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ABSTRACT 

EFFICIENT APPROXIMATIONS FOR STATIONARY  
SINGLE-CHANNEL CALCIUM NANODOMAINS 

 
by 

Yinbo Chen 

Mathematical and computational modeling plays an important role in the study of local 

Ca2+ signals underlying many fundamental physiological processes such as synaptic 

neurotransmitter release and myocyte contraction. Closed-form approximations describing 

steady-state distribution of Ca2+ in the vicinity of an open Ca2+ channel have proved 

particularly useful for the qualitative modeling of local Ca2+ signals. This dissertation 

presents several simple and efficient approximants for the equilibrium Ca2+ concentration 

near a point source in the presence of a mobile Ca2+ buffer, which achieve great accuracy 

over a wide range of model parameters. Such approximations provide an efficient method 

for estimating Ca2+ and buffer concentrations without resorting to numerical simulations 

and allow to study the qualitative dependence of nanodomain Ca2+ distribution on the 

buffer’s Ca2+ binding properties and its diffusivity. The new approximants presented here 

for the case of a simple, one-to-one Ca2+ buffer have a functional form that combines 

rational and exponential functions, which is similar to that of the well-known Excess Buffer 

Approximation and the linear approximation, but with parameters estimated using two 

novel methods. One of the methods involves interpolation between the short-range Taylor 

series of the buffer concentration and its long-range asymptotic series in inverse powers of 

distance from the channel. A second method is based on the variational approach and 

involves a global minimization of an appropriate functional with respect to parameters of 

the chosen approximations. Extensive parameter sensitivity analysis is presented, 



 

comparing approximants found using these two methods with the previously developed 

approximants. Apart from increased accuracy, the strength of the new approximants is that 

they can be extended to more realistic buffers with multiple Ca2+ binding sites, such as 

calmodulin and calretinin. In the second part of the dissertation, the series interpolation 

method is extended to buffers with two Ca2+ binding sites, yielding closed-form 

interpolants combining exponential and rational functions that achieve reasonable accuracy 

even in the case of buffers characterized by significant Ca2+ binding cooperativity. Finally, 

open challenges and potential future extensions of this work are discussed in detail. 
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CHAPTER 1 

INTRODUCTION 

Some of the most fundamental physiological cell processes such as synaptic 

neurotransmitter release, endocrine hormone release, muscle contraction and cytotoxic 

immune cell response are directly and quickly triggered by the Ca2+ influx into the 

cytoplasm through transmembrane Ca2+ channels (1-4). Due to the diversity of Ca2+-

controlled cellular processes, intracellular Ca2+ signals are localized in time and space to 

allow selective activation of specific reactions (2-5). This localization is maintained in part 

by intracellular Ca2+ buffers, which absorb most of the Ca2+ influx soon upon its entry into 

the cell (6, 7). In the context of secretory vesicle exocytosis, local Ca2+ concentration 

elevations around individual Ca2+ channels or clusters of channels are termed Ca2+ nano- 

or micro-domains (4, 8). Although Ca2+ concentration can be measured experimentally 

using Ca2+ sensitive dyes, inherent physical limitations pose challenges for optical Ca2+ 

imaging on small temporal and spatial scales relevant for vesicle exocytosis and other 

processes controlled by local Ca2+ elevations. Therefore, mathematical and computational 

modeling has played an important role in the study of vesicle exocytosis and other cell 

processes activated by localized Ca2+ signals (8-15). In particular, these computational 

studies were instrumental in showing that local Ca2+ elevations form and collapse very 

rapidly in response to channel gating. This suggests that quasi-stationary solutions of the 

reaction-diffusion equations describing Ca2+ influx, diffusion and binding to intracellular 

Ca2+ buffers may achieve sufficient accuracy in estimating Ca2+ concentration in the 

vicinity of a Ca2+ channel, obviating computationally expensive solutions of partial 

differential equations describing buffered Ca2+ diffusion (16, 17).  
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Several of such stationary approximations have been introduced in the early works 

of Neher, Stern, Keizer, Smith and others (14, 18-28), most notably the Excess Buffer 

approximation (EBA), the Rapid Buffering approximation (RBA), and the linear 

approximation (LIN) (see Table 2.1). These approximations proved quite useful in 

understanding the properties of Ca2+ nanodomains and their dependence on the properties 

of cell Ca2+ buffers, and are widely used in modeling studies (9, 14, 21, 29-32). However, 

most of the previously developed approximations have two limitations: (1) their accuracy 

is restricted to specific regions in buffering parameter space corresponding to small values 

of appropriate non-dimensional quantities, and (2) they have been developed for simple, 

one-to-one Ca2+-buffer binding, and are hard to extend to buffers that have multiple Ca2+ 

binding sites (33). However, many biological Ca2+ buffers do have multiple binding sites. 

For example, many widely expressed buffers such as calretinin and calmodulin, which play 

a prominent role in a variety of fundamental physiological processes, are characterized by 

two-site molecular EF-hand domains with cooperative Ca2+ binding, whereby the binding 

of a second Ca2+ ion proceeds with much greater affinity once the first binding site is 

occupied (35-42). In previous studies, only RBA has been extended to such realistic 

buffers, but its accuracy is very sensitive to model parameters (33). Further, other methods 

such as LIN are simply not applicable to complex buffers.   

Addressing the challenges noted above is the main goal of the work presented in 

this dissertation. Therefore, our aims are two-fold: (1) develop new methods for estimating 

Ca2+ nanodomains with more uniform accuracy with respect to the broadest possible range 

of modeling parameters, and (2) extend the newly developed approaches to approximate 

Ca2+ nanodomains in the presence of Ca2+ buffers with two binding sites.  
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In Chapter 2, we tackle the first of our main goals, presenting new approaches and 

new approximants allowing to better approximate single-channel Ca2+ nanodomains with 

more accuracy and for a wider range of model parameters in the case of simple one-to-one 

buffers. One of these approximation methods is based on matching the coefficients of 

short-range Taylor series and long-range asymptotic series of the nanodomain Ca2+ 

distance dependence using simple ansätze. Although this method has already been used to 

obtain Padé (rational function) nanodomain approximations (34), we show that significant 

improvement can be achieved in some parameter regimes using alternative interpolants 

that are similar in their functional form to EBA and LIN approximants shown in Table 2.1. 

Apart from the series interpolation approach, which can be categorized as a local approach, 

we also present a different class of methods based on the variational approach, which 

involve a global optimization of a relevant functional with respect to parameters of the 

same ansätze that we use with the series interpolation method. As we will demonstrate, 

approximants achieved using this alternative, global approach achieve superior accuracy 

with respect to all other methods in a significant portion of the relevant parameter space. 

In Chapter 3 of this dissertation, we address the second of our main goals by 

showing that the series interpolation methods can be extended to buffers with two binding 

sites, using simple ansätze similar to those considered in Chapter 2. We systematically 

explore the parameter dependence of the accuracy of the new methods, and demonstrate 

that the new approximants we introduce significantly improve approximation accuracy as 

compared to RBA in a wide range of parameter regimes. 

Finally, in Chapter 4, we summarize our results, and outline many potential 

directions for improvement and for possible future extensions of this work.  



4 
 

CHAPTER 2 

SIMPLE BUFFER CASE 

2.1 Methods: Single-channel Ca2+ Nanodomain Equation 

Following prior work, we will consider a Ca2+ buffer whose molecules possess a single 

active site that binds a Ca2+ ion according to the reaction 

                                               (2.1) 

Here B and B* are the free buffer and Ca2+-bound buffer, respectively, and k+/k- are 

the Ca2+-buffer binding/unbinding rates. We consider a semi-infinite diffusion domain 

bounded by a flat plane containing point Ca2+ channel sources. Following previous 

modelling studies (18, 19, 27), we will assume Dirichlet boundary conditions on the outer 

boundary representing the background concentrations for Ca2+ and buffer in the bulk of the 

cell cytoplasm, and zero flux boundary condition on the flat boundary representing the cell 

membrane. Although this neglects Ca2+ pumps and exchangers along the flat boundary, 

numerical simulations show that qualitative agreement with more accurate models is 

retained under this assumption. The reflection symmetry along the flat boundary allows to 

extend the domain to the whole space, while doubling the source strength.  Assuming mass-

action kinetics, this yields the following reaction-diffusion system in  (18, 19): 

B +Ca2+
k+

k−
! ⇀!!↽ !!! B*.

!3
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                                                       (2.2) 

Here C, B and B* represents concentrations of Ca2+, free buffer and Ca2+-bound 

buffer, respectively, with diffusivities !! , !", and !"∗ . In the source term, NCa  denotes the 

number of Ca2+ channels, and the source strengths are given by #$ = %!%,$/((	*), where 

ICa,k are the amplitudes of individual open Ca2+ channels located at positions rk , F is the 

Faraday constant, and z=2 is the valence of the Ca2+ ion. We note that the point-like channel 

assumption introduces inaccuracy at small spatial scales commensurate with the channel 

pore width of several nanometers. The impact of finite channel diameter and volumetric 

Ca2+ clearance was considered in a different type of single-channel stationary solution 

derived for the endoplasmic reticulum Ca2+ channel in (16).  

The two linear combinations of Equation 2.2 that cancel the reaction terms yield 

the conservation laws for the total Ca2+ and total buffer concentrations: 

,     (2.3)

.             (2.4) 

We now consider the steady state of this system, where the conservation laws for Ca2+ and 

buffer reduce to (19-21, 27, 43, 44):  

∂tC = DC∇
2C − k +BC+ k − B* + 2 σ k δ (r − rk )

k=1

NCa

∑ ,

∂t B = DB∇
2B− k +BC+ k − B*,

∂t B
* = DB

*∇2B* + k +BC− k − B*.

∂t C + B*( ) = ∇2 DCC + DB
*B*( )+ 2 σ k δ (r − rk )

k=1

NCa

∑

∂t B + B
*( ) = ∇2 DBB + DB

*B*( )
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                                       .                        (2.5) 

                                       .                   (2.6) 

Our approach is somewhat more general than prior modeling work in that we do 

not assume that buffer mobility is unaffected by Ca2+ binding. Given our simplifying 

assumptions on the domain geometry and boundary conditions, Equation 2.6 has an exact 

solution: 

       ,                     (2.7) 

where C¥ and B¥ are the background Ca2+ and buffer concentrations infinitely far from the 

channel, which are in equilibrium with each other: 

      .                                             (2.8) 

Here , = -' 	-(⁄ 	is the buffer affinity, equal to the Ca2+ concentration at which half the 

buffer is bound at steady state. Conservation laws allow to eliminate two variables, and we 

choose to retain the equilibrium unbound buffer concentration as the remaining unknown:  

                                                  .                                     (2.9) 

DBB + DB
*B* = DBB∞ + DB

*B∞
* = const

∇2 DCC + DB
*B*⎡⎣ ⎤⎦ = −2 σ k δ (r − rk )

k=1

NCa

∑

DCC + DB
*B* = 1

2π
σ k

|r − rk |k=1

NCa

∑ + DCC∞ + DB
*B∞

*

B∞C∞ = K B∞
*

DB∇
2B= k +BC− k −B*
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We will now non-dimensionalize these equations in a manner similar to the method 

of Smith et al (19) (see also (34)), rescaling Ca2+ by the buffer affinity: c=C/K, c¥=C¥/K. 

However, we normalize the buffer concentration by its background value B¥ instead of 

total concentration. This will simplify analytic results, with many expressions formally 

unchanged whether or not c¥=0 (see Table 2.1). Note also that in this case a very simple 

relationship holds between background concentrations of Ca2+ and bound buffer: Equation 

2.8 yields	/) = 0)∗ . 

We will consider the case of a single channel at the origin, and re-scale the spatial 

coordinate (1	/2 → 1 ) using the scale parameter that depends on the strength of the 

Ca2+ current, which simplifies the source term in Equation 2.7 (19):   

    .                                                    (2.10) 

Recalling that /) = 0)∗ , we obtain the following non-dimensional form of free 

buffer dynamics given by Equation 2.9, and the conservation laws, Equations 2.5, 2.7:  

                                                                    (2.11) 

where the 4 non-dimensional model parameters are (with L given by Equation 2.10): 

    .                  (2.12) 

L =σ 2πDCK( )

λ∇2 b =bc − b*,
b+δ B

* b* = 1+δ B
* c∞ ,

c +νδ B
* b* = c∞ +νδ B

* c∞ +1 / |r | ,

⎧

⎨
⎪

⎩
⎪

λ =
DB
L2 k −

; ν =
B∞ DB
K DC

; δ B
* =

DB
*

DB
; c∞ =

C∞

K
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Here l is the dimensionless buffer diffusion coefficient (denoted as εb in (19)), 

which quantifies the diffusion rate relative to the rate of Ca2+ binding and influx, while n  

(denoted as 1/µ  in (19)) represents the overall buffering strength at rest, given by the 

product of the resting buffering capacity (B¥ /K) and the relative buffer mobility (DB/DC). 

In this non-dimensionalization, the unbuffered Ca2+ solution corresponds to n=0 and has a 

particularly simple form, / = 1 |6| + /).⁄  For the sake of simplicity, we will also use the 

following auxiliary parameters: 

.                                      (2.13) 

This allows to specify the problem using only three parameters, either {l, n, h } or {l, q, 

h }. In the special case of binding-independent buffer mobility (9"∗ = 1), the parameter h 

equals the non-dimensionalized total buffer concentration: bT = (B¥ + :¥∗  ) / B¥ = 1 + c¥ = 

h. 

Eliminating the bound buffer and Ca2+ concentrations using the two conservation 

laws in Equation 2.11, the free buffer equation takes on a simple form: 

                .                                             (2.14) 

The Ca2+ concentration can be obtained from the solution of Equation 2.14 using 

the Ca2+ conservation law in Equation 2.11, which can be simplified to the following 

intuitive form: 

*
1 1,h
d h n¥= + =

+B

c q

λ∇2 b = b−1( ) νb+η( )+ b
|r |
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.                                              (2.15) 

For b<1, the Ca2+ concentration is reduced in proportion to the buffering strength 

parameter n, as expected. The conservation laws in Equation 2.11 along with the physical 

constraints c³0, b*³0, c¥³0  imply a priori bounds  

                             (2.16) 

The solutions satisfy the following boundary conditions (here and below, we denote 

): 

                       (2.17) 

where the value of buffer at the source location, b0, is unknown a priori. As is regorously 

proved in (48) (see Appendix 4 therein), Equation 2.14 has a unique solution which is 

bounded and satisfies the boundary conditions shown in Equation 2.17, and this solution is 

spherically symmetric. Therefore, Equation 2.14 may be reduced to  

( ) 11
| |

n ¥= - + +c b c
r

b− r( ) ≤ b r( ) ≤ b+ r( ),
b− r( ) = max 0, 1− 1

ν |r |
−
c∞
ν

⎛
⎝⎜

⎞
⎠⎟
,

b+ r( ) = 1+δ B*c∞ .

r = |r |

( )

( )
00

lim const ,

lim 1,
®

®+¥

= =ì
ï
í

=ïî

b b

b
r

r

r

r
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                                   .              (2.18) 

Although Equation 2.18 superficially resembles the Lane–Emden-Fowler 

equations (45), it has no local Lie symmetries allowing analytical solution. Further, it is 

not of Painlevé type (46), despite its simple algebraic form. We carried out the numerical 

solution of Equation 2.18 using the relaxation method and the shooting method, cross-

validating the results of these two methods. For certain extreme values of the model 

parameters, accurate numerical solution is computationally intensive. 

