derive the utility functions of game Γk2

and game Γk1, inductively. The formal definitions of utilities are deferred to Appendix

A.3. Given such utility functions, we can precisely analyze the light-client game Γk2

(and the game Γk1) to precisely understand our light-client protocol is secure to what

extent.

Security theorems of basic incentive. For the case of two non-cooperative relays,

the security can be abstracted as Theorem 4:

Theorem 4. If the relays that join the protocol are non-cooperative, there exists a

negl(λ)-sequential equilibrium of Γk2 that can ensure the game Γk2 terminates in a

terminal history belonging Zgood := (QattTA|Qa′ttTA′){k} (i.e., no deviation from

the protocol), conditioned on dF + p/2 > vi, dL > (p+ e), and c > p. In addition, the

rational client and the rational relays would collectively set up the protocol, if p > 0.

For the case of one single relay (which models cooperative relays), the security

of the basic incentive mechanism can be abstracted as:

120

Theorem 5. In the pessimistic case where is only one single relay (which models a

coalition of relays), there exists a negl(λ)-sequential equilibrium that can ensure the

game Γk1 terminates in Zgood := (QatTA|Qa′tTA′){k} (i.e., no deviation from the

protocol), conditioned on dF+p−r > vi, r > vi, dL > (p+e), and c > p. Moreover, the

rational client and the rational relay would collectively set up the protocol, if p−r > 0

and p > 0.

Interpretations of Theorem 4. The theorem reveals that: conditioned on there

are two non-cooperative relays, the sufficient conditions of security are: (i) the initial

deposit dF of relay node is greater than its malicious benefit vi that can be obtained

by fooling the client; (ii) the initial deposit dL of the client is greater than the payment

p plus another small parameter e; (iii) for the light client, it. The above conclusion

essentially hints us how to safely set up the light-client protocol to instantiate a

cryptocurrency wallet in practice, that is: let the light client and the relays finely tune

and specify their initial deposits, such that the client can query the (non)existence of

any transaction, as long as the transacted amount of the transaction is not greater

than the initial deposit placed by the relay nodes.

Interpretations of Theorem 5. The theorem states that: even in an extremely

hostile scenario where only one single relay exists, deviations are still prevented when

fooling the light client to believe the non-existence of an existing transaction does

not yield better payoff than honestly proving the existence. The statement presents

a feasibility region of our protocol that at least captures many important DApps

(e.g., decentralized messaging apps) in practice, namely: fooling the client is not very

financially beneficial for the relay, and only brings a payoff vi to the relay; so as long

the client prefers to pay a little bit more than vi to read a record in the blockchain,

no one would deviate from the protocol.

121

6.6.5 Augmented Incentive

This subsection further discusses the pessimistic scenario that no non-cooperative

relays can be identified, by introducing an extra assumption that: at least one public

full node (denoted by PFN) can monitor the internal states of the arbiter contract

at a tiny cost ε w.r.t. economic factor (say zero through the dissertation for the

convenience of analysis), and does not cooperate with the only recruited relay. This

extra rationality assumption can boost an incentive mechanism to deter the relay and

client from deviating from the light-client protocol. Here we present this augmented

incentive design, and analyze its security guarantees.

Augmented incentive for one relay. The tuning of the incentive mechanism stems

from the observation that: if there is any public full node that does not cooperate

with the recruited relay (and monitor the internal states of the arbiter contract), it

can stand out to audit a fake claim about P`N = False by producing a proof attesting

P`N = True. Thus, we slightly tune the incentive subroutine (by adding few lines of

pseudocode), which can be summarized as:

• When a relay forwards a response message containing ⊥ to claim P`N = False,
the incentive subroutine shall wait few clock periods (e.g., one). During the
waiting time, the public full node is allowed to send a proof attesting P`N = True
in order to falsify a fake claim of P`N = False; in this case, the initial deposit dF
of the cheating relay is confiscated and sent to the public full node who stands
out to prove the cheating behavior.

• Other payoff rules are same to the basic incentive mechanism, so do not involve
the public full node.

We defer the formal instantiation of the above augmented incentive mechanism in the

standard pseudocode format to subsection A.2.3.

122

m

a'

Q

B

cha
nce

client

x

a f

tx

T

X

drela
y

clie
nt PFN

PFN

uPFN	=	-ε

uPFN	=	0

"monitor"

"debate"
uPFN	=	dF

Figure 6.5 The induced game G1, if having a non-cooperative public full node.

6.6.6 Security Analysis for Augmented Incentive

Augmented “light-client game”. By the introduction of the extra incentive

clause, the “light-client game” Γ1 is extended to the augmented light-client game

G1. As shown in Figure 6.5, the major differences from the original light-client game

Γ1 are two aspects: (i) the public full node (PFN) can choose to monitor the arbiter

contract (denoted by m) or otherwise (x) in each query, which cannot be told by the

relay node due to the non-cooperation, and (ii) when the ground truth of predicate

is true, if the relay cheats, PFN has an action “debate” by showing the incentive

mechanism a proof attesting the predicate is true, conditioned on having taken action

m.

The security intuition thus becomes clear: if the recruited relay chooses a

strategy to cheat with non-negligible probability, the best strategy of the public full

node is to act m, which on the contrary deters the relay from cheating. In the other

word, the relay at most deviate with negligible probability.

Security theorem of augmented incentive. Now, in the augmented game G1, if the

recruited relay deviates when the predicate is true with non-negligible probability, the

rational PFN would act m and then d, which will confiscate the initial deposit of the

123

relay and deters it from cheating. More precisely, the security due to the augmented

incentive mechanism can be summarized as:

Theorem 6. Given the augmented incentive mechanism, there exists a negl(λ)-

sequential equilibrium of the augmented light-client game G1 such that it can ensure

the client and the relay would not deviate from the protocol except with negligible

probability, conditioned on dF > vi, dL > (p+ e), c > p and a non-cooperative public

full node that can “monitor” the arbiter contract costlessly. Also, the client and the

relay would set up the protocol, if p > 0.

Interpretations of Theorem 6. The economics behind the theorem can be

translated similarly to Theorem 4.

6.7 Instantiation of the Light-Client Protocol

Here we shed light on the concrete instantiation of the protocol in practice

and emphasize some tips towards feasibility. Though the current permissionless

blockchains (e.g., Ethereum) are suffering from many baby-age limitations (e.g., high

cost of on-chain resources, low throughput, and large latency), a straight instantiation

of our light-client protocol has been arguably practical.

On- and off-chain feasibility. As shown in Table 6.1, we instantiate the protocol

atop Ethereum (with recruiting one relay and using the basic incentive mechanism,

c.f., Section 6.6.4), and measure the costs of repeatedly evaluating five chain predicates

about the (non)existence of different Ethereum transactions.

Due to the simple nature of our protocol, the off-chain cost of the light client

is constant and essentially tiny, as it only needs: (i) to store two public keys, (ii) to

instantiate two secure channels to connect the relay nodes (e.g., the off-chain response

message is < 1KB), (iii) to verify two signatures and to compute a few hashes to few

verify Merkle tree proof(s) in the worst case.

124

Table 6.1 An Instantiation (Basic Incentive of One Relay for 5 Ether Transactions)

txid queried for
evaluating (non)existence

Gas of request
(LW → Gac)

Size of response
(Ri → LW)

Gas of feedback
(LW → Gac)

0x141989127035... 71,120 gas 947 Byte 199,691 gas
0x0661d6e95ab1... 41,120 gas 951 Byte 251,480 gas
0x949ae094deb0... 41,120 gas 949 Byte 257,473 gas
0x1e39d5b4b46d... 41,120 gas 985 Byte 339,237 gas
0xfe28a4dffb8e... 41,120 gas 951 Byte 248,119 gas

Note: The code is available at https://github.com/yylluu/rational-light-client. These five
transactions under query are included by the Ethereum blockchain, and we choose them from the
blocks having various sizes. For example, the transaction 0x1e39... is in a block having 263
transactions, which indicates the evaluation has captured some worst cases of reading from large
blocks. In lieu of EIP-210 [54] which currently is not available in EVM, we hardcore the needed
blockhashes (in the contract) to measure the actual on-chain overhead (as if EIP-210 is available).

Besides the straightforward off-chain efficiency, the on-chain cost is also low.

Particularly, the client only sends two messages (i.e., request and feedback) to the

contract, which typically costs mere 300k gases in the worst case as shown in Table

6.1. At the time of writing (Jan/13/2020), ether is $143 each [35], and the average

gas price is 10 Gwei [51], which corresponds to a cost of only $0.43.

Latency. If the network diffuse functionality [57] can approximate the latency of

global Internet [10, 58], the delay of our light-client protocol will be dominated

by the limitations of underlying blockchain. The reasons are: (i) many existing

blockchains have limited on-chain resources, and the miners are more willing to pack

the transactions having higher transaction fees [114, 152, 10], and (ii) messaging the

contract suffers from the intrinsic delay caused by underlying consensus. For example,

in Ethereum network at the time of writing, if the light client sets its transactions

at the average gas price (i.e., 9 Gwei), the latency of messaging the contract on

average will include: (i) 10 blocks (about two minutes) [51] for being mined, plus

(ii) a few more blocks for confirmations (another a few minutes) [62]. If the client

expects the protocol to proceed faster, it can set higher gas price (e.g., 22 Gwei per

gas), which causes its messages to be included after 2-3 blocks on average (i.e., about

125

30-45 seconds) [51], though the on-chain cost increases by 144%. After all, once the

underlying blockchain goes through the baby-age limitations, the protocol’s latency

can be further reduced to approximate the actual Internet delay.

Who are the relays? The light-client protocol can be deployed in any blockchain

supporting smart contracts. The relays in the protocol can be the full nodes of

the chain (e.g., the full nodes of two competing mining pools) that are seeking

the economic rewards by relaying blockchain readings to the light clients, so it

is reasonable to assume that they can maintain the full nodes to evaluate chain

predicates nearly costlessly. Even in the extremely adversarial environment where

the light client has no confidence in the non-collusion of any two full nodes, the

protocol can still be finely tuned (e.g., increase the rewards) to support at least a

wide range of useful low-value chain predicates.

The initial setup. We explicitly decouple the presentations of “protocol” and

“incentive mechanism” to provide the next insight: the initial deposit is not necessary

to be cryptocurrency as our design, and it can be any form of “collateral”, such as

business reputations and subscriptions; especially, if the “deposit” is publicly known

off the chain, the setup phase also becomes arguably removable, as the light client

has no need to rely on a personal full node to verify the correct on-chain setup of the

initial deposit anymore.

The amount of initial deposits. One might worry that the amount of initial

deposit, especially when considering that the needed initial deposit is linear to the

number of queries to be asked. In practice, a few instantiations can avoid the deposit

from being too large to be feasible. One of those is to let the light client and the relay

node(s) to negotiate before (or during) the setup phase to choose a moderate number

of queries to support, and then they can periodically reset the protocol, which is

feasible as the light client user can afford to periodically reset her personal full node

for a short term to handle the setups. Another possibility, as already mentioned, is

126

relying on some external “collateral” (e.g., reputations and subscriptions) to replace

the deposit of cryptocurrency in the protocol.

