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ABSTRACT

MATHEMATICAL MODELS AND TOOLS TO UNDERSTAND
COUPLED CIRCADIAN OSCILLATIONS AND LIMIT CYCLING

SYSTEMS

by
Guangyuan Liao

The circadian rhythm refers to an internal body process that regulates many body

processes including the sleep-wake cycle, digestion and hormone release. The ability

of a circadian system to entrain to the 24-hour light-dark cycle is one of the most

important properties. There are several scenarios in which circadian oscillators do

not directly receive light-dark forcing. Instead they are part of hierarchical systems

in which, as “peripheral” oscillators, they are periodically forced by other “central”

circadian oscillators that do directly receive light input. Such dynamics are modeled

as hierarchical coupled limit cycle systems. Those models usually have a large

population, and are non-autonomous. In this dissertation, a coupled Kuramoto

model and a coupled Novak-Tyson model are developed to study the entrainment of

hierarchical coupled circadian oscillators. Direct simulations usually are incapable

of revealing the full dynamics of such models. One goal of this dissertation is

to apply proper mathematical methods to simplify the original systems. A phase

reduction method is applied for reducing the original system to phase model. A

parameterization method is introduced for simplifying such systems, and it is also

applied for computing invariant manifolds of some biological oscillators. A novel

tool, entrainment map, is developed and extended to a higher dimensional situation.

Compared with direct simulations, the map has the advantages of describing the

conditions for existence and stability of the limit-cycle solutions, as well as studying

forcing and coupling strength dependent bifurcations. It is also more practical to

calculate the entrainment times by just iterating the map rather than by direct

simulations.
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CHAPTER 1

INTRODUCTION

1.1 Biological Background of Circadian Oscillations

Circadian rhythms refer to a variety of oscillatory processes that occur over a roughly

24-hour time period. Circadian oscillations are found in a variety of animal and plant

species [5]. In humans a common example involves our core body temperature which

shows a local minimum typically in the early morning hours (∼ 4:00 AM) and a

local maximum roughly twelve hours later [31]. Similarly, concentrations of certain

hormone levels within our bodies oscillate over the course of a day [23]. In the absence

of any explicit forcing from naturally occurring light-dark cycles, circadian oscillators

possess endogenous periods of roughly 24 hours. Their ability to also entrain to

24-hour periodic cycles of light and dark is one of their most important properties.

1.2 Classical Model Reduction Techniques in Limit Cycling Systems

The models for circadian oscillations are often developed as a system of ODEs, which

has a limit cycle solution in its phase space (Novak-Tyson model [54, 46], Gonze

model [22], Kim-Forger [28]). The ability of a circadian system to entrain to the

light-dark cycle is modeled by adding external forcings to the original system. For

such non-autonomous, multi-dimensional models, direct simulation is incapable of

revealing the full dynamics. Model reduction techniques play a very important role

in the analysis.

The phase reduction method was one of the most famous classical methods,

as formulated in Winfree’s book [55], where he studied biological synchronization.

The phase reduction method is capable of studying nonlinear oscillations under weak

perturbations. With this method, the full dynamics of the original system are reduced

to study the phase dynamics. For a detailed introduction to the theory, the paper of
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Brown et al. [8] is a good reference. A brief introduction is also provided in Chapter

2.

Another interesting tool is the parameterization method [9]. The idea of

parameterization is to find a coordinate change, such that the original coordinate

system is mapped to the phase-amplitude coordinate system. It is usually applied

for finding invariant manifolds of fixed points. For a system with a periodic orbit,

parameterization of the manifolds associated to the limit cycle is useful and often

simplifies the original system. Cabré et al. [9] generalized the parameterization

method for periodic orbits. It has been shown to be useful in computing isochrons of

a limit cycle, where Guillamon et al. [11] provides a practical numerical strategy. This

method is also introduced in Chapter 2, and then some applications are presented in

Chapter 3.

The last and important tool is the Poincaré map, which is widely used to study

dynamics near a periodic orbit. In the dissertation, the idea of map will be widely

used as described below.

1.3 New Reduction Tools to Simplify Circadian Oscillators

While there exist several tools for studying circadian oscillations, there is still a

need for the development of others. Traditionally, phase response curves (PRCs)

have mostly been used to understand entrainment. However, to predict entrainment

properties due to periodic light-dark forcing, the perturbations must be weak such

that the oscillators can relax back to the DD or LL limit cycle when the light is off

within one LD cycle. PRC based methods also rely on short duration perturbations.

In the case of circadian oscillators, the light duration lasts longer such that the

limit cycle might not relax back to its DD or LL limit cycle, the PRCs may lose

accuracy in this situation. Diekman and Bose [14] show that PRCs do not accurately

predict the phase of entrainment in three different mathematical models of circadian
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clocks that are subjected to 12-h:12-h light-dark (12:12 LD) cycles. A tool, which is

not based on perturbing the DD or LL oscillators, is required. The entrainment of

circadian oscillators has been mathematically analyzed using a variety of techniques.

Often this involves describing the circadian oscillator with a reduced phase description

such as that given by a Kuramoto oscillator [7, 33]. The problem then reduces to

studying periodically forced Kuramoto systems. Other approaches include deriving

model equations that retain more of their connection to the underlying biological

process [54, 46]. Recently Diekman and Bose [14] introduced a novel tool called

the entrainment map to determine whether a circadian oscillator can entrain to the

24-hour light-dark cycle, and if so, at what phase. The derived map is equivalent to

a 1-D Poincaré map that tracks the phase of light onset of the light-dark forcing on a

cycle-by-cycle basis. In principle, the dimension of the underlying circadian oscillator

model is not relevant. Diekman and Bose derived entrainment maps for the 2-D

Novak-Tyson model [54, 46], the 3-D Gonze model [22] and the 180-D Kim-Forger

model [28]. In general, the map can be used to estimate both entrainment times and

whether entrainment occurs through phase advance or delay with respect to the daily

onset of lights.

There are several scenarios in which circadian oscillators do not directly receive

light-dark forcing [22, 24, 35]. Instead they are part of hierarchical systems in which,

as “peripheral” oscillators, they are periodically forced by other “central” circadian

oscillators that do directly receive light input. Cells within major organs in our bodies

fall into this category. Several natural questions arise about the entrainment process

of these peripheral oscillators. For example, do they entrain through phase advance

or phase delay as central oscillators do? To what extent is their entrainment time

dependent on the entrainment process of the central oscillator from which they receive

forcing? To study such questions, we generalize the entrainment map to a 2-D map

3



where we track from the perspective of the peripheral oscillator both the phase of the

central oscillator as well as the phase of light onset.

In this dissertation, we first consider the situation in which a single central

oscillator receives light-dark input. In turn, this central oscillator sends input to a

single peripheral oscillator. To focus on the mathematical aspects of the derivation

and analysis of the 2-D entrainment map. A hierarchical coupled Kuramoto oscillator

is studied as our first model, where we put the Poincaré section on the peripheral

oscillator, track the phase of light and the central oscillator. Then we utilized the

planar Novak-Tyson model [46] for both the central and peripheral oscillators. The

phase space for this problem is 5-D, two for each of the oscillators and a fifth that

accounts for the light-dark forcing. We will define a Poincaré section transversal to

the flow allowing us to derive a 2-D map that determines the phase of light and the

phase of the central oscillator at each cycle when the peripheral oscillator lies on

the Poincaré section. We analyzed the map by extending techniques first introduced

in Akcay et al [1, 2]. We will show that for a range of parameter values, the map

possesses four fixed points: one asymptotically stable and three unstable fixed points,

two of which are saddle points. All of these fixed points are related to actual periodic

orbits of the flow. By numerically calculating entrainment times (defined precisely

later in the text), we are able to uncover how the stable and unstable manifolds of the

saddle points organize the iterates of the map, determine the direction of entrainment

and give rise to a rich set of dynamics. The findings of the map are then validated

by comparing them to direct simulations of the model equations. We also extend the

analysis to the case of a semi-hierarchical system that consists of a second central

oscillator that receives less light input than the first central oscillator.

Analysis of the map reveals several important insights into the entrainment

and reentrainment process. First, bounds on important parameters, such as the

intensity of light input and the strength of the coupling from the central oscillator
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that lead to entrainment, are easily identified. We are able to determine which kinds

of perturbations lead to faster or slower reentrainment, e.g., whether perturbations

that desynchronize only the peripheral oscillator but not the central one lead to quick

reconvergence. Interestingly, we found that the straightforward notion of convergence

via phase advance or phase delay needs to be generalized. Indeed, the peripheral

oscillator can converge by a combination of phase advance and delay while the central

oscillator typically converges by either phase advancing or delaying. This result has

implications for recovery from jet lag and abrupt changes in sleep-wake schedules.

In experimental studies of aircrews, some subjects experienced internal dissociation

with different components of the circadian system converging in opposite directions

[29]. Specifically, after an eastbound flight across nine time zones, activity rhythms

reentrained through phase advances while body temperature reentrained through

phase delays. In hospital studies, a 12-hour phase shift of sleep time results in a phase

advance of urinary potassium but a phase delay in urinary hydroxycorticosteroids

[37]. Aschoff [4] referred to this behavior as “reentrainment by partition” and

suggested that it may impact health and contribute to the degradation of psychomotor

performance observed on post-flight days. The saddle fixed points of our map provide

a dynamical explanation for the partitioning phenomenon, as will be elaborated upon

in the Discussion.

1.4 Structure of the Dissertation

The full structure of the Dissertation is the following. In the first chapter, the

background of circadian rhythm and some existing models and tools are introduced

in Section 1.1-1.2. Our motivation of developing new tools for circadian models

are stated in Section 1.3. The main theory and numerical methods are developed

in Chapter 2. In Section 2.1, the phase reduction method, Floquet theory, and

the parameterization method are well posed. In Section 2.2, numerical methods for

5



computing limit cycle and manifolds are derived. In Section 2.3, the classical Poincaré

map and the idea of developing entrainment map are described. Then the main results

are collected in Chapter 3. They are divided into three parts, coupled Kuramoto

model, coupled Novak-Tyson model and visualization of invariant manifolds. At last

in Chapter 4, a conclusion of the research work and their possible future directions

are discussed.
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CHAPTER 2

METHODS

2.1 Model Reduction Techniques

2.1.1 Classical phase reduction technique

In math biology, many models are related to systems of ODEs with a limit cycle

solution. The phase reduction technique [18, 27] has been widely used in the analysis

of limit cycle oscillators. For completeness, a brief introduction to phase reduction is

provided.

Consider a dynamical system in Rn

ẋ = f(x), (2.1)

which has a limit cycle solution γ(t) with period T . The idea of the phase reduction

is to define a new variable: phase, such that each point on the phase plane has the

same asymptotic phase as a point on γ(t). To do that, first we define phase on the

limit cycle. Since the limit cycle is a closed curve in the space, we can topologically

map it onto a unit circle, and define the phase as the angle θ, where θ ∈ S1.

θ(γ(t)) := ωt =
2π

T
· t (2.2)

T is defined as the period of the original system. We can then define the phase for

points not on γ(t) asymptotically.

Definition 1. ∀x0 ∈ Rn, if there is a point γ(t0) ∈ γ, such that lim
t→∞
‖ϕ(t, x0)−γ(t0 +

t)‖ = 0, then we say that θ(x0) = θ(γ(t0)).
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The dynamics of the original system is simply reduced as

θ̇ = ω = ∇θdx
dt

= ∇θf(x). (2.3)

Now suppose there is a small perturbation.

ẋ = f(x) + εg(x, t) (2.4)

Then the phase equation is

θ̇ = ∇θdx
dt

= ∇θ[f(x) + εg(x, t)] = ω + ε∇θg(x, t). (2.5)

If x is near the limit cycle, we can use ∇θ(γ(t)) to approximate ∇θ(x). The x variable

in g(x, t) is also approximated by γ(t). There is many methods to determine∇θ(γ(t)),

here we only introduce the adjoint method [18]. Define x = γ + y, where y is a small

perturbation to the limit cycle, the variation equation is

ẏ = Df(γ)y +O(||y||2) (2.6)

Then define the phase shift as

∆θ = θ(x)− θ(γ) = 〈∇θ(γ), y〉+O(||y||2) (2.7)
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Because the change of θ is independent of time, the left hand side is zero when we

take a time derivative.

d∆θ

dt
= 0 = 〈d∇θ(γ)

dt
, y〉+ 〈∇θ, dy

dt
〉

0 = 〈d∇θ(γ)

dt
, y〉+ 〈∇θ,Df(γ)y〉

〈−Df(γ)T∇θ, y〉 = 〈d∇θ(γ)

dt
, y〉

(2.8)

y is nonzero, so

d∇θ(γ)

dt
= −Df(γ)T∇θ. (2.9)

This can be solved numerically with an initial condtion from (2.3):

∇θ(γ(0))f(γ(0)) = ω (2.10)

In fact, the phase reduction is a coordinate change to phase variables that simplified

the analysis of the original systems [8]. As long as the perturbation is O(ε) small, the

phase reduction works well as the trajectory stays in the basin of attraction of the

limit cycle. But if the perturbation is not so weak, the assumption of this method

breaks down.

2.1.2 Floquet theory

Gaston Floquet developed the theory for the solutions of time dependent linear

systems of ordinary differential equations [20]. The theory is applied for the stability

of limit cycle solutions. It also provides a coordinate change for simplification of the

original systems. In this section, a brief introduction for Floquet theory is presented.
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We will show that the phase reduction method is an application of the Floquet theory.

Consider the following system:

ẋ = A(t)x, x(0) = x0, x ∈ Rn, (2.11)

where the matrix A is a time dependent periodic function, A(t + T ) = A(t). Define

Φ(t) as the fundamental matrix solution of the system, where Φ(t) solves

Φ̇ = A(t)Φ, Φ(0) = I. (2.12)

An important quantity is the value of Φ(t) at one period, which is defined as

Definition 2. The monodromy matrix, M := Φ(T )

Given an initial condition x(0) = x0, then by the definition of the fundamental

matrix solution, x(T ) = Φ(T )x0 = Mx0. If we then let x(T ) as initial condition of

(2.12):

ẋ = A(t)x, x(0) = x(T ) = Mx0. (2.13)

We can show that x(2T ) = M2x0. Hence, the stability of the solution of such

system actually depends on the convergence of Mn, which is then related to study the

eigenvalues of M . The eigenvalues of M are defined to be the Floquet multipliers.

If x0 is the eigenvector of M with eigenvalue λ, then

x(T ) = Mx0 = λx0 = elnλx0. (2.14)
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Here lnλ
T

is called Floquet exponent.

Theorem 1. (Floquet) Let M be the monodromy matrix of system 2.11 and TB =

lnM . Then there is a T-periodic matrix P such that

Φ(t) = P(t)etB. (2.15)

Notice that, P could be complex functions for the real linear system. The

following lemma give a way to avoid it.

Lemma 1. There exists a 2T-periodic real matrix function Q(t) and a real matrix R

which satisfies M2 = eTR such that

Φ(t) = Q(t)etR. (2.16)

The solution (2.16) is also called the Floquet normal form of system (2.11) [12].

2.1.3 Parameterization

With the Floquet normal form, we can find a coordinate change such that the original

variables are simplified to phase and amplitude variables. Following [12], a brief

explanation is provided in the following.

Suppose we have a dynamical system with external forcing:

dx

dt
= f(x) + εg(x, t), x ∈ Rn (2.17)
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and the corresponding unforced system

dx

dt
= f(x) (2.18)

has a T-periodic solution denoted by Γ
def
= {γθ(t) = γ(t + θ) : t ∈ [0, T ]}, where

θ ∈ (0, T ) is the initial phase angle of Γ, let x(t) = γθ(t) + y(t), ||y|| < 1, we linearize

(2.18) near γθ(t), and get the variational equation as below:

 ẏ = Df(γθ(t))y

y(0) = y0

(2.19)

This is exactly a nonautonomous linear system like (2.11) if we let A(t) = Df(γθ(t)).

Additionally, for such system derived from the linearization near Γ, an important

theorem [42] states that:

Theorem 2. The monodromy matrix of system (2.19) always has at least one

eigenvalue equal to one. Additionally, the corresponding eigenvector is γ̇(t).

