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ABSTRACT 

SCANLESS OPTICAL COHERENCE TOMOGRAPHY FOR HIGH-SPEED 3D 
BIOMEDICAL MICROSCOPY 

 
by 

Yahui Wang 

Optical coherence tomography (OCT) is a high-resolution cross-sectional imaging 

modality that has found applications in a wide range of biomedical fields, such as 

ophthalmology diagnosis, interventional cardiology, surgical guidance, and oncology. 

OCT can be used to image dynamic scenes, in quantitative blood flow sensing and 

visualization, dynamic optical coherence elastography, and large-scale neural recording. 

However, the spatiotemporal resolution of OCT for dynamic imaging is limited by the 

approach it takes to scan the three-dimensional (3-D) space. In a typical OCT system, the 

incident light is focused to a point at the sample. The OCT system uses mechanical scanners 

(galvanometers or MEMS scanners) steer the probing beam to scan the transverse plane 

and acquires an A-scan at each transverse coordinate. For volumetric imaging, the OCT 

system scans individual voxels in a 3D Cartesian coordinate sequentially, resulting a 

limited imaging speed. In addition to limited spatiotemporal resolution, the use of 

mechanical scanners results in bulky sample arm and complex system configuration. 

This dissertation seeks to overcome limitations of conventional raster scanning 

approach for OCT data acquisition, by investigating novel methods to address OCT voxels 

in 3D space. Scanless OCT imaging is achieved through the use of spatial light modulator 

that precisely manipulates light wave to generate output with desired amplitude and phase. 

It is anticipated that the scanless OCT imaging technologies developed in this dissertation 

will introduce a significant paradigm shift in OCT scanning of 3D space and allow the 



 

observation of transient phenomena (neural activities, blood flow dynamics, etc.) with 

unprecedented spatiotemporal resolution.   

This research focuses on technology development and validation. Two approaches 

for scanless OCT imaging are investigated. One approach is optically computed optical 

coherence tomography (OC-OCT), and the other approach is Line field Fourier domain 

OCT (LF-FDOCT) based on spatial light modulator.  OC-OCT takes a highly innovative 

optical computation strategy to extract signal from a specific depth directly without signal 

processing in a computer. The optical computation module in OC-OCT performs Fourier 

transform optically before data acquisition, by calculating the inner product between a 

Fourier basis function projected by the spatial light modulator and the Fourier domain 

interferometric signal. OC-OCT allows phase resolved volumetric OCT imaging without 

mechanical scanning, and has the capability to image an arbitrary 2D plane in a snapshot 

manner. LF-FDOCT illuminates the sample with a line field generated by a spatial light 

modulator. Interferometric signals from different transverse coordinates along the line field 

are dispersed by a grating and detected in parallel by the rows of a 2D camera. Cross-

sectional image (Bscan) is obtained by performing Fourier transform along the rows of the 

camera. By scanning the line field electronically at the SLM, volumetric OCT imaging can 

be performed without mechanical scanning.  

In this dissertation, the principles of OC-OCT and LF-FDOCT technology are 

described. The imaging capability of OC-OCT and LF-FDOCT systems are quantitatively 

evaluated and demonstrated in 2D and 3D imaging experiments on a variety of samples.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 
 
Optical coherence tomography (OCT) is a high-resolution cross sectional imaging 

modality and has found applications in wide range of biomedical fields, such as 

ophthalmology, cardiology and oncology [6]. High-speed OCT imaging has been used in 

quantitative blood flow imaging, dynamic optical coherence elastography, and large-scale 

neural recording [36-38]. In conventional OCT imaging, the light beam is steered 

mechanically in the transverse plane to generate Bscan or Cscan images, and an Ascan is 

obtained at each transverse coordinate. Although on average it takes a very short time 

interval to acquire one OCT pixel [39], the raster beam scanning results in limited 

spatiotemporal resolution in OCT imaging. Particularly, it takes a long time to acquire a 

2D imaging in any non-Bscan plane. For a conventional OCT imaging system that 

performs raster beam scanning in the Cartesian coordinate system, 2D image in a non-

Bscan plane is achieved by capturing a complete 3D volume data cube and extract pixels 

within the plane to generate the image. However, high-speed OCT imaging in a certain 

dimension such as en-face plane is more desirable in many applications than the capability 

to perform 3D imaging at a low Cscan rate.  The raster beam scanning also causes large 

inter-Bscan sampling interval and even larger inter-Cscan sampling interval.  What’s more, 

the use of a mechanical beam scanner such as a galvanometer or a micro-electromechanical 

system (MEMS) increases the dimension, cost and complexity of the sample arm for an 

OCT imaging system.  
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In order to acquire 3D volumetric imaging data in a Cartesian coordinate system 

(x, y, z), conventional OCT system perform fast scanning along axial (z) dimension. By 

mechanically tilting the probing beam, multiple Ascans form a Bscan in x-z domain. 

Multiple Bscans form a Cscan in x-y-z domain. Such a raster scanning approach leads to 

limited spatiotemporal resolution in OCT imaging. Consider OCT data acquired from an 

en-face plane (x-y plane) at a specific depth. In order to obtain an en-face image, 

conventional OCT system has to scan the entire 3D volume and select pixels within the 

plane through post processing. The 3D scanning generates a vast amount of data. This 3D 

data cube is a huge burden for data management, including signal transferring, processing 

and storage. In addition, the scanning strategy using mechanical scanners like 

galvanometers, MEMS scanners and scanning motors further limits the imaging speed of 

the whole system.  