We note that the chosen non-dimensionalization is identical to the one in (19, 34) 

in the case of binding-invariant buffer mobility (9"∗ = 1)  and zero background Ca2+ 

concentration (c¥=0). In the case c¥≠0 there is a simple equivalence with the non-

dimensionalization in (19, 34); indicating variables and parameters in the latter work with 

the hat symbol, this equivalence reads: 

                                    .                                     (2.19) 

Most numerical results shown below focus on the special case c¥=0, 9"∗ =

1,	corresponding to h=1 (Figures 2.1-2.6). The results for h=10 are also shown, in the 

results summary Figure 2.7.  

E b⎡⎣ ⎤⎦ ≡ − λ
r 2
d
dr

r 2 db
dr

⎛
⎝⎜

⎞
⎠⎟
+ b−1( ) νb+η( )+ br = 0

1ˆ ˆ ˆˆ , ,n n
h h¥ ¥= = =
bb b b
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Table 2.1 Previously Established Single-channel Equilibrium Ca2+ Nanodomain 
Approximations. For each method, only the free buffer concentration expression is shown, 
since the non-dimensional Ca2+ concentration can be found from the Ca2+ conservation law 
(Equation 2.15), with the exception of terms in 2nd-order EBA, which are given in (19). 
Note that LIN and EBA become identical in the limit n>>1. RBA approximations valid up 
to orders O(1) and O(l) are denoted as 1st-order RBA (or simply RBA) and 2nd-order RBA 
(RBA2), respectively. Two lowest orders of the Padé method are denoted Padé for the 1st 
order case, and Padé2 for the 2nd order case. For Padé2, the parameter-dependent rational 
function constants A1,2 and B1,2 	are given by the solution of a 4th order polynomial equation 
(34), which has a closed-form solution shown in Appendix C.  

Method Free buffer concentration, b(r) Conditions Refs 

LIN  
Linearization  

around b=1 

(14, 19, 22, 

23, 25, 26) 

EBA    (14, 19, 28) 

IBA   (19) 

RBA   
(14, 18-21, 

29) 

RBA2   (19) 

Padé  
Series 

interpolation 
(34) 

Padé2  
Series 

interpolation 
(34) 

 

1 + q
r
exp − r qλ( )−1⎡
⎣⎢

⎤
⎦⎥

( ) 2
1 11 exp / 1n l
n n

æ öé ù+ - - + ç ÷ë û è ø
r O

r ( )1
1, 1,l

l
n

n
>> >

=

>

O

η r
1+η r

+ ν r 2

1+η r( )3
+ 2λ
1+η r( )4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ( )1

1, 1,l n
l n
<< <

=

<

O

1− 1
2qν

1+ q
r
− 1+ q

r
⎛
⎝⎜

⎞
⎠⎟

2

− 4νq
2

r

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

λ <<1, ν = O 1( )

bRBA r( )+ 2λη 1+ r
q

⎛
⎝⎜

⎞
⎠⎟

2

− 4ν r
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−2

λ <<1, ν = O 1( )

1− q

r + q q +8λ( ) + q⎡
⎣⎢

⎤
⎦⎥ 2

r 2 + A1 λ,ν ,η( )r + A2 λ,ν ,η( )
r 2 + B1 λ,ν ,η( )r + B2 λ,ν ,η( )
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One of the contributions of early modeling efforts was the development of accurate 

analytical approximations of the solution of Equation 2.18. They allow avoiding 

computationally expensive integration of reaction-diffusion equations while retaining 

considerable accuracy (19, 34). These approximations are summarized in Table 2.1, and 

apart from the Padé and LIN approximants, their regimes of applicability can be explained 

in intuitive physical terms. Namely, the Excess Buffer Approximation (EBA) is applicable 

when the buffer concentration is so large that it is practically unsaturable by the given 

Ca2+ current, leading to an additional exponential decay factor for the Ca2+ concentration 

with increasing distance from the channel (14, 19, 28). The Rapid Buffering 

Approximation (RBA) corresponds to the parameter regime where the buffering rate is 

much faster relative to the diffusion rate, and at lowest order represents the condition for 

instantaneous equilibrium of the Ca2+ buffering reaction (14, 18-21, 29). The nearly 

immobile buffer approximation (IBA) is applicable in the case of small buffer mobility, 

implying in turn a weak buffering strength (19). Finally, the linear approximation (LIN) 

represents an ad hoc linearization around the free unbuffered point-source solution, b = 1, 

c = 1/r + c¥, but as Table 2.1 shows, LIN could also be viewed as an improved modification 

of the EBA. More precise meaning of these approximants was given in Smith et al. (19). 

The latter work showed that EBA, RBA and IBA represent asymptotic expansions in either 

l or µ=1/n, and provided such expansions up to 2nd order with respect to these parameters. 

In contrast, the Padé approximation (34) is based on a series matching method explained 

in detail below. We note that only 2nd order RBA and Padé approximations are comparable 

in accuracy to the approximants presented in this work. Since [Ca2+] is uniquely determined 

by the buffer concentration through the conservation law (Equation 2.15), [Ca2+] 
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estimation accuracy is only shown in the final summary and comparison of all 

approximations (see Figures 2.5-2.7). We note that accurate estimation of free buffer 

concentration can be as important as the knowledge of the corresponding Ca2+ 

concentration, since it helps in the understanding of cell Ca2+ homeostasis, and in 

interpreting the results of Ca2+ imaging, which requires quantifying Ca2+ binding to  

exogenously applied fluorescent Ca2+ buffers (2, 3, 5, 8). 

2.2 Local Properties of Stationary Nanodomain Solution 

We start by generalizing some of the results previously presented in (34), without the 

restriction of binding-independent buffer mobility. We seek a solution to Equation 2.18, 

which is bounded and analytic, and therefore it can be expanded in a Taylor series in r 

using a Frobenius-like method (justification is given in Appendix G): 

                         (2.20) 

The usefulness of this series by itself is limited since the value of buffer at the 

channel location, bo, is a priori unknown, as mentioned above. Further, the convergence 

radius is finite due to possible movable non-pole singularities of the solution in the complex 

r plane. However, the relationship between Taylor coefficients in this expansion can be 

used to constrain parameters of an appropriately chosen approximation. Further, by making 

a coordinate mapping , we transform our original Equation 2.18 to the form: 

.                                  (2.21) 

b r( ) = bo + bo2λ r +
b0 −1( ) ν bo +η( )+ bo / 2λ( )

6λ
r 2 +O r3( ).

x ≡ 1/ r

λ x4bxx = b−1( ) ν b+η( )+ bx
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This reveals an essential singularity at x=0. In fact, numerical study shows that the 

analytic extension of b(x) to the complex-x plane has a branch cut across x=0, jumping 

from the physical value b=1 at x=0+ (r = +¥) to the unphysical value b = -h /n at x=0- (r 

= -¥) (see Figure 7 in (34)). 

Given that the boundary condition infinitely far from the channel is known, 

b(x=0+)=1, one can readily find the coefficients of a unique asymptotic power series 

expansion near x=0+: 

  .      (2.22) 

Here we used parameter q = 1/(h+n) to simplify the coefficients (cf. Equation 16 

in (34)). Note that terms of this long-range expansion agree up to order O(x3) with RBA 

and up to order O(x5) with RBA2 (Table 2.1), indicating that the reaction is approximately 

at equilibrium far from channel.  

The Padé method introduced in (34) and shown in Table 2.1 simultaneously 

matches leading terms of the two expansions given by Equations 2.20 (containing unknown 

b0 as a free parameter) and 2.22, using a simple rational function interpolant, with 

coefficients of this rational function found as functions of model parameters λ, n (or q), and 

h. The simplest Padé interpolant of order 1 yields:  

                                   . (2.23) 

b x( ) = 1− qx +ηq3x2 +η 1− 2qη( )q4x3 +η 2λ +5ηq2 ηq −1( )( )q4x4 +O x5( )

( ) ( )11 , where 8
2

lé ù= - = + +ë û+
qb r B q q q
r B
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This function satisfies both and . 

The corresponding estimate of free buffer concentration at the channel location is b0 = 1 - 

q/B. 

The Padé approximation (see Table 2.1) was chosen in (34) because of its algebraic 

simplicity and its straightforward expansion in power series in both r and x=1/r. Therefore, 

it represents an ad hoc ansatz, and for a fixed polynomial order, it is not necessarily the 

most natural nor the most accurate interpolant between the short-range and long-range 

power series given by Equations 2.20-2.22. Further, although it does converge to the true 

solution with increasing order, closed-form expressions for its coefficients can only be 

obtained for the two lowest orders listed in Table 2.1. However, we observe that all 

approximants in Table 2.1 can be viewed as interpolants between the Taylor series in r and 

asymptotic power series in x=1/r, and therefore the series interpolation method first 

introduced in (34) can and should be applied to the corresponding functional forms, as well. 

Particularly promising in this respect is the simple exponential form of the EBA and LIN 

approximations, which are close to each other when ; ≫1, and which match in this limit 

the first two terms in the asymptotic expansion in Equation 2.22, 0(=) = 1 − ?= + @(=*). 

In fact, standard analysis by substitution 0(=) = 1 − ?= + A+(-)	reveals that in the limit 

= = 1 B⁄ → 0(, the behavior of the general solution to Equation 2.21 is described by: 

                               ,    (2.24) 

where C(x) is bounded at x=0. Apart from the fractional power of x, this expression has a 

similar form to the EBA and LIN approximations in Table 2.1, suggesting that the 

b(r) = b0 + b0r / 2λ +O(r 2 ) b(x)=1− qx +O(x2 )

b x( ) = 1− qx +ηq3x2 + ...+C x( )x1+
q
λ
q−1
2

⎛
⎝⎜

⎞
⎠⎟e

− 1
x qλ
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corresponding functional form is a natural ansatz for describing long-range behavior of the 

solution.                                          

2.3 Results 

2.3.1 Functional Form of Approximants 

Given above analysis, we introduce approximants that have a simple functional form 

inspired by EBA and LIN, and which match the long-range asymptotic behavior of the 

solution, as given by Equation 2.24. Namely, we consider approximations in one of the 

following three parametric forms: 

                                     ,                                                             (2.25) 

                                      , (2.26) 

                                      .  (2.27) 

We refer to these approximants as exponential (Exp), double exponential (DblExp), 

and exponential-Padé (Exp-Padé), respectively. In the limit r® +¥ (x=1/r ® 0+), they 

explicitly satisfy the asymptotic expansion 0(=) = 1 − ?= + D	?/=* 	+ @(=/) to either 1st 

or 2nd order in x, and are analytic at B = 0. The Exp and DblExp approximants depend on 

a single parameter a, while Exp-Padé contains an additional parameter b. Note that 

Equation 2.25 reduces to LIN or EBA when a equals 1 E?F⁄  or 1 EGF⁄ , respectively (see 

b r( ) = 1+ q e
−α r −1
r

b r( )= 1+ q e
−α r −1
r

− q3η
e−α r 1+αr( )−1

r 2

b r( ) = 1+ q e
−α r −1
r

+ q3η 1
β + r 2
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Table 2.1). The novelty of our approach is that we constrain the values of parameters a and 

b  using one of the following methods, described in detail further below: 

1. Series interpolation: in this case approximants given by Equations 2.25, 2.26 are 
referred to as Exp-Ser and DblExp-Ser, respectively.  

2. Variational approach: Equations 2.25, 2.26 in this case are referred to as Exp-Var and 
DblExp-Var.  

3. Global method (modified variational approach): Equations 2.25, 2.26 will be called 
Exp-Global and DblExp-Global. 

The value of parameter a is given by the solution of a quadratic equation for the 

exponential ansatz, and cubic equation for the double exponential ansatz, as given in Table 

2.2. Parameters of the Exp-Padé approximant are defined by a 4th-order polynomial 

equation, and are explicitly shown in Appendix B. 

2.3.2 Series Interpolation Approach 

For the simple exponential ansatz, Equation 2.25, the relationship between the first two 

coefficients in the Taylor series in Equation 2.20, 00 = 01	/	2F, is satisfied for a unique 

value of exponent factor a  given by a root of a quadratic equation, and listed in Table 2.2: 

. The corresponding approximant will be referred to as Exp-Ser, 

in contrast to LIN, which has the same functional form, but with the exponent factor value 

of I = 1 E?F⁄  (cf. Table 2.1).  

A slightly more complex expression in terms of two exponentials, Equation 2.26, 

allows to match two terms in the long-range asymptotic x-power series, 1 − ?= +

D?/	=* + @(=/).	The relationship between the first two coefficients in the Taylor series in 

Equation 2.20, 00 = 01	/	2F, holds when the value of exponent factor a  satisfies a cubic 

equation given in Table 2.2. This cubic has at most one real positive root for all values of 

α = 1+ 4λ / q −1( ) 2λ( )
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model parameters {λ, q, h}, which has an explicit solution shown in Appendix A. The 

correspoding approximant will be referred to as DblExp-Ser. We note that α becomes 

imaginary for sufficiently small l and n, inside a parameter region marked by thin lines in 

Figure 2.6A1, A2; in that case the real part of Equation 2.26 will be used to compare it with 

other methods. 