Eigen decomposition Now the Floquet theory can be applied to simplify the

dynamics of system (2.19). To be specific, simplifying the dynamics means we

would like to find a parameterization, such that the parameterized space has simpler

dynamics for understanding. To do that, consider any points x(0) on the phase

space of the unforced system (2.18), and the isochron of such system is defined

to be I(θ) := lim
t→∞
‖x(t) − γθ(t)‖ = 0. If x(0) ∈ I(θ), then we can write

x(0) = γθ(0) + y(0) = γ(θ) + y(0). Now we choose θ as a parameter, and the

dynamics of y satisfies (2.19). We would like to find a parameterization of y to

simplify the dynamics of (2.19) one step further. From the Floquet theory, there is a

12



Floquet normal form for the fundermental matrix solution Φ(t) (see Equation (2.16)).

According to it, we apply a time dependant change of variables:

y = Q(t)z, (2.20)

substitute it into (2.19) to obtain

dQz
dt

= A(t)Qz

Q̇z +Qż = A(t)Qz

ż = Q−1(A(t)Q− Q̇)z

(2.21)

We also know that Φ(t) is a solution of (2.19), so:

dQetR

dt
= A(t)QetR

Q̇etR +QRetR = A(t)QetR
(2.22)

Hence

Q̇ = A(t)Q−QR. (2.23)

Substitute (2.23) into (2.21), we have

ż = Rz. (2.24)
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Now the system can be reduced one step further. Suppose we know that the eigenpair

of R is (µi, ui), ∀i = 1, ..., n, we define a coordinate change

z = Uσ, (2.25)

where U is the matrix combination of the eigenvectors, then (2.24) becomes

Uσ̇ = RUσ

σ̇ = U−1RUσ = µσ.

(2.26)

According to the change of coordinates and the definition of θ, The simplified vector

field in (θ, σ) space is obtained:

θ̇ = ω, σ̇ = µ · σ, µ :=



µ1

. . .

µi

. . .

µs


(2.27)

Here µi = lnλi
2

T
< 0 is the stable Floquet exponent of (2.19), λi is the Floquet

multipliers.

Now a parameterization (θ, σ) for stable foliations of γ is formulated as

x = P (θ, σ) = γ(θ) +Q(θ)Uσ

= γ(θ) +
n∑
i=1

σiui(θ),
(2.28)
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where ui(θ) = Q(θ)ui. The dynamics of x ∈ Rn is transformed to the dynamics in

the (θ, σ) space, which is a cylinder. If we can find the parameterization, we can then

write the flow explicitly by

ϕ(t, P (θ, σ)) = P
(
θ + ωt, σeµt

)
. (2.29)

Computing the parameterization (2.28) requires Q(t) and ui. Q(t) can be obtained

by solving (2.23).

Remark: This parameterization gives a linear normal bundle of the invariant

manifolds of the limit cycel γθ. The full parameterization in the basin of attraction

has been introduced by Shirasaka et al. [52], where they applied koopman operator.

Higher order approximation of the parameterization is introduced by [10], where they

introduced a fourier-power series.

Theorem 3. The eigenvectors ui of R are identical to the eigenvectors of the

monodromy matrix.

Proof: From lemma 1, we know that

M2 = eTR. (2.30)

Multiply by ui, we have

M2ui = eTRui = eTµiui. (2.31)

Since µi =
lnλ2i
T

,

M2ui = λ2iui (2.32)
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This theorem is useful for our numerical implementation. When computing the

eigenvector of R, we only need to compute the eigenvector of the monodromy matrix.

Properties of the parameterization The parameterization has the following nice

properties:

• P (θ, 0) = γ(θ)

• ∀σ, fix θ0, P (θ0, σ) denotes the linear approximation of isochron I(θ0).

• ∀θ, fix σ0, P (θ, σ0) denotes the linear approximation of isostable curves.

Reduction for system with external forcing Now the parameterization is

applied to the forced system (2.17). It can also be viewed as a generalization of

phase reduction [8].

dθ(x)

dt
= ∇θ(x)

dx

dt
= ∇θ(x)[f(x) + εg(x, t)] = ω + ε∇θ(x)g(x, t)

dσ(x)

dt
= Dσ(x)

dx

dt
= Dσ(x)[f(x) + εg(x, t)] = µσ + εDσ(x)g(x, t)

(2.33)

By phase reduction method, ∇θ(x) = ∇θ(γ(t)) can be solved locally with adjoint

method near the limit cycle:

d∇γ0(t)θ

dt
= −DfT (γ0(t))∇γ0(t)θ

∇γ0(0)θ · F (γ0(0)) = ω.

(2.34)

We can also assume that Dσ(x) = Dσ(γ(t)) near Γ. Next we derive a computable

formula for Dσ(γ(t)).
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Derivation: Linearize equation (2.17) near γ(t), and keep the linear term of f(x):

ẏ = Df(γ(t))y + εg(x, t) + o(y2).

Ignore o(y2), then plug in y = Q(t)z.

Q̇z +Qż = Df(γ(t))Qz + εg(x, t).

Since QR = Df(γ(t))Q− Q̇, we have

ż = Rz + εQ−1g(x, t).

Notice that z = Uσ, we have

σ̇ = µσ + εU−1Q−1g(x, t). (2.35)

Compare it with (2.33), we get

Dσ(γ(t)) = U−1Q−1(t). (2.36)

2.1.4 A more practical expression of the parameterization P (θ, σ)

From above, we applied Floquet normal form theory to obtain a formula for P (θ, σ),

which is linear in σ. In this section, we will follow the general parameterization theory

of invariant manifold (see [12]) to get a more practical formulation for P (θ, σ).
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Consider system (2.18), which has a stable limit cycle solution γ(θ) with period

T . Our goal is to find a parameterization for the isochrons of the γ(θ). From the

previous section, we would like the parameterized space (θ, σ) to obey the following

dynamics:

θ̇ = ω

σ̇ = µσ,

(2.37)

where θ ∈ S1, and σ ∈ R+, µ = lnλ
T

where λ represents the Floquet multiplier less

than one. We plug x = P (θ, σ) into (2.18)

ẋ = DθP θ̇ +DσPσ̇ = f(P (θ, σ))

DθPω +DσPµσ = f(P (θ, σ)),

(2.38)

which is the invariance equation for P (θ, σ).

In order to compute P , we seek a power series

P (θ, σ) =
∞∑
n=0

Pn(θ)σn. (2.39)

We substitute (2.39) into (2.38) and equate the coefficients of σ to obtain a formal

solution of P (θ, σ).

For σ0, we have

ω
dP0(θ)

dθ
= f(P0(θ)), (2.40)
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which means that P0(θ) = γ(θ). Notice that, because of the arbitrary of initial phase,

P0(θ) = γ(θ + a) is also a solution for any number a ∈ S1.

Equating terms of σ1, we have

ω
dP1(θ)

dθ
+ P1(θ)µ = Df(P0(θ))P1(θ). (2.41)

We define an operator L = ω d
dθ
−Df ◦ P0(θ), such that

LP1(θ) = −µP1(θ). (2.42)

Hence, P1(θ) is an eigenfunction of L with the eigenvalue −µ. Notice that the

homogeneous equation of (2.42) is the first variational equation of (2.18). From

the Floquet theory, it has a fundamental periodic matrix solution Φ(θ), and Φ(2π) is

the monodromy matrix.

Then by eigenproblem theory, it is easy to show that Φ(θ)e−µθ is the fundamental

solution of (2.42). We want to choose a proper initial condition P1(0), such that the

solution of (2.42) is non-trivial. Notice that P1(0) satisfies

P1(0) = P1(2π) = Φ(2π)e−2πµP1(0). (2.43)

So there is a non-trivial solution if e2πµ is an eigenvalue of the monodromy matrix.

So far, we can conclude that if we choose P1(0) as a eigenvector of the monodromy

matrix associate with the eigenvalue e2πµ. P1(θ) is determined and written as

P1(θ) = Φ(θ)e−µθP1(0). (2.44)
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So far, the result is consistent with the result from the parameterization derived by

Floquet normal form. Actually, (2.28) is the first two terms of the general series

expansion.

Next we write down the invariance equations for terms of σn, n ≥ 2,

ω
dPn
dθ

+ nµPn = Df ◦ P0Pn +Rn, (2.45)

where Rn is a computable polynomial of Pi, i = 0, 1, ..., n−1. If we apply the operator

L, it becomes

(L+ nµ)Pn = Rn. (2.46)

Such system is well known and solvable. For detailed analysis of solvability and

convergence condition, one can look Cabré et al. [9]. For numerical strategy, Fourier

series is often applied for Pn(θ) (Guillamon et al. [25]). In this dissertation, the linear

approximation will be applied for the models discussed in Chapter 3. The equation

(2.28) can be expressed in the practical way

x = P (θ, σ) = γ(θ) + σe−µθΦ(θ)~u+ o(σ2), (2.47)

where µ < 1 is the stable eigenvalue of the monodromy matrix, and ~u is the

corresponding eigenvector. This formula is more computable and is easy applied

to compute the isochrons (and isostables). A numerical method based on (2.47) is

introduced in the following section.
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2.2 Numerical Methods for Computing Limit Cycles and Visualizing

Manifolds

2.2.1 Continuation based shooting method for computing invariant manifolds

of limit cycles.

In this section, we present a continuation based shooting method to compute the

isochrons of any limit cycles in R2. This method is a combination of Osigna’s method

[48] and the backward intergration method from Izhikevich [27].

Suppose ϕ(t, x) is the flow of the autonomous system:

dx

dt
= F (x), x ∈ Rn (2.48)

which has a limit cycle with period T . In order to solve for the limit cycle, we can

derive a boundary value problem

dx

dt
= F (x)

x(0) = x(T ).

(2.49)

We solve this BVP by shooting, the idea is the following:

Start with any initial condion T0 and x0, we want to shoot for the period T of

limit cycle, and an initial condition x such that x(0) = x(T ), where T = T0 +∆T ,x =

x0 + ∆x. By the definition of the limit cycle, we have

ϕ(T, x) = x

ϕ (T0 + ∆T, x0 + ∆x) = x0 + ∆x.

(2.50)
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Linearize the left hand side, we have an equation for ∆x and ∆T .

ϕ (T0, x0) +
∂ϕ

∂t

∣∣∣∣
T0,x0

·∆T +
∂ϕ

∂x

∣∣∣∣
T0,x0

·∆x = x0 + ∆x(
∂ϕ

∂x

∣∣∣∣
T0,x0

− I

)
∆x+

∂ϕ

∂t

∣∣∣∣
T0,x0

·∆T = x0 − ϕ (T0, x0) .

(2.51)

To compute ∆x and ∆T , we need to know ∂ϕ
∂x

∣∣
T0,x0

and ∂ϕ
∂t

∣∣
T0,x0

.

For ∂ϕ
∂t

∣∣
T0,x0

, it is the slope of the flow at t = T0, which satisfies

dx

dt

∣∣∣∣
T0,y0

=
∂ϕ

∂t

∣∣∣∣
T0,x0

= F (ϕ (T0, x0)) = F (x0) . (2.52)

For ∂ϕ
∂x

∣∣
T0,x0

, consider taking x derivative of (2.48):

∂

∂x

(
dϕ

dt

)
=

∂

∂x
(F(ϕ))⇒ d

dt

(
∂ϕ

∂x

)
= DxF(ϕ)

∂ϕ

∂x
(2.53)

with initial condition ϕ(0, x0) = x0,
∂ϕ
∂x

(0, x0) = I. (2.52) is actually the initial

value problem of the original system, (2.53) is the first variational equation. By

solving Equation (2.52) and (2.53), we obtain ∂ϕ
∂t

and ∂ϕ
∂x

at (x0, T0). Now we have

(2.51) in hand, which is n equations. To actually solve for ∆x and ∆T , we need

one more equation. There are several ways of giving this condition (see chapter 7

of [51]), here we use the orthogonality condition. We have the following recurrence

linear system:

 ∂ϕ
∂x

[Tk−1, xk−1]− I, F [xk−1]

FT [xk−1] 0


 ∆xk

∆Tk

 =

 xk−1 − ϕ [Tk−1, xk−1]

0

 .

(2.54)
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The periodic solution is obtained when ∆xk → 0, ∆Tk → 0, as k → ∞.

Numerically, we just need ∆xk and ∆Tk less than a small controlling number. The

period of the limit cycle is given by Tk = Tk−1 + ∆Tk , and ∂ϕ
∂x

(Tk−1, xk−1) gives

the corresponding monodromy matrix, as well as a numerical approximation of the

fundamental matrix solution. The limit cycle is obtained when integrating the initial

value problem (2.52). Notice that the initial phase of the obtained limit cycle is

determined by I(x0).

Remark: After applying the numerical method, the periodic orbit is calculated, as

well as the fundamental matrix solution of the variational equation. This means the

Floquet normal form is ready for computing too! Therefore, the parameterization

introduced in Section 2.1.3 is ready for formulation.

Grow isochrons by continuation. From solving the recurrence equations (2.54),

the limit cycle and the fundamental matrix solution of the first variational equation

Φ(t) are obtained, where the corresponding monodromy matrix is M = Φ(T ).

The eigenpair µ and ~u in Equation (2.47) is easy to obtain. Therefore, the linear

approximation of the isochrons are defined as the following,

Ĩ(θ) = P (θ, σ),∀σ < ε. (2.55)

In the numerical implementation, the initial segment of an isochron is selected at

θ = 0.

Ĩ(0) = P (0, σ), σ = −ε, ε (2.56)
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Two points on the line segment are chosen to be an initial condition as our initial

approximation of the isochron at x(0), where ε is a small number. This defines a line

segment

l := [P (0,−ε), P (0, ε)]. (2.57)

Starting with this line segment l, we integrate the system backwardly for a short

amount of time τ , so that we get a new line segment l1, which is close to the isochron

of I(x(−τ)). The distance between the two points on l1 is longer than that on l, an

additional point is added if the distance is greater than a certain bound. The new

point is selected as the middle point of the original points. Then l1 is used as the

initial segment, keep integrating backwardly until time T . We will get a number of

new points for isochron at θ = 0. So that we can continue this process to extend the

isochrons to the whole basin of attraction. This method is applied to compute the

isochrons of various biological systems in the next chapter.

2.2.2 Lagrangian descriptor method of visualizing invariant manifolds

In this small section, we will introduce a numerical method called Lagrangian

descriptors. This method was first introduced in [40]. It was shown that this

tool is able to provide a global dynamical picture of the geometric structures and

their stable and unstable manifolds for arbitrary flows and maps. Additionally, the

implementation is relatively simple compared to other methods. We will precisely

define the term ”Lagrangian descriptor”, and we will apply it on a map we derived

for the coupled Kuramoto model in chapter 3. Consider a general smooth vector field.

dx

dt
= f(x, t), x ∈ Rn, t ∈ R (2.58)
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In the original definition, the Lagrangian descriptor is a measure of a certain arclength

of the trajectory. Suppose we have a trajetory x(t), x(0) = y, for a time interval

[−τ, τ ], the Lagrangian descriptor is defined as

M(y, τ) =

∫ τ

−τ

√√√√ n∑
i=1

(
dxi(t)

dt

)2

dt =

∫ τ

−τ
‖f(x(t), t)‖dt. (2.59)

Lagrangian descriptor for maps For a map, the Lagrangian descriptor can be

defined similarly [39]. A map is defined as

x 7→ F (x), x ∈ Rn. (2.60)

Suppose we have an orbit {xi}N−N , x0 = y, the Lagrangian descriptor is

M(y,N) =
N−1∑
i=−N

‖xi+1 − xi‖. (2.61)

Function of the Lagrangian descriptor To understand why M(y, τ) is useful for

revealing the geometric structures of the vector field, consider two initial conditions

y1, y2 in that phase space. If y1, y2 are close enough, then so are M(y1, τ),M(y2, τ).

But this is not true when we choose two points on different dynamical regions of the

vector field. For example, two regions seperated by a stable manifold of a fixed point.

M(y, τ) will have a qualitative difference on the boundary. Hence, the derivative of M

along these boundaries is discontinuous. Such properties reveal the stable manifold

of the fixed point.

