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ABSTRACT

HYBRID DEEP NEURAL NETWORKS FOR MINING
HETEROGENEOUS DATA

by
Xiurui Hou

In the era of big data, the rapidly growing flood of data represents an immense

opportunity. New computational methods are desired to fully leverage the potential

that exists within massive structured and unstructured data. However, decision-

makers are often confronted with multiple diverse heterogeneous data sources. The

heterogeneity includes different data types, different granularities, and different

dimensions, posing a fundamental challenge in many applications. This dissertation

focuses on designing hybrid deep neural networks for modeling various kinds of data

heterogeneity.

The first part of this dissertation concerns modeling diverse data types, the

first kind of data heterogeneity. Specifically, image data and heterogeneous meta

data are modeled. Detecting Copy Number Variations (CNVs) in genetic studies is

used as a motivating example. A CNN-DNN blended neural network is proposed to

authenticate CNV calls made by current state-of-art CNV detection algorithms. It

utilizes hybrid deep neural networks to leverage both scatter plot image signal and

heterogeneous numerical meta data for improving CNV calling and review efficiency.

The second part of this dissertation deals with data of various frequencies or

scales in time series data analysis, the second kind of data heterogeneity. The stock

return forecasting problem in the finance field is used as a motivating example. A

hybrid framework of Long-Short Term Memory and Deep Neural Network (LSTM-

DNN) is developed to enrich the time-series forecasting task with static fundamental

information. The application of the proposed framework is not limited to the stock

return forecasting problem, but any time-series based prediction tasks.



The third part of this dissertation makes an extension of LSTM-DNN

framework to account for both temporal and spatial dependency among variables,

common in many applications. For example, it is known that stock prices of

relevant firms tend to fluctuate together. Such coherent price changes among relevant

stocks are referred to a spatial dependency. In this part, Variational Auto Encoder

(VAE) is first utilized to recover the latent graphical dependency structure among

variables. Then a hybrid deep neural network of Graph Convolutional Network

and Long-Short Term Memory network (GCN-LSTM) is developed to model both

the graph structured spatial dependency and temporal dependency of variables at

different scales.

Extensive experiments are conducted to demonstrate the effectiveness of the

proposed neural networks with application to solve three representative real-world

problems. Additionally, the proposed frameworks can also be applied to other areas

filled with similar heterogeneous inputs.
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CHAPTER 1

INTRODUCTION

The value of data has been broadly recognized and emphasized nowadays. More

and more decisions are made based on the data and analysis rather than solely on

experience and intuition. Airlines make arrangement according to the seasonal traffic

forecasting; News media, e.g., the Economist and the New York Times, have benefited

from the value of Big Data to guide decisions, trim costs and lift scales; Investment

companies or hedge funds are seeking trading patterns from historical charts using

machine learning algorithms to make profit; UPS analyzes truck delivery times and

traffic patterns to optimize routing.

With the fast development of networking, data storage, and the data collection

capacity, have increased in a dramatic scale in industry, science and engineering

domains, which brings both great opportunities and challenges [74]. As reported,

2.5 quintillion bytes of data are created daily and 90% of the data in the world

today are produced within the past few years [74]. A report from McKinsey Global

Institute points out that it would need 140,000 to 190,000 more employees with deep

analytical expertise and 1.5 million more data-literate managers [46]. At the same

time, new computational methods are in demand to process, analyze and understand

these datasets.

However, the data collected from the real world is much noisier than the

synthetic data used in developing machine learning algorithms due to a couple of

reasons, two of which are: 1) there is not a standard protocol about data collection

among industries. Different companies value different data for their specific business

goals. While the research in academia can only have access to very limited dataset,

where they develop algorithms on. So the proposed algorithms based on ideally clean

datasets are not transferable to the industry; 2) the inherent heterogeneity of data is
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universal. For example, since some doctors diagnose diseases from medical imaging

pictures, a natural thinking is to apply the image classification algorithms to predict

those medical pictures, which is believed to be helpful for doctors. But the meta

information about the patients are critical as well, e.g., age, blood pressure, and so

on. While the existing image classification algorithms do not accept heterogeneous

data inputs, which results insufficient data usage.

The gap between chaotic real-world data and neat academia algorithms needs

extra effort to build the bridge. This dissertation focuses on the development of

hybrid neural networks for utilizing heterogeneous data input, with application to

industry problems (stock market forecasting) and basic science research (bioinfor-

matics).

First, a CNN-DNN model is proposed to accommodate both the medical

imaging picture and numerical meta data to make prediction. Through effectively

leveraging auxiliary metadata, it can accurately authenticate the CNV calls from

other detection algorithms. It achieves comparable performance when compared to

human experts’ labelling, which demonstrates the promising ability to replace the

experts’ labor in filtering out the false positive calls.

Second, a LSTM-DNN network is developed for trading long-short portfolio

in stock market. Accurate stock return forecasting and clear elucidation of the

underlying causal factors are of interest to various parties. As known, the stock price

varies along the time, which is typically a time-series forecasting problem. However,

the value-investors believes the fundamental information (cross-sectional) about the

firms are more noteworthy than price trends. People have to make a trade-off between

time-series analysis (so called Technical Analysis (TA)) and fundamental analysis

(FA). Such embarrassment does not only exist in financial area, but also in any

other areas that are typically time-series tasks but with potential helpful signals in

different scales.
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Third, a novel VAE-GCN-LSTM pipeline is proposed to extract latent inter-

action among companies and integrate it into time-series forecasting tasks. There

are many reasons that stock prices trend to move together. First, exchange-traded

funds (ETFs), such as S&P500 and NASDAQ, track the prices of a basket of stocks.

When people trade those funds, all the underlying stocks are traded simultaneously,

which causes common fluctuations of those stock prices (see [1]). Second, most

professional portfolio managers are specialized in a couple of strategies and stratefy

often involves a similar set of stocks. Third, some companies have cooperational

relationship, like Apple and Nvidia. If one of them has good or bad news, the

effect on the other one could be reflected on the stock price. Thus, taking such

interaction into consideration will benefit the stock price prediction tasks. Although

the interaction among companies is not difficult to observe, it is not easy to have it

cooperated in stock prices forecasting tasks due to three reasons: 1) there are too

many fundamental variables to select from (usually the total is more than 1,000).

Extra financial expertise is needed to filter out the key variables; 2) although the

key variables are selected, the interaction imposed by those variables is not trivial to

model due to nonlinearity and chaos; 3) the way that interaction contributes to the

final forecasting goal is the biggest obstacle to utilize the fundamental information

because such static information has different frequencies and scales from time-varying

price variable.

This dissertation is organized in the following manner. Chapter 2 discusses

the background and related work of the CNVs detection, financial stock market

forecasting, together with the graph convolutional network in other areas. Chapter

3 introduces the proposed hybrid neural network designed for utilizing both image

signal and meta data information to authenticating CNV calls from other detection

tools. Chapter 4 proposes an enriched time-series forecasting framework with static

firm fundamental information. Chapter 5 develops a novel pipeline for discovering
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potential spatial dependency and integrating spatial dependency and temporal

dependency into stock market forecasting tasks.
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CHAPTER 2

RELATED WORK

Convolutional Neural Networks (CNNs) [41] are designed for image recognition;

AutoRegression is designed for modeling time-series patterns; Bidirectional Encoder

Representations from Transformers (BERT) [17] is a technique for Natural Language

Processing (NLP). However, the reality is much complex than the academia research

scenario. People never make decisions sorely on single data source while multiple data

sources means the necessity of aggregation of heterogeneous data types. [32] proposes

an adaptive design that fuses a one-dimensional convolutional neural network and a

support vector machine to predict water leakage event. It considers both the spatial

location of water systems and other oddments of related information to achieve a

more comprehensive prediction. But the two separate models may miss the latent

interation between the two kinds of signals. To improve the performance on scene

recognition and visual domain adaptation, [75] proposes to combine the feature

map extracted by CNNs and traditional dictionary-based features, e.g., BoW and

spatial pyramid matching. Via such combination, this model can utilize both the

local discriminative and structural information. In terms of utilizing image data

and non-image data, [26] transforms image data to semantic labels to be fused

with non-image data at the semantic level for multi-sensor fusion problem. But

transforming image to semantic labels not only needs extra effort and extra expertise

but also limits the representation of image signal, which can be improved using

CNNs. [48] develops computerized algorithms for high dimensional data and image

analysis for predicting disease outcome from multiple modalities including MRI,

digital pathology, and protein expression, which quantitatively integrate prognostic

information from multiple data sources and modalities. Those hybrid frameworks
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inspired us to utilize as much as possible information we have to make the prediction

for practical problems.

Different data scales commonly exist due to different sampling or different

time-intervals data generation. In finance area, stock prices can be accessible

by millisecond while the fiscal report of a firm usually comes out quarterly or

half-yearly. When making decisions on investment, people would like to gather

as much information as possible to draw conclusions. [9] proposes a multi-scale

LSTM to process different scale time-series data. But the way to integrate different

scale time-series data in this paper is to calculate the average with different window

size to make the sequence data to be of the same length, which is not a real

modification on the model but a preprocessing strategy. No matter the traditional

models or the advanced machine learning methods, there is not a decent framework

to accommodate different scale data. In finance area, researchers or investors either

conduct AutoRegression on stock prices data to capture the desired time-varying

pattern, or aggregate the price data, like calculating moving-average price [18], trying

to cooperate the static firm characteristics in prediction tasks. Padding or partition

the unequal interval time-series can be found in [67, 47]. Thus, there always is

a trade-off between preserving time-series flavor and integrating more information

with a different sampling interval.

Research on different assessment data is also extensively conducted because

observing events from different dimensions can provide comprehensive information.

For example, the package delivery time for a home depends on several factors. The

most straightforward is the distance between this home and the post office or the

order in the scheduled delivery list, which can be estimated from massive historical

delivery time to this home or the neighborhood using time-series analysis (temporal

assessment). However, time-series analysis might not be sufficient because the usual

pattern can be interrupted by the time-commitment packages, which has a higher

priority to be delivered before or at a specific time point (spatial assessment). Thus,
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a more comprehensive thinking is to utilize both the usual pattern and the package

type to be delivered to the target home or its neighborhood to estimate the delivery

time. To model video-based emotion, [20] proposes a hybrid network that combines

recurrent neural network (RNN) and 3D convolutional network (C3D). Specifically,

RNN takes appearance features extracted by convolutional neural network (CNN)

over individual video frames as input and encodes motion later, while C3D models

appearance and motion of video simultaneously. By assuming that the wind speed

possesses time-series seasonality and the wind farms located nearby will experience

similar wind speed, [35] introduces a hybrid model of Graph Convolutional Networks

(GCNs) and Long-Short Term Memory (LSTM) to capture both the temporal and

spatial dependency to forecasting the wind speed for each wind farm.
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CHAPTER 3

BACKGROUND

3.1 Copy Number Variations Detection

Copy Number Variation (CNV), a type of structural variations of the human

genome with possible association with complex diseases, such as schizophrenia

[13] and osteoporosis [76], has received much attention in the past [58, 15, 28].