6.8 Summary

Different from the existing light client protocols in cryptographic settings, this disser-

tation takes a different path and systematic study the problem in the game-theoretic

setting and solve it via mechanism design. Assuming lightweight nodes and relaying

full nodes are rational, it leverages the smart contract to facilitate a simple incentive

mechanism such that being honest is their best choice, i.e., for their highest utility,

full nodes must faithfully relay blockchain’s states to the light client for being paid.

In a bit more details, after a one time setup with a trusted full node checking the

relay nodes have correctly deposit to the dedicated designed incentive smart contract,

the lightweight client can repeated query. First, it posts detailed specifications about

the query along with a deposit (which is larger than the payment promised for the

query) to the incentive smart contract via a transaction (which can be done because

writing to blockchain is trivial for any Internet nodes including the lightweight ones);

The relay full nodes will see the above transaction in its local ledger replica, and

relay the query results to the lightweight node off-chain for the promised payment;

The lightweight node is incentivized to report to the contract all relayed results that it

receives, otherwise it gets a fine; The contract verifies the correctness of these relayed

results and pay the full nodes accordingly. The amount of the required deposits and

economic punishment if cheating is finely tuned such that the game achieves a desired

refinement of Nash equilibrium. This means, it is guaranteed that (i) the rational full

nodes will relay the blockchain’s states correctly and (ii) a rational lightweight node

would like to pay the full nodes as promised.

These procedures empower a superlight protocol that enables a light client to

recruit several relay full nodes (e.g., one or two) to securely evaluate a general class

127

of predicates about the blockchain. To summarize, the core technical contributions

of this Chapter are four-fold.

First, our light-client protocol can be bootstrapped in the rational setting,

efficiently and generically. The protocol is superlight, in the sense that the client

can go off-line and wake up any time to evaluate a general class of chain predicates

at a tiny constant computationally cost; as long as the truthness or falseness of these

chain predicates is reducible to few transactions’ inclusion in the blockchain.

Second, this generic protocol gets rid of the dependency on consensuses and

can be deployed in nearly any permissionless blockchain (e.g., Turing-complete

blockchains [23, 152]) without even velvet forks [157], thus supporting the promising

PoS type of consensuses.

Third, it conducts a systematic study to understand whether, or to what

extent, the light-client protocol is secure in the rational setting (without trusted

third-parties). It makes non-trivial analyses of the incomplete-information extensive

game induced by our light-client protocol and conduct a comprehensive study to

understand how to design the incentives to achieve security in different scenarios,

from the standard setting of non-cooperative full nodes to the pessimistic setting of

colluding full nodes.

Finally, the protocol enables the rational client to evaluate non-existence of a

given transaction besides the existence, i.e., the rational client can be convinced by

the rational full nodes that a given transaction is not in the blockchain. That provides

a simple way to performing non-existence “proof”. In contrast, relevant studies in the

cryptographic setting either give up non-existence proof [114, 83] or have to heavily

modify the blockchain’s data structure [18, 110].

128

CHAPTER 7

OTHER PERTINENT RESULTS

Besides focusing on decentralized applications for specific crowdsourcing scenarios, it

also initiates a few other relevant studies, ranging from various high-level decentralized

application to the underlying core blockchain techniques, thus inferring a much larger

scope of the research (c.f., Chapter 8 for more details on the future vision). Here down

below are some brief discussions on these preliminary results.

Decentralized content delivery with strong fairness [72]. P2P content

delivery is thought of a cost-saving alternative to replace existing content delivery

network (CDN), the latter of which suffers from extremely high cost. Nevertheless,

to ensure P2P content delivery to function as expected, it does require to enforce

carefully designed incentive mechanism to ensure fairness among the participants,

that means each participant earns proportional to what it contributes. Most existing

P2P content delivery frameworks either only achieve weaker versions of fairness or rely

on unrealistic assumptions that are elusive in practice. Here it designs a decentralized

content delivery system atop the blockchain. This system satisfies the fairness for the

content owner, the deliverer, and the consumer, each of which can enjoy guaranteed

fairness against the other two (probably colluding) parties. For the first time, it

achieves a stronger and realistically meaningful notion of fairness, such that the

content deliverer would be paid (nearly) proportional to the bandwidth that it uses,

despite the influence of the malicious consumer and the malicious content owner.

This system still remains high efficiency and attains low on-chain computational cost,

which is close to optimal. Especially in the optimistic case that all parties are honest,

the on-chain is as small as a few US cents.

129

Privacy-preserving decentralized retailer gift card ledger [100]. Though

the retailer gift card has been an ultra-practical marketing tactic to attract customers

to spend more, it on the contrary also places a great number of customers in

troublesome situations due to its current limitations. First, dealing with unwanted gift

cards is often time-consuming, costly or even risky due to the frequent occurrences

of gift card resale frauds. Worse still, the issuance and redemption of gift cards

happen inside the retailer as in a “black-box”, indicating that a compromised retailer

can cheat customers (or even third-party auditors) to deny the issuances of some

unredeemed gift cards. This paper proposes a practical middle-layer solution based

on blockchain to address the fundamental issues of the existing gift card system, with

incurring minimal changes to the current infrastructure. In addition, it enjoy other

needed security requirements such as (i) keeping the gift card balances confidential

against corrupted blockchain nodes and (ii) maintaining easy giftability such that any

cards can be gifted without knowing the recipient’s public key.

Optimal validated asynchronous Byzantine agreement (VABA) [97].

VABA is fundamental for critical atomic broadcast in the asynchronous network

[24], and turns to be a needed building block for achieving consortium blockchain

in the unstable global Internet environment. It was left as an open problem to

asymptotically reduce the O(`n2 + λn2 + n3) communication (where n is the number

of parties, ` is the input length, and λ is the security parameter). Recently, [1]

removed the n3 term to partially answer the question only if the input is small in size.

However, in many other typical use-cases, for example, building atomic broadcast

around VABA, the needed input length (of VABA) ` shall be larger than λn, and

thus the communication is still dominated by the `n2 term so does not fully answer the

open problem raised in [24]. This work fills the gap and answers the remaining part of

the open problem by presenting two VABA protocols with O(`n+λn2) communicated

bits without scarifying optimal fault-tolerance and optimal message complexity, which

130

immediately corresponds to a better way to realizing robust yet still high-performing

consortium blockchain suitable for the fluctuating real-world Internet.

131

CHAPTER 8

SUMMARY OF THE DISSERTATION

8.1 Conclusion

To reduce over-reliance on third-party platforms in the traditional crowdsourcing

sector, it becomes enticing to use the novel blockchain technologies and seek for the

rising decentralization paradigm. However, if decentralized crowdsourcing is naively

engineered, the inherent restrictions of the blockchain might backfire and greatly harm

the basic utilities of these trivial designs. There still remains a huge gap between the

ideal end-goals of decentralized crowd-sharing economy and the problematic prior art

of blockchain-based crowdsourcing applications.

Noticing that huge gap, this dissertation proposes a package of secure yet

still efficient solutions to go through the intrinsic issues of blockchains, such that

one can achieve truely meaningful decentralized crowdsourcing in practice, which

means: (i) the basic utilities can be guaranteed with high security assurance, despite

of the influence of attacks launched by (probably any) Internet nodes through the

open blockchain network; (ii) the system remains highly feasible, although necessary

security-driven designs have to be added for the provably secure utilities. In short,

the dissertation focuses on the following two main categories of applications.

On the one hand, Chapters 3 and 4 initiate the study of private knowledge

solicitation atop the blockchain. This line of research identifies privacy as an

indispensable security requirement to make decentralized knowledge solicitation

meaningful; otherwise, the well-known transparency of blockchain would open new

attack surface to allow literally anyone to free-ride (namely, reap credits without

contributing), which further causes that no rational users would contribute high-

quality data anymore and results in sorta tragedy of the commons to completely fail

132

the system. Chapter 3 proposes ZebraLancer to adapt the advanced zero-knowledge

proof framework (zk-SNARK) to let the requester prove the quality of encrypted

answers, which achieves critical on-chain efficiency due to constant proof size and

nearly constant verification time; Chapter 4 proposes Dragoon to further improve

this result by designing a special-purpose proving scheme for the concrete quality

rules widely adopted by Amazon’s MTurk, thus improving the efficiency by a few

orders of magnitude without scarifying privacy. More surprisingly, Dragoon is so

efficient that it is on-chain handling cost can be less than the handling fee charged

by Amazon MTurk for the same ImageNet tasks.

On the other hand, Chapters 5 and 6 initiate systematic studies on decentralized

solicitation of “computing resources”. The challenges of decentralized crowdsourcing

of computing power stem from the fact that the blockchain has to validate the

(dis)honesty of computations off the blockchain, otherwise the recruited workers

can earn rewards without committing any actual efforts. Traditional solutions to

resolve the challenges (in the cryptographic setting) require advanced cryptographic

primitives such as verifiable computation, the state-of-art of which, unfortunately,

is far from being practical for complex computations. For real-world practicality,

this dissertation explicitly deviates from conventional cryptographic approaches, and

seeks for mitigation in the game-theoretic setting. At high-level, the selfishness of

non-cooperative workers is leveraged to audit each other. When some workers is

misbehaving, the other non-colluding workers would report to a dedicatedly designed

smart contract about the misbehavior and instruct the contract to punish. Eventually,

the designs realize some desirable refinements of Nash equilibrium, under which no

rational parties would deviate from being honest and thus ensure the desired outcome

despite of adversarial behaviors.

These results not only bridge the gap towards the end-goal of deploying

meaningful decentralized crowdsourcing in reality, but also turn to be promising to

133

bootstrap blockchains themselves to conquer their own issues, for example, to support

complicated smart contracts and to enable superlight clients.

8.2 Reflection

More generally, this dissertation develops and demonstrates two distinct method-

ologies to simultaneously achieve the critical security and efficiency required by the

decentralized applications atop (permissionless) blockchains.

In the cryptographic model, it showcases that specific-purpose optimizations

for concrete decentralization can be dedicated to significantly reduce the

cryptographic overhead incurred by the indispensable security requirements such as

privacy (see Chapters 3 and 4 for hints). In particular, by considering the specific

demands of real-world use-cases, some concretely efficient solutions can be worked

out for real-world problems. The idea behind the methodology is to remove needless

generality in specific circumstances, thus achieving high efficiency while remaining

any indispensable security guarantees.

In the game-theoretic setting, it demonstrates that secure decentralization

can be efficiently attained via proper incentive mechanisms through using

smart contracts and cryptocurrencies. In contrast to the cryptographic setting where

an implicit adversary can corrupt and fully control some participating parties to

arbitrarily misbehave, the game-theoretic approach considers that each party neither

completely honest nor arbitrarily malicious, but is rational to seek for its own highest

benefits. Embracing this game-theoretic methodology, Chapters 5 and 6 consider

how to design proper incentives atop the blockchain to (i) recruit computing power

for machine learning tasks and (ii) employ blockchain full nodes to relay blockchain

readings, respectively. These game-theoretic solutions are much more efficient than

the best so-far solutions in the conventional cryptographic setting.