Finally, the ansatz given by Equation 2.27 has an exponential term with parameter 

a, and a rational term with parameter b. Two free parameters allow to match two 

relationships between the first three Taylor coefficients in the short-range series expansion 

given by Equation 2.20. This results in a polynomial system of order 4, with the level of 

complexity similar to that of the second-order Padé approximation (34). This polynomial 

system and the explicit expression for its roots are provided in Appendix B. We note that 

the real positive solution for parameters a and b is only possible when n<h (equivalently, 

2h q > 1), so this approximation is not applicable for n>h. 
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Table 2.2 Equations for Determining Ansatz Exponent Parameter a. The approximants 
given by Equations 2.25 and 2.26 depend on a single constant exponent factor a  that in 
turn depends on model parameters l, q=(n+h)-1 and h  through the solution of a quadratic 
or a cubic equation. For all three mono-exponential approximants (Exp-Ser, Exp-Var, Exp-
Global), the value of a is given by a solution to a quadratic equation of the same kind, but 
with different values of parameter S. Note that setting S=0 yields the linear approximation 
(LIN in Table 2.1). For all three double-exponential approximants (DblExp-Ser, DblExp-
Var, DblExp-Global), the value of parameter a is given by a solution to a cubic equation 
of the same type, shown in the top row of the table, but with different values of polynomial 
coefficients P, Q, and R. There is at most one positive real root of the cubic equation, which 
is given in Appendix A. 
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Figure 2.1 Equilibrium nanodomain buffer concentration approximations obtained using 
the series interpolation method: 1st-order Padé (green), 2nd order Padé (Padé2, dashed 

green), Exp-Ser (black), Exp-Padé, (dashed black), and DblExp-Ser (dashed magenta). 
Also shown for comparison is RBA2 (A, dashed red) and Linear approximation (C, dotted 

black). All panels show free dimensionless buffer concentration as a function of distance 
from the Ca2+ channel, for three distinct choices of model parameters l and n , as indicated 
in the panel title, with h =1. Grey curves show the accurate numerical solution. In (A), 
DblExp-Ser, Padé2 and Exp-Padé are indistinguishable from the numerical solution on this 
scale. Note that Exp-Padé does not yield a solution for n >h =1 (B, C). In (A), DblExp-Ser 
curve shows the real part of Equation 2.26.  

Figure 2.1 compares the three approximants described above (Exp-Ser, DblExp-

Ser, Exp-Padé) with the previously developed Padé series interpolants of two lowest 

orders, as well as RBA2 (Figure 2.1A), and LIN (Figure 2.1C). The accurate numerical 

solution is shown as a gray curve. For the parameters in Figure 2.1A (l=n=0.1), Exp-Ser 

(black curve) isn’t as accurate as other approximants, but the accuracy of Exp-Padé (dashed 

black curve) and DblExp-Ser (dashed magenta curve) is excellent, and comparable to that 

of Padé2 (dashed green curve); in fact, the three curves completely overlap with the 

numerical solution curve. This is despite the fact that α in DblExp-Ser expression is 

complex for l=n=0.1, so this is not an optimal parameter region for DblExp-Ser, and the 

real part of Equation 2.26 is used in this case. For larger values of l and/or n in Figures 

2.2B (l=0.1, n=10) and 2.2C (l=1, n=10), approximants Exp-Ser and DblExp-Ser are more 
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accurate than Padé and even Padé2. These results suggest that these series interpolants may 

be superior to previously developed approximants in estimating Ca2+ nanodomains in a 

wide range of model parameters. Among previously developed approximants listed in 

Table 2.1, only RBA2 provides comparable accuracy, in the case l<1, corresponding to 

parameters in Figure 2.1A (dashed red curve). 

Comparing the results by eye for several combinations of model parameters is 

clearly insufficient to unveil the parameter-sensitivity of approximant accuracy; in fact, the 

difference between several approximants is almost impossible to tell from Figure 2.1. 

Therefore, following prior work (19, 33, 34), we explore parameter dependence of the 

absolute deviation between the given approximation bapprox and the accurate numerical 

solution, bnumer: 

                                (2.28) 

The deviations are computed on a set of N=100 points spanning 5 orders of magnitude of 

distance r, from 10-3 to 102. Since we use exponentially spaced points, this norm is 

equivalent to an L1 norm weighted by 1/r, and therefore it requires a short-range cut-off 

(we pick r ³ 10-3). The higher weight at small r is justified by the fact that the short distance 

range is of greater interest, physically. Figure 2.1 indicates that the chosen range of r is 

sufficient to capture the qualitative behavior of solutions for a wide range of parameter 

values. We checked that none of the conclusions are changed qualitatively by choosing an 

L¥ norm instead. 

bapprox − bnumer = 1
N

bapprox rn( )− bnumer rn( )
n=1

N

∑ ,

rn = 10
−3+5n/N , n = 1, 2, ...N .
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Figure 2.2 Accuracy comparison of equilibrium free buffer concentration approximations 
obtained by the series interpolation method: Exp-Ser (black curves), Exp-Padé (dashed 

black curves), DblExp-Ser (dashed magenta curves), and Padé2 (dashed green curves). 
Also shown is LIN (dotted black curves) and RBA2 (red dashed curve). RBA2 is only 
shown in A, since it requires l<1. All curves show the error norm given by Equation 2.28
, on base-10 logarithmic scale, as a function of model parameter n  ranging from 10-3 to 
102, for three distinct choices of l: l=0.02 (A), l=2 (B), and l=20 (C), with h =1. Since 
Exp-Padé only yields a solution for n < h =1, the corresponding curves terminate at n=1. 
Magenta circle in (A) indicates the value of n below which the exponent parameter a  of 
DblExp-Ser becomes imaginary (this occurs for l<1.8). For smaller value of n, the 
magenta curve in A corresponds to the real part of Equation 2.26.  

The parameter dependence of this error norm is shown in Figure 2.2, as the value 

of n  is systematically varied from 10-2 to 102, for three distinct values of l. Each curve 

shows the error measure given by Equation 2.28 for the corresponding approximation. For 

the sake of comparison, also shown are the error of the 2nd order Padé interpolant (Padé2, 

dashed green curves), the linear approximant (LIN, dashed black curves), and RBA2 

(dashed red curve, Figure 2.2A only). For smaller values of l (Figure 2.2A), Padé2 and 

RBA2 are still the superior approximation methods, but with increasing l, the exponential 

series interpolation approximants outperform all approximants in Table 2.1 in estimating 

free buffer concentration. Thus, the choice of the optimal approximation method depends 

on the particular combination of model parameter values. 
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2.3.3 Variational Approach 

We now consider a completely different method of approximating solutions, based on a 

variational approach. As was rigorously proven in (48) (see Appendix 4 therein), the 

solution to Equation 2.14 represents a unique minimizer of the following functional, in an 

appropriate function space: 

                                 (2.29) 

where V(b, r) is defined by  

         ,                       (2.30) 

and bRBA(r) is the 1st-order RBA approximants given in Table 2.1, which solves Equation 

2.14 when l=0. Subtraction of V(bRBA(r), r) in Equation 2.29 is necessary to ensure 

boundedness of F[b]. Considering perturbations  where f is a smooth function 

with compact support , and denoting  the 1st partial derivatives with 

respect to b, the variational derivative (the Gâteaux derivative) of F[b] in the direction of 

f is 

F b⎡⎣ ⎤⎦ =
λ
2
∇b

2
+V b, r( )−V bRBA r( ), r( )⎡

⎣
⎢

⎤

⎦
⎥!3∫ d 3r

V b,r( ) = −ηb+ 1
|r |

+η −ν
⎛
⎝⎜

⎞
⎠⎟
b2

2
+ ν b

3

3

b→ b+ εφ,

φ ∈Cc
∞ !3( )( ) V ' b, r( )
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                                  (2.31) 

Therefore, setting  

  for   ,                           (2.32) 

formally yields the weak (47) form of Equation 2.14. As is proved in (48) (see Appendix 

4 therein), the minimizer of F[b] is unique and radially symmetric. Therefore, we seek an 

ansatz of the form 	0(B; I$) , and consider perturbations with respect to the ansatz 

parameters I$ , i.e., we take Performing integration by parts in the 

derivative term transforms Equations 2.31-2.32 to 

                                ,     (2.33) 

where E[b] is defined in Equation 2.18. For the ansätze given by Equations 2.25-2.27, this 

integral may be computed in closed form, allowing to obtain the optimal values of 

parameters ak by differentiation. For the lowest-order exponential ansatz (Equation 2.25), 

considering b(r ;a) with one free parameter in Equation 2.33 leads to a quadratic equation 

for a with a unique positive real root, as given in Table 2.2. The corresponding 

DφF b⎡⎣ ⎤⎦ = limε→∞

F b+ εφ⎡⎣ ⎤⎦ − F b⎡⎣ ⎤⎦
ε

= λ∇b ⋅∇φ +V ' b,r( )φ{ }!3∫ d 3r

= λ∇b ⋅∇φ + b−1( ) νb+η( )+ b
|r |

⎡

⎣
⎢

⎤

⎦
⎥ φ

⎧
⎨
⎩

⎫
⎬
⎭!3∫ d 3r.

DφF b⎡⎣ ⎤⎦ = 0 ∀φ ∈Cc
∞ !3( )

φ = ∂b r ;α k( ) / ∂α k .

∂F b r ;α k( )⎡⎣ ⎤⎦
∂α k

= 4π E b r;α k( )⎡⎣ ⎤⎦
∂b
∂α k0

∞

∫ r 2dr = 0
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approximant will be referred to as Exp-Var (see Table 2.2). Note the similarity in the 

expression for a, as compared to the series interpolant method result in Table 2.2. 

For the more complicated case of a double exponential ansatz (Equation 2.26), 

Equation 2.33 leads to a cubic rather than a quadratic equation for a, analogously to the 

series interpolation method; this cubic is shown in Table 2.2, and its closed-form solution 

is given in Appendix A. This cubic has a single real positive real root for a wide range of 

model parameters {l, n, h}, and we refer to the corresponding approximant as DblExp-

Var. However, just like in the case of DblExp-Ser, α becomes complex when both l and n 

are sufficiently small. In this parameter regime, the real part of Equation 2.26 still provides 

an accurate approximant. The performance of Exp-Var and DblExp-Var approximants will 

be investigated below, after considering our final approximation method. 

2.3.4 Global Method: Modification of the Variational Approach 

Given that Equations 2.25-2.26 represent narrow classes of functions that cannot provide 

a true minimum of F[b], it may be useful to consider modifications of Equation 2.33 that 

allow to achieve a lower value of our chosen error norm given by Equation 2.28. One such 

modification is to replace the Jacobian factor r2 in Equation 2.33 with the first power of r, 

increasing the contribution of small distances in this integral, and thereby potentially 

reducing the error at short range: 

                                                                                 (2.34) E b r;α( )⎡⎣ ⎤⎦
∂b
∂α0

∞

∫ r dr = 0
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We refer to this method of setting approximant parameter values as the Global 

method or modified variational method. Equation 2.34 can be rigorously obtained from the 

variational derivative given by Equations 2.31-2.32, but this time applied to perturbations 

 of form 

                                                            (2.35) 

We note that for the ansätze in Equations 2.25-2.26, this perturbation remains finite 

as r®0. Numerical results show that this modification does lead to noticeable improvement 

of the resulting approximants close to the channel location, for some combinations of 

model parameters. In fact, for some parameter regimes this method clearly outperforms the 

series interpolation and the variational approaches with respect to the weighted L1 error 

measure given by Equation 2.28. 

For the lowest order exponential ansatz (Equation 2.25), after replacing 0(B; I) in 

Equation 2.34 with Equation 2.25, one obtains a quadratic equation for a  with a single 

positive real root given in Table 2.2; we refer to the corresponding approximant as Exp-

Global. Just as in the case of the series intepolant method and the variational method, 

applying this method to the double exponential ansatz (Equation 2.26) leads to a cubic 

equation for parameter a, given in Table 2.2. We verified that this cubic has a single real 

positive real root for a wide range of model parameters {l, n, h}, and we refer to the 

corresponding approximant as DblExp-Global. However, like in the case of DblExp-Ser 

and DblExp-Var approximants, parameter α becomes imaginary when both l and n are 

sufficiently small; in that case, the real part of Equation 2.26 will be used. 

f

φ r( ) = 1r
∂b r ;α( )

∂α
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We note that a more straightforward approach of minimizing a weighted L2 norm 

of K[0] also leads to a closed-form solution in the case of a single-exponential ansatz, but 

the resulting approximant does not perform significantly better than the ones we present 

above, and its parameter α is given by solution to a more complicated 4th order polynomial 

equation.   

2.3.5 Accuracy of the Variational and Global Approximants 

Figure 2.3 compares all variational and global approximants described above (Exp-Var, 

DblExp-Var, Exp-Global and DblExp-Global) with Padé2 and the accurate numerical 

solution, using the same combination of model parameters as in Figure 2.1. It shows that 

in some cases (Figure 2.3B, C) the global approximations are more accurate than Padé2 

and other series interpolants (cf. Figure 2.3B, C). Further, in Figures 2.3B and 2.3C, global 

approximants perform better than the corresponding variational approximants, and the 

differences between global methods and numerical results are barely noticeable. In 

contrast, Figure 2.3A illustrates that for n=l=0.1, none of the variational and global 

approximants are as accurate as Padé2, suggesting that the series interpolation methods 

may be superior for small values of n and l. We conclude the variational method and the 

global method can be great improvements compared with the series interpolation method 

in some, but not all, parameter regimes. 
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Figure 2.3 Comparison of equilibrium buffer concentration approximants obtained using 
the variational and the modified variational (global) methods: Exp-Var (dashed blue 

curves), DblExp-Var (dotted magenta curves), Exp-Global (blue curves), and DblExp-
Global (magenta curves). Padé2 is also shown for comparison (dashed green curves). All 
panels show the free dimensionless buffer concentration as a function of distance from the 
Ca2+ channel, for three distinct choices of model parameters l and n, with h=1. Grey curves 
show the accurate numerical solution. In (A), the real part of DblExp-Var and DblExp-
Global is shown. In (B) and (C), the curves for Exp-Global and DblExp-Global overlap the 
numerical solution. 

Figure 2.4 shows a more systematic comparison to reveal the accuracy of the 

approximants obtained using the variational and the global methods in more detail. As in 

Figure 2.2, the value of n  is systematically varied from 10-2 to 102, for three different fixed 

values of dimensionless buffer diffusivity parameter l. Each curve shows the average 

absolute error in buffer concentration approximation, as given by Equation 2.28. The error 

of the series interpolant DblExp-Ser is also shown for comparison in all panels, while 

Figure 2.4A also shows the accuracy of RBA2 and Padé2. For small values of n  and l 

(Figure 2.4A), RBA2, Padé2, and even DblExp-Ser outperform the global approximants. 

However, as one increases the values of n  and l, global approaches are starting to show 

their advantage. For most parameter regimes, approximations obtained using the modified 

variational (i.e., global) method are more accurate than the corresponding approximations 
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obtained using the unmodified variational method. For example, in all panels of Figure 2.4, 

Exp-Global (blue curves) is superior to Exp-Var (dashed blue curves). 

