
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

EFFICIENT TIME-STEPPING APPROACHES FOR THE
DISPERSIVE SHALLOW WATER EQUATIONS

by
Linwan Feng

This dissertation focuses on developing efficient and stable (high order) time-

stepping strategies for the dispersive shallow water equations (DSWE) with variable

bathymetry. The DSWE extends the regular shallow water equations to include

dispersive effects. Dispersion is physically important and can maintain the shape of

a wave that would otherwise form a shock in the shallow water system.

In some cases, the DSWE may be simplified when the bathymetry length scales

are small (or large) in relation to other length scales in the shallow water system.

These simplified DSWE models, which are related to the full DSWEs, are also

considered in this thesis as well.

Incorporating dispersive effects creates added difficulties when devising efficient

high order time-stepping methods. Time-stepping the DSWE is difficult as the

equations may be stiff as well as non-local and nonlinear in the time derivative of

the velocity variables. In this dissertation, the DSWE are recast as an evolution

equation in time, plus an elliptic constraint equation in space. When discretized (in

space), the system of equations takes the form of an (index-1) differential-algebraic

equation (DAE). Here the algebraic equation in the DAE captures dispersive effects

and consists of a quasi-linear or semi-linear operator. Two strategies are examined to

time-step the DSWE in constraint form — the key novelty is on solving the resulting

DAE while avoiding complex nonlinear solutions to the algebraic equations:

(i) preconditioned iterative methods are devised to invert the (semi-linear) operator;

(ii) semi-implicit time-stepping (ImEx) methods are devised that bypass a full

inversion of the quasi/semi-linear operator. Guaranteeing stability for the semi-



implicit approach is a nontrivial issue due to the fact that certain stiff terms in the

equation are treated explicitly. A stability theory is provided which outlines how to

choose the semi-implicit terms in such a way to guarantee numerical (zero) stability.
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CHAPTER 1

INTRODUCTION

This dissertation devises stable and efficient time-stepping methods for dispersive

shallow water (DSW) equations [10] under various bathymetry. With bathymetry

included in the system, the dispersive terms contain mixed time and space derivatives,

which make the system numerically complicated to solve. Throughout this research,

we always use a pseudo-spectral method [23] for spatial discretizations to give us

high spatial accuracy. For smooth solutions on periodic domains, spectral methods

(almost always) yield higher accuracy than finite element/volume methods.

Nonlinear long water waves in shallow water have been extensively studied for

a wide range of their applications in coastal oceans. After imposing the balance

between nonlinearity and dispersion under the small amplitude assumption, a number

of weakly nonlinear and weakly dispersive models, often referred to as Boussinesq-type

equations, have been proposed. These models typically contain the leading-order

nonlinear and dispersive terms for small amplitude long waves and describe the

two-dimensional evolution of the surface elevation and the depth-averaged horizontal

velocities. See the lists of references in Whitham [25], Mei [12], and Wu [27].

In particular, the propagation and transformation of solitary waves over bottom

topography has been a main research topic for Tsunami modeling [13]. The

Boussinesq-type models have been often solved numerically using finite difference

schemes, e.g., by Peregrine [17], Nwogu [15], and many others, and it has been found

that the numerical solutions agree well with laboratory and field experiments [22, 11]

when the wave amplitudes are relatively small compared with the water depth.

As the wave amplitude increases, the weakly nonlinear models are no longer

valid and higher-order nonlinear effects have to be taken into account. In recent
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years, much attention has been paid to strongly nonlinear long wave models, for

which no assumption on the wave amplitude is made while the wavelength is still

assumed to be much greater than the water depth. A strongly nonlinear model

with the leading-order dispersive terms has been suggested for the depth-averaged

velocity by various researchers, including Rayleigh [8] and Serre [20] for steady waves

and by Su & Gardner [21] and Green & Naghdi [6] for unsteady waves. It has

been shown by Li et al. [10] that the model is reliable for the evolution of solitary

waves with relatively large amplitudes in comparison with the numerical solutions

of the fully nonlinear Euler equations. Instead of the depth-averaged velocity, Wei

et al. [5] proposed a model for the bottom velocity that is asymptotically equivalent

to the strongly nonlinear model mentioned previously, and validated the numerical

solutions with their own experiments. A similar approach has been also extended to

the two-layer problem [14, 2]. The leading-order strongly nonlinear long wave model

has been further extended to an arbitrary order of nonlinearity by Wu [26], Agnon et

al. [28] and Madsen et al. [16] for various dependent variables although the system

becomes ill-posed under even-order approximation for the depth-average velocity and

odd-order for the surface velocity [1].

When the dispersive terms are completely neglected, the strongly nonlinear

long wave model reduces to the non-dispersive shallow water equations, which have

been widely used for large-scale ocean circulation modeling (although the circulation

models solve multi-layer versions). To correctly describe smaller-scale motions in the

ocean, asymptotically-consistent dispersive terms with high-order spatial derivatives

need to be included, but have been neglected as the computational cost to solve the

dispersive shallow water (DSW) equations is too high. It should be remarked that,

even for the non-dispersive case, the ocean circulation models usually adopt relatively

low-order finite difference schemes for both spatial and temporal discretizations. Even

for regional ocean modeling, this is not so surprising as the size of computational
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domain, and, therefore, the number of grid points are overwhelmingly large. Thus, it

is desirable to develop an efficient numerical scheme to solve the DSW equations or

the strongly nonlinear long wave model.

This dissertation aims to develop a reliable numerical scheme to solve the DSWE

with a variable bottom, for possible oceanic applications. More specifically, after

adopting a pseudo-spectral scheme for spatial discretization, we explore an efficient

and stable time-stepping scheme. After the spatial discretization, we recast the

dispersive shallow water equation into a differential-algebraic form and then derive

an efficient time-stepping method. For the time-stepping method, we pursue two

strategies: (i) Invert the quasi/semi-linear operator with matrix-free iterative method

that can be interpreted as a preconditioned gradient descent [4, 3], and (ii) introduce

a new semi-implicit time-stepping method [18, 19]. In this research, the stability [9]

and efficiency of these two methods is the main focus.
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CHAPTER 2

DISPERSIVE SHALLOW WATER EQUATIONS

In this chapter, the dispersive shallow water (DSW) equations are introduced. Section

2.1 focuses on the derivation of the DSWE model and provides the basic background

definitions and notations as well. Section 2.2 mainly discusses a recast version of the

DSWE that, when numerically discretized, yields a differential-algebraic equation.

Specifically, the DSWE can be recast into a time evolution PDE plus a spatial PDE

constraint which can give an easier form to establish stability and numerical schemes.

While in Section 2.3, by discussing the various approximations for small parameters,

the DSWE can be reduced to simpler models.

