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ABSTRACT

COMMUNICATIONS WITH SPECTRUM SHARING IN 5G
NETWORKS VIA DRONE-MOUNTED BASE STATIONS

by
Liang Zhang

The fifth generation wireless network is designed to accommodate enormous traffic

demands for the next decade and to satisfy varying quality of service for different

users. Drone-mounted base stations (DBS s) characterized by high mobility and low

cost intrinsic attributes can be deployed to enhance the network capacity. In-band

full-duplex (IBFD) is a promising technology for future wireless communications

that can potentially enhance the spectrum efficiency and the throughput capacity.

Therefore, the following issues have been identified and investigated in this disser-

tation in order to achieve high spectrum efficiency and high user quality of service.

First, the problem of deploying DBSs is studied. Deploying more DBSs may

increase the total throughput of the network but at the expense of the operation cost.

The droNe-mounted bAse station PlacEment (NAPE ) problem with consideration

of IBFD communications and DBS backhaul is then formulated. The objective is to

minimize the number of deployed DBSs while maximizing the total throughput of the

network by incorporating IBFD-enabled communications for both access links and

backhaul links via DBSs as relay nodes. A heuristic algorithm is proposed to solve

the NAPE problem, and its performance is evaluated via extensive simulations.

Second, the 3-D DBS placement problem is investigated as the communication

efficiency is greatly affected by the positions of DBSs. Then, the DBS placement

with IBFD communications (DSP-IBFD) problem for downlink communications

is formulated, and two heuristic algorithms are proposed to solve the DSP-IBFD

problem based on different DBS placement strategies. The performance of the

proposed algorithms are demonstrated via extensive simulations.



Third, the potential benefits of jointly optimizing the radio resource assignment

and 3-D DBS placement are explored, upon which the Drone-mounted Base Station

Placement with IBFD communications (DBSP-IBFD) problem is formulated. Since

the DBSP-IBFD problem is NP-hard, it is then decomposed into two sub-problems:

the joint bandwidth, power allocation and UE association problem and the DBS

placement problem. A 1
2
(1 − 1

2l
)-approximation algorithm is proposed to solve the

DBSP-IBFD problem based on the solutions to the two sub-problems, where l is the

number of simulation runs. Simulation results demonstrate that the throughput of

the proposed approximation algorithm is superior to benchmark algorithms.

Fourth, the uplink communications is studied as the mobile users need to

transmit and receive data to and from base stations. The Backhaul-aware Uplink

communications in a full-duplex DBS-aided HetNet (BUD) problem is investigated

with the objective to maximize the total throughput of the network while minimizing

the number of deployed DBSs. Since the BUD problem is NP-hard, it is then

decomposed into three sub-problems: the joint UE association, power and bandwidth

assignment problem, the DBS placement problem and the problem of determining

the number of DBSs to be deployed. The AA-BUD algorithm is proposed to solve

the BUD problem with guaranteed performance based on the solutions to the three

sub-problems, and its performance is demonstrated via extensive simulations.

The future work comprises two parts. First, a DBS can be used to provide both

communications and computing services to users. Thus, how to minimize the average

latency of all users in a DBS-aided mobile edge computing network requires further

investigation. Second, the short flying time of a drone limits the deployment and

the performance of DBSs. Free space optics (FSO) can be utilized as the backhaul

link and the energizer to provision both communication and energy to a DBS. How to

optimize the charging efficiency while maximizing the total throughput of the network

requires further investigation.
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CHAPTER 1

INTRODUCTION

The fifth generation (5G) of mobile communication systems has attracted much

attention from both industry and academia to meet the 1000× wireless traffic

increment in the next decade [1]. Future 5G wireless networks are designed to meet

various user quality of service (QoS) requirements such as data rate and latency,

and to provide dense hotspot coverage with high capacity in metropolitan areas [2].

Monthly global mobile data traffic reached 7 exabytes (EB) in 2016, and this number

is expected to reach 49 EB by 2021; moreover, future 5G networks will provide high

bandwidth (>= 1Gbps), wider coverage, and ultra-low latency to mobile terminals as

compared to 4G networks [3,4]. It is expected to provide throughput 1000 times and

spectrum efficiency 10 times those of 4G networks; therefore, some new communi-

cations techniques such as cognitive radio, device-to-device communications, in-band

full-duplex (IBFD) communications, non-orthogonal multiple access (NOMA), and

Long Term Evolution on unlicensed spectrum (LTE-U ) should be leveraged [5].

Unmanned aerial vehicles (UAV s) have recently been used to mount base

stations to improve the QoS of wireless networks by increasing the network capacity

and enhancing the coverage area; for example, more user equipment (UE s) can be

provisioned by moving the UAV-mounted base station, viz. drone-mounted base

station (DBS ), close to the UEs [6]. DBSs can be deployed to provide wireless

services with high mobility and low cost [7]. DBS presents several advantages: i)

it can fly across a hazardous area, ii) it can be easily mobilized (high mobility), iii) it

incurs low cost, and iv) it can change its altitude to provide guaranteed QoS based

on UE intensity [8]. DBSs are especially useful for provisioning communications for

temporary large-scale or unexpected events such as Olympic games, football games,
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concerts, and some other application scenarios such as public safety, rescue missions,

and reconnaissance for disaster recovery [9, 10].

Industry has started developing DBS; for examples, ATT’s Cell Tower on Wings

(COW ) project [11] targeted to provide emergency service or to enhance the network

coverage for large events; Nokia and UK mobile operator Everything Everywhere

(EE ) built DBS prototypes in 2016, and they demonstrated that DBSs flying in the

air were able to provide 4G coverage [12]; Facebook’s Aquila project and Google’s

SkyBender project focused on leveraging the solar powered DBSs to provide internet

connections through millimeter wave radio transmissions [8].

Communications can be simplex or duplex, and duplex communications can

be half duplex (HD) or full duplex (FD); simplex communications implies one

way communications (either transmitting or receiving), and duplex communications

refers to bi-directional communications; either frequency division duplex (FDD) or

time division duplex (TDD) can be used in HD communications to separate the

transmission and the reception [13].
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Figure 1.1 Half duplex (a) and full duplex (b) communications in DBS-assisted HetNet;
resource allocation with FDD (c) and TDD (d) in half duplex communications; resource
allocation with FDD (e) and TDD (f) in full duplex communications.
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Figure 1.1(a) shows a DBS-assisted HD cellular network, which includes a MBS

(HD-enabled), a DBS (HD-enabled), two UEs (HD-enabled), the backhaul link (from

the MBS to the DBS), and access links (from the DBS to UEs) [4]. Resource can be

allocated in a FDD manner as shown in Figure 1.1(c) and in a TDD manner as shown

in Figure 1.1(d). Figure 1.1(c) describes the frequency spectra allocation by utilizing

FDD, where the backhaul link uses half of the total available frequency spectra f over

time t, and two access links equally share the remaining half of the total available

frequency spectra over time t. Figure 1.1(d) illustrates the time resource allocation

by utilizing TDD, where the backhaul link uses half of the total available time t over

frequency spectra f , and two access links equally share the remaining half of available

time t over frequency spectra f .

In order to illustrate the differences between HD and FD communications,

we use an example to show the time and frequency resource allocation of FD

communications. Figure 1.1(b) illustrates a DBS-assisted FD cellular network,

which includes a MBS (HD-enabled), a DBS (FD-enabled), two UEs (HD-enabled),

the backhaul link and access links. Figure 1.1(e) describes the frequency spectra

allocation by utilizing FDD, where the backhaul link uses the total available frequency

spectra f over time t, and two access links equally share the total available frequency

spectra f over time t. Figure 1.1(f) illustrates the time resource allocation by utilizing

TDD, where the backhaul link uses the total available time t over frequency spectra

f , and two access links equally share the total available time t over frequency spectra

f . Figure 1.1 shows that FD can roughly double the spectrum efficiency (throughput)

without consideration of the self-interference (SI ).

In-band full-duplex (IBFD) is able to transmit and receive data through the

same radio frequency; it is a promising technology for future wireless networks and can

potentially double the spectrum efficiency and the throughput capacity as compared

to conventional half-duplex (HD) systems [13]. In the past, it seems impossible to

3



realize IBFD because of the severe self-interference (SI ) from the transmitter to the

co-located receiver. SI is the interference to the received signals from the radiated

power of the transmission that limits the performance of the full-duplex (FD) system

[14]. However, recent creative hardware design of SI cancellation techniques has

been demonstrated to efficiently suppress SI power, thus making FD communications

feasible for wireless communications [14]. Note that SI is the received interfering

signals from the wireless terminal’s own transmitter while receiving desired signals,

and IBFD communications induces severe SI from the transmitter to the co-located

receiver [13]. Recent works demonstrate that SI power can be suppressed by SI

cancellation techniques by as much as 150 dB [15], thus making IBFD communications

feasible [14]. Since IBFD has the potential to improve the throughput and DBSs

can improve the QoS of the wireless network, we focus on the DBS placement and

communications of IBFD enabled DBSs in a heterogeneous network (HetNet).

Although many works have been reported related to DBS communications,

many issues still require investigation to efficiently utilize the radio resources in the

DBS-assisted HetNet.

1) How many DBSs should be deployed to provide guaranteed quality of service

to users? The operation cost increases if more DBSs are deployed. Then, it is

important to minimize the number of DBSs to be deployed while the throughput

of the network is maximized.

2) How to allocate/manage radio resources and the DBS placement in a

DBS-aided HetNet? Inefficient radio resource assignment limits the throughput

performance of the network and thus user quality of service cannot be satisfied. The

throughput of the DBSs can also be affected by the DBS placement. Hence, it is

important to place the DBSs in the appropriate positions and carefully assign the

radio resources to users to improve the throughput performance of the network. How

to manage the interferences in a HetNet with IBFD-enabled DBSs? Note that IBFD
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communications can improve the spectrum efficiency but it brings more interference

to the network, etc., the severe SI and the backhaul interference.

3) How to maximize the total throughput for the uplink communications while

minimizing the number of deployed DBSs? Uplink communications is different from

downlink communications. The user-BS interference is in the access link (DBS to

users) in downlink communications but that interference exists in the backhaul link

(DBS to the MBS) in uplink communications. Meanwhile, a high operation cost is

incurred if more DBS are deployed. Then, it is important to minimize the number of

deployed DBSs while maximizing the total throughput of the network.

The rest of this dissertation is organized as follows. In Chapter 2, we study

the problem of deploying DBSs for the downlink communications and the objective is

to minimize the number of required DBSs while maximizing the total throughput of

the network. In Chapter 3, the three dimensional DBS Placement with in-band full-

duplex communications is investigated. In Chapter 4, an approximation algorithm

with low complexity is designed to solve the joint radio resource assignment and DBS

placement problem and this algorithm is proved to provide guaranteed performance.

In Chapter 5, the backhaul-aware uplink communications in a full-duplex DBS-aided

HetNet (BUD) problem with the target to maximize the total throughput of the

network and minimize the number of deployed DBSs is investigated. In Chapter 6,

two future research endeavors are briefly described: i) DBS-aided/UAV-aided mobile

edge computing: DBSs are deployed to provide both communications and computing

to users, and ii) laser for both charging and communications. Free space optics

(FSO) can be used to provide energy and backhaul communications to a DBS. In

other words, an FSO beam is utilized as both the backhaul and energizer for a DBS

in the DBS-aided HetNet. The conclusion is summarized in Chapter 7.
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CHAPTER 2

OPTIMIZING THE DEPLOYED NUMBER OF DRONE-MOUNTED
BASE STATIONS

Alzenad et al. [16] studied the UAV base stations placement problem to maximize

the number of covered UEs; Kalantari et al. [17] investigated the problem of 3-D

placement of a DBS with consideration of the data rate of the wireless backhaul

and the DBS; Chen et al. [18] studied the optimum UAV placement for maximum

reliability in a hotspot; Mozaffari et al. [19] investigated optimal 3-D UAV placement

based on the circle packing theory without overlapping coverage areas in a hotspot;

Siddique et al. [20] focused on IBFD and out of band FD backhauling in providing

services to small base stations (SBSs) in downlink communications; Goyal et al. [21]

proposed a distributed resource allocation to maximize the throughput of a FD multi-

small-cell system.

Since DBSs can be deployed for many applications and IBFD can significantly

improve the spectrum efficiency, we propose to investigate the droNe-mounted bAse-

station PlacEment (NAPE ) problem with IBFD communications and DBS backhaul.

To our best knowledge, this is the first work to minimize the number of required DBSs

and maximize the total throughput of the network in providing services to UEs while

incorporating IBFD-enabled DBSs communications for both access links and backhaul

links of DBSs. Solving the DBS placement by incorporating IBFD-enabled DBSs

communications, UE assignment, and power and bandwidth allocation for access links

and backhaul links is the main contribution of this letter. By leveraging IBFD-DBSs,

the total throughput of the network has been increased and the data rate block ratio

has been decreased.
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2.1 System Model

In this research, a macro base-station (MBS ) (half duplex (HD) enabled) and a

DBS (IBFD-enabled) are employed to form a heterogeneous network. Figure 2.1(a)

shows that the access links (from DBS to UEs) and backhaul link (from MBS

to DBS) utilize different frequency spectra in HD operations, and different UEs

utilize different frequency spectra. Figure 2.1(b) illustrates the IBFD operations,

in which the backhaul link and an acces link employ the same frequency spectra for

communications, and different UEs use different frequency spectra for the access links.

Take UE 2 as an example: it receives data from DBS 1 and backhaul interference

from the MBS. DBS 1 receives SI while transmitting data to UE 2 and receiving data

from the MBS on the same frequency, which is different from HD operations. All

DBSs are located at the MBS before our optimization, and then they will fly to their

destinations after the optimization, and provide services to UEs. We focus on the

downlink communications, i.e., from the MBS to UEs directly or via a DBS.

Figure 2.1 DBS communications with HD and FD.
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Let B = {1, 2, · · · , n} be the set of BSs including the MBS and DBSs, and j = 1

refers to the MBS. Denote U = {1, 2, · · · , k} as the set of UEs. A Matérn cluster

process is used to generate the spatial UE distribution with heterogeneity [17]. The

parent points (centers of the clusters) are generated based on a Poisson process, and

the daughter points (which represent the locations of UEs) are generated around the

parent points according to a uniform distribution.

Two path loss models are considered in this research: air-to-ground (A2G)

(ground-to-air (A2G)) path loss model and ground-to-ground (G2G) path loss model.

The A2G (G2A) path loss consists of line-of-sight (LoS ) path loss and none-line-of-

sight (NLoS ) path loss [16, 22, 23]. The probability of experiencing a LoS by a UE

(DBS) is ψL, and that of NLoS is ψN :


ψL + ψN = 1,

ψL = [1 + a ∗ exp(−b(180θ/π − a))]−1,

(2.1)

where a and b are weights associated with the environment (rural, urban, etc.), h is

the height of the DBS, r is the horizontal distance, and θ = arctan(h
r
) is the elevation

angle, respectively [17, 24]. It is hard to ascertain whether the path loss is LoS or

NLoS in the absence of the terrain knowledge. Hence, the path loss is calculated by

the mean path loss instead of the exact path loss of LoS or NLoS:

Ψ = ηLψL + ηNψN + 20log(4πfcκ/c), (2.2)

where ηL is the additional mean loss of the LoS link, ηN is the additional mean

loss of the NLoS link, fc is the center of frequency spectra, c represents the light

transmission speed, and κ = (h2 + r2)1/2 is the 3-D distance between a UE and a

DBS [17]. Equation (2.2) includes the excessive path loss of LoS, the excessive path

loss of NLoS, and the mean free-space path loss.
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By substituting ψL and ψN into Equation (2.2), we have

Ψ =
ηL − ηN

1 + a ∗ exp(−b(180θ
π
− a))

+ 20log(r/cosθ) + A, (2.3)

where r = κcosθ, A = 20log(4πfc/c) + ηN and log(4πfcd/c) = log(r/cosθ) +

log(4πfc/c).