This dissertation seeks to overcome limitations of conventional raster scanning 

approach for OCT data acquisition, by investigating novel methods to address OCT voxels 

in 3D space. Scanless OCT imaging is achieved through the use of spatial light modulator 

that precisely manipulates light wave to generate output with desired amplitude and phase. 

Two scanless OCT imaging technologies were investigated and validated. First, an 

optically computed optical coherence tomography (OC-OCT) technology was developed 

for volumetric imaging. OC-OCT performs Fourier transform signal processing optically 

before data acquisition. In addition, line field Fourier domain OCT (LF-FDOCT) based on 

a spatial light modulator was developed. LF-FDOCT is achieved by generating a line 

pattern at the SLM, projecting the SLM plane to the sample and reference arm, and 

performing scanning electronically by the SLM.  
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1.2 Dissertation Organization  
 
This dissertation is organized as followed. 

Chapter 1 describes the background and motivation of this dissertation study.  

Chapter 2 discusses the principle of optical interferometry and light-tissue 

interaction, and provides an introduction on principle and performance of time-domain 

OCT (TD-OCT) and Fourier-domain OCT (FD-OCT). This chapter also presents a brief 

introduction on OCT applications.  

Chapter 3 describes and compares OCT scanning technologies. 

Chapter 4 describes the principle and experimental results of optically computed 

optical coherence tomography for volumetric imaging.  

Chapter 5 describes the principle and experimental results of line field Fourier 

domain OCT based on a spatial light.  
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CHAPTER 2  

OCT BASICS 

 

2.1 Light Propagates As Electromagnetic Wave  
 
Equation (2.1) shows Maxwell’s Equation that describes the behavior of electric and 

magnetic fields.  

∇ ∙ 𝐸𝐸 = 0  

∇ × 𝐸𝐸 = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

∇ ∙ 𝜕𝜕 = 0 

∇ × 𝜕𝜕 = 𝜇𝜇0𝜀𝜀0
𝜕𝜕𝐸𝐸
𝜕𝜕𝜕𝜕

 (2.1) 

 

In Equation (2.1),  ε0 is the permittivity of free space, and μ0 is the permeability of free 

space, and E is electric field, B is magnetic field. [33][34].  

Electromagnetic wave Equation in a vacuum could be obtained using Maxwell's 

equations (Equation (2.1)). In a vacuum and charge-free space, these equations are: 

1
𝑐𝑐02

𝜕𝜕2𝐸𝐸
𝜕𝜕𝜕𝜕2

− ∇2𝐸𝐸 = 0 
 

1
𝑐𝑐02

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

− ∇2𝜕𝜕 = 0 
(2.2) 

 

Where 𝑐𝑐0is the speed of light in free space, 

𝑐𝑐0 =
1

�𝜇𝜇0𝜀𝜀0
= 2.99792458 × 108 𝑚𝑚/𝑠𝑠 
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Maxwell's equations take the property of linearity in vacuum. Thus, electromagnetic wave 

Equation can be decomposed into a superposition of sinusoids. The sinusoidal solution of 

the electromagnetic wave Equation is shown below, 

𝐸𝐸(𝑟𝑟, 𝜕𝜕) = 𝐸𝐸0cos (ωt − k ∙ r + 𝜙𝜙0)  

𝜕𝜕(𝑟𝑟, 𝜕𝜕) = 𝜕𝜕0cos (ωt − k ∙ r + 𝜙𝜙0) (2.3) 

 

In Equation (2.3), r is the wave propagation distance, t is time (in seconds), ω is the angular 

frequency (in radians per second), 𝜔𝜔 = 2𝜋𝜋𝜋𝜋 where 𝜋𝜋 as the frequency of wave. k is the 

wavenumber, 𝑘𝑘 = 2𝜋𝜋
𝜆𝜆

  where λ as the wavelength. 𝜙𝜙0 is the phase angle.  

Figure 2.1 Electromagnetic wave propagation model. 

As shown in Figure 2.1, E and B are perpendicular to each other and to the direction 

of wave propagation. The changing magnetic field creates a changing electric field through 

Faraday's law. The electric field creates a changing magnetic field through Maxwell's 

addition to Ampère's law. This perpetual cycle allows electromagnetic wave to travel 

through space at speed c. 
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Figure 2.2 Electromagnetic Spectrum. 

As shown in Figure 2.2, electromagnetic (EM) wave is classified by wavelength 

into radio, microwave, infrared, visible, ultraviolet, X-rays and gamma rays. The behavior 

of EM radiation and its interaction with matter depends on its frequency. Frequency is 

inversely proportional to wavelength. Electromagnetic wave at wavelength from 400 nm 

to 760 nm is called visible light as observable to human bare eye. Wavelength from 

ultraviolet to infra-red is considered as the light wave, the main research area of optics. 

 

2.2 Light-tissue Interactions/Tissue Optics 

As discussed above, light propagates as an electromagnetic wave. OCT technique utilizes 

near-infrared frequency light to reveal subsurface structure of biological tissue. When light 

interacts with matter, scattering and absorption occur. In biological tissue, optical refractive 

index has spatially heterogeneous distribution, which causes the light scattering. The 

refractive index of tissue depends on its constituent and mass density. Hence, light 

scattering is the result of spatial heterogeneity of optical refractive index, or spatial 

heterogeneity of tissue characteristics. OCT signal relies largely on the light scattering 
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effect. Different tissues have different features under OCT imaging (i.e., lipid membrane, 

collagen fibers, the size of nuclei, hydration status in the tissue, etc.). 