 

Figure 2.4 Accuracy comparison of equilibrium nanodomain free buffer concentration 
approximations obtained by the variational and modified variational (global) methods: 
Exp-Var (dashed blue curves), DblExp-Var (dotted magenta curves), Exp-Global (blue 

curves), and DblExp-Global (magenta curves). For comparison, also shown is the error of 
DblExp-Ser (dashed magenta curves), and (A) shows the errors of RBA2 (dashed red 

curves) and Padé2 (dashed green curves). All panels show the average absolute deviation 
of free dimensionless buffer concentration (Equation 2.28), on log-10 scale, as a function 
of buffer strength parameter n ranging from 10-3 to 102, for three distinct choices of fixed 
model parameter l: l=0.02 (A), l=2 (B), and l=20 (C), with h=1. Magenta circles in (A) 
mark values of n  below which parameter a  becomes imaginary for the corresponding 
DblExp method. For these smaller value of n, the magenta curves in (A) represent the 
accuracy of buffer concentration given by the real part of Equation 2.26. 

We note that the 2nd term in the DblExp approximants reflects the 2nd term in the 

long-range asymptotic series, which scales as q3=1/(h+n)3, therefore the double-

exponential and the mono-exponential ansätze become equivalent when q is sufficiently 

small, corresponding to large values of buffer strength parameter n. This behavior of 

accuracy as n®¥ is apparent in Figures 2.2 and 2.4. 
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2.3.6 Accuracy in Approximating Ca2+ Concentration 

As noted above, Ca2+ concentration is uniquely determined from the equilibrium buffer 

concentration through the Ca conservation law, Equation 2.15. Nevertheless, it is useful to 

look separately at the accuracy of the Ca2+ estimation by the methods we present. Close to 

the channel location Ca2+ concentration is dominated by the unbounded point source term, 

1/r, and therefore we will use a logarithmic error measure when comparing Ca2+ 

concentration approximations (19, 33, 34): 

                               (2.36) 

This sum extends over the same logarithmically spaced points that were used for the buffer 

error measure given by Equation 2.28, namely a set of 100 points spanning 5 orders of 

magnitude of distance.  

Figure 2.5 plots this Ca2+ error measure for the optimal approximations that achieve 

the greatest accuracy over the wide range of model parameters l and n. Because of the 

difference between the buffer and the Ca2+ error measures (cf. Equation 2.28 vs. Equation 

2.36), the accuracy profile of different Ca2+ concentration approximants shown in Figure 

2.5 doesn’t match perfectly the accuracy of the corresponding free buffer approximants 

shown in Figures 2.2 and 2.4, despite the one-to-one relationship between the Ca2+ 

concentration and free buffer. As explained above, the relative error in Ca2+ concentration 

estimation is particularly sensitive to the accuracy of the method at intermediate distances, 

rather than its accuracy in the vicinity of the channel, as is the case for the free buffer error 

measure (19, 34). Note in particular that the DblExp-Var or DblExp-Global yield the most 
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accurate Ca2+ approximations for l³1 (see Figures 2.5B, C), contrary to the error in buffer 

estimation, which is minimized by the Exp-Global and DblExp-Global approximants (cf. 

Figures 2.4B, C). However, for small values of l, RBA2 and Padé2 are the best methods 

for estimating both Ca2+ and buffer concentration (Figures 2.4A, 2.5A).  

  

Figure 2.5 Accuracy comparison of equilibrium nanodomain Ca2+ concentration 
estimation by select optimal approximations (methods with smallest error): RBA2 (red 

dashed curves), Padé2 (dashed green curves), Exp-Padé (dot-dashed black curves), Exp-
Global (blue curves), DblExp-Global (magenta curves), and DblExp-Var (dotted magenta 

curves). All panels show average absolute deviation of free dimensionless Ca2+ 
concentration (Equation 2.36), on base-10 logarithmic scale, as a function of buffering 
strength parameter n ranging from 10-2 to 102, for three distinct choices of diffusivity 
parameter l: l=0.02 (A), l=2 (B), and l=20 (C), with h=1. Curves for Exp-Padé (dashed 

black curves) terminate at n=1. 

2.3.7 Summary of Results and Choice of Optimal Method 

Figure 2.6 summarizes all results presented in Figures 2.1-2.5, marking the best 

approximants and their errors for a wide range of buffer mobility l and buffering strength 

n  varying over 5 orders of magnitude. It shows that the methods we presented significantly 

improve the accuracy of approximation for a wide range of model parameters, and 

especially those corresponding to larger values of buffer mobility l and buffering strength 

n. In fact, these methods outperform all previously developed approximants with the 
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exception of the 2nd-order RBA and 2nd-order Padé (19, 34), the two methods which are 

still superior in particular regions of parameter space corresponding to small buffer 

mobility l and small-to-moderate buffering strength n.  

 

Figure 2.6 Comparison of parameter regions where a given approximant outperforms the 
rest in estimating (A1) free buffer and (B1) Ca2+ concentration in the (n, l) parameter 
plane, according to the error measures given by Equations 2.28 and 2.36. In all panels, h=1. 
Colors indicate parameter region of best performance for each approximant: Padé2 (green), 
RBA2 (red), Exp-Padé (gray), DblExp-Var (pink), DblExp-Global (magenta), Exp-Global 
(blue). Black circles correspond to parameter values in Figures 2.1, 2.3, and dashed lines 
corresponds to the parameter sweep curves in Figures 2.2, 2.4-2.5. Thin light semi-circular 
curves indicate the boundaries inside of which the exponent parameter a in the DblExp-
Var and DblExp-Global methods becomes imaginary (a is always real outside of the region 
marked by these curves, for n > 1 and l > 1.8). Lower panels show the smallest error in 
estimating buffer (A2) and Ca2+ (B2) concentrations achieved using the optimal 
approximants shown in top panels. The grayscales in A2 and B2 indicate the log-10 of 
error values given by Equations 2.28 and 2.36, respectively. Darker gray-level corresponds 
to better accuracy. 
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Figure 2.6A1, B1 can be used to design a simple algorithm for the selection of the 

optimal method. We find that such algorithm can be further simplified by using just three 

methods, Padé2, RBA2 and DblExp-Global, with only a minor sacrifice in accuracy. Below 

is the full sequence of steps allowing to achieve good accuracy in the entire parameter 

range that we explored, combined with the steps needed to obtain final results in physical 

units: 

1) Compute all non-dimensional parameters (Equations 2.10, 2.12, 2.13). 

2) Find the non-dimensional buffer concentration b using one of three methods: 

a) If  ln < 0.1 and lh < 0.03, then use RBA2 (Table 2.1) 

b) Otherwise, use DblExp-Global, if its parameter a is real (Equations 2.26, 
A.1-A.3) 

c) Otherwise, use Padé2 (Table 2.1, Equations C.1, C.2) 

3) Compute non-dimensional Ca2+ concentration c using the conservation law, 
Equation 2.15. 

4) Convert concentrations to physical units: [Ca2+] = c K, [B] = bB¥. 

Here K denotes buffer’s affinity, and B¥ is the free buffer concentration far from the 

channel.  

Figure 2.7 shows the accuracy of the approximants chosen according to this 

simplified algorithm remains within 1% even for this simplified approach, for a very wide 

range of l and n values, and two different values of h, namely h=1 and h=10. Note that 

the overall accuracy is increased at higher values of , which corresponds to 

higher background Ca2+ concentration and/or reduced mobility of the Ca2+-bound buffer 

state. Results in Figures 2.6A1, B1 reveal that a somewhat better performance could be 

achieved if the buffer and Ca2+ concentration approximations are chosen independently for 

η = c∞ +1/ δB
*
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a given set of parameter values, but this would lead to only a minor improvement. Apart 

from algorithm simplicity, choosing the same method for Ca2+ and buffer concentration 

estimates guarantees that the conservation law, Equation 2.15, is satisfied. 

 

Figure 2.7 Simplified algorithm for choosing an optimal approximant among the subset 
Padé2, RBA2, and DblExp-Global, for two values of parameter h: h=1 (A1-A3), and h=10 
(B1-B3). (A1, B1): the best method as a function of parameters n  and l, chosen according 
to the algorithm described in the text. Colors indicate the parameter region for each 
approximant: Padé2 (green), RBA2 (red), and DblExp-Global (magenta). Black circles 
correspond to parameter values in Figures 2.1, 2.3, and dashed lines corresponds to the 
parameter sweep curves in Figures 2.2, 2.4, 2.5. Thin light semi-circular curves indicate 
the boundaries inside of which the exponent parameters a in the DblExp-Global 
approximant becomes imaginary. Lower panels show the smallest error in estimating 
buffer (A2, B2) and Ca2+ (B3, A3) concentrations achieved using the approximants chosen 
as indicated in A1 and B1. The grayscales in A2 and B2 indicate the log-10 of error values 
in Equations 2.28 and 2.36, respectively. The same grayscale is used for h=1 and h=10, 
for ease of comparison. Darker gray level corresponds to better accuracy. 
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CHAPTER 3 

COMPLEX BUFFER CASE 

3.1 Methods: Single-channel Ca2+ Nanodomain Equation 

We start with the description of the Ca2+ binding and unbinding reactions for buffer 

molecules with two binding sites, which we will refer to as two-to-one buffers or complex 

buffers (33, 37, 40):  

                                  (3.1) 

Here B, B* and B** denote respectively the free, partially bound, and fully Ca2+-

bound states of the buffer, and , are the Ca2+-buffer binding/unbinding rates for 

each buffer state. The rest of the problem is formulated under the same assumptions 

considered in the case of a simple buffer, as described in Chapter 2. Namely, we will 

consider a semi-infinite domain bounded by a flat plane representing the cytoplasmic 

membrane, which contains one or more Ca2+ channels. Further, we assume zero flux 

boundary condition for Ca2+ and buffer on the flat plane, so the reflection symmetry allows 

to extend the domain to infinite space, while doubling the current strength, which places 

the Ca2+ current sources inside the domain (18, 19, 27). Denoting free Ca2+ concentration 

as C, and time differentiation as , we arrive at the following reaction-diffusion system 

for the concentrations of all reactants (33): 

B
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                          (3.2) 

where the reaction terms are given by   

                                                 (3.3) 

In Equation 3.2, the point channel-source strengths are #$ = %!%,$/(2*), where 

ICa,k are the amplitudes of individual open Ca2+ channels located at positions rk , F is the 

Faraday constant, and NCa is the number of Ca2+ channels. As in the simple-buffer case (19, 

21, 34, 43, 44), there are two conservation laws for the total buffer and the total Ca2+ 

concentrations: 

,                                    (3.4) 

.                   (3.5) 

Since we are interested in equilibrium solutions, we obtain 
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                                (3.6) 

Following prior work (33), here we assume that buffer diffusivity does not change 

when binding Ca2+ ions,  (this constraint is relaxed in the derivation of the 

RBA shown in Appendix F). In this case the two conservation laws in Equation 3.6 have 

the following solution (19, 21, 27, 33, 43, 44): 

                                                      (3.7) 

where constants BT and CT are related to the total (bound plus free) buffer and Ca2+ 

concentrations respectively, infinitely far from channel: 

                                     (3.8) 

Here X¥ denote the concentrations of reactants X infinitely far from the channel, 

where reactions given by Equation 3.3 are at equilibrium. Therefore, all background buffer 

state concentrations are uniquely determined by the background [Ca2+], C¥, through 

equilibrium relationships 
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                                                  (3.9) 

where K1,2 are the affinities of the two reactions in Equations 3.1, 3.3, given by 

  

We now restrict to the case of a single Ca2+ channel of source strength # =

%!%/(2*)  at the origin, and look for spherically symmetric solutions, which turns Equation 

3.6 into a system of ODEs, with the spherically symmetric Laplacian given in terms of the 

distance from the Ca2+ channel, r=|r|: 

                                            (3.10) 

We now non-dimensionalize the problem using an approach analogous to the one 

we used for a simple buffer in Chapter 2. As we mentioned earlier, this is a slightly 

modified version of the non-dimensionalization introduced by Smith et al (19) and also 

used in (33, 34). Namely, we normalize Ca2+ and buffer concentrations by the affinity of 

the 2nd binding step and the background buffer concentration, respectively: 

.                                (3.11) 

We also re-scale the spatial coordinate (r/2 → r) using the scale parameter that 

depends on the strength of the Ca2+ current,   
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.                                                    (3.12) 

This transforms Equations 3.6, 3.7 into the form 

                                        (3.13)                   

where bT and cT are the non-dimensional versions of integration constants given by 

Equation 3.8, related to total buffer and Ca2+ concentrations infinitely far from the channel 

(note that in our non-dimensionalization b¥=1): 

                                      (3.14) 

with dimensionless parameters 

                                   (3.15) 

Along with c¥, parameters l1,2 and n1,2 completely specify the model system. Here 

l1,2 are the dimensionless mobilities of the two buffer states, which depend on buffering 

L =σ / 2πK2DC( )

λ1∇
2b = 2ε cb− b* ,

λ2∇
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kinetics and Ca2+ current amplitude through the length scale L (Equation 3.12). They 

quantify the ratio between the rate of diffusion and the rate of Ca2+ influx and binding. 

Parameters n1,2 quantify the overall buffering strength, and equal the product of the relative 

buffer mobility, DB / DC, and the two quantities characterizing buffering capacity at rest, 

2B¥ / K1,2. For the sake of simplicity, we will also use the following cooperativity 

parameters, which characterize the difference between the affinities and kinetics of the 

buffer’s two distinct Ca2+-binding sites:  

                                                    .                          (3.16) 

In the case of calretinin and calmodulin, the binding properties have been 

experimentally estimated (37, 41), and the corresponding values of cooperativity 

parameters are given in Table 3.1. These two Ca2+ buffer-sensors are characterized by 

highly cooperative Ca2+ binding, with e <<1.  

In the results shown below, we will use the cooeprativity parameters given by 

Equation 3.16 to replace some of the four parameter given by Equation 3.15. Namely, we 

will specify our model using either {l2, n2, e, g } or {l1, l2, e, q}, where parameter q is 

anlogous to the parameter we introduced in the simple buffer case, namely q=1/(1+n1). 