Let bi,j, pi,j, and Si,j be the frequency bandwidth, the power, and the signal

to interference plus noise ratio (SINR) of the ith UE associated with the jth BS,

respectively. Thus, SINR is

Si,j =


pi,j |γi,j |2
σ2
i,j

, ∀i ∈ U , j = 1,

pi,jΨi,j

σ2
i,j+pi,1|γi,1|2

, ∀i ∈ U , j ∈ B, j > 1,

(2.4)

where γi,1 is the channel gain (loss) between the ith UE and the MBS, Ψi,j(j ≥ 1) is

the channel gain between the ith UE and the jth DBS, N0 is the thermal noise power

spectral density, and σ2
i,j = bi,j ∗ N0 is the thermal noise power. Different UEs are

assigned with different frequency spectra, implying that the UE assigned to a DBS

experiences backhaul interference, and the UE assigned to the MBS does not receive

backhaul interference.

The data rate, Ri,j, of the ith UE assigned to the jth BS, according to the

Shannon Hartley theorem [25], is

Ri,j = bi,jlog2(1 + Si,j). (2.5)

Thus, the required bandwidth, bi,j, is

bi,j = Ri,j/log2(1 + Si,j). (2.6)
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The backhaul data rate φj of the jth DBS is determined by the received power, the

SI and the thermal noise power, as

φj = βBj log2(1 +
P1,jΨ1,j

ISIj + σ2
j

), j ∈ B, j > 1, (2.7)

where βBj is the backhaul bandwidth assigned by the MBS towards the jth DBS; P1,j

is the assigned power by the MBS towards the jth DBS; Ψ1,j is the path loss between

the MBS and the jth DBS; σ2
j =βBj ∗N0 is the thermal noise power; ISIj =

∑
i pi,j/c0

is the SI of the jth DBS, and 1/c0 is the residual SI power [20]. The value of the SI

cancellation implies the ability to reduce the echo power at the receiver, and this value

can be identified as the power loss from the transmitter to the co-located receiver.

2.2 Problem Formulation

We assume each BS’s power spectral density is fixed [26], and then pi,j/bi,j = ξj,

i.e., the allocated power and bandwidth to a UE has a linear relationship. Various

notations and variables are summarized in Table 2.1.

The objective of the NAPE problem, as expressed in Equation (2.8), is to

minimize the number of required DBSs while maximizing the total throughput of

the network. C1 ensures that each UE is assigned to no more than one BS. C2

implies that a DBS is used when more than one UE is associated with this DBS.

C3–C4 are the DBS location constraint in the XY-plane, and they ensure that

all DBSs are placed within the coverage of the MBS. The location of the jth

DBS is determined by qj and hj. Let x(·) and y(·) be the functions to get the

X-coordinate and Y-coordinate of a location. Then, Equation (2.3) can be used

to calculate the channel gain Ψi,j(j ≥ 1) between the ith UE and the jth DBS

(κj = (h2
j + r2

j )
1/2, rj = (x(qj)− xuei )2 + (y(qj)− yuei )2)1/2). C5 imposes the real data

rate of the ith UE equal to its data rate requirement when it is associated with a

BS. C6 is the backhaul data rate capacity constraint, which ensures that the total
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Table 2.1 Important Notations and Variables of the NAPE Problem

Symbol Definiton

Nmax the maximum number of available BSs, Nmax = |B|.

{xuei , yuei } the 2-D location information of the ith UE.

di the data rate requirement of the ith UE.

Q the set of candidate locations for DBSs in the horizontal plane.

PM the power capacity of the MBS.

PD the power capacity of a DBS.

ξj the power spectral density of the jth BS.

βM the total bandwidth capacity of the MBS.

βBj the backhaul bandwidth towards the jth DBS which is assigned by the

MBS.

Pj,1 the assigned transmission power from the MBS to the jth DBS (backhaul).

fj a binary variable indicating whether the jth DBS is used (“1” is

affirmative).

ωi,j a binary variable indicating whether the ith UE is associated with the jth

BS (“1” is affirmative).

bi,j the assigned bandwidth from the jth BS to the ith UE.

pi,j the assigned power from the jth BS to the ith UE.

qj the location of the jth BS in the horizontal plane, qj ∈ Q.

hj the height of the jth DBS.

Tj the total throughput of the jth BS, Tj =
∑

iRi,j .
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data rate of the jth DBS’s access link does not exceed that of the backhaul link. C7

imposes the total used power of a DBS not to exceed its maximum power. C8 implies

that the total used power of a MBS does not exceed its maximum power.

min
∑
j

fj & max
{fj ,qj ,hj ,ωi,j ,bi,j}

∑
j

Tj

s.t. :

C1 :
∑
j

ωi,j ≤ 1, ∀i ∈ U ,

C2 : fj ≤
∑
i

ωi,j ≤ fj ∗ |U|, ∀j ∈ B, j > 1,

C3 : qj ∈ Q, ∀j ∈ B, j > 1,

C4 : hmin ≤ hj ≤ hmax, ∀j ∈ B, j > 1,

C5 : Ri,j = ωi,j ∗ di, ∀i ∈ U , j ∈ B,

C6 :
∑
i

Ri,j ≤ φj, ∀j ∈ B, j > 1,

C7 :
∑
i

ωi,j ∗ bi,j ∗ ξj ≤ PD, ∀j ∈ B, j > 1,

C8 :
∑
i

bi,1 ∗ ξ1 +
∑

j∈B,j>1

Pj,1 ≤ PM . (2.8)

For the UE assignment, ωi,j∗ is pre-set as “1”, as expressed in Equation (2.9),

implying that each UE is assigned to the BS with the best SINR if it is provisioned;

otherwise, it is “0”.

ωi,j∗ = 1, j∗ = arg max
j
Si,j, ∀i ∈ U . (2.9)

2.3 Heuristic Algorithm

The NAPE problem is composed of four subproblems: the DBS placement problem,

the UE assignment problem, and power and bandwidth allocation problem. The

NAPE problem is a non-convex and non-linear optimization problem, which is NP-
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hard [21]. We propose a heuristic algorithm, named the Dynamic droNe-bAse-station-

PlacEment (D-NAPE ) algorithm, to solve the NAPE problem.

The D-NAPE algorithm is illustrated in Algorithm 1. D-NAPE provides the

vertical coordinates of all DBSs as well as the horizontal locations in the xy-plane.

Here, Wj denotes the total weight of the jth DBS and ςi,j defines the weight for

each UE by considering the distance to the DBS, the SINR to the MBS and the UE

number:

Wj =
∑
i

ςi,j. (2.10)

ςi,j = ((xi − xj)2 + (yi − yj)2)−1 + 10 ∗ (Si,1)−1/2 + 1. (2.11)

Cd is the coverage of the jth DBS; lmax is the maximum number of loops used to match

the total data rate of the jth DBS and that of its backhaul; ε is a small deviation

value. Algorithm 1 includes: the DBS placement in the vertical plane (Steps 2 − 3)

and the horizontal plane (Steps 6−9), stop conditions (when the maximum number of

DBSs are used or all UEs are provisioned) (Step 4), power and bandwidth allocation

for the MBS (Step 12) and that for all DBSs (Step 13). The complexity of Steps 1-4

is O(hmax−hmin

∆h
|B|), where ∆h is the altitude increment; that of Step 5 is O(|U|); that

of Steps 6-9 is O(|B||Q||U|); that of Steps 10-12 is O((|B| − 1)|U|+ |U||B|+ |U|). The

complexity of Steps 3-14 of Algorithm 2 is O(|B|(|U|+ log(|U|))); that of Steps 2-14 of

Algorithm 2 is O(lmax|B|(|U|+log(|U|))) (can be repeated for at most lmax iterations).

Therefore, the complexity of Algorithm 1 in the worst case is O(hmax−hmin

∆h
|B|(|B||Q|+

|B|+ 1)|U|+ |U||B| + lmax|B|(|U|+ log(|U|))).
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Algorithm 1: D-NAPE Algorithm

Input : xuei ,yuei and parameters from Table 2.2;

Output: fj , qj , hj , ωi,j , bi,j , pi,j ;

1 Nbs = 1, Nblock = 1 and h = hmin;

2 for h ≤ hmax do

3 hj = h;

4 while Nbs ≤ Nmax&Nblock = 1 do

5 calculate Si,1 of all UEs;

6 for j ∈ B & q ∈ Q do

7 calculate Wj within Cd through Equations (2.10)-(2.11);

8 get qj where Wj is maximized;

9 remove UEs within coverage qj ;

10 get Si,j and calculate ωi,j by Equation (2.9);

11 allocate P1,j and βBj for backhaul links;

12 allocate bi,1 and pi,1 to MBS’ UEs;

13 run D-NAPE Algorithm 2 ;

14 update Nblock and fj ;

15 Nbs = Nbs + 1;

16 calculate throughput T =
∑

j Tj and h = h+ ∆h;

17 update fj , qj , hj , ωi,j , bi,j , pi,j associated with the maximum T .
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Algorithm 2: D-NAPE Algorithm 2

Input : l, P lj and parameters from Table 2.2;

Output: Nblock and fj ;

1 l = 0, ND = 1, N j
D = 1, P lj = PD/2

l+1, ∀j;

2 while ND > 0 & l < lmax do

3 set available power Pmaxj =
∑
P lj ;

4 for j ∈ B do

5 sort UEs in descending order by SINR;

6 allocate bi,j and pi,j to UEs;

7 if |(
∑

iRi,j − φj)/φj | < ε then

8 N j
D = 0 and ND =

∑
j N

j
D;

9 continue;

10 if
∑

iRi,j ≥ φj then

11 set P l+1
j = PD/2

(l+1)+1;

12 else

13 set P l+1
j = −PD/2(l+1)+1;

14 l = l + 1 and ND =
∑

j N
j
D ;

15 if all UEs are provisioned then

16 Nblock = 0;

17 else

18 Nblock = 1;
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Table 2.2 Parameters for Simulations of the NAPE Problem

(a, b), environment constants (9.61, 0.16)

(ηL, ηN ), additional mean losses of LoS, NLOS (1, 20) dB

Cm, MBS cell coverage 500 ∗ 500m2

Cd, DBS cell radius (only for DBS placement) 80 m

(hmin, hmax), the altitude range of a DBS (80, 200) m

ground to ground (MBS-UE) path loss 34.5 + 35log10(d[m]) [23]

Shadow fading of MBS to UE N(0, 62) dB

N0 −174 dBm/Hz

c0 130 dB [15]

|U| {130, 170, · · · , 190}

di {0.5, 0.5, 1, 2} Mbps

PM 4 W

PD 0.5 W

βM 20 MHz

lmax 10

ε 0.0002

Nmax 6
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2.4 Performance Evaluation

We ran the Matlab simulation 200 times to obtain the simulation mean results. One

MBS in an urban area (i.e., Cm is 500 ∗ 500 m2) is considered and the maximum

number of DBS that can be used is five. PM = 4 W and PD = 0.5 W, implying that

the power capacity of a MBS and a DBS are 4W and 0.5W, respectively. The other

parameters are defined in Table 2.2 [17].

Figure 2.2 Throughput versus altitude.

A benchmark algorithm with half-duplex enabled DBSs (HD-benchmark) is

also evaluated; it uses the same strategy as the D-NAPE algorithm in solving the

four sub-problems. Figures 2.2-2.3 show the throughput performance versus altitude

and the number of UEs of the D-NAPE algorithm, respectively. For a given number

of UEs such as 190 UEs, the total network throughput of D-NAPE increases as the

altitude increases when h < 100m; the total throughput of the network decreases

as the altitude increases when h > 100m. For h < 100m, NLOS is the dominant
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Figure 2.3 Throughput versus UEs.

path loss, and NLOS decreases as the altitude increases, thus resulting in the path

loss decrease and the total network throughout increase; for h > 100m, LOS is the

dominant path loss, and LOS increases as the altitude rises, thus increasing the path

loss and decreasing the total network throughout. For a given altitude such as 100

m, the total network throughput also increases as the number of UE increases, and

D-NAPE achieves up to 32% and 23% throughput increase as compared to that of

without DBS strategy and HD-benchmark, respectively.

Figure 2.4 illustrates the results of the required number of DBSs, which increases

as the number of UE increases because our algorithm tries to provide services to as

many UEs as possible.

Figure 2.5 shows the results of the data rate block ratio, which is the total

bandwidth of blocked UEs over the total required bandwidth of all UEs. The D-NAPE

algorithm achieves the lowest data rate block ratio as compared to other strategies
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Figure 2.4 Required BSs versus UEs.

Figure 2.5 Data rate block ratio.
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because IBFD-enabled DBSs can improve SINR and better balance the capacity of

backhaul links and access links, and can thus provide service to more UEs.
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CHAPTER 3

THREE-DIMENSIONAL DBS PLACEMENT

DBSs can be deployed to provide wireless services with high mobility and low cost [7].

Drone cells are especially useful for provisioning communications for temporary or

unexpected events in sports, traffic jams, and emergency communications [27, 28].

DBSs can be used to overcome terrestrial BS failures, offload traffic from a congested

macro base station (MBS ), provide service to remote areas [17], and improve Quality

of Service (QoS) of user equipments (UE s) [29].

Figure 3.1 Half duplex and full duplex communications with DBSs.

Figure 3.1(a) shows a DBS assisted half-duplex (HD) cellular network, where

separate frequency spectra are employed in the backhaul link (from the MBS to a

DBS) and access link (from the DBS to the UE), but the spectrum efficiency of HD

is low. In contrast, in-band full-duplex (IBFD) can potentially double the spectrum

efficiency as compared to HD [21]. IBFD enables simultaneous communications in the

backhaul link and access link in the same frequency band [20]. However, it is difficult

to transmit and receive data on the same frequency owing to severe self-interference
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(SI ). Recent advances in SI cancellation, which can reduce SI by up to 150 dB [15],

have enabled IBFD [20].

Kalantari et al. [17] addressed the DBS placement problem by maximizing the

number of UEs covered by the DBS, and Sun et al. [29] minimized the total average

latency ratio incurred by BSs; Wang et al. [30] determined the optimal drone position

that minimizes the transmission power in provisioning a set of UEs; Goyal et al. [21]

maximized the total average data rate of either downlink or uplink for FD enabled

small base stations (SBSs); Siddique et al. [20] maximized the overall achievable rates

of SBSs via access/backhaul spectrum allocation while considering both IBFD and

out-of-band FD backhauling. Since IBFD can significantly improve the throughput of

the DBS assisted cellular network, we formulate the Drone-base-S tation P lacement

with In-Band Full-Duplex communication (DSP-IBFD) problem, which includes

the DBS placement problem, and the bandwidth and power allocation (in the access

link and the backhaul link) problem. We propose two heuristic algorithms based on

different DBS placement strategies to solve the DSP-IBFD problem. One is the fixed

DBS placement (benchmark), and the other is the dynamic DBS placement, which

aims to achieve better performance. Meanwhile, the bandwidth and power allocation

are optimized based on the DBS placement results.

3.1 System Model

We consider a heterogeneous network (HetNet) consisting of a MBS (HD-enabled)

and a few DBSs (IBFD-enabled) deployed as small cells. Figure 3.1(b) shows the

backhaul link and access link of a DBS sharing the same frequency. Meanwhile,

different DBSs use different frequency spectra, thus not incurring BS-BS interference

between each other. A UE associated with a DBS receives the interference from the

backhaul link from the MBS to their DBS, which is different from Figure 3.1(a).
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Denote B = {1, 2, · · · , k} as the BS set, where B′ = {j ∈ B, j 6= 1} is the DBS

set, and j = 1 refers to the MBS. U = {u1, u2, · · · , un} is the UE set. We consider a

MBS of coverage radius Cm overlapped with multiple DBSs. At the beginning, DBSs

are located at the MBS, and then move to the target area, hovering there to provide

services to UEs. We consider low-mobility DBSs (DBSs are hovering most of the

time); both the MBS and DBSs dynamically allocate power and bandwidth to UEs.