The relationship between optical refractive index and the local tissue property could 

be described as: 

𝑛𝑛 =  𝑛𝑛0 +  𝛼𝛼𝛼𝛼 (2.4) 

 

where n0 represents the refractive index of the liquid medium (i.e., water), ρ as the mass of 

the tissue solids over volume which could vary from 0 to 1 such as proteins, DNA, RNA, 

lipids, etc., α is the proportionality parameter [1].  

The process of light scattering could be explained as the follows. Consider 

electromagnetic wave with unit magnitude and a sample with spatially heterogeneous 

refractive index. Light propagating in the z direction. A spherical wave Ez(r) will be 

generated after light interacts with the scattering particle. The spherical wave observed at 

3D coordinate r is: 

𝐸𝐸𝑧𝑧(𝒓𝒓) = 𝒈𝒈(𝒛𝒛, 𝒛𝒛𝟎𝟎)
𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗

𝑟𝑟
 (2.5) 

 

where r =|r|, 𝒈𝒈(𝒛𝒛, 𝒛𝒛𝟎𝟎) as a complex vector indicates the scattering amplitude. 

As light propagates, the incident light attenuates because of scattering and 

absorption. The scattering cross-section is commonly used to describe the characteristics 

of scattering. Scattering cross-section as the geometrical cross-section, produces the same 

quantity of scattering power from all sides of the particle. This can be expressed as: 

𝜎𝜎𝑠𝑠 =  � |𝒈𝒈(𝒛𝒛, 𝒛𝒛𝟎𝟎)|
4𝜋𝜋

0

2

𝑑𝑑θ 
(2.6) 
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Another relative parameter, total cross-section (𝜎𝜎𝑡𝑡) is defined as: 

𝜎𝜎𝑡𝑡 =  𝜎𝜎𝑠𝑠 +  𝜎𝜎𝑖𝑖 (2.7) 

 

where 𝜎𝜎𝑖𝑖 is the absorption cross-section. 

In a simplified model, the attenuation of light can be described by Beer’s Law, as 

shown below: 

A = e−ε l c (2.8) 

 

where ε is the molar attenuation coefficient or absorptivity of the attenuating species, l is 

the optical path length and c as the concentration of the attenuation species. A more general 

form of the Beer’s law states that, for N attenuating species in the sample, 

T = 𝑒𝑒−∑ 𝜎𝜎𝑖𝑖𝑁𝑁
𝑖𝑖=1 ∫ 𝑛𝑛𝑖𝑖(𝑧𝑧)𝑑𝑑𝑧𝑧𝑙𝑙

0 = 10−∑ 𝜀𝜀𝑖𝑖 ∫ 𝑐𝑐𝑖𝑖(𝑧𝑧)𝑑𝑑𝑧𝑧𝑙𝑙
0

𝑁𝑁
𝑖𝑖=1  (2.9) 

 

where 𝜎𝜎𝑖𝑖  is the attenuation cross section of the attenuating species, 𝑛𝑛𝑖𝑖  is the number 

density, 𝜀𝜀𝑖𝑖  is the molar attenuation coefficient or absorptivity, 𝑐𝑐𝑖𝑖  is the amount 

concentration and l is the path length of the light beam [9]. Light absorption provides 

information about the sample such as chemical composition, tissue oxygenation, oxygen 

consumption and blood hemodynamic, etc. [2]. According the Beer’s law, the penetration 

depth of light into the tissue is determined by absorption and scattering properties of the 

biological specimens. For most biological applications, near-infrared light is usually 

employed for OCT imaging because of small light absorption. For OCT imaging, the 

dominant light tissue interaction mechanism is scattering. With coherence gating, OCT 

eliminates photons experiencing multiple scattering events [3- 5]. 



9  

2.3 Principles of Optical Coherence Tomography (OCT) 

Tomography technique indicates the cross-section imaging capability from a three-

dimensional object. Tomographic imaging plays a significant role in fundamental research 

and clinical patient management.  Tomographic imaging technologies such as CT and MRI 

are critical in clinical diagnosis for a variety of diseases. First demonstrated in 1991, optical 

coherence tomography (OCT) utilizes low coherence interferometry to generate the high 

resolution, cross-sectional tomographic images of biological tissues [6]. Figure 2.3 shows 

a typical 2D OCT image. Compared to ultrasound imaging that relies on the echo of sound 

wave, OCT generates tomographic imaging by the echo of light, and has higher spatial 

resolution and faster imaging speed.  

 

Figure 2.3 Generation of cross-sectional images by OCT through the measurement of the 
magnitude and echo time delay of backscattered light from the different transverse 
positions. The data on the left side is the Ascan data along the red line in the 2-D Bscan 
image on the right. The 2-D Bscan data is obtained by repeating the same process along 
the transvers direction. After multiple transvers scanning, the 2-D Bscan is finished. a two-
dimensional data set is displayed as a grayscale or false color image. 