Detection of CNVs has become routine in genetic studies and in cancer research of

disease susceptibility [10]. Using next-generation sequencing (NGS) to profile whole

genomes, whole exomes, or targeted regions has been currently widely adopted. NGS

has emerged as a technology with the capability to detect both SNVs and structural

variants [5, 55] in a single assay. However, CNV analysis via NGS is not trivial.

Reliable CNV calls from NGS data demand high sequencing depth and uniformity

of coverage across all target sites, which may not be achievable in a cost- and

time-effective manner. Consequently, microarray-based detection, as a cost-effective

technique, remains a commonly ordered clinical genetic test and is expected to remain

as an important CNV detection strategy for years to come [51]. Microarray-based

computational calling algorithms, like PennCNV [71] and QuantiSNP [11], have been

widely employed for detecting CNVs. Nonetheless, the quantity and quality of CNVs

reported by these methods on different platforms exhibit substantial variance. In

particular, it is not uncommon to witness unacceptably high false positive rates of

CNV calls. Winchester et al. [72] conducted comprehensive experiments to compare

a number of algorithms, including Birdsuite 1.5.5 [40], CNAT (Genome Console 3.0.2)

[72], GADA (R 0.7-5) [59], PennCNV [71] and QuantiSNP [11]. Although PennCNV

demonstrated the best performance in terms of prediction accuracy, only 49% of the

detected events could be confirmed [72, 36]. The high false positive rate may be
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minimized by only reporting the overlapped events from multiple algorithms [58],

but at the expense of low sensitivity.

Compared with other methods, PennCNV incorporates multiple sources of

information, including total signal intensity and allelic intensity ratio at each SNP

marker, the distance between neighboring SNPs, the allele frequency of SNPs, and the

pedigree information. It enables kilobase-resolution detection of small-scale CNVs,

which are common in the human genome [69, 12, 22]. In contrast, the resolution of

CNV detection in previous experimental studies [31, 30, 61, 73] was limited to tens

or hundreds of kilobases [71]. Therefore, PennCNV has become a popular tool for

CNV calling in clinic analysis. However, to overcome its issue of high false positive

rate, it is often recommended to visually examine CNV calls to judge whether they

are reliable or not. For example, human experts can visualize and examine LRR

(Log R Ratio) and BAF (B Allele Frequency) scatter plot images using the Illumina

BeadStudio software or the Affymetrix genotyping console. This additional manual

screening step is laborious. Human experts may also be subjective and exhibit certain

variance, which is not desired in a clinical setting.

3.2 Asset Pricing and Long-short Portfolio Strategy in Stock Market

Accurate stock return forecasting and clear elucidation of the underlying causal

factors are of interest to various parties. However, it is still a notoriously challenging

issue owing to the complex, dynamic, and chaotic nature of the stock market.

Despite the challenges, many empirical studies have shown that financial markets

are predictable to some extent [2, 37, 57].

In the past decades, we have witnessed a dramatic increase in research on stock

return prediction. Technical Analysis (TA) and Fundamental Analysis (FA) are two

popular methods in the literature of stock return forecasting. TA focuses on modeling

time-series price data and predicts future stock prices primarily based on historical

price trends. The development of the TA method is mainly driven by data mining and
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machine learning fields. Various statistical and machine learning methods have been

explored and applied, such as Auto-Regression, Neural Networks, Support Vector

Machine, and Random Forest. However, the complex and non-stationary property

of stock returns imposes a formidable challenge for most time-series modeling

approaches. In contrast, FA is a classical topic in finance, especially in asset pricing,

and is generally considered for developing long-term investment strategies. FA pays

more attention to fundamental factors and variables that are extracted from the

firms’ annual reports and other announcements. Both TA and FA have their unique

advantages on stock return forecasting.

Recently, several attempts were carried out to integrate TA and FA. They

propose to first aggregate the time-series sequence into TA indicators (e.g., Moving

Averages, Trend Lines, and Relative Strength Index) and then train the predictive

models based on both TA indicators and FA variables. It is not difficult to prove

that the temporal dependency extracted shrinks into the ad-hoc TA indicators.

Integrating both types of analyses while preserving the superiority of the time-series

model remains a challenging task due to three main reasons: Firstly, the types

of data to deal with are quite different. TA usually deals with time-series data,

while FA focuses on annual or quarterly fundamental data. Secondly, TA and

FA use different analyzing tools. Classical TA models use moving average and

auto-regression, while sorting stocks based on firm characteristics into portfolios is

the conventional method in FA. Finally, they differ in their trading strategies. TA

attempts to find better trading signals on one or two assets and simply applies a pair

trading or buy-and-hold strategy. In contrast, trading strategies developed by FA

require a long-short portfolio, which longs the stocks with higher expected returns

and shorts the stocks with lower expected returns.

Intuitively, the long-short portfolio strategy can achieve its best performance

when we accurately locate a stock’s expected return on the entire cross-section of

the expected returns, not necessarily its exact expected return. Thus, rather than
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using raw data, we apply a cross-section-aware preprocessing on features and feed

them to our LSTM-DNN framework. Specifically, we standardize all individual stock

features within each month by subtracting the cross-section average value of a feature,

except for categorical features, and dividing the resulting value by the cross-section

standard deviation of the given feature. For example, if the lag 1-month return of

a stock is 1% while the average stock return in that month is 2%, and the cross-

section standard deviation is 2%, the lag 1-month return of the given stock after

cross-section preprocessing is (1% − 2%)/2% = −0.5. Via such a preprocessing,

the factors encompass richer information in the sense that it contains the relative

position information of the firm characteristics across all firms within each month. It

is also important to note that all factors we use are available at the time of portfolio

construction.

The long-short portfolio strategy works as follows. It ranks stocks based on

their individual predicted returns. Then, given their ranks, we buy the top decile1

and sell short the bottom decile of securities once every rebalancing period. One

advantage of the long-short portfolio strategy is that the movement of the whole

market has little impact on the performance of this strategy. For example, a hedge

fund might sell short $1 million of Apple stock and buy $1 million of Microsoft stock.

With this position, any event that causes all tech industry stocks to fall will make a

profit from the Apple position and bear a matching loss on the Microsoft position. By

exploiting a long-short portfolio, namely, invest the stocks with the highest predicted

returns and sell short the stocks with the lowest predicted returns, an investor can

profit from inferring the relative performance of a stock in the future period.

3.3 Convolutional Neural Networks in Graph-Structure Data

Recently, applying convolutional neural networks (CNNs) to graphs with arbitrary

structures has caught people’s attention. Two main directions are being explored

1Each part represents 1/10 of the sample or population.
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in the literature: 1) the definition of spatial convolution is generalized in [50, 53];

2) generalizing CNNs to 3-dimensional data as a multiplication in graph Fourier

domain is discussed in [4, 16, 50] by the way of convolution theorem. Using

geodesic polar coordinates, the authors define the convolution operation on meshes.

Therefore, this method is suitable for manifolds and cannot be directly applied

to graphs with arbitrary structures. The spatial approach proposed in [53] has

more potential possibilities in generalizing CNNs to arbitrary graphs. It has three

steps: first, select a target node; second, construct the neighborhood of target node;

third, normalize the selected sub-graph by ordering the neighbors. The normalized

sub-graphs are then fed into 1-dimension Euclidean CNN. Since there is not a natural

ordering property in graphs, either temporal or spatial, it has to be imposed by a

labeling procedure. The spectral framework to solve this issue is first introduced

by [4]. The main disadvantage of this method is of high computational complexity,

O(n2), which is overcome by the method proposed in [16], which provides strictly

localized filters with a linear complexity O(|E|). The first order approximation of the

proposed spectral filter is adopted by [39] in a semi-supervised node classification task

successfully. Thus, we also use the spectral filters introduced in [16] in our framework

because of the efficiency and denote the convolution operation as ∗G.
Applying graph convolution operation in time-series tasks is demonstrated to

be helpful in some studies. [77] develop a spatio-temporal GCN model for traffic

forecasting. The conventional method for traffic forecasting is to do time-series

analysis for each traffic entity, like a specific highway or a city road. The more

natural thought is that if two roads are close, they have high probability to experience

the same volume of traffic. In their study, the GCN model can perform convolution

operation with much faster training speed with fewer parameters than the traditional

CNN model that is more suitable for grid structured data, e.g., images. [44] also

proposed a spatio-temporal GCN model for human body skeletons based action

recognition and the improvement is significant. [60] used GCN in dynamic texture
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recognition by extracting low-level features. [33] combined LSTM and Convolutional

LSTM for capturing both time sequencing features and map sequencing features.

There are some attempts to combine time-series forecasting and graph structured

convolution operation, like [35] and [34] forecasting wind speed and solar radiation

by enriching the time-series with wind farm distances and solar site distances. The

wind farms located nearby are supposed to experience much the same wind speed

and direction. Wind forecasting tasks benefit from the geographical information via

graph convolutional network.
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CHAPTER 4

DEEPCNV: A DEEP LEARNING APPROACH FOR

AUTHENTICATING COPY NUMBER VARIATIONS

4.1 Introduction

Copy Number Variations (CNVs) are an important class of variations contributing to

the pathogenesis of many disease phenotypes. Detecting CNVs from genomic data

remains a difficult problem and even state-of-the-art methods such as PennCNV

suffer from an unacceptably high false positive rate. A common practice is to have

human experts to manually review original CNV calls for filtering false positives

before further downstream analysis or experimental validation. Here we propose

DeepCNV, a deep learning-based tool, intended to replace human experts when

validating CNV calls, focusing on calls made by PennCNV. The sophistication

of the deep neural network algorithm is enriched with over 10,000 expert-scored

samples split into training and testing sets. Variant confidence, especially for CNVs,

is a main roadblock impeding progress of linking CNVs with disease. We show

that DeepCNV adds a dramatic shift to the confidence of CNVs with an optimal

AUC of 0.909, far exceeding other machine learning methods. The superiority of

DeepCNV was also benchmarked and confirmed using an experimental validation

dataset. The improvement made by DeepCNV leads to less false positive results and

failures to replicate associations that plague the CNV genome-wide association study

community.
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4.2 Data Description

4.2.1 Human Labeled Dataset

We profiled 341 unique and independent healthy human samples using SNP

microarray (Illumina Omni 2.5). PennCNV was applied with default settings to

make CNV calls. As a result, we obtained 10,748 CNVs output from PennCNV.