In this letter, we only focus on downlink communications from the MBS to UEs via

a DBS or from the MBS to UEs.

When DBSs communicate with UEs on the ground, two types of path loss are

considered, i.e., line-of-sight (LoS and non-line-of-sight (NLoS ) [17,22]. Probabilities

of a LoS (ΨL) and NLoS (ΨN) transmission between a transmitter and a receiver are

expressed in Equation (3.1). Here, a and b are constants, which are determined by

the environment (rural, urban, etc.), θ = arctan(h
r
) is the elevation angle, h is the

altitude of a DBS, and r is the horizontal distance, respectively [17,24].


ΨL = [1 + a× exp(−b(180θ

π
− a))]−1

ΨN = 1−ΨL

(3.1)

Since it is difficult to determine the exact LoS or NLoS of a connection between

a user and a DBS, we use the mean path loss Γ instead of the exact path loss of the

LoS or NLoS, as detailed in Equation (3.2). Here, ηL and ηN are the additional mean

losses of LoS and NLoS links, fc is the carrier frequency, c is the speed of light, and

d =
√

(h2 + r2) is the distance between a DBS and a UE [17].

Γ = ηLΨL + ηNΨN + 20log(4πfcd/c) (3.2)

After substituting ΨL and ΨN into Equation (5.2), we can transform Equation (3.2)

into Equation (3.3). As a result, Γ is a function of h and r, implying that

the path loss is a function of the altitude and coverage of the DBS. For a given
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Γ, the coverage radius r of a DBS is a function of its altitude h. Note that

20log(4πfcd/c) = 20log(4πfc/c) + 20log(r/cosθ).

Γ =
ηL − ηN

1 + a× exp(−b(180θ
π
− a))

+ 20log(
4πfcd

c
) + ηN (3.3)

We assume the transmit power-spectral density of each BS is constant [31]. Let

pi,j and bi,j be the allocated power and frequency bandwidth for the ith UE of the

jth BS (note that each UE is associated with only one BS); denote si,j as the signal

to interference plus noise ratio (SINR) of the ith UE towards the jth BS, as detailed

in Equation (3.4).

si,j =


pi,j |hi,j |2

σ2 , j = 1

pi,jΓi,j

pi,j′ |hi,j′ |2+σ2 , j ∈ B′, j′ = 1

(3.4)

Here, hi,j is the channel gain between the kth BS and the ith UE; Γi,j is the path loss

of the ith UE when it is associated with the jth (j > 1) DBS; σ2 = bi,j ∗ N0 is the

thermal noise power, and N0 is the thermal noise power spectral density.

Let φi,j be the data rate of the ith UE from the jth BS. Then, a UE’s data rate

is determined by si,j and bi,j according to the Shannon Hartley theorem [25], as shown

in Equation (3.5). To reduce the problem complexity, we assume pi,j = bi,j ∗ζj, where

ζj is the power-spectral density [26]. Then, we only need to allocate the bandwidth

for each UE.

φi,j = bi,jlog2(1 + si,j) (3.5)

There are two types of interferences in our network: SI at the DBS, and backhaul

interference [20, 21]; DBSs will experience SI, and a UE associated with a DBS will

be affected by the transmission power of the backhaul from the MBS to this DBS.

Then, the data rate of the backhaul fj is formulated as Equation (3.6).

fj = βBlog2(1 +
P1,jΓ1,j

ISI + σ2
j

), j ∈ B′ (3.6)
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Here, P1,j is the transmission power from the MBS to the jth DBS; Γ1,j is the path

loss from the MBS to the jth DBS (by Equation (3.2)); βB is the total backhaul

bandwidth for a DBS, which is reused by both the DBS’s backhaul link and its access

links towards UEs (βB is set to 3.3 MHz in the simulation); σ2
j =βBN0 is the thermal

noise power; N0 is the thermal noise power spectral density; ISI =
∑

i pi,j/CSI is

the residual SI experienced at the DBS, and 1/CSI is the residual self-interference

power [20].

3.2 Problem Formulation

After the locations of all DBSs are determined, each UE is associated with the BS

that has the highest SINR.

Notations (given):

N : the number of DBS, N = |B′|.

xuei , yuei : the location of the ith UE.

PM : the maximum transmission power of a MBS.

PD: the maximum transmission power of a DBS.

dmin: the minimum data rate for each UE.

ζj: the power-spectral density of the jth BS.

Pj′,j(j
′ = 1): the transmission power of the MBS towards the jth DBS for the

backhaul link.

Variables:

ωi,j: binary variable: 1 if the ith UE is associated with the jth BS; 0, otherwise.

bi,j: the bandwidth of the jth BS allocated to the ith UE.

pi,j: the transmission power of the jth BS allocated to the ith UE.

{xj, yj, hj}: 3-D co-ordinates of the jth DBS; hj is the altitude.

Pj: the total transmission power of the jth DBS towards its associated UEs, where
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Pj =
∑

i bi,jζjωi,j.

Φj: the total throughput of the jth BS, Φj =
∑

i φi,j.

The objective of the DSP-IBFD problem is to maximize the throughput of the

whole network as expressed in Equation (3.7).

max
xj ,yj ,hj ,ωi,j ,bi,j

∑
j

Φj (3.7)

s.t. :∑
j

ωi,j = 1, ∀i ∈ U (3.8)

ωi,j∗ = 1, j∗ = argmax
j

(si,j), ∀i ∈ U (3.9)∑
i

φi,j ≤ fj, ∀j ∈ B′ (3.10)

Pj ≤ PD, ∀j ∈ B′ (3.11)∑
i

bi,j′ζj′ +
∑
j,j 6=j′

Pj′,j ≤ PM , ∀j, j′ = 1 (3.12)

φi,j ≥ ωi,jdmin, ∀i ∈ U , j ∈ B (3.13)

hmin ≤ hj ≤ hmax, ∀j ∈ B′ (3.14)

Equation (3.8) imposes each UE to be associated with only one BS, and Equation (3.9)

ensures that each UE is associated with the BS with the best SINR. Equation (3.10)

is the backhaul data rate capacity constraint, and it ensures that the total data rate of

a DBS cannot exceed its backhaul capacity. Equation (3.11) is the power constraint

of each DBS, and it ensures that the total transmission power of a DBS towards its

associated UEs should not exceed the maximum available power. Equation (3.12) is

the power constraint of the MBS, and it ensures that the aggregated transmission

power of the MBS towards its associated UEs and all DBSs should not exceed the

maximum available power. Equation (3.13) is the minimum data rate constraint, and

it ensures that each UE’s data rate should exceed the minimum threshold when it
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is associated with a BS. Equation (3.14) is the altitude constraint for a DBS, and it

provides the lower bound and upper bound altitudes for placing the DBS, respectively.

3.3 Heuristic Algorithm

The DSP-IBFD problem is a non-linear non-convex combinatorial optimization

problem, which can be decomposed into the DBS placement problem and the resource

allocation problem. The DBS placement problem is a set cover problem, which is

NP-hard, and hence it is hard to find the optimal solution [21]. Hence, we propose two

heuristic algorithms to solve this problem, namely, the Dynamic-DSP and Fixed-DSP

algorithm.

The Dynamic-DSP algorithm is summarized in Algorithm 3. For each BS,

the remaining bandwidth and power to the UE which has the best SINR. Here,

Equation (3.15) defines the weight of the ith UE for the DBS placement; we assume

the coverage of the DBS is Cj, which is only used for the DBS placement; the

maximum loop number Lmax is used to iteratively find the resource allocation of

the DBS, which best matches the backhaul capacity and the data rate of UEs’ access

links; ε is a given small deviation value. Each BS provides the minimum data rate

(500 kbps) to all associated UEs first, and the remaining power and bandwidth

are then assigned to the UE which has the highest SINR to achieve the highest

throughput. We first find the locations to place all DBSs (Lines 1-5), and then get

the UE association and allocate bandwidth and power to UEs associated with the

MBS (Line 6). Afterwards, power and bandwidth of each DBS are allocated to its

associated UEs such that the aggregated data rate of these UEs is close to the DBS’s

backhaul capacity (Lines 7-20). The complexity of Steps 1-4 is O(Cm/Cj|U ||B|);

that of Steps 5-6 is O((hmax − hmin)/∆h|B| + |U ||B|), where ∆h is the increment of

the altitude used in the iteration and O(|U ||B|) is the complexity of calculating UE

association; that of Steps 10-20 is O(|B|(|U | + log(|U |))), and they can repeat for
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Algorithm 3: Dynamic-DSP Algorithm

Input : (xuei , y
ue
i ) and other parameters in Table 3.1;

Output: {xj , yj , hj}, ωi,j , bi,j ;

1 for j ∈ B′ do

2 calculate the weight of UEs in Cj by Equation (3.15);

3 get xj and yj with the highest weight;

4 remove UEs in the coverage of the jth DBS;

5 calculate si,j and get hj with the best average SINR of all UEs;

6 calculate ωi,j based on the best SINR and allocate bi,j and pi,j to UEs in MBS;

7 assign the redundant bandwidth and power to MBS’s UE with the best SINR;

8 L = 0, D = 1, Dj = 1, PLj = PD/2
L+1,∀j;

9 while D > 0 & L < Lmax do

10 set maximum available power Pmaxj =
∑
PLj , ∀j ;

11 for j ∈ B′ do

12 allocate the bandwidth and power to UEs;

13 if |(
∑

i φi,j − fj)/fj | < ε then

14 Dj = 0, and D =
∑

j Dj ;

15 continue;

16 if
∑

i φi,j ≥ fj then

17 set PL+1
j = PD/2

(L+1)+1;

18 else

19 set PL+1
j = −PD/2(L+1)+1;

20 L = L+ 1, and D =
∑

j Dj ;

21 update bi,j = pi,j/ζj , ωi,j , and Pj ;
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at most Lmax times in the worst case. Thus, the complexity of Steps 9-20 can reach

O(Lmax|B|(|U |+log(|U |))). Therefore, the complexity of the Dynamic-DSP algorithm

is O(Cm/Cj|U ||B|+ (hmax − hmin)/∆h|B|+ |U ||B| + Lmax|B|(|U |+ log(|U |))).

ξi = 1 + ((xuei − xj)2 + (yuei − yj)2)−1 (3.15)

For the Fixed-DSP algorithm, we place all DBS in fixed locations, and then execute

Lines 6− 21 in Algorithm 3.

3.4 Performance Evaluation

In this research, we consider three DBSs and one MBS (|B′| = 3) in an urban area

(i.e., the coverage area of the MBS is 500 × 500 m2). The frequency spectra of all

BSs are around f = 2 GHz. We set the maximum transmission power of a DBS as

PD = 1 W, and that of the MBS as PM = 4 W. The remaining parameters, such as

a, b, ηL, and ηN , are listed in Table 3.1 [17].

Figure 3.2 shows the network throughput achieved by the Dynamic-DSP and

the Fixed-DSP algorithms for different altitudes where the total number of UEs in

the network is 100. The throughput achieved by the Dynamic-DSP strategy has been

increased by 45% and 8% as compared to the strategy without DBS and the Fixed-

DSP strategy, respectively. The throughput increases as the altitude increases. The

NLoS path loss between a DBS and its associated UEs degrades with the increasing

altitude of the DBS. Then, the network throughput decreases when the altitude is

more than 120m because when the altitudes of DBSs are very high, the distances

between UEs and DBSs become the dominant factor for the path loss, thus degrading

the throughput of the network.

Figure 3.3 shows the network throughput when DBSs hover at the altitude of

120m as the number of UEs varies; both of the proposed strategies can provide a
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Table 3.1 Simulation Parameters for the DSP-IBFD Problem

a, environment constant 9.61

b, environment constant 0.16

ηL, additional mean loss of LoS 1 dB

ηN , additional mean loss of NLoS 20 dB

Cm, MBS cell coverage 500× 500 m2

Cj , coverage of a DBS (used for DBS placement) 70 ∗ 70 m2

hmin, the minimum altitude of a DBS 60 m

hmax, the maximum altitude of a DBS 200 m

path loss of MBS-UE 34.5 + 35× log10(d[m]) [31]

Shadow fading of MBS-UE N(0, 82) dB

N0, thermal noise power spectral density −174 dBm/Hz

CSI , SI cancellation value 130 dB [15]

βM , the total bandwidth capacity of the MBS 20 MHz

βB, the total backhaul bandwidth of a DBS 3.3 MHz

PM , the maximum transmission power of a MBS 4 W

PD, the maximum transmission power of a DBS 1 W

|U|, the number of UEs {100, 120, · · · , 220}

The minimal data rate 500 kbps

Lmax, the maximum loop number 60

ε, deviation of throughput and backhaul data rate 0.0002
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Figure 3.2 Throughput performance with 100 UEs.

Figure 3.3 Throughput performance with fixed altitude.
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Figure 3.4 DBS placement by the Dynamic-DSP algorithm.

higher throughput as compared to the one without DBSs because the two proposed

strategies can place DBSs close to UEs to improve the SINR of UEs. The throughout

without DBSs decreases as the number of UEs increases because the MBS needs

to allocate most bandwidth to UEs with bad channel conditions to maintain their

minimum data rates, and thus the bandwidth allocated to UEs with high SINR is

reduced. Figure 3.4 shows how DBSs are placed by Dynamic-DSP; note that DBSs

hover close to regions with higher UE densities but not far away from the MBS.
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CHAPTER 4

JOINT RADIO RESOURCE AND DBS PLACEMENT FOR
DOWNLINK COMMUNICATIONS

Al-Hourani et al. [24] presented a path loss model for communications between a

DBS (in the air) and a UE (on the ground), and they also built a model to obtain

the optimum altitude of a low altitude platform (DBS) which can maximize the

coverage area (of the DBS) for a given path loss threshold. Alzenad et al. [32]

investigated the 3-D placement of one DBS in a hotspot area with the target to provide

service to the maximum number of UEs. Sharma et al. [33] proposed to employ

unmanned aerial vehicles (UAV s) as the relay between the macro and small cells to

increase the throughput capacity of the network. Mozaffari et al. [19] investigated

the deployment of multiple UAVs without overlapping coverage to provision ground

UEs in a hotspot, and an efficient deployment is achieved by leveraging the circle

packing theory. Chen et al. [18] investigated the vertical placement of a UAV as

a relay to minimize reliability factors with consideration of a single UE at the cell

edge; Sun et al. [29] focused on the 2-D placement of a DBS in the horizontal plane to

minimize the average latency ratio of UEs in a HetNet. Alzenad et al. [16] studied the

3-D placement of one DBS in a hotspot area, and their objective is to maximize the

number of UEs covered by the DBS with consideration of different QoS constraints.

Zhang et al. [34] studied the 3-D placement of multiple IBFD-enabled DBSs in

a HetNet, and the objective is to minimize the number of DBSs while maximizing the

total throughput. Siddique et al. [20] studied the access and backhaul (IBFD, out of

band or hybrid) spectrum allocation of the downlink in a two-tier HetNet, and the

objective is to maximize the minimum downlink data rate of all small BSs. Goyal et

al. [21] presented the UE selection and power allocation problem in a multi-small-cell

network to maximize the network utility with FD enabled BSs and HD enabled UEs.
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Sharma et al. [35] proposed an IBFD self-backhauling HetNet with FD enabled small

BSs, HD enabled MBS and HD enabled UEs, and the downlink data rate nearly double

that of the conventional frequency division duplex (FDD) or time division duplex

(TDD) network. Several UE association strategies, such as the maximum coverage

[32], the best SINR [12], the maximum utility gain [21], the maximum average received

biased power [35], and single MBS association [29] have been proposed.