After three decades of development, OCT has been widely used for biomedical 

research and clinical applications. Compared to conventional medical imaging modalities 

(CT, ultrasound and Magnetic Resonance Imaging), OCT has high spatial resolution (1μm 
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- 10μm) to reveal fine structural details of biological tissue. In addition, OCT provides 

extremely high scanning speed (typically faster than 100, 000 A-scans per second, or 100 

B-scan frames per second) for real-time imaging.  

2.3.1 Coherence and Interference. 

OCT technique is established based on low coherence interferometry. In physics, two wave 

sources with the same frequency and waveform are said to be coherent when they have a 

steady phase difference. Ideally, coherent waves allow stationary (i.e, temporally and 

spatially constant) interference. 

 In OCT, interference phenomenon is used to measure the optical path length 

traveled into the sample by a light wave. Light travels at an extremely high speed and it is 

challenging if not impossible to measure the echo time of light using electrical devices. 

The echo time delay of the backscattered light can be measured using an interferometer. 

Information with high sensitivity and high dynamic range could be extracted. For OCT, 

low coherent light is to illuminate the interferometer.  

The principle of OCT is illustrated in a Michelson interferometer is shown below. 

 

Figure 2.4 Schematic of a Michelson interferometer. 
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Figure 2.4 shows the schematic of the Michelson interferometer. The output of the 

light source is divided by a beam-splitter into two paths. One goes to the sample arm and 

the other goes to the reference arm. Afterwards, the optical fields reflected from the sample 

and the reference arms recombine and interfere. After detection, the light interferogram 

will be sampled, digitized and transferred to PC. In the OCT system, a broadband light 

source is used. As a result, interference happens only when the difference in optical path 

length (Δl=ls-lr where ls indicates optical path length in the sample arm and lr indicates 

optical path length in the reference arm) is within coherence length. As the measure of the 

coherent property, coherence length (lc) is inversely proportional to the optical source 

bandwidth. Built on the low coherence interferometry, the axial resolution of OCT imaging 

relies on the coherence length (lc) of the broadband light source. For a coherent light source 

that has a large coherence length and l>>Δl, the interferometric fringe has a large 

magnitude and high contrast, within a large range of sample arm optical path length, as 

shown in Figure 2.5 (a). In comparison, for a low coherence light source that has a small 

coherence length, the interferometric fringe diminishes beyond a small range of sample 

arm optical path length, as shown in Figure 2.5 (b). In OCT, a low coherence light source 

provides coherence gating to resolve the depth from which signal originates. 
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Figure 2.5 Interferometric signal with high coherence light source and low coherence 
light source. 

2.3.2 Development of OCT technology 

Optical coherence tomography based on low coherence interferometry allows depth 

resolved imaging. According to different measurement methods, OCT technology can be 

categorized into time domain OCT (TD-OCT) and Fourier domain OCT (FD-OCT).  

 In TD-OCT, the interference signal is obtained only when the optical path length 

of the sample and reference arm is matched within the narrow coherence length of the light 

source. The reference arm is scanned mechanically to vary the axial location from which 

interferometric signal originates within the sample. The recorded interference signal at 

different depths or relative time delays between reference and sample is then demodulated 

to generate a reflectivity depth profile or Ascan, as shown in Figure. 2.6 (a). 

  In FD-OCT systems, the interference signal is distributed and integrated over many 

spectral slices, and is inverse Fourier transformed to obtain the depth-dependent reflectivity 

profile of the sample. The main advantage of FD-OCT is that, once that a CCD based 

spectrometer is used, there is no need of any mechanical scanning for depth resolved 

imaging. All the depth information and the scattering profile are encoded in the spectral 

interference pattern, which is further processed easily by a personal computer. Therefore, 
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the position of the reference arm is fixed. Hence, FD-OCT system provides a higher 

scanning speed compared to TD-OCT. However, in FD-OCT, the detector cost is high and 

complex, and the FD signal needs additional signal processing with powerful computers.   

Figure 2.6 Schematic of different OCT modalities: (a) Time domain OCT (TD-OCT), two 
different Fourier domain OCT (FD-OCT); (b) Spectral domain OCT (SD-OCT); (c) Swept 
source OCT (SS-OCT). 

 Source: [8] 

 

The FD-OCT could be further divided to spectral domain OCT (SD-OCT) and 

swept source OCT (SS-OCT) based on the different Fourier domain interferogram 

recording methods. Both approaches are designed based on Fourier domain interferometry. 

The SD-OCT approach uses a broadband near-infrared super luminescent diode (SLD) as 

a light source and a spectrometer to disperse light in order to transfer spatial domain light 

information to spectral domain. The interference signal will be dispersed by diffraction 

grating and further detected by a one-dimensional (1-D) array detector as shown in Figure. 

2.6(b). The detected signal was sampled and digitized. Depth-resolved interferogram 

profile information can be obtained by performing the inverse Fourier transform. 
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In SS-OCT, a swept source is utilized for rapidly tuning a narrowband source within 

a broad optical bandwidth. Wavenumber interferogram is recorded by a single photodiode 

at each time stamp. Similar to SD-OCT, Fourier transform is performed to obtain depth-

resolved reflectivity profile (A-scan) as shown in Figure 2.6 (c). SS-OCT does not require 

a scanning reference mirror or a grating for light dispersion. Moreover, by utilizing a k () 

wavenumber clock at the light source, the wavenumber could be linearized. SS-OCT 

systems has an impressively fast scanning speed, with A-scan rate ranging from 50kHz to 

several MHz   

 

2.3.3 Signal characteristics and reconstruction in FD OCT  

In an FD-OCT system, the optical field (Ei) output from the light source could be 

represented by Equation (2.10). After the beam-splitter, the output of the light source is 

split to sample arm and reference arm, respectively. 