134

The previous two methodologies essentially correspond to a couple of general

ways that can be applied for a broader array of decentralized applications to achieve

indispensable security as well as real-world practicability.

In greater detail, the research can immediately benefits many categories of

decentralized applications in much larger scope. First, the methodologies in this

research could be leveraged to handle the decentralized crowdsourcing of various

physical resources. One remarkable example is the decentralized crowdsourcing of

Internet bandwidth, which could be further augmented to attain the ideal goal

of decentralized peer-to-peer content delivery network [72] in order to reduce the

high usage cost of existing content delivery networks. Second, the results about

decentralized knowledge crowdsourcing can be directly borrowed to bootstrap the

desired decentralized data marketplace, since the key methodologies would also be

valid solutions to solve the critical privacy and fairness issues in the decentralized

version of data marketplace. As such, individuals can expect a secure and anonymous

way to sell their personal information to certain parties. Third, this research

(in particular, Zebralancer) provides an insight on how to achieve an anonymous

blockchain-based auction platform in a meaningful way. In an anonymous auction

protocol, the major challenge is that some malicious users might leverage the

anonymity to flood bids to manipulate the auction’ outcome. The common-prefix

linkable anonymous authentication scheme could be the key to prevent those

malicious behaviors. Finally, the methods (e.g., the special-purpose cryptographic

optimizations) also shed light on how to implement a few interesting applications

in the sector of decentralized finance, securely yet still efficiently. One example can

be private blockchain-based gift cards [100]. This dedicatedly optimized system can

enable the retailers to shift their gift card management databases on the blockchain,

without scarifying the indispensable confidentiality or the critical efficiency.

135

8.3 Future Vision

Open problems. Though this dissertation presents a few newest results on decen-

tralized crowdsourcing, this novel paradigm (along with the underlying blockchain

technology) is still quickly developing, and the relevant area is also largely unexplored.

In particular, a few immediate follow-up studies can be carried out to extend the

functionalities and securities from various perspectives.

One promising direction is to conduct more specific-purpose designs to efficiently

decentralize distinct flavors of crowdsourcing. For example, can we design a concretely

efficient protocol to decentralize participatory crowd-sensing that is minimally

meaningful with the needed fairness and privacy? Such the problem is challenging,

since there is no explicit requester to “prove” the quality of encrypted data anymore.

Unfortunately, letting the blockchain learn encrypted data’s quality (without a

prover) falls into the category of (multi-input) functional encryption [66, 19], which

is unclear how can be solved practically till today.

In addition, this dissertation considers the security of decentralized knowledge

crowdsourcing due to conventional cryptographic notions, in which the corrupted

parties are fully controlled by an adversary and the honest parties will be honest to

follow the protocol independently. This model has an inherent drawback to explain

why rational workers would not deviate (e.g., by colluding together to free-ride).

To address this realistic concern, an “incentive-compatible” protocol is required, so

“following the protocol” is a Nash equilibrium (or its refinement) that can deter

rational workers from deviating.

Another appealing future work is to explore decentralized crowdsourcing for

more physical resources, for example, the bandwidth. In particular, the decentralized

crowdsourcing of bandwidth resources could be considered as a novel P2P content

delivery paradigm based on blockchain for the needed fairness, namely, an Internet

users can be well paid iff it honestly delivers contents on behalf of the content owners.

136

Such a bandwidth crowdsourcing paradigm could be further considered as the final

piece of the puzzle to complete the P2P storage network [124, 108], which only

guarantees the storage of content but not the delivery.

Finally, it becomes an urgent open problem to consider the composability

of collateral in crypto-economic protocols. Say all protocols in this dissertation

requires participants to place considerable deposits for security. What is more, many

crypto-economic protocols (e.g., PoS blockchains [81, 38, 63] and payment channels

[107, 49] already introduce a few locked deposits, and it becomes enticing to explore

the composability of using the same collateral in many crypto-economic protocols,

without scarifying the securities of all. Collateral composability is critical to bootstrap

the wider adoption of crypto-economic protocols in reality, as it allows the participants

to conveniently enjoy the benefits of all protocols after merely placing a single piece

of deposit.

Bitcoin/Ethereum

EOS/Cardano

Single Server

Raft Cluster

Decentralization => scalability, robustness

Performance => high-throughput, low-latency

Existing Co
nso

rtium

Blo
ckc

hain
s

Ideal End-Goal

Traditional in-house Data-Center

Existing Permissionless
Blockchains

Figure 8.1 Trade-off between performance and decentralization.

Permissionless v.s. permissioned? Though the main results of this dissertation

are initiated to adapt the extremely adversarial environment of so-called permis-

137

sionless blockchains (in which any Internet node can dynamically join and leave), they

can be directly migrated to fit the so-called consortium blockchains (e.g., permissioned

blockchains) where the consensuses are maintained collectively by a set of pre-selected

parties with known identities.

Taking this in mind, it is straightforward to ask: when some practitioners

are implementing the protocols in the dissertation, which underlying infrastructure

shall they choose, the permissionless or the permissioned? Currently, it is actually

a choice between performance (e.g., throughput and latency) and decentralization

(e.g., scalability and robustness), as briefly illustrated in Figure 8.1. In particular,

most existing permissionless blockchains are low-performing while being highly robust

and scalable; in contrast, most existing permissioned blockchains are usually better

performing but is much less robust and small in scale. Thus, in performance-aware

scenarios, the permissioned blockchains could be preferred, while in robustness-critical

cases, the permissionless infrastructure would be more desired.

Nevertheless, it is arguable that the blockchains, no matter the permissioned

or the permissionless, are at their baby age and might be greatly improved through

more groundbreaking efforts. In particular, in light of a few recent breakthroughs of

Byzantine fault-tolerant protocols [68, 97, 156, 109], it is rather promising to improve

the scalability of permissioned blockchains for large-scale. It, therefore, could be

envisioned that the (permissioned) blockchains can soon break the current barrier of

performance-decentralization trade-off, so in the near future, practitioners no longer

have to sacrifice either decentralization or performance as they have to nowadays.

The previous two methodologies essentially correspond to a couple of general

ways that can be applied for a broader array of decentralized applications to achieve

indispensable security as well as real-world practicaliblity, instead of being restricted

to the crowdsourcing use-cases discussed in this dissertation.

138

APPENDIX

SUPPLEMENTAL MATERIALS OF CHAPTER 6

A.1 Merkle Tree Algorithms

Figure A.1, A.2 and A.3 are the deferred algorithms related to Merkle tree. A Merkle

tree (denoted by MT) is a binary tree: (i) the i-th leaf node is labeled by H(txi), where

H is a cryptographic hash function; (ii) any non-leaf node in the Merkle tree is labeled

by the hash of the labels of its siblings. BuildMT(·) takes a sequence of transactions

as input, and outputs a Merkle tree whose root commits these transactions. GenMTP

takes a Merkle tree MT and a transaction tx as input, and can generate a Merkle

tree proof π for the inclusion of tx in the tree. Finally, VrfyMTP takes H(tx), the

tree root, and the Merkle proof π, and can output whether H(tx) labels a leaf of the

Merkle tree MT.

BuildMT algorithm

BuildMT(TX = (tx1, · · · , txn)):
• if |TX| = 1:

– label(root) = H(tx1)

• else:

– lchild = BuildMT(tx1, . . . , txdn/2e)

– rchild = BuildMT(txdn/2e+1, . . . , txn)

– label(root) = H(label(lchild)||label(rchild))

• return Merkle tree MT with root

Figure A.1 BuildMT that generates a Merkle tree with root for TX = (tx1, · · · , txn).

139

GenMTP algorithm

GenMTP(MT, tx):
• x← the leaf node labeled by H(tx)

• while x 6= label(MT.root):

– lchild← x.parent.lchild

– rchild← x.parent.rchild

– if x = lchild, bi ← 0, li = label(rchild)

– otherwise, bi ← 1, li = label(lchild)

– x← x.parent

• return π = ((li, bi))i∈[1,n]

Figure A.2 GenMTP that generates a Merkle tree proof.

VrfyMTP algorithm

VrfyMTP(lable(root), π,H(tx)):
• parse π as a list ((li, bi))i∈[1,n]

• x = H(tx)

• for i in [1, n]:

– if bi = 0, x← H(x||li), else x← H(li||x)

• if x 6= lable(root), return False, otherwise return
True

Figure A.3 VrfyMTP that verifies a Merkle tree proof.

A.2 Deferred Formal Description of Incentive Subroutines

Here are the deferred proofs for the security theorems in Chapter 6. These proofs

complete the analysis for the basic incentive mechanism for two relays, the basic

incentive for single relay, and the augmented incentive for single relay.

140

A.2.1 Basic Incentive for the Protocol with Two Relays

Figure A.4, A.5 and A.6 showcase that the basic incentive mechanism for two relays

is implementable, when given the validateTrue algorithm. Figure A.5 presents the

detailed incentive clauses when the client feeds back two validly signed response

messages from both recruited relays (clause 1-6). Figure A.6 presents how to deal

with the scenario where the client only feeds back one validly signed response message

from only relay (clause 7-9). Note that $r is a parameter used to deter the collusion

of two relays, which could be better illustrated later by the incentive for one single

relay (that models colluding relays essentially).

Incentive subroutine for two non-cooperative relays

Incentive(responses,P`N):

if |responses| = 2 then

parse {(resulti, sigi)}i∈{1,2} := responses

if vrfySig(〈resulti, ctr〉, sigi, pk1) = 1 for each i ∈ [1, 2]

call Payout(result1, result2,P
`
N) subroutine in Figure A.5

ledger[LW] := ledger[LW] + $dL

return

if |responses| = 1 then

parse {(resulti, sigi)} := responses

if vrfy(resulti||ctr, sigi) = 1

call Payout′(resulti,P
`
N) subroutine in Figure A.6

ledger[LW] := ledger[LW] + $dL

return

ledger[Ri] := ledger[Ri] + $dF

ledger[R|1−i|] := ledger[R|1−i|] + $dF

ledger[LW] := ledger[LW] + $dL

Figure A.4 Incentive subroutine (two non-cooperative relays).