Although there are works related to the placement of DBSs and works related

to IBFD communications, few works focus on maximizing the throughput of a DBS-

assisted HetNet with IBFD communications. In our previous work [23] (IEEE CL),

we studied the 3-D DBS placement problem with IBFD communications, and the

objective is to maximize the total throughput of the network. This work considered

a light workload scenario, implying that no UE is blocked; each UE is provisioned by

one BS with the minimum data rate first, and the remaining available bandwidth and

power of a BS is assigned to the UE with the best SINR; two heuristic algorithms

(without approximation ratio) were proposed to determine the locations of all DBSs

first, and then solve the bandwidth and power allocation, UE association problem. In

this work, we consider multiple DBSs and a MBS in provisioning services to ground

UEs, while the MBS transmits signals to a DBS through the same frequency spectra

as that between the DBS and ground UEs.

In this research, we formulate the Drone-mounted Base-S tation P lacement

with in-band full-duplex communications (DBSP-IBFD) problem [36]. The main

contributions of this work are fourfold: 1) we formulate the DBSP-IBFD problem and

consider power and bandwidth allocation in both access links and backhaul links that

has not been addressed before; 2) we formulate the DBSP-IBFD problem for a general

workload scenario (the workload can either be light or heavy); 3) we propose an

approximation algorithm with low complexity to solve the DBSP-IBFD problem, and

the algorithm is proved to provide guaranteed performance; 4) the optimal locations
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of all DBSs are achieved. We have studied the DBSP-IBFD problem and preliminary

results have been reported in our previous work [23] (IEEE CL). In [23], we did

not consider bandwidth allocation constraints for backhaul links, the bandwidth

capacity constraints of BSs, and the UE association constraints for blocked UEs.

In other words, [23] considers a light workload scenario (no UE is blocked) while this

work considers a general workload scenario (some UEs may be blocked with heavy

workload).

4.1 System Model

In this research, we focus on the downlink communications, i.e., MBS-UE commu-

nications and MBS-DBS-UE communications. Figure 4.1(a) describes half duplex

communications between UEs and BSs. All UEs, DBSs, and the MBS are half duplex

enabled; an access link is the direct link from a BS to an UE; a backhaul link is

the link between the MBS and the DBS; each UE can be provisioned by one BS;

the access link and the backhaul link of one DBS use different frequency spectra;

different DBSs use different frequency spectra. For example, the backhaul link (from

the MBS to DBS 1) uses different spectrum from that of the access link (from DBS

1 to UE 1); UE 1 to UE 5 use different frequency spectra. Figure 4.1(b) exhibits FD

communications. All DBSs are IBFD enabled; all UEs and the MBS are half duplex

enabled. The backhaul link and the access link of a DBS use the same frequency

spectrum; different BSs use different frequency spectra. UEs under the coverage of

one BS (DBS or MBS) use different frequency spectra. For example, the backhaul

link (from the MBS to DBS 1) uses the same spectrum from the access link (from

DBS 1 to UE 1); UE 1 to UE 5 also use different frequency spectra. In this research,

we consider two different time slots (a small time slot and a big time slot) for the DBS

placement and power and bandwidth allocation, respectively [4]. The big time slot at

the scale of minutes (depending on the mobile traffic) is used for the DBS placement,

and the small time slot at the scale of seconds is used for the power and bandwidth
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allocation [4]. All DBSs are located nearby the MBS before the optimization, and

they will fly to the target area according to the results of the optimization. When

a DBS arrives at the target location [37] in the beginning of a big time slot, it is

hovering at that location to provide service to UEs till the end of this big time slot.

Then, we allocate power and bandwidth for the backhaul links and access links in the

small time slot, which only occupies a little time at the beginning of a big time slot.

Different 
spectrum

UE 1 UE 2 UE 5

MBS

Different 
spectrum

UE 1 UE 2

MBS

UE 5

Self 
interference

Backhaul 
interference

The same 
spectrum

DBS 1 DBS 2 DBS 1 DBS 2

UE 3 UE 4 UE 3 UE 4

(a) (b) 

Figure 4.1 DBS-based half-duplex and full-duplex communications: (a) half duplex and
(b) full duplex.

Denote B = {1, 2, · · · , n} as the set of BSs with j = 1 representing the MBS;

let U = {1, 2, · · · , k} be the set of UEs. Although the Poisson Point Processes (PPP)

is widely used in academia, it is not good enough to capture spatial coupling between

UEs and BSs according to 3GPP simulation models while the Poisson Cluster Process

(PCP) such as the Matérn cluster process is a good approach to capture the coupling

problem [38]. The spatial UE distribution is generated according to a Matérn cluster

process [34, 39]. The daughter points (representing UEs) are generated according to

a uniform distribution around the parent points, and the parent points (representing

the clusters) are generated according to a Poisson process.

In this research, we consider the air-to-ground (A2G) path loss model for the

MBS-DBS and DBS-UE communications, and ground-to-ground (G2G) path loss

model for the MBS-UE communications. Two types of path loss are considered in the

A2G path loss model, i.e., line-of-sight (LoS ) and none-line-of-sight (NLoS ) [16, 22].
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Given an access link between an UE located at (xuei , y
ue
i ) and a DBS located at

(xj, yj, hj), ϕ
L
i,j and ϕNi,j are the A2G path loss for the LoS and NLoS of this link as

defined below.


ϕLi,j = 20log(

4πfcdi,j
c

) + ηL,

ϕNi,j = 20log(
4πfcdi,j

c
) + ηN .

(4.1)

Here, ηL and ηN are the average additional loss for the LoS and NLoS of an A2G

link, fc is the carrier frequency, di,j = ((xj−xuei )2 +(yj−yuei )2 +h2
j)

1/2 is the distance

between the ith UE and the jth DBS, and c is the speed of light [24].

The probability of an A2G link between the ith UE and the jth DBS

experiencing LoS and that experiencing NLoS are ζLi,j and ζNi,j expressed respectively

below.


ζLi,j = [1 + a · exp(−b(180θi,j

π
− a))]−1,

ζNi,j = 1− ζLi,j.
(4.2)

Here, θi,j = arctan(
hj
zi,j

) is the elevation angle of the jth DBS, h is the height of the

jth DBS, zi,j = ((xj − xuei )2 + (yj − yuei )2)1/2 is the horizontal distance between the

ith UE and the jth DBS in the horizontal plane, and a and b are weights associated

with the environment, i.e., suburban, urban and dense urban, respectively [16,24].

Note that it is difficult to determine the accurate path loss type (i.e., LOS or

NLoS) of an A2G link in the absence of terrain knowledge [32]. Hence, we employ

the mean path loss ψi,j instead of the exact LoS path loss or NLoS path loss of an

A2G link between the ith UE and the jth DBS as expressed below.

ψi,j(h, z) = ϕLi,jζ
L
i,j + ϕNi,jζ

N
i,j. (4.3)
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Then, Equation (4.3) is transformed into Equation (4.4).

ψi,j(h, z) =
ηL − ηN

1 + a·exp(−b(180θi,j
π
− a))

+G1 +G2, (4.4)

whereG1 = 20log(4πfc/c)+η
N , G2 = 20log(z/cosθi,j) andG1+G2 = 20log(4πfcdi,j/c)+

ηN . Equation (4.4) implies that the coverage radius Cj of the jth DBS is a function

of its altitude h for a given ψ.

Denote pi,j, bi,j, di,j, and si,j as the assigned power, the assigned frequency

bandwidth, the data rate, and the signal to interference plus noise ratio (SINR) of

the ith UE towards the jth BS, respectively. The data rate (according to the Shannon

Hartley theorem [25]) and the SINR of the ith UE towards the jth BS are shown as

Equation (4.5) and Equation (4.6).

di,j = bi,jlog2(1 + si,j), ∀i ∈ U , j ∈ B (4.5)

si,j =


pi,j |γi,j |2
σ2
i,j

, ∀i ∈ U , j = 1,

pi,jψi,j

pi,1|γi,1|2+σ2
i,j
, ∀i ∈ U , j ∈ B, j > 1,

(4.6)

where γi,j(j = 1) and ψi,j(j > 1) are the channel gain from the MBS and the jth

DBS to the ith UE, respectively; σ2
i,j = bi,jN0 is the thermal noise power and N0 is

the thermal noise power spectral density.

The backhaul data rate of the jth DBS (the data rate from the MBS to the jth

DBS) is:

fj = βjlog2

(
1 +

P1,jψ
′
1,j

GSI
j + σ2

j

)
, j ∈ B, j > 1, (4.7)

where P1,j and βj are the assigned power and bandwidth assigned by the MBS towards

the jth DBS, respectively; ψ
′
1,j is the channel gain from the MBS to the jth DBS;

σ2
j = βjN0 is the thermal noise power and N0 is the thermal noise power spectral
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density; GSI
j =

∑
i pi,j/G0 is the SI at the jth DBS and 1/G0 is the residual SI power

(depending on the SI cancellation algorithm) [20].

4.2 Problem Formulation

We formulate the DBSP-IBFD problem in this section. Assume thatNbs is the number

of required DBSs, which is known a priori (i.e., Nbs is estimated roughly based on

the data rate capacity or by other methods similar to [34]). Notations and variables

are summarized in Table 4.1.

The DBSP-IBFD problem is formulated as follows.

max
vj ,hj ,ωi,j ,pi,j ,bi,j ,βj

∑
j

∑
i

di,j

s.t. :

C1 :
∑
j

ωi,j ≤ 1, ∀i ∈ U ,

C2 :
∑
i

ωi,jbi,j ≤ βj, ∀i ∈ U , j ∈ B, j > 1,

C3 :
∑
i

ωi,1bi,1 +
∑
j>1

βj ≤ βM , ∀i ∈ U ,

C4 :
∑
i

ωi,jpi,j ≤ PD, ∀i ∈ U , j ∈ B, j > 1,

C5 :
∑
i

ωi,1pi,1 +
∑
j>1

P1,j ≤ PM , ∀i ∈ U ,

C6 : di,j = ωi,jri, ∀i ∈ U , j ∈ B,

C7 :
∑
i

di,j ≤ fj, ∀j ∈ B, j > 1,

C8 : vj ∈ Λ, ∀j ∈ B, j > 1,

C9 : hj ∈ Θ, ∀j ∈ B, j > 1,

C10 : ωi,j ∈ {0, 1}, ∀i ∈ U , j ∈ B. (4.8)
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The objective is to maximize the total throughput of all UEs, as expressed in

Equation (4.8). C1 and C10 impose each UE to be provisioned with one BS (DBS

or MBS) if it is served. C2–C3 are the bandwidth capacity constraints for DBSs

and the MBS, which impose the total deployed bandwidth of a BS not to exceed the

bandwidth capacity of the BS. C4–C5 are the power capacity constraints for DBSs

and the MBS, which impose the total power consumed by a BS not to exceed the

maximum power of the BS. C6 is the data rate requirement constraint of each UE.

C7 is the backhaul data rate capacity constraint, which imposes the total data rate

of provisioned UEs in the jth DBS not to exceed that from the MBS to the jth DBS.

C8–C9 are the DBS placement constraints in the horizontal plane and vertical plane,

respectively.

4.3 Problem Analysis

The (DBSP-IBFD) problem can be decomposed into two sub-problems: the joint

bandwidth, power allocation and UE association (joint-BPU ) problem and the DBS

placement problem. The solutions of these two sub-problems are leveraged to solve

the DBSP-IBFD problem. For analytical tractability, we assume pi,j = bi,jξj, where

ξj is the power-spectral density of the jth BS [26]. The bandwidth and the power

are simultaneously provisioned to an UE. Then, bi,j and pi,j can be calculated based

on ωi,j, vj, hj (the UE association and the DBS placement), Equation (4.5) and

Equation (4.6). We also assume all DBSs and the MBS equally share the total

available bandwidth in the network (βj = βM/N), i.e., fixed backhaul bandwidth

allocation for all DBSs. Therefore, Equation (4.8) can be re-written as Equation (4.9).

4.3.1 The Joint-BPU Problem

For given locations of all DBSs, Equation (4.9) can be re-written as Equation (4.10).

C3 in Equation (4.10) is the backhal data rate capacity constraint, and we try to
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relax this constraint by adjusting βj of C2 in Equation (4.10). The idea is to solve

Equation (4.11) instead of solving Equation (4.10) by relaxing C3 step by step. In each

step, βmaxj is used to replace βj of C2 in Equation (4.10) (βmaxj =
∑

l β
l
j and β1

j =
βj
2l

).

In the lth step, we will update βl+1
j when we achieve the results of Equation (4.11);

βl+1
j =

βj
2l+1 if the total data rate of a DBS is smaller than the backhaul data rate

capacity; otherwise, βl+1
j = − βj

2l+1 .

max
vj ,hj ,ωi,j

∑
j

∑
i

ωi,jri

s.t. :

C1 :
∑
j

ωi,j ≤ 1, ∀i ∈ U ,

C2 :
∑
i

ωi,jbi,j ≤ βj, ∀i ∈ U , j ∈ B,

C3 :
∑
i

ωi,jri ≤ fj, ∀j ∈ B, j > 1,

C4 : vj ∈ Λ, ∀j ∈ B, j > 1,

C5 : hj ∈ Θ, ∀j ∈ B, j > 1,

C6 : ωi,j ∈ {0, 1}, ∀i ∈ U , j ∈ B. (4.9)

max
ωi,j

∑
j

∑
i

ωi,jri

s.t. :

C1, C2, C3, C6 in (4.9) (4.10)

Theorem 1. Any solution Ω = {ω∗i,j} for Equation (4.11) is (1− 1
2l

)-approximation

for Equation (4.10) with l runs.
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Proof. Note that Equation (4.11) only relaxes C3 in Equation (4.10). Assume β∗j

(0 ≤ β∗j ≤ βj) is the optimal solution for Equation (4.10), then we need to calculate

the variance between βmaxj and β∗j . |βmaxj − β∗j | = |
∑

l β
l
j − β∗j | = |

∑
l
βj
2l
− β∗j | ≤

|
∑

l
βj
2l
− βj| = βj|

∑
l

1
2l
− 1| = 1

2l
βj. Note that βmaxj ≤ β∗j ensures a feasible solution.

Let Φ(·) be the function of βmaxj to achieve the objective value. Since Constraint C2

in Equation (4.11) is a linear constraint, we have Φ(β∗j )−Φ(βmaxj ) = Φ(β∗j −βmaxj ) ≤

Φ( 1
2l
βj) = 1

2l
Φ(β∗j ). Thus, Φ(βmaxj ) ≥ (1− 1

2l
)Φ(β∗j ).

max
ωi,j

∑
j

∑
i

ωi,jri

s.t. :

C1 :
∑
j

ωi,j ≤ 1, ∀i ∈ U

C2 :
∑
i

ωi,jbi,j ≤ βmaxj , ∀i ∈ U , j ∈ B,

C3 : ωi,j ∈ {0, 1}, ∀i ∈ U , j ∈ B. (4.11)

max
ωi,j

∑
j

∑
i

ωi,jri

s.t. :

C1 :
∑
j

ωi,j ≤ 1, ∀i ∈ U

C2 :
∑
i

ωi,jbi,j ≤ βmaxj , ∀i ∈ U , j ∈ B,

C3 : 0 ≤ ωi,j ≤ 1, ∀i ∈ U , j ∈ B. (4.12)

We employ a greedy algorithm similar to the knapsack problem to solve

Equation (4.11). The weight matrix δk (required data rate over the required
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bandwidth) is calculated (Steps 1− 6), one solution Ω1 is achieved from the heuristic

algorithm (Steps 7 − 12), another solution Ω2 is obtained (Step 13), and the final

solution is decided based on the performance of Ω1 and Ω2 (Step 14).

Algorithm 4: Greedy Algorithm for joint-BPU

Input : v
′
j, h

′
j and other parameters in Table 4.2;

Output: ωi,j, pi,j, and bi,j;

1 for j ∈ B do

2 for i ∈ U do

3 calculate bi,j and pi,j for each UE;

4 sort bi,j in ascending order;

5 find bi,j′ = min(bi,j) ;

6 sort δi = ri/bi,j′ in descending order;

7 i′ = 1, U ′ = U , β
′
j = 0, j = 1, ..|B|;

8 while β
′
j ≤ βmaxj & U ′ 6= ∅ do

9 if β
′
j + bi′,j′ ≤ βmaxj then

10 set ωi′,j′ = 1 and remove the kth UE in U ′;

11 Ω1 = Ω1 ∪ {ωi′,j′} and β
′
j = β

′
j + bi′,j′ ;

12 else

13 repeat Steps 4-7 without calculating value bi,j;

14 k=k+1;

15 calculate Ω2 = {ωi′,j′ that provides N maximum ri};

16 return Ω1 or Ω2 which has higher throughput.