2.1 Background Definitions and Notations

The dispersive shallow water equations are derived from the incompressible Euler

equations under the long wave approximation. The three-dimensional (3D) Euler

equations are given by

∂u

∂t
+ u · ∇u = −∇p

ρ
− g, (2.1)

∂ρ

∂t
+ u · ∇ρ = 0, (2.2)

∇ · u = 0. (2.3)

In equations (2.1)–(2.3), u = (û, w) is the fluid velocity which û ∈ RD (where D = 1,

or 2) is the horizontal component and w is the vertical component; ρ(x, z, t) is the fluid

density; p(x, z, t) is the pressure; g is gravitational acceleration. Here ∇ = (∇x, ∂z)

is the spatial gradient in RD+1.

4



From the Euler equations, after introducing the shallow water (long-wave)

parameter β, the Shallow Water Equations (SWE) and Dispersive Shallow Water

Equations (DSWE) can be derived, after assuming that β is small, as the first- and

second-order approximations, respectively. Here the long-wave parameter β is the

ratio between the mean water depth h̄ and the wave length λ (as defined in Figure

2.1).

Shallow water (long-wave) parameter: β ≡ h̄

λ
� 1. (2.4)

For long surface waves, in addition to β that measures dispersion, another small

parameter ε should be introduced to measure nonlinearity. Here ε is the radio of the

wave amplitude a to the mean water depth h̄. In this dissertation, we are interested

in a strongly nonlinear system valid for ε ≡ a
h̄

= O(1).

Figure 2.1 Shallow water wave system with corresponding parameters (scales may
differ).

To derive the SWE and DSWE, for β � 1, but ε = O(1), from the Euler

equations (2.1)–(2.3), we introduce the depth-averaged velocity ū defined as

ū(x, t) =
1

ζ + h

∫ ζ

−h
u(x, z, t) dz. (2.5)
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In equation (2.5), ζ(x, t) is the free surface elevation, h(x) is bathymetry, and

η(x, t) = h + ζ is the local water depth. The SWE and DSWE can be derived

by substituting the following asymptotic expansions

(u, ω, p) = (u0, ω0, p0) + β2(u1, ω1, p1) +O(β4) (2.6)

into the non-dimensionalized Euler equations (the detailed derivations are provided

in Appendix). The leading-order approximation at O(1) yields the shallow water

equations (SWE).

ηt + (ηū)x = 0, (2.7)

ūt + ūūx + ηx = 0, (2.8)

When truncated at O(β2), one can obtain the dispersive shallow water equations

(DSWE), which can be written for D = 1 as

ηt + (ηū)x = 0, (2.9)

ūt + ūūx + ηx =
1

η

(
η3

3
G+

η2

2
F

)
x

−
(η

2
G+ F

)
hx +O(β4), (2.10)

where G = ūxt + ūūxx − ū2
x, F = ut + u(uhx)x and η = ζ + h. While equation

(2.9) implying mass conservation is exact, the momentum equation (2.9) is valid to

O(β2). On the other hand, the shallow water equations (SWE), truncate at O(1),

can be obtained by neglecting the dispersive terms of O(β2) on the right-hand side

of equation (2.10).
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Notice that the nondispersive SWE will develop shocks, especially when D = 1.

So including the right-hand side of the equation (2.10) that represents dispersive

effects can regularize the SWE. Hereafter, for brevity, the bar for the depth-averaged

velocity ū will be dropped. With the same approach as for D = 1, equations (2.9)–

(2.10) can be extended to the two-dimensional case:

ηt +∇ · (ηu) = 0 , (2.11)

ut + u · ∇u+∇ζ︸ ︷︷ ︸
SWE terms

=

1

η
∇
{

1

3
η3
(
∇ · ut + u · ∇ (∇ · u)− (∇ · u)2)+

1

2
η2
(
ut · ∇h+ (u · ∇)2 h

)}
−
{

1

2
η
(
∇ · ut + u · ∇ (∇ · u)− (∇ · u)2)+

(
ut · ∇h+ (u · ∇)2 h

)}
∇h . (2.12)

The boundary conditions imposed in this dissertation are doubly periodic boundary

conditions, which means if (x, y) ∈ Ω = (0, Lx)× (0, Ly)

u(x+ Lx, y) = u(x, y), u(x, y + Ly) = u(x, y), (2.13)

η(x+ Lx, y) = η(x, y), η(x, y + Ly) = η(x, y). (2.14)

In this research, the main objective is to solve equations (2.11)–(2.12) using

a pseudo-spectral method for spatial discretizations with an efficient time-stepping

method. The main difficulty lies in the stiff terms with mixed third-order derivatives

in time and space on the right-hand side of equation (2.12).

2.2 Differential-Algebraic Form of DSWE

Due to complexity in the DSWE system, to solve the equations with an efficient

time-stepping method, the DSWE (2.11)–(2.12) are rewritten as a system of time
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evolution PDEs plus a spatial PDE constraint. The form of differential algebraic

equations (DAE) is convenient to develop a numerical scheme and test its stability.

The first step is to bring all terms involving ut to the left-hand side in equation

(2.12) to have

Nut + ηu · ∇u+ η∇ζ = ∇
{

1

3
η3
(
u · ∇ (∇ · u)− (∇ · u)2)+

1

2
η2 (u · ∇)2 h

}
− η

{
1

2
η
(
u · ∇ (∇ · u)− (∇ · u)2)+ (u · ∇)2 h

}
∇h,

(2.15)

where

N ≡ ηI − (∇1
3
η3∇·) + η∇h(∇hT ·)−∇

(
1
2
η2∇hT ·

)
+ 1

2
η2∇h(∇·), (2.16)

with I being the identity.

Then rewrite Nut as Nut = (Nu)t − Ntu. Notice that N in equation (2.16)

only depends on η and h, but is independent of u. Also, h is a function of space

and is independent of t. This means Nt only results in ηt, which can be replaced by

−∇ · (ηu) from equation (2.11). By introducing U = Nu, the DSWE in constraint

form can be obtained.

DSWE in constraint form in dimension D = 2.

ηt +∇ · (ηu) = 0, (2.17)

U t + η∇ζ +∇(ηuu) = F (η,u, h), (2.18)

U −Nu = 0, (2.19)

8



where the forcing F (η,u, h) is a nonlinear function given by

F (η,u, h) ≡ ∇
{1

3
η3
(
u · ∇ (∇ · u)− (∇ · u)2)+

1

2
η2 (u · ∇)2 h

+ η2∇ · (ηu)∇ · u+ η∇ · (ηu)∇h · u
}

−∇h
{1

2
η2
(
u · ∇ (∇ · u)− (∇ · u)2)+ η (u · ∇)2 h

− η∇ · (ηu) (∇ · u) +∇ · (ηu) (∇h · u)
}
. (2.20)

In equation (2.18), the term uu is a tensor, where T = ∇ · (ηuu) = (T1, T2)T with

T1 = (ηuu)x + (ηuv)y and T2 = (ηuv)x + (ηvv)y. Here u = (u, v) and ∇ = (∂x, ∂y).