25



2.3 Reduce Dimension via Maps

2.3.1 Poincaré map

To study the dynamics of limit cycling system, the theory of Poincaré map is a

strong and widely used technique. In this section, the definition and advantages of

the Poincaré map is briefly introduced.

A map in dynamical system is a discrete system, which can be written as xn+1 =

Π(xn). In contrast to the flow, the orbit of a map is no longer a continuous function

x(t), it is instead a sequence of points xn : n ∈ N .

The Poincaré map is a map derived for flows. Suppose we have a system

ẋ = f(x), x = (x1, ..., xn) ∈ Rn (2.62)

with a solution of ϕt(x). Take a n− 1 dimensional surface of section S, such that the

vector field of the flow is not tangent to S. Now we can define the Poincaré map on

S. Choose any point x ∈ S, and apply it as an initial condition of the flow, we seek a

point x′ ∈ S, such that

x′ = ϕρ(x)(x), (2.63)

where ρ(x) is the time required for x to first return to S.

Remark: If every point in the phase plane Rn crosses S and will eventually return

after a certain amount of time, we call S is a global section, and the corresponding

Poincaré map is well defined. If the crossing is under certain condtions, we call that

S is a local section.

Advantages of studying map: First, the Poincaré map can reduce at least one

dimension of the original system. Second, the map can provide insight into the global

dynamics of the original system. Third, many concepts that are hard to explain
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directly from the original problem can be explained via the Poincaré map, such as

the existence of unstable limit cycles. Last, the stability of limit cycle can be analyzed

by computing the linear stability of the Poincaré map numerically.

2.3.2 Entrainment map

Deriving the entrainment map is one of the major parts of this dissertation. The

entrainment map is a generalized Poincaré map, which is usually developed for

coupled biological oscillators. Suppose for system (2.62), a Poincaré section is taken

at x1 = s1, the corresponding Poincaré map is defined as

y′ = F (y), y = (x2, ..., xn) ∈ Rn−1. (2.64)

This reduces the dimension of the system by one. The idea of entrainment map is

to reduce more dimensions of the Poincaré map by understanding the geometry of

the original system. In the Results chapter, the detail of developing the entrainment

map for coupled Kuramoto oscillators and coupled Novak-Tyson oscillators will be

introduced.
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CHAPTER 3

RESULTS

3.1 Coupled Kuramoto Model with Forcing

We first study a coupled Kuramoto system. Each oscillator is already described as a

phase model, so we don’t need any methods of simplification (such as phase reduction

and parameterization). Therefore, we can focus on the analysis of the mappings. The

entrainment range for certain parameters, the numbers of fixed points and the stability

of fixed points are studied.

3.1.1 Hierarchical model

A system of N + 1 oscillators is considered. The first, defined by the variable θ0, is

simple time keeper for the 24 hour light-dark (LD) cycle. The other N oscillators are

taken from the Kuramoto model [33], which is widely used to describe the phase of

an oscillator. Each of these oscillators has its own intrinsic frequency and they are

coupled together through sine function interactions based on the differences in their

phases based on a hierarchichal structure. Namely, oscillator 1 receives input from

the LD oscillator θ0. Oscillator n + 1 receives input from oscillator n (n ≥ 2). The

equations that define the model are

dθ0
dt

= ω

dθ1
dt

= ω1 + kf(θ0) sin(θ0 − θ1)

dθi
dt

= ωi + αi−1 sin(θi−1 − θi), i = 2, . . . , N.

(3.1)

The frequency of the light-dark focing is ω = 2π/24 since the period of one day is

T = 24. The intrinsic frequencies ωi are taken to lie in a neighborhood of ω and
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need not be the same. Each of these phase variables can be viewed as taking on

values either in R or restricted to any 2π interval. We will interchangeably use both

interpretations depending on the context. We will study how solutions depend on the

two parameters k, the strength of the light-dark forcing to θ1, and αi, the strength of

the forcing from θi−1 to θi. The function f(θ) = Heaviside(sin(θ)).

3.1.2 Define the entrainment map

To define the entrainment map, first we define an N -dimensional global section P =

{(θ0, θ1, . . . , θN) : θN = π} of the flow of (3.1). On this section, θN = π, thus leaving

the θ0 and θi, i = 1, . . . N − 1 values to be determined. On the Poincaré section P ,

we define x = θ0, y = θ1 and zi = θi, i = 2 . . . N − 1. Starting with a point on the

section, flow forward in time until the trajectory returns to P and denote this time

as ρ = ρ(x, y, z, k, α), where z = (z2, . . . , zN−1) and α = (α1, . . . , αN−1). Note that

this time measures how long it takes oscillator N to complete one 2π cycle and is

obtained by integrating the third equation of (3.1) with i = N . The new phases of

x of the LD cycle, of y and z of oscillators 1 to N − 1 are obtained by integrating

(3.1) from 0 to the return time ρ and performing a mod 2π operation. Therefore the

N -dim entrainment map is defined:

x 7→ F1(x, y, z, k, α) := x+ ωρ mod 2π

y 7→ F2(x, y, z, k, α) := y + ω1ρ+ kI1 mod 2π

zi 7→ Fi+1(x, y, z, k, α) := zi + ωiρ+ αi−1Ii mod 2π,

(3.2)

where I1 =
∫ ρ
0
f(θ0) sin (θ0 − θ1) dt and Ii =

∫ ρ
0

sin (θi−1 − θi) dt, i = 2, . . . , N − 1.

Because of the mod operation in both variables and periodicity, the phase space is

actually a torus S1× . . .×S1. When we focus on the case of N = 2, we will visualize
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this phase space on the square where the edges x = 0 and x = 2π are identified as

are the lines y = 0 and y = 2π.

A fixed point (x∗, y∗, z∗) of the entrainment map corresponds to a periodic phase

locked solution of the system (3.1). The value x∗ determines the phase of lights when

oscillator N is at P . This is a proportion of the 24 hour cycle. We are assuming that

the LD cycle is broken up into 12 hours of light, θ0 ∈ (0, π) and 12 hours of darkness,

θ0 ∈ (π, 2π). The value y∗ yields the phase of oscillator 1 at the fixed point relative to

oscillator N , where y∗−π ∈ (−π, π) can be interpreted as the phase difference of the

two oscillators measured at each cycle and similarly for the oscillators corresponding

to z∗. Note that since the evolution of each θi is not constant this phase difference

may vary over the length of one cycle before returning to the original difference

once oscillator 2 returns to P . We will show that the entrainment map can possess

anywhere from 0 to 2N fixed points depending on the choice of parameters k and

αi. Using standard linearlization techniques we will assess the stability of these fixed

points to show how their characteristics organize the iterate structure of the map.

Further, we will show how the system transitions through various bifurcations as it

transitions between different qualitative regimes in parameters space.

While most of our results hold for the N + 1 dimensional system of oscillators,

we will illustrate many of our results in the case of three oscillators, θ0, θ1 and

θ2. This represents the simplest hierarchical structure in which we can identify the

individual contributions of the strength of the LD forcing, k, and of the coupling

between oscillators, α1. In the following subsections, we first show numerical results

for the 1-dim map, we then derive necessary conditions for entrainment. Finally, we

derive analytical conditions for the existence and stability of fixed points of the 2-dim

entrainement map for the three oscillator simplification. With this smaller network

we will show how the system goes passes through different types of bifurcations as a

function of k and α1.
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3.1.3 The 1-D entrainment map

Consider the case of the LD forcing with strength k acting on oscillator 1. Here we

are taking αi = 0 for all i. We place the Poincaré section at θ1 = π and compute the

return time ρ = ρ(x, k). The 1-dimensional entrainment map is then simply given by

the first equation of (3.2). In Figure 3.1, we show this map for several values of the

strength k of the LD forcing. First note two distinct characteristics of the map: one,

it is piecewise increasing with a discontinuity due to the mod operation; and two, it

is periodic in that the value of the map at the boundaries x = 0 and x = 2π are

the same. If k is too small, then the map does not intersect the diagonal and there

are no fixed points. In this case entrainment is not possible. But as k increases, the

map shifts down and two fixed points are created through a saddle-node bifurcation

at roughly k = 0.09. The exact value will be labeled in the section below as kc. As k

increases further the map begins to flatten out near the value π for larger parts of the

domain, while the discontinuity shifts to the right. Because of the periodic boundary

conditions, this implies there is a very small range of intitial conditions over which the

map has a very steep gradient (see the k = 0.4 curve). The flattening out of the map

makes sense since as the LD forcing becomes stronger, almost all initial conditions

quickly get entrained to the LD forcing and the values of θ0 and θ1 become identical.

Since the x value of the map is the value of θ0 and the map updates whenever θ1 = π,

this implies that x = π. Using a singular perturbation argument, it can be shown

that in the limit as k → ∞, the discontinuity of the map converges to 2π, while

F1(x, k) = x+ ωρ→ π. Thus, in this limit only a single stable fixed point exists.
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Figure 3.1 The 1-D entrainment map with different k values.

3.1.4 Conditions of entrainment

Whether an entrained solution exists or not depends on parameters. In Figure

3.2, the upper panel shows a case of non-entrainment, while the lower panel shows

entrainment. In both panels, oscillator 1 (red curve) is entrained to the LD oscillator

(blue curve) as the coupling constant k is sufficiently large. In the upper panel,

the coupling from oscillator 1 to 2, α1 is too small, while in the lower panel it is

strong enough to yield entrainment. Here for clarity, we have allowed θ2 to oscillate

between π and 3π, while restricting the other two oscillators to the range [0, 2π).

This simulation suggests, not surprisingly, that there exist a range of parameters over

which entrained solutions exist.
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Figure 3.2 The time course of the original system: we start the simulation with
initial value (0,0,π). Whenever θ2 hits 3π, we turns it back to π.

Finding an entrained solution of (3.1) is equivalent to finding a fixed points of

the entrainment map. From the first equation of (3.2), we need x′ = x, which implies

ρ(x, y, z) = 24. From the second equation of (3.2) similarly, we need

24ω1 + k

∫ 24

0

f(θ0) sin (θ0 − θ1) dt = 2π. (3.3)

Thus, we obtain the following formula for k.

k =
2π − 24ω1∫ 24

0
f(θ0) sin (θ0 − θ1) dt

(3.4)
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Since ∫ 24

0

|f(θ0) sin (θ0 − θ1) |dt ≤
∫ 24

0

|f(θ0)|dt = 12, (3.5)

the following bound for k is obtained

k ≥ 2|ω − ω1|. (3.6)

In other words k must be sufficiently larger than the difference between the intrinsic

frequencies of the LD and first oscillator.

To obtain a bound for α1, note that based on the definition of Poincare section,

ρ also satisfies θ2(ρ) = 3π. Integrating the equation for θ2 from 0 to ρ, we obtain:

θ2(ρ)− θ2(0) =

∫ ρ

0

[ω2 + α1 sin (θ1 − θ2)] ds

2π =ω2ρ+ α1

∫ ρ

0

sin (θ1 − θ2) ds.
(3.7)

Since ρ(θ0, θ1) = 24 is one of the necessary conditions for the system to have an

entrained solution, we substitute ρ = 24 into (3.7).

α1 =
2π − 24ω2∫ 24

0
sin (θ1(s)− θ2(s)) ds

(3.8)

Since | sin(x)| ≤ 1, we obtain a necessary condition for entrainment.

α1 ≥
|2π − 24ω2|

24
= |ω − ω2| (3.9)
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Note that this bound does not specifically include the term ω1. This occurs because

the necessary condition for entrainment is that oscillator 1 is already entrained and

thus oscillates with a 24-hour period. Thus, it is enough to compare the intrinsic

frequency ω2 to ω that of the the LD drive and ensure that coupling strength α1 from

oscillator 1 is sufficiently large.

3.1.5 Existence of fixed points

Knowing the necessary conditions for entrainment allows us to now turn to finding

fixed points of the entrainment map. For the map to have fixed points, from equation

(3.2) it follows that

F1(x, y, k, α1)− x = 0

F2(x, y, k, α1)− y = 0.

(3.10)

From the first of these two equations, ρ(x, y, k, α1) = 24. Substituting into equation

(3.7), and simplifying yields,

∫ 24

0

sin (θ1(s)− θ2(s)) ds =
2π − 24ω2

α1

. (3.11)

From the Mean Value Theorem for integrals, there exists a s1 ∈ [0, 24], such that

sin (θ1(s1)− θ2(s1)) =
2π − 24ω2

24α1

=
ω − ω2

α1

. (3.12)

Now we simplify the second equation of (3.10). Rearranging equation (3.4), we obtain

∫ 24

0

f(θ0(s)) sin (θ0(s)− θ1(s)) ds =
2π − 24ω1

k
. (3.13)
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Notice that, θ0(s) = x+ ws, so we apply a change of variable u = x+ ws, to obtain

∫ x+2π

x

f(u) sin
(
θ̂0(u)− θ̂1(u)

)
du = ω

2π − 24ω1

k
. (3.14)

If x > π, then the integral is only nonzero during the interval [2π, 3π],

∫ 3π

2π

sin
(
θ̂0(u)− θ̂1(u)

)
du = ω

2π − 24ω1

k

sin (θ0(s2)− θ1(s2)) =
2(ω − ω1)

k
.

(3.15)

If x < π, the integral has two nonzero parts.

(

∫ π

x

+

∫ x+2π

2π

) sin
(
θ̂0(u)− θ̂1(u)

)
du = ω

2π − 24ω1

k
(3.16)

Using the periodicity of sine function, we can shift the second integral by 2π,

(

∫ π

x

+

∫ x

0

) sin
(
θ̂0(u)− θ̂1(u)

)
du = ω

2π − 24ω1

k∫ π

0

sin
(
θ̂0(u)− θ̂1(u)

)
du = ω

2π − 24ω1

k

sin (θ0(s2)− θ1(s2)) =
2(ω − ω1)

k
,

(3.17)

where the last equality again uses the Mean Value Theorem. Hence, the condition

for the existence of fixed points reduces to

sin (θ1(s1)− θ2(s1)) =
ω − ω2

α1

sin (θ0(s2)− θ1(s2)) =
2(ω − ω1)

k
.

(3.18)
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Notice that the absolute value of left hand side of both of equations is bounded by

one which immediately allows us to recover the necessary conditions on parameters

for entrainement, (3.6) and (3.9). We will use the above equations to show that the

number of fixed points of the map are bounded between 0 and 4, depending on the

values of the parameters k and α1. To find fixed points however, both of the equations

must be solved simultaneously. In particular, there must be values of s1 and s2 such

that θ1(s1) = θ1(s2). We will show this later when we define and analyze the nullclines

of the map.

To obtain the bounds on the number of fixed points, define

kc = 2(ω − ω1)

αc = ω − ω2.

(3.19)

These are the critical values of k and α1. When k < kc, θ1 can not be entrained by

the light forcing; when α1 < αc, θ2 can not be entrained by θ1. Thus, a necessary

condition for entrainment is that both k ≥ kc and α1 ≥ αc.

In the following, we will provide numerical experiments that show that these

conditions are also sufficient for entrainment, but that the nature of entrainment

depends on the choice of the parameter pair (k, α1). Specifically, there exist four

curves in the parameter space that separate regions where there are four, two or one

fixed point (Figure 3.3a). Two of these curves are the lines k = kc and α = αc. The

other two curves are described below in Case I.
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(a)

(b) (c)

(d) (e)

Figure 3.3 (a) The (α1, k) parameter space showing how the number of fixed
points depends on these parameters. There is no fixed points if either parameter lies
below the critical value αc or kc. The number of fixed points in other regions are
labeled. Squares along the green curves represent actual parameter pairs that were
tested during the simulation. The rest of these curves were extrapolated. The
dashed lines denote the parameter value we take for the one-dimensional bifurcation
curves shown in panel (b-e). (b) We fixed k = 0.12, by increasing α1, the fixed
points along the green curve stay stable, while the fixed points along the other three
curves are unstable. (c) k = 0.35. (d) α1 = 0.1. (e) α1 = 0.4.
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Case I: There exist curves kub(α1) and αub(k) that together with the lines

k = kc and α1 = αc bound a region R in parameter space such that for any parameter

pair chosen in the interior of R, the two-dimensional map has four fixed points. The

subscript ub denotes the upper bound.