• Image Data. Next, we intended to visually examine CNV calls to judge

whether they are true positives or not. We utilized the auxiliary visualization

program (visualize cnv.pl) provided by PennCNV to generate image files for

the CNV calls automatically. For each CNV call, it produces one LRR (Log R

Ratio) scatter plot image and one BAF (B Allele Frequency) scatter plot image.

Human experts then labelled them as either false positive or true positive based

on eye-checking.

• Meta Data. PennCNV also generates some brief summary statistics for

quality checking. The summary statistics consist of 13 features, which we

called meta data (see Table 4.1). Both DeepCNV and the competing machine

learning methods took meta data as input.

• Sample Information. Out of the 10,748 CNVs, 6858 of them were labeled

as negative (false positive) samples. Generally, the larger the size of CNV, the

easier to detect. Among the 10,748 CNVs, 2505 are small (0-5kb); 3941 are

medium (5kb-20kb); and 4302 are large (>20kb). For CNVs of these three

sizes, we kept the same positive/negative ratio, and randomly split the data

into the training (70%), validation (15%) and testing (15%) datasets as shown

in Table 4.2.
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Table 4.1 Summary of Meta Data
Index Feature Name Data Type Data Range Description
1 Call Rate Float [0.978, 0.999] Simple SNP genotyping call rate
2 Length Float [31, 6455331] The CNV length
3 Copy Number Integer [0, 4] The number of copy number
4 Number of SNPs Integer [3, 5995] The number of independent SNP markers
5 PennCNV Confidence Float [14.64, 13758.3] The call confidence of PennCNV
6 Number of CNVs in Sample Integer [18, 911] Inflated numbers of false positive CNV calls
7 LRR mean Float [-0.035, 0.024] The mean of Log R Ratio
8 LRR SD Float [0.10, 0.27] The standard deviation of Log R Ratio
9 BAF mean Float [0.498, 0.511] The mean of B Allele Frequency
10 BAF SD Float [0.029, 0.057] The standard deviation of B Allele Frequency
11 BAF DRIFT Float [0.000, 0.003] BAF drift
12 WF Float [-0.02, 0.031] Waviness factor
13 GCWF Float [-0.006, 0,009] The GC base content adjusted waviness factor

1
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Table 4.2 Summary of Human Labeled Samples. ‘NEG’ and ‘POS’ Represent the
False Positive and True Positive Samples from PennCNV, respectively.

CNV size Training (70%) Validation (15%) Testing(15%) TotalPOS NEG POS NEG POS NEG
0-5kb (Small) 746 1006 160 216 161 216 2505

5kb-20kb (Medium) 1043 1715 224 367 224 368 3941
>20kb (Large) 932 2079 200 445 200 446 4302

Sub Total 2721 4800 584 1028 585 1030 10748
Total 7512 1612 1615 10748

4.2.2 Experimentally Validated Dataset

We experimentally validated 616 CNV calls using qPCR. 520 samples were confirmed

to be true positives, while 96 samples turned out to be false positives. qPCR was

performed using TaqPath ProAmp Master Mix (ThermoFisher Scientific). Taqman

assays targeting the desired regions were identified using the ThermoFisher Scientific

website tools and were selected to be compatible with the hTERT reference Taqman

assay. 10 ng of genomic DNA was included in each reaction, along with the indicated

Taqman assay and the hTERT reference assay in a reaction volume of 10 ml. Each

reaction was run in triplicate. For each assay, three controls were run along with

subject samples: a no template control (water alone), and commercial sources of

male and female genomic DNA (Promega). PCR was performed on a Viia 7 Real-

Time PCR system (ThermoFisher Scientific), using cycling conditions recommended

for the TaqPath ProAmp master mix for copy number variant detection (standard

cycling conditions: 95◦C for 10 minutes to activate the enzyme, followed by 40 cycles

of 95◦C for 15 seconds and 60◦C for 1 minute). Data were exported to text file

using the QuantStudio Real-Time PCR Software v1.2 (ThermoFisher Scientific) and

imported to Copy Caller v2.1 for analysis (ThermoFisher Scientific). Analysis of

each Taqman assay was performed in Copy Caller using the commercial male DNA

as the calibrator sample. Normal copy number of the commercial female DNA was
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confirmed as a control, as was failure of amplification in the no template control

sample.

4.3 Methods

To fully explore the available information, we constructed a blended deep neural

network with two branches, a deep convolutional neural network [43] (CNN) and a

deep fully connected neural network (DNN), to simultaneously model the image data

and meta data. We present the network architecture in Figure 4.1. CNN is one of the

most popular deep learning architectures and has demonstrated the state-of-the-art

performance for visual applications [42, 41, 66]. The CNN part of our DeepCNV

model is composed of a stack of convolutional layers, where we use filters with a

receptive field of 3× 3. The convolution stride is fixed to 1 pixel. All convolutional

layers are equipped with LeakyReLU activations [27]. Max-pooling is performed over

a 2× 2 window, with stride 2. Mathematically, each convolutional layer computes

G(X)f,i,j =
C−1∑
c=0

M−1∑
m=0

N−1∑
n=0

W f
m,n,cXi+m,j+n,x, (4.1)

, where X is the input image or the output from the previous layer; f is the index of

convolutional filter kernel and (i, j) is the index of output position. Filter W f is the

M × N × C weight matrix with M and N being the width and length of the filter

and C being the input channel dimension. Specifically, (M,N,C) is (3, 3, 3) for all

convolutional layers. LeakyReLU [27] represents leaky rectified linear unit, which is

defined as follows:

LeakyReLU(x) =

{
x, x > 0

α, x < 0
(4.2)

where α is a parameter. If α is 0, LeakyReLU is equivalent to ReLU [52]. The

parameter α of LeakyReLU is tuned on training data and set to be 0.001 for all
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activation layers. In addition, we apply the dropout regularization [64], with a

dropout probability 0.4, to prevent overfitting. As shown in Figure 4.1, there are

five convolutional layers with number of filters (32, 64, 64, 128, 128). The input to

the CNN branch is a fixed-size 900×900 RGB image.

Figure 4.1 The architecture of DeepCNV model. The upper part is the
Convolutional Neural Network (CNN) for modeling the image data; The lower part
is the Deep Fully Connected Neural Network (DNN) for modeling the meta data.

The second branch is a pure fully connected neural network to learn how the

meta data contribute to the final decision. This network accepts a numerical input

vector with length equal to 13, and then followed by four layers with (36, 24, 24, 12)

neurons, respectively. The two branches are flattened, concatenated and fed into a

dense layer with 50 neurons, followed by the final sigmoid activation node to generate

the score for classifying false positive and true positive samples. The optimizer is

RMSprop [68] with learning rate 1e−4.

We show that how a CNV image looks like in the eye of DeepCNV model when

it “annotates” CNV calls. To this end, we employ a technique called Grad-CAM [62]

to visualize the regions that are important for prediction. The class-specific gradient

information flowing into the final convolutional layer of the CNN has been used
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to generate a coarse localization map of the important regions of the input image.

We show the pipeline in Figure 4.2. In order to obtain the class-discriminative

localization map, we first compute the gradient of the score for class c, with respect

to feature maps An of a convolutional layer. The gradients flowing back are averaged

to obtain the neuron importance weight wcn:

wcn =
1

Z

∑
i

∑
j

∂yc

∂Anij
(4.3)

where Anij refers to the activation at location (i, j) of feature map An and Z =∑
i

∑
j 1. The weight wcn represents the importance of feature map n for a target

class c. We perform a weighted combination of forward activation maps and apply an

additional ReLU [52] operation, as we are interested in the features that have positive

impacts on the class of interest. As shown in Figure 4.2, we resize the importance

score of each pixel to [0,1] and highlight the regions that are most valuable to the

current prediction.

Figure 4.2 The Grad-CAM pipeline for detecting important regions of the image
data.
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4.4 Experiment

We trained DeepCNV using the training set, tuned its hyperparameters using the

validation set, and evaluated it using the test set. DeepCNV consists of two main

branches, CNN for image data and DNN for meta data. To demonstrate the

contribution of each branch and the utility of the image data and meta data, we

also evaluated its two reduced versions, CNN and DNN. The CNN only keeps the

CNN branch and takes only image data as input, while DNN employs only the DNN

branch with only meta data as input. We compared DeepCNV with DNN, CNN and

other popular machine learning methods including Support Vector Machine (SVM)

[65], Random Forest (RF) [45] and Logistic Regression (LR). SVM, RF and LR

were implemented using scikit-learn library with recommended hyperparameters [56].

Note that SVM, RF, LR and DNN take meta data as input, while the input for CNN

is the image data.

4.4.1 Results on Human Labeled Dataset

Figure 4.3 presents prediction performance of these methods in terms of area under

the ROC curve (AUC) on the testing dataset. We make a few remarks about the

prediction results. Firstly, DeepCNV achieved the best prediction performance across

different length of CNVs with an overall AUC of 0.909, followed by RF and then SVM.

Second, the smaller the CNV, the harder the prediction. All performances get better

along with the CNV size increasing and DeepCNV brings the largest improvement

for small CNVs (< 5kb), which are the most challenging cases. Thirdly, for the large

CNVs (>20 Kb), the AUC of DeepCNV reaches 0.958, which is promising and in

keeping with clinical performance standards.

Consistency between DeepCNV and Human Not only can DeepCNV provide

a binary decision (CNV or not), it can also produce a probability of being a CNV.