2.3 Simplified Models and Other Related Models of DSWE

For long waves, besides the small long wave parameter β, there are two additional

parameters that can be introduced to characterize the shallow water systems:

ε ≡ a

h̄
, κ ≡ h′

ζ ′
, (2.21)

where h′ = O(|∇h|) and ζ ′ = O(|∇ζ|). Here ε represents the ratio of the wave

amplitude a to the mean water depth h̄. The parameter κ measures the variation

of depth h regarding to that of the wave height ζ and is assumed to be O(1). As

mentioned in Section 2.1, when ε = O(1), the DSWE can be considered as a strongly

nonlinear model. On the other hand, when ε � 1, the system can be reduced to a

weakly nonlinear model. Therefore, equations (2.17)–(2.19) are the strongly nonlinear

dispersive shallow water system. Under different approximations of ε and κ, (2.17)–

(2.19) can be reduced to several simpler systems, which are summarized here.
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Case 1: κ� 1, slowly varying bathymetry.

When |∇h| � |∇ζ| is assumed, the terms involving∇h in equation (2.18) is negligible

so that one can obtain a simplified model from (2.17)–(2.19):

ηt +∇ · (ηu) = 0 (2.22)

U t + η∇ζ +∇(ηuu) = ∇
{

1

3
η3
(
u · ∇ (∇ · u)− (∇ · u)2)+ η2∇ · (ηu)∇ · u

}
,

(2.23)

with the PDE constraint:

U = ηu−∇
(

1

3
η3∇ · u

)
. (2.24)

Even though the variable h no longer appears explicitly in equations (2.22)–

(2.24), the bathymetry information is contained in the definition of η as η = h + ζ.

When the bottom is flat, η = 1 + ζ (in dimensionless form).

Case 2: ε� 1, weakly nonlinear system.

If the wave amplitude is small compared with the water depth, i.e., ε� 1, we neglect

nonlinear dispersive terms that appear in the definition of U (equation (2.24)) and

on the right-hand side of equation (2.23). Then the weakly nonlinear system can be

obtained as:

ηt +∇ · (ηu) = 0, (2.25)

U t + η∇ζ +∇(ηuu) = 0, (2.26)
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while the PDE constraint becomes

U = ηu−∇
(

1

3
h3∇ · u

)
. (2.27)

Notice that the term ∇
(

1
3
h3∇ · u

)
in equation (2.27) still gives equations (2.25)–

(2.26) the dispersive effects.

Case 3: The MM69 system (1D).

For comparison, we consider a one-dimensional weakly nonlinear model originally

introduced by Madsen and Mei (1969). The Madsen Mei model is referred to as

MM69 and will be used for numerical tests.

The MM69 system [11] derived in one dimension under the weakly nonlinear

assumption (ε� 1) is given by

ηt + (ηv)x −
h3

6
vxxx = Av +Bvx +

3

2
h2hxvxx, (2.28)

Vt + vvx + ζx = 0, (2.29)

with a PDE constraint

V =
(
1−

(
h2
x + hhxx

))
v − 2hhxvx −

h2

2
vxx. (2.30)

Here the coefficients A, B depend on the a varying bathymetry h, :

A = h3
x + 3hhxhxx +

1

2
h2hxxx,

B = 3hh2
x +

3

2
h2hxx

11



Notice that there is a notable difference between the MM69 and DSWE (and

all simplified cases). The DSWE (2.17)–(2.19) (and simplified models) are written

in terms of the depth averaged velocity u defined in equation (2.5). Meanwhile, the

MM69 system (2.28)–(2.30) is written for the horizontal velocity at the bottom (i.e.,

z = −h). Under the shallow water assumption, the bottom velocity v and depth

averaged velocity u become asymptotically equivalent for long wave (as β → 0).

Case 4: hx � 1 MM69 with slowly varying bathymetry (1D)

Again, under the assumption of slowly varying bathymetry (κ � 1), the MM69

system [11] is simplified to

ηt + (ηv)x −
h3

6
vxxx = 0, (2.31)

Vt + vvx + ζx = 0, (2.32)

with constraint

V = v − h2

2
vxx. (2.33)

Similarly, the slowly varying bathymetry MM69 system retains the water depth h

effect through the relation η = h+ ζ.

Here for convenience, different models, the underlying assumptions of different

models are summarized in Table 2.1.
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Table 2.1 Different Models with Their Equations and Assumptions

Equations
Strength of
Nonlinearity

Bathymetry
Length Scale

Asymptotics

Shallow Water
Equations (1D)
(A.19)–(A.20)

Strongly Nonlinear
System ε = O(1)

Flat Bathymetry
h = constant

Depth averaged
velocity ū

truncated at O(1)
Dispersive Shallow
Water Equations

(DSWE)
(2.11)–(2.12)

κ = O(1) Depth averaged
velocity ū

truncated at O(β2)
Reduced
DSWE

(2.22)–(2.24)

Slowly Varying
Bathymetry

κ� 1

Dispersive Weakly
Nonlinear Equations

(2.25)–(2.27)
Weakly Nonlinear

System ε� 1

Slowly Varying
Bathymetry

κ� 1

Depth average
velocity ū at O(β2)

MM69 System
(1D)

(2.28)–(2.30)
κ = O(1) Horizontal

bottom
velocity u at O(β2)MM69 System

Reduced (1D)
(2.31)–(2.33)

Slow Varying
Bathymetry

κ� 1
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CHAPTER 3

TIME-STEPPING SCHEMES

In this chapter, we present two strategies for numerically time discretizing the

DSWE in constraint form. Throughout this chapter, we will leave space continuous

and eventually discretize the spatial domain with a spectral method in subsequent

chapters.

The primary difficulty involves treating the (nonlinear, time-dependent) operator

N in equations like (2.19). Our goal is to devise time stepping schemes that avoid

having to build and/or invert the operator N . In other words, we seek to devise

matrix free methods, that is, we are willing to perform matrix vector products like

N (u), however, we never construct or invert N directly.

We provide two time-stepping approaches in this dissertation. The first

approach, in Section 3.1, is a standard Runge-Kutta method for the differential

equations with a linear solver for the constraint. Here the key point is to find an

appropriate preconditioner for the system Nu = U (as Nu = U must be solved

at each stage of the Runge-Kutta scheme). In the second time-stepping approach

(Section 3.2), a semi-implicit time-discretization is introduced. The main concept

is the splitting of the operator N into an implicit term A, and an explicit term B,

thereby resulting in an ImEx scheme where N = A + B. The challenge here is that

not every choice of A and B will result in a stable scheme. We provide theory on

how to choose A and B so that the resulting scheme is (zero) stable. Finally, we also

introduce the One-Leg method corresponding to the semi-implicit ImEx scheme.