𝐸𝐸𝑖𝑖 =  𝑆𝑆(𝑘𝑘,𝜔𝜔)𝑒𝑒(𝑗𝑗𝑧𝑧−𝜔𝜔𝑡𝑡) (2.10) 

 

z: Sample depth 

k: Wave number k= 2𝜋𝜋
𝜆𝜆

=  𝜔𝜔
𝑐𝑐
 

ω: Angular frequency 

The sample can be regarded as a combination of multiple discrete layers. Hence sample 

profile can be expressed as the follows  

𝑟𝑟𝑠𝑠(𝑧𝑧𝑠𝑠) = �𝑟𝑟𝑠𝑠𝑛𝑛 𝛿𝛿(𝑧𝑧𝑠𝑠 −  𝑧𝑧𝑠𝑠𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 

Es and Er can be represented as Equations (2.11) and (2.12), respectively. 
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𝐸𝐸𝑠𝑠 =  
𝐸𝐸𝑖𝑖
√2

 �𝑟𝑟𝑠𝑠(𝑧𝑧𝑠𝑠)�𝑒𝑒𝑖𝑖2𝑗𝑗𝑧𝑧𝑠𝑠� =  
𝐸𝐸𝑖𝑖
√2

 �𝑟𝑟𝑠𝑠𝑛𝑛𝑒𝑒𝑖𝑖2𝑗𝑗𝑧𝑧𝑠𝑠𝑠𝑠
𝑁𝑁

𝑛𝑛=1

 
(2.11) 

𝐸𝐸𝑗𝑗 =  
𝐸𝐸𝑖𝑖
√2

 𝑟𝑟𝑗𝑗𝑒𝑒𝑖𝑖2𝑗𝑗𝑧𝑧𝑟𝑟 (2.12) 

 

The detected signal (Id) is proportional to square of the combined electrical fields (Eq 2.13). 

𝐼𝐼𝑑𝑑(𝑘𝑘,𝜔𝜔) =  
𝛼𝛼
2

 |𝐸𝐸𝑗𝑗 + 𝐸𝐸𝑠𝑠| 2  

=  
𝛼𝛼
2

 �
𝑆𝑆(𝑘𝑘,𝜔𝜔)
√2

 𝑟𝑟𝑗𝑗𝑒𝑒𝑖𝑖(2𝑗𝑗𝑧𝑧𝑟𝑟−𝜔𝜔𝑡𝑡) +  
𝑆𝑆(𝑘𝑘,𝜔𝜔)
√2

 �𝑟𝑟𝑠𝑠𝑛𝑛𝑒𝑒𝑖𝑖(2𝑗𝑗𝑧𝑧𝑠𝑠𝑠𝑠−𝜔𝜔𝑡𝑡)
𝑁𝑁

𝑛𝑛=1

� 2 
(2.13) 

 

As the bandwidth of commercial electronic devices generally cannot measure fast 

temporal fluctuation of the optical fields, ensemble average of Equation (2.13) is performed 

in measurement and terms with ω can be simply eliminated.  Equation (2.13) becomes:  

𝐼𝐼𝑑𝑑 =  
𝛼𝛼
4

 [𝑆𝑆(𝑘𝑘)(𝑅𝑅𝑅𝑅 +  𝑅𝑅𝑠𝑠1 +  𝑅𝑅𝑠𝑠2 + 𝑅𝑅𝑠𝑠3 + ⋯ )]

+  
𝛼𝛼
4

 �𝑆𝑆(𝑘𝑘)��𝑅𝑅𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅 (𝑒𝑒𝑖𝑖2𝑗𝑗(𝑧𝑧𝑟𝑟−𝑧𝑧𝑠𝑠𝑠𝑠)
𝑁𝑁

𝑛𝑛=1

+  𝑒𝑒−𝑖𝑖2𝑗𝑗(𝑧𝑧𝑟𝑟−𝑧𝑧𝑠𝑠𝑠𝑠))�

+  
𝛼𝛼
4

 �𝑆𝑆(𝑘𝑘) � �𝑅𝑅𝑠𝑠𝑛𝑛𝑅𝑅𝑠𝑠𝑠𝑠 (𝑒𝑒𝑖𝑖2𝑗𝑗(𝑧𝑧𝑠𝑠𝑠𝑠−𝑧𝑧𝑠𝑠𝑠𝑠)
𝑁𝑁

𝑛𝑛≠𝑠𝑠=1

+  𝑒𝑒−𝑖𝑖2𝑗𝑗(𝑧𝑧𝑠𝑠𝑠𝑠−𝑧𝑧𝑠𝑠𝑠𝑠))� 
(2.14). 

 

According to Equation (2.14), OCT signal has three parts: DC term, cross-

correlation term and auto-correlation term. The cross-correlation term is the desired OCT 

interference signal. 