Case II: If α1 < αub(k) and k > kub(α), or if α1 > αub(k) and k < kub(α) then

for any parameter pair chosen in either of those regions, the map possesses two fixed

points.

Case III: Define αd = αub(kc) and kd = kub(αc). If k = kc, for αc < α1 < αd

there are two fixed points and for α1 > αd there is one fixed point. Similarly, if

α1 = αc, for kc < k < kd, there are two fixed points and for k > kd, there is one fixed

point.

Case IV: If k > kub(α) and α1 > αub(k), then the map possesses exactly one

fixed point.

Let us first show that the number of fixed points is bounded above by four. From

the first equation of (3.18), 0 < sin (θ1(s1)− θ2(s1)) < 1 when αc < α1 < αub. Because

of the periodicity of the sine function, there exists two possible angles βi(s1), i = 1, 2,

such that

θ1(s1)− θ2(s1) = βi(s1). (3.20)

On the periodic orbit, the phase difference is also periodic, which means that by

flowing backward s1 amount of time, the phase difference goes to a specific value

θ1(0)− θ2(0) = βi(0). (3.21)

Since θ2(0) = π,

y0 = θ1(0) = βi(0) + π. (3.22)
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Hence there are two possible initial conditions for y0 that satisfy the above. For

second equation of (3.18), we have:

θ0(s2)− θ1(s2) = ζj(s2), j = 1, 2. (3.23)

Going backward s2 amount of time, we have

θ0(0)− θ1(0) = ζj(0). (3.24)

Combining with (3.22), we have

x0 = θ0(0) = ζj(0) + θ1(0) = ζj(0) + βi(0) + π. (3.25)

Hence, the total number of fixed point is at most four.

Geometrically there is a nice interpretation of this result. The left-hand sides

of (3.18) are both periodic sine functions. The right-hand sides are just horizontal

lines. Thus, these lines each intersect the sine functions at two points. By choosing

one intersection point from each of these graphs, we obtain four possible fixed points,

subject to whether the condition θ1(s1) = θ1(s2) holds. We can also see why fixed

points arise at small values of k or α1 due to saddle-node bifurcations. For example,

when k is decreaesed towards kc, the horizontal line defining the right-hand side of the

first equation in (3.18) increases towards the value 1. Thus, this equation can have at

most one solution before those disappear with a further decrease in k. The signature

of a saddle node-bifurcation is shown in Figure 3.3(b)-(e). where solid (dashed) curves

denote stable (unstable) fixed points.
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To understand why there is a change in a number of fixed points for large values

of either of the parameters, consider Case II when α1 is sufficiently large so that we

can consider the singular limit. Make a change of time variable τ = α1t, then τ can

be considered as a fast time variable. Equation (3.1) becomes:

dθ0
dτ

=
ω

α1

dθ1
dτ

=
ω1

α1

+
k

α1

f(θ0) sin(θ0 − θ1)

dθ2
dτ

=
ω2

α1

+ sin(θ1 − θ2)

(3.26)

When α1 >> 0, we obtain the fast equations

dθ0
dτ

= 0

dθ1
dτ

= 0

dθ2
dτ

= sin(θ1 − θ2)

(3.27)

On the fast time scale, neither θ0 or θ1 evolve, but θ2 is free to evolve to the initial

value of θ1. This is exactly the initial value y = θ1(0) of the map. Hence, the system

is reduced to study

dθ2
dτ

= sin(y − θ2). (3.28)

The reduced system for this flow has two fixed points, θ2 = y, or θ2 = y + π, where

θ2 = y is stable, and the other is unstable. What this means is that on the fast

time scale, θ2 becomes equal to y = θ1(0). This makes sense since if the couping

from oscillator 1 to oscillator 2 is sufficiently strong, these two oscillators should

synchronize. By returning to the original time scale and now letting ε = 1/α1, we
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obtain
dθ0
dt

= ω

dθ1
dt

= ω1 + kf(θ0) sin(θ0 − θ1)

ε
dθ2
dt

= εω2 + sin(θ1 − θ2),

(3.29)

which when ε→ 0 yields

dθ0
dt

= ω

dθ1
dt

= ω1 + kf(θ0) sin(θ0 − θ1)

0 = sin(θ1 − θ2).

(3.30)

Thus, on the original time scale, θ1 = θ2 remains. Thus, when θ2 returns to the

Poincaré section again, θ1 = π and therefore y = π.

Remark The singular pertubation results show that the number of fixed points

changes as α1 → ∞. Our numerical results in Figure 3.3 indicate that the changes

may occur at large finite values of the parameters.

3.1.6 Geometrical methods for finding fixed points and manifolds

Fixed points of the map can be found by geometrically solving equation (3.10).

Namely, in Figure 3.4(a, b), we show contour plots of the functions F1(x, y, k, α1)−x

and F2(x, y, k, α1)−y. The zero level curves of each constitute the x- and y-nullclines

of (3.10) and are plotted on common x − y plane; Fig 3.4(c). The blue (red) curve

corresponds to the x-(y)-nullcline. The four intersection points are fixed points of

the map. The contour plots and nullclines also reveal more information that will be

useful for understanding the dynamics of the map. The region between the two blue

curves where the level curves have a positive value corresponds to values for which the
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return time of θ2 to the Poincare section P is less than 24 hours. The complementary

region therefore corresponds to values for which the return is greater than 24 hours.

In Figure 3.4(d), we show the return time map ρ(x, y) which allows us to also easily

visualize its gradient, which will be important for the stability analysis.

(a) (b)

(c) (d)

Figure 3.4 (a) and (b): Contour plots of the map F1 − x and F2 − y. (c) Nullclines
of the 2-D map which correspond to the zero level curves of the contour plots (blue
for (a) and red for (b)). Points of intersection are fixed points of the map. (d)
Return time map ρ(x, y). Note the similarities with panel (a). The parameter set is
k = 0.1, α = 0.08.

In Figure 3.5, we show the nullclines for several different choices of parameters

that indicate how the number of fixed points can vary. Panel (a) shows a case where

the x and y-nullclines intersect tangentially at two different points. These points of

tangency correspond to the existence of a saddle-node bifurcation that exists at k =

kc. Increasing k leads to a region in parameter space of four fixed points as indicated
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in panel (c) from Figure 3.5. Further increasing k leads to another bifurcation (Figure

3.5(b)) for which there are only two fixed points. In this case, a portion of the two

curves of x-nullcline (upper left hand parts) merge and disappear. This does not

appear to be a saddle-node bifurcation of fixed points which causes two of the fixed

points to disappear. In fact, it may be the case that the numerical methods that we

are using are not sufficiently accurate and are incapable of resolving the issue. Panel

(c) shows the case of large α1 where again only two fixed points exist. Note here that

a portion of the y-nullcline is nearly horizontal at y = π. The x-nullcline is now a

single curve as the upper portion from Figure 3.4(c) is destroyed by a discontinuity

in the return time map (not shown). Panel (d) shows the case for which both α1

and k are sufficiently large. Note here that the x-nullcline is vertical at x = π,

and the y-nulllcline is horizontal at y = π. The reason for this is relatively easy

to explain. When the coupling strength from the oscillator one to oscillator two is

large enough, then these two oscillators quickly synchronize. Similarly the large LD

coupling to oscillator one quickly synchronizes that pair. Thus, all three oscillators

quickly synchronize and since the Poincare map measures their relative values when

θ2 = π, the x and y variables will also equal π. The figure does not reveal that the

return time map for the time it takes oscillator 1 to return to P possesses several

curves of discontinuity.
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(a) (b)

(c) (d)

Figure 3.5 Nulclines of the 3-oscillator model for different coupling strengths: (a)
k = kc, α1 = 0.1. (b) Large k: k = 2, α1 = 0.1. (c) Large α1: α1 = 2, k = 0.12. (d)
Both large: α1 = 2, k = 2.

Visualization of manifolds and entrainment times. An application of the

Lagrangian descriptor method is now presented for the coupled Kuramoto model.

In Figure 3.6(a), the gradient of the Lagrangian descriptor M(y,N) is plotted in a

heatmap, whereN = 5 and the 2-norm is used. The curves in different colors represent

the discontinuity of M(y,N). By the definition of the Lagrangian descriptor, those

curves are the invariant manifolds of the fixed points of the map. In Figure 3.6(b),

the original values of M(y,N) are presented as a contour plot. In Figure 3.6(c), a

entrainment time is plotted as a heatmap, which reflects the stable manifolds of the

saddle points B and C. It is also consistant with the result obtained by Lagrangian

descriptor. Note that they both show the existence of various stable manifolds of the
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fixed points A, B and C. The Lagrangian descriptor method also reveals the unstable

manifolds of points B, C and D.

(a)

(b) (c)

Figure 3.6 (a) Manifolds visualization with Lagrangian descriptor. (b) The
contour plot of the Lagrangian descriptor M(y,N). (c) Entrainment time plot.

3.1.7 Attempt for leading order approximation

Since our map (3.2) is written implicitly, we will approximate the flow of θ1(t) as a first

order power series, then write down the map explicitly in terms of initial condition

of x, y and return time ρ(x, y). Because of the discontinuity of f(θ0), the flow of θ1 is

a combination of two flows in light and darkness conditions.
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In darkness, the solution only depend on initial θ1 value y and t:

θD1 (y, t) = y + ω1t (3.31)

In light, we solved it as a power series of order 1:

θL1 (x, y, t) = y + (ω1 + k1 sin(x− y))t (3.32)

Evaluate θ1(ρ)

Once we get that, we get an approximation of Π2.

Case I: x > π

θ1 will evolve on θD1 for 2π−x
ω

hours, then evolve on θL1 for 12 hours, then back to θD1

for ρ− 2π−x
ω
− 12 hours, hence

θ1(x, y, ρ) = θD1 (y,
2π − x
ω

) + θL1 (2π, θD1 (y,
2π − x
ω

), 12)

+ θD1 (θL1 (2π, θD1 (y,
2π − x
ω

), 12), ρ− 2π − x
ω

− 12)

= ωρ(x, y) + 24k1 sin(x− y)− 2x+ 3y − 12ω

+ 24ω1 + 4π

(3.33)

Then we obtain the Jacobian matrix for case I:

 ωρx + 1 ωρy

ω
(
ρx + 1

ω

)
+ C ωρy − C

 (3.34)
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Where C = 24k1 cos(x− y)− 3. The eigenvalues are:

λ1 = 3− 24k1 cos(x− y)

λ2 = 1 + ωρy + ωρx

(3.35)

Now the stability of fixed points in case I can be determined by just analyzing these

equations.

Case II: x < π

θ1 will evolve on θL1 for π−x
ω

hours, then evolve on θD1 for 12 hours, then back to θL1

for ρ− π−x
ω
− 12 hours, hence

θ1(x, y, ρ) = θL1 (x, y,
π − x
ω

) + θD1 (θL1 (x, y,
π − x
ω

), 12)

+ θL1 (2π, θD1 (θL1 (x, y,
π − x
ω

), 12), ρ− π − x
ω
− 12)

= 24ω + 3F + [ω1 − k1 sin(12ω + F)](ρ(x, y)− 12

− π − x
ω

)

= 24ω + 3F + (ω1 + k1 sinF)(ρ(x, y) +
x

ω
− 24)

=
ω1

ω
x+ ω1ρ(x, y) + 3F + k1 sinF(ρ(x, y) +

x

ω
− 24)

+ 24(ω − ω1)

Where

F = y +
(π − x)ω1

ω
+
k1(π − x) sin(x− y)

ω

= y − ω1

ω
x− k1

ω
x sin(x− y) + 12(ω1 + k1)
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Then we compute the Jacobian matrix:

 ωρx + 1 ωρy

AFx +Bρx +B/ω AFy +Bρy

 (3.36)

Where

Fx = − 1

w
(w1 + k1 sin(x− y) + x cos(x− y))

Fy = 1 +
k1
w
x cos(x− y)

A = 3 +
k1
w
x cosF

B = w1 + k1 sinF

The eigenvalues are:

λ =
1 + ωρx + AFy +Bρy

2
±
√

∆

2
(3.37)

Where

∆ =((AFy +Bρy + ωρx + 1) 2

− 4A (−Fxωρy + Fyωρx + Fy))

Combined with the our numerical result, the leading order approximation shows

that the derivative of ρ(x, y) plays an important role in determining the stability.

3.1.8 Stablity of fixed points: Numerical versus analytic results

With the leading order approximation obtained above, we will first describe the

stability result that we obtained numerically. We use Figure 3.3(b) as an example.
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Suppose we take α1 = 0.1, the fixed point on the blue curve (x = 5.85, y = 3.42)

is a saddle. We find λ1 = 0.12 < 1, λ2 = 2.51 > 1. As we increase α1, and numerically

calculate the Jacobian directly, we found that λ2 doesn’t change too much, and it’s

always greater than 1. But λ1 → 0. We substitute the values of parameters and fixed

points into the second equation of (3.35),

λ2 = 3− 2.88 · cos(x− y)

3 < λ2 < 5.88.

(3.38)

This indicates that λ2 is greater than 1 and doesn’t change too much. For λ1,

our numerical results show that the eigenvalue goes to zero as α1 increases. From the

first order approximation, we also numerically verified that ρx + ρy 7→ −1
ω

from the

second equation of (3.35).

For the curve green, the fixed point (x = 4.43, y = 3.57) is stable, λ1 = 0.119 <

1, λ2 = 0.398 < 1, as α1 increases, λ1 approaches zero while λ2 doesn’t change

much. A similar argument using (3.35) using the first order approximation with

cos(x− y) > 0, shows λ2 < 1. The fixed points on the purple and red curves can be

explained by equation (3.37). The derivative of the return time ρ can be very large

when we increase α1, which, in turn, causes large eigenvalues. For the red curve, the

fixed point is unstable, λ1 > 1, λ2 > 1. As α1 increases, both eigenvalues diverge

to a large number (numerically λ1 > 100, λ2 > 6000, when α1 = 0.35), making

this fixed point extremely unstable. For the purple curve, the fixed point is also

unstable, λ1 < 1, λ2 > 1. As α1 increases, one eigenvalue diverges to a large number

(numerically λ2 > 6000, and λ1 < −5 when α1 = 0.35), making this fixed point

extremely unstable as well.
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While these numerical results, coupled with the first order approximation are

suggestive of the change in number of fixed points from four to two across the green

bifurcation curves shown in Figure 3.3(a), they don’t prove that those curves actually

exist. Indeed the singular perturbation argument shown earlier as α1 → ∞ only

guarantees that in that limit, two fixed points exist. It could be that our numerical

methods are not fully resolved, or are not resolvable. Perhaps the large eigenvalues

obtained at the linearization are indicative of the difficulty in ascertaining whether

these fixed points actually exist since numerically, at least, iterates diverge quickly

from a vicinity of the proposed fixed points. Thus, we acknowledge here that there is

still a discrepacy with the numerical results that we have presented and that which

we can actually prove.

3.1.9 Generalization to N + 1 oscillators

We now briefly return to study the full hierarchical system consisting of N + 1

oscillators (Equation (3.1)). From our study of the three-oscillator problem above

and given that the coupling between the ith and ith + 1 oscillators for any i ≥ 1 is

symmetric, we conjecture that the addition of each new oscillator to the hierarchical

chain introduces two new fixed points. Thus, in the N + 1 dimensional system, there

are 2N fixed points. Of these, only one is stable, while the remaining fixed points

are all unstable. Of those, one of them has eigenvalues that are all larger than one

in absolute value. The remaining unstable fixed points all possess both stable and

unstable directions (i.e., higher dimensional saddle points).

Regarding the direction of and time to entrainment, it is too difficult to fully

categorize each of the possibilities. Instead we note that based on our three-oscillator

results, we conjecture that the fastest path to entrainment is when oscillators in

the chain get progressively entrained. By this we mean that oscillator 1 is first

entrained (or becomes close to entrained) by the LD forcing. This is followed by
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oscillator 2 becoming nearly entrained and so on. The direction of entrainment is

extremely difficult to give general conditions for since this depends critically on the

initial position of each oscillator. Our results from the three-oscillator case suggest

that the stable and unstable manifolds of the unstable fixed points will divide the

phase space into regions where oscillators converge in different directions.