3.1 Runge-Kutta Time Discretizations with Preconditioner

In this section, we time discretize the DSWE (such as equations (2.17)–(2.18)) with

an explicit Runge-Kutta (RK) method. Here in this dissertation, we will focus on the
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well-known fourth order RK4 scheme with Butcher tableau:

c A

bT

=

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

(3.1)

Since the matrix A is lower triangular with zeros along the diagonal, the RK scheme

defined by (3.1) is explicit. If we denote w = (η,U )T , then equations (2.17)–(2.19)

can be recast into

wt = f(w,u, t), (3.2)

g(w,u) = 0, (3.3)

where f = (−∇ · (ηu), −η∇ζ −∇(ηuu) +F )T and g = U −Nu. Here F is defined

in equation (2.20). When applied to equation (3.2), one step of the 4th order RK

scheme (3.1) can be written as:

w(1) = wn, (3.4)

w(2) = wn +
1

2
∆t f

(
w(1),u(1), tn

)
, (3.5)

w(3) = wn +
1

2
∆t f

(
w(2),u(2), tn +

1

2
∆t

)
, (3.6)

w(4) = wn + ∆t f

(
w(3),u(3), tn +

1

2
∆t

)
, (3.7)
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with the final update:

wn+1 = wn +
1

6
∆t

[
f
(
w(1),u(1), tn

)
+ 2f

(
w(2),u(2), tn +

1

2
∆t

)

+ 2f

(
w(3),u(3), tn +

1

2
∆t

)
+ f

(
w(4),u(4), tn + ∆t

) ]
, (3.8)

where wn ≈ w(tn) is the approximation of wn at tn, and tn = n∆t when using a

fixed time step ∆t. Here w(j) are the intermediate stage values (where for brevity we

have suppressed the subscript n). The algebraic equation (3.8) can be solved to get

the solutions of u with knowledge of the values (U , η), (i.e., u = N−1U) where

g(w(j),u(j)) = 0, for j = 1, 2, 3, 4 (3.9)

is the discretization of the constraint and defines the variable u(j) in terms of w(j).

Inverting the operator N directly is not computationally attractive because N

depends on η and changes at every point in time. The operator N is symmetric

and positive definite. Hence, the linear system N (u) = U can be solved using a

gradient descent algorithm or conjugate gradient (CG) algorithm [3]. Here a linear

operator A can be introduced into the system as a preconditioner to condition and

speed up the algorithm. Then, the preconditioned gradient descent method can solve

the constraint equation iteratively (for n ≥ 0) with an initialized u0:

Do: Aun+1 = Aun + ∆s(U −Nun), (3.10)

until:
‖un+1 − un‖
‖un‖

< δ. (3.11)
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∆s > 0 is a pseudo-time. Here ‖u‖ =
∫

Ω
u2(x)dx and the small parameter δ in

the termination criteria (3.11) appears as the tolerance to stop the solver when the

iterative scheme is applied repeatedly.

We now provide a few details on the convergence of equation (3.10). For linear

operators A and N , we can introduce the generalized eigenvalues and eigenvectors µ

and v where Av = µNv. If A is positive definite and N is positive semi-definite, the

eigenvalues µ are real, non-negative and bounded, i.e., 0 ≤ µ <∞. Let en = un − u

be the error in the gradient descent (3.10) where u is the exact solution to U = Nu.

If we let en = env where v is a generalized eigenvector of A and N (with eigenvalue

µ). Here R ≡ max{|1 − ∆sµ| : µ are eigenvalues of A−1N} [24]. Then, en satisfies

the scalar equation en+1 = ren, where r = (1 − ∆sµ). Hence en = rne0. It follows

that provided −1 < r < 1, each mode en = env converges to zero (i.e., (3.10) is a

contraction mapping). In other words, we obtain convergence so long as ∆s < 2/µ is

satisfied for every eigenvalue µ of A−1N (this will then ensure −1 < r < 1).

It is also worth mentioning that the stopping criteria (3.11) is in fact achieved.

Assuming R < 1, for large n, (3.10) becomes:

‖un+1 − un‖
‖un‖

≈ ‖en+1 − en‖
‖un‖

∼ Rn. (3.12)

The termination criteria (3.11) then becomes (approximately) Rn < δ, which is

achieved when n ∼ ln(δ)/ ln(R).

Now, we turn our attention to discuss the choice of A in (3.10) that optimizes

the convergence rate R. The conditioning number of a positive definite matrix A is

κ(A) = µmax/µmin, where µmax and µmin are the largest and smallest eigenvalues ofA.

For an optimal choice of ∆s = 2(µmin+µmax)−1, where µmin and µmax are the minimum

and maximum eigenvalues ofA−1N , the convergence rate R can be written in terms of

the conditioning number κ(A−1N ). Our choice of preconditioner will need to ensure
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a bound on the conditioning number κ(A−1N ). Ideally, the conditioning number

κ(A−1N ) should be independent of the (subsequent) mesh discretization. This will

then ensure that the iterative solver remains efficient, even at fine mesh resolutions

(∆x → 0). Since N is symmetric and positive definite (N � 0), the convergence

rate of the preconditioned gradient method is R = (κ − 1)/(κ + 1) ∼ e−1/κ which

assumes an optimally chosen step size. Therefore, the estimated number of iterations

required to achieve the tolerance δ is O(κ). Note that without the preconditioner,

the conditioning number κ(N ) will slow down the iterative scheme or eventually fail

with small mesh size.

Note: RK4 is a multistage time-stepping method. At each intermediate stage,

the preconditioning gradient descent scheme should be applied to solve for the values

of u for next stage.

Here we summarize the convergence rates, and necessary conditions for the fixed

point iteration (FPI) (3.10) and conjugate gradient methods to solve systems of the

form Na = b. In Table 3.1, κ = κ(A−1N ); σ(A−1N ) is the spectrum of A−1N ; and

ei is the error: ei = ‖ai − a‖N for CG and ei = ‖ai − a∗‖2 for FPI.

Table 3.1 Summary of Convergence Rates

Fixed point iteration (FPI) Conjugate gradient (CG)

Formula
Initialize: a0. For i ≥ 0
Aai+1 = Aai − (Nai − b)

See [24, Chapter 38]
for algorithm

Conditions
for use

R ≡ max{|1− µ| : µ ∈ σ(A−1N )},
then R < 1 is required.

If N � 0,A � 0, R < 1 is
µmax(A−1N ) < 2.

G � 0,A � 0,
No condition on µmax(A−1N )

Convergence
rate bound
ei ≤ CRie0

R = max{|1− µ| : µ ∈ σ(A−1N )},
C = 1
Optimal case: If A � 0, N � 0,
and |1− µmax| = |1− µmin|,
then R =

κ− 1

κ+ 1
∼ e−1/κ

C = 2

R =

√
κ− 1√
κ+ 1

∼ e−1/
√
κ

Estimate
number of

iterations required
∼ O(κ) (In optimal case) ∼ O(

√
κ)
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We did not pursue implementing conjugate gradient, however we expect that

conjugate gradient method will further decrease the number of iterations (as it

converges with a rate of O(
√
κ) as opposed to O(κ)).