We now restrict our analysis to the case of zero background Ca2+ concentration, 

relegating the more general case c¥¹0 to Appendix E. With this simplification, c¥=cT=0 

and b¥=bT=1, therefore Equation 3.13 becomes 

ε =
ν1
ν2

=
K2
K1
, γ =

λ1
λ2

=
k2
−

k1
−
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                                                                                               (3.17) 

Table 3.1 Ca2+ Binding Properties of Strongly Cooperative Buffers Calretinin (CaR) and 
Calmodulin (CaM), as Measured by Faas et al (37, 41). Each CR molecule contains 5 
binding sites, consisting of two identical cooperative pairs of Ca2+-binding sites and one 
independent non-cooperative site. CaM molecule consists of two independent domains 
(lobes), each binding two Ca2+ ions in a cooperative manner. Note the very high rate of the 
2nd Ca2+ binding rate to the N-lobe of CaM, which is therefore extremely diffusion-limited. 
Values of l2 and n2 are calculated for Ca2+ current strength of ICa=0.4 pA, and total buffer 
concentrations of BT=100 µM.  

Parameter k1
+ k2

+ K1 K2 
  l2 n2 

Units (µM ms)-1 (µM ms)-1 µM µM 

CaR  
coop. sites 

0.0018 0.31 28 0.068 2.4×10-3 0.42 1.6×10-3 294 

CaR  
Non-coop. 
site 

0.0073 -- 36 -- -- -- --  

CaM  
(N-lobe) 

0.77 32 193 0.788 4×10-3 0.17 1.8×10-4 25.4 

CaM  
(C-lobe) 

0.084 0.025 27.8 0.264 9.5×10-3 2.85×10-3 7.8×10-2 75.8 

 

As in the simple buffer case, Equation 3.17 is challenging to analyze since it 

represents a non-linear and singular problem on an infinite domain. Further, most 

stationary approximations developed for the case of simple buffer cannot be extended to 

complex buffers (19, 33).  As mentioned above, RBA is the only approximant that has been 

successfully extended to the case of complex buffer (33). RBA assumes that the reaction 
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is at equilibrium on the entire domain. In Appendix F we derive RBA using the new non-

dimensionalization considered in this work, slightly generalizing the expressions in (33). 

As was found before for the case of simple buffer, RBA approximates the true solution 

very well within the parameter regime l1,2<<1 (19). However, for complex buffer, this 

parameter regime has a complex interplay with the cooperativity condition e<<1. For 

example, the accuracy in buffer concentration estimation is significantly reduced with 

increasing Ca2+ binding cooperativity, corresponding to decreasing e . However, reducing 

the unbinding rate ratio g along with e  partially rescues RBA accuracy (33). This high 

sensitivity of RBA accuracy to buffer parameters calls for the development of other 

approximants. In the results shown below, the accuracy of newly developed approximants 

will be compared and contrasted with that of the RBA.  

3.2 Results 

3.2.1 Equilibrium Ca2+ Nanodomain: Power Series Interpolation Method 

We begin by presenting the power series interpolation method developed in Chapter 2 for 

the case of simple buffers with one-to-one Ca2+ binding stoichiometry (34), which we will 

now generalize to the case of Ca2+ buffers with two binding sites. This method involves 

finding simple ansätze that interpolate between the solution’s Taylor series in powers of 

distance from the channel location, r, and the asymptotic power series expansion of the 

solution in terms of the reciprocal distance from the channel location, x=1/r. We will refer 

to these two series as the short-range (low-r) and long-range (high-r) series.  

We start with the non-dimensionalized form of the system for complex buffer, 

Equation 3.17, and make a substitution , and   to slightly simplify U = (1− b) / ε V = b** / ε
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the system. Eliminating the partially-bound buffer concentration variable using the buffer 

conservation law , Equation 3.17 is transformed to 

                                                                               (3.18) 

Next, we eliminate the Ca2+ concentration c using the Ca2+ conservation law in the 

system above to obtain 

  (3.19) 

This system has only a regular singularity at r =0 and does have a solution analytic 

at r =0, representing the physical nanodomain solution that we are seeking. Using a formal 

series expansion similar to the Frobenius method we find the following Taylor series 

expansions in r for both U and V: 

  (3.20) 

In above system U0 and V0 are related to the concentrations of free and fully bound 

buffer at channel location, r=0; these two values are finite and non-zero, but unknown a 

priori. Thus, U0 and V0 are important unknowns of the problem, to be determined by our 
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approximation procedure. Because U0 and V0 are unknown, the utility of Equation 3.20 is 

that it provides relationships between coefficients of these Taylor expansions. For example, 

denoting the 1st-order Taylor coefficients in Equation 3.20 as U1 and V1, we adjust the free 

parameters of each approximant considered further below by imposing the constraints 

U1=(eU0-1)/l1 and V1=(V0-U0)/(2l2). 

In order to obtain the long-range asymptotic series expansion of the solution, we 

make a coordinate mapping , transforming Equation 3.19 to the form 

                           (3.21) 

This system has a unique asymptotic power series expansion near x=0 satisfying 

boundary conditions at x®0+ (i.e., r®+¥), namely U(x=0+) =0, V(x=0+) =0. Up to terms 

of order x3, this asymptotic series expansion can be obtained by simply equating the right-

hand sides of Equation 3.21 to zero, which yields  

                          (3.22) 

where we introduced the parameter  for the sake of simplicity. It is important 

to note that the leading term in the V(x) long-range expansion is of order O(x2), in contrast 

to U. This is intuitive, since V represents the double-bound buffer state, which decays faster 
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than any other concentration measure as x®0+ (i.e., r®+¥). Note however that this is not 

the case in the case of non-zero background [Ca2+]; this more general case is considered in 

Appendix E. Parenthetically, we also note that the right-hand sides of Equation 3.21 

contain all reaction terms, which RBA sets to zero, while the Laplacian gives rise to 

asymptotic terms of order O(x4); therefore up to the given order O(x3) this expansion agrees 

with the corresponding asymptotic expansion of the RBA, described in Appendix F. 

We will now consider simple ansätze whose series expansions simultaneously 

match leading terms of the low-r (short-range) series and the low-x (long-range, high-r) 

series given by Equations 3.20, 3.22. Inspired by the simple buffer case, we seek ansätze 

for U and V that combine Padé approximants (rational functions) and exponential 

functions. Below we list these ansätze for U and V, along with the corresponding short-

range and long-range series representations. Our approximations are based on pair-wise 

combinations of these U and V ansätze, as summarized in Table 3.2. By a slight abuse of 

notation, we use the same function name (U or V) whether it is expressed as a function of 

distance variable, r, or its reciprocal, x: 

• Padé ansatz for U, containing one free parameter, A: 

                            (3.23) 

• Exponential ansatz for U, which depends on one free parameter, a: 

U r( )= 2q
A+ r

= 2q
A
1− r
A
+ r

2

A2
+O(r3)

⎡

⎣
⎢

⎤

⎦
⎥ ,

U x = 1
r

⎛
⎝⎜

⎞
⎠⎟

= 2qx
1+ Ax

= 2q x − Ax2 +O(x3)⎡⎣ ⎤⎦.
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                            (3.24) 

• Padé ansatz for V, which depends on two free parameters, b1 and b2: 

                               (3.25) 

• Exponential ansatz for V, which depends on one free parameter, s: 

                      (3.26) 

Note that all of these ansätze are analytic at r=0, and that in the limit r® +¥ (x=1/r 

® 0+), they automatically match the leading non-zero term in the asymptotic series 

expansion of the solution given by Equation 3.22: U(x)= 2qx + O(x2), V(x)=q2x2 + O(x3). 

Additionally, all ansätze satisfy appropriate physical constraints. Namely, imposing 

conditions A > 0 and a > 0 guarantees that U is also positive and monotonically decreasing 

to U(r® +¥) = 0 for each ansatz, and therefore b=1 at infinity, since . This 

agrees with the observation that the free buffer concentration is increasing monotonically 
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−ar

r
= 2qa − qa2r +O(r 2 ),

U x = 1
r

⎛
⎝⎜

⎞
⎠⎟
∼ 2qx.

V r( ) = q2

r 2 + b1r + b2
= q2 1

b2
−
b1
b2
2 r +

b1
2 − b2
b2
3 r 2 +O(r3)

⎡

⎣
⎢

⎤

⎦
⎥ ,

V x = 1
r

⎛
⎝⎜

⎞
⎠⎟
= q2x2

1+ b1x + b2x
2 = q

2 x2 − b1x
3 +O(x4 )⎡⎣ ⎤⎦.

V r( ) = q2 1− exp −sr( ) 1+ sr( )
r 2

= q2s2 1
2
− s
3
r + s

2

8
r 2 +O r3( )⎛

⎝⎜
⎞
⎠⎟
,

V x = 1
r

⎛
⎝⎜

⎞
⎠⎟
∼ q2x2.

U = (1− b) / ε



47 
 

from b0>0 at the channel mouth to b(r® +¥) = 1 infinitely far from the channel. Further, 

V is also always positive given positive parameters b1, b2, and s, and is monotonically 

decreasing to V(r® +¥) = 0, therefore b**=0 at infinity (recall that ). This agrees 

with the fact that the fully bound buffer concentration is bounded and equals to zero 

infinitely far from the Ca2+ channel, where [Ca2+]=0. 

Table 3.2 List of All New Approximants for a Two-Site Buffer, Including the Ansätze for 
U and V and the Number of Terms in the Short-range and Long-range Solution Expansions 
(Equations 3.20, 3.22) Matched by Each V Ansatz. Note that all ansätze automatically 
match the term of order O(x) in U (U ~ 2qx) and the term of order O(x2) in V (V ~ q2x2). 
The free parameter in the U ansatz is matched using terms of order O(r), while the free 
parameters in the V ansatz are matched using terms indicated in the last column.  

Name U ansatz  V ansatz Parameters V accuracy 

PadéA 

  
N=3 

(A, b1, b2) 

O(r), O(x3) 

PadéB O(r2), O(x2) 

ExpPadéA 

  
N=3 

(a, b1, b2) 

O(r), O(x3) 

ExpPadéB O(r2), O(x2) 

PadéExp   
N=2 

 (A, s) 
O(r), O(x2) 

ExpExp   
N=2 

(a, s) 
O(r), O(x2) 

 

We match the free parameters in the above approximants following the same 

interpolation method as in the case of a simple (one-to-one) buffer (34).  Namely, the 

unknowns are U0 and V0 in Equation 3.20, plus either two or three parameters 

V = b** / ε

2q
A+ r

q2

r 2 + b1r + b2

2q1− e
−ar

r
q2

r 2 + b1r + b2

2q
A+ r

q2
1− exp −sr( ) 1+ sr( )

r 2

2q1− e
−ar

r
q2
1− exp −sr( ) 1+ sr( )

r 2
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characterizing a particular approximant, as summarized in Table 3.2. We need 4 or 5 

constraints to match these unknowns. The first 4 constraints are obtained by matching the 

first two terms (of order O(1) and O(r)) in the short-range Taylor series for both U and V, 

as given by Equation 3.20. For the 3-parameter approximants, the final 5th constraint is 

needed, which comes from matching one additional term in the short- or the long-range 

series of V, as specified in the last two columns of Table 3.2. One obtains an algebraic 

system of 4 or 5 equations for the ansatz parameters, which are readily solvable in closed 

form. Tables 3.3 and 3.4 show the exact expressions we obtain using this method for the 

free ansatz parameters in terms of the model parameters {l1, l2, q, e}. Note that parameters 

b2 and s are defined by solutions of cubic equations shown in the last column of Table 3.4, 

whose roots are given in closed form in Appendix D. Once b=1-eU and b**=eV are 

determined using these approximants, the partially bound buffer concentration, b*, and 

Ca2+ concentration, c, can then be determined from b and b** through the conservation laws 

in Equation 3.17. 

Table 3.3 Ansätze for the Free Buffer Variable U and Equations for Their Parameters as 
Functions of Non-dimensional Model Parameters q, e, l1, and l2. Corresponding Ansätze 

for fully bound buffer variable V are shown in Table 3.4. 

Methods U ansatz Ansatz parameters  

PadéA, PadéB, PadéExp   

ExpPadéA, ExpPadéB, ExpExp   

2
=

+
qU

A r
2 2

12A q q qe e l= + +

12
--

=
areU q

r
( )2

1 1/a qe l e l= + -
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Table 3.4 Ansätze for the Fully Bound Buffer Variable V and Equations for Their 
Parameters as Functions of Non-dimensional Model Parameters q, e, l1, and l2. Parameters 
a and A from the corresponding ansatz for the free buffer variable U are showed in Table 
3.3. For PadéB, ExpPadéB, PadéExp and ExpExp, parameter b2 or s is given by the unique 
real positive root of a cubic equation obtained by combining equations in the last two 
columns, whose closed-form solutions are given in Appendix D.  

Method V ansatz Equations for ansatz parameters 

PadéA 

 

 

 

 

 

PadéB 

 

 

 

ExpPadéA 

 

 

ExpPadéB 

 

 

PadéExp 

 

 

ExpExp 
 

 

We will now illustrate this series interpolation method more concretely using the 

ExpPadéA approximant as an example. This ansatz is formed by combing Equation 3.24 

for U and Equation 3.25 for V. Then, as indicated in Table 3.2, we constrain the values of 

ansatz parameters using terms of orders O(1) and O(r) in Equation 3.20 for both U and V, 
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and term of order O(x3) in Equation 3.22 for V (recall once again that all ansätze 

automatically match the term of order O(x) in U and the term of order O(x2) in V). 

Therefore, we obtain 5 constraints for 5 unknowns (three parameters in ExpPadéA ansatz, 

plus U0 and V0): 

                                (3.27) 

The solution of this system is given in Tables 3.3-3.4. Note that the 3rd equation in 

this system leads to a quadratic equation for b2, whose solution is given in Table 3.4.  

3.2.2 Accuracy in Approximating Buffer and Ca2+ Concentrations  

As a crude demonstration of the performance of our ansätze, Figure 3.1 shows our 

approximants for 4 select combinations of model parameters, with each column presenting 

the results for all concentration variables (b, b*, b**, c) for a particular set of values of l2, 

n2, g, and e, as labeled in the figure title. The accurate numerical results are shown as thick 

grey curves. Since the expressions for the free buffer b (specified by U) are identical for 

PadéA, PadéB, and PadéExp approximants (see Table 3.3), the corresponding 

approximation is labeled as U-Padé, and shown as a single dashed green curve in the top 

panels of Figure 3.1. Similarly, b approximants for ExpPadeA, ExpPadeB and ExpExp are 

also identical, and are labeled U-Exp and shown as a dashed magenta curves in the top 

panels. When showing results for variables b*, b**, and c in rows 2-4 of Figure 3.1, only 

U0 = 2qa, V0 = q
2 b2 ,

εU0 −1( ) λ1 = −qa2 ,

V0 −U0( ) 2λ2( ) = −q2b1 b2
2 ,

−b1q
2 = −2q3 1− q + ε 2q −1( )⎡⎣ ⎤⎦.
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⎪
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the best 5 approximants are shown for each parameter combination, which is a subset of 

the total of 7 approximants combining the 6 ansätze in Table 3.2, plus the RBA. 