Given Equation (2.15), Id could be transformed from k (wavenumber domain) to z 
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(spatial domain) using Fourier transform, as shown in Equation (2.16). 

cos(𝑘𝑘𝑧𝑧0)
𝐹𝐹𝐹𝐹𝐹𝐹𝑗𝑗𝑖𝑖𝐹𝐹𝑗𝑗 𝑡𝑡𝑗𝑗𝑡𝑡𝑛𝑛𝑠𝑠𝑠𝑠𝐹𝐹𝑗𝑗𝑠𝑠
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  

1
2

 [𝛿𝛿(𝑧𝑧 + 𝑧𝑧0) +  𝛿𝛿(𝑧𝑧 −  𝑧𝑧0) ] (2.15) 

 

𝐼𝐼𝑑𝑑 =  
𝛼𝛼
8

 [𝛾𝛾(𝑘𝑘)(𝑅𝑅𝑅𝑅 + 𝑅𝑅𝑠𝑠1 +  𝑅𝑅𝑠𝑠2 + 𝑅𝑅𝑠𝑠3 + ⋯ )]

+  
𝛼𝛼
4

 ���𝑅𝑅𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅

𝑁𝑁

𝑛𝑛=1

�𝛾𝛾�2(𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑠𝑠𝑛𝑛)�� +  𝛾𝛾(−2(𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑠𝑠𝑛𝑛))]� 

 

+ 
𝛼𝛼
4

 � � �𝑅𝑅𝑠𝑠𝑛𝑛𝑅𝑅𝑠𝑠𝑠𝑠

𝑁𝑁

𝑛𝑛≠𝑠𝑠=1

�𝛾𝛾�2(𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑠𝑠𝑛𝑛)�� +  𝛾𝛾(−2(𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑠𝑠𝑛𝑛))]� 
(2.16) 

 

 

2.3.4 Performance of OCT system 

(a) Spatial resolution 

In OCT imaging, axial resolution and lateral resolution are decoupled. The axial resolution 

in OCT is determined by the center wavelength and bandwidth of the light source. The 

coherence length is proportional to the width of the field autocorrelation measured by the 

interferometer, and the envelope of the field autocorrelation is related to the Fourier 

transform of the power spectrum. For a light source with a Gaussian-shaped spectrum, the 

axial resolution (𝛥𝛥𝑧𝑧) can be defined as: 

𝛥𝛥𝑧𝑧 =  
2ln (2)
𝜋𝜋

 
𝜆𝜆02

Δ𝜆𝜆
 (2.17) 

 

where Δz  is the full-widths-at-half-maximum (FWHM) of the autocorrelation function, 

λ0  is the central wavelength and Δλ is the bandwidth of the light source, respectively. 
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Central wavelength and bandwidth of light source could also affect penetration depth of 

the sample tissue, as longer wavelength light has better penetration capability. As shown 

in Equation (2.17), axial resolution is inversely proportional to the bandwidth of the light 

source. 

On the other hand, transverse or lateral resolution in OCT imaging is determined 

by the diffraction-limited spot size of the focused optical beam. The diffraction-limited 

minimum spot size is inversely proportional to the numerical aperture (NA) or the focusing 

angle of the beam. The transverse resolution (𝛥𝛥𝛥𝛥) is given as: 

𝛥𝛥𝛥𝛥 =  
4𝜆𝜆0
𝜋𝜋

∗ 𝑁𝑁𝑁𝑁 (2.18). 

 

In Equation (2.18), λ0  is the central wavelength, NA (numerical aperture) is 

defined as d/f where d is the diameter of the objective lens and f is the focal length of the 

lens. A higher lateral resolution can be achieved by using a stronger lens to focus the beam 

to a smaller spot. Typically, OCT imaging uses a small NA lens to achieve a better depth 

of focus. The lateral field of-view for a point-by-point scanning OCT system is determined 

by the deflecting angle of the beam which is proportional to the voltage applied to the 

galvanometer for beam scanning and the focal length of the imaging objective.  

(b) Sensitivity of OCT: 

In OCT, weak sample light interferes with a strong reference light. The interference signal 

effectively magnifies the weak reflection from the sample arm to achieve a high sensitivity. 

Define Rs,min as the weakest sample reflectivity detectable in OCT imaging. Rs,min generates 

a signal level equal to the noise level of the OCT system. The sensitivity (S) is defined as 

the ratio of the signal power generated by a perfectly reflecting mirror (R = 1) and that 
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generated by Rs,min: 

𝑆𝑆 =  
1

𝑅𝑅𝑠𝑠,𝑠𝑠𝑖𝑖𝑛𝑛
�
𝑆𝑆𝑁𝑁𝑅𝑅=1

 
(2.19) 

There are three main noise sources in OCT: shot noise, excess intensity noise and 

receiver noise. With a sufficiently large reference power, shot noise dominants. With shot 

noise limited detection, the sensitivity can be expressed as: 

𝑆𝑆 =  
𝛼𝛼
4

 
𝑃𝑃𝑠𝑠
𝑞𝑞𝐹𝐹𝜕𝜕

 
(2.20) 

 

In Equation (2.20), 𝛼𝛼 =  𝑞𝑞𝑒𝑒𝑒𝑒
ℎ𝜈𝜈

 , qe is the electron charge, η is the quantum efficiency, hν is 

the photon energy, Ps is the source power and B is the bandwidth of the light source. As 

shown in Equation (2.20), sensitivity in OCT imaging is proportional to the source power 

and is inversely proportional to the electronics bandwidth. In a typical OCT system, when 

source power is low, receiver noise limits the sensitivity of the system. However, at higher 

power source situation, the existence of excess noise does not determine the senstivity. 