3.2 ImEx Methods

In this section, we introduce a semi-implicit (ImEx) method. The idea is to split the

operator N into an implicit and explicit part to avoid a fully implicit treatment. The

splitting can be done as N = A+B where A is the implicit term (Im) and B = N−A

is the explicit term (Ex). Since A is treated implicitly, A is picked to be simpler for

fast computational time.

In this dissertation, a second order backward differential formula is used along

with the ImEx method. One thing that needs to be checked of this scheme is zero

stability, which is a key requirement for convergence. Normally zero stability is easy

to verify; however, here it’s more difficult due to the ImEx structure. Since the

DSWE are restructured into the DAE form, then the zero stability depends on both

the ImEx scheme and the operator N (choice of A and B). Similar to [18], an ImEX

scheme can be established with an appropriate set of time-stepping coefficients to

ensure stability. Under the notation of w = (η,U)T , the general ImEx multistep

method can be applied to equations (3.2)–(3.3) as

1

∆t

s∑
j=0

ajw
n+j =

s∑
j=0

bjf(wn+j,un+j, tn+j), (3.13)

s∑
j=0

cjAun+j + bjBn+ju
n+j =

s∑
j=0

cjU
n+j, (3.14)

where Bn = Nn − A. The ImEx coefficients (aj, bj, cj), 0 ≤ j ≤ s, are chosen with

cs 6= 0, bs = 0 so that equation (3.14) is implicit in A and explicit in B. Here

the coefficients (aj, bj, cj) should be picked to satisfy order conditions to ensure that
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equations (3.13)–(3.14) define an second order time-stepping scheme (second order

backward differential scheme in this dissertation) [19]. By using a Taylor expansion,

the time-stepping coefficients can be easily chosen (similar to backward differential

formula 2) to get the numerical scheme:

1

∆t

(
3

2
wn+1 − 2wn +

1

2
wn−1

)
= 2f(ηn,un, tn)− f(ηn−1,un−1, tn−1), (3.15)

where the constraint can be solved as

Aun+1 + (2Bnun − Bn−1un−1) = Un+1. (3.16)

Equations (3.15)–(3.16) are the full multistep scheme where the operator B and u are

treated are treated at the same time values when applying the second order scheme.

There is also a second order One-Leg method [7], which is related to the multistep

method, where B and u are not treated at the same time values. Since the operator

B contains η(x, t) in it, then η and u can be treat individually to achieve the second

order scheme. At this time, we remark that one could also time discretize the DSWE

directly without first recasting them into a DAE form. Specifically, equation (2.12)

can be rewritten as:

N̂ (ut) = F (η,u, t). (3.17)

The operator N̂ now has the form

N̂ = I − 1

η
∇
{(

η3

3
∇·
)
−
(
η2

2
∇h·

)}
+∇h

{(η
2
∇·
)

+ (∇h·)
}
, (3.18)
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where F (η,u, t) contains the rest of terms in equation (2.12). The operator N̂ here

can still be split into two parts — N̂ = Â + B̂. Compare to ImEx operators and

splitting matrices, N = ηN̂ , A = ηÂ and B = ηB̂. Again, like the original ImEx

method which discussed before, Â is treated implicitly and B̂ is treated explicitly.

By using the Taylor’s expansion, a second order One-Leg scheme to solve equations

(2.11)–(2.12) can be obtained as

ηn+1 − ηn

∆t
= −∇ ·

[
ηn+ 1

2un+ 1
2

]
, (3.19)

Âu
n+1 − un

∆t
= B̂

ηn+
1
2

2un − 3un−1 + un−2

∆t
+ F

(
ηn+ 1

2 ,un+ 1
2 , t+

∆t

2

)
. (3.20)

Here ηn+ 1
2 and un+ 1

2 are

un+ 1
2 =

3

2
un − 1

2
un−1, (3.21)

ηn+ 1
2 =

3

2
ηn − 1

2
ηn−1. (3.22)

Since this method is no longer a multistep ImEx method (it is a one-leg version of an

ImEx scheme), yet still has explicit parts and implicit parts, we refer to (3.19)–(3.22)

as a second order semi-implicit method.

Choosing the ImEx (or semi-implicit) splitting of the operator N (or N̂ ) can

be tricky. The ImEx (or semi-implicit) method here treats parts of the operator N

(or N̂ ) explicitly — and these explicit terms which consist of B (or B̂) may be stiff.

Specifically, for our preferred choice of splitting, some terms in the matrix B (or B̂)

will contain higher order derivatives, and these terms can cause the scheme to become

unstable. For the ImEx (or semi-implicit schemes) zero stability becomes a crucial

property required to ensure that the splitting of the operator N (or N̂ ) is stable. Zero

stability will be ensured provided the implicit term A stabilizes the explicit term B.
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We now state conditions for zero stability in a simplified setting where the

operator N is assumed allowed to vary in space, but is constant in time (which is

generally not the case as η depends on both space and time). With this assumption,

we seek splittings A and B where A is constant coefficient, B is allowed to be variable

coefficient and both A and B do not depend on time. Let the generalized eigenvalues

of A and B be:

Au = µBu. (3.23)

In equation (3.23) both and A and B are understood to have periodic boundary

conditions, and we assume that A is invertible so that µ is never an eigenvalue.

To formulate the zero-stability of the ImEx splitting will examine solutions to

equation (3.20) with F = 0. Then un can be expressed as un = znu0 where z ∈ C.

With this substitution in (3.20), we have the recurrence:

Â(z3u0 − z2u0) = B̂(2z2 − 3z + 1)u0, (3.24)

φ(z;µ)Âu0 = 0, (3.25)

where here we have used the introduction of µ to be a generalized eigenvalue of Â

and B̂ and φ(z;µ) is the polynomial given by:

φ(z;µ) = (z − 1)(z2 − 2zµ+ µ). (3.26)

The modes u0 are stable if z satisfies the root condition:

Definition 3.1. (Root condition) A polynomial p(z) satisfies the root condition if

each simple each root is |z| ≤ 1, and non-simple roots satisfy |z| < 1.
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For stability, we need that every root of φ(z;µ) satisfy the root condition. To

do so we introduce a geometric stability diagram.

Definition 3.2. (Zero-stability region) The values of µ that ensure the root condition:

D := {µ ∈ C : φ(z;µ)haseachroot|z| < 1}

We then have the following condition for zero-stability. The roots to equation

(3.26), are stable if for every generalized eigenvector µ (in equation (3.23)) lies in

µ ∈ D.

To compute the zero-stability diagram, which corresponds to z that lie inside

the unit circle, we use the boundary locus method [9] to obtain the region for µ. The

boundary locus for equation (3.20) is:

Γ := {µ = z2/(2z − 1) : z = eiθ, 0 ∈ [0, 2π])}. (3.27)

Figure 3.1 shows the plot of Γ for the second order method.