3.2 Application to Higher Dimensional Models

3.2.1 The Novak-Tyson model

In this section, we introduce the Novak-Tyson(NT) model [54]. It is a model for

the molecular circadian clock in the fruit fly Drosophila. Mathematically, it can be

written in the following form:

1

φ

dP

dt
= F1(P,M) +G(P, t) = M − kfh(P )− kDP − kLf(t)P

1

φ

dM

dt
= εF2(P,M) = ε(g(P )−M),

(3.39)

where g(P ) = 1
1+P 4 , and h(P ) = P

0.1+P+2P 2 are nonlinear functions. The

M variable represents mRNA concentration, and P variable represents the protein

concentration. The parameter ε is small, which separates P and M into fast and

slow variables. The parameter φ will directly affect the period of the solutions of

this system. The function f(t) describes the LD forcing, which is defined by a

periodic step function: f(t) = 1,∀t ∈ (0, 12], which denotes the complete light

condition; f(t) = 0,∀t ∈ (12, 24], which denotes the complete darkness condition.

Mathematically, it can be written as f(t) = H(sin( π
12
t)). In Drosophila, there is

protein degradation during darkness, and the light will increase the degradation. So

kD represents the degradation rate during darkness, and kL represents the degradation
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rate which is caused by light. The parameter kf is a combination of two variables

from the original model in their paper [54].

Let’s consider the unforced system first, which is also equivalent as the complete

darkness case. Let kL = 0, we have

1

φ

dP

dt
= M − kfh(P )− kDP

1

φ

dM

dt
= ε(g(P )−M).

(3.40)

Under our choice of parameters, the system has a fixed point at (P,M) =

(1.167556, 0.349082) calculated by Newton’s method. The Jacobian of the unforced

system is calculated as below:

D(P,M)F = φ

 −kD + kf
2P 2−0.1

(2P 2+P+0.1)2
1

− 4εP 3

(P 4+1)2
−ε

 = 2.1

 −0.05 + 2P 2−0.1
(2P 2+P+0.1)2

1

− 4εP 3

(P 4+1)2
−0.05


(3.41)

Here the values of parameters are kf = 1, kD = 0.05, ε = 0.05, φ = 2.1. Evaluate the

Jacobian at the fixed point, and calculate the eigenvalues, we found

DF |(1.167556,0.349082) =

 0.24076 2.1

−0.0818226 −0.105

 (3.42)

and λ = 0.0678801 ± 0.376749i, so the fixed point is a spiral repellor. Furthermore,

one can construct a region D, which is simply connected in R2, and prove that there

is a periodic orbit in D by Poincaré-Bendixson theorem.

Stability of the limit cycle We can use Floquet theory to study the stability

of the unforced limit cycle. Suppose the limit cycle of system (3.40) is γ(t), after a
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change of variable x = γ + y, we have the variational equation:

ẏ = A(t)y, (3.43)

where

A(t) = DF |γ(t) = φ

 −kfh′(P )− kD 1

εg′(P ) −ε


γ(t)

(3.44)

By Abel’s theorem (Theorem 2.11 in [42]). The determinant of the monodromy matrix

M , which is also the product of the Floquet multipliers, has the following,

λ1λ2 = exp

(∫ T

0

tr(A(s))ds

)
λ2 = exp

(∫ T

0

tr(A(s))ds

)
.

(3.45)

Where one of the Floquet multipliers is λ1 = 1. For the limit cycle to be stable, we

must have λ2 < 1, therefore we obtain the condition of stability.

exp

(∫ T

0

tr(A(s))ds

)
< 1∫ T

0

(−kfh′(P (s))− kD − ε) ds < 0

(−kD − ε)T − kf
∫ T

0

h′(P (s))ds < 0∫ T

0

h′(P (s))ds > −(kD + ε)T

kf

h′ (P (sc)) > −
kD + ε

kf
.

(3.46)
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This condition shows that the stability of the limit cycle depends on the slope of the

nonlinear function h(P ).

The limit cycle solution With the classical parameter set φ = 2.1, kD =

0.05, kf = 1, ε = 0.05, we applied our continuation based shooting method, and

found the limit cycling solution. The numerical results are presented below.

Figure 3.7 The left panel shows the time course of the solution in one period. The
right panel shows the solution in the phase plane.

Phase reduction for the NT oscillator with a forcing Since the external

forcing is small (kL = 0.05), so we can apply phase reduction on it. Rewrite Equation

(3.39) as a vectorized system:

d

dt

 P

M

 = F (P,M)− kL

 Pf(t)

0

 ,
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where F (P,M) =

 M − kDP − kf P
0.1+P+2P 2

ε
(

1
1+P 4 −M

)
. Let S = ωt, then the system

is changed to be autonomous:

d

dt

 P

M

 = F (P,M)− kL

 PH(sin(S)

0


dS

dt
= ω mod 24.

(3.47)

Apply the phase reduction:

dθ

dt
= ω0 − kL∇θ(γ0(t)) ·

 PH(sin(S))

0


dS

dt
= ω mod 24,

(3.48)

where γ0(t) is the unforced limit cycle, ω0 = 2π
T0

is the frequency of the NT oscillator,

θ(γ0(t)) is the phase of γ0(t), ω = 2π
24

is the frequency of the light cycle.

Solve the adjoint equation to find ∇θ(γ0(t)).

d∇γ0(t)θ

dt
= −DF T (γ0(t))∇γ0(t)θ

∇γ0(0)θ · F (γ0(0)) =
2π

T

(3.49)

Figure 3.8 shows the solution of the adjoint equation, which is also called the PRC

(phase response curve).
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Figure 3.8 The red curve is ∇θ in x direction, and the blue curve is ∇θ in y
direction.

The parameterization for the NT oscillator Here we applied the parameteri-

zation method introduced in chapter 2 on the unforced NT oscillator.

In Figure 3.9, we plot the limit cycle in black, the isochron curve at θ = 0.

We then take two points on the isochron, integrate them forward in one period of

time, the two trajectories end at the same point on the limit cycle. Which is a good

numerical test of our method.
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Figure 3.9 Single isochron at phase θ = 0, along with two testing trajectories.

In Figure 3.10, we plot the set of isochrons I(θ) : θ = 0 : 1 : T in the same

phase plane. We also add a zoom in figure on the right, where you can see that there

is a phaseless region for this system.

Figure 3.10 The left panel shows 40 isochrons of unforced NT. The right panel is a
zoom in figure of the isochrons near the fixed point.
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For a forced NT system, we can rewrite it as:

1

φ

dP

dt
= F1(P,M, t)

1

φ

dM

dt
= εF2(P,M)

(3.50)

For such forced system with a forced periodic solution γ(t) with period T = 24, the

parameterization is able to be derived near the forced limit cycle. The only difference

with the unforced one is that the choice of initial phase point is fixed. So we need to

fixed the initial condition before computing the parameterization.

3.2.2 Parameterization on other systems

We also applied the method to the Fitz-Hugh Nagumo (F-N) model [19].

dV

dt
= c(V − V 3/3 +W + I)

dW

dt
= −(V + bW − a)/c

(3.51)

The parameter values are I = −0.4, a = 0.7, b = 0.8, c = 3, which is the choice in

Winfree’s paper [55]. The numerical result we found matches their result, and has a

better accuracy. See Figure 3.11.

Figure 3.11 The left panel shows 20 isochrons of the F-N model. The right panel is
a zoom in figure of the isochrons near the fixed point.
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We then applied the method to the Morris-Lecar (M-L) model [44].

CM
dV

dt
=− gL (V − VL)− gCaM∞ (V − VCa)− gKW (V − VK) + Iext

dW

dt
=λW (W∞ −W )

(3.52)

Here we have

M∞ = 0.5 [1 + tanh {(V − V1) /V2}]

W∞ = 0.5 [1 + tanh {(V − V3) /V4}]

λW = φ cosh {(V − V3) /2V4} .

(3.53)

With parameters: gL = 2, gCa = 20, gK = 20, Iext = 60, VK = −100, VL =

−70, VCa = 50, V1 = 0, V2 = 18, V3 = −10, V4 = 13, φ = 0.15, CM = 2. The isochrons

are presented in Figure 3.12.

Figure 3.12 The left panel shows 30 isochrons of the M-L model. The right panel
is a zoom in figure of the isochrons near the fixed point.
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3.2.3 Coupled Novak-Tyson model

The coupled Novak-Tyson (CNT) model is given by the following equations:

1

φ1

dP1

dt
= M1 − kfh(P1)− kDP1 − kL1f(t)P1

1

φ1

dM1

dt
= ε[g(P1)−M1]

1

φ2

dP2

dt
= M2 − kfh(P2)− kDP2 − kL2f(t)P2

1

φ2

dM2

dt
= ε[g(P2)−M2 + α1M1g(P2)]

(3.54)

The parameters and variables have the same meaning as the original NT model. We

introduce a coupling term α1M1g(P2), from oscillator 1 (O1) to oscillator 2 (O2). The

parameter α1 is a non-negative real number which denotes the coupling strength. We

placed the coupling factor into the second equation of O2 based on Roberts et al.

[50], who suggest that coupling occurs between the mRNA production rates.

(a) (b)

Figure 3.13 (a) Model with strict hierarchical coupling. (b) Semi-hierarchical
model when both oscillators receive light input, but the light into O2 is much
weaker than the light into O1.

We mainly study the case with strict hierarchical coupling, which is shown in

Figure 3.13a. In this case, the LD forcing is applied only on O1, which then has

feedforward coupling onto O2. We fix the value of parameter kL2 = 0. Figure 3.13b

shows the semi-hierarchical CNT model when both oscillators receive light forcing,

but the effect of light into O2 is taken to be less intense than that into O1, in other

words, kL2 < kL1 .
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The entrainment map When attempting to determine the existence of periodic

solutions using Poincaré maps, one has to decide where in phase space to place the

section. Often in circadian models, the Poincaré section is placed on the 24-hour

light-dark forcing, leading to a stroboscopic map that determines the state of the

system every 24 hours. In [14], Diekman and Bose instead placed the section in the

phase space of the circadian oscillator and backed out the phase of light when the

oscillator was at the section. Here, we follow that approach when building the 2-D

map. The Poincaré section is chosen at a location in the flow that O2 is shown in

Section 3 to cross. The phase of O1 with respect to a reference point on its own

limit cycle, x, and of lights y will then be determined to derive the 2-D map. In this

section, we first introduce the original 1-D map, and then generalize it to our 2-D

map.

The entrainment map Π(y) for the original NT model was introduced as a 1-D

map in [14]. To define Π(y), Diekman and Bose take a Poincaré section P as a 1-D

line segment which intersects the LD-entrained solution of a single periodically forced

NT oscillator. The section is placed along a portion of an attracting one-dimensional

slow manifold where all trajectories of the NT oscillator pass. A phase variable y is

defined to be the amount of time that has passed since the beginning of the most

recent LD cycle. When the trajectory first returns to P , the map Π(y) is defined to

be the amount of time that has passed since the onset of the most recent LD cycle,

which is the new phase of the light forcing. The domain and range of Π(y) are both

(0,24]. The domain is actually homeomorphic to the unit circle S1, so y = 0 and

y = 24 are equivalent. The map is written as yn+1 = Π(yn), where:

Π(yn) = (ρ(yn) + yn) mod 24. (3.55)
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ρ(y) is a return time map that measures the time a trajectory starting on P takes

to return to P . It is continuous and periodic at its endpoints ρ(0+) = ρ(24−). If

ρ(y) < 24 − y, then Π(x) = ρ(y) + y, because the trajectory will return back to

P within the same LD cycle which it started. If 24 − y < ρ(y) < 48 − y, then

Π(y) = ρ(y) + y − 24, because the trajectory will return in the next LD cycle and so

on.

If there exists a ys, such that ys = Π(ys) and |Π′(ys)| < 1, then ys is a stable

fixed point of the map Π(y), and it also determines a 1:1 phase locked solution.

The phenomenon of 1:1 phase locking in this case occurs when the oscillator has

one return to the Poincaré section for every one period of the LD forcing. When a

stable solution exists, the map Π(y) quite accurately calculates the time to approach

the stable solution starting from any initial condition of y. Numerically we use the

concept of entrainment to evaluate the convergence time. Suppose yj is a sequence

of iterates of the map, then we say the solution is entrained if there exists m, such

that for all j ≥ m, |ys − yj| < 0.5. The entrainment time is then Σm
i=1ρ(yi).

The 1-D O1-entrained map for the CNT system The 1-D map for the NT

system can not be directly applied to the CNT system, because the second oscillator

will have additional free variables to determine, meaning that the entrainment map

for the CNT system will be higher dimensional. However, for the hierarchical CNT

system, if we assume that O1 is already entrained, then the chain LD ⇒ O1 ⇒ O2 is

reduced to O1-entrained⇒ O2. The system can be rewritten in the following manner:

1

φ2

dP2

dt
= M2 − kfh(P2)− kDP2

1

φ2

dM2

dt
= ε[g(P2)−M2 + α1M1g(P2)]

(3.56)
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In the O1-entrained case, O2 is continuously forced by the coupling from O1. This

differs from the coupling due to direct light input into O1 which is a discontinuous

square wave. We place a Poincaré section that intersects the entrained O2 limit

cycle solution at P : P2 = 1.72, |M2 − 0.1289| < δ such that P ′2 < 0, where δ is a

small control parameter. In the Results section, we will explain why trajectories are

funneled into a region that forces them to cross this choice of Poincaré section. Along

the section P , P2 is fixed, and M2 is bounded by δ, so the only free variable is the

phase of light. We define the 1-D O1-entrained map by

yn+1 = ΠO1(yn) = (yn + ρ(yn; γ(yn))) mod 24 (3.57)

where y ∈ (0, 24] is defined to be the phase of the LD forcing, which has the same

meaning as the 1-D entrainment map in [14]. We define γ(t) := ϕt(X0) to be the

LD-entrained limit cycle of O1, where X0 is a chosen reference point on γ(t). We

denote the set of points that lie on the limit cycle of O1 by ΓO1 . At X0, the lights

just turn on for O1. In the O1-entrained case, the location of O1 only depends on yn

and can be denoted by γ(yn). Based on the above definition, γ(yn) means a point on

the limit cycle of O1 when the light has been turned on for yn hours. ρ(yn) measures

the return time when O2 first returns P .

Notice that in the definition of the O1-entrained map, the phase of O1 is

determined by y (the phase of the LD forcing), since it is O1-entrained. This makes

the O1-entrained map a 1-D map, and most of the properties of the NT model’s 1-D

map carry over to the O1-entrained map. For example, if there is a point ys, such that

ys = ΠO1(ys) and |Π′O1
(ys)| < 1, then ys is a stable fixed point of the O1-entrained

map. The fixed points of the map also determine 1:1 phase locked solutions of the

coupled system.
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The general 2-D entrainment map In the case of the O1-entrained map, the

initial location of O1 when O2 lies on P is always determined by y, the phase of the

LD cycle. But in general, the initial location of O1 doesn’t always depend on y, rather

it could lie arbitrarily in its phase space. To limit the possibilities, we restrict the

initial location of O1 to lie anywhere along its own limit cycle ΓO1 . This restriction

will therefore only introduce one new free variable and motivates us to generalize the

map to two dimensions.

(xn+1, yn+1) = Π(xn, yn) = (Π1(xn, yn),Π2(xn, yn))

We keep the definition of yn and the location of the Poincaré section P the same as

the O1-entrained map. We now introduce a new variable x to determine O1’s position

in phase space relative to its own LD-entrained solution. The detailed definition is

explained using a phase angle.