Based on the predicted CNV probability from low to high (0 to 1), we divide
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Figure 4.3 Prediction performance on human labeled dataset. The left panel is
the ROC curve for each method; The Right panel shows the AUC values for each
method on different sizes of CNVs.

the testing samples into ten tiers and summarize the total number of samples in

each tier as shown in Figure 4.4. We further stratify the samples based on their

copy numbers (CN) estimated by PennCNV. We highlight true positive portions in

red. We can see that for all scenarios (CN=0,1 and 3), the higher the predicted

probability of DeepCNV, the more likely a CNV call is a true positive. Therefore,

the predicted probability can be used for effectively prioritizing candidate calls. For

example, a more stringent cutoff may be applied in clinical setting if we want to

achieve a high positive predictive value (PPV). It is not supervising that recognizing

homozygous deletion (CN=0) is the easiest case: when the probability is higher than

0.5, DeepCNV achieves a 100% consistency with human labeling. When there is

one copy deviation, it is interesting to see hemizygous deletion (CN=1) is harder

to predict than hemizygous duplication (CN=3). For hemizygous deletion, the

predicted probabilities spread over from 0 to 1. Quite a few cases center around

probability of 0.5, from which we observe the largest disagreement between DeepCNV

and human experts. For hemizygous duplication, in contrast, DeepCNV is more

confident with its prediction, with most samples having probability of either less

than 0.1 or larger than 0.9, agreeing well with human judgement. For homozygous
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duplication (CN=4), we have too few samples (less than 10) to draw any conclusion.

Figure 4.4 Consistency between DeepCNV and human expert labelling in different
Copy Number scenarios. The CN (Copy Number) refers to the actual integer
copy number estimates calculated by PennCNV, and the normal copy number is
2. For autosome, CN=0 or 1 means there is a deletion and CN>3 means there is a
duplication.

4.4.2 Results on Experimentally Validated Dataset

We collected an experimentally validated dataset to benchmark our method in

comparison with human experts. DeepCNV model trained on the manually labeled

dataset was applied to test on these 616 experimentally validated samples. A

human expert was also tested on the same dataset simultaneously. The human

expert achieved a positive predictive value (PPV) of 0.924, which was a bit higher

than the PPV of 0.893 for DeepCNV. However, DeepCNV obtained a sensitivity
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of 0.833, much higher than the sensitivity of 0.484 for the human expert. Overall,

the DeepCNV yielded a F1 score of 0.862, much larger than the F1 score of 0.635

achieved by the human expert. This testing set has a high true positive rate

(520/616=84%). The human expert tends to be stringent and reject a substantial

number of cases, based on his prior training and experience. Consequently, during the

testing procedure, the human expert may unconsciously reject more cases to meet

his prior expectation, which probably explains the inferior performance of human

being in this testing experiment.

4.4.3 Ablation Study

Since DeepCNV is a hybrid neural network of CNN and DNN (fully-connect neural

network), it is essential to check the contribution of each component. In ablation

study, we split DeepCNV into pure CNN (with image data as input) and pure DNN

(with meta data as input). We repeat shuffling data, training and testing models 50

times to investigate the performance at a statistical level. Table 4.4.3 presents the

mean and standard deviation (in parenthesis) of AUC scores for each component.

The degree of freedom is 49 since we repeat 50 times. From Table 4.4.3, DNN with

meta data only performs worst but with least standard deviation. It is interesting

to observe that DeepCNV achieves significantly higher AUC score than CNN when

CNV size is small, which makes sense because it is much harder for human reviewing

the small size CNVs and DeepCNV that is of the ability to integrate hybrid data

sources can have better performance (The superiority for small CNVs of DeepCNV

over CNN is significant at the P = .05 level). It suggests that both image data and

numerical meta data are useful: each provides some complementary information the

other one does not have, while the image data may be more informative than the

meta data. The ablation study again demonstrates that it is harder to authenticate

small CNVs with visual reviewing and the metadata becomes more indispensable for

such situation.
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Table 4.3 Mean and Standard Deviation of AUC Scores for each Component with
Degree of Freedom = 49
Component Overall Small Size Medium Size Large Size
CNN (image) 0.905 (0.054) 0.812 (0.047) 0.876 (0.057) 0.958 (0.051)
DNN (meta data) 0.817 (0.003) 0.724 (0.004) 0.789 (0.003) 0.898 (0.003)
DeepCNV (both) 0.909 (0.042) 0.825 (0.032) 0.883 (0.044) 0.958 (0.038)

4.5 Conclusion

Standard approaches for identifying CNVs rely on predictions from the CNV

tools (such as PennCNV) followed by expert visual checking. However, manually

differentiating the false positives from the true positives becomes less affordable

when the sample size is large. DeepCNV is designed to serve the purpose of

automating the screening process. Both the CNN and DNN parts of the DeepCNV

contribute to the final results. The hierarchical structure of DeepCNV compresses

the original image and meta data from intractable large dimension into a feasible

and informative representation to increase the distinguishability. Sequencing data

can be plotted in the same manner with normalized read depth as LRR and clustered

allele depth as BAF. Then the images can be run through DeepCNV similarly.

However, a high depth of coverage is required for reliable CNV detection. For

WGS, a sequencing depth of 40-50X is recommended while currently most WGS

is performed at 15-30X. WES may not have the sequencing depth issue, but its

library preparation step introduces bias and noise, which affect the uniformity and

consistency of coverage across targets. DeepCNV was applied to recognize false

positives output from PennCNV. In principle, it can be coupled with any other

CNV callers that are plagued by false positives. We can similarly generate LRR and

BAF images and relevant meta data for candidate CNV calls made by other CNV

tools, followed by human labelling. DeepCNV then can be trained using the same

pipeline. Nevertheless, it may be more desired if the deep learning-based method can

be an end-to-end procedure which eliminates the dependence on the PennCNV or

other CNV detection programs. In other words, we hope to recognize CNVs directly
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from the raw data using deep learning. We leave these explorations to future work.

Altogether, we can foresee the detection routine would become much more intelligent

in the near future.
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CHAPTER 5

AN ENRICHED TIME-SERIES FORECASTING FRAMEWORK FOR

LONG-SHORT PORTFOLIO STRATEGY

5.1 Introduction

Stock return forecasting typically requires a large number of factors and these

factors usually exhibit nonlinear relations with each other. Conventional methods

of stock return forecasting mainly fall into two categories: Technical Analysis

and Fundamental Analysis. Technical Analysis focuses on time-series data, while

Fundamental Analysis explores low-frequency fundamental variables. Although there

are substantial works on either time-series analysis or fundamental analysis, few

studies have enriched the time-series forecasting with fundamental variables, as the

features are characterized by different frequencies, scales and types. In this chapter,

we propose a Long Short-Term Memory and Deep Neural Network (LSTM-DNN)

hybrid model to integrate the fundamental information into time-series forecasting

tasks. We demonstrate how investors can benefit from the superior performance of

LSTM-DNN by constructing a long-short portfolio that takes long positions in stocks

with the highest forecasting returns and short positions in stocks that are expected

to decline.

5.2 Data Overview

The experimental data is obtained from the Center for Research in Security Prices

(CRSP). Specifically, the data we downloaded from CRSP includes individual stock

returns and prices, S&P 500 index return, industry categories, number of shares

outstanding, share code, exchange code, and trading volume. The prices of stocks

are recorded at the end of each month and adjusted for stock splits and stock

dividends. The stock return of month t is calculated by using the adjusted close
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price of month t divided by the adjusted close price of month t− 1 and then minus

1. S&P 500 return data is used to derive market index past{6, 24, 60}ave in Table

5.1. Shares outstanding is the number of publicly held shares recorded in thousand.

We only study the returns of common shares (with CRSP share code 10 or 11).

Daily trading volumes are aggregated to calculate the monthly trading volumes.

Standard Industrial Classification Code (SICCD) is used to group companies with

similar products or services. In this presentation, we only study stocks listed on the

three normal exchanges, NYSE, AMEX, and Nasdaq (with exchange code 1, 2, and

3, respectively).

The firm’s book value data is obtained from COMPUSTAT 1 and the one-month

Treasury bill rate is obtained from Kenneth French’s data library 2.

Book Value Per Share (BKVLPS) in COMPUSTAT is the Common Equity

Liquidation Value (CEQL) divided by Common Shares Outstanding (CSHO) in a

fiscal year-end.

5.3 Methods

5.3.1 Problem Formulation

We aim to predict the monthly return for each stock based on the historical data.

Let subscript t and t − τ denote the t-th month and lagged τ month, respectively.

In addition, we use r and r̂ to represent actual stock return and the predicted stock

return throughout the paper. We denote the operable stock set at time t as Ωt. Note

that the stocks with missing values in the required features are not included in the

set Ωt. Let rit be the monthly return of the i-th stock at time t, where i ∈ {1, ..., Nt}
and Nt = |Ωt| represents the number of active stocks at month t. Note that the

number of active stocks, Nt, might vary at each time point due to the missing data.

1COMPUSTAT is a database held by Standard & Poor’s, and we access the
COMPUSTAT via Wharton Research Data Service (WRDS).

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.

html (accessed on 08/01/2019)
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For the stock fundamental information, f it represents the latest available annual fiscal

report statistics of stock i at time t. Assume that there are M fundamental features

in total. We denote by f i,jt , where j ∈ {1, ...,M}, the j-th fundamental feature of

stock i at time t.

5.3.2 Cross-Section Standardization

We propose to construct the long-short portfolio based on the predicted relative

performance of each stock. Instead of using the raw historical stock returns and

fundamental information, we normalize the dependent and independent variables

across all the active stocks at each month to encode the relative information rather

than an absolute term. Let vit be a numerical variable of the i-th stock at time t. We

normalize the raw variable vit and make it comparable along the time by removing the

impacts of group mean and standard deviation. Specifically, the normalized value ṽit

is calculated as follows:

v̄t = ΣNt
j=1v

j
t/Nt (5.1)

ṽit = (vit − v̄t)/
√

ΣNt
j=1(vjt − v̄t)2/(Nt − 1) (5.2)

Note that the normalization is also consistent with the essence of cross-section stock

return prediction, which is to accurately forecast the relative performance of a stock

[19].

As shown in Table 5.1, for each stock, we calculate 27 features, including 18

monthly return variables and 9 fundamental variables. Excepting the average market

returns and industry category (a classification code to group companies with similar

products or services), which are categorical variables, all other variables are cross-

section standardized before feeding to various machine learning models. In this

paper, we focus on a compact number of features. A larger set of features may

improve the overall performance, but at the expense of increased cost to collect the
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Table 5.1 Feature Notations and Descriptions

Feature Description
{rit−1, ..., r

i
t−18} Lagged 1 to lagged 18 monthly return

PRCi
t−1 Lagged 1-month price

V OLit−1 Lagged 1-month volume
SIZEi

t−1 Lagged 1-month size (price*shares outstanding)
BM i The book-to-market ratio in the last fiscal year
BM posi Indicator of positive book value in the last fiscal year
SICCDi The industry category
past6ave Average return of the market in past 6 months
past24ave Average return of the market in past 24 months
past60ave Average return of the market in past 60 months

The first feature is for LSTM and the rest are for DNN. Supersript i represents stock i.

required data, especially for inexperienced individual investors. Further works will

be exploring more types of features and the impacts of different features.