-0.5 0 0.5 1

Re( )

-0.5

0

0.5

Im
(

)

Figure 3.1 Zero stablity region for generalized eigenvalus µ of the second order
ImEx (or semi-implicit) method.

Note here, only if the eigenvalues of the ImEx (or semi-implicit) scheme lie

inside region, which is shown in Figure 3.1, can the scheme be zero-stable. Ensuring
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that the eigenvalues lies inside this stability region places a restriction when splitting

the operator N (or N̂ ).

3.3 Formulation of A

For the sake of computational efficiency, we seek a constant coefficient symmetric

positive definite A in both the preconditioned gradient descent and the ImEx method.

On a periodic domain, the constant coefficient operator A will be easy to invert using

the Fourier transform. Furthermore, in Sections 3.1 and 3.2, we assume that N is a

symmetric positive definite operator. These assumptions will need to be verified.

Notice that the DAE framework ends up producing numerical schemes that are

(very close to) direct ImEx discretizations of the original DSWE, hence they are easy

to implement. Here we go through several of the simplified DSWE models and discuss

our choice of A for the different N :

Case 1: Slow Varying Bathymetry ∇h� ∇η.

Equation (2.24) has the form U = Nηu, in which case we take A to be of the form

A = νI −α∇∇· (which is the linearized operator Nη). The two unknown coefficients

(ν, α) are chosen under the constraint of zero-stability. The eigenvalue µ, which are

obtained as A−1Nηu = µu, should lie inside the zero-stability region to guarantee the

stability of the corresponding schemes. Both A and Nη are symmetric and positive

definite, hence µ are real, positive and bounded by the Rayleigh quotients:

µmin = min
u∈[H1(Ω)]2

〈u,Nηu〉
〈u,Au〉

, µmax = max
u∈[H1(Ω)]2

〈u,Nηu〉
〈u,Au〉

. (3.28)

To ensure the stability, A can be chosen so that the ratio in equations (3.28) can be

bounded as [µmin, µmax] ⊆ [0, 1] (so that the eigenvalues lie inside the region given by

Figure 3.1). A possible choice is A = ηmaxI − 1
3
η3

max∇(∇·) where ηmax = maxx η(x).

The efficiency of this matrix A is shown in Figure 3.2.
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Case 2: Bathymetry with constant (non-neglectable) slope.

When ∇h is non-neglectable, the operator N contains a symmetric, positive definite

Nη and a (possibly) indefinite part Kη,h where N = Nη +Kη,h and

Kη,h ≡ −∇
(

1
2
η2∇hT ·

)
+ 1

2
η2∇h(∇·) + η∇h(∇hT ·). (3.29)

The symmetric property of operator K can be proved by integrating by parts

〈Ku,v〉 = 〈u,Kv〉. But the positive definite property of K cannot be guaranteed.

To gain insight as to whether N (or equivalently N̂ ) is positive definite, we examine

N under the simplified assumption that w = ∇h is constant and η is constant on an

infinitely large domain. Here w = ∇h is constant means there is a constant sloped

bathymetry. Then, under this simplified case, the operator N is (block) diagonal in

Fourier space:

Ñ = ηI + ηwwT + 1
3
η3kkT + 1

2
iη2(wkT − kwT ), (3.30)

where N̂ (k) is the Fourier transformed operator, and k are the wave numbers. Writing

k = ‖k‖(cos θ, sin θ), the eigenvalues of N̂ (k) in equation (3.30) can be obtained as

eig(Ñ ) = η + η‖w‖2λ±, (3.31)

with

λ± = 1
2

(
1
3
τ 2 + 1

)
± 1

2

((
1
3
τ 2 + 1

)2 − 1
3
τ 2 sin2 θ

) 1
2
. (3.32)
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Here τ = η‖k‖‖w‖−1. One has λ± > 1 for all τ and θ; so N is positive definite.

Choosing A = (ηmax + ‖∇h‖2
max)I − 1

3
η3

max∇(∇·) can ensure a zero-stable second

order scheme.

Figure 3.2 shows the convergence rate of the iterative schemes while solving the

constraint equations. Figure 3.2 (a) shows the linear convergence rate of iterative

scheme under the slow varying bathymetry assumption (equation (2.24)) and Figure

3.2 (b) represents that under bathymetry with constant non-neglectable gradient

(equation (2.19)). The errors were all computed in the `∞ norm defined on the

computational grid (we used an equispaced periodic grid with N = 256 gridpoints).
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(a) Slow varying bathymetry DSWE
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(b) DSWE

Figure 3.2 Solving the constraint equation with iterative schemes to get the error
of each iteration.
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CHAPTER 4

TEST CASES AND RESULTS

In this chapter, we present numerical results of the DSW equations for the propagation

of a single solitary wave propagation over bottom topography. After introducing

ξ = x cos(θ) + y sin(θ) − ct with an arbitrary angle θ, the solitary wave solution of

the DSWE can be written as

ζ = a sech2(γξ). (4.1)

When θ is chosen to be 0 or π/2, the solitary wave is traveling in the x or y direction.

Here a is the wave amplitude, c is the wave speed given by c =
√

1 + a, and γ is

given by γ =

√
3(c2−1)

2c
. The velocity vector u can be written as u = (w cos θ, w sin θ),

where w is given by

w =
cζ

ζ + h
. (4.2)

First, in Section 4.1, both the RK4 method with preconditioner and the ImEx method

are tested for flat bottm. The efficiency of these two methods is examined. In

Section 4.2, two different bottom profiles are considered for the DSWE system. After

investigating the convergence rates of the two methods, the deformation of a single

solitary wave is studied when it’s propagating over a constant slope topography.

In this dissertation, we discretize the computational domain with an equispaced

grid (N = 256) and impose periodic boundary conditions. The grid size is h = ∆x =

∆y with grid points xi = ih; yj = hj and 0 ≤ i, j ≤ N−1. Then define uij = u(xi, yj).

To compute spatial derivatives, we use a (standard) Fourier spectral method. The
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discrete Fourier transform [23] of a single variable function ui = u(xi) is

ûk = h
N∑
j=1

e−ikxjuj, k = −N
2

+ 1, ...,
N

2
, (4.3)

and the inverse discrete Fourier transform is given by:

uj =
1

2π

N/2∑
k=−N/2+1

eikxj ûk, j = 1, ...N. (4.4)

Then, the w = nth-order derivative of function u is

• Compute û.

• Define ŵk = (ik)nûk, but ŵn/2 = 0 if n is odd.

• Compute w form ŵ.

4.1 Flat Bottom Case

For the flat bottom (or h = 1 in dimensionless form), all terms with ∇h vanish so that

DSWE (2.17)–(2.19) can be simplified to equations (2.22)–(2.24). Here η = 1 + ζ.

Also, the operator A used here is A = ηmaxI − 1
3
η3

max∇(∇·).