(a) Schematic for Π1 (b) Schematic for Π2

Figure 3.14 (a) The upper panel shows a schematic of the homeomorphism from
the unit circle S1 to ΓO1 . The lower panel shows how we construct the map in two
different conditions; the left one shows the case when the phase angle θ associated
with the trajectory of O1 rotates through more than 2π, the right one is where the
rotation is less than 2π. (b) In both panel schematics, the first blue vertical line
segment denotes where we chose the initial phase of light. After time ρ(xn, yn), the
trajectory returns to P , and the new phase of light is yn+1. For the upper panel,
yn + ρ(xn, yn) > 24, so yn+1 = yn + ρ(xn, yn)− 24. For the lower panel,
yn + ρ(xn, yn) < 24, so yn+1 = yn + ρ(xn, yn). The black square wave f(t) in both
panels represents the LD forcing.
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Defining Π1 using a phase angle According to the O1-entrained map, the

trajectory of O1 always remains on ΓO1 . However, if O1 is not already entrained,

then its trajectory may not lie on ΓO1 but will instead approach it asymptotically.

Thus, we need a new independent variable to determine the position of O1 for this

situation. From the O1-entrained case, the position of O1 can always be described

as γ(t), where t ∈ (0, 24]. The idea is to define a new independent phase variable x

equivalent to the time variable t that is obtained by projecting the real location of

O1 onto its limit cycle ΓO1 , while keeping the error small.

We define the phase angle in the following steps:

1) Transform the coordinate system appropriately: Shift the origin to the

intersection point of the uncoupled O1’s two nullclines. Then connect the origin

and the point X0 and expand the line segment as the x-axis of the new coordinate

system. The y-axis is determined automatically to be orthogonal to the x-axis, as in

Figure 3.14a.

2) Define x in terms of the phase angle: Consider the phase plane as a complex

plane C. Let’s call the point X0 as z0 = r0e
iθ0 ∈ C, where θ0 = 0 after the coordinate

system transformation. We can then represent any point on the limit cycle γ(t) as a

complex number z = reiθ, where we define θ ∈ (0, 2π]. Then x is defined to be the

phase of O1 when choosing X0 as the reference point. In other words, z = γ(x) = reiθ.

Notice that x is homeomorphic to the unit circle S1, because θ = Arg(γ(x)); see Figure

3.14a. The domain of x is also S̃1 = (0, 24].

3) Define the map Π1. Suppose we start integrating the system with any initial

condition (xn, yn) (see Figure 3.14a, lower panel as an example). After the time

ρ(xn, yn), O2 returns to the Poincaré section, the new location of O1 is now

Ψρ(xn,yn)(γ(xn)) = rn+1e
iθn+1

66



where Ψt(X) is the flow of O1, and the phase angle is θn+1. We then find the unique

point x̂ lying on ΓO1 such that the phase angle of Ψρ(xn,yn)(γ(xn)) matches the angle

associated with γ(x̂). That is we choose x̂ such that Arg(γ(x̂)) = θn+1. Geometrically,

we are simply choosing x̂ as the associated value at which the ray passing through

Ψρ(xn,yn)(γ(xn)) intersects γ(t). We define xn+1 = x̂. We can then write Π1 as the

following:

xn+1 = Π1(xn, yn) = {x̂ ∈ [0, 24) : Arg(γ(x̂)) = θn+1}. (3.58)

4) To numerically compute the map Π1, we integrate an initial condition where

O1 lies along its limit cycle and O2 at P , and integrate the system until O2 returns to

the section. We then use a linear map to shift the new location of O1 to the coordinate

system we set up in step 1. MATLAB has a built-in function to find the phase angle

of the new location. Using this angle, we locate a point on the limit cycle of O1, that

we had previously partitioned, with the same phase angle.

The definition of Π2 is straightforward. We just mimic the construction of the

O1-entrained map. The only difference is that the return time function ρ depends on

both x and y, because O1 is no longer O1-entrained:

yn+1 = Π2(xn, yn) = yn + ρ(xn, yn) mod 24, (3.59)

where y ∈ S̃1 = (0, 24] is defined on a homeomorphism of the unit circle S1, y =

h(θ) = 12
π
× θ.

The schematic Figure 3.14b depicts a way to understand the definition of Π2.

The first blue vertical line segment signifies the initial phase of O2 when it starts on

P when the light turns on yn hours. After time ρ(xn, yn), the trajectory returns to P ,

signified by the second blue vertical line segment, with the lights having turned on
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yn+1 hours ago. In the upper panel, ρ(xn, yn) > 24− yn, therefore the trajectory does

not return to P within the same LD cycle. In the lower panel, ρ(xn, yn) < 24 − yn,

therefore the trajectory does return to P within the same LD cycle.

In this section, we first show simulations demonstrating the entrainment of the

strictly-hierarchical CNT model. We then define and analyze a 1-D map in which O1 is

assumed to already be entrained. We call this the O1-entrained map. Understanding

the 1-D map will facilitate the definition and analysis of the 2-D entrainment map.

Finally, we extend the results to the semi-hierarchical case.

3.2.4 The entrained solutions of the CNT model

To find the entrained solutions and understand the geometry of the strictly-

hierarchical CNT system in the presence of the LD cycle, the nullclines of each

oscillator play an important role. The nullclines are the set of points where the the

right hand sides of (3.54) equal zero and will be different for each of the ocsillators. For

O1, there are two different P -nullclines corresponding to the dark or light condition

manifested through the square-wave forcing f(t) and a single M -nullcline.

NPD
: M1 = kfh(P1) + kDP1

NPL
: M1 = kfh(P1) + (kD + kL)P1

NM1 : M1 = g(P1)

(3.60)

For O2, there is a single P -nullcine (since kL2 = 0), but a family of M -nullclines since

the coupling from O1 is continuous rather than discrete.

NP : M2 = kfh(P2)− kDP2

NM2 : M2 = g(P2) + α1M1g(P2)

(3.61)
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Each P -nullcline is a cubic shaped curve. Note that NPD
and NPL

are independent

of the variables P2 and M2. In the four-dimensional space (P1,M1, P2,M2) they

actually correspond to hypersurfaces. But since the equations governing the evolution

of O1 are independent of O2, we simply project and view NPD
and NPL

as curves in

(P1,M1) space (Figure 3.15a). We similarly view the sigmoidal nullcline NM1 as a

curve in this phase plane. We project the nullclines of O2 onto the (P2,M2) space

(Figure 3.15c). Note that NM2 now represents a continuum of sigmoidal shaped

curves that vary depending on the value of M1. When O1 is entrained, along its

limit cycle, the M1 value is bounded between min|M1(t)| and max|M1(t)|. Thus,

NM2 can oscillate between Nmin
M : M2 = g(P2) + α1min|M1(t)|g(P2) and Nmax

M :

M2 = g(P2) + α1max|M1(t)|g(P2). We assume that any intersection between NP

and NM occurs on the middle branch of the corresponding cubic nullclines. This will

guarantee that any ensuing fixed points of the CNT system are unstable and will

allow oscillations to exist.

We plot the entrained solution of the CNT by direct simulation. In our

simulations, we take a specific set of parameters for equation (3.54), i.e. φ1 = φ2 = 2.1,

ε1 = ε2 = 0.05, kD = 0.05, kL1 = 0.05, kL2 = 0, kf = 1, α1 = 2. In Figure 3.15a, the

periodic solutions of O1 are presented for different light conditions. The dashed black

(red) limit cycle denotes the stable solution of O1 in DD (LL) conditions. The solid

red-black limit cycle denotes the LD-entrained solution of O1, with hourly markings

shown by green open circles. We also show various nullclines and note that the M

nullcline (yellow curve) is unique, but the P -nullcline (red and blue curve) varies

between M1 = (kD + kL)P + kfh(P ) and M1 = kDP + kfh(P ). The corresponding

time courses are shown for the P1 variable in Figure 3.15b.
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(a)
(b)

(c)
(d)

Figure 3.15 (a) The periodic solutions of O1 in DD, LL and LD conditions. The
dashed black trajectory represents the DD limit cycle (f(t) ≡ 0), the dashed red
trajectory represents the LL limit cycle (f(t) ≡ 1). The solid trajectory represents
the LD solution with green hourly markers. The two different P1 nullclines, NPD

and NPL
and the single M1 nullcine, NM are shown. Note that for panels (a) and (c)

the horizontal scale is much larger than the vertical scale. (b) The time course
plots: P1 vs t in all three cases (blue line lies at 0, 1 or is a square wave for DD, LL
or LD, respectively. (c) The periodic solutions of O2 when O1 is in DD, LL and LD
conditions. Same color scheme as in (a). The Poincaré section is represented at
P2 = 1.72 by a small vertical line segment. Note that only the maximal and minimal
sgimoidal M2 nullclines, Nmin

M and Nmax
M , are shown that bound the family of

nullclines that exist for this case. (d) The time course plots: P2 vs t in DD, LL and
LD conditions.

In Figure 3.15c, we show the entrained solutions of O2 when O1 is in different

light conditions. The color convention is the same as in Figure 3.15a. Here, we note

that the P -nullcline (blue curve) is unique, but theM -nullcline (red and yellow curves)
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varies between M2 = (1 + α1min|M1(t)|)g(P2) and M2 = (1 + α1max|M1(t)|)g(P2).

We also show the time course plots related to the same condition in Figure 3.15d.

The time course plots show that the period of the DD solution is longer than that of

LD, and the period of LL solution is shorter than that of LD. In particular, we found

that the period of the DD cycle is 28.9 h, which is the same as the DD cycle of O1,

and the period of the LL cycle is 21.6 h, which is also the same as the LL cycle of

O1. This is not surprising, because when the coupling strength is strong enough, O2

is entrained by O1.

The nullclines shown in Figure 3.15c, together with the dashed LL and DD O2

limit cycles, are useful to explain our choice of the Poincaré section at P2 = 1.72,

centered at M2 = 0.1289. It is straightforward to use the vector field and phase plane

analysis to show that any trajectory starting on P will evolve counterclockwise and

cross the right branch of NP with P2 > 3. Because of the difference in scaling of the

vertical and horizontal components of that phase plane it is not so obvious to note that

the M2 value does not vary much for points along the right branch between where the

LL (dashed red) and DD (dashed blue) limit cycles intersect it. In the LD situation,

a trajectory will intersect the right branch of the NP nullcline somewhere between a

neighborhood of each of these points. We now show that any two trajectories with

initial conditions lying on this nullcline in that region remain close in their M2 value.

Suppose we have a trajectory cross the right branch of NP at (P̃2, M̃2), where P̃2 > 3,

so that

M̃2 = H(P2) = kfh(P̃2) + kDP̃2
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Taking a derivative of the function on the right hand side, and for convenience using

x to represent the P2 variable, yields

H ′(x) = kfh
′(x) + kD = kf

0.1− x2

(0.1 + x+ x2)2
+ kD.

When x is large, H ′(x)→ kD, implying H(x) ≈ kDx, where kD is a small parameter.

So when P̃2 > 3,

H(x1)−H(x2) ≈ kD(x1 − x2)

Thus, the difference of M2 between two points on the right branch of NP is small.

Next we show that those points have approximately the same dynamics in the M2

direction. When P2 is large, g(P2)→ 0, the second equation of (3.56) is approximately

dM2

dt
= −φ2εM2

M2(t) = M̃2e
−φ2εt

The main point here is that the effect of M1 is gone, so trajectories evolve largely

independent of the coupling. Since any initial points lying on the region of the right

branch of the NP nullcline are close in their M2 value, it is an easy application of

Gronwall’s Inequality to show that they remain close until P2 becomes sufficiently

smaller. Thus, those trajectories are funneled into the small region between the LL

and DD limit cycles and cross the Poincaré section.

We note that our choice of Poincaré section is dictated by the funneling effect.

For example, choosing the section elsewhere, say P2 = 3, |M2 − 0.521| < δ , δ > 0

but small, would not guarantee that trajectories cross through this section again.
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Trajectories will, of course, cross P2 = 3 with P ′2 > 0, but won’t necessarily do so in

a small neighborhood of the LD-entrained solution.

3.2.5 The O1-entrained map

The O1-entrained map we obtained from Eq. (3.57) has similar properties as the

entrainment map Diekman and Bose constructed in their paper [14]. Figure 3.16

shows that there are two fixed points which correspond to different types of periodic

solutions for the CNT system. The lower one with yn+1 = yn = 10.2 is a stable fixed

point of the map, which represents a stable periodic solution. The upper one with

yn+1 = yn = 17.2 is an unstable fixed point of the map.

We classify the direction of entrainment as occurring through phase advance or

phase delay. Suppose yn+1 = ΠO1(yn), and the return time needed from yn to yn+1

is less than 24 hours. We call this a phase advance. Alternatively, if the return time

is greater than 24 hours, we call it phase delay. The unstable fixed point of the map

plays an important role in determining this direction. For example, pick two different

initial conditions (y0 = 16.5, 18) near the unstable fixed point and use the cobweb

method to observe how different directions of entrainment can occur. For y0 = 16.5,

the iterates move to the left and converge to the stable solution by phase advance. For

y0 = 18 however, the iterates move to the right and converge to the stable solution by

phase delay. In Figure 3.16(b), we compare the iterates with simulations; the green

curve corresponds to y0 = 16.5 and the magenta curve corresponds to y0 = 18. The

black curve is the entrained solution for O2. The direction of entrainment from the

simulations agrees with the calculations obtained from the map.

In our model system, there are two parameters of interest, the coupling strength

α1 and the intrinsic period of O2 governed by φ2. In Figure 3.16(c), we decrease α1

from 2.5 to 1.4, so that the coupling strength is weaker. As a result, the return time

ρ(y) increases. This makes the map move up, and the stable and unstable fixed points
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get closer to each other. At α1 = 1.51, the two fixed points collide at a saddle-node

bifurcation. In Figure 3.16(d), we increase the intrinsic period of O2 by decreasing

φ2 from 2.3 to 1.9, so that the difference between the intrinsic period and the 24-h

forcing increases, which increases the return time to the Poincaré section. Hence the

map moves up. When φ2 = 1.91, the map passes through the saddle-node bifurcation

value. The disappearance of the stable fixed point means that in the full system 1:1

entrainment is lost and replaced by higher order periodic behavior. The details of this

kind of behavior are interesting in their own right and we are systematically studying

this in a separate paper.
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(a) (b)

(c) (d)

Figure 3.16 (a) The cobweb diagram for the O1-entrained map. We pick two
different initial conditions and show how the iterates move to the stable fixed point.
(b) The approach to the stable solution (black curve) in the t vs P plane; the colors
correspond to the two initial conditions in (a). (c) The map displays a saddle-node
bifurcation by decreasing α1. (d) Decreasing the intrinsic period of O2 by decreasing
φ2 also leads the map to display a saddle-node bifurcation. Fixed points shown as
open circles are unstable, and those shown with solid circles are stable.

Notice that the O1-entrained map we construct is not monotonic, which makes

it different from the 1-D entrainment map found in [14]. To understand this

nonmonotonicity, we take two initial conditions (y0 = 6 and y0 = 8) near the local

maximum of the map in Figure 3.17(a), and analyze the dynamics of the system.

Associated with the return time plot in Figure 3.17(b), we found that the return time

is between 28 and 29 when y is less than the local maximum point. But when it crosses

that point, the return time decreases quickly with the derivative ρ′(y) < −1. In Figure
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3.17(c), we plot the trajectories with the two initial conditions. The trajectory for

y0 = 6 flows to the left branch of the P -nullcline, which increases the return time since

evolution near this branch is slow. Alternatively, the trajectory for y0 = 8 doesn’t

flow near the left branch and thus has a shorter return time. A minor consequence

of this non-monotonicity is that some solutions converge to the stable fixed point by

initially phase delaying, but then ultimately phase advancing. For example, in Figure

3.17(d), we take y0 = 18 then cobweb the map. We find that the first four iterates

initially phase delay. The fourth iterate lands near the local maximum of the map,

which lies above the value of the fixed point. This causes subsequent iterates to phase

advance. This non-monotonicity foreshadows a more complicated picture that arises

under the dynamics of the 2-D map.
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(a)
(b)

(c)
(d)

Figure 3.17 Non-monotonicity in the entrainment map leads to convergence
initially due to phase delay but ultimately due to phase advance. (a) The
non-monotone O1-entrained map and two choices of initial conditions near the local
maximum. Note that the local maximum lies above the value of the fixed point of
the map. (b) The return time plot associated with the two initial conditions. (c)
The corresponding phase plane. The solid blue trajectory for y0 = 8 does not
approach the left branch of NP , while the solid red trajectory for y0 = 6 does,
causing its evolution to slow down. (d) Starting with an initial condition y0 = 18,
the first four iterates phase delay. The fourth iterate lands near the local max of the
map, and subsequent iterates then phase advance.