5.3.3 LSTM-DNN Model

We apply a stacked Long Short-Term Memory Network (LSTM) to model the

monthly return time series {rit−1, ..., r
i
t−18}. A compact form of the equations for the

forward pass of an LSTM unit with a forget gate is represented as follows:

ft = sigmoid (Wf,r̃r̃t +Wf,hht−1 + bf ) (5.3)

it = sigmoid(Wi,r̃r̃t +Wi,hht−1 + bi) (5.4)

ot = sigmoid(Wo,r̃r̃t +Wo,hht−1 + bo) (5.5)

ct = ft ◦ ct−1 + it ◦ tanh(Wc,r̃r̃t +Wc,hht−1 + bc) (5.6)

ht = ot ◦ tanh(ct) (5.7)
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where ◦ denotes the element-wise Hadamard product; r̃t ∈ Rτ is the normalized input

vector at timestep t; ft is the forget gate activation vector; it and ot are input and

output gates’ activation vectors, respectively, while ht and ct represent the hidden

state (output vector) and cell state. W∗,r̃ ∈ Rh×τ , W∗,h ∈ Rh×h and b ∈ Rh are

weight matrices and bias vectors. In contrast, the fundamental variables are fed

into a fully-connected neural network (FCNN). We concatenate the outputs from

both LSTM and FCNN and add additional fully-connected layers to output the final

predictions. Mathematically, the output of the hidden neuron in the fully-connected

layer is defined as

σ(Σn
j=1wjxj + bj) (5.8)

where σ, wj and bj represent the activation function, weight matrix and bias,

respectively. Following Nair et al. [52], we use rectified linear unit (ReLU) activation

function for all hidden neurons. The ReLU activation is defined as follows:

σReLU(Σn
j=1wjxj + bj) = max(0,Σn

j=1wjxj + bj) (5.9)

The loss function we use is the mean squared error (MSE). For illustration, the

mean squared error at time t is defined as follows:

MSEt = ΣNt

i=1(r̃it − ˆ̃rit)
2/N t (5.10)

, where r̃it is the real standardized return of stock i at time t and ˆ̃rit is its estimation.

Figure 5.1 shows the structure of the proposed LSTM-DNN model together with the

number of hidden nodes at each layer. Techniques such as L2 regularization and

Dropout [64] are applied to avoid overfitting. Linear activation function is used for

the final output layer, while the ReLU activation functions are utilized for other

layers. Adam algorithm [38] with learning rate of 0.001, and decay rate of 0.001 is

adopted to optimize the model.
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Figure 5.1 LSTM-DNN model and long-short portfolio construction. The yellow
part is a fully-connected neural network (DNN) to model the latest fundamental
variables. Due to one-hot encoding of categorical fundamental variables, the input
dimension of DNN changes from 9 to 20. The purple part is a stacked LSTM network
to model the time-series historical data. The green dense layer is the fusing layer,
and the blue unit is the final output. With predictions from LSTM-DNN model,
we rank the stocks and cut the top and bottom decile to construct the long-short
portfolio.

5.4 Experiment

5.4.1 Baseline Methods

We compare our method with following six competing baselines:

• Naive Momentum Strategy (Naive MM) [6]

• Ordinary Least Square (OLS)

• AutoRegression (AR)

• Support Vector Machine (SVM)

• Random Forest Regression (RF)

• Long Short-Term Memory (LSTM)

• Fully-Connect Deep Neural Networks (DNN)
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The conventional momentum strategy (Naive MM), proposed by Chan et al., ranks

stocks by the average of past t-2 to t-12 monthly return, and then longs the stocks

in the winner decile (top 10%) and shorts the stocks in the loser decile (bottom

10%) [6]. Fitting an OLS model is another popular technique in finance analysis.

During the last decade, SVM and RF have exhibited the state-of-the-art performance

in both classification and regression tasks [14, 49, 7, 45, 3]. In addition, we also

compare our model with the traditional deep learning-based models: Long Short-

Term Memory (LSTM) and Deep Neural Network (DNN). The LSTM takes the

historical lagged return time series as inputs, while the DNN uses both lagged returns

and fundamental variables. To this end, we conduct experiments on both traditional

methods (Naive MM, OLS, SVM and RF) as well as deep learning-based methods

(LSTM and DNN) to comprehensively evaluate the performance among competing

methods.

We tune the hyper-parameters for each model based on the validation

performance. Specifically, for SVM, we grid search C in {0.1, 1.0, 10}, γ in {0.0001,

0.001, 0.01, 0.1} and ε in {0.01, 0.1}. The kernel type is fixed by Radial Basis

Function (RBF). For RF, we grid search the max features in {10, 20, 30}, max depth

in {3, 5, 7, 9} and n estimators in {50, 100, 200, 500, 1000}. For LSTM, DNN and

the proposed LSTM-DNN model, we apply the same method to tune the structure

and hyperparameters (Figure 5.1 shows the structure of the proposed LSTM-DNN

model).

5.4.2 Evaluation Metrics

Following previous studies, the average expected monthly return (MAR) is used to

evaluate the performance of competing models [25, 29, 21, 54, 8]. Mathematically,

MARt = {rit}i∈Ω̂longt
− {rjt}j∈Ω̂shortt

(5.11)
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In addition, the Sharpe Ratio (SR), which is popular in finance literature, is also

considered as the second evaluation metric. Formally,

SR = (Rp −Rf )/σp (5.12)

where Rp is the average portfolio return, Rf is the 1-month treasury bill return, and

σp represents the portfolio return standard deviation.

5.5 Results

Following Gu et al. [25], we calculate one-month-ahead out-of-sample stock return

predictions for each method at the end of each month. For each model, we sort the

stocks in ascending order based on the predictions. The ordered stocks are equally

divided into 10 buckets, denoted as Decile 1 - 10 (See the first column of Table 5.2).

Specifically, Decile 1 and 10 represent the stock sets with the lowest and highest

investment returns, respectively. The equity long-short strategy takes long positions

in stocks that are expected to increase in value (Decile 10) and short positions in

stocks that are expected to decrease in value (Decile 1) to earn the spread. The

profit of the equity long-short strategy is presented in Table 5.2. To clearly illustrate

the results, we calculate the average of actual monthly returns for the stocks in each

bucket.

Here we make a few remarks. Firstly, the Decile 1 and Decile 10 obtained based

on the predictions from LSTM-DNN have the lowest and highest actual returns,

respectively, which demonstrates that, compared with other methods, LSTM-DNN

delivers more accurate monthly return predictions. Secondly, LSTM-DNN also

provides better results for the middle Deciles (Decile 2-9). As shown in Table 5.2,

Decile 2-9 obtained via LSTM-DNN have incremental returns in most cases.

With standardized time series data and fundamental variables, LSTM-DNN could

generally achieve incremental results from Decile 1 to Decile 10. In contrast, the
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Table 5.2 Monthly Actual Return (in percent, %) for Decile 1-10 with Standardized
or Unstandardized Inputs

Decile Naive MM
Standardized Unstandardized

Lag18 Lag 18 + FDMT Lag 18 + FDMT
OLS DNN LD1 OLS DNN RF SVM LD1 OLS DNN RF SVM LD1

1 (Low) 1.372 0.488 0.456 0.158 0.118 0.097 1.442 1.438 -0.227 0.522 0.759 1.476 1.331 0.422
2 1.097 1.026 0.936 1.191 0.744 0.879 1.225 1.441 0.698 0.846 0.987 1.302 1.696 0.79
3 1.018 1.183 1.096 1.16 0.917 0.809 1.379 1.336 1.038 0.846 1.194 1.304 1.165 0.983
4 1.054 1.228 1.088 1.225 1.033 1.308 1.131 1.224 1.105 1.088 1.256 1.137 1.3 1.104
5 1.166 1.128 1.302 1.133 1.327 1.045 1.108 1.178 1.297 1.222 1.155 1.303 1.229 1.137
6 1.171 1.107 1.306 1.325 1.129 1.283 1.201 1.172 1.205 1.1 1.313 1.239 1.142 1.225
7 1.264 1.326 1.176 1.291 1.343 1.325 1.055 1.364 1.35 1.318 1.365 1.034 1.264 1.308
8 1.474 1.383 1.396 1.336 1.494 1.4 1.174 1.19 1.524 1.401 1.334 1.274 1.283 1.461
9 1.755 1.561 1.486 1.452 1.762 1.753 1.325 1.219 1.676 1.612 1.371 1.22 1.294 1.643
10 (High) 1.624 2.564 2.77 2.725 3.127 3.095 2.205 1.432 3.329 3.037 2.26 1.732 1.292 2.92
Profit (H-L) 0.252 2.076 2.314 2.567 3.009 2.998 0.763 -0.006 3.556 2.515 1.501 0.256 -0.039 2.498

1 LD: LSTM-DNN.

results obtained via other methods are much worse that some predicted lower Deciles

have much larger actual returns than the predicted higher Deciles (For example,

Decile 8 and Decile 9 achieved by SVM have much lower actual returns than the

Decile 1-2.). Thirdly, the profit of the equity long-short strategy could be maximized

by integrating the proposed LSTM-DNN method. With the standardized inputs and

the proposed LSTM-DNN model, we could achieve the highest portfolio-level profit

of 3.556%.

Table 5.2 also empirically demonstrates the contribution of fundamental

variables. When integrated with fundamental features, we have higher returns

in Decile 10 and lower returns in Decile 1. The observation is consistent across

different methods including OLS, DNN, and LSTM-DNN, strongly indicating that

fundamental information could help the model make more accurate predictions and

build better portfolios. Interestingly, the predicted ‘winner’ portfolio (Decile 10)

constructed by LSTM-DNN framework achieves 3.329% monthly return, whereas

the predicted ‘loser’ portfolio has a negative monthly return (i.e., -0.227%). These

results suggest that the statistical inference of LSTM-DNN contributes to the final

profit from both ‘long’ and ‘short’ sides, when we apply the equity long-short strategy.

Since we use the batch sliding window to do the evaluation, Table 5.3 presents

the monthly average return (MAR) and Sharpe Ratio (SR) for different methods with
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standardized/unstandardized inputs in different testing periods. LSTM-DNN model

with cross-section standardized inputs demonstrates the best performance, measured

by MAR and SR, in most batches and yields strongly comparable performance in

other batches. By comparing the upper panel and lower panel, we observe that

cross-section normalization procedure generally benefits all the models.