For the propagation of a solitary wave, the fourth-order convergence rate of the

RK4 method with preconditioner and the second-order convergence rate of the ImEx

method are shown in Figure 4.1, as expected.
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Figure 4.1 Convergence rate of the numerical schemes for the flat bottom. Here
the solitary wave amplitude is a = 0.5.

One can see from the Figure 4.1 that the operator A chosen in Section 3.3 seems

to be suitable for the fixed point iteration method as well as the ImEx method. The

iteration scheme affects little the convergence rate of the Runge-Kutta time-stepping

method. In addition, the ImEx method stays stable with our choice of A.

Another property of these two methods to be tested is their numerical efficiency.

For a fair comparison, a second-order Runge-Kutta with preconditioner method

should be adopted to compare with the second-order ImEx method. Figure 4.2 shows

the computation times of the two methods versus their errors. It can be observed that

the ImEx method takes less time than that of the RK2 with preconditioner method

for the same order of accuracy. Based on this results, one can conclude that the ImEx

method is more efficient.
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4.2 Variable Bottom Case

As the two numerical methods are validated for the flat bottom, we now consider

two different topographies for the DSWE system. Since the pseudo-spectral method

is used for spatial discretization, the topographies must be periodic and C∞. As it’s

defined in Figure 2.1, the topography is represented by a known function f(x) so that

the local water depth is defined as h(x) = 1 − f(x) (dimensionless form). After the

computational domain is chosen to be Ω = (−40π, 40π) × (−40π, 40π), a Gaussian

function is assumed for the first bottom topography (a ‘bump’ is located at the center

of the domain), where the Gaussian function itself is C∞ and periodic (Figure 4.3(a)):

f(x) =
1

σ
√

2π
e

‖x‖2

2σ2 . (4.5)

Here ‖x‖ is the Euclidean norm and σ =
√

3.5. This topography is used to test the

convergence rate of the schemes in this research.

Then the propagation of a simple solitary wave passing over a constant-slope

topography (a ‘ramp’) is studied numerically to compare the DSWE with the system
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of MM69 (Figure 4.3(b)). The bottom profile f(x) is given by

f(x) =



1
20

(x+ 60), −60 ≤ x ≤ −50

0.5, −50 < x ≤ 65

− 1
20

(x− 75), 65 < x ≤ 75

0. elsewhere

(4.6)

To enforce the periodic and C∞ properties, a Gaussian filter defined by

f̂(x) = F−1 [F [f(x)] g(k)] , (4.7)

is applied to the topography function. Here F and F−1 are Fourier and inverse

Fourier transform, g(k) is a Gaussian function. Then, the filtered topography f̂(x) is

smoothed out. The initial locations of a solitary wave related to the two topographies

are shown in Figure 4.3.
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(a) Guassian function topography
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Figure 4.3 Initial solitary waves for the different topographies.
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For the variable bottom case, the solitary wave solution given by equation (4.1)

is not the exact solution to the DSWE so that a manufacturing method is used to

test the convergence rate of the numerical schemes discussed in this dissertation. The

idea of the manufacturing method is that, before solving a partial differential equation

(PDE) given by

ut = f(u, t), (4.8)

for which no exact solution is know, we consider a modified equation for which we

can choose any arbitrary function as an exact solution. After choosing arbitrarily u∗

as a solution, a forcing term f ∗(x, t) is added to the equation (4.8), where the forcing

term is given by

f ∗(x, t) = u∗t − f(u∗, t). (4.9)

Then, instead of solving equation (4.8), we solve a new PDE

ut = f(u, t) + f ∗(x, t), (4.10)

whose exact solution is u∗(x, t). Then, the convergence rate can be found by

comparing the numerical solution of equation (4.10) with the exact solution u∗.

With the manufacturing method, the time-stepping methods discussed in

Chapter 3 can be tested for the variable bottom case. For the Gaussian topography,

Figure 4.4 (a) shows the fourth-order convergence rate of the RK4 method with

the preconditioner given by equations (3.8), (3.10), and (3.11) while Figure 4.4 (b)

represents the second-order convergence rate of the ImEx method given by equations

32



(3.15)–(3.16). We also provide the results of the simplified DSWE ((2.22)–(2.24))

solved by these two methods.
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Figure 4.4 Convergence rates of the numerical schemes.
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Figure 4.5 Second-order convergence rate of semi-implicit method and ImEx
method.

Figure 4.5 shows the second-order convergence rate of the semi-implicit method

with equations (3.19)–(3.20). It can be seen that both the ImEx method and the

semi-implicit method are second-order accurate, as expected, and their results are

comparable.

Using both the RK method with preconditioner and the ImEx method, we next

study the propagation of a solitary wave over the constant-slope topography (‘ramp’
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bottom in Figure 4.3(b)). When the wave is propagating over the ramp, the initial

solitary wave is disintegrated into a few solitary waves as shown in Figure 4.6. We also

provide the propagation of solitary wave in simplified DSWE system. From Figure

4.7, one can also see that the DSWE system is little affected by the terms with ∇h.
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Figure 4.6 A solitary wave propergating over the topography shown in Figure
4.3(b) in DSWE system. The amplitude of the initial wave is chosen to be a = 0.1.
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Figure 4.7 Simplified DSWE vs DSWE when wave propagating over the
bathymetry shown in Figure 4.3(b) at t = 62.

Additional tests are performed for the comparison of the DSWE with the weakly

nonlinear model (2.25)–(2.27) and MM69 (2.28)–(2.30). For the two weakly nonlinear

models, the wave amplitude is chosen to be 0.1 to satisfy the weakly nonlinear

assumption (ε � 1). As they have different dispersion relations, the numerical
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solutions of the two models show some discrepancy in phase, but the overall agreement

is reasonable.
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Figure 4.8 Weakly nonlinear system compared with MM69 at t = 62.

If the amplitude is increased to a = 0.3, we can see a clear difference between

the strongly nonlinear DSWE and weakly nonlinear model (2.25)–(2.27), as shown

in Figure 4.9. At t = 42, the numerical solution of both the DSWE and the weakly

nonlinear DSWE show clearly the generation of the second solitary waves, but the

two waves are not identical. While the numerical solution of the DSWE needs to be

validated with experiments, this indicates that the weakly nonlinear model might not

be so reliable when the wave amplitude is not small.
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Figure 4.9 Comparision between DSWE and weakly nonlinear system when t = 42.
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CHAPTER 5

CONCLUSION

In this dissertation, we discussed time-stepping methods for the dispersive shallow

water equations with different bathymetry. Depending on the different assumptions

of the bathymetry, there are several kinds of simplified DSWEs. After the pseudo-

spectral spatial discretization, we recast the DSWE into a differential-algebraic form

which can be written as a time evolution ODE plus spatial algebraic constraint. The

DAE system can provide a simple form to establish efficient and stable numerical

time-stepping schemes.