3.2.6 The results of the general 2-D map

In this section, the analysis of the 2-D map is presented. We follow ideas first derived

by Akcay et al. [1] and followed up on in [2] to find fixed points of the map via

a geometric method. The entrainment time and the direction of entrainment are
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analyzed by iterating the map. We also compare these results with simulations. At

the end of this section, we show that the map is also applicable to the semi-hierarchical

model.

Basic results from the map Both parts of the 2-D map Π1 and Π2 are surfaces

in relevant 3-D spaces. Because of the mod 24 operation, each surface will contain

discontinuities. In Figure 3.18a and 3.18b, we project the surface onto the x−y plane.

For Π1, the purple part of the surface are points lying above the diagonal plane z = x,

in other words, xn+1 > xn. The red part of the surface of Π2 are points lying above the

diagonal plane z = y, i.e. yn+1 > yn. The points of grey color denote all points that

are below the diagonal planes, xn+1 < xn and yn+1 < yn. The white curves indicate

locations of discontinuity of the map. The separation of the two different colors are

curves which indicate the points where x = Π1(x, y) and y = Π2(x, y). Here we define

those curves as nullclines of the map:

Nx = {(x, y) : x = Π1(x, y)}, Ny = {(x, y) : y = Π2(x, y)}

which are plotted in Figure 3.18c. The purple curves denote Nx. Similarly, the

red curves denote Ny. Their intersections are four fixed points of the map. We

numerically calculated the Jacobian at those fixed points and found the eigenvalues

of the linearization. These values and the corresponding stability of each fixed point

is shown in Table 3.1.
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Table 3.1 Numerical Computation of the Eigenvalues of the Map at the Four Fixed
Points

x y eigenvalue stability

A 10.6 10.6 0.1609, 0.4453 sink

B 17.2 17.2 2.0858, 0.4238 saddle

C 10.6 21.1 2.325, 0.2734 saddle

D 17.2 3.7 1.595+0.77i, 1.595-0.77i source

From the results of the O1-entrained map, points A and B lying on the diagonal

line correspond to the stable solution of O1. For O2, point A corresponds to the stable

solution. For point B, the trajectory of O2 returns to the Poincaré section after 24

hours but corresponds to the unstable solution of the O1-entrained map. At the fixed

point C, O1 lies on its own unstable periodic orbit. This can be inferred from and

agrees with the calculation of Diekman and Bose [14] who showed that the original

1-D entrainment map has an unstable fixed point that corresponds to an unstable

periodic orbit. Thus, O1 is entrained to a 24-hour LD cycle and provides a 24-hour

forcing to O2. From simulation, we found that the trajectory of O2 stays for several

cycles near what appears to be a stable limit cycle, though it is different from the

limit cycle corresponding to point A since O1 is unstable and the forcing signal to O2

is different. At point D, if we check the difference between C and D, we can see that

(xD, yD) = (xC , yC) + 6.6 mod 24

so O1 is still on its unstable periodic orbit. That is, points C and D represent

conditions where the forcing M1(t) is identical, but just phase shifted by 6.6 hours.

Thus, O2 still receives 24-hour forcing so we also expect there to exist an unstable O2

limit cycle for this case.
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One advantage of the map is its ability to estimate the entrainment time.

Starting from different initial conditions, we iterate the map (xn+1, yn+1) = Π(xn, yn)

until ‖(xn+1, yn+1) − (xs, ys)‖ < 0.5, where point A has coordinates (xs, ys). Then

the entrainment time is the sum of the return times corresponding to each iterate.

In Figure 3.18d, we show the entrainment times corresponding to different initial

conditions on the torus expanded as a square. We also plot the nullclines Nx and Ny

on top of it for illustrative purposes. The color for each point on the square denotes

the entrainment time needed for that initial point.

Notice that, in Figure 3.18d, there are two light green curves. Along these

curves, the entrainment time is much longer than other regions. Additionally, they

appear to connect the two saddle points B, C, with the unstable source D. Though

not proven here, we believe that these curves locate where the stable manifolds of

the saddle points B and C (W s(B) and W s(C)) are. To completely understand the

dynamics of the entrainment map, it is useful to numerically find the stable and

unstable manifolds.
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(a) (b)

(c) (d)

Figure 3.18 (a) and (b) The 2-D entrainment map is plotted as two separate maps
Π1 and Π2, and projected onto the domain space (xn, yn). The purple and red color
in both maps denote all points that are above the diagonal plane. The grey color
denotes points that are below the diagonal plane. The white curves denote the
discontinuity. (c) The purple curves denote points of Π1’s nullcline Nx where
x = Π1(x, y), the red curves denote points of Π2’s nullcline Ny where y = Π2(x, y).
Their intersections are the four fixed points of the map. (d) The entrainment time is
plotted with a heatmap. The color denotes the entrainment time starting from a
specific initial condition. The light green curves locate W s(B) and W s(C) from near
which the longest entrainment times occur.

The algorithm we used to find the manifolds of the entrainment map are based

on the following results. For the unstable manifold, Krauskopf and Osinga [32]

introduced a growing method to calculate the unstable manifold point by point. They

initially iterate points chosen in a neighborhood of the fixed point along the associated

unstable eigenvector and accept new points as lying on the unstable manifold if they
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satisfy specific constraints. For the stable manifold, the search circle (SC) method

introduced by England et al. [17] utilizes the stable eigenvector to find points within a

certain radius that iterate onto a segment of the stable eigenvector. The SC method

has the advantage that it does not require the inverse of the map to exist, which

is important for us since our map is non-invertible. Both of these methods are

constructed for planar non-periodic domains. In our case, the map lives on a torus, but

is graphically shown on a square. Whenever an iterated point exceeds the boundary

of the square, we use the modulus operation to define the correct value within the

square. Thus, we develop our algorithm to account for this discontinuity. Another

difference is that the terminating conditions for both the growing and SC methods rely

on calculating the arclength of the manifolds up to a certain predetermined length.

However, in our map, the stable manifolds of points B and C are generated from

the source point D, while their unstable manifolds terminate at point A. Thus, our

algorithm terminates when these manifolds enter prescribed neighborhoods of those

corresponding fixed points D and A.

In Figure 3.19a, we choose initial points ranging from 0 < x < 24, 0 < y < 24,

and iterate N times for each initial point. The arrows on each coordinate are pointing

to its own next iterate. The obtained vector field give us another visualization of

the map. In Figure 3.19b, the numerical result of stable and unstable manifolds of

B and C are plotted. W s(B) and W s(C) agree with the light green curves in Figure

3.18d. W u(B) is exactly the diagonal line of the phase plane, which is not surprising.

Because the diagonal line corresponds to the O1-entrained case, if an iterate starts

on the diagonal line, it stays on it. The numerical calculation of the eigenvector of

Eu(B) is approximately (0.7,0.7) on the diagonal line, which means W u(B) = Eu(B).

W u(C) also matches the darkest region in Figure 3.19(a). Indeed, these dark regions

indicate the location of the unstable manifolds of points B and C.
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(a) (b)

Figure 3.19 (a) N = 10 iterates from various initial points are shown. The arrows
at each coordinate point in the direction of the next iterate. The vector field
indicates that there may exist a separatrix type structure at both points B and C.
(b) Stable and unstable manifolds of B and C as generated through the
generalization of the search circle and growing methods (see text). The labeled
manifolds do appear to provide a separatrix type behavior despite this being a map
and not a flow.

The located manifolds are also helpful for understanding the direction of

entrainment of 2-D maps. In the case of 1-D map, the direction of entrainment is

essentially either phase advance or delay, and the longest entrainment times happen

for initial conditions lying near the unstable fixed point. In the case of 2-D map,

the direction of entrainment need no longer be monotonic. The manifolds associated

with the saddle points B and C appear to behave like a separatrix, despite this being

a map and not a flow. To classify the direction of entrainment in the 2-D map, we

consider phase delays and advances in the x and y directions separately. For the x

direction, if the rotated angle from xn to xn+1 is greater than 2π, we call it phase delay,

otherwise we call it phase advance. For the y direction, we use the same definition

as in the O1-entrained map. To illustrate different directions of entrainment, we pick

several initial conditions near the stable manifolds, then iterate the map. We also

run simulations with the same initial conditions for comparison. For Figure 3.20(a),

in the left panel, we pick an initial point slightly above W s(C). It entrains to the
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stable solution by phase delay in the y direction, and phase delay-advance-delay in

the x direction. In the right panel, the initial point is slightly below W s(C), but the

entrainment is through phase delay-advance in y, and phase delay-advance in x. The

corresponding simulations in Figure 3.20(b) agree with the direction of entrainment

found through the map and demonstrate the sensitivity to initial conditions.
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(a)

(b)

Figure 3.20 Direction of entrainment depends sensitively on initial conditions. (a)
The initial point (labeled 1) in the left panel lies above W s(C), while the similarly
labeled point in the panel to the right lies below W s(C). Numbers indicate iterates.
As shown, the direction of entrainment differs significantly. (b) Corresponding
simulations agree with the iterates. Note the top panel shows that O2 (red time
course) entrains through phase delay to the entrained solution (black time course);
the lower panel shows O2 entraining through phase delay-advance.

Parameter dependence of the map In the section on the O1-entrained map, we

calculated the O1-entrained map for four different values of α1, and found the system
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will lose entrainment if the coupling strength is too small. Now we calculate the 2-D

map at different values of α1 to see how the fixed points and the entrainment time

depend on α1. In Figure 3.21a and 3.21b, we show the x and y nullclines for three

different α1 values; the points with solid circle are the stable fixed points, the points

with open circles are the unstable fixed points, and the starred points are saddle

points. In Figure 3.21c, we show the heatmap of entrainment times for α1 = 1.52.

In Figure 3.21d, we show the heatmap of entrainment times for α1 = 2.5. Note that

α1 = 2 is our canonical case, and was presented before in Figure 3.18d. Increasing

α1, in general, decreases the entrainment time as can be observed from the color scale

values (yellow max value ≈ 700 for α1 = 1.52) verus 400 for α1 = 2.5. In other words,

stronger coupling between the central to peripheral oscillator speeds up entrainment.
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(a) (b)

(c) (d)

Figure 3.21 (a)-(b) The x and y nullclines under different α1 values. Solid circles
denote unstable fixed points, open circles stable fixed points, and stars saddle
points. (c)-(d) The heatmap of entrainment times for different values of α1. Note
the difference in numeric value of the maximum value of the color scale.

The 2-D map for the semi-hierarchical case For the strictly hierarchical model

with only one feedforward connection from O1 to O2, we have shown how to construct

both the O1-entrained map and the general 2-D entrainment map. Here we will show

that the 2-D map can be derived for the model when 0 < kL2 < kL1 . In this case, O1

is still dominant, allowing us to keep a semi-hierarchical structure.

We take kL2 = 0.025, and keep the values of other parameters the same, so

that O1 and O2 both receive light forcing. We define the Poincaré section P : P2 =

1.72, |M2−0.1548| < δ. We then obtained a 2-D map for this model. In Figure 3.22(a)
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and (b), the top view of Π1 and Π2 are presented. In Figure 3.22(c), we similarly

obtained 4 fixed points (A,B,C,D) as in the strictly hierarchical case. Compare to

the strictly hierarchical model, we found that the additional light forcing into O2

accelerates the entrainment process, so that the time to return to P is decreased.

Thus, the whole surface shifts down, which causes A to move to the left of the

diagonal, and B to move to the right of the diagonal. For points C and D, the limit

cycle of O2 is now determined by both O1 and the light forcing, which changes the

location of C and D. In Figure 3.22(d), we calculated the first 10 iterates of each

initial point. Comparing these results with the strictly hierarchical case, the stability

of each fixed point remains unchanged, but their location has changed. Further, the

entrainment time required for each initial condition is reduced because of the LD

forcing into O2.
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(a) (b)

(c) (d)

Figure 3.22 2-D semi-hierarchical case. (a)-(b) The top view of Π1 and Π2 are
presented; see Figure 3.18a and 3.18b for an explanation of color coding. (c) we
obtained 4 fixed points (A,B,C,D) with similar stability of the canonical model. (d)
Ten iterates of each point. The vector field looks qualitatively similar to the strictly
hierarchical case shown in Figure 3.19a.
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CHAPTER 4

DISCUSSION

Circadian oscillations exist from the sub-cellular level involving genes, proteins and

mRNA up to whole body variations in core body temperature. These oscillations

are typically entrained to the 24-hour light dark cycle. Additionally, food, exercise,

exterior temperature and social interactions can also act as entraining agents in

certain species [43]. In these cases, various pathways in each species exist which carry

the entraining information to relevant parts of the circadian system. In this thesis,

we referred to the set of oscillators that first receive this input as central circadian

oscillators. In turn, these central oscillators send signals about the time of day to

other peripheral oscillators. When viewed in this manner, we obtain a hierarchical

circadian system. For example, in the strictly hierarchical model (Figure 3.13a), the

central oscillator O1 could represent the suprachiasmatic nucleus (SCN), the master

pacemaker in the hypothalamus of mammals. The peripheral oscillator O2 that does

not receive light input could represent circadian clocks in organs such as the heart or

kidney. Alternatively, O1 could represent the part of the SCN that directly receives

light input (the ventral core), and O2 could then represent the part of the SCN that

does not (the dorsal shell) [26]. For the semi-hierarchical model (Figure 3.13b), O1

and O2 could represent the central and peripheral clocks in Drosophila, since in flies

the clock protein cryptochrome is a photoreceptor and thus even peripheral organs

receive some direct light input [13]. The main goal of this thesis has been to develop

a low-dimensional method to study the basic properties of hierarchical systems such

as the existence and stability of entrained solutions, together with how the phase

and direction of entrainment of the constituent oscillators depends on important

parameters.
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4.1 Summary of the Main Results.

The major work of the dissertation involves model reduction techniques and mappings

to understand limit cycle oscillators and phase models in the context of circadian

rhythms. For the study of phase models, a modified coupled Kuramoto oscillator

was introduced and the entrainment map was constructed to study the existence

of periodic solutions and their stability. For the study of limit cycle oscillators, a

coupled circadian oscillator (Novak-Tyson) was developed, different techniques were

applied to understand the entrainment process and invariant manifolds of circadian

oscillators.

Existing model reduction techniques and visualization of geometrical

structures. In Chapter 2, the phase reduction method [8, 55, 27], Floquet theory

and parameterization method were introduced. Phase reduction is a widely used

technique to study weakly connected neural networks, but it is also limited by

studying networks with weak couplings. The introduction of the Floquet normal

form [20] allows the reduction for more general situations. A parameterization

method [12] based on the Floquet theory was then introduced. A numerical

algorithm of finding the limit cycle and the fundamental matrix solution was derived

for the parameterization. The parameterization was applied on the NT model,

FitzHugh-Nagumo model and Morris-Lecar model, and their isochrons were obtained.

Additionally, an implementation of the Lagrangian descriptors method [40] was

applied on the entrainment map of coupled Kuramoto oscillators.

Entrainment map for hierarchical coupled circadian oscillators In this

dissertation, we have focused on how a hierarchichal circadian system entrains to

an external 24-hour light-dark cyle. We developed a method, partly analytic and

partly computational, to assess the existence and stability of the entrained solution.