Table 5.3 Monthly Average Return (MAR) (in percent, %) and Sharpe Ratio (SR)
for Each Method at Different Testing Periods

Features Batch 198901-199312 199401-199812 199901-200312 200401-200812 200901-201312 201401-201812
MAR SR MAR SR MAR SR MAR SR MAR SR MAR SR

S1

Lag18

OLS 2.912 0.607 3.235 0.743 3.151 0.281 0.854 0.141 0.889 0.198 -0.009 -0.003
AR 2.638 0.590 4.231 1.196 3.123 0.376 1.288 0.201 0.568 0.142 0.617 0.118

DNN 3.157 0.810 3.432 0.853 3.103 0.333 1.271 0.309 0.445 0.096 0.447 0.157
LSTM 2.818 0.589 4.503 1.366 3.787 0.468 1.286 0.241 0.746 0.155 0.616 0.134

Lag18
+

FDMT

OLS 4.486 1.028 3.471 0.857 4.796 0.494 0.832 0.152 1.727 0.255 1.026 0.297
AR 4.404 0.997 3.156 0.942 4.756 0.497 0.796 0.148 0.189 0.245 0.576 0.131

DNN 4.369 0.990 4.332 1.220 4.748 0.545 0.948 0.215 1.121 0.207 0.615 0.171
LD 4.549 1.254 4.967 1.350 5.639 0.679 1.156 0.263 1.667 0.332 1.319 0.340
RF 0.524 0.103 1.464 0.281 -0.166 -0.028 -0.882 -0.177 0.49 0.076 0.313 0.051

SVM -0.787 -0.120 1.73 0.526 -0.385 -0.045 -0.108 -0.024 -0.93 -0.161 -0.047 -0.009

US2

Lag18
OLS 2.31 0.549 0.859 0.213 1.373 0.143 0.711 0.128 -0.371 -0.079 -0.106 -0.027
DNN 1.31 0.392 0.838 0.236 0.845 0.104 0.865 0.233 0.928 0.157 0.226 0.057

LSTM 2.677 0.643 0.878 0.173 3.798 0.310 1.169 0.226 1.22 0.129 -1.118 -0.183

Lag18
+

FDMT

OLS 3.879 0.867 2.245 0.462 4.214 0.436 1.141 0.183 2.286 0.249 0.473 0.142
DNN 1.749 0.502 1.298 0.347 3.779 0.478 0.365 0.069 1.969 0.347 -0.084 -0.021
LD 4.381 0.894 2.199 0.543 4.368 0.518 0.892 0.234 2.175 0.241 -0.246 -0.047
RF 0.029 0.006 0.871 0.147 0.615 0.059 -1.193 -0.237 1.159 0.161 -0.572 -0.141

SVM -0.568 -0.098 1.57 0.455 -0.639 -0.068 -0.156 -0.034 -0.543 -0.097 -0.297 -0.059

1 S: Standardized.
2 US: Unstandardized.

Figure 5.2 visualizes the cumulative profit for each method over the entire

out-of-sample test period. For each method, we start trading with 1 dollar from Jan

1st, 1989 and calculate the cumulative value of the portfolio for each month. To avoid

a crowded figure, all methods presented in the figure use the standardized inputs.

The period of the global financial crisis in 2008 is highlighted in gray in Figure 5.2. As

shown in Figure 5.2, LSTM-DNN model could achieve the highest cumulative return

from the whole testing period (1989 - 2019). In addition, adding fundamental features

makes better predictions, as all the methods with ‘Lag18 FDMT’ are more profitable

than the methods with ‘Lag 18’. It should be noted that the investment experiment

is conducted under simplified scenarios and external factors (e.g., transaction fee)
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Figure 5.2 Cumulative returns. The x axis is the six testing periods and y axis
is the cumulative return. The shaded area represents the 2008 global financial crisis
period. LD represents the LSTM-DNN method.

are not considered. In the future, we’d like to build more sophisticated simulation

frameworks to provide more accurate analytical results.

For the second aspect, we find that the risk-adjusted LSTM-DNN strategy

has similar performance compared with its original returns across the whole testing

period. Specifically, we regress the return of the LSTM-DNN model on the Fama-

French three factors, and the resulting intercept of the regression is the risk-adjusted

return of the strategy. Thus, it is very likely that the LSTM-DNN model obtains

better performance by extracting more complex interactions among factors rather

than simply leveraging the risk exposures to common risk factors.

5.6 Conclusion

In this paper, we propose a hybrid neural network framework to integrate both

time-series data and stable fundamental features for the stock return prediction. A

cross-section data normalization method is introduced for enriching the signal of the
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relative performance of each stock. We conduct various experiments on the CRSP

data and show that the proposed method could achieve better performance than

existing methods for the long-short portfolio strategy. By comparing linear modeling

and the proposed framework, we empirically demonstrate that the nonlinear

interactions between the fundamentals and lagged returns have positive impacts

on the prediction results. Finally, we conduct comprehensive examinations from

multiple perspectives, like the robustness of strategy and the long-short cutting

percentage, to demonstrate the gross advantages. In a word, we empirically show

that the higher return obtained by our method is not achieved by taking higher risks

or picking a favorable threshold.
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CHAPTER 6

ST-TRADER: A SPATIAL-TEMPORAL DEEP NEURAL NETWORK

FOR MODELING STOCK MARKET MOVEMENT

6.1 Introduction

Forecasting stock market is usually a time-series forecasting problem in the literature.

But stocks that are fundamentally connected with each other tend to move together.

First, exchange-traded funds (ETFs), such as S&P 500 and NASDAQ, track the

prices of a basket of stocks. When people trade those funds, all the underlying stocks

are traded simultaneously, which causes common fluctuations of those stock prices

(see [1]). Second, most professional portfolio managers are specialized in a couple of

strategies and a strategy often involves a similar set of stocks. For example, value

investing (see [24]) tilts to firms with high earning-to-price ratio, while momentum

strategy focuses on firms with higher returns during the past year. On the one

hand, any fundamental shock can affect the prices of a group of stocks together.

Considering such common trends is believed to benefit stock movement forecasting

tasks. However, such signals are not trivial to model because the connections among

stocks are not physically presented and need to be estimated from volatile data.

This chapter proposes a novel pipeline to utilize the fundamentally spatial

dependency among firms. First, it uses Variational AutoEncoder to reduce

the dimension of stock fundamental information and then cluster stocks into a

graph structure (fundamentally clustering). Second, a hybrid model of Graph

Convolutional Network and Long-Short Term Memory network (GCN-LSTM) with

an adjacency graph matrix (learnt from Variational AutoEncoder) is designed for

graph-structured stock market forecasting.
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6.2 Methods

6.2.1 Problem Formulation

Consider N stocks and each stock has M fundamental variables. The fundamentals

of stock i can be represented by a vector Fi = {f (1)
i , f

(2)
i , ..., f

(M)
i } ∈ RM . Moreover,

the fundamental matrix for all stocks is F = {F1, F2, ..., FN} ∈ RN×M . There is not

a time subscript since fundamental features are not time-varying. With fundamental

matrix, F, we construct a graph, G = (V,E), where V is the set of |V | = N vertices

(stocks), E is the set of edges representing the spatial relationship between stocks

learned from function E = φ(F), and E ∈ RN×N .

For temporal dependency, if the look-back window is T , a time-series vector

for stock i can be represented as Xi = {x1
i , x

2
i , ..., x

T
i } ∈ RT . Then, we express the

data collected for all stocks in a matrix X = {X1, X2, ..., XN} ∈ RN×T .

Our goal is to forecast the price of each stock in the next time point. With

both spatial and temporal features ready, we design a hybrid model of Graph

Convolutional Network and Long-Short Term Memory network (GCN-LSTM),

denoted as fθ(·). We further denote the true values and the predicted values as

y = {xT+1
1 , xT+1

2 , ..., xT+1
N } and ŷ = {x̂T+1

1 , x̂T+1
2 , ..., x̂T+1

N }, respectively. The network

parameters, θ, can be estimated as,

θ̂ = argmin
θ

1

N

N∑
i=1

(fθ(G, Xi)− yi)2 (6.1)

6.2.2 Variational Autoencoder

A Variational AutoEncoder (VAE) is a kind of directed probabilistic graphical model

whose posterior is approximated by a neural network. In Figure 6.1, we represent

the directed graphical model in the area shaded with green color. The generative

process starts from the bottle-neck of VAE, z, which is a latent variable. qφ(F ′|z)

represents the data generating process that results in the reconstructed input F ′.
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Because the marginal likelihood is intractable, the objective function of a VAE is

the variational lowerbound of the marginal likelihood of data. And the marginal

likelihood is the sum over the marginal likelihood of each individual fundamental

variable log pφ(f (1), ..., f (M)) =
∑M

i=1 log pφ(f (i)). The the marginal likelihood of

individual fundamental variables can be written as

log pφ(f (i)) = DKL(qψ(z|F )||pφ(z)) + L(φ, ψ; f (i)) (6.2)

where qψ(z|F ) is the approximate posterior and pφ(z) is the prior distribution of

the latent variable z. The first term on the right hand side of (6.2) means the KL

divergence between the approximate posterior qψ(z|F ) and the prior pφ(z). The

second term is the objective variational lowerbound on the marginal likelihood of

feature i. Since the KL divergence term is always greater than 0, (6.2) can be

rewritten as follows.

log pφ(f (i)) ≥ L(φ, ψ; f (i)) (6.3)

= Eqψ(z|f (i)) [− log qψ(z|F ) + log pφ(F |z)] (6.4)

= −DKL(qψ(z|f (i))||pφ(z))

+ Eqψ(z|f (i)) [log pφ(F |z)]
(6.5)

where pφ(F |z) is the likelihood of the fundamental feature vector F given the latent

variable z. The first term of (6.5), the KL divergence, works as a regularization

term which pulls the posterior distribution to the prior distribution. The second

term of (6.5) is the reconstruction of F through the posterior distribution qψ(z|F )

and the likelihood pφ(F |z). The training goal is to estimate the parameters ψ and φ

that have minimal loss between reconstruction input and original input. Ideally, the

reconstructed input F ′ and original input F are identical.
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Using the bottle-neck feature representation of VAE, we calculate the Euclidean

distance between each pair of stocks, di,j and define the adjacency matrix, A, as

following:

Aij =

exp(−
d2ij
γ2

) , i 6= j and exp(−d2ij
γ2

) > ε

0 , otherwise.
(6.6)

where γ2 = 0.1 and ε = 0.5 are thresholds to control the distribution and sparsity of

adjacency matrix A. Aij is the learnt distance between stock i and stock j.