As will be elucidated further below (see Figures 3.3-3.6), the parameter regimes we 

selected in Figure 3.1 are not optimal for the ansätze we introduce; this is especially true 

for the parameter combinations in the last two columns of Figure 3.1. Nevertheless, even 

for the chosen sub-optimal parameter combinations, a decent qualitative agreement with 

the accurate numerical solution is achieved by at least one of the ansätze, with higher 

accuracy for the first two parameter combinations in Figures 3.1A1-4, B1-4. We observe 

that RBA can compete with the newly presented approximants only when diffusivity l2 is 

very small (Figure 3.1C1-C4); therefore, RBA is not shown for the other three parameter 

choices. Note the difference in scales in the different panels of Figure 3.1: some of the 

apparent large discrepancies for b* and b** involve relatively small absolute differences. 

The accuracy of several of the newly presented approximants is sufficiently high for the 

curves to completely overlap with the numerical simulations. Therefore, the series 

interpolation method achieves significant improvement of approximation accuracy for a 

wide range of model parameters, as compared to RBA.  
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Figure 3.1 Comparison of approximations of equilibrium Ca2+, free buffer, partially bound 
buffer, and fully bound buffer concentration, obtained using the newly developed series 
interpolation methods: PadéA (green curves), PadéB (dashed green), ExpPadéA 
(magenta), ExpPadéB (dashed magenta), PadéExp (black), ExpExp (dashed black), and 
RBA (red). Since these approximants involve only two different ansätze for the free buffer 
variable U (see Tables 3.2, 3.3), the latter are labeled as U-Pade (dashed green) and U-Exp 
(dashed magenta) in panels A1, B1, C1, D1. All panels show the respective dimensionless 
concentrations as a function of distance from the Ca2+ channel, for 4 distinct choices of 
model parameters l2, n2, g, and e. as indicated in the panel title. Grey curves show the 
accurate numerical simulations. A subset of 5 best methods is shown for each parameter 
combinations. The accuracy of some approximants is sufficiently high for the curves to 
completely overlap with the numerical solution, hence the difference between the curves 
is very small and hard to resolve by eye. 
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It is interesting to note that the partially-bound buffer concentration b* is not 

necessarily monotonic with respect to distance from the origin, unlike the free and fully-

bound concentration variables. Despite the simple functional forms of our ansätze, they 

can in fact reproduce this interesting non-monotonic behavior accurately, at least for some 

combination of model parameters: see for instance the ExpPadéB approximant in Figure 

3.1D2. 

Identifying the best approximations for fully bound buffer (b**) and partially bound 

buffer (b*) is a lot more difficult than choosing the best approximant for the free buffer (b) 

using data presented in Figure 3.1, since all approximants perform quite differently under 

varying conditions. ExpPadéA, ExpPadéB, and ExpExp give more consistently accurate 

results, but the pattern is difficult to summarize with only a couple parameter sets. As in 

the simple buffer case, buffer approximations have the lowest accuracy near the channel, 

and the greatest accuracy far from the channel, since buffer concentrations at the channel 

location are unknown, while the long-range asymptotic behavior of the true solution is 

known, and given by Equation 3.22. In contrast, the differences between distinct Ca2+ 

approximations and the numerical solution are shown on a logarithmic scale, and are more 

pronounced at intermediate distances from the channel, due to the dominance of the free 

source term 1/r near the channel (Equation 3.18), which is the same regardless of model 

parameter.  

As we discussed before, Ca2+ concentrations shown in Figure 3.1 are obtained using 

Ca2+ conservation law (Equation 3.18), based on inexact approximations for b and b**. 

Therefore, no direct physical constraints on Ca2+ are imposed by this procedure. For 

specific parameters regimes, this may result in negative values of [Ca2+] sufficiently far 
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from the channel, where the corresponding values of the true solution are positive but 

small. This usually happens for very large values of buffering strength, n1,2³100. When 

this occurs, we use the RBA approximation given by Equations F.10-F.12 in Appendix F 

as a lower bound on Ca2+. This is justified since, as noted above, RBA becomes accurate 

sufficiently far from the channel, regardless of model parameters. Moreover, our extensive 

numerical investigation leads us to conjecture that RBA in fact represents a sub-solution 

for the true [Ca2+]. This truncation by RBA from below helps us correct the errors in 

estimating Ca2+ for larger distances. Even in cases where negative [Ca2+] values detected 

at large distances are replaced with RBA values, the accuracy of the new methods at closer 

distances are significantly improved compared to the RBA solution, as is the case for 

instance in Figure 3.1C4. 

Obviously, examining approximation behavior for several example parameters 

combinations is insufficient to unveil the complicated parameter-dependent accuracy of 

these approximations, and for some parameter sets the difference between several 

approximants in Figure 3.1 is impossible to tell by eye. Therefore, following prior work 

and what we did in Chapter 2 (19, 33, 34), we will more systematically explore the 

parameter-dependence of the absolute deviation between the given approximation and the 

accurate numerical solution, using the following norm, similar but slightly different from 

the norm used in the case of simple buffer (Equation 2.28): 
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Since we use the same error measure for approximating bound buffer states b* and 

b** as for b, we normalize by the maximal concentration in the denominator of Equation 

3.28 to make it an even more stringent accuracy measure: as Figure 3.1 illustrates, the Ca2+-

bound buffer concentrations can be quite small in certain parameter regimes, as compared 

to free buffer b, which always approaches 1 as r®¥. 

Since b* (as well as c) is uniquely determined by b and b** through the conservation 

law (Equation 3.17), in the figures below we focus on the sum of errors for b and b** , 

instead of analyzing them individually. In Figure 3.2, we use this stringent error measure 

for a more systematic comparison of the accuracy of the new approximants. Namely, we 

plot the sum of errors in b and b** for each approximant as a function of the buffering 

strength parameter n2 varying from 10-3 to 103, for three different fixed values of the buffer 

diffusivity parameter l2 (l2=0.1, l2=1, or l2=10) and two combinations of cooperativity 

parameters (e, g), similar to what we did in Chapter 2. To reveal the impact of Ca2+-binding 

cooperativity on approximant performance, one choice of (e, g) values corresponds to a 

non-cooperative buffer (e=g=1, bottom panels in Figure 3.2), while the other choice 

corresponds to a very cooperative buffer (e=g=0.1, top panels in Figure 3.2). We no longer 

compare the approximants for b, b* and b** separately, since we are interested in selecting 

a single best approximation for each given parameter combination. The error of RBA (red 

curves) is also included for the sake of comparison.  

For most combinations of parameters examined in Figure 3.2, ExpPadéA, 

ExpPadéB, and ExpExp achieve the best accuracy compared to other approximants, which 

is consistent with the results from Figure 3.1. For the non-cooperative case e=g=1 (bottom 

row of panels in Figure 3.2), the best approximating method is always ExpExp for 
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sufficiently large values of n2 and l2, and the error is always below 10%, which is very 

good for such a simple approximation and stringent error measure. For the cooperative 

buffer case, e=g=0.1 (top row in Figure 3.2), the individual error curves get more tangled, 

and the choice of best method is somewhat more complicated, but in general ExpExp 

achieves superior accuracy at smaller values of buffering strength n2. At larger values of 

n2, ExpPadéB becomes the best approximation method. As always, different methods need 

to be chosen to achieve the best accuracy of approximation for different parameter 

combinations.   
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Figure 3.2 Accuracy comparison of the approximations for the combination of equilibrium 
nanodomain free buffer and fully bound buffer concentrations, obtained by the newly 
developed series interpolation methods: PadéA (green curves), PadéB (dashed green 

curves), ExpPadéA (magenta curves), Exp-PadéB (dashed magenta curves), PadéExp 
(black curves), and ExpExp (dashed black curves). RBA is also plotted for comparison 
purposes (red curves). All panels show the average error of the respective dimensionless 
concentrations (Equation 3.28) on base-10 logarithmic scale, as a function of model 
parameter n2  ranging from 10-3 to 103, for three distinct choices of fixed model parameter 
l2: l2=0.1, l2=1, and l2=10, with e = g = 0.1 (top row), and e = g = 1 (bottom row). 

For the parameter conditions examined in Figure 3.2, RBA performs significantly 

worse than all of the newly developed methods. However, the advantage of RBA will be 

revealed for smaller values of l1,2, as will be clear in the results presented next.  
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Figure 3.3 Comparison of parameter regions where a given approximant outperforms the 
rest in estimating the combined errors of free and fully bound buffer concentrations in the 
(n2, l2) parameter plane, according to the error measures given by Equation 3.28, with e 
and g fixed for 6 different choices: (A) e=g =0.1; (B) e =0.5, g =0.1; (C) e =1, g =0.1; (D) e 
=0.1, g =1; (E) e =0.5, g =1; (F) e=g=1. Each color in A through F marks the parameter 
region of best performance for the following approximants: RBA (red), ExpPadéA (dark 

magenta), ExpPadéB (light magenta), and ExpExp (gray). Yellow and cyan symbols mark 
parameter point corresponding to simulations in Figure 3.1, where the free and fully bound 
buffer concentrations are plotted separately. Dashed lines mark the locations of parameter 
scans in Figure 3.2.  

Figure 3.3 summarizes and extends the results presented in Figure 3.2, labeling the 

best approximants for a wide range of buffer mobility l2 varying over 4 orders of 

magnitude, and n2 varying over 6 orders of magnitude, for 6 fixed sets of e and g  values 

corresponding to each of the 6 panels. The selection of best approximant in Figure 3.3 is 

based on the minimal sum of errors of b and b** estimates; the corresponding smallest error 

value is shown in Figure 3.4. As noted above, using this combined error measure helps in 



59 
 

determining the single best approximation method for a given set of model parameters, 

recalling that b* and c are uniquely determined by b and b** (Equation 3.17). Note that we 

exclude PádeExp, PádeA and PádeB methods in this comprehensive comparison: even 

though there are parameter regions where these three methods outperform others, these 

parameter regions are relatively small, and the accuracy advantage is not very significant. 

Figure 3.3 shows that there is still a significant portion of parameter space where RBA 

outperforms our newly developed methods, but only when l1,2 is sufficiently small. As 

Figure 3.4 shows good qualitative agreement, with accuracy within 10% is always 

guaranteed for all examined parameter combinations, and for some narrow parameter 

regimes the accuracy can be extremely high, with error reaching 0.025%. 

 

Figure 3.4 The smallest error in estimating the free and fully bound buffer concentrations 
in the (n2, l2) parameter plane, according to the error measures given by Equation 3.28, 
with e and g  fixed to 6 different choices, as in Figure 3.3. The color scales in A through F 
indicate the log-10 error values. Darker shades represent better accuracy, according to the 
error bars on the right of each panel.  
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Even though Ca2+ is uniquely determined from the buffer concentrations by the 

Ca2+ conservation law, it is still useful to look at the performance of different approximants 

in estimating [Ca2+] in particular, since the latter is of clear physical importance and has a 

different behavior as a function of distance from the channel. As in the simple buffer case,  

close to the channel location [Ca2+] is dominated by the unbounded point source term, 1/r, 

therefore we will use the same logarithm difference norm that we used in the case of simple 

buffer, given by Equation 2.36. We note that qualitatively this norm has the same behavior 

as the relative difference norm used by (19).  

Figures 3.5 and 3.6 summarize the results on the most accurate method and the 

corresponding error in estimating [Ca2+], calculated using Equation 2.36, using the same 

parameter combinations as in Figures 3.3 and 3.4. From Figure 3.5, we can see that for any 

particular set of model parameters, the optimal approximants for [Ca2+] can be different 

from the optimal buffer approximant shown in Figure 3.3, despite the fact that [Ca2+] is 

directly calculated from buffer concentrations. As in the simple buffer case, the error in 

Ca2+ estimation measures the accuracy of our approximants at intermediate distance from 

the channel, while the error in buffer estimation reveals the method accuracy proximal to 

the channel location. This fact can also be observed in Figure 3.1.  



61 
 

 

Figure 3.5 Comparison of parameter regions where a given approximant outperforms the 
rest in estimating [Ca2+] in the (n2, l2) parameter plane, according to the error measures 
given by Equation 2.36, with e and g fixed to 6 different choices, labeled in each panel. 
Each color in A through F marks the parameter region of best performance for the 
following approximants: RBA (red), ExpPadéA (dark magenta), ExpPadéB (light 

magenta), PadéExp (black), and ExpExp (gray). Yellow and cyan symbols mark parameter 
points corresponding to simulations in Figure 3.1. 
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Figure 3.6 The smallest error in estimating [Ca2+] in the (n2, l2) parameter plane, according 
to the error measure given by Equation 2.36, obtained using the best approximant shown 
in Figure 3.5 for each parameter point, with e and g fixed to 6 different choices, as in Figure 
3.5. All parameter choices and layout are identical with Figures 3.3-3.5. The gray-scale in 
all panels indicates the log-10 error values, as indicated in scale bars to the right of each 
panel. Darker shade represents better accuracy.  

Although PadéExp approximant is not taken into account in the comparisons 

contained in Figures 3.5 and 3.6, it outperforms other methods in limited regions of 

parameter space corresponding to small l2 and either very large or very small n2; however, 

even in those parameter regions, the advantage of PadéExp is not very significant. 