Generalizing the approach of Diekman and Bose [14], we derived a Poincaré map by
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placing a section in the phase space of the peripheral oscillator O2. The phase of

O1 with respect to a reference point on its own limit cycle, x, and of lights y was

then determined to derive the 2-D map. The 2-D map approach was then applied

on two models (coupled Kuramoto model and coupled Novak-Tyson model). With

this approach, we were able to determine that over a large set of parameters, the

2-D map possesses four fixed points, each of which corresponds to a periodic orbit

of the hierarchical circadian system. Only one of these fixed points is asymptotically

stable. The other three fixed points are unstable. For the coupled Kuramoto model,

a bifurcation analysis, Figure 3.3, is presented numerically to study how the stability

of fixed points changes when two different parameters (forcing strength and coupling

strength) change. We also showed how different manifolds connect with each other

by the method of Lagrangian descriptors (Figure 3.6). This allowed us to better

understand how these manifolds organized the iterate structure of the map. For the

coupled NT model, We showed how one of them, labeled D in Figures 3.18c, 3.19a

and 3.22d, is a source from which iterates emerge, including the stable manifolds

of the two saddle points B and C. These manifolds appear to act as separatrices

in the x-y domain of the map in the sense that, although they are for a map and

not a flow, the manifolds separate the direction of convergence towards the stable

fixed point A. Perhaps this is not so surprising as the saddle structure of the fixed

points implies the existence of a saddle structure of the periodic orbits associated

with points B and C. In the full five-dimensional phase space of the flow, each of the

corresponding one-dimensional stable and unstable manifolds from the map become

three dimensional; the motion along the O1 and O2 limit cycles provide the additional

two dimensions. This would be enough to form a separatrix in the five-dimensional

phase space.

There are several findings of our work that are readily revealed through the

two-dimensional map. First, in a strictly hierarchical system, central oscillators
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typically entrain first. This can be seen quite clearly from Figure 3.19a which shows

that iterates of the map congregate along the diagonal line, which represents the

O1-entrained subset of the two-dimensional map. This figure also shows that the

peripheral oscillators may entrain in a different direction than the central oscillator

or may in fact change their direction of entrainment during the transient. Given that

direct light input speeds up entrainment, it is intuitively clear to see why entrainment

times are, in general, less for semi-hierarchical compared to strictly hierarchical

systems; Figure 3.22. A second finding involves the stable and unstable manifolds

of the fixed points. Despite this being a map, these manifolds help to organize the

iterate structure. In particular, the stable manifolds of the unstable saddle points

create a tubular neighborhood of initial conditions that lead to very long entrainment

times, as seen in Figure 3.18d. Determining that the unstable node and saddle points

of the map actually exist is yet another important consequence of our map-based

approach. Simulations alone would be unlikely to reveal either the existence or the

role of these fixed points. Finally, effects of changing relevant parameters are readily

explained using the map. For example, the limits on parameters of entrainment are

readily observed if the coupling to the peripheral oscillator is too weak or if that

oscillator is intrinsically too slow; Figure 3.16. Alternatively, stronger coupling from

central to peripheral oscillators speeds up entrainment as shown in Figure 3.21.

When studying the invariant manifolds of the map, the Lagrangian descriptor

method is applied to the map for coupled Kuramoto oscillators. Alternatively, to

locate the manifolds of the map for coupled NT oscillators more accurately, the Search

Circle (SC) method [17] and growing method [32] were applied to numerically compute

the stable and unstable manifolds of fixed points. To implement these methods, we

slightly changed each algorithm. The original growing method grows the points on

the manifolds by controlling the distance and angle between consecutive mesh points,

and terminates when a predetermined arclength is reached. In our entrainment map,
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we know that the stable manifolds are generated from the source point, while their

unstable manifolds terminate at the sink point. So our terminating condition is based

on detecting when the manifolds reach a neighborhood of the source or sink points of

the map. Another difference is that the domain is a square with identified sides, i.e.

a torus. The value of the map at any point is computed as modulus by 24. When a

manifold exceeds a boundary, it is reinjected on the opposite side of the square. This

requires us to modify the existing methods to detect boundary crossings and then to

restart the tracking of the manifold from the opposite side of the square. Thus each

manifold is constructed in a piecewise manner.

Kuramoto model vs. CNT model We studied the entrainment map in two

different models. The manner in which we add the hierarchical coupling to each

model has biological differences. In the coupled Kuramoto model, the coupling is

modeled as a sine function, which causes synchronization of the peripheral oscillator

to the central oscillator. While in the CNT model, the coupling is modeled as a

linear function to the M2 equation of the second oscillator, which is based on the

experimental results from Roberts et al. [50]. Biologically, it provides an inhibition

to the second oscillator. However, the numerical results show some mathematical

commonalities in both models. For example, we found the loss of entrainment through

a saddle-node bifurcation in the 1-D map of both case. In the 2-D map, the manifolds

of the saddle fixed points both behave like a separatrix of the direction of entrainment

properties. Though the CNT model makes more sense as a circadian model, the

coupled Kuramoto model is more straight forward to do analysis. In the CNT model,

the 2-D map is a reduced system from a 5-D system, it is hard to prove the existence of

unstable periodic orbits corresponding to the unstable fixed points, since the classical

method would require the analysis of a 4-D Poincaré map, where the existence of

fixed points of the map would imply the existence of actual periodic orbits of the
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flow. However, we can easily prove the existence of unstable orbits in the coupled

Kuramoto model, and we have additionally proved the upper bound of the number

of fixed points.

Advantages and disadvantages of the entrainment map The map has the

following advantages. Aside from allowing us to calculate entrainment times and

directions as discussed above, the method provides a clear geometric description of

why these results arise. Namely, the stable manifolds of various fixed points organize

the iterate structure of the dynamics. Our method does not specifically require the

LD forcing to be weak in amplitude or short in duration. This is in contrast to

methods that use phase response curves and thus require weak coupling or short

duration perturbations [8, 45].

Secondly, the dimension on which we perform analysis is reduced by one in

the coupled Kuramoto phase model, and is significantly reduced from five to two

dimensions in the coupled NT model. The classical Poincaré map can reduce the

dimension of the original system by one. For example, Tsumoto et al. [53] construct

a Poincaré map for 10-dimensional Leloup and Goldbeter model of the Drosophila

molecular clock [36], reducing the dimension to 9. The phase reduction techniques of

Brown et al. [8] can reduce the dimension of limit cycle oscillators to 1-D, however

this method is not accurate for strong coupling.

There are some disadvantages of the map. First, the fixed points B, C and D of

CNT map do not necessarily correspond to actual periodic orbits. This is because we

restrict the type of perturbations that we are considering to allow only for a shift of

the LD cycle or a shift of the central oscillator along its own limit cycle. In particular,

we don’t know if there is an unstable or stable structure outside the basin of attraction

of the stable entrained solution without additional analysis. Secondly, the phase angle
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method works well with two-dimensional systems. For higher dimensional systems,

it would require additional assumptions.

4.2 Related Work

The mechanisms of communication between clock neurons is a topic of much ongoing

research in the circadian field. The neuropeptide pigment-dispersing factor (PDF) is

thought to act as the main synchronizing agent in the fly circadian neural network

[38]. The analogue of PDF in the mammalian circadian system is vasoactive intestinal

peptide (VIP), which plays a major role in synchronizing SCN neurons [41]. Although

it is clear from studies with mutants that these neuropeptides provide important

signals to synchronize circadian cells, the manner in which the signals interact with

the molecular clock is not well understood [16]. Mathematical modeling can be used to

explore the effect of different coupling mechanisms on clock network synchronization.

In our model, we have assumed that production of the synchronizing factor is induced

by activation of the clock gene in oscillator 1 (M1), and that the effect of the

synchronizing factor is to directly increase transcription of the clock gene in oscillator

2 (M2). This type of coupling is similar to how Gonze et al. [22] modeled the

action of VIP in the mammalian clock network, however in the Gonze model they

included a linear differential equation for the production and decay of the coupling

agent. Thus, in their model the coupling agent is a delayed version of the clock gene

activity. In the Roberts et al [50] model of the fly clock network, the coupling signal

is also increased by clock gene activity. As in our model, the coupling signal then

instantaneously increases the clock gene transcription rate in other oscillators. In

addition, the Roberts model included a second type of coupling where the coupling

signal depends on clock protein levels, rather than clock gene activity, and the effect

of the coupling signal is to instantaneously reduce the clock gene transcription rate

in other oscillators. Their simulations suggested that networks with both coupling
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types promoted synchrony and entrainment better than networks with either type of

coupling alone. In a more detailed model of the fly clock network, Risau-Gusman and

Gleiser [49] explored 21 different coupling mechanisms and found that synchronization

of the network can only be achieved with a few of them. In future work, it would

be interesting to use generalized entrainment maps to try to gain insight into why

certain types of coupling promote synchrony and entrainment better than others.

Several prior modeling studies on entrainment of circadian oscillators exist.

Bordyugov et al. [7] used the Kuramoto phase model and found, via Arnold tongue

analysis, that the forcing strength and the oscillator amplitude both affect the

entrainment speed. As noted in their work, a limitation of the method is that it

only works for relatively weak coupling. An et al. [3] found that large doses of

VIP (vasoactive intestinal polypeptide) reduce the synchrony in the SCN, which then

reduces the amplitude of circadian rhythms in the SCN. In turn, they show that

this leads to faster reentrainment of the oscillators in a jet lag scenario. Lee et al

[34] directly introduced a linear phase model to study the entrainment processes.

They found that the period of the central and peripheral oscillators are not the only

predictors of the entrained phase. The intensity of light forcing to the central oscillator

and the strength of coupling from the central to the peripheral oscillator also play a

role in determining the stable phase. Their results are consistent with what we found

for the O1-entrained map shown in Figure 3.16. Roberts et al [50] studied a population

of coupled, modified, heterogeneous Goodwin oscillators under DD and single light

pulse conditions. Their model simulations of a semi-hierarchical system show that

because of heterogeneity, a single light pulse can desynchronize and phase disperse

the oscillators. This can lead to a change in the coupling strength between oscillators

which in turn leads to a new periodic solution of different amplitude than before the

light pulse. Although they didn’t consider 24-hour LD forcing, Roberts et al suggest

that this desynchrony can be an important component in assessing reentrainment
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of semi-hierarchical networks after jet lag. Our 2-D entrainment shows that this is

indeed true. Namely, a shift in the light phasing that retains synchrony between O1

and O2 is equivalent to changing the initial y-value of our map, but keeping x fixed.

Whereas a shift of light phasing accompanied by a desynchronization is equivalent to

changing both x and y from the stable fixed point. As our simulations show (Figure

3.22d), the reentrainment process can be quite different in these two cases.

There are two modeling papers of hierarchical systems that are quite relevant to

our work. In Leise and Siegelman [35], the authors consider a multi-stage hierarchical

system to assess properties of jet lag. They utilized a two dimensional circadian

model due to olde Scheper et al [47] to show that the direction of entrainment

of peripheral oscillators need not follow that of the central oscillator. This is

referred to as reentrainment by partition. To understand this idea more clearly,

consider the concepts of orthodromic and antidromic reentrainment which are studied

in the context of a time zone shift as in jet lag. Orthodromic reentrainment

is defined as the oscillator shifting in the same direction as the forcing signal

(e.g. advancing in response to an advance of the light/dark cycle) and antidromic

reentrainment is when the oscillator shifts in the opposite direction as the forcing

signal (e.g. delaying in response to an advance of the light/dark cycle). The

situation is more complicated for hierarchical systems where different parts of the

system may shift in different directions. For example, when Leise and Siegelman

simulated a jet lag scenario involving a phase advance of 6 hours, they found that

the pacemaker oscillator responded by phase advancing but the intermediate and

peripheral oscillators responded by phase delaying. Similar to Leise and Siegelman,

we also observe reentrainment by partition in our model. With the parameter values

that we used in this dissertation, a 6-hour phase advance leads to orthodromic

reentrainment in our model with both oscillators responding by phase advancing.

However, simulating a 10-hour phase delay of the light-dark cycle places the initial
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condition in the vicinity of the saddle fixed point C, leading to reeentrainment through

partition depending on the exact location relative to C. Our results are consistent

with those of Leise and Siegelman, as they note that in their model reentrainment

by partition can also be observed in response to phase delays of the light-dark cycle

for certain values of the coupling strength between the master pacemaker and the

intermediate component. The qualitative similarity in our results suggests that our

findings can be used to infer that the Leise-Siegelman multistage model also possesses

unstable saddle fixed points whose properties govern the reentrainment process. A

second more recent paper due to Kori et al. [30] developed a hierarchical Kuramoto

model to study the entrainment of circadian systems. They applied the model to

predict the reentrainment time after two types of phase shifts, a single eight-hour

shift versus a two-step shift with 4-hour shifts in each step. It turns out the latter

requires fewer days to recover. In the dissertation, this can be related to the properties

of stable manifolds of B or C. For example, in Figure 3.18d, for a single eight-hour

shift near the fixed point A, the new point will stay close to W s(C), which makes the

reentraiment time longer. For two successive four-hour shifts, the new point will be

further from W s(C), which decreases the reentrainment time. This result generalizes

findings from Diekman and Bose [15] and Kori et al. [30].

Regarding the numerical methods that we used to find stable and unstable

manifolds, we basically applied the search circle for stable manifolds [17] and the

growing method [32] for unstable manifolds. One difference between those methods

and ours is the domain of the map, R2 versus a torus T2 in our case. Instead of growing

one curve, our manifold is cut off when it hits the boundary of the domain. We then

restart the calculation at the equivalent periodic point of the domain, e.g. x = 24 is

reset to x = 0. Another difference is the terminating criteria for both growing and

SC methods rely on calculating the arclength to a predetermined length. However, in

our map, the manifolds are generated from a certain point (the source D or the sink
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A), thus our algorithm terminates when those manifolds enter a neighborhood of the

corresponding fixed points D and A.

Recently Castejón and Guillamon derived a different 2-D entrainment map [10].

This map applies to a single oscillator (not necessarily a circadian oscillator), subject

to pulsed periodic input. The variables of their map are the phase and amplitude of

the oscillator. They use phase-response curve type methods to show that their 2-D

map is more accurate in tracking the phase-locking dynamics as compared to a 1-D

map of simply phase. While they use the term 2-D entrainment map, it appears that

their method applies to a class of problems that are different than the ones considered

in this dissertation.

4.3 Future Directions

The work of the entrainment map is based in part on analysis and in part on

simulations. We have proved that the correspondence of the findings of the 2-D

map, e.g. existence and stability of fixed points, actually exist for the hierarchical

system of ODEs. We used a one-dimensional phase model, Kuramoto model [33] for

each oscillator. Alternatively, we believe this method of mapping should be applicable

to other models, such as Goodwin [23], Gonze [22] or Forger, Jewett, Kronauer [21]

oscillators which are all higher dimensional. Verifying this, at the moment, would

have to rely on checking agreement with simulations. The 2-D entrainment map

should also be applicable to understand the interaction of circadian and sleep-wake

rhythms to generalize the findings of Booth et al [6].

A necessary condition of our method is the existence of limit cycle solutions of

the forced system, so that we can map any point in the phase plane to a point on

the limit cycle. Light input is not the only forcing signal that a circadian oscillator

receives. For instance, exercise, the intake of meals and taking melatonin can also be
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considered as an external forcing. We would like to develop the entrainment map for

multiple forcing signals.

Our expectation is that the method should work for any oscillators with a stable

limit cycle. To apply our method to other limit cycle oscillators, the main difficulty

is to determine a consistent way to assign phase to points in the phase plane that

lie close to the limit cycle. In our current work this is done by a simple projection

method. However, if the coupling between oscillators is strong, then the amplitude

cannot be neglected, and we will have to extend the phase map into a phase-amplitude

map to describe the entrainment process more precisely. A recent work, Castejon and

Guillamon [10], developed a phase-amplitude entrainment map, and they applied the

map for a canonical model. It would be of interest to extend their method for some

classical circadian oscillators.

Diekman and Bose’s paper [14] discussed how to build an entrainment map

using real data instead of a mathematical model. This remains an open question

even in the context of a 1-D map. How one might further extend this a hierarchical

system is certainly an important next step to consider. The main challenge would

involve how to perform perturbations of the phase relationship between peripheral

and central oscillators in an experiment.

On the topic of revealing geometrical structure of dynamical systems, the

Lagrangian descriptor method is applied for a 2-D entrainment map derived from

coupled Kuramoto oscillators. It would be of interest to apply the method to the

entrainment map of coupled NT oscillators.

The parameterization we introduced in Chapter 2 is valid for a one dimensional

stable manifold. Only the first two terms (linear approximation) are computed,

but we mentioned that the higher order term is solvable and is computable using

Fourier series. The future work is to derive the practical recurrence equations
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for the coeffecients of the Fourier series. Another future direction is to apply the

parameterization for unstable manifolds and higher dimensional stable manifolds.
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