141

Payout subroutine

Payout(result1, result2,P
`
N):

if result1 can be parsed as σ1 then

if validateTrue(σ1,P
`
N) = 1 then

if result2 can be parsed as σ2 then

if validateTrue(σ2,P
`
N) = 1 then // Clause 1

ledger[Ri] := ledger[Ri] + $(p2 + dF), ∀i ∈ {1, 2}
ledger[LW] := ledger[LW] + $(e)

else // i.e., validateTrue(σ2,P
`
N) = 0 // Clause 2

ledger[R1] := ledger[R1] + $(p+ 3
2dF)

ledger[LW] := ledger[LW] + $(e+ dF
2)

else // i.e., result2 = ⊥ // Clause 3

ledger[R1] := ledger[R1] + $(p+ 3
2dF)

ledger[LW] := ledger[LW] + $(e+ dF
2)

else // i.e., validateTrue(σ1,P
`
N) = 0

if result2 can be parsed as σ2 then

if validateTrue(σ2,P
`
N) = 1 then // Clause 2

ledger[R2] := ledger[R2] + $(p+ 3
2dF)

ledger[LW] := ledger[LW] + $(e+ dF
2)

else // i.e., validateTrue(σ2,P
`
N) = 0 // Clause 4

ledger[LW] := ledger[LW] + $(p+ e+ 2dF)

else // i.e., result2 = ⊥ // Clause 5

ledger[R1] := ledger[R1] + $(p2 − r + dF)

ledger[LW] := ledger[LW] + $(p2 + e+ r + dF)

else // i.e., result1 = ⊥

if result2 can be parsed as σ2 then

if validateTrue(σ2,P
`
N) = 1 then // Clause 3

ledger[R2] := ledger[R2] + $(p+ 3dF
2)

ledger[LW] := ledger[LW] + $(e+ dF
2)

else // i.e., validateTrue(σ2,P
`
N) = 0 // Clause 5

ledger[R2] := ledger[R2] + $(p2 − r + dF)

ledger[LW] := ledger[LW] + $(p2 + e+ r + dF)

else // i.e., result2 = ⊥ // Clause 6

ledger[Ri] := ledger[Ri] + $(p2 − r + dF), ∀i ∈ {1, 2}
ledger[LW] := ledger[LW] + $(e+ 2r)

Figure A.5 Payout subroutine called by Figure A.4.

142

Payout′ subroutine

Payout′(resulti,P
`
N):

if resulti can be parsed as σi then

if validateTrue(σi,P
`
N) = 1 then // Clause 7

ledger[Ri] := ledger[Ri] + $(p+ dF)

ledger[R|1−i|] := ledger[R|1−i|] + $(dF)

ledger[LW] := ledger[LW] + $(e2)

else // i.e., validateTrue(σi,P
`
N) = 0 // Clause 8

ledger[R|1−i|] := ledger[R|1−i|] + $(dF)

ledger[LW] := ledger[LW] + $(p+e2 + dF
2)

else // i.e., resulti = ⊥ // Clause 9

ledger[Ri] := ledger[Ri] + $(p2 − r + dF)

ledger[R|1−i|] := ledger[R|1−i|] + $(dF)

ledger[LW] := ledger[LW] + $(e2 + r)

Figure A.6 Payout′ subroutine called by Figure A.4.

A.2.2 Basic Incentive for the Protocol with Single Relay

When the protocol is participated by the light client and one single relay node (which

models that the client does not believe there are non-cooperative relays), we tune

the incentive to let the only relay node to audit itself by “asymmetrically” pay the

proved claim of truthness and the unproved claim of falseness (with an extra protocol

parameter r), and thus forwarding the correct evaluation result of the chain predicate

becomes dominating. In general, the incentive mechanism for one single relay is

similar to the case of two relays. Moreover, as shown earlier, the incentive parameter

r can also be incorporated into the two-relay case to deter the collusion of relays. Here

we describe the case of one single relay as an over-simplified modeling to capture the

effect of two completely cooperative relays (that can act as a single coalition), which

allows us to better illustrate the idea of using r to deter collusion.

143

Incentive subroutine for one single relay

Incentive(responses,P`N):
if |responses| = 1 then

parse {(resulti, sigi)} := responses

if vrfy(resulti||ctr, sigi) = 1

if resulti can be parsed as σi then

if validateTrue(σi,P
`
N) = 1 then

ledger[Ri] := ledger[Ri] + $(p+ dF)

ledger[LW] := ledger[LW] + $e

else // i.e., validateTrue(σi,P
`
N) = 0

ledger[LW] := ledger[LW] + $(p+ e+ dF)

else // i.e., resulti = ⊥
ledger[Ri] := ledger[Ri] + $(p− r + dF)

ledger[LW] := ledger[LW] + $(e+ r)

return

ledger[Ri] := ledger[Ri] + $dF

ledger[LW] := ledger[LW] + $dL

Figure A.7 Incentive subroutine for the protocol with (one single relay).

A.2.3 Augmented Incentive for the Protocol with Single Relay

Here is the augmented incentive mechanism for the protocol with one single relay.

Different from the aforementioned idea of using “asymmetric” incentive to create

“self-audition”, we explicitly allow the additional public full nodes to audit the relay

node in the system. To do so, the incentive subroutine has to wait for some “debating”

message sent from the public full nodes (that are monitoring the internal states of the

contract at a tiny cost), after it receives the feedback from the client about what the

relay node does forward. If the relay node is cheating to claim a fake unprovable side,

the public can generate a proof attesting that the relay was dishonest, thus allowing

the contract to punish the cheating relay and reward the public node and return the

payments to the light client.

144

Incentive subroutine for one single relay

Incentive(responses,P`N):
if |responses| = 1 then

parse {(resulti, sigi)} := responses

if vrfy(resulti||ctr, sigi) = 1

if resulti can be parsed as σi then

if validateTrue(σi,P
`
N) = 1 then

ledger[Ri] := ledger[Ri] + $(p+ dF)

ledger[LW] := ledger[LW] + $e

else // i.e., validateTrue(σi,P
`
N) = 0

ledger[LW] := ledger[LW] + $(p+ e+ dF)

else // i.e., resulti = ⊥
Tdebate := T + ∆T

debate := P`N
return

ledger[Ri] := ledger[Ri] + $dF

ledger[LW] := ledger[LW] + $dL

Debate. Upon receiving (debating,P`N , σpfn) from PFN :

assert debate 6= ∅ and debate = P`N

if validateTrue(σpfn,P
`
N) = 1 then:

ledger[PFN] := ledger[PFN] + $dF

ledger[LW] := ledger[LW] + $(p+ e)

debate := ∅

Timer. Upon T ≥ Tdebate and debate 6= ∅:

ledger[Ri] := ledger[Ri] + $(dF + p)

ledger[LW] := ledger[LW] + $e

debate := ∅

Figure A.8 Augmented Incentive subroutine (a single relay) with assuming a non-
colluding public full node (in the whole blockchain network).

A.3 Inductive Definition of Utility Functions

Let h denote a history in Γk2 the to represent the beginning of a reachable query, at

which the LW moves to determine whether to abort or not, and then chance, R1,

R2 and LW sequentially move. Then the utilities of LW , R1 and R2 can be defined

recursively as shown in Table A.1, A.2 and A.3.

145

Table A.1 Recursive Definition of Utility of Γk2 (Continued in Table A.2)

Info Set

of LW

Histories

of LW

Actions

of LW
Utility of LW Utility of R1 Utility of R2

I1LW

hQatt

TA uLW (h) + dL − p uR1
(h) + p

2
+ dF uR2

(h) + p
2

+ dF

LA uLW (h) + dL − p− e
2

- -

RA uLW (h) + dL − p− e
2

- -

XA uLW (h) + dL − p− e - -

hQa′ff

TA uLW (h) + dL − v + 2dF uR1
(h) + v1 uR2

(h) + v2

LA uLW (h) + dL − v −
p
2
− e

2
+

dF
2

- -

RA uLW (h) + dL − v −
p
2
− e

2
+

dF
2

- -

XA uLW (h) + dL − v − p− e - -

I2LW

hQatf

TA uLW (h) + dL − p + dF uR1
(h) + p + 3

dF
2

uR2
(h)

LA uLW (h) + dL − p− e
2

- -

RA uLW (h) + dL − p− e
2

+ r - -

XA uLW (h) + dL − p− e - -

hQa′ft

TA uLW (h) + dL − v −
p
2

+ r + dF uR1
(h) + v1 uR2

(h) + v2 + p
2
− r + dF

LA uLW (h) + dL − v −
p
2
− e

2
+

dF
2

- -

RA uLW (h) + dL − v − p− e
2

+ r - -

XA uLW (h) + dL − v − p− e - -

I3LW

hQatx
TA uLW (h) + dL − p− e

2
uR1

(h) + p + dF uR2
(h) + dF

XA uLW (h) + dL − p− e - -

hQa′fx
TA uLW (h) + dL − v −

p
2
− e

2
+

dF
2

uR1
(h) + v1 uR2

(h) + v2 + dF

XA uLW (h) + dL − v − p− e - -

I4LW

hQaft

TA uLW (h) + dL − p +
dF
2

uR1
(h) uR2

(h) + p + 3
dF
2

LA uLW (h) + dL − p− e
2

+ r - -

RA uLW (h) + dL − p− e
2

- -

XA uLW (h) + dL − p− e - -

hQa′tf

TA uLW (h) + dL − v −
p
2

+ r + dF uR1
(h) + v1 + p

2
− r + dF uR2

(h) + v2

LA uLW (h) + dL − v − p− e
2

+ r - -

RA uLW (h) + dL − v −
p
2
− e

2
+

dF
2

- -

XA uLW (h) + dL − v − p− e - -

I5LW

hQaff

TA uLW (h) + dL − p + 2r uR1
(h) + p

2
− r + dF uR2

(h) + p
2
− r + dF

LA uLW (h) + dL − p− e
2

+ r - -

RA uLW (h) + dL − p− e
2

+ r - -

XA uLW (h) + dL − p− e - -

hQa′tt

TA uLW (h) + dL − v − p + 2r uR1
(h) + v1 + p

2
− r + dF uR2

(h) + v2 + p
2
− r + dF

LA uLW (h) + dL − v − p− e
2

+ r - -

RA uLW (h) + dL − v − p− e
2

+ r - -

XA uLW (h) + dL − v − p− e - -

I6LW

hQafx
TA uLW (h) + dL − p− e

2
+ r uR1

(h) + p
2
− r + dF uR2

(h) + dF

XA uLW (h) + dL − p− e - -

hQa′tx
TA uLW (h) + dL − v − p− e

2
+ r uR1

(h) + v1 + p
2
− r + dF uR2

(h) + v2 + dF

XA uLW (h) + dL − v − p− e - -

I7LW

hQaxt
TA uLW (h) + dL − p− e

2
uR1

(h) + dF uR2
(h) + p + dF

XA uLW (h) + dL − p− e - -

hQa′xf
TA uLW (h) + dL − v −

p
2
− e

2
+

dF
2

uR1
(h) + v1 + dF uR2

(h) + v2

XA uLW (h) + dL − v − p− e - -

I8LW

hQaxf
TA uLW (h) + dL − p− e

2
+ r uR1

(h) + dF uR2
(h) + p

2
− r + dF

XA uLW (h) + dL − p− e - -

hQa′xt
TA uLW (h) + dL − v − p− e

2
+ r uR1

(h) + v1 + dF uR2
(h) + v2 + p

2
− r + dF

XA uLW (h) + dL − v − p− e - -

I9LW

hQaxx
TA uLW (h) + dL − p− e uR1

(h) + dF uR2
(h) + dF

XA uLW (h) + dL − p− e - -

hQa′xx
TA uLW (h) + dL − v − p− e uR1

(h) + v1 + dF uR2
(h) + v2 + dF

XA uLW (h) + dL − v − p− e - -

- h B uLW (h) - -

146

Table A.2 Recursive Definition of Utility of Γk2 (Continued from Table A.1)