2.3.5 OCT data representation 

OCT data can be gathered and displayed in a few different formats (A-scan, B-scan and C-

scan).  

(a) Ascan OCT image:  

Ascan OCT image demonstrates the one-dimensional reflectivity or depth-resolved profile 

at a specific transverse coordinate. Figure 2.7(a) shows a typical Ascan image. It represents 

the intensity of the backscattered signal from the sample at different depth in axial 

direction. 
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(b) Bscan OCT image: 

 Bscan OCT image provides the cross-sectional image from the sample. A two-dimensional 

graphical image is presented. It is obtained by performing Ascan acquisition at different 

transverse coordinates. Figure 2.7 (b) shows the B-scan or cross-sectional of retinal image. 

 

 

Figure 2.7 Three OCT imaging display modalities: (a) A-scan, depth resolved 1-D data by 
scanning a single point (b) B-scan or cross-sectional image, 2-D image by assemble 
multiple a scans (c) C-scan image. Here,3-D volumetric image using multiple B-scans, 3D 
phantom with the “NJIT” pattern is used as sample to acquire the images. White bar 
indicates 200 µm.  

Source:[6]  

 
(c) Cscan OCT image: 

Cscan image (3D) is obtained by performing Bscan at different elevation coordinates. 3D 

rendered volumetric data is generated using a series of Bscan images. Figure 2.7(c) shows 

a 3D volume cubic of an NJIT sample. We can clearly see the letters with clear edges. 
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2.4 OCT Applications 

2.4.1 Ophthalmology  

OCT was demonstrated in retinal imaging in ophthalmology, and has made significant 

clinical contributions to ophthalmology [10]. Retina is optically accessible, and has 

multiple layers with different thicknesses and light reflectivity. As a result, one of the most 

successful application of OCT is in retinal imaging. After in vivo retinal images were 

obtained first in 1993 [11,12], ultrabroad-bandwidth light sources have been employed to 

obtain ultrahigh-resolution (UHR) OCT techniques. New ultrabroad bandwidth light 

sources have enabled a significant advance in OCT resolution (Fig. 2.8). OCT technique 

for the first time enabled a direct photo detector loss correlation with retinal function in 

Stargardt’s dystrophy using UHR source [15]. With the UHR source, OCT is further 

utilized for therapy monitoring and disease pathogenesis [16–18]. 

 

Figure 2.8 Resolution in ophthalmologic OCT: (a) A-scan TD-OCT. SLD: λ=843nm, 
∆λ=30nm, lc=10μm. 100 A-scans were obtained within 2.5 seconds, (b) FD-OCT. Ti-
Sapphire-Laser: λ=800nm, ∆λ=260nm, lc=1μm. And with dispersion numerically 
corrected. 

Source: [13]. [14]; 
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As TD OCT evolved to high-sensitivity FD detection techniques, high-speed and 

3D OCT imaging became possible. Advanced source allowed OCT to achieve a larger 

penetration depth to image the choroid of retinal. Transverse resolution of OCT is further 

improved by adaptive optics. Additionally, functional OCT techniques have been 

developed such as Doppler-OCT, spectroscopic OCT and polarization-sensitive OCT for 

new applications.  

2.4.2 Cardiology 

Cardiology is another field where OCT finds applications. The structural integrity of the 

vasculature in the coronary artery was scanned and examined using OCT. Functional OCT 

systems, such as spectroscopic OCT and PS-OCT, have been developed for cellular or 

molecular analysis for cardiology applications [21-26]. To further advance cardiology 

application of OCT for in vivo cardio vasculature imaging, several technological 

developments have been made, such as the development of rotational catheter-based 

probes, the improvement of acquisition speed, and the introduction of functional OCT 

modalities.  
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Figure 2.9 Resolution in cardiology OCT: (a) an intravascular OCT image showing a clear 
delineation of layers, including the internal and external elastic lamina. A fibrous plaque 
(f) is visible and partially obscured by a guidewire shadow artifact (*) (b) corresponding 
30-MHz IVUS image at the same location. 

Source: [20]. 

 
Compared to intravascular ultrasound (IVUS), OCT provides much higher special 

resolution as shown in Fig. 2.9 (a) and (b) [20]. In addition, probes with OCT sample-arm 

optics integrated into intravascular catheters have been developed, making forward and 

radial OCT imaging capability possible. [27,28] Catheter-based imaging could be acquired 

by manually feeding the probe through the vasculature or pulling it through. With high-

speed data acquisition, in vivo real time OCT imaging can be performed for cardiology 

examination and guidance of interventional procedures.  

2.4.3 Oncology 

OCT also found applications in the field of oncology. OCT imaging has been performed 

on a broad spectrum of malignancies including those arising in the breast, bladder, brain, 

gastrointestinal, respiratory, and reproductive tracts, skin, ear, nose, and throat. The main 
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purpose of OCT imaging in oncology is to locate the surgical margins and the early 

detection of small lesions. OCT imaging can help early detection and intervention of 

cancer. 

 

Figure 2.10 OCT image of the human breast with tumor: (e) the margin between invasive 
ductal carcinoma (left side) and normal fatty tissue (right side). The OCT and hematoxylin 
and eosin stained histological section correspond well. 

Source: [29] [35]. 