We provide two time-stepping strategies for solving the DSWE. The first

approach is to use a Runge-Kutta method to solve the PDE, and a fixed point iteration

scheme with preconditioner to solve the algebraic constraint. The second one is to

use an ImEx method, which avoids the need for iterations. When developing the

time-stepping method for the dispersive shallow water equations, we need to be careful

that stability is ensured for both the Runge-Kutta method with preconditioner, and

the ImEx method. The key contribution is discussing how to find an appropriate

linear operator that acts as both a preconditioner for the Runge-Kutta method, and

also as a splitting for the ImEx method. In both the ImEx and iterative schemes,

the choice of A is constrained by stability. Namely, the (generalized) eigenvalues µ

of A−1N should be well-conditioned yielding a reasonable conditioning number, and

(in the case of the ImEx scheme) also lie inside a stability region.

The ImEx method generally outperforms Runge-Kutta methods of the same

order by avoiding the need for iterations. Hence, ImEx methods can shorten

computational (clock) time. But, ImEx method treats those terms with higher order

derivatives explicitly so that the stability of ImEx schemes should be carefully checked

when developing the method.
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The dispersive terms in the DSWE lead to physically relevant effects as outlined

in Section 4.2. When a solitary wave is propagating over an uneven bottom, the profile

of the wave is deformed because of the bathymetry. When there are small amplitude

waves, or slowly varying bathymetry (i.e., small grad h), the DSWE reduce to simpler

equations that can be used without a loss of efficacy.
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APPENDIX

DERIVATION OF DSWE WITH FLAT BOTTOM (D=1)

This appendix focuses on the derivation of the dispersive shallow water equations

for one-dimensional waves. Consider the two-dimensional Euler equations with flat

bottom (h(x) is any constant number) at this moment. Recast the Euler equations

in component form

ut + uux + wuz = −1

ρ
Px, (A.1)

wt + uwx + wwz = −1

ρ
Pz − g, (A.2)

with the continuity equation given by

ux + wz = 0. (A.3)

From Figure 2.1, the depth-averaged velocity ū(x, t) can be introduced as

ū(x, t) =
1

ζ + h

∫ ζ

−h
u(x, z, t)dz. (A.4)

Now after integrating equation (A.3) with respect to z from −h to ζ, one can obtain∫ ζ

−h
uxdz +

∫ ζ

−h
wzdz = 0

⇒ ∂x

∫ ζ

−h
udz − u|ζζx + w|z − w|−h = 0.

By applying the boundary condition at the bottom

w = 0, at z = −h, (A.5)
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and the kinematic boundary condition at the free surface

ζt + uζx = w, at z = ζ, (A.6)

equation (A.3) can be written as

ζt + [(h+ ζ)ū]x = 0. (A.7)

Similarly, integrating equation (A.1) yields∫ ζ

−h
utdz +

∫ ζ

−h
uuxdz +

∫ ζ

−h
wuzdz = −1

ρ

∫ ζ

−h
Pxdz

⇒ ∂t

∫ ζ

−h
udz − ζtu|z + ∂x

∫ ζ

−h
uudz −

∫ ζ

−h
uuxdz

−ζxuu|ζ + uw|ζ−h −
∫ ζ

−h
uwzdz = −1

ρ

∫ ζ

−h
Pxdz.

After using the continuity equation and the kinematic boundary conditions given by

(A.5)–(A.6), this equation can be written as

∂t

∫ ζ

−h
udz + ∂x

∫ ζ

−h
uudz = −1

ρ

∫ ζ

−h
Pxdz. (A.8)

With the definition of the depth-averaged velocity, equation (A.8) can be rewritten

into

(ηū)t + (ηuu)x = −1

ρ
ηPx, (A.9)

where η = ζ+h. To close the system given by (A.7) and (A.9), asymptotic expansion

for long waves is introduced to the Euler equations. As introduced in Section 2.1, we

assume β � 1 for long waves where β = h̄/λ.

39



First, the Euler equations need to be non-dimensionalized as

x = λx∗, z = hz∗, t =
λ

c0

t∗,

u = c0u
∗, w = βc0w

∗, P = ρc2
0P
∗,

where c0 =
√
gh. Notice that MM69 systems use the same set of dimensionless

variables. By dropping all the ∗ for brevity, the dimensionless Euler equations have

the form

ut + uux + wuz = −Px, (A.10)

β2(wt + uwx + wwz) = −Pz − 1, (A.11)

while the dimensionless continuity equation becomes

ux + wz = 0. (A.12)

For the dimensionless Euler equations, the physical variables are expended as

(u,w, P ) = (u0, w0, P0) + β2(u1, w1, P1) +O(β4). (A.13)

Then the expansions are substituted into equation (A.11), the leading-order equation

is found as

−P0z − 1 = 0. (A.14)

With the boundary condition for the pressure at the free surface P0|z=ζ = 0, the

leading-order pressure P0 can be found as

P0 = −(z − ζ). (A.15)

Then substitute equation (A.13) into equation (A.10) to find, at O(1):

u0t + u0u0x + w0u0z = −P0x. (A.16)
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As equation (A.15) leads to P0x = ζx, it can be shown that u0z = 0 at any time if

u0z = 0 at t = 0. Therefore, we have

u0t + u0u0x = −ζx, (A.17)

u0 = u0(x, t). (A.18)

Then uu can be written as

uu = u0u0 +O(β2) = ūū+O(β2),

where ū = u0 +O(β2) = u0 + O(β2). This means the depth-averaged equations can

be rewritten, after they are non-dimensionalized, as

ηt + (ηū)x = 0, (A.19)

ūt + ūūx + ηx = O(β2), (A.20)

where η = 1 + ζ. When β = 0, equations (A.19)–(A.20) are referred to as the Shallow

Water Equations with η = ζ + 1 (nondimensional form). It can be seen clearly that

in the shallow water equations, there are no dispersive terms on the right hand side

of (A.20) which will cause shocks after waves traveling for certain time (especially

when D=1). To include the dispersive terms to regularize the system, we need to find

O(β2) terms from

w0z = −u0x,

−P1z = w0t + u0w0x + w0w0z.

After imposing the boundary conditions on the free surface and the bottom (Px|z=ζ =

0 and w0|z=−h = 0), P1x can be found as

P1x = −1

3
(η3G)x, (A.21)
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where G = u0xt + u0u0xx − u2
0x. Then, along with

uu = (u0 + β2u1 +O(β4))(u0 + β2u1 +O(β4)) = ūū+O(β4),

equations (A.7) and (A.9) can be approximated to

ηt + (ηū)x = 0, (A.22)

ūt + ūūx + ηx =
β2

η

(
η3

3
G

)
x

+O(β4), (A.23)

where η = 1 + ζ (dimensionaless form) and G = ūxt + ūūxx − ū2
x. After dropping

all bars for brevity, equations (A.22)–(A.23) are referred as the Dispersive Shallow

Water Equations under the flat bathymetry.
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