6.2.3 GCN-LSTM Model

We propose to incorporate the spatial signal into time-series prediction with graph

convolutional network. The global spatial dependency learnt via VAE is represented

by the adjacent matrix, A, calculated from the features from low-dimensional latent

space. For notational simplicity, we write ∗Gxt to mean a convolution operation on

xt with filters (kernel size: dh × dx) that are functions of the graph Laplacian L.

By replacing the original inputs with convolution-applied inputs, the equations of

GCN-LSTM cell are given as follows:

ft = sigmoid (Wf,x ∗G xt +Wf,h ∗G ht−1 + bf ) (6.7)

it = sigmoid(Wi,x ∗G xt +Wi,h ∗G ht−1 + bi) (6.8)

ot = sigmoid(Wo,x ∗G xt +Wo,h ∗G ht−1 + bo) (6.9)

ct = ft ◦ ct−1 + it ◦ tanh(Wc,x ∗G xt +Wc,h ∗G ht−1 + bc) (6.10)

ht = ot ◦ tanh(ct) (6.11)

In our setting, W.,h ∈ RK×dh×dh are the Chebyshev coefficients that defines the

support K of the graph convolutional kernels. W.,x ∈ RK×dh×dx determines the
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number of parameters that is independent to the number of nodes N in the graph.

Parameter K determines the number of neighbors used to compute the aggregated

states for any target node i so that it also determines the communication overhead

in a distributed computing setting. Figure 6.1 visualize the proposed pipeline and

the detailed algorithm description is shown in Algorithm 1.

Algorithm 1: Training Process for the ST-Trader

Input : F ∈ RN×M . Fundamental feature matrix with M variables
for N stocks;
X ∈ RN×T . Time-series feature matrix with look-back
window T for N stocks;
γ2 = 0.1; ε = 0.5; minibatch size 256; polynomial order
K = 3; number of epoches E = 1000; the hidden space
dimension h = 16; network depth D = 3.

Parameters: φ, ψ of VAE; θ of GCN-LSTM.
φ, ψ ← Initialize parameters;
repeat

g← ∇φ,ψL(φ, ψ;F) (Gradients of minibatch estimator of (3))
φ, ψ ← Update parameters using gradients g (s.g. SGD or Adam
optimizer);

until convergence of parameters (φ, ψ);
The adjacent matrix A for the edge information in G ← Distance of latent
features derived by the VAE using parameters φ, ψ;

L̃← Calculate rescaled Laplacian using A; θ ← Initialize parameters;
e← 1; while e ≥ E do

X′ ← apply convolution operator ∗G on X ŷ ← LSTM(X′) Update
Wx., Wh., and b in θ by gradient descent e← e+ 1

6.3 Experiment

6.3.1 Data Description

Since we consider the spatial dependency among firms, the number of our training

samples is divided by the number of firms. For example, suppose we have 10 firms

and 100 observations for each firm. The total number of samples is 1,000 if we take

firms independently but the number drops to 100 if we consider the relations among

firms. To obtaining enough samples, we use minute-level stock data 87 firms from
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Figure 6.1 Spatial-Temporal modeling using GCN-LSTM framework for
unspecified spatial graph structure. The area shaded with green color is VAE, which
reduces the dimension of fundamental feature to learn more meaningful distance
among stocks. The network below it is the constructed graph based on the learnt
distance. The vertical panel to the right of VAE presents the convolution neighbors
of each node. The area shaded with yellow background is the network of a LSTM cell.
The time-series inputs enriched with fundamental signals by convolution operation
are fed into a LSTM network for final predictions.
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S&P 100 composite in 2010 due to the availability of data. The number of total

minute-observations is 97,890, and we split the whole dataset into batches using the

sliding window. We also check the robustness of our results using five-minute-interval

stock prices, which guarantees enough samples for at least one epoch training and

testing. For five-minute-interval, the sample sizes of training, validation, and testing

set are 16384, 2944, 2944 respectively. The used fundamental variables and stock

tickers are presented in Table 6.3.1 and Table 6.2.

Table 6.1 Firm Fundamental Variables

Abbreviation Full Name

AT Assets (Total)
INTAN Intangible Assets (Total)
BKVLPS BookValue Per Share
DLTT Long Term Debt (Total)
DLC Debt in Current Liabilities (Total)
LT Liabilities (Total)
RE Retained Earnings
ICAPT Invested Capital (Total)
IB Income Before Extraordinary Iterms
CHE Cash and Short-Term Investments
PPEGT Property, Plant and Equipment (Total)
DVT Dividends (Total)
EBIT Earnings Before Interest and Taxes
GP Gross Profit (Loss)
DV Cash Dividends (Cash Flow)
CAPX Capital Expenditures
TXPD Income Taxes Paid
SEC Stock Exchange Code
SIC Standard Industry Classification Code

6.3.2 Experimental Settings

For one-minute-level data, the testing period is one month after the training period.

For example, if the testing is February 2012, the training data would be January
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Table 6.2 Stock Ticker List

Ticker Ticker Ticker
AAPL DUK NFLX
ABT EMR NKE
ACN EXC NVDA
ADBE F ORCL
AGN FDX OXY
AIG GD PEP
ALL GE PFE
AMGN GILD PG
AMZN GOOG PM
AXP GS QCOM
BA HD RTN
BAC HON SBUX
BIIB IBM SLB
BK INTC SO
BMY JNJ SPG
BRKB JPM T
C KO TGT
CAT LLY TMO
CL LMT TXN
CMCSA LOW UNH
COF MA UNP
COP MCD UPS
COST MDT USB
CSCO MET UTX
CVS MMM V
CVX MO VZ
DD MRK WFC
DHR MS WMT
DIS MSFT XOM

46



2012. The last testing period is Dec 2012. Thus, we have 11 testing period and the

number of samples for each month is listed in Table 6.3.

Table 6.3 Number of Samples for Each Month

Month Jan Feb Mar Apr May Jun
# of samples 7,350 7,410 8,970 8,190 7,800 8,680
Month Jul Aug Sep Oct Nov Dec
# of samples 8,190 8,580 8,190 8,190 7,800 8,580

To demonstrate the benefit of incorporating the spatial dependency among

stocks on price forecasting, we consider the following baseline methods: (1) LR: The

classical linear regression model with time-series features as input; (2) FCNN: The

fully-connected neural network which captures the non-linear relationship between

time-series features; (3) LSTM: Long-short Term Memory neural network which

contributes partially to the proposed method; (4) ecldn ST-Trader: ‘ecldn’ means

calculating the Euclidean Distance between a pair of stocks using the original

fundamental variables. The spatial relationship in this setting is expected to be

much noisier than using VAE; (5) idsty ST-Trader: ‘idsty’ means ‘industry’. The

adjacent matrix for this method is derived from the industry category. Aij = 1 means

company i and company j are in the same industry category. The proposed model is

denoted as vae ST-Trader when compared to those baselines methods because it

differs in the method of deriving the adjacent matrix via Variational AutoEncoder.

The purpose of studying baseline methods (4) and (5) is to evaluate the ability of

VAE of extracting latent features from high dimension feature space. The network

structure and the hyperparameters for all methods, are tuned using the validation

set and the final performance results are derived on only the testing set.

We apply all methods mentioned above to forecast two targets: the numerical

stock price and the binary price movement indicator. Since deep neural networks are

not stable when predicting unbounded numerical results, we scale both the training
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set and testing set using MIN-MAX normalization (see (6.12)) by the maximum and

minimum value of the training set.

x′ =
x−min(x)

max(x)−min(x)
(6.12)

6.3.3 Results

Predicting Stock Price Table 6.4 presents the MAPE and MdAPE for all testing

periods. The stock price has been demonstrated to have extensive outliers because

MdAPE is usually less than MAPE. The methods enriched with spatial information

achieve better prediction results than temporal-only models. The proposed model,

vae ST-Trader, outperforms baselines across the board. Moreover, LSTM is more

desirable than LR and FCNN in most batches. Interestingly, idsty ST-Trader

with only industry information is more preferable than ecldn ST-Trader, which

incorporates much more fundamental information. One possibility is that simple

Euclidean distance calculated from all fundamental variables brings more noise to

the spatial signal because it assigns equal weight to each variable. The contribution

of each variable to the final prediction is hard to be quantified by the linear model.

Clearly, extracting the latent interaction (spatial distance on the latent features)

among firms using VAE benefits the prediction accuracy substantially.
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Table 6.4 MAPE(MdAPE) for One-Minute-Interval Prediction
Training Month 201201 201202 201203 201204 201205 201206
Testing Month 201202 201203 201204 201205 201206 201207
LR 0.1579 (0.1679) 0.2056 (0.1534) 0.1684 (0.1392) 0.2313 (0.1877) 0.1672 (0.1282) 0.1641 (0.1439)
FCNN 0.1417 (0.1171) 0.227 (0.1044) 0.1418 (0.1065) 0.2314 (0.1831) 0.155 (0.1139) 0.1503 (0.1139)
LSTM 0.1077 (0.2313) 0.2145 (0.0800) 0.1512 (0.1947) 0.2283 (0.1789) 0.1058 (0.0868) 0.1398 (0.1037)
ecldn ST-Trader 0.1206 (0.0772) 0.1018 (0.0655) 0.1605 (0.0752) 0.1857 (0.1594) 0.128 (0.0825) 0.1484 (0.1347)
idsty ST-Trader 0.0904 (0.0699) 0.1142 (0.0714) 0.1203 (0.0619) 0.1426 (0.1319) 0.1018 (0.0741) 0.1305 (0.0899)
vae ST-Trader 0.0789 (0.0686) 0.0827 (0.0611) 0.132 (0.0583) 0.1488 (0.1327) 0.0863 (0.0681) 0.1274 (0.0686)

Training Month 201207 201208 201209 201210 201211
Testing Month 201208 201209 201210 201211 201212
LR 0.1708 (0.1947) 0.1589 (0.1302) 0.1398 (0.1334) 0.1556 (0.1203) 0.2188 (0.1748)
FCNN 0.1364 (0.1302) 0.1478 (0.1389) 0.1478 (0.1268) 0.1481 (0.1143) 0.1995 (0.1810)
LSTM 0.1995 (0.1815) 0.1089 (0.0907) 0.1023 (0.0946) 0.1175 (0.1098) 0.201 (0.1369)
ecldn ST-Trader 0.1478 (0.1018) 0.0856 (0.0739) 0.1119 (0.0980) 0.0856 (0.0866) 0.1802 (0.1368)
idsty ST-Trader 0.0975 (0.0933) 0.0917 (0.0741) 0.0926 (0.0744) 0.0863 (0.0749) 0.1419 (0.1084)
vae ST-Trader 0.0781 (0.0816) 0.0902 (0.0728) 0.0882 (0.0606) 0.0787 (0.0627) 0.1358 (0.0780)

Bold values indicate the best results
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Prediction Stock Price Movement Figure 6.2 presents the Accuracy and

AUC scores of different methods on binary movement prediction chronologically.