Info Set

of LW

Histories

of LW

Actions

of LW
Utility of LW Utility of R1 Utility of R2

I1LW

hQatt

TA′ uLW (h) + dL − v − p uR1
(h) + v1 + p

2
+ dF uR2

(h) + v2 + p
2

+ dF

LA′ uLW (h) + dL − v − p− e
2

- -

RA′ uLW (h) + dL − v − p− e
2

- -

XA′ uLW (h) + dL − v − p− e - -

hQa′ff

TA′ uLW (h) + dL + 2dF uR1
(h) uR2

(h)

LA′ uLW (h) + dL −
p
2
− e

2
+

dF
2

- -

RA′ uLW (h) + dL −
p
2
− e

2
+

dF
2

- -

XA′ uLW (h) + dL − p− e - -

I2LW

hQatf

TA′ uLW (h) + dL − v − p +
dF
2

uR1
(h) + v1 + p + 3

dF
2

uR2
(h) + v2

LA′ uLW (h) + dL − v − p− e
2

- -

RA′ uLW (h) + dL − v − p− e
2

+ r - -

XA′ uLW (h) + dL − v − p− e - -

hQa′ft

TA′ uLW (h) + dL −
p
2

+ r + dF uR1
(h) uR2

(h) + p
2
− r + dF

LA′ uLW (h) + dL −
p
2
− e

2
+

dF
2

- -

RA′ uLW (h) + dL − p− e
2

+ r - -

XA′ uLW (h) + dL − p− e - -

I3LW

hQatx
TA′ uLW (h) + dL − v − p− e

2
uR1

(h) + v1 + p + dF uR2
(h) + v2 + dF

XA′ uLW (h) + dL − v − p− e - -

hQa′fx
TA′ uLW (h) + dL −

p
2
− e

2
+

dF
2

uR1
(h) uR2

(h) + dF

XA′ uLW (h) + dL − p− e - -

I4LW

hQaft

TA′ uLW (h) + dL − v − p +
dF
2

uR1
(h) + v1 uR2

(h) + v2 + p + 3
dF
2

LA′ uLW (h) + dL − v − p− e
2

+ r - -

RA′ uLW (h) + dL − v − p− e
2

- -

XA′ uLW (h) + dL − v − p− e - -

hQa′tf

TA′ uLW (h) + dL −
p
2

+ r + dF uR1
(h) + p

2
− r + dF uR2

(h)

LA′ uLW (h) + dL − p− e
2

+ r - -

RA′ uLW (h) + dL −
p
2
− e

2
+

dF
2

- -

XA′ uLW (h) + dL − p− e - -

I5LW

hQaff

TA′ uLW (h) + dL − v − p + 2r uR1
(h) + v1 + p

2
− r + dF uR2

(h) + v2 + p
2
− r + dF

LA′ uLW (h) + dL − v − p− e
2

+ r - -

RA′ uLW (h) + dL − v − p− e
2

+ r - -

XA′ uLW (h) + dL − v − p− e - -

hQa′tt

TA′ uLW (h) + dL − p + 2r uR1
(h) + p

2
− r + dF uR2

(h) + p
2
− r + dF

LA′ uLW (h) + dL − p− e
2

+ r - -

RA′ uLW (h) + dL − p− e
2

+ r - -

XA′ uLW (h) + dL − p− e - -

I6LW

hQafx
TA′ uLW (h) + dL − v − p− e

2
+ r uR1

(h) + v1 + p
2
− r + dF uR2

(h) + v2 + dF

XA′ uLW (h) + dL − v − p− e - -

hQa′tx
TA′ uLW (h) + dL − p− e

2
+ r uR1

(h) + p
2
− r + dF uR2

(h) + dF

XA′ uLW (h) + dL − p− e - -

I7LW

hQaxt
TA′ uLW (h) + dL − v − p− e

2
uR1

(h) + v1 + dF uR2
(h) + v2 + p + dF

XA′ uLW (h) + dL − v − p− e - -

hQa′xf
TA′ uLW (h) + dL −

p
2
− e

2
+

dF
2

uR1
(h) + dF uR2

(h)

XA′ uLW (h) + dL − p− e - -

I8LW

hQaxf
TA′ uLW (h) + dL − v − p− e

2
+ r uR1

(h) + v1 + dF uR2
(h) + v2 + p

2
− r + dF

XA′ uLW (h) + dL − v − p− e - -

hQa′xt
TA′ uLW (h) + dL − p− e

2
+ r uR1

(h) + dF uR2
(h) + p

2
− r + dF

XA′ uLW (h) + dL − e - -

I9LW

hQaxx TA′ uLW (h) + dL − v − p− e uR1
(h) + v1 uR2

(h) + v2

hQaxx XA′ uLW (h) + dL − v − p− e uR1
(h) + v1 uR2

(h) + v2

hQa′xx TA′ uLW (h) + dL − p− e uR1
(h) uR2

(h)

hQa′xx XA′ uLW (h) + dL − p− e uR1
(h) uR2

(h)

- h B uLW (h) - -

147

Table A.3 Recursive Definition of Utility of Γk2 (Continued from Tables A.1 and A.2)

Info Set

of LW

Histories

of LW

Actions

of LW
Utility of LW Utility of R1 Utility of R2

I1LW

hQatt

TO uLW (h)− c− p uR1
(h) + p

2
+ dF uR2

(h) + p
2

+ dF

LO uLW (h)− c− p− e - -

RO uLW (h)− c− p− e - -

XO uLW (h)− c− p− e + ε - -

hQa′ff

TO uLW (h)− c + 2dF uR1
(h) uR2

(h)

LO uLW (h)− c− p
2
− e

2
+

dF
2

- -

RO uLW (h)− c− p
2
− e

2
+

dF
2

- -

XO uLW (h)− c− p− e + ε - -

I2LW

hQatf

TO uLW (h)− c− p +
dF
2

uR1
(h) + p + 3

dF
2

uR2
(h)

LO uLW (h)− c− p− e
2

- -

RO uLW (h)− c− p− e
2

+ r - -

XO uLW (h)− c− p− e - -

hQa′ft

TO uLW (h)− c− p
2

+ r + dF uR1
(h) uR2

(h) + p
2
− r + dF

LO uLW (h)− c− p
2
− e

2
+

dF
2

- -

RO uLW (h)− c− p− e
2

+ r - -

XO uLW (h)− c− p− e - -

I3LW

hQatx
TO uLW (h)− c− p− e

2
uR1

(h) + p + dF uR2
(h) + dF

XO uLW (h)− c− p− e - -

hQa′fx
TO uLW (h)− c− p

2
− e

2
+

dF
2

uR1
(h) uR2

(h) + dF

XO uLW (h)− c− p− e - -

I4LW

hQaft

TO uLW (h)− c− p +
dF
2

uR1
(h) uR2

(h) + p + 3
dF
2

LO uLW (h)− c− p− e
2

+ r - -

RO uLW (h)− c− p− e
2

- -

XO uLW (h)− c− p− e - -

hQa′tf

TO uLW (h)− c + p
2

+ r + dF uR1
(h) + p

2
− r + dF uR2

(h)

LO uLW (h)− c− p− e
2

+ r - -

RO uLW (h)− c− p
2
− e

2
+

dF
2

- -

XO uLW (h)− c− p− e - -

I5LW

hQaff

TO uLW (h)− c− p + 2r uR1
(h) + p

2
− r + dF uR2

(h) + p
2
− r + dF

LO uLW (h)− c− p− e
2

+ r - -

RO uLW (h)− c− p− e
2

+ r - -

XO uLW (h)− c− p− e - -

hQa′tt

TO uLW (h)− c− p + 2r uR1
(h) + p

2
− r + dF uR2

(h) + p
2
− r + dF

LO uLW (h)− c− p− e
2

+ r - -

RO uLW (h)− c− p− e
2

+ r - -

XO uLW (h)− c− p− e - -

I6LW

hQafx
TO uLW (h)− c− p− e

2
+ r uR1

(h) + p
2
− r + dF uR2

(h) + dF

XO uLW (h)− c− p− e - -

hQa′tx
TO uLW (h)− c− p− e

2
+ r uR1

(h) + p
2
− r + dF uR2

(h) + dF

XO uLW (h)− c− p− e - -

I7LW

hQaxt
TO uLW (h)− c− p− e

2
uR1

(h) + dF uR2
(h) + p + dF

XO uLW (h)− c− p− e - -

hQa′xf
TO uLW (h)− c− p

2
− e

2
+

dF
2

uR1
(h) + dF uR2

(h)

XO uLW (h)− c− p− e - -

I8LW

hQaxf
TO uLW (h)− c− p− e

2
+ r uR1

(h) + dF uR2
(h) + p

2
− r + dF

XO uLW (h)− c− p− e - -

hQa′xt
TO uLW (h)− c− p− e

2
+ r uR1

(h) + dF uR2
(h) + p

2
− r + dF

XO uLW (h)− c− e - -

I9LW

hQaxx TO uLW (h)− c− p− e uR1
(h) uR2

(h)

hQaxx XO uLW (h)− c− p− e uR1
(h) uR2

(h)

hQa′xx TO uLW (h)− c− p− e uR1
(h) uR2

(h)

hQa′xx XO uLW (h)− c− p− e uR1
(h) uR2

(h)

- h B uLW (h) - -

148

We make the following remarks about the recursive definition of the utilities: (i)

when h := ∅, set uLW(h) := 0, uR1(h) := 0, and uR2(h) := 0; (ii) uLW(h) = uLW(h) +

dL and the utility functions depict the final outcomes of the players, when |h| = 6k

(i.e., the protocol expires); (iii) when the chance choose a and the lightweight client

outputs A′, or when the chance choose a′ and the lightweight client outputs A, the

light client is fooled, which means its utility increment shall subtract v, and the utility

increments of R1 and R2 shall add v1 := v1(P1
h,C) and v2 := v2(P1

h,C) respectively;

(iv) when the light client outputs O, which means the client decides to setup its own

full node and c is subtracted from its utility increment to reflect the cost. Also note

that if two non-cooperative relays R1 and R2 share no common conflict of cheating

the light client, one more constrain is applied to ensure v1(P1
h,C) · v2(P1

h,C) = 0.

The utility functions of game Γk1 and Gk
1 can be inductively defined similarly.

A.4 Deferred Proofs for Security Theorems

A.4.1 Proof for Theorem 4

Lemma 2. If the client raises a query in the game Γk2, the sequentially rational

strategies of the light client LW (under any belief system) will not include L, R and

X (i.e., the light client will always take T to report the contract the whatever it receives

from the relay nodes) in this query.

Proof. It is clear to see the Lemma from the recursive formulation of the utility

function of LW . Because no matter at any history of any information set, taking an

action including L, R or X is dominated by replacing the character by T .

Lemma 3. At the last query (history h) in the game Γk2, if the client raises the last

query (i.e., reaching the history hQ), when R1 and R2 are non-cooperative, the game

terminates in hQ(attTA|a′ttTA′), conditioned on dF + p
2
> vi.

Proof. Let the history h denote any history where is the turn of the light client

to choose from {Q,B}. If the client raises the query due to Lemma 6, it

149

can be seen that the only reachable histories from h must have the prefix of:

hQ(a|a′)(t|f |x)(t|f |x)T (A|A′|O).