Theorem 2. Algorithm 4 is a 1
2
-approximation algorithm for Equation (4.11) when

not all UEs are provisioned; otherwise, the optimal throughput is achieved.
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Proof. (1) We first consider that one or more UEs are blocked (not all UEs are

provisioned). Let Φ1(·) be the function of ωi,j to calculate the objective value

(Φ1(ωi,j) =
∑

i

∑
j ωi,jri). Assume the maximum number of items in Ω1 is (k − 1),

then Ω1 = ∪k−1
i′=1{ωi′,j′}. Assume UEs with the N largest data rates are marked

with k, k + 1, · · · , (k + N − 1), then Ω2 = ∪k+N−1
i′=k {ωi′,j′}. Equation (4.12) is a

linear programming (LP) relaxations of Equation (4.11). Equation (4.12) has the

same objective function as Equation (4.11), and any solution to Equation (4.11)

is also a solution to Equation (4.12). Let OPT be the optimal objective of

Equation (4.11), and (OPT )frac be the optimal objective of Equation (4.12). Then,

(OPT )frac ≥ OPT . Since we have assigned UEs to BSs one by one in the order of

ri/bi,j′ , and no remaining UEs can be added to Ω1 in our solution, and thus we have

Φ1(Ω1) + Φ1(Ω2) ≥ (OPT )frac. Therefore, we have Φ1(Ω1) + Φ1(Ω2) ≥ (OPT )frac ≥

OPT . Thus, Φ1(Ω1)+Φ1(Ω2) ≥ OPT , implying that whether Φ1(Ω1) or Φ1(Ω2) must

be at least OPT/2. The final solution obtained by Algorithm 4 is Ω1 or Ω2, and it

depends on which one is bigger. Thus, Algorithm 4 is a 1
2
-approximation algorithm

for Equation (4.11).

(2) Now we consider all UEs are provisioned. In this case Φ1(Ω1) = (OPT )frac =

OPT , and Φ1(Ω1) ≥ Φ1(Ω2). The solution is Ω1 for Equation (4.11), which provides

the optimal throughput.

4.3.2 The DBS Placement Problem

For the DBS placement, we exhaustively search for the optimal locations of all DBSs

that achieve the highest throughput according to [16]. The algorithm is summarized

44



in Algorithm 5.

max
vj ,hj ,ωi,j

∑
j

∑
i

ωi,jri

s.t. :

C1, C2, C3 in (4.11)

C4 : vj ∈ Λ, ∀j ∈ B, j > 1,

C5 : hj ∈ Θ, ∀j ∈ B, j > 1. (4.13)

Algorithm 5: Determining locations by exhaustive search

Input : parameters in Table 4.2;

Output: v∗j and h∗j ;

1 for vj ∈ Λ do

2 for hj ∈ Θ do

3 calculate Φ2(vj, hj) = Φ1(ωi,j)|v′j=vj ,h
′
j=hj

by Algorithm 4;

4 obtain v∗j , h
∗
j by (v∗j , h

∗
j) = argmax

vj ,hj

Φ2(vj, hj);

5 return Ωi,j associated with v∗j , h
∗
j .

Theorem 3. Let v∗j , h
∗
j be the output of Algorithm 5; the optimal location in the

horizontal plane and the vertical plane is achieved by solving Equation (4.13), which

provides the highest throughput.

Proof. Let Φ2(vj, hj) be the function of vj and hj to calculate the objective value,

Φ2(vj, hj) = Φ1(ωi,j)|v′j=vj ,h
′
j=hj

. Since we use the exhaustive search strategy (all

locations for placing DBSs are checked), the maximum throughput is obtained,

Φ2(v∗j , h
∗
j) = Φ1(ωi,j)

∣∣
v
′
j=v∗j ,h

′
j=h∗j

and (v∗j , h
∗
j) = argmax

vj ,hj

Φ2(vj, hj). Thus, the optimal

locations of DBSs are achieved.
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Algorithm 6: Approximate Algorithm for DBSP-IBFD (AA-DBSP)

Input : parameters in Table 4.2;

Output: vj, hj, ωi,j, bi,j, and pi,j;

1 run Algorithm 5 to obtain vj, hj;

2 L = 1, l = 0, βlj = PD

2l+1 ;

3 while L > 0 & l < lmax do

4 βmaxj =
∑

l β
l
j and Lj = 1;

5 run Algorithm 4 to obtain Ωi,j;

6 for j ∈ B, j > 1 do

7 if |(
∑

i

∑
j ωi,jri − fj)/fj| < ε then

8 Lj = 0 ;

9 continue;

10 if
∑

i ωi,jri ≤ fj then

11 βl+1
j =

βj
2l+1 ;

12 else

13 βl+1
j = − βj

2l+1 ;

14 l = l + 1, and L =
∑

j Lj ;

15 obtain bi,j and pi,j associated with Ωi,j.
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4.3.3 The DBSP-IBFD Problem

We propose an approximate algorithm to solve the DBSP-IBFD problem in Equation (4.9),

named AA-DBSP, as summarized in Algorithm 6. Note that Algorithm 5 is used

to determine the locations of all DBSs; then, the UE association is determined by

Algorithm 4 with the determined placement of all DBSs; the bandwidth and power

assignment are finally determined by the UE association.

Theorem 4. Algorithm 6 is a 1
2
(1− 1

2l
)-approximation algorithm for Equation (4.11)

when not all UEs are provisioned; otherwise, the optimal throughput is achieved. Here,

l is the number of runs of Equation (4.11).

Proof. Theorem 4 can be concluded from Theorems 1, 2, and 3.

The complexity of solving the DBSP-IBFD problem is O(N |U||U|2CNbs
N1

). Here,

N1 = |Λ||Θ|. The complexity of Algorithm 6 is O(N |U|3log(|U|)(lmax + CNbs
N1

)). The

complexity of Algorithm 5 is O(N |U|3log(|U|)CNbs
N1

). The complexity of Algorithm 4

is O(N |U|3log(|U|)). For Algorithm 4, the complexity of Steps 1-5 is O(N |U|)), that

of Step 6 is O(|U|log(|U|)), and that of Steps 7 − 16 is O(|U|). The complexity of

No-DBS algorithm is O(|U|2log(|U|)).

4.4 Performance Evaluation

MATLAB is used to run the simulation. The average result is obtained by running

the simulation for 200 times. For each run, the coverage area of the MBS is set

as 500m × 500m, and it is divided into 25 equal areas, implying that there are 25

candidate areas for placing the DBSs. Note that different DBSs are located at different

locations if more than one DBS is used. In our simulation, the number of deployed

DBSs is set as 3, i.e., N = 4 BSs (MBS and DBSs). We assume that all DBSs fly at

the same height. The maximum transmission power of a DBS is set as 1W and that

47



of the MBS is set as 4W; the total bandwidth can be used in the network is 20 MHz,

and all parameters are summarized in Table 4.2 [16,34].
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Figure 4.2 Throughput versus altitude with 220 UEs.

Three benchmark algorithms are compared to demonstrate the efficiency of the

proposed AA-DBSP algorithm. The first one is named No-DBS, by which all UEs are

associated with the MBS. The second one is named approximation algorithm with

HD-enabled DBSs (AA-HD-DBS ), which utilizes the same DBS placement strategy,

the same UE association strategy and the same power and bandwidth assignment

strategy as the AA-DBSP algorithm; however, the total available bandwidth of the

access link and the backhaul link of each DBS is half that of the AA-DBSP algorithm

because the total bandwidth of each BS is equally divided for these two links in

using HD-enabled DBSs. The last one is named CL-Benchmark, which performs

the best among algorithms compared in [23]. The DBS placement strategy of the
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CL-Benchmark algorithm and that of the AA-DBSP algorithm are different, and the

UE association strategies of these two algorithms are also different. The AA-DBSP

algorithm provisions UEs based on the descending weight sequence (the best weight

strategy), and the weight is defined as the data rate over the required bandwidth.

The CL-Benchmark algorithm provisions UEs based on the best SINR (the best SINR

strategy).
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Figure 4.3 Throughput versus UEs at a fixed altitude (120m).

Figure 4.2 shows the total throughput performance of the network versus the

altitude with 220 UEs. The maximum throughput results are obtained with altitude

of 120m and 140m, respectively. The total throughputs achieved by the AA-DBSP

and CL-Benchmark algorithms increase with the altitude h < 120m, and decrease

when h > 140m. This is attributed to the fact that for h < 120m, NLoS is the main

path loss and NLoS decreases as the altitude increases, and for h > 140m, LoS is the

49



main path loss and it increases as the altitude increases. The throughput performance

of the No-DBS algorithm is the same for all altitudes because DBS is not deployed.

The total throughput achieved by the AA-DBSP algorithm surpasses those by the

CL-Benchmark algorithm, the AA-HD-DBS algorithm and the No-DBS algorithm by

up to 21%, 34% and 56%, respectively.

Figure 4.3 illustrates the total throughput performance of the network versus

different numbers of UEs at 120m altitude. The throughput performance of all

algorithms increases as the number of UEs increases. This is attributed to the

fact that BSs serve nearby UEs instead of remote UEs when there is not enough

radio resource, thus leading to the increase of the total throughput (usually a

nearby UE has better SINR than a remote UE does). AA-DBSP provides higher

throughput than CL-Benchmark does because the AA-DBSP algorithm has better

DBS placement strategy and better UE assignment strategy. The AA-DBSP

algorithm, the CL-Benchmark algorithm and the AA-HD-DBS algorithm provide

better throughput performance than the No-DBS algorithm because DBSs improve

connections to UEs. The total throughput achieved by the AA-DBSP algorithm

and that by the CL-Benchmark algorithm are higher than that of the AA-HD-DBS

algorithm because full duplex enabled DBSs provide better throughput performance

than half duplex enabled DBSs.

Figure 4.4 shows the results of the data rate block ratio, which is defined by

the total data rate requirement of blocked UEs over that of all UEs. Since different

UEs may have different data rate requirements, it is more precise to calculate the

data block ratio instead of computing the number of blocked UEs. The AA-DBSP

algorithm achieves the lowest data rate block ratio, and the No-DBS algorithm

exhibits the highest data rate block ratio. This is because SINR of remote UEs to

the MBS have been improved by IBFD-enabled DBSs, and AA-DBSP provides better

DBS placement and better UE assignment than CL-Benchmark does. The data rate
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Figure 4.4 Performance of the data rate block ratio.

block ratio of all algorithms increases as the number of UEs increases because limited

ratio resources cannot accommodate too many UEs. The data rate block ratio of the

AA-DBSP algorithm and that of the CL-Benchmark algorithm are lower than that

of the AA-HD-DBS algorithm because the same radio resource can be reused in the

access links and backhaul links of full duplex enabled DBSs.

Here are some insight of our simulation results: the AA-DBSP algorithm

achieves the optimal throughput result when all UEs are served; 2) the AA-DBSP

algorithm provides 3-D locations of DBS deployment, and the optimal locations of all

DBSs are achieved; 3) the AA-DBSP algorithm provides guaranteed performance, and

the approximation ratio is 1
2
(1− 1

2l
) (l is the number of simulation runs). All simulation

results show that IBFD-enabled DBSs can improve the throughput performance of

the network.
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Table 4.1 Important Notations and Variables of the DBSP-IBFD Problem

Symbol Definiton

N the number of all BSs, including the MBS and DBSs.

Nbs the number of deployed DBSs.

Λ the set of candidate areas for placing DBSs in the horizontal plane.

Θ the set of candidate altitudes for placing DBSs in the vertical plane.

ri the data rate requirement of the ith UE.

(xuei , y
ue
i ) the location of the ith UE.

PM the maximum transmission power of the MBS.

PD the maximum transmission power of a DBS.

Pj,1 the backhaul transmission power of the jth DBS assigned by the MBS.

ξj the power spectral density of the jth BS.

βM the total available bandwidth in the network.

hmin the minimum altitude of a DBS.

hmax the maximum altitude of a DBS.

ωi,j the UE-BS assignment indicator; 1 if the ith UE is associated with the

jth BS, and 0, otherwise.

βj the total available bandwidth for the jth BS, and it is the backhaul

bandwidth for the jth DBS when j > 1.

pi,j the assigned power from the jth BS towards the ith UE.

bi,j the assigned bandwidth from the jth BS towards the ith UE.

vj the location of the jth BS in the horizontal plane, vj ∈ Λ.

hj the location of the jth BS in the vertical plane, hj ∈ Θ.

di,j the achieved data rate of the ith UE via the jth DBS.
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Table 4.2 Simulation Parameters for the DBSP-IBFD Problem

(a, b, ηL, ηN ), environment parameters (9.61, 0.16, 1, 20)

Cm, coverage area of the MBS 500m× 500m

hmin 60 m

hmax 200 m

G2G (MBS to UE) path loss 34.5 + 35log10(d[m]) [34]

shadow fading between the MBS and a UE 6 dB

N0 −174 dBm/Hz

G0 130 dB [15]

|U| {150, 160, · · · , 220}

ri {0.5, 1, 1, 2} Mbps

PM 4 W

PD 1 W

βM 20 MHz

lmax 10

ε 0.0001
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CHAPTER 5

OPTIMIZING THE DEPLOYMENT AND UPLINK THROUGHPUT
OF DBS-ASSISTED HETNET

Many works related to DBS communications, viz., Unmanned Aerial Vehicle Base

Station (UAV-BS ) communications [16,40–47], have been reported. Alzenad et al. [16]

studied the UAV-BS placement problem with the target to maximize the number

of served UEs, and they proposed an exhaustive search algorithm to obtain the

optimal altitude and coverage radius under a given path loss threshold. Bor-Yaliniz

et al. [40] highlighted the properties of the 3-D DBS placement problem with the

objective to maximize the revenue, which is proportional to the number of covered

UEs. Lyu et al. [41] investigated the UAV-BS placement problem, and the objective

is to minimize the number of required DBSs while each UE is at least covered by

one DBS. Lai et al. [42] investigated the UAV-BS placement problem in a hot spot

area and the goal is to maximize the number of covered UEs under given data rate

requirements. Mei et al. [43] proposed to utilize cooperative beamforming to alleviate

the downlink interference as the DBS reuses the frequency spectra already assigned to

the ground BSs, and the target is to maximize the received SINR in the DBS. Cheng et

al. [44] studied the UAV-aided computing offloading problem in the space-air-ground

network, where the UAVs provide edge computing services and the satellites provide

backhaul communications to the cloud core. Li et al. [45] surveyed recent research

activities in UAV communications toward 5G/beyond 5G, and they advocated the

importance of UAV-BS communications in the future 5G network owing to the

following characteristics: good channel conditions, high maneuverability and flexible

deployment. Shi et al. [46] studied the 3-D trajectory planning of multiple DBSs in

the drone-aided radio access networks with the target to minimize the average path

loss of the DBS to UEs. Wu et al. [47] considered the UE assignment, power control
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and trajectories of multiple DBSs in a drone-assisted network, and the objective is to

maximize the minimum throughput among all UEs.