In order to evaluate whether our newly developed approximants are indeed 

performing well in a wide range of parameters, in Figure 3.7 we simulate the Ca2+ 

nanodomain in the presence of 100µM of Ca2+ buffer with the properties of either calretinin 

or one of the two lobes of calmodulin, which all have extreme values of cooperativity 

parameters, as listed in Table 3.1 (37, 41). As first shown in (33), RBA achieves reasonable 

accuracy only for the N-lobe of calmodulin, which correspond to values l2 =1.8×10-4 and 
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n2 =25.4, which is within the parameter regions where RBA works the best. However, our 

newly developed method, ExpPadéA and ExpPadéB, work remarkably well for C-lobe of 

calmodulin: the curves for b, b*, b**, and c corresponding to the approximations and the 

numerical simulations completely overlap at the chosen ordinate scale. For calretinin, 

ExpPadéB works the best, and demonstrates very reasonable accuracy. Although 

ExpPadéB fails to accurately describe the behavior of the single-bound calretinin 

concentration, the latter is very small in magnitude.  
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Figure 3.7 Approximation performance for the case of biological buffers, calmodulin N-
lobe (A1-A4), calmodulin C-lobe (B1-B4), and calretinin (C1-C4), with parameters as in 
Table 3.1, corresponding to the current of ICa=0.4 pA, and total buffer concentration of 100 
µM. As in Figure 3.1, approximants of free buffer concentrations in panels (A1, B1, C1) 
are labeled as U-Exp and U-Padé (see Tables 3.2-3.3), while only the best approximations 
are shown for the other concentration variables: ExpPadéA (solid magenta curve), 
ExpPadéB (dashed magenta curve), PadéA (dashed green curve), PadéB (solid green 

curve),  and RBA (red curve). Accurate numerical results are shown as thick gray curves.  
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CHAPTER 4 

DISCUSSION 

4.1 Summary of Results and Discussion for Simple Buffer Case 
 
We have presented a significant extension of prior modeling work on equilibrium single-

channel Ca2+ nanodomains, based on two distinct approaches applied to several types of 

parametric approximants, which to our knowledge have not been considered previously. In 

particular, we extended the series interpolation methods recently used to construct rational 

function (Padé) approximants (34), generalizing it to more accurate and natural parametric 

forms given by Equations 2.25-2.27, which bear resemblance to the EBA and LIN 

approximants obtained previously using different methods. Furthermore, following a very 

useful suggestion by Dr. Muratov, we applied the variational approach to approximants of 

the same functional form, resulting in significant improvement of approximation accuracy 

for a wide range of parameters. As summarized in Figures 2.6-2.7, a combination of 

previously developed and newly presented approximants can achieve an excellent 

estimation for the free buffer and Ca2+ concentration near an open channel, for several 

orders of magnitude of dimensionless parameters l, n, and h. Further, we showed that a 

subset of just three approximation methods, Padé2, RBA2 and DblExp-Global, allow to 

achieve an average accuracy of 1% or better in the entire parameter range that we explored. 

As Figures 2.6 and 2.7 show, the parameter region posing the greatest challenge 

corresponds to l<<1, n >>1. However, Figures 2.1B, 2.2A, 2.3B, 2.4A and 2.5A 

demonstrate that reasonable accuracy is achieved even in this parameter regime.  
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We note that the accuracy profiles shown in the Figures 2.2, 2.4-2.7 depend on our 

choice of the error measures, given by Equations 2.28, 2.36. For instance, without spacing 

mesh points logarithmically in these error measures, the accuracy ranking of different 

methods may change. However, this error measure choice provides a very demanding and 

restrictive comparison, covering a very wide range of distances, and weighting the error 

more at short distance from the channel (19, 33, 34). Therefore, we believe that the chosen 

error measures are appropriate and yield the best comparison method given the wide range 

of parameters we consider. Further, we checked that the conclusions are not substantially 

changed if the L¥  norm is chosen instead.   

The drawback of the methods we present is that the expression for approximant 

parameters can be quite complex, especially for the ansätze with more than one exponential 

term. The level of complexity of different methods is not the same: the simplest ones are 

the mono-exponential approximants (Exp-Ser, Exp-Var, Exp-Global), followed by double-

exponential methods that require finding a root of a cubic equation (DblExp-Ser, DblExp-

Var, DblExp-Global), and finally, two methods, Exp-Padé and Padé2, require solving a 

fourth-order polynomial system. However, all approximants were determined as closed-

form expressions that only take several lines of computer code (see Appendix A, B).  

Several other functional forms not shown in Table 2.2 were also considered but are 

not presented here since they either did not result in better accuracy compared to other 

approximants or provide only a minor improvement in limited regions of parameter space 

while complicating the expressions for parameters. This is true for example for the double-

exponential approximation given by Equation 2.25 but with two different exponent 

parameters, I0 and I*. However, it is possible that we missed other accurate approximants. 
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It is possible that such improved ansätze could be found, for instance by taking into account 

the singularities of the analytic extension of the buffer concentration to the unphysical 

complex-distance plane. We note that only RBA captures the branch cut of this analytic 

extension, which jumps from the physical value b=1 at x=0+ (r=+¥) to the unphysical 

value b = -h / n at x=0- (r=-¥) (see Figure 7 in (34)). Further, as noted above, 2nd-order 

RBA derived in (19) agrees with the long-range asymptotic expansion of the true solution 

given by Equation 2.22 up to terms of order x5 (19, 34). Therefore, our initial efforts to 

construct an improved ansatz were based on modifying the RBA approximant. However, 

so far, we failed to find a successful modification of RBA that improves its performance. 

4.2 Summary of Results and Discussion for Complex Buffer Case 

We have successfully extended some of the approaches we introduced for the case of 

simple buffer to the study of nanodomains in the presence of complex buffers with more 

realistic Ca2+ binding properties. In previous studies, only RBA has been extended to 

complex buffers, and only to 1st order (33). In Chapter 3, we demonstrated that the series 

interpolation approach presented in Chapter 2 can be applied to such buffers, once again 

using a combination of simple rational and exponential functions. As summarized in 

Figures 3.3-3.6, the newly presented approximants achieve good qualitative accuracy in 

estimating the buffer and Ca2+ concentration for complex buffer case, in a wide range of 

parameter regions. RBA is still superior for the cases with extreme parameter conditions, 

normally when non-dimensional diffusivities l1,2 are very small. Compared with RBA, the 

new approximation methods show more uniform error dependence for several orders of 

magnitude of dimensionless parameters l2, n2, g, and e. As Figures 3.4 and 3.6 show, with 

the contribution of new approximants, the combined error for the free and fully bound 
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buffer concentrations is within 10% in the wider parameter range that we considered, and 

the error in estimating Ca2+ is roughly of the same magnitude, albeit requiring artificially 

imposing the physical constraints Ca2+>0 for very large values of buffering strength n1,2. 

Additionally, from Figures 3.3 and 3.5, we can see that we can achieve this level of 

qualitative accuracy in the entire parameter range we consider with only three out of the 

total of 6 approximants, namely ExpPadéA, ExpPadéB, ExpExp, in addition to RBA. 

Figure 3.7 further shows that qualitative agreement can be achieved even with more 

extreme model parameter values corresponding to calretinin or one of the two lobes of 

calmodulin, which correspond to parameter combinations shown in Table 3.1. 

Of course, practical use of the proposed approximant requires an algorithm for the 

choice of a particular ansatz, given a particular set of model parameters, without knowing 

the exact solution. Figures 3.3 and 3.5 provide a first step towards developing such an 

algorithm. Although the boundaries between parameter regions of best performance look 

complicated, a smaller subset of only three methods can allow one to develop a simple 

approximant selection algorithm, without sacrificing too much accuracy. Further, note that 

all of the best approximants (ExpPadeA, ExpPadeB and ExpExp) involve the same 

exponential ansatz for the free buffer variable, and the boundary of the corresponding 

region of best performance, relative to RBA, is as simple to specify as it is for the simple 

buffer case (compare Figure 2.6 and Figure 3.3). Here we note that, just like in the case of 

simple buffer analyzed in Chapter 2, the decision on the best algorithm, summarized in 

Figures 3.3-3.6, depends on the particular norm that we have chosen for comparison to the 

true solution, given by Equations 2.36 and 3.28. 
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Similar to series interpolation method for simple buffer, one of the drawbacks for 

the new methods we presented here is the complicated algebra expressions for the 

approximant parameters. For PadéB, ExpPadéB, PadéExp, and ExpExp, some of their 

ansatz parameters require finding the root of cubic equations. For PadéA and ExpPadéA, 

the level of complexity is lower, which only require solving the quadratic systems. 

However, all close-form expressions for the new approximants can be found efficiently 

using very brief computer code (see Appendix D), so the advantage of using these 

approximations compared to solving the original systems numerically is obvious. 

Given how simple all of our approximants are, it is unlikely that we have exhausted 

all possible relatively accurate approximants, therefore improved ansätze could still be 

found. This is particularly true for the case of non-zero background Ca2+ concentration 

examined in Appendix E, which is a more challenging case and was not examined in as 

much detail as the case c¥=0. Therefore, there is more potential for improvement in this 

regard. Several functional forms other than what we have shown in Equations 3.23-3.26 

were considered, but are not presented here due to either insufficient performance or lack 

of closed-form solutions for parameters.  

Further, a lot of fundamental mathematical analysis for the complex buffer case, 

along the lines of analysis in Appendix 4 of (48), is yet to be performed. For instance, we 

did not provide a rigorous existence and uniqueness analysis for the weak equilibrium 

solution in the complex buffer case, nor a rigorous proof that RBA is a sub-solution for 

[Ca2+] in this problem. Finally, the feasibility of extending the variational method used in 

Chapter 2 to buffers with two binding sites is still an open question. One should explore in 
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particular the applicability of the multifunction variational method described in (49), and 

the Nash Point Equilibrium method, described in (50).  

4.3 Future Extensions of Work on Equilibrium Ca2+ Nanodomain Approximation 

There are many directions for extending and improving this work, apart from the open 

questions already noted above. One of the most significant challenges is relaxing some of 

the key simplifying assumptions of our nanodomain model, namely (1) allowing for simple 

volumetric Ca2+ extrusion (sink) to model homeostatic Ca2+ regulation, (2) extension to a 

Ca2+ channel pore of a finite width, and (3) exploring the generalization of these methods 

to the case of two or more channels. As far as the latter point is concerned, we note that 

LIN and RBA do allow an arbitrary number of channels and buffers (albeit at the expense 

of greater complexity), which is a significant strength of these two previously developed 

methods, despite their accuracy limitations. Further, Falcke et al (16) derived a closed-form 

equilibrium nanodomain result in the case of a homogeneous Ca2+ sink and finite channel 

pore radius; however, that work did not consider the important non-linear buffering terms. 

Since a homogeneous Ca2+ sink is equivalent to a non-saturable buffer, the latter study can 

be considered as a generalization of the EBA approximation.  

Finally, as noted above, the utility of our approximants for both the simple and 

complex buffer case would be improved if one could find a method of estimating the 

method accuracy with respect to the chosen norms, without knowing the accurate 

numerical solution. For instance, one could examine whether barrier functions (sub- and 

super-solutions) could be used to establish the bounds on the approximant accuracy (47).  

Our results for both simple and complex buffers demonstrate that the accuracy 

profile of the approximants we introduce is highly non-trivial, with the errors surface 
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having large dips for certain parameter combinations. This is potentially of interest and 

may reveal interesting properties of the underlying true solutions, deserving a careful 

investigation in the future.  

More importantly, the newly developed approximants can be used to study in detail 

the parameter dependence of equilibrium concentrations of Ca2+ and buffer, which we 

showed to be especially non-trivial for a buffer with two binding sites. For example, the 

results shown in Figure 3.1 already reveal an interesting non-monotonic dependence of 

single-bound buffer on the distance from the Ca2+ channel for some, but not all, model 

parameters. Since most buffers have dual Ca2+ buffering and sensing roles, with partially 

and fully bound buffer having distinct affinities to downstream biochemical targets (35, 

36), such non-trivial aspects of the equilibrium solutions may have physiological 

significance, to be investigated in detail.  

Finally, for both the simple and the complex buffer case, our work is based on the 

assumption that the stationary solution of the reaction-diffusion equations can achieve 

sufficient accuracy in estimating Ca2+ concentration in the vicinity of a Ca2+ channel. We 

assume that the stationary Ca2+ nanodomains are established almost instantly and ignore 

the transient dynamics before the equilibrium is reached. However, the characteristic time 

needed to reach the steady state should be properly examined for a wide range of parameter 

values. Some related work on the time scale of the transients in reaction-diffusion systems 

can be found in (51).   
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APPENDIX A 

EXPONENT PARAMETER FOR DOUBLE EXPONENTIAL 
APPROXIMATIONS FOR SIMPLE BUFFER 

For each of the three approximation methods summarized in Table 2.2, the parameter a of 

the double-exponential ansatz satisfies a cubic equation of form: 

                                                  .                                  (A.1) 

The three roots of this cubic can be succintly represented in the folowing form: 

                       (A.2) 

The constants N$ 	(- = 1,2,3) in the expression for the intermediate quantity Gk denote 

branches of (-1)1/3 : 

                                   .      (A.3) 

In this notation, the real positive root of Equation A.1 corresponds to the value 

I0	when implemented verbatim in MATLAB (Mathworks, Inc). For each of the three 

double-exponential approximants, the imaginary part of the root becomes non-zero for 
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small values of n and l corresponding to the inner region marked by thin curves in Figure 

2.6A1, B1.   
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APPENDIX B 

PARAMETERS OF THE EXP-PADÉ APPROXIMATION FOR SIMPLE 
BUFFER 

For the Exp-Padé ansatz (Equation 2.27), matching the relationship between the first three 

terms in the Taylor series of the solution (Equation 2.20) leads to the following algebraic 

system for the ansatz parameters α and β:  

   (B.1) 

 This leads to a fourth-order polynomial equation for a, with the following explicit 

solution: 

                                   ,                         (B.2) 

where constants U, V, H, Q are determined by model parameters {l, q, h} according to 

β  =  ηq3 qα λα +1( )−1⎡⎣ ⎤⎦
−1
,

1− 2ηq
2ηq2

αβ( )2 + λα +2ηq( ) αβ( )+ 6λ −η2q3 = 0.

⎧

⎨
⎪

⎩
⎪

α = 1
2λ

H 1/2 −Q + 2VH −1/2 − H − 6U( )1/2⎡
⎣⎢

⎤
⎦⎥
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                                                         (B.3) 

We note that the other three roots do not yield real positive values of α and β. In 

the parameter regime 1-qh < 10-2  and l < 10-2, these expressions suffer from numerical 

loss of significance due to subtraction of values close in magnitude, in several of the 

intermeidate variables. The loss of accuracy can be corrected by an algebraic 

manipulation of the terms, by using higher-precision computation, or by applying a 

couple Newton’s iteration steps to the computed root value. 