Say hQ(a|a′)(t|f |x)(t|f |x)T (A|A′|O) terminates the game, and w.l.o.g. let Ri

choose to deviate from t. Due to such the strategy of Ri, a belief system of Rj

consistent with that has to assign some non-negligible probability to the history

corresponding that Ri takes an action off t, so the best response of Rj after h is

also to take action t according to the utility definitions. Then we can reason the

sequential rationality backwardly: in any information set of the full nodes, the best

response of the relay full nodes is to take action t. Thus the strategy of Ri consistent

to Rj’s strategy must act t. Note the joint strategy ~σ that R1 and R2 always choose

the action of t and the LW always chooses the strategy of T . For the light client, its

belief system consistent with the fact must assign the probability of 1 to hQatt out of

the information set of ILW1 and the probability of 1 to hQa′tt out of the information

set of ILW5 . Conditioned on such the belief, the light client must choose TA in ILW1

and choose TA′ in ILW5 . This completes the proof for the lemma.

Deferred proof for Theorem 4:

Proof. At the last query in the game Γk2, the client will raise the query (namely act

Q), conditioned on dL > (p+ e). Additionally from Lemma 3, it nearly immediately

proves the Theorem 4 due to backward reduction. To prove, there is only one more

step of backward reduction to see that: (i) the rational light client must raise a query

through the protocol when c > p, and (ii) rational parties are incentivized to setup

the protocol (as the light client avoids the cost of maintaining its own personal full

node and the relay full node will get positive payments).

150

A.4.2 Proof for Theorem 5

Lemma 4. If the client raises a query in the game Γk1, the sequentially rational

strategies of the light client LW (under any belief system) will not include X (i.e.,

the light client will always take T to report the contract the whatever it receives from

the relay nodes) in this query.

Proof. No matter at any history of any information set, taking an action including

X is dominated by replacing the character by T , which is clear from the utility

function.

Lemma 5. At the last query (history h) in the game Γk1, if the client raises the

last query (i.e., reaching the history hQ), the game terminates in hQ(atTA|a′tTA′),

conditioned on dF + p− r > vi, r > vi.

Proof. Let the history h denote the beginning of the last query. If the client raises

the query, the game reaches hQ. Due to Lemma 6, it can be seen that the only

reachable histories from h must have the prefix of: hQ(a|a′)(t|f |x)T (A|A′|O). Then

it is immediate to see t is dominating from the utility function. This completes the

lemma.

Deferred proof for Theorem 5:

Proof. From Lemma 5, acting Q is strictly dominates B due to the utility function,

at least in the last query. The last query would include no deviation at all. It (nearly)

immediately allows us prove the Theorem 5 due to backward reduction from Lemma

5. To prove, there is only one more step of backward reduction to see that, which

can be derived because: (i) the rational light client must raise a query through the

protocol when c > p, and (ii) rational parties are incentivized to setup the protocol

(as the light client avoids the cost of maintaining its own personal full node and the

relay full node will get positive payments).

151

A.4.3 Proof for Theorem 6

Lemma 6. If the client raises a query in the augmented game Gk
1, the sequentially

rational strategies of the light client LW (under any belief system) will not include X

(i.e., the light client will always take T to report the contract the whatever it receives

from the relay nodes) in this query.

Proof. No matter how the relay and the public full node act, acting X is dominated

by replacing the character by T in the augmented game Gk
1.

Lemma 7. At the last query (history h) in the game Gk
1, if the client raises the last

query (i.e., reaching the history h(m|x)Q), the relay node would not deviate off t with

non-negligible probability, conditioned on dF > vi.

Proof. Let the history h denote any history where is the turn of the light client

to choose from {Q,B}. If the client raises the query due to Lemma 6, it

can be seen that the only reachable histories from h must have the prefix of:

h(m|x)Q(a|a′)(t|f |x)T (A|A′|O). Given such fact, the relay would not deviate off

t with non-negligible probability: (i) deviating from the protocol to play x is strictly

dominated; (ii) deviating to play f with negligible probability will consistently cause

the public full node acts m. This completes the lemma.

Deferred proof for Theorem 6:

Proof. From Lemma 7, acting Q is strictly dominates B due to the utility function,

at least in the last query. Thus we can argue due to backward reduction from the last

query to the first query. It (nearly) immediately completes the proof for Theorem 6.

To prove, there is only one more step of backward reduction to see rational parties are

incentivized to setup the protocol (as the light client avoids the cost of maintaining

its own personal full node to evaluate chain predicates and the relay full node will

get positive payments).

152

REFERENCES

[1] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal
validated asynchronous byzantine agreement. In Proceedings of ACM
Symposium on Principles of Distributed Computing (PODC), pages 337–346,
2019.

[2] Airbnb. https://www.airbnb.com (accessed: December 2017).

[3] Alibaba Cloud. Unveiled for Double 11, StarAgent: Alibaba’s Automatic OM
System. https://medium.com/@Alibaba_Cloud/unveiled-for-double-

11-staragent-alibabas-automatic-o-m-system-97df1b3ec616 (accessed:
August 2020).

[4] Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic, Hamid Reza
Motahari-Nezhad, Elisa Bertino, and Schahram Dustdar. Quality control in
crowdsourcing systems: issues and directions. IEEE Internet Computing,
17(2):76–81, 2013.

[5] Amazon Mechanical Turk. https://www.mturk.com/mturk/ (accessed: January
2018).

[6] Amazon Mechanical Turk. MTurk Pricing. https://www.mturk.com/pricing

(accessed: January 2018).

[7] Amazon Mechanical Turk. Tutorial: How to verify crowdsourced training data
using a known answer review policy. https://blog.mturk.com/tutorial-

how-to-verify-crowdsourced-training-data-using-a-known-answer-

review-policy-85596fb55ed (accessed: July 2018).

[8] Man Ho Au, Willy Susilo, and Siu-Ming Yiu. Event-oriented k-times revocable-
iff-linked group signatures. In Proceedings of Australasian Conference on
Information Security and Privacy (ACISP), pages 223–234, 2006.

[9] Yukino Baba and Hisashi Kashima. Statistical quality estimation for general crowd-
sourcing tasks. In Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 554–562, 2013.

[10] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On bitcoin and red
balloons. In Proceedings of ACM Conference on Electronic Commerce (EC),
pages 56–73, 2012.

[11] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling
blockchain innovations with pegged sidechains. 2014. https://blockstream.
com/sidechains.pdf (accessed: January 2019).

153

[12] Paulo SLM Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime
order. In Proceedings of International Conference on Selected Areas in
Cryptography (SAC), pages 319–331, 2005.

[13] Amos Beimel, Adam Groce, Jonathan Katz, and Ilan Orlov. Fair computation with
rational players. 2011. https://eprint.iacr.org/2011/396 (accessed: June
2020).

[14] Mira Belenkiy, Melissa Chase, C. Chris Erway, John Jannotti, Alptekin Küpçü, and
Anna Lysyanskaya. Incentivizing outsourced computation. In Proceedings of
ACM Workshop on the Economics of Networks (NetEcon), pages 85–90, 2008.

[15] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, et al. SNARKs for C: verifying
program executions succinctly and in zero knowledge. In Proceedings of Annual
International Cryptology Conference (CRYPTO), pages 90–108, 2013.

[16] Juan Benet. Ipfs: Content addressed, versioned, p2p file system. https://github.

com/ipfs/papers/raw/master/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

(accessed: June 2019).

[17] Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized
poker. In Proceedings of Annual International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT), pages
410–440, 2017.

[18] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators
with applications to iops and stateless blockchains. In Proceedings of Annual
International Cryptology Conference (CRYPTO), pages 561–586, 2019.

[19] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and
Joe Zimmerman. Semantically secure order-revealing encryption: Multi-
input functional encryption without obfuscation. In Proceedings of Annual
International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 563–594, 2015.

[20] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public
randomness source. Cryptology ePrint Archive, Report 2015/1015, 2015.
https://eprint.iacr.org/2015/1015 (accessed: June 2020).

[21] Francesco Buccafurri, Gianluca Lax, Serena Nicolazzo, and Antonino Nocera.
Tweetchain: an alternative to blockchain for crowd-based applications. In
Proceedings of International Conference on Web Engineering (ICWE), pages
386–393, 2017.

[22] Vitalik Buterin. Light clients and proof of stake. https://blog.ethereum.org/

2015/01/10/light-clients-proof-stake/ (accessed: December 2018).

154

[23] Vitalik Buterin. A next-generation smart contract and decentralized application
platform. 2014. https://github.com/ethereum/wiki/wiki/White-Paper

(accessed: May 2020).

[24] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure
and efficient asynchronous broadcast protocols. In Proceedings of Annual
International Cryptology Conference (CRYPTO), pages 524–541, 2001.

[25] Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory
Neven. The wonderful world of global random oracles. In Proceedings of Annual
International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 280–312, 2018.

[26] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. How to win the clonewars: efficient periodic n-times
anonymous authentication. In Proceedings of ACM Conference on Computer
and Communications Security (CCS), pages 201–210, 2006.

[27] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Proceedings
of Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), pages 93–118, 2011.

[28] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In Proceedings of Annual International Cryptology
Conference (CRYPTO), pages 126–144, 2003.

[29] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, 2000.

[30] Cardano. https://www.cardano.org/en/home/ (accessed: December 2018).

[31] Ethan Cecchetti, Fan Zhang, Yan Ji, Ahmed Kosba, Ari Juels, and Elaine Shi.
Solidus: confidential distributed ledger transactions via pvorm. In Proceedings
of ACM Conference on Computer and Communications Security (CCS), pages
701–717, 2017.

[32] David Chaum. Blind signatures for untraceable payments. In Proceedings of Annual
International Cryptology Conference (CRYPTO), pages 199–203, 1983.

[33] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In
Proceedings of Annual International Cryptology Conference (CRYPTO), pages
319–327, 1988.

[34] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. Ekiden: A platform
for confidentiality-preserving, trustworthy, and performant smart contracts.
In Proceedings of IEEE European Symposium on Security and Privacy
(EuroS&P), pages 185–200, 2019.

155

[35] Coinbase. Ethereum Price. https://www.coinbase.com/price/ (accessed: July
2019).

[36] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive,
Report 2016/086, 2016. https://eprint.iacr.org/2016/086 (accessed:
June 2020).

[37] CryptoKitties. https://www.cryptokitties.co/ (accessed: May 2019).

[38] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable
consensus and applications to provably secure proof of stake. In Proceedings of
International Conference on Financial Cryptography and Data Security (FC),
pages 23–41, 2019.

[39] Ghassan Karame Damian Gruber, Wenting Li. Unifying lightweight blockchain client
implementations. In Proceedings of Workshop on Decentralized IoT Security
and Standards (DISS), 2018.

[40] Bernardo David, Rafael Dowsley, and Mario Larangeira. Kaleidoscope: An efficient
poker protocol with payment distribution and penalty enforcement. In
Proceedings of International Conference on Financial Cryptography and Data
Security (FC), pages 500–519, 2018.