IBFD communications, which provisions simultaneous transmission and reception

over the same radio resources at the same time, has attracted significant attention

in both academia and industry because it can theoretically double the throughput

capacity, reduce the end-to-end delay and increase the spectrum utilization flexibility

[13, 48]. Owing to the serious self-interference (SI ) caused by the transmission and

reception over the same frequency in an FD-enabled device, it is difficult to achieve

IBFD communications in the past but some new innovative hardware design has

validated the feasibility of FD communications by repressing the SI power [14]. Nam

et al. [49] maximized the total throughput of all FD-enabled UEs in an FD orthogonal

frequency division multiple access (OFDMA) network with only one BS. Goyal et

al. [50] studied the spectral efficiency of a mixed multi-cell network, viz., mixed FD

and HD cells while all UEs are half-duplex (HD) enabled. Chen et al. [51] maximized

the total sum-rate of uplink and downlink communications within one FD BS under

a heavy workload scenario. Zhang et al. [23, 36] studied the downlink throughput

maximization problem and 3-D DBS placement with IBFD communications in a

HetNet. However, few works have addressed the uplink communications in the HetNet

with IBFD enabled DBSs.

Since DBSs can flexibly provision UEs with communication services and IBFD

can theoretically double the spectrum efficiency, it is therefore conceivable to employ

IBFD-enabled DBSs in the HetNets and we study the uplink communications

in this research. We investigated the throughput maximization of the downlink

communications in a HetNet with in-band full-duplex (IBFD) enabled DBSs in

[23, 36]. In this research, we study the backhaul-aware uplink communications in

a full-duplex DBS-aided HetNet (BUD) problem [52]. The preliminary results of

BUD will be reported in [53] (Globecom 2019), and the differences between this
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work and [53] are summarized as follows: 1) we have further studied the number of

required DBSs in provisioning UEs in this work while that of [53] is fixed; 2) we have

reformulated the BUD problem because the objective of this work is to maximize

the total throughput of the network and at the same time minimize the number of

deployed DBSs, while the objective of [53] is to maximize the total throughput of

the network; 3) the AA-BUD algorithm is proposed to solve the BUD problem, and

it gives a (1 − ε) approximation ratio (ε ≤ 1
2
), which is better than that obtained

in [53]; 4) we have also shown the evaluation results with the variation of the number

of deployed DBSs in this work: the total throughput of the network increases as the

number of deployed DBSs increases while the blocking ratio decreases.

Core network
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interference
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Figure 5.1 The IBFD DBS-aided HetNet framework.

The main contributions of this research are delineated as follows: 1) we propose

an IBFD-enabled DBS-aided HetNet for uplink communications, and the DBSs

can provide dynamic coverage to UEs by adjusting their vertical and horizontal

positions; 2) the macro-BS (MBS ) is connected to the core network through free

space optics (FSO) links, implying that this network can be easily deployed to provide
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communications to temporary events or fast communications recovery in emergency

situations; 3) we propose two approximation algorithms to solve the sub-problems and

another one named AA-BUD algorithm to solve the BUD problem. The AA-BUD

algorithm with the approximation ratio of (1 − ε) is shown capable of acquiring the

optimal locations of all DBSs. Here, ε ≤ 1
2
.

5.1 System Model

Figure 5.1 shows a DBS-aided HetNet, in which the frequency division duplex (FDD)

OFDMA framework is adopted [49]. DBS 1 and DBS 2 are FD-enabled, and the

MBS and all UEs are HD-enabled. The MBS is connected to the core network

through the local FSO terminal and the remote FSO terminal. Both the local

FSO terminal and the remote FSO terminal include an access switch, an Ethernet

converter (Ethernet/FSO signal conversion) and an FSO transceiver. The distance

between the local FSO terminal and the remote FSO terminal can be a few kilometers

while a high data rate transmission can still be achieved [54]. For example, Sarkar

et al. [55] designed a 64-QAM FSO transceiver for one hop transmission, and the

transceiver demonstrates a 120 Gb/s reliable communication data rate over a 1 km

link. The access link is a UE-to-BS (UE-to-DBS) link while the backhaul link is the

DBS-to-MBS link.

As shown in Figure 5.1, different UEs utilize different frequency spectra for

communications, no matter whether the UEs are associated with the DBS (UE

1 and UE 2) or the MBS (UE 4 and UE 5); different DBSs are assigned with

different frequency spectra (UE 1, UE2 and UE 3); the backhaul link of a DBS

reuses the frequency spectra of its access link (access link 1 and backhaul link 1).

In this work, we focus on the uplink communications. In other words, we focus on

data transmission from a UE to the MBS directly or via a FD-enabled DBS. For

the uplink communications, the basic (minimum) unit of the frequency spectrum is
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one subcarrier (SC ); one UE can be provisioned by one or multiple SCs while one

subcarrier can only be assigned to one UE in order to avoid UE-UE interference.

Here, we briefly discuss the deployment of the proposed DBS-aided HetNet

framework. We consider two different time slots in this research. One is a large time

slot in terms of minutes even tens of minutes, and is utilized to relocate all DBSs

based on the traffic load. The other one is a small time slot in terms of seconds, and

is employed to assign the UEs to the BSs and allot the radio resources (including the

power and bandwidth resource) to the UEs. In the following description, we focus

on the resource management in one large time slot. We need to find the number of

deployed DBSs, place all DBSs to their target positions, assign the UEs to the BSs,

and allot the power and bandwidth resources to the UEs.

5.1.1 Path Loss Model

For the path loss of the proposed framework in Figure 5.1, we consider air-to-ground

(A2G) path loss (DBS-MBS) and ground-to-air (G2A) path loss (UE-DBS). For both

A2G and G2A path loss, we consider line-of-sight (LoS ) and none-line-of-sight (NLoS )

path loss [23, 24, 56]. Denote ψLi,j and ψNi,j as the probabilities of a LoS and NLoS

connection of an A2G (G2A) link, as shown in Equation (5.1). Here, a and b are

environment coefficients (i.e., suburban, urban or dense urban); θi,j = arctan(
hj
di,j

) is

the elevation angle; hj (j > 1) is the altitude of the jth DBS and di,j (j > 1) is the

3-D distance between the ith UE and the jth DBS [16,24].


ψLi,j =

1

1 + aψ0

, ψ0 = exp(−b(180θi,j
π
− a)),

ψNi,j = 1− ψLi,j.
(5.1)

Let ηi,j be the path loss between the ith UE and the jth DBS, as described in

Equation (5.2). Here, ζL and ζN are the additional path losses of LoS and NLoS,

respectively; f0 is the carrier frequency and c0 is the transmission speed of light. The
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first item and the second item are the Los and NLoS of the excessive path loss, and

the third item is the mean free-space path loss (including LoS and NLoS free-space

path loss).

ηi,j = ψLi,jζ
L + ψNi,jζ

N + 20log(4πf0di,j/c0). (5.2)

After substituting Equation (5.1) into Equation (5.2), we have

ηi,j = ψLi,j(ζ
L − ζN) + 20log(4πf0di,j/c0) + ζN . (5.3)

5.1.2 Communications Model

Let s1
i,j and s2

i,j (j > 1) be the signal to interference plus noise ratio (SINR) of the

access link and the backhaul link from the ith UE to the MBS via the jth DBS, as

expressed in Equations (5.4)-(5.5). Here, j = 1 implies that the UE connects to the

MBS directly; PU is the transmission power of a UE; σ2
j = τ0bi,jN0 is the thermal

noise power, τ0 is the bandwidth of one SC, bi,j is the assigned bandwidth for the

ith UE to the jth BS in terms of SCs, and N0 is the thermal noise power spectral

density; αi,j = pi,j/τ
SI is the self interference (SI ) at the jth DBS incurred by the

FD communications, pi,j is the assigned power by the jth DBS for the backhaul link

(the jth DBS to the MBS) in provisioning the ith UE, and τSI is the SI cancellation

capability [57].

s1
i,j =


PUΓi,j

σ2
i,j

, ∀i ∈ U , j ∈ B, j = 1,

PUηi,j
αi,j+σ2

i,j
, ∀i ∈ U , j ∈ B̃.

(5.4)

Equation (5.5) shows the SINR of the backhaul link for the ith UE from the

jth DBS to the MBS. Here, η̃1,j is the channel gain from the jth DBS to the MBS;

Γi,1 is the channel gain from the ith UE to the MBS; σ2
i,1 is the thermal noise power
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at the MBS owing to the transmission of the ith UE.

s2
i,j =

pi,j η̃1,j

PUΓi,1 + σ2
i,1

, ∀i ∈ U , j ∈ B̃. (5.5)

Let βi,j be the data rate from the ith UE to the jth BS, expressed as:

βi,j =


β1
i,j, ∀i ∈ U , j ∈ B, j = 1,

min(β1
i,j, β

2
i,j), ∀i ∈ U , j ∈ B̃,

(5.6)

where β1
i,j is the data rate of the access link (UE-BS) and β2

i,j is the data rate of the

backhaul link (DBS-BS), expressed as:
β1
i,j = τ0bi,jlog2(1 + s1

i,j), ∀i ∈ U , j ∈ B,

β2
i,j = τ0bi,jlog2(1 + s2

i,j)], ∀i ∈ U , j ∈ B̃.

(5.7)

5.2 Problem Formulation

We focus on the uplink communications in an FD DBS-aided HetNet, and each UE

is provisioned by one BS. Two important variables are presented here to formulate

the BUD problem.

xi,j: the UE-BS indicator, which is 1 if the ith UE is provisioned by the jth BS,

and 0 otherwise.

yj: the DBS indicator, which is 1 if the jth DBS (j > 1) is used, and 0 otherwise.

As the MBS is always used, y1 = 1.

Let Φ(xi,j, yj, pi,j, bi,j, γj, hj) =
∑

i

∑
j xi,jri be the throughput of the network

and N be the total number of deployed DBSs, N =
∑

j yj. Important notations and

variables are listed in Tables 5.1 and 5.2.

The BUD problem is formulated to maximize the total throughput of the

network for the uplink communications while minimizing the number of deployed

DBSs as a multi-objective optimization problem:
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P0 : max
xi,j ,yj ,pi,j ,bi,j ,γj ,hj

Φ & max
yj

(−N)

s.t. :

C1 :
∑
j

xi,j ≤ 1, ∀i ∈ U ,

C2 :
∑
i

xi,jbi,j ≤ fmaxj , ∀j ∈ B,

C3 :
∑
i

xi,jpi,j ≤ PD, ∀j ∈ B̃,

C4 : xi,jri ≤ βi,j, ∀i ∈ U , j ∈ B,

C5 : γj ∈ V1, ∀j ∈ B̃,

C6 : hj ∈ V2, ∀j ∈ B̃,

C7 : yj ≤
∑
i

xi,j ≤ yj|U |, j ∈ B̃.

C8 : xi,j ∈ {0, 1}, ∀i ∈ U , j ∈ B.

C9 : yj ∈ {0, 1}, ∀j ∈ B̃. (5.8)

We negate N in the objective function in order to transform the minimization

problem into the maximization problem. C1 and C8 are the UE provisioning

constraints, which impose one UE to be provisioned by at most one BS. C2 is the

bandwidth capacity constraint for each BS and imposes the assigned bandwidth by a

BS to its associated UEs not to exceed the BS’ bandwidth capacity. C3 is the power

capacity constraint of each DBS for the backhaul link, and it imposes the total power

used by a DBS not to exceed its power capacity. C4 is the data rate provisioning

constraint, implying that the achieved data rate of a UE is equal or larger than the

required data rate. C5–C6 are the DBS placement constraints, and they impose all

DBSs to be placed on the candidate locations in the horizontal plane and vertical
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plane. C7–C9 are the constraints for the number of deployed DBS to ensure that a

DBS is used only if there is one or more UEs provisioned by this DBS.

Table 5.1 Notations of the BUD Problem

Symbol Definition

B the set of BSs (B̃ is the set of DBSs).

B̃ the set of DBSs.

N the number of total used DBSs, N =
∑

j yj .

Nmax the maximum number of available BSs, N ≤ Nmax.

U the set of UEs.

V1 the set of horizontal candidate locations.

V2 the set of vertical candidate locations.

τ0 the bandwidth of one SC.

ri the data rate requirement of the ith UE.

fmax the total available bandwidth of all BSs in terms of SCs.

fmaxj the total available bandwidth for the jth BS in term of SCs.

PD the power capacity of the jth BS.

PU the power capacity of the ith UE.

κj the power spectral density of the jth DBS, j ∈ B̃.

di,j the 3-D distance between the ith UE and the jth DBS.

ηi,j the path loss between the ith UE and the jth DBS.

τSIi,j the SI power at the jth DBS for provisioning the ith UE.
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Table 5.2 Variables of the BUD Problem

Symbol Definition

xi,j the UE-BS association indicator.

yi,j the used DBS indicator.

βi,j the achieved data rate of the ith UE towards the jth BS.

bi,j the assigned SCs by the jth BS towards the ith UE.

pi,j the assigned power by the jth DBS for the DBS-MBS transmission

(backhaul data transmission for the ith UE).

γj the horizontal location of the jth BS, γj ∈ V1.

hj the vertical location of the jth BS, hj ∈ V2.

5.3 Problem Analysis

Any instance of the Max-Generalized Assignment Problem (Max-GAP) problem [58]

can be reduced into the BUD problem for a given number of DBSs, and the

BUD problem is NP-hard because the Max-GAP problem is a well-known NP-hard

problem. Then, we decompose the BUD problem into three sub-problems: the

joint UE association, power and bandwidth assignment (Joint-UPB) problem, the

DBS placement problem and the problem of determining the number of DBSs to be

deployed. We first solve the sub-problems one by one, and then we use the solutions

of these sub-problems to solve the BUD problem.

5.3.1 Solving the Joint-UPB Problem

For given vertical and horizontal positions [37] of all DBSs, i.e., ỹj, γ̂j and ĥj, P0 can

be transformed into P1.
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P1 : max
xi,j ,pi,j ,bi,j

Φ1

s.t. :

C1 :
∑
j

xi,j ≤ 1, ∀i ∈ U ,

C2 :
∑
i

xi,jbi,j ≤ fmaxj , ∀j ∈ B,

C3 :
∑
i

xi,jpi,j ≤ PD, ∀j ∈ B̃,

C4 : xi,jri ≤ βi,j, ∀i ∈ U , j ∈ B,

C5 : xi,j ∈ {0, 1}, ∀i ∈ U , j ∈ B. (5.9)

Here, Φ1(xi,j, pi,j, bi,j) = Φ|γj=γ̂j ,hj=ĥj ,yj=ŷj
=
∑

i

∑
j xi,jri is the objective function of

problem P1, which is the total throughput of the network for given UE association

indicator (xi,j), and power and bandwidth assignment (pi,j, bi,j). To ensure analytical

tractability, we assume the power assignment is proportional to the bandwidth

assignment, viz., pi,j = bi,jκj. Note that the MBS does not assign power and

bandwidth to the UEs while the DBSs need to assign power and bandwidth to the

backhaul links. Then, constraint C3 is relaxed. The required bandwidth to provision

the ith UE by the jth BS can be calculated as b̂i,j = argmin
bi,j

(βi,j − xi,jri ≥ 0), xi,j =

1,∀i ∈ U , j ∈ B. Obviously, constraint C4 is also relaxed. Then, P1 can be

transformed into P2.
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P2 : max
xi,j

∑
i

∑
j

xi,jri

s.t. :

C1 :
∑
j

xi,j ≤ 1, ∀i ∈ U ,

C2 :
∑
i

xi,jbi,j ≤ fmaxj , ∀j ∈ B,

C3 : xi,j ∈ {0, 1}, ∀i ∈ U , j ∈ B. (5.10)

Since approximation algorithms can solve an NP-hard problem efficiently in

polynomial time and achieve sub-optimal solutions with determined deviation from

the optimal one, we propose an approximation algorithm to solve problem P2 as

depicted in Algorithm 7, referred to as Approximation Algorithm for the joint-UPB

problem (AA-UPB). The parameters are initialized in Step 1. BS j̃, which uses the

least bandwidth resource to provision the ith UE, is determined through Steps 2− 6.