According to the Efficient-market hypothesis 1 that asset prices reflect all available

information, there is not much space for algorithms to forecast the future stock prices,

which has been demonstrated by the poor accuracy in our study (Figure 6.2) and

in much many literature. Although many investors apply value-investing strategies,

which tie the market price of a stock to its underlying fundamental value, many

other investors keep adopting technical analysis. They make trading decisions based

on reading charts of the historical price trends. Therefore, there is still room for the

methods that do not take the influence of the technical-analysis trader on stock price

into account, to improve their predictive power. The proposed model is enriched by

the extracted relationship among the firms so that it is better able to capture the

trend signal compared to baseline methods. This advantage is reflected by both

Accuracy and AUC scores.

For the extreme short-term price movements in the market, including the flash

crash on May 6, 2020.2 The Dow Jones Industrial Average fell more than 1,000

points in 10 minutes around 2:30 p.m. EST on May 6, 2010, which was the biggest

drop in history at that point. Trillions of dollars in equity was wiped out, but the

market recovered to the pre-crisis level by the end of the day. Analyzing the causes of

such events are beyond the scope of this paper. However, it has a profound effect on

the stability of our algorithm since these extreme events can hardly be thought of as

shocks from fundamental information. Incorporating fundamental connections in the

prediction task may lower the prediction accuracy under this particular scenario. By

avoiding such events, we may expect that vae ST-Trader has a better performance

in predicting the longer time-interval stock price, e.g., day-to-day or week-to-week.

1https://en.wikipedia.org/wiki/Efficient-market hypothesis
2https://en.wikipedia.org/wiki/2010 flash crash.
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However, we are not able to do experiments on that due to the lack of sufficient

number of observations.

The number of neighbors to communicate with We compare performance of

the proposed model on different granularity and different parameter K in Table 6.5.

We denote one-minute-interval and five-minute-interval price forecasting as ∆t = 1

and ∆t = 5. The superscript 1 and 5 highlight the best scores for ∆t = 1 and

∆t = 5. The results for ∆t = 1 are aggregated across all testing months. There

are two results worth mentioning. First, the outcomes of ∆t = 5 are better than

∆t = 1 for all evaluation metrics. This is as expected because the price movement

of five-minute-interval is much less noisy than one-minute-interval due to a couple of

reasons: (1) Rare events like the flash crash can recover soon so that five-minute-level

data can almost screen out such events; (2) The recorded stock price is bounced back

and forth between the bid and ask quote and the price fluctuation in five-minute-level

is less likely to be affected by the bid-ask bounce. If we have enough number of price

observations on a longer interval, the predictive power of the proposed model can be

expected to improve.

Second, for the communication overhead parameter K, which is the number

of nodes any target node i should exchange signals with in order to derive its local

states, we use different K to explore how the communication affects the performance

in different granularity. One-minute-interval achieves best performance when K = 3

and five-minute-interval achieves best performance when K = 5, which means a finer

granularity prefers a lighter communication to its neighbors. We give one possible

explanation. For one-minute-interval, where the fluctuation of price is more random,

and hence the dependency is less reliable, the communication with more neighbors

brings more noise in forecasting. While along with the time interval increasing, the

price trend becomes more stable and the common fluctuation is more promising so

that the infusion of neighborhood signals can be more informative. Thus, the number
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Figure 6.2 ACC and AUC comparison for different methods across different testing
months.
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Table 6.5 Binary Price Movement Prediction with Different Parameter K for One-
Minute-Interval and Five-Minute-Interval

ACC AUC Precision Recall F1 Score

K = 3 ∆t = 1 0.5671 0.5231 0.469 0.6191 0.5341

∆t = 5 0.577 0.556 0.474 0.411 0.440

K = 5 ∆t = 1 0.544 0.511 0.4711 0.551 0.508
∆t = 5 0.5875 0.5685 0.4925 0.6655 0.5655

K = 7 ∆t = 1 0.552 0.518 0.4711 0.560 0.512
∆t = 5 0.563 0.519 0.475 0.592 0.527

of neighbors for supporting the center node is a key hyperparameter to tune for a

specific time-series forecasting task.

In this chapter, we propose a spatial-temporal neural network framework GCN-

LSTM, to utilize the spatial dependency or the latent interaction among firms in

forecasting the stock price movement. The stock market has never been treated as a

graph since there is not an inborn geographical location for stock entities. However,

there is strong evidence that the interactions among firms affect the stock price

movement. Experimental results show that our model outperforms other state-of-the-

art methods on the real-world minute-level stock price data. Fundamental features

represented in a spatial structure contribute to the forecasting accuracy improvement.

For future directions, we plan to investigate how the combination of fundamental

variables and fiscal reports, which can be seen as a dynamic cross-section assessment

of a company, contributes to predicting the stock market trend. More practical

time-series applications with potential spatial dependency should be explored under

the proposed modeling framework. The advanced approaches [23, 70] to the fine

tuning of hyper-parameters of the proposed framework should be explored.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation focuses on the development of hybrid neural networks for modeling

heterogeneous input data for mining stock market and biological data. The main

contributions of this dissertation are as listed below:

First, a CNN-DNN model is developed for authenticating CNV calls from other

detection tools. By leveraging the auxiliary meta information, it can accurately

identify the false positive calls and achieve comparable accuracy as human experts’

labelling. With the superior performance on both human labelling dataset and

experimentally validated dataset than the state-of-the-arts, we can foresee the

detection routine would become much more intelligent in the near future.

Second, a LSTM-DNN model is proposed to integrate static fundamental

information of firms into time-series forecasting tasks. By comparing linear

modeling the proposed framework, we empirically demonstrate that discovering the

nonlinear interactions between the fundamentals benefits the long-short portfolio

strategy significantly. And we conduct comprehensive examinations from multiple

perspectives, like the robustness of strategy and the long-short cutting percentage,

to demonstrate the gross advantages, which means the higher return obtained by

the proposed method is not achieved by taking higher risks or picking a favorable

threshold.

Finally, a spatial-temporal framework VAE-GCN-LSTM, to utilize the latent

interaction among firms is proposed in forecasting the stock price movement. The

superiority of VAE to extract the distance among firms is demonstrated by comparing

other possible distance, like Euclidean Distance and Industry Category Clustering.

And the whole pipeline outperforms other state-of-the-art methods on different time

granularity.
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Future work lies in the following directions:

First, for the CNVs authentication task, it may be more desired if the

deep learning-based method can be an end-to-end procedure which eliminates the

dependence on the other detection tools. We hope to recognize CNVs directly

from the raw data using deep learning. Another potential direction is to use

Active Learning [63], which can select the boundary cases through a customized

query function for labelling and retraining iteratively until the model achieves a

fair performance, which can lower the human labeling cost much because it avoids

labeling for obvious cases.

Second, for the enriched time-series forecasting in stock market, more funda-

mental features and longer historical time-series data can be explored. It is noted that

the intra-day momentum may perform differently from the monthly momentum, and

the long-short equity strategies can be different in many ways, in which the nonlinear

relations among factors are not trivial to capture.

Third, for the spatial-temporal modeling in stock market, I plan to investigate

how the combination of fundamental variables and fiscal reports, which can be seen

as a dynamic cross-sectional assessment of a company, contributes to predicting

the stock market trend. And more practical time-series applications with potential

spatial dependency should be explored under the proposed modeling framework.

55



REFERENCES

[1] Itzhak Ben-David, Francesco Franzoni, and Rabih Moussawi. Do ETFs increase

volatility? The Journal of Finance, 73(6):2471–2535, 2018.

[2] Tim Bollerslev, James Marrone, Lai Xu, and Hao Zhou. Stock return

predictability and variance risk premia: statistical inference and international

evidence. Journal of Financial and Quantitative Analysis, 49(3):633–661, 2014.

[3] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[4] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral

networks and locally connected networks on graphs. ArXiv Preprint

arXiv:1312.6203, 2013.

[5] Andrew R Carson, Lars Feuk, Mansoor Mohammed, and Stephen W Scherer.

Strategies for the detection of copy number and other structural variants in the

human genome. Human Genomics, 2(6):403, 2006.

[6] Louis KC Chan, Narasimhan Jegadeesh, and Josef Lakonishok. Momentum

strategies. The Journal of Finance, 51(5):1681–1713, 1996.

[7] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector

machines. ACM Transactions on Intelligent Systems and Technology (TIST),

2(3):27, 2011.

[8] Yingjun Chen and Yongtao Hao. A feature weighted support vector machine

and k-nearest neighbor algorithm for stock market indices prediction. Expert

Systems with Applications, 80:340–355, 2017.

[9] Min Cheng, Qian Xu, Jianming Lv, Wenyin Liu, Qing Li, and Jianping Wang.

Ms-lstm: A multi-scale lstm model for bgp anomaly detection. In 2016 IEEE

24th International Conference on Network Protocols (ICNP), pages 1–6. IEEE,

2016.

56



[10] EK Cho, J Tchinda, JL Freeman, Y-J Chung, WW Cai, and C Lee. Array-

based comparative genomic hybridization and copy number variation in cancer

research. Cytogenetic and Genome Research, 115(3-4):262–272, 2006.

[11] Stefano Colella, Christopher Yau, Jennifer M Taylor, Ghazala Mirza, Helen

Butler, Penny Clouston, Anne S Bassett, Anneke Seller, Christopher C Holmes,

and Jiannis Ragoussis. Quantisnp: an objective bayes hidden-markov model to

detect and accurately map copy number variation using snp genotyping data.

Nucleic Acids Research, 35(6):2013–2025, 2007.

[12] Donald F Conrad and Matthew E Hurles. The population genetics of structural

variation. Nature Genetics, 39(7):S30–S36, 2007.

[13] International Schizophrenia Consortium et al. Rare chromosomal deletions and

duplications increase risk of schizophrenia. Nature, 455(7210):237, 2008.

[14] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

Learning, 20(3):273–297, 1995.

[15] Christina Curtis, Andy G Lynch, Mark J Dunning, Inmaculada Spiteri, John C

Marioni, James Hadfield, Suet-Feung Chin, James D Brenton, Simon Tavaré,
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