[41] Jia Deng, Wei Dong, Richard Socher, et al. Imagenet: A large-scale hierarchical
image database. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 248–255, 2009.

[42] Jia Deng, Olga Russakovsky, Jonathan Krause, Michael S Bernstein, Alex Berg, and
Li Fei-Fei. Scalable multi-label annotation. In Proceedings of ACM Conference
on Human Factors in Computing Systems (CHI), pages 3099–3102, 2014.

[43] Srinivas Devarakonda, Parveen Sevusu, Hongzhang Liu, Ruilin Liu, Liviu Iftode,
and Badri Nath. Real-time air quality monitoring through mobile sensing in
metropolitan areas. In Proceedings of ACM International Workshop on Urban
Computing (UrbCom), pages 15:1–15:8, 2013.

[44] Yevgeniy Dodis, Shai Halevi, and Tal Rabin. A cryptographic solution to a
game theoretic problem. In Proceedings of Annual International Cryptology
Conference (CRYPTO), pages 112–130, 2000.

[45] Changyu Dong, Yilei Wang, Amjad Aldweesh, Patrick McCorry, and Aad van
Moorsel. Betrayal, distrust, and rationality: Smart counter-collusion contracts
for verifiable cloud computing. In Proceedings of ACM Conference on
Computer and Communications Security (CCS), pages 211–227, 2017.

[46] John R Douceur. The sybil attack. In Proceedings of International Workshop on
Peer-to-Peer Systems (IPTPS), pages 251–260, 2002.

156

[47] Emily Dreyfuss. A BOT panic HITs Amazon’s Mechanical Turk. https://www.

wired.com/story/amazon-mechanical-turk-bot-panic/ (accessed: May
2019).

[48] Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. Fairswap: How to fairly
exchange digital goods. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), pages 967–984, 2018.

[49] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. Perun:
Virtual payment hubs over cryptocurrencies. In Proceedings of IEEE
Symposium on Security and Privacy (Oakland), pages 327–344, 2019.

[50] Fred Ehrsam. Blockchain-based machine learning marketplaces. https:

//medium.com/@FEhrsam/blockchain-based-machine-learning-

marketplaces-cb2d4dae2c17 (accessed: May 2018).

[51] ETH Gas Station. Recommended gas prices in gwei. https://ethgasstation.info/
(accessed: July 2019).

[52] Ethereum Team. Byzantium HF Announcement. https://blog.ethereum.org/

2017/10/12/byzantium-hf-announcement/ (accessed: December 2018).

[53] Ethereum Team. Ethereum Improvement Proposals 1108. https://eips.ethereum.
org/EIPS/eip-1108 (accessed: January 2020).

[54] Ethereum Team. Ethereum Improvement Proposals 210. https://eips.ethereum.

org/EIPS/eip-210 (accessed: January 2020).

[55] Christopher Frantz and Mariusz Nowostawski. From institutions to code: Towards
automated generation of smart contracts. In Proceedings of IEEE International
Workshops on Foundations and Applications of Self* Systems (FAS*W), pages
210–215, 2016.

[56] Raghu Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current state and future
challenges. IEEE Communications Magazine, 49(11):32–39, 2011.

[57] Juan A Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Proceedings of Annual International Conference
on the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
pages 281–310, 2015.

[58] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van Renesse, and Emin Gün
Sirer. Decentralization in bitcoin and ethereum networks. arXiv preprint
arXiv:1801.03998, 2018.

[59] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable
computing: Outsourcing computation to untrusted workers. In Proceedings
of Annual International Cryptology Conference (CRYPTO), pages 465–482,
2010.

157

[60] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic
span programs and succinct nizks without pcps. In Proceedings of Annual
International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 626–645, 2013.

[61] Craig Gentry, Zulfikar Ramzan, and Stuart Stubblebine. Secure distributed human
computation. In Proceedings of ACM Conference on Electronic Commerce
(EC), pages 155–164, 2005.

[62] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. On the security and performance of proof
of work blockchains. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), pages 3–16, 2016.

[63] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings
of Symposium on Operating Systems Principles (SOSP), pages 51–68, 2017.

[64] Stylianos Gisdakis, Thanassis Giannetsos, and Panagiotis Papadimitratos. Security,
privacy, and incentive provision for mobile crowd sensing systems. IEEE
Internet of Things Journal, 3(5):839–853, 2016.

[65] Oded Goldreich. Foundations of Cryptography: Volume 2 Basic Applications.
Cambridge University Press, Cambridge, UK, 2009.

[66] Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input
functional encryption. In Proceedings of Annual International Conference on
the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
pages 578–602, 2014.

[67] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In Proceedings of ACM Symposium
on Theory of Computing (STOC), pages 365–377, 1982.

[68] Binyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Dumbo: Fast
asynchronous bft protocols. In Proceedings of ACM Conference on Computer
and Communications Security (CCS), 2020.

[69] Joseph Halpern and Vanessa Teague. Rational secret sharing and multiparty
computation. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 623–632, 2004.

[70] Joseph Y Halpern and Rafael Pass. Sequential equilibrium in computational games.
ACM Transactions on Economics and Computation (TEAC), 7(2):1–19, 2019.

[71] Joseph Y Halpern, Rafael Pass, and Lior Seeman. Computational extensive-form
games. In Proceedings of ACM Conference on Economics and Computation
(EC), pages 681–698, 2016.

158

[72] Songlin He, Yuan Lu, Qiang Tang, Guiling Wang, and Chase Wu. Enigma:
Decentralized computation platform with guaranteed privacy. manuscript
ready for submission.

[73] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol
specification. https://github.com/zcash/zips/blob/master/protocol/

protocol.pdf (accessed: December 2017).

[74] Lilly C Irani and M Silberman. Turkopticon: Interrupting worker invisibility in
amazon mechanical turk. In Proceedings of ACM Conference on Human
Factors in Computing Systems (CHI), pages 611–620, 2013.

[75] Haiming Jin, Lu Su, Danyang Chen, Klara Nahrstedt, and Jinhui Xu. Quality of
information aware incentive mechanisms for mobile crowd sensing systems. In
Proceedings of International Symposium on Theory, Algorithmic Foundations,
and Protocol Design for Mobile Networks and Mobile Computing (Mobihoc),
pages 167–176, 2015.

[76] Aniket Kate. Blockchain privacy: challenges, solutions, and unresolved
issues. http://www.isical.ac.in/~rcbose/blockchain2017/lecture/

Kate_Slides.pdf (accessed: December 2017).

[77] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC
Press, Boca Raton, FL, 2014.

[78] Heather Kelly. Apple account hack raises concern about cloud storage.
http://www.cnn.com/2012/08/06/tech/mobile/icloud-security-hack/

(accessed: December 2018).

[79] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of
proofs of work with sublinear complexity. In Proceedings of International
Conference on Financial Cryptography and Data Security (FC), pages 61–78,
2016.

[80] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of
proof-of-work. Cryptology ePrint Archive, Report 2017/963, 2017. https:

//eprint.iacr.org/2017/963 (accessed: June 2020).

[81] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: a provably secure proof-of-stake blockchain protocol. In
Proceedings of Annual International Cryptology Conference (CRYPTO), pages
357–388, 2017.

[82] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Proceedings of Annual
International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT), pages 705–734, 2016.

159

[83] Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In Proceedings of
International Conference on Financial Cryptography and Data Security (FC),
pages 21–34, 2019.

[84] Gillat Kol and Moni Naor. Games for exchanging information. In Proceedings of
ACM Symposium on Theory of Computing (STOC), pages 423–432, 2008.

[85] Ahmed Kosba, Andrew Miller, Elaine Shi, et al. Hawk: The blockchain model of
cryptography and privacy-preserving smart contracts. In Proceedings of IEEE
Symposium on Security and Privacy (Oakland), pages 839–858, 2016.

[86] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. How to use bitcoin to play
decentralized poker. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), pages 195–206, 2015.

[87] Alptekin Küpçü. Incentivized outsourced computation resistant to malicious
contractors. IEEE Transactions on Dependable and Secure Computing,
14(6):633–649, 2015.

[88] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436, 2015.

[89] Michael Z Lee, Alan M Dunn, Brent Waters, Emmett Witchel, and Jonathan
Katz. Anon-pass: practical anonymous subscriptions. In Proceedings of IEEE
Symposium on Security and Privacy (Oakland), pages 319–333, 2013.

[90] Matt Lepinksi, Silvio Micali, and Abhi Shelat. Collusion-free protocols. In Proceedings
of ACM Symposium on Theory of Computing (STOC), pages 543–552, 2005.

[91] Derek Leung, Adam Suhl, Yossi Gilad, and Nickolai Zeldovich. Vault: Fast
bootstrapping for the algorand cryptocurrency. In Proceedings of Annual
Network and Distributed System Security Symposium (NDSS), 2019.

[92] Ming Li, Jian Weng, Anjia Yang, Wei Lu, Yue Zhang, Lin Hou, Jia-Nan Liu, Yang
Xiang, and Robert H Deng. Crowdbc: A blockchain-based decentralized
framework for crowdsourcing. IEEE Transactions on Parallel and Distributed
Systems, 30(6):1251–1266, 2018.

[93] Qinghua Li and Guohong Cao. Providing efficient privacy-aware incentives for mobile
sensing. In Proceedings of International Conference on Distributed Computing
Systems (ICDCS), pages 208–217, 2014.

[94] Yehuda Lindell. How to Simulate It – A Tutorial on the Simulation Proof Technique.
Springer International Publishing, Cham, 2017.

[95] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous
group signature for ad hoc groups. In Proceedings of Australasian Conference
on Information Security and Privacy (ACISP), pages 325–335, 2004.

160

[96] Mahdi Zamani Loi Luu, Benedikt Bünz. Flyclient super light clients
for cryptocurrencies. https://scalingbitcoin.org/stanford2017/Day1/

flyclientscalingbitcoin.pptx.pdf (accessed: December 2018).

[97] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-mvba: Optimal
multi-valued validated asynchronous byzantine agreement, revisited. In
Proceedings of ACM Symposium on Principles of Distributed Computing
(PODC), 2020.

[98] Yuan Lu, Qiang Tang, and Guiling Wang. Zebralancer: Private and anonymous
crowdsourcing system atop open blockchain. In Proceedings of International
Conference on Distributed Computing Systems (ICDCS), pages 853–865, 2018.

[99] Yuan Lu, Qiang Tang, and Guiling Wang. Zebralancer: Decentralized crowdsourcing
of human knowledge atop open blockchain. arXiv preprint arXiv:1803.01256,
2019.

[100] Yuan Lu, Qiang Tang, and Guiling Wang. Enhancing the Retailer Gift Card via
Blockchain: Trusted Resale and More. Journal of Database Management,
2020.

[101] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In
Proceedings of ACM Conference on Computer and Communications Security
(CCS), pages 17–30, 2016.

[102] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying
incentives in the consensus computer. In Proceedings of ACM Conference
on Computer and Communications Security (CCS), pages 706–719, 2015.

[103] Brian McInnis, Dan Cosley, Chaebong Nam, and Gilly Leshed. Taking a HIT:
Designing around rejection, mistrust, risk, and workers’ experiences in Amazon
Mechanical Turk. In Proceedings of ACM Conference on Human Factors in
Computing Systems (CHI), pages 2271–2282, 2016.