The weight zi of the ith UE and the least required bandwidth to provision the ith

UE are calculated by Step 7. Here, the weight z
′
i is a ratio of the data rate over the

required bandwidth, i.e., z
′
i = ri

τ0bi,j
; as τ0 is a constant, we can use zi = ri/bi,j instead

of z
′
i. Considering two UEs with the same bandwidth requirement and different

weights, provisioning the UE with a larger weight results in a larger throughput

than the other; the same bandwidth resource in the network can achieve a larger

throughput if UEs with larger weights are provisioned. This is the reason why we

need to calculate the weights of all UEs. The weights are then sorted in a decreasing

order in Step 7 and this new order represents a new sequence of the same UEs. Note

that two solutions are determined by Steps 9 − 19 and Steps 20 − 24, and we may

use these two solutions to find the lower bound of problem P2. In Algorithm 7, the

first solution Λ1 = ∪{x1
ĩ,j̃
}, which includes the UEs with larger weights is obtained
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through Steps 9 − 19, and the other solution Λ3 = ∪{x2
î,ĵ
}, which contains |B| UEs

with the maximum data rate, is achieved through Steps 20 − 24. Finally, the one

(∪{x̃i,j}, viz., either Λ1 or Λ3) which produces a higher throughput is returned by

Step 25, and the corresponding b̃i,j and p̃i,j are also returned by Step 26.

Since data requirements of all UEs are not equal, some special UEs with lower

weights may have larger data rate requirements than the other UEs. This is the reason

why we need to find another solution to avoid poor radio resource assignment. Here,

the special UEs are defined as the |B| UEs with the maximum data rate requirement

in the UE set U , and the number of special UEs equals to the number of BSs. In

this scenario, the throughput of the network may be compromised if special UEs are

not provisioned. Hence, we need to find one solution, which includes the UEs with

larger weights, and the other solution, which includes only the |B| special UEs with

the largest data rate requirement; we then choose the one with a higher throughput

between these two solutions. For a better illustration, we present an example here

with three UEs and one BS, and the bandwidth capacity is set as 5. The respective

data rate, bandwidth, and weight of all UEs are shown in Table 5.3; then, UE 1

and UE 2 are selected by the first solution and UE 3 (the special UE) is selected by

the second solution (only two solutions are determined); the throughput of the first

solution is 4.5 but the throughput of the second solution is 5; the second solution is

returned as it yields a larger throughput than that of the first solution.

Theorem 5. The AA-UPB algorithm is a 1
2
-approximation algorithm of problem

P2. In particular, this algorithm achieves the optimal throughput when all UEs are

provisioned.

Proof. As we want to find a non-integer solution to problem P2, xi,j is relaxed to a

continuous variable in order to transform problem P2 into problem P3. Here, we

define Φ2(xi,j) = Φ1|pi,j=p̃i,j ,bi,j=b̃i,j
for xi,j ∈ {0, 1} as the objective function of P2,
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and Φ3(xi,j) = Φ1|pi,j=p̃i,j ,bi,j=b̃i,j
for 0 ≤ xi,j ≤ 1 as the objective function of P3.

Note that the objective of problem P3 is usually bigger than that of problem P2;

they are equal only when all UEs are provisioned. In this proof, we assume that the

number of UEs is more than the number of deployed BSs, |B| < |U |.

P3 : max
xi,j

∑
i

∑
j

xi,jri

s.t. :

C1, C2 in P2

C3 : 0 ≤ xi,j ≤ 1, ∀i ∈ U , j ∈ B. (5.11)

1) If all UEs are provisioned, |Λ1| > |Λ3| because Λ3 only includes the |B|

UEs with the maximum data rate. Note that Λ1 may include all UEs but Λ3 does

not because |Λ3| = |B| < |U |. The achieved total throughput by Algorithm 7 is

max(Φ2(Λ1),Φ2(Λ3)) = Φ2(Λ1) =
∑

i

∑
j xi,jri =

∑
i ri; the optimal solutions of P2

and P3 are Φ2(x∗i,j) =
∑

i

∑
j x
∗
i,jri =

∑
i ri and Φ3(x∗i,j) =

∑
i

∑
j x
∗
i,jri =

∑
i ri.

Here,
∑

j xi,j = 1 and
∑

j x
∗
i,j = 1. Algorithm 7 produces the results equivalent to

the optimal solutions of problem P2 and P3.

2) Here, we discuss the scenario with one or more blocked UEs. We first find the

relationship between the optimal value of problem P3, Φ2(Λ1) and Φ2(Λ3). Then, the

lower bound of max(Φ2(Λ1),Φ2(Λ3)) is determined, which is leveraged to prove the

approximation ratio of the AA-UPB algorithm. Note that Algorithm 7 puts all UEs

in a sequence by the decreasing order of their weights (the data rate over the required

bandwidth), and all UEs provisioned by this order are included in Λ1; provisioning

more UEs means that a larger throughput is achieved. Let (k − 1) be the index of

the last UE which is provisioned in Λ1, i.e., |Λ1| = k − 1. Φ3(∪x∗i,j) = Φ2(Λ1) +

Φ2(∪k−1+|B|
î=k

τjx̂
′

î,ĵ
). Here, Λ1 = ∪{x1

ĩ,j̃
}, and ∪k−1+|B|

ĩ=k
x̂
′

ĩ,j̃
includes |B| UEs with the

67



maximum data rate requirement among the UEs with the starting index k and the

end index |U |; τj = (fmaxj −
∑k−1

ĩ=1
x̃ĩ,j̃ b̃ĩ,j̃)/(x̂

′

î,ĵ
b̂
′

î,ĵ
) and 0 ≤ τj < 1. Note that Λ3 =

∪|B|
î=1
{x2

î,ĵ
= argmax

xi,j

xi,jri}, which represents the |B| UEs with the maximum data rate

requirement among all UEs. Thus, the objective value of Λ3 should be equal or bigger

than Φ2(∪k−1+|B|
î=k

x̂
′

î,ĵ
). Then, Φ2(∪k−1+|B|

î=k
x̂
′

î,ĵ
) ≤ Φ2(Λ3), and Φ2(∪k−1+|B|

î=k
τjx̂

′

î,ĵ
) <

Φ2(Λ3). Therefore, we have Φ3(∪x∗i,j) < Φ2(Λ1)+Φ2(Λ3), implying that the objective

values of set Λ1 and Λ3 are bigger than that of Φ3(∪x∗i,j). Meanwhile, the objective

value of problem P2 is smaller or equal to that of problem P3, Φ2(∪x∗i,j) ≤ Φ3(∪x∗i,j).

We have Φ2(∪x∗i,j) < Φ2(Λ1) + Φ2(Λ3), implying that either Φ2(Λ1) ≥ 1
2
Φ2(∪x∗i,j) or

Φ2(Λ3) ≥ 1
2
Φ2(∪x∗i,j). Thus, max(Φ2(∪x1

ĩ,j̃
),Φ2(∪x2

î,ĵ
)) ≥ 1

2
Φ2(∪x∗i,j), which means

that the lower bound of the AA-UPB algorithm is bigger than 1
2

of the optimal value

of problem P2 and the approximation ratio of the AA-UPB algorithm is 1
2
.

Lemma 1. The AA-UPB algorithm has an (1 − ε) approximation ratio of solving

problem P2 if bi ≤ εfmax. In other words, the lower bound of Algorithm 7 is (1 −

ε)OPT . Here, ε ≤ 1
2
, bi = bi,j if xi,j = 1.

Proof. We have proved that the total throughput achieved by Algorithm 7 is optimal

when all UEs are provisioned. Here, we try to prove a better lower bound achieved

by Algorithm 7 while at least one UE is blocked by the network.

We have made the assumption that (k − 1) is the index of the last provisioned

UE, and then k is the index of the first blocked UE. Since ri
bi
≤ rk

bk
for 1 ≤ i ≤ k, we
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have

r1 + r2 + · · ·+ rk−1 + rk
b1 + b2 + · · ·+ by−1 + bk

≥ rk
bk

rk ≤ by
r1 + r2 + · · ·+ rk−1 + rk
b1 + b2 + · · ·+ bk−1 + bk

rk ≤
bk
fmax

(r1 + r2 + · · ·+ rk−1 + rk)

rk ≤
εfmax

fmax
(r1 + r2 + · · ·+ rk−1 + rk)

rk ≤ ε(r1 + r2 + · · ·+ rk−1 + rk)

rk ≤
ε

1− ε
(r1 + r2 + ..+ rk−1) (5.12)

Note that bi ≤ εfmax, b1 + b2 + · · ·+ bk−1 + bk ≥ fmax and b1 + b2 + · · ·+ bk−1 ≤ fmax

because k is the index of the first blocked UE. Let OPT = Φ2(x∗i,j); then, we have

r1 + r2 + · · ·+ rk−1 + rk ≥ OPT

(r1 + r2 + · · ·+ rk−1) + (r1 + r2 + · · ·+ rk−1)
ε

1− ε
≥ OPT

r1 + r2 + · · ·+ rk−1 ≥ (1− ε)OPT (5.13)

Note that the output of Algorithm 7 ismax(Φ2(Λ1),Φ2(Λ3)), and thenmax(Φ2(Λ1),Φ2(Λ3)) =

r1+r2+· · ·+rk−1 ≥ (1−ε)OPT . Meanwhile, we have proved that max(Φ2(∪x1
ĩ,j̃

),Φ2(∪x2
î,ĵ

)) ≥
1
2
Φ2(∪x∗i,j); then, we have (1−ε) ≥ 1

2
and ε ≤ 1

2
. Thus, the lower bound of Algorithm 7

is (1− ε)OPT and the AA-UPB algorithm has an approximation ratio (1− ε).

5.3.2 Solving the DBS Placement Problem

The UE association, and power and bandwidth allocation are determined in the

last subsection. Here, we try to find the best locations to place all DBS which can

maximize the total throughput of the network. For the horizontal placement, every

DBS is placed at a unique position, implying that two different DBSs are not placed

at the same position. For the vertical placement, all DBSs are placed at the same
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altitude. Problem P0 is transformed into problem P4 for given x̃i,j, ỹj, p̃i,j and b̃i,j,

which is to determine the candidate placement of DBSs that yields the maximum

throughput (all constraints including x̃i,j, ỹj, p̃i,j and b̃i,j are removed).

P4 : max
γj ,hj

Φ4(γj, hj)

s.t. :

C1 : γj ∈ V1, ∀j ∈ B̃,

C2 : hj ∈ V2, ∀j ∈ B̃. (5.14)

where Φ4(γj, hj) = Φ|xi,j=x̃i,j ,yj=ỹj ,pi,j=p̃i,j ,bi,j=b̃i,j
and ỹj is the given DBS indicator. We

propose an optimal DBS placement algorithm (Opt-DBS-Placement), which utilizes

the exhaustive search method [16] to solve problem P4, as depicted in Algorithm 8.

Theorem 6. The Opt-DBS-Placement algorithm produces the optimal 3-D positions

of all DBSs.

Proof. Since Φ4(γj, hj) is the objective value of P4, Φ4(γ̂j, ĥj) is the total throughput

of the network for given positions of all DBSs in the horizontal and vertical dimensions

(γ̂j and ĥj), and determined UE association power and bandwidth assignment (x̃j,

p̃i,j and b̃i,j). Meanwhile, Φ4(γ̂∗j , ĥ
∗
j) = Φ

∣∣∣
γj=τ̂∗j ,hj=ĥ∗j

= max
γ̂j ,ĥj

Φ4(γ̂j, ĥj), (γ̂∗j , ĥ
∗
j) =

argmax
γ̂j ,ĥj

Φ4(γ̂j, ĥj), and Algorithm 8 has checked all candidate horizontal and vertical

positions (V1 and V2). Thus, the optimal horizontal and vertical positions are achieved

by Algorithm 8 (the Opt-DBS-Placement algorithm).
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5.3.3 Determining the Number of Required DBSs

Now, we focus on minimizing the number of required DBSs for given UE assignment

and DBS placement results as formulated in problem P5.

P5 : min
yj

N

s.t. :

C1 : yj ≤
∑
i

xi,j ≤ yj|U |, j ∈ B̃,

C2 : T ≥ Tth,

C3 : yj ∈ {0, 1}, ∀j ∈ B̃. (5.15)

Here, Tth is the pre-defined throughput threshold of the network; Tth = min{Tmax,
∑

i ri}

and Tmax is the maximum throughput achieved by solving problem P1. Constraint

C2 is used to ensure that the network’s throughput exceeds the pre-defined threshold

Tth. In other words, we want to serve as many UEs as we can, and then to minimize

the number of deployed DBSs.

Theorem 7. The optimal objective N∗of problem P5 can be achieved, implying that

the minimum number of DBSs is utilized in provisioning UEs.

Proof. Let Φ5(yj) = N =
∑

jyj be the objective function of problem P5. After

solving problem P1, the UE-BS indicator xi,j is determined, and y∗j is determined by

xi,j based on constraint C1 in problem P5. If none of the UEs is provisioned by the

jth DBS, xi,j equals to 0 (∀i ∈ U , j ≥ 1), and 1 otherwise. Here, we discuss how

we map the UE provisioning results xi,j into the DBS selection results yj based on

three different serving situations of the jth DBS: 1) No UE is provisioned by the jth

DBS. xi,j = 0,∀i ∈ U and yj = 0 because yj ≤
∑

i xi,j and
∑

i xi,j = 0, which means

that the jth DBS is not used; 2) One UE is provisioned by the jth DBS, implying

that
∑

i xi,j = 1. Then, xi,j = 1 and yj = 1 because
∑

i xi,j ≤ yj|U |,
∑

i xi,j > 0 and
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|U | > 1, which means that the jth DBS is used; 3) More than one UE is provisioned

by the jth DBS, implying that
∑

i xi,j > 1. Then, xi,j = 1 and yj = 1 because∑
i xi,j ≤ yj|U |,

∑
i xi,j > 1 and |U | > 1. From the above discussions, yj = 0 if none

of the UEs is served by this DBS and yj = 1 if one or more UEs are provisioned by the

DBS. Then, N∗ = Φ5(yj) =
∑

jyj, which is the optimal number of used DBSs.

5.3.4 Solving the BUD Problem

Here, we propose an approximation algorithm, which is named Approximation

Algorithm for the BUD problem (AA-BUD) to solve problem P0, as depicted

in Algorithm 9. The AA-BUD algorithm is designed based on Algorithm 7 and

Algorithm 8. Here, Nused is the number of used BSs and Nb is the number of blocked

UEs. We pre-set Nused = 1 and Nb = 0; we then find the best positions to place

the DBSs, which provide the highest throughput based on the deployed DBSs and

workload; afterward, we check the service situation and add one more DBS to the

network if one or more UEs are blocked; this iterative process continues until all UEs

are provisioned or the maximum number of DBSs are deployed.

Theorem 8. The AA-BUD algorithm is a (1−ε)-approximation algorithm of problem

P0. Here, ε ≤ 1
2
.

Proof. It is easy to derive Theorem 4 from Theorem 1 –Theorem 3 and Lemma 1. In

other words, the lower bound of Algorithm 9 is bigger than (1−ε) of the optimal value

of problem P0 and the approximation ratio of the AA-BUD algorithm is (1− ε).

5.4 Performance Evaluation

We use MATLAB to evaluate the performance of the AA-BUD algorithm, and run

each simulation 200 times to acquire the average results [59–61]. In this section, we

first evaluate the proposed algorithm with a fixed number of DBSs, etc., three DBSs

are assumed to be used in the network (N = 3); we then evaluate the proposed
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algorithm with a varying number of DBSs (1 ≤ N ≤ Nmax). All DBS are placed

at the same altitude. The locations of UEs are generated through a Matérn cluster

process [34]. The parameters that are used in the simulation are listed in Table 5.4.
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Figure 5.2 Total throughput versus altitude with 170 UEs and three DBSs (N = 3).

We evaluate the performance of the AA-BUD algorithm and compare it with two

baseline algorithms. One is the single MBS algorithm without any DBSs (S-MBS ),

and the other algorithm named HD-DBSs with half-duplex enabled DBSs. The HD-

DBSs algorithm is quite similar to the AA-BUD algorithm. The main difference

between these two is that the HD-enabled DBSs are used in the former and FD-

enabled DBSs are used in the latter.