  

P = 6+
ηq2 1−ηq( )

λ
, Q = 1

P
6+ ηq2

2λ
⎛
⎝⎜

⎞
⎠⎟
,

R = Q 1− 2λ
q

⎛
⎝⎜

⎞
⎠⎟
+ 2η

2q2

P
, U = R

3
− Q

2

2
,

V = Q R −Q2( )+ 12λqP ,

W = Q2 R
3
− Q

2

4
⎛
⎝⎜

⎞
⎠⎟
+ 4λ

6 Q + λ / q( )−η2q2
3qP

,

E =V 2 V 2

4
+U U 2 − 3W( )⎛

⎝⎜
⎞
⎠⎟
−W W − 3U 2( )2 ,

G = V
2

2
+U U 2 − 3W( )+ E1/2 ,

H =W +U 2

G1/3
+G1/3 − 2U .
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APPENDIX C 

PARAMETERS OF THE PADÉ2 APPROXIMATION FOR SIMPLE BUFFER 

For the Padé2 rational function ansatz listed in Table 2.1, matching the long- and short-

distance series solutions leads to a 4th order polynomial system (34), which has the 

following solution for the coefficients A1,2 and B1,2: 

                                              (C.1)         

where constants Q, G, H, R, K, J and V are determined by model parameters {l, q, h} and 

p=qn according to  

B2 =
q
R
Q +G1/3 + H

G1/3
⎛
⎝⎜

⎞
⎠⎟
,

B1 =
1
V
B2 B2R − 3qK( )

6λq2
− J

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

A1 = B1 − q,

A2 = B2 − q(B1 −ηq
2 ),

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
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(C.2)

 

  

R = 24λ − 3pq( p − 2),
K = 8λ 2 − 2λq(2p2 −5p − 2)− pq2( p − 2),
Q = K + 24λ 2 − 4λ pq(2p − 3),
V = 2λ( p + 6)+ pq( p − 3)( p − 2),
F = 6λ 2 − λq( p + 3)( p − 2)−ηpq3(2p − 3),
J = 24λ 2 − 2λ pq(5p −8)−ηp2q3( p − 2),
E = 12λ 2 +η pq2 8λ +ηpq2( ),
H = 1600λ 4 −104λ 3q( p − 2)(9p + 4)
+ 4λ 2q2(39p4 −87 p3 − 63p2 +184p + 4)
− 4λ pq3( p − 2)(6p3 − 21p2 + 20p + 2)+ p2q4( p − 2)2,

W = 12000λ5 − 4λ 4q(2687 p2 − 2966p −553)
+ 4λ 3q2(729p4 −1626p3 + 486p2 + 421p + 70)
− λ 2q3(243p6 −810p5 + 609p4 + 210p3 − 21p2 − 240p − 4)
− 2λη pq5( p − 2)(20p2 −13p −1)+ p2η2q7 ,
G = Q3 + 2λR 3QF − 9λER +V (−3qW )1/2⎡⎣ ⎤⎦.
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APPENDIX D 

PARAMETERS OF PADÉB, EXPPADÉB, PADÉEXP, AND EXPEXP 
APPROXIMATIONS FOR COMPLEX BUFFER 

For PadéB and ExpPadéB approximation, matching the coefficients of the short- and long-

range series expansions leads to cubic systems for the ansatz parameter b2 shown in Table 

3.4, with the following explicit solution:  

 . (D.1) 

For PadéB, the auxiliary quantities Y, G, F are determined by 

                                                                                                  (D.2) 

where the value of ansatz parameter A is shown in Table 3.3.  

For ExpPadéB, the computation of b2 value is the same as above, except for the 

redefinition of the following auxiliary quantities: 

2
Fb q Y G
G

æ ö= + +ç ÷
è ø

G = E2 − F 3 + E( )1/3 ,
E = Y 3 −YW + λ2X ,

F = Y 2 − 2
3
W ,

X = A2
q −1+12λ2q

−1

24
,

Y =
5A+ 2λ2 2− q( )

18
,

W = A2
1− 2λ2
12

,
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                                                                                                   (D.3) 

where parameter a is the ExpPadéB ansatz parameter shown in Table 3.3.  

For both PadéExp and ExpExp approximations, the explicit solution of ansatz 

parameter s has the same form: 

                                                         .                                   (D.4) 

For the PadéExp method, the auxiliary quantities G and Y are determined by  

                                                                                               (D.5) 

where the value of constant A is given in Table 3.3.  

For the ExpExp method, all expressions are the same, except that quantity E is now 

given by 

X =
q −1+12λ2q

−1

24a2
,

Y =
5+ λ2 a 3− 2q( )

18a
,

W =
1− 2λ2
12a2

,

s = G + Y
2

G
−Y

( )1/32 6

2

2

,

6 ,

1 ,
4

G E Y E

E Y Y
Aq

Y
l

= - -

æ ö
= -ç ÷

è ø

=
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 ,         (D.6) 

where the value of constant a is given in Table 3.3. 

   

 

  

2 6aE Y Y
q

æ ö
= -ç ÷

è ø



81 
 

APPENDIX E 

THE CASE OF NON-ZERO BACKGROUND CA2+ CONCENTRATION FOR 
COMPLEX BUFFER 

In the case of non-zero [Ca2+] infinitely far from channel, the equilibrium relationships 

given by Equation 3.9, are transformed to the form (recall that in our non-

dimensionalization b¥=1): 

  (E.1) 

Therefore, the total concentration parameters given by Equation 3.14 are uniquely 

determined by the non-dimensional background Ca2+ concentration, c¥: 

  (E.2) 

Similar to our analysis for the case c¥=0, we simplify Equation 3.13 using the 

transformation U=(bT-b)/e, V=b**/e. This transforms Equation 3.18 to the following form, 

analogous to Equation 3.19: 

  (E.3) 
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Note that U nor V are now non-zero infinitely far from the Ca2+ channel, approaching the 

values 

  (E.4) 

Here we will consider the Taylor series of the solution only up to order O(r) (cf. 

Equation 3.20): 

                                     (E.5) 

where U0=U(0) and V0=V(0) are related to the concentrations of free and fully bound buffer 

at channel location, r=0; both are unknown a priori, as in the case c¥=0. Using the 

transformation x=1/r, we obtain the long-range asymptotic expansion of the solution in 

powers of x (cf. Equation 3.22): 

             (E.6) 

However, the generalization of parameter q has a more complex form than in the 

case c¥=0: 
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1 2 ,
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TbU c c
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                          (E.7) 

It is important to note that the long-range V series shown above starts with terms of 

order O(1) and O(x), in contrast to the case c¥=0, in which case V series starts with terms 

of order O(x2) (see Equation 3.22). The reason is intuitively clear: if c¥≠0, then a non-zero 

fraction of buffer will be fully bound even infinitely far from the channel. In contrast, in 

the case c¥=0, both bound buffer states approach zero as r®+¥ and c¥®0, with fully 

bound buffer decaying faster than single-bound buffer and [Ca2+], which explains the 

quadratic dominant term in V(x) in that case. 

Because of the U and V long-range asymptotic series behavior noted above, the 

simplest approximants involve exponential and the 1st order (bilinear) Páde approximants. 

Like in the case c¥=0, we find that the best approximants achieving sufficient accuracy in 

large portions of parameter space are the analogues of the ExpExp and ExpPáde 

approximants considered above. Namely, we choose the exponential ansatz for the free 

buffer variable U, analogous to Equation 3.24: 

                                      .                                (E.8) 

Note that it matches Equation E.6 to order O(x). In contrast, best V approximant 

accepts two possible simplest forms, which define the approximant type, and match 

Equation E.6 to the same order O(x): 

• ExpExp: ansatz for V is also an exponential, with one free parameter α2: 

( ) ( )1 1

1 .
1 2 1T

q
b cn n e¥

=
+ + -

( ) ( ) ( )11 exp
2 1

r
U r U q c

r
a

¥ ¥

- -
= + +
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.                            (E.9) 

• PadéExp: ansatz for V is a bilinear function, with one free parameter b: 

  .                    (E.10) 

We will now provide the derivation of the free parameters in above ansätze, in 

terms of model parameter values. We start with the free parameter α1 in the U ansatz, 

Equation E.8, which we Taylor expand to obtain  

 . (E.11) 

We then match this expansion to terms up to order O(r) in Equation E.5, which 

yields an equation 

                                                            (E.12) 

This is a quadratic equation for the unknown parameter α1. Since  

according to Equation E.4, we find that this equation always has one real positive root: 

                                                  .                                (E.13) 

( ) ( ) ( )21 exp
2 1

r
V r V qc c

r
a

e¥ ¥ ¥

- -
= + +

( ) ( )2 1qc c
V r V

r
e

b
¥ ¥

¥

+
= +

+

( ) ( )2 2
1 12 1 1 ( )U U q c q c r O ra a¥ ¥ ¥= + + - + +

−qα1
2 1+ c∞( )λ1 = ε U∞ + 2α1q 1+ c∞( )⎡⎣ ⎤⎦ − bT .

1Tb Ue ¥- =

( )
1

1 2
1

1 1
1q c
lea

l e ¥

é ù
= + -ê ú

+ê úë û



85 
 

Having constrained the U ansatz, we now constrain the free parameter in each of 

the two simple V approximants that we consider: 

• ExpExp: expanding the V ansatz in Equation E.9, we obtain 

                    (E.14) 

Matching this expansion with terms up to order O(r) in Equation E.5, and using the 

expansion in Equation E.11 to obtain the approximation for U0, we obtain a quadratic 

equation for α2: 

                           (E.15) 

Since  according to Equation E.4, we obtain the real positive root 

.                             (E.16) 

• PadéExp: expanding the V ansatz in Equation E.10, we obtain 

.              (E.17) 

Matching this expansion with terms up to order O(r) in Equation E.5, and 

multiplying by b 2, yields an equation 
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                                                 ,                                (E.18) 

where  according to Equation E.11. Since according 

to Equation E.4, we obtain a real positive root for all model parameter values: 

                                            (E.19) 

where  

                                         ,                         (E.20) 

and α1 is given by Equation E.13. Note once again that the ansatz parameters are all real 

and positive, regardless of model parameter values. This concludes the derivation of free 

parameters in the two approximants we consider. 

We note that a continuous limit c¥®0 to obtain any of the approximants in Table 

3.2 is not possible: this is clear from the discrepancy in the order of the dominant term in 

the long-range asymptotic expansion of V in the case c¥=0 (Equation 3.22) vs. c¥≠0 

(Equation E.6). 

Although the approximant considered here are much simpler than any of the 

approximants for the case c¥=0 summarized in Tables 3.2-3.4, they nevertheless achieve 

qualitative accuracy in large portions of parameter space, as demonstrated by the combined 
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buffer concentration error measure results shown in Figure E.1. Finding more accurate 

approximants for the c¥≠0 is a potential topic of further investigation. 

 

 

Figure E.1 Best approximants (A1 and A2) and combined accuracy of free and fully bound 
buffer state approximations (B1 and B2) in the (n2, l2) parameter plane, as given by the 
error measure in Equation 3.28, for the case c¥=1, with parameters e and g fixed to two 
combinations: in A1 and B1, e = g = 0.1; in A2 and B2, e = g = 1. Each color in A1 and B1 
marks the parameter region of best performance for the following approximants: RBA 
(red), ExpPadé (magenta), and ExpExp (gray). The color scales in B1 and B2 indicate the 
log-10 error values. Darker shades represent better accuracy, according to the error bars on 
the right of each panel.  
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APPENDIX F 

RAPID BUFFERING APPROXIMATION FOR COMPLEX BUFFER 

Here we re-derive the Rapid Buffering Approximation in the most general form applicable 

to both c¥=0 and c¥≠0 cases. The derivation we give follows the one in (33), but we adapt 

it to the new and simpler non-dimensionalization considered in this work, whereby the 

buffer concentrations are re-scaled by the background free buffer concentration, B¥, rather 

than the total buffer concentration. This simpler non-dimensionalization allows us to derive 

the RBA in the most general case of binding-dependent buffer mobility and c¥≠0, whereas 

these two generalized conditions were only treated separately in (33). 

We start by generalizing Equation 3.13 to the case of binding-dependent buffer 

mobility, 

  (F.1) 

where the extra parameters characterizing the change of buffer mobility upon Ca2+ binding 

are  

                                                     ,                                            (F.2) 
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while the non-dimensional buffer mobility of the fully bound buffer state is redefined 

according to (cf. Equation 3.15): 

                    (F.3) 

The integration constants in the conservation laws in Equation F.1 are related to the 

total (fee plus bound) buffer and Ca2+ concentrations, and obey a more generalized version 

of Equations 3.14, 3.17: 

  (F.4) 

Since RBA is defined by reaction equilibrium, we equate the reaction terms on the 

right-hand side of Equation F.1 to zero, which yields (recall that in our non-

dimensionalization b¥=1): 

  (F.5) 

Thus, the buffer conservation laws in Equation F.4 becomes 

                              . (F.6) 
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Along with Equation F.5, this gives 

  (F.7) 

Therefore, the Ca2+ conservation law in Equation F.1 becomes (recalling that en2 

=n1)  

                                   , (F.8) 

where the total [Ca2+] at infinity defined in Equation F.4 becomes 

                                                     .                                  (F.9) 

Equation F.8 is readily converted to a cubic equation for c, which has the following 

real and positive explicit root: 

                     (F.10) 

where the auxiliary quantities A, F, R, S, G depend on model parameters according to 
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                                                                 (F.11) 

Here the fractional powers should be understood as the principle root. This 

expression produces the real positive root when implemented verbatim in MATLAB 

(Mathworks, Inc.). This result generalizes Equation 19 in (33). 

Figures 3.1-3.7 compare this expression with the newly derived approximants and 

the accurate numerical solution in the special case of binding-independent buffer mobility, 

, and zero background Ca2+ concentration, c¥=cT=0, bT=1, which simplifies the 

expressions for auxiliary functions R, F and G in the above expressions: 

                                                                                          (F.12) 
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Equation 3.21 gives asymptotic terms of order O(x4), while all other terms represent the 

reaction, which RBA equates to zero.  

Figure E.1 shows the RBA results for the case c¥=1, comparing RBA to two 

alternative simple closed-form approximants. In that figure, buffer mobility is assumed to 

be binding independent, so even though the general expression given by Equation E.11 is 

used, we set . 

  

* ** 1B Bd d= =



93 
 

APPENDIX G 

FROBENIUS ANALYSIS FOR BUFFERED CALCIUM DIFFUSION 

Since Equation 2.18 is singular and non-linear, the series expansion solution given by 

Equation 2.20 has to be carefully justified. Note that Equation 2.18 can be written in the 

form  

,        (G.1) 

with L[b] representing the linear part of this equation,  

.              (G.2) 

One can use the method of Frobenius to seek solutions of L[b1]=0 of the form 

              (G.3) 

which leads to the lowest-order indicial equation   

                             (G.4) 
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Hence, Frobenius theory implies that the solution given by Equation G.3 is a power 

series corresponding to the lowest indicial root, r=0, with an infinite radius of convergence. 

Further, it follows from the form of Equation G.1 that it has at least a formal power series 

solution of the form  

              (G.5) 

By adapting the usual Frobenius theory, one can prove that this series solution has 

a non-zero radius of convergence, justifying the Taylor expansion given by Eq. 2.20. 
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