[104] Metamask. https://metamask.io/ (accessed: January 2018).

[105] Katie Benner Mike Isaac and Sheera Frenkel. Uber hid 2016 breach, paying hackers
to delete stolen data. https://www.nytimes.com/2017/11/21/technology/
uber-hack.html (accessed: December 2018).

[106] Andrew Miller. Blockhash contract. https://github.com/amiller/ethereum-

blockhashes (accessed: May 2019).

[107] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. Sprites and
state channels: Payment networks that go faster than lightning. In Proceedings
of International Conference on Financial Cryptography and Data Security
(FC), 2019.

161

[108] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. Permacoin:
Repurposing bitcoin work for data preservation. In Proceedings of IEEE
Symposium on Security and Privacy (Oakland), pages 475–490, 2014.

[109] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey
badger of bft protocols. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), pages 31–42, 2016.

[110] Andrew Edmund Miller, Michael Hicks, Jonathan Katz, and Elaine Shi.
Authenticated data structures, generically. In Proceedings of ACM Symposium
on Principles of Programming Languages (POPL), pages 411–423, 2014.

[111] Anton Muehlemann. Sentiment protocol: A decentralized protocol leveraging crowd
sourced wisdom. 2017. https://eprint.iacr.org/2017/1133.pdf (accessed:
June 2020).

[112] Phil Muncaster. China’s Internet wunderkind in the dock over alleged fraud. http:

//www.theregister.co.uk/2012/07/03/qihoo_fraud_traffic_comscore

(accessed: December 2018).

[113] Henry Alexander Murray. Thematic Apperception Test. Harvard University Press,
Cambridge, MA, 1943.

[114] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system. 2008. https:

//bitcoin.org/bitcoin.pdf (accessed: June 2018).

[115] Toru Nakanishi, Toru Fujiwara, and Hajime Watanabe. A linkable group signature
and its application to secret voting. Transactions of Information Processing
Society of Japan, 40(7):3085–3096, 1999.

[116] Robert Nix and Murat Kantarcioglu. Contractual agreement design for enforcing
honesty in cloud outsourcing. In Proceedings of International Conference on
Decision and Game Theory for Security (GameSec), pages 296–308, 2012.

[117] Martin Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press,
Cambridge, Massachusetts, 1994.

[118] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gaži, Joël Alwen, and Krzysztof
Pietrzak. Spacemint: A cryptocurrency based on proofs of space. In
Proceedings of International Conference on Financial Cryptography and Data
Security (FC), pages 480–499, 2018.

[119] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. In Proceedings of IEEE Symposium on
Security and Privacy (Oakland), pages 238–252, 2013.

[120] Dan Peng, Fan Wu, and Guihai Chen. Pay as how well you do: A quality
based incentive mechanism for crowdsensing. In Proceedings of International
Symposium on Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing (Mobihoc), pages 177–186, 2015.

162

[121] Viet Pham, M. H. R. Khouzani, and Carlos Cid. Optimal contracts for outsourced
computation. In Proceedings of International Conference on Decision and
Game Theory for Security (GameSec), pages 79–98, 2014.

[122] Jack Plantin. How outsourcing can help you build a better startup.
https://medium.com/@JackPlantin/how-outsourcing-can-help-you-

build-a-better-startup-5d04516fe71a.

[123] Andrew Poelstra. Mimblewimble. https://download.wpsoftware.net/bitcoin/

wizardry/mimblewimble.pdf (accessed: July 2018).

[124] Protocol Labs. Filecoin: A decentralized storage network. 2017. https://filecoin.
io/filecoin.pdf (accessed: May 2019).

[125] Sazzadur Rahaman, Long Cheng, Danfeng Daphne Yao, He Li, and Jung-
Min Jerry Park. Provably secure anonymous-yet-accountable crowdsensing
with scalable sublinear revocation. In Proceedings of Annual Privacy
Enhancing Technologies Symposium (PETS), pages 384–403, 2017.

[126] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015.

[127] Olga Russakovsky and Fei-Fei Li. Attribute learning in large-scale datasets. In
Proceedings of European Conference on Computer Vision (ECCV), pages 1–14,
2010.

[128] Niloufar Salehi, Lilly C Irani, Michael S Bernstein, et al. We are dynamo: Overcoming
stalling and friction in collective action for crowd workers. In Proceedings
of ACM Conference on Human Factors in Computing Systems (CHI), pages
1621–1630, 2015.

[129] Stefan Saroiu and Alec Wolman. I am a sensor, and I approve this message. In
Proceedings of International Workshop on Data Privacy Management and
Security Assurance (DPM), pages 37–42, 2010.

[130] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Proceedings of Annual International Cryptology Conference (CRYPTO), pages
239–252, 1989.

[131] Dave Schultz. Use amazon mechanical turk with amazon sagemaker for supervised
learning. https://aws.amazon.com/blogs/machine-learning/use-

amazon-mechanical-turk-with-amazon-sagemaker-for-supervised-

learning/ (accessed: July 2019).

[132] Kai Sedgwick. Decentralized apps might be the future but they’re not
the present. https://news.bitcoin.com/decentralized-apps-might-be-

the-future-but-theyre-not-the-present/. (accessed: May 2020).

163

[133] Nihar Shah and Dengyong Zhou. Double or nothing: multiplicative incentive
mechanisms for crowdsourcing. Journal of Machine Learning Research,
17(1):5725–5776, 2016.

[134] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning,
Boston, MA, 2012.

[135] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y Ng. Cheap and
fast—but is it good?: evaluating non-expert annotations for natural language
tasks. In Proceedings of Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 254–263, 2008.

[136] Standford Vision Lab. ImageNet Readme. http://image-net.org/downloads/

attributes/README (accessed: January 2018).

[137] Swarm. http://swarm-guide.readthedocs.io (accessed: July 2018).

[138] Nick Szabo. Formalizing and securing relationships on public networks. First Monday,
2(9), 1997.

[139] Cristian Tanas, Sergi Delgado-Segura, and Jordi Herrera-Joancomart́ı. An integrated
reward and reputation mechanism for MCS preserving users’ privacy. In
Proceedings of International Workshop on Data Privacy Management and
Security Assurance (DPM), pages 83–99, 2015.

[140] Isamu Teranishi, Jun Furukawa, and Kazue Sako. K-times anonymous authenti-
cation. In Proceedings of Annual International Conference on the Theory
and Application of Cryptology and Information Security (ASIACRYPT), pages
308–322, 2004.

[141] Jason Teutsch and Christian Reitwießner. A scalable verification solution for
blockchains. 2017. https://people.cs.uchicago.edu/~teutsch/papers/

truebit.pdf (accessed: July 2019).

[142] Alin Tomescu and Srinivas Devadas. Catena: Efficient non-equivocation via bitcoin.
In Proceedings of IEEE Symposium on Security and Privacy (Oakland), pages
393–409, 2017.

[143] Patrick P Tsang, Victor K Wei, Tony K Chan, Man Ho Au, Joseph K Liu, and
Duncan S Wong. Separable linkable threshold ring signatures. In Proceedings
of International Conference on Cryptology in India (INDOCRYPT), pages
384–398, 2004.

[144] Turkrequesters. The BOT Problem on Mturk. http://turkrequesters.blogspot.
com/2018/08/the-bot-problem-on-mturk.html (accessed: July 2018).

[145] Uber. https://www.uber.com (accessed: December 2017).

164

[146] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the intel sgx kingdom
with transient out-of-order execution. In Proceedings of USENIX Security
Symposium (USENIX Security), 2018.

[147] Carl Vondrick, Donald Patterson, and Deva Ramanan. Efficiently scaling up
crowdsourced video annotation. International Journal of Computer Vision,
101(1):184–204, 2013.

[148] Waze. https://status.waze.com (accessed: January 2018).

[149] He Wei. Alipay apologizes for leak of personal info. http://www.chinadaily.com.

cn/china/2014-01/07/content_17219203.htm (accessed: December 2018).

[150] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F. Wenisch, and Yuval
Yarom. Foreshadow-ng: Breaking the virtual memory abstraction with
transient out-of-order execution. 2018. https://foreshadowattack.eu/

foreshadow-NG.pdf (accessed: June 2019).

[151] Yutian Wen, Jinyu Shi, Qi Zhang, et al. Quality-driven auction-based incentive
mechanism for mobile crowd sensing. IEEE Transactions on Vehicular
Technology, 64(9):4203–4214, 2015.

[152] Gavin Wood. Ethereum: a secure decentralised generalised transaction ledger.
2014. https://ethereum.github.io/yellowpaper/paper.pdf (accessed:
May 2019).

[153] Shouhuai Xu and Moti Yung. K-anonymous secret handshakes with reusable
credentials. In Proceedings of ACM Conference on Computer and
Communications Security (CCS), pages 158–167, 2004.

[154] Dejun Yang, Guoliang Xue, Xi Fang, and Jian Tang. Crowdsourcing to smartphones:
Incentive mechanism design for mobile phone sensing. In Proceedings of
International Conference on Mobile Computing and Networking (MobiCom),
pages 173–184, 2012.

[155] Kan Yang, Kuan Zhang, Ju Ren, and Xuemin Shen. Security and privacy in mobile
crowdsourcing networks: challenges and opportunities. IEEE Communications
Magazine, 53(8):75–81, 2015.

[156] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of
ACM Symposium on Principles of Distributed Computing (PODC), pages 347–
356, 2019.

165

[157] Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar
Weippl, and William J Knottenbelt. A wild velvet fork appears! inclusive
blockchain protocol changes in practice. In Proceedings of International
Conference on Financial Cryptography and Data Security (FC), pages 31–42,
2018.

[158] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier:
An authenticated data feed for smart contracts. In Proceedings of ACM
Conference on Computer and Communications Security (CCS), pages 270–282,
2016.

[159] Yu Zhang and Mihaela Van der Schaar. Reputation-based incentive protocols in
crowdsourcing applications. In Proceedings of IEEE International Conference
on Computer Communications (INFOCOM), pages 2140–2148, 2012.

[160] Dong Zhao, Xiang-Yang Li, and Huadong Ma. How to crowdsource tasks
truthfully without sacrificing utility: Online incentive mechanisms with budget
constraint. In Proceedings of IEEE International Conference on Computer
Communications (INFOCOM), pages 1213–1221, 2014.

[161] Guy Zyskind, Oz Nathan, and Alex Pentland. Enigma: Decentralized computation
platform with guaranteed privacy. arXiv preprint arXiv:1506.03471, 2015.

166

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment: (1 of 2)
	Acknowledgment: (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Preliminaries
	Chapter 3: On Generic Private Knowledge Solicitation
	Chapter 4: On Practical Private Knowledge Solicitation
	Chapter 5: On Crowdsourcing for Machine Learning Tasks
	Chapter 6: On Recruiting Relays for Blockchains' Light Clients
	Chapter 7: Other Pertinent Results
	Chapter 8: Summary of the Dissertation
	Appendix: Supplemental Materials of Chapter 6
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