The total throughput performance versus the altitude with 170 UEs and three

DBSs (N = 3) is shown in Figure 5.2. The HD-DBSs algorithm obtains the maximum

throughput at 120m while the AA-BUD algorithm achieves the maximum throughput

at 160m. For the HD-DBSs algorithm, the bottlenecks of the uplink communications
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Figure 5.3 Total throughput versus the number of UEs at 160m altitude and three DBSs
(N = 3).

are the backhaul links (DBS-MBS links) while those of the AA-BUD algorithm are

the access links (UE-DBS links or UE-MBS links). This is because the UEs can

utilize more frequency spectra when FD-enabled DBSs are operated by the AA-BUD

algorithm. For altitude lower than 160m of the AA-BUD algorithm, the path loss is

dominated by NLoS-path-loss, which decreases as the altitude increases. For altitude

higher than 160m using the AA-BUD algorithm, the path loss is dominated by LoS-

path-loss, which increases as the altitude increases.

The total throughput results versus the workload with 160m altitude and

three DBSs (N = 3) are shown in Figure 5.3. The AA-BUD algorithm achieves

up to 23% and 62% improvement of the total throughput as compared to the

S-MBS algorithm and HD-DBSs algorithm, respectively. All algorithms have better

throughput performance as the workload increases because all algorithms try to serve
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UEs with better channel conditions first and then provision the remaining UEs.

Hence, less radio resources can be used to provision the same number of UEs but with

better channel conditions, and then more UEs can be provisioned by the remaining

radio resources.
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Figure 5.4 Blocking ratio at 160m altitude and three DBSs (N = 3).

The blocking ratio versus workload at 160m altitude and three DBSs (N = 3)

is shown in Figure 5.4. Here, the blocking ratio is the data rate requirement of

un-provisioned UEs of the uplink communications over the total uplink data rate

requirement of all UEs. We use the “blocking ratio” to show the fraction of data rates

of all UEs that cannot be provisioned; it is more accurate in terms of communications

resources as compared to the number of blocked UEs because not all UEs have the

same data rate requirement. Obviously, the AA-BUD algorithm exhibits the best

performance with the lowest blocking ratio, and all UEs are provisioned until the

number of UEs reaches 150.
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Figure 5.5 The number of required BSs at 160m altitude.

Figure 5.5 shows the number of required DBSs (including the MBS) to be

deployed versus different workload at 160m altitude. The number of required DBSs

increases as the workload increases because more DBSs can provide better channel

conditions to the UEs and then more UEs can be provisioned in the network.

Meanwhile, the number of required DBSs of the AA-BUD algorithm is less than

that of the HD-DBSs algorithm because IBFD-enabled DBSs are used in the former

and HD-enabled DBSs are used in the latter. In other words, the IBFD-enabled DBSs

can use the bandwidth resource more efficiently than the HD-enabled DBSs do.

Figure 5.6 shows the performance of the total throughput versus the number of

UEs and the number of deployed DBSs at 160m altitude. The total throughput of the

network increases as the workload increases because all algorithms try to provision

UEs with better channel conditions. The total throughput of the network increases
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Figure 5.6 Total throughput versus the number of UEs and the number of used DBSs at
160m altitude.

as the number of deployed DBSs increases. This is because UEs are closer to BSs

and have better channel conditions when more DBSs are deployed; the same radio

resources can be used to provision more UEs and hence the total throughput of

the network increases. As the number of DBSs increases, the total throughput of

the AA-BUD algorithm and that of the HD-DBSs algorithm have 14.5% and 15.6%

improvement as compared to the one DBS scenario.

Figure 5.7 shows the blocking ratio versus the number of UEs and the number

of used DBSs at 160m altitude. The blocking ratio decreases as the number of

deployed DBSs increases for a given number of UEs, but it increases as the number

of UEs increases for a given number of DBSs. As the number of deployed DBSs

increases, the blocking ratios of the AA-BUD algorithm and the HD-DBSs algorithm

decrease by more than 73% and 33%, respectively, as compared to the one DBS

scenario. Evaluation results have demonstrated that the AA-BUD algorithm performs
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Figure 5.7 Blocking ratio versus the number of UEs and the number of used DBSs at
160m altitude.

better than the baseline algorithms; both the total throughput and the blocking

ratio improve as the number of deployed DBSs increases; the total throughput of the

network improves and the blocking ratio worsens as the workload increases.
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Algorithm 7: AA-UPB

Input : B, U , fmaxj , κj , ri, ŷj , γ̂j and ĥj ;

Output: x̃i,j , b̃i,j and p̃i,j ;

1 fusedj = 0, Λ0 = U , Λ1 = ∅, ∀j ∈ B;

2 for i ∈ Λ0 do

3 for j ∈ B do

4 b̂i,j = argmin
bi,j

(βi,j − ri ≥ 0) and p̂i,j = b̂i,jκj ;

5 obtain j̃ = argmin
j

b̂i,j , ∀i;

6 get bi,j̃ = min(b̂i,j) and zi = ri/bi,j̃ ;

7 Λ2 = Λ0 and sort the UEs in a descending order ĩ by zi;

8 while fusedj ≤ fmaxj & Λ2 6= ∅ do

9 if fusedj + bĩ,j̃ ≤ fmaxj , ∀ĩ ∈ Λ2 then

10 x1
ĩ,j̃

= 1, fusedj = fusedj + bĩ,j̃ , Λ1 = Λ1 ∪ {x1
ĩ,j̃
} and Λ2 = Λ2 \ ĩ;

11 else

12 Λ0 = Λ2 and go to step 2;

13 ĩ = ĩ+ 1;

14 Λ3 = ∅, Λ4 = U ;

15 for i ≤ |B| do

16 find î = argmax ri, ∀i ∈ Λ4;

17 Λ3 = Λ3 ∪ {x2
î,ĵ

= argmax
xi,j

xi,jri}, ∀i ∈ Λ4;

18 Λ4 = Λ4 \ î;

19 return Λ1 or Λ3 which produces a higher throughput;

20 obtain b̃i,j and p̃i,j .
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Table 5.3 Information of UEs

Data rate, ri Bandwidth, bi,j Weight, zi

UE 1 2 1 2

UE 2 2.5 2 1.25

UE 3 5 5 1

Algorithm 8: The optimal DBS placement algorithm (Opt-DBS-

Placement)

Input : B, U , V1 , V2, x̃i,j , ỹj , p̃i,j and b̃i,j ;

Output: γ̂j
∗ and ĥ∗j ;

1 for γ̂j ∈ V1 do

2 for ĥj ∈ V2 do

3 update the locations of all DBSs (γ̂j , ĥj);

4 update x̃i,j , p̃i,j and b̃i,j ;

5 obtain the objective value, Φ4(γ̂j , ĥj);

6 calculate (γ̂∗j , ĥ
∗
j ) = argmax

γ̂j ,ĥj

Φ4(γ̂j , ĥj);

7 return γ̂∗j , ĥ∗j .
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Algorithm 9: Approximation Algorithm for the BUD problem (AA-

BUD)

Input : B, U , fmaxj , κj , ri, V1 and V2;

Output: x̃i,j , b̃i,j , p̃i,j , ỹj , γ̂j and ĥj ;

1 Nused = 1, Nb = 0;

2 while Nused ≤ Nmax &Nb = 1 do

3 for γ̂j ∈ Λ1 do

4 for ĥj ∈ Λ2 do

5 Nb = 0;

6 update the locations of all DBSs (γ̂j , ĥj);

7 obtain max(Φ2(∪x1
ĩ,j̃

),Φ2(∪x2
î,ĵ

)) by Algorithm 7;

8 update Nb, x̃i,j , ỹj , p̃i,j and b̃i,j ;

9 obtain Φ4(γ̂j , ĥj);

10 compute (γ̂∗j , ĥ
∗
j ) = argmax

γ̂j ,ĥj

Φ4(γ̂j , ĥj);

11 γ̃j = γ̂∗j , and h̃j = ĥ∗j ;

12 if Nb > 0 then

13 Nused = Nused + 1;

14 return Nused, x̃i,j , ỹj , p̃i,j and b̃i,j .
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Table 5.4 Parameters for Simulations of the BUD Problem

Nmax 6 DBSs

coverage area of the MBS 1000m× 1000m

f0 2 GHz

PD 40 dBm

PU 23 dBm

|U | {100, 110, · · · , 170}

(a, b, ζL, ζN ) (4.88, 0.43, 0.1, 21) [40]

path loss between a UE and the MBS 136.8 + 39.1log10(di,j), di,j in km [62]

Rayleigh fading between a UE and -8 dB [50]

the MBS

|V1| 36

V2 {100, 120, · · · , 300} m

N0 −174 dBm/Hz

τ0 15 kHz

τSI 130 dB [15]

ri {0.5, 1, 1.5, 2} Mbps

fmax 1200 SCs

fmaxj 300
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CHAPTER 6

FUTURE WORK

While we have solved a number of challenging problems in DBS-assisted networking,

there remain many interesting issues to be investigated, among which we will look

into the following issues.

6.1 DBS-assisted Mobile Edge Computing

Advances in 5G technologies are enabling many new emerging applications such as

autonomous driving, augmented reality (AR), agriculture monitoring and Internet of

Things (IoT ) [63]. The number of connected devices in the whole world exceeded 17

billion including 7 billion IoT devices by 2018, and the numbers of total devices and

IoT devices are estimated to be 34.2 billion and 22 billion by 2025, respectively

[64]. Some IoT devices may have limited or no computing capability and some

IoT applications (autonomous driving and AR) require low latency in the control,

communication and computing service [63, 65]. Moreover, the internet is greatly

burdened to accommodate such huge IoT traffic generated by the IoT devices and

destined to the mobile cloud [66].

Owing to the large amount of data and tremendous devices, mobile edge

computing (MEC ) has been proposed to improve the Quality-of-Service (QoS ),

and the concept of cloudlets is an early adoption to provide edge computing

service [63, 67, 68]. In MEC, the cellular base station, viz., the macro base station

(MBS ), is equipped with computing resources to provision services to IoT users

(UE s) or wireless devices [63]. Many UEs receive computing service locally without

traversing the remote core network, and thus the latency of UEs can be reduced.

DBS-aided/UAV-aided MEC can provide better wireless connections (line-of-sight)

to UEs and more flexibility in the implementation as compared to the traditional
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MEC where the computing facilities are only available at the MBS on the ground [69].

Then, it is interesting to study the DBS-aided/UAV-aided MEC problem to minimize

the average latency of all users.

6.2 FSO for Both Charging and Communications

Despite the advantages of DBS-assisted HetNet with IBFD, there remain challenges

for realizing spectrum-efficient communications in such networks. First, how to

achieve the optimal power and bandwidth allocation in both the backhaul link and the

access link remains a challenging issue. Inefficient power and bandwidth allocation in

the MBS will lead to bottleneck in the backhaul link or the access link, and inefficient

power and bandwidth allocation in the DBS will result in low spectrum efficiency in

the access link. Second, how to overcome the endurance problem (a temporary event

may be longer than the maximum serving time of a DBS) is still an open issue. One

possible solution to overcome the endurance problem is to enlarge the battery capacity

of the DBS, but at the expense of a heavier payload that may limit the flying time

of the DBS. Another possible solution is to charge DBSs through radio frequency or

solar energy. Note that high altitude platforms can better harvest solar energy than

low altitude platforms (DBSs), but DBSs can harvest energy from radio frequency

(low charging rate) [8]. One more possible solution is to employ another fully charged

DBS to replace the DBS with drained battery, and then to steer the former DBS

back to the charging station to recharge its battery. The last solution is preferred

currently because it is low cost and facilitates a high charging rate. Other solutions

may emerge in the future because all solutions highly depend on the development of

various technologies.

Note that a laser beam may have a very high throughput capacity such as

10 Gbps. A laser beam can be used to carry both data and energy and then transmit

them to the DBS. Then, it is interesting to utilize the free space optics (FSO) as
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the backhaul and the energizer for a DBS in the DBS-aided HetNet. The target is

to maintain a high charging efficiency while maximizing the total throughput of the

network. Then, the backhaul throughput capacity can be increased and the endurance

problem can also be alleviated.

85



CHAPTER 7

CONCLUSION

Drone-mounted base stations (DBSs) are promising solutions to provide ubiquitous

connections to users and support various emerging applications in mobile networks

while full-duplex communications has the potential to improve the spectrum efficiency.

DBSs are especially useful for supporting unexpected and temporary events. In

this research, the droNe-mounted bAse-station PlacEment (NAPE ) problem with

consideration of 3-D DBS placement and IBFD-enabled DBS communications for

both access links and backhaul links of DBSs have been studied. The objective is

to minimize the required number of DBSs in providing service to UEs. Simulation

results have demonstrated that the required number of DBSs is minimized by the

proposed D-NAPE algorithm, and the total network throughput is increased and the

data rate block ratio is decreased as compared to those of other strategies.

Then, the three-dimensional DBS Placement with in-band full-duplex commu-

nications have been investigated, and the drone-base-station placement with IBFD

communications (DSP-IBFD) problem have been formulated. Since the DSP-IBFD

problem is a non-linear non-convex combinatorial optimization problem, it is then

decomposed into the DBS placement problem and the joint bandwidth and power

allocation problem. Two heuristic algorithms have been proposed based on different

DBS placement strategies to solve the DSP-IBFD problem. Simulation results have

demonstrated that the network throughput achieved by Dynamic-DSP is 45% and 8%

more than that of without DBSs and that by the Fixed-DSP strategy, respectively.

After that, the joint radio resource assignment and DBS placement problem

have been studied. Since full-duplex communications has the potential to improve the

spectrum efficiency and DBSs can be used to improve the services of the UEs for future
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5G networks, the Drone-mounted Base-S tation P lacement with in-band full-duplex

communication (DBSP-IBFD) problem has been investigated. Both access links and

backhaul links of DBSs are considered, in which one UE can be provisioned by the

MBS directly or via a DBS. The objective is to maximize the total throughput of the

network. The DBSP-IBFD problem is decomposed into two sub-problems: the joint-

BPU problem and the DBS placement problem. Then, approximation algorithms have

been proposed to solve the sub-problems. Finally, a 1
2
(1− 1

2l
)-approximation algorithm

has been proposed to solve the DBSP-IBFD problem (l is the number of simulation

runs) that has been demonstrated to be superior to the benchmark algorithms by up

to 56% total throughput improvement via various simulation scenarios.

Then, the backhaul-aware uplink communications in a full-duplex DBS-aided

HetNet (BUD) problem with the target to maximize the total throughput of the

network for the uplink communications with the minimum number of deployed DBSs

has been studied. The DBSs are full-duplex enabled, and the MBS and all UEs

are half-duplex enabled. Free space optics (FSO) terminals are used to connect the

MBS to the core network. Since the BUD problem is NP-hard, we have proposed

an approximation algorithm, named AA-BUD algorithm, to solve the BUD problem.

The AA-BUD algorithm has been proved to be a (1 − ε)-approximation algorithm

that is capable of obtaining the optimal horizontal and vertical dimensions of DBSs

(ε ≤ 1
2
). Evaluation results have validated that the proposed AA-BUD algorithm is

superior to the other baseline algorithms with up to 62% improvement of the uplink

throughput. Moreover, the total throughput of the AA-BUD algorithm increases and

the blocking ratio decreases as the number of deployed DBSs increases.

Finally, two future research endeavors have been identified. Firstly, DBSs/UAVs

are deployed to provide both communications and computing service to users because

DBSs/UAVs have high mobility, high flexibility, and high maneuverability. DBS-

aided/UAV-aided MEC can provide better wireless connections to users as compared
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to the traditional MEC where the computing facilities are only available at the MBS

on the ground. Secondly, the DBS’s serving time is limited by its battery and the

typical flying time is around 30 minutes. To overcome this issue, an FSO beam will be

utilized as both the backhaul and the energizer for a DBS in the DBS-aided HetNet,

and the objective is to maintain a high charging efficiency while maximizing the total

throughput of the network.
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