 
The application of OCT in oncology was demonstrated in rat mammary tumor 

models [29], which proved the potential of OCT as an effective tool for the detection of 

lesions in the human breast. A significant structural difference was observed between 

normal fatty tissue and tumor tissue. The fibro-fatty tissue comprising most of the breast, 

and the densely scattering tumor tissue arises from within the functional epithelial network 

of ducts and lobules are shown in Figure. 2.10. By analyzing the spatial frequency content 

of the axial scattering response, highly sensitive tissue classification could be performed to 

distinguish normal tissue and invasive ductal carcinoma lesions [30]. Although OCT 

imaging could show clear difference between normal and tumor tissue, the internal location 

of most breast tumor remained unknown. This limits OCT application to open surgical 

procedures. To overcome this limitation, needle-based imaging devices are required for 

further development. 
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Another application of OCT is to assess tumor margin during surgical removal of 

the tumor. OCT was employed to scan freshly excised breast tissues during lumpectomy 

procedures. In conventional surgical procedures, to evaluate the surgical margin, the initial 

gross pathological evaluation of the mass is performed, which is followed by light 

microscopy examination of frozen or paraffin embedded tissue sections. This procedure is 

both time and labor consuming. It also has limited spatial sampling capability, and is 

affected by artifacts [31]. Using OCT to image the top 1 to 2 mm of the entire tissue surface 

immediately after resection, the margin status can be assessed quickly and thoroughly. This 

enables the surgeon to resect additional tissue immediately, if necessary [32]. 
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CHAPTER 3 

REVIEW OF OCT SCANNING TECHNOLOGIES  
 

3.1 Point by Point Scanning 

Point by point scanning in lateral dimension is the most basic scanning strategy of OCT 

imaging. The configuration of a typical point by point scanning OCT system is shown in 

Figure. 3.1.  

 

Figure 3.1 Configuration of a typical point by point scanning OCT. 
 

In general, a near-infrared broadband light source is employed in OCT system 

(usually 1.3 μm or 1.06 μm central wavelength). The broad band light source illuminates 

an interferometer with a sample arm and a reference arm. In the sample arm, a lens is 

utilized to focus the probing beam and collect backscattered photons. The light reflected 

from reference arm and the light reflected or backscattered by the sample interfere. The 
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interference signal is detected and transferred to a computer. By utilizing graphic 

processing units, parallel computation is enabled for real time signal processing and image 

display. For Fourier domain imaging, an A-scan along z direction (axial direction) is 

obtained with the beam located at a specific lateral coordinate. Volumetric OCT data is 

acquired by scanning the beam two-dimensionally with a pair of galvanometers. A 

galvanometer is an electromechanical instrument that produces a mechanical rotation after 

sensing an electric current. By attaching the mirror with the galvanometer, a mirror 

galvanometer is assembled. With a specific electric voltage input to mirror galvanometer, 

a corresponding deflection angle of mirror can be achieved to steer the light beam to the 

desired destination. The galvanometer is synchronized with the camera to perform lateral 

scanning.  Multiple cross-sectional images could be obtained from a three-dimensional 

(3D) data set. On the other hand, with volumetric OCT data obtained, the 3D data volume 

can be reduced to a 2D image by taking a single slice or averaging multiple layers in post 

processing. 

3.2 Line Scanned OCT 

Line field OCT (LF-OCT) takes a different approach for lateral scanning. Line field OCT 

can be implemented using a cylindrical lens as illustrated in Figure 3.2 With the cylindrical 

lens, a line field was generated on the sample and reference mirror.  
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Figure 3.2 Configuration of line field OCT. SLD as the super luminescent diode. L1 L2 
L3 L4 L5 L6 L7 as objective lenses. CL as the cylindrical lens. Ch as the chopper wheel. 
DG as the diffraction grating. CCD as the camera.  It generates a slit illumination by using 
the collimated light passing through a cylindrical lens with A chopper wheel placed at its 
focal plane. With the cylindrical lens, a line field was generated on the sample and 
reference mirror. The line illumination can be viewed as a set of parallel channels, each of 
them associated with a different lateral position on the sample. These channels are 
spectrally dispersed by the diffraction grating and recorded individually on different rows 
of the CCD area. 

Source: [62]. 
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The combined signal from the sample arm and reference arm is dispersed by a 

grating and detected by a 2D camera. Each row of the 2D camera detects an interferometric 

spectrum from a corresponding lateral coordinate. By performing Fourier transform along 

the rows, a Bscan image is obtained. Although LF-OCT cannot provide a 3D volume data 

directly, LF-OCT is sufficient to provide reliable 2D B-Scan of layer thickness 

measurement values. Line scanned OCT enabled OCT B-Scan image in a single shot. The 

SNR and sensitivity of the Fourier domain LF-OCT were reported to be higher than the 

time domain FF-OCT.  

3.3 Full Field OCT 

Another OCT scanning technologies is full field optical low-coherence (FF-OCT). As an 

effective way to produce micrometer-resolution cross-sectional images from biological 

tissues, OCT generates 2D and 3D images at a limited lateral resolution (10-30 μm) by 

using a mechanical scanning device. In the sample arm, the beam is not tightly focused, so 

that the confocal length is greater than the imaging depth. Full field OCT is another parallel 

OCT imaging technique that achieves high lateral resolution, as illustrated in Figure 3.3.  
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Figure 3.3 Configuration of a typical Full Field OCT.  

A beam splitter separates the beam into sample arm and reference arm. The 

reflected signal is recombined. The recombined beam is elliptically polarized. Its 

polarization state is measured to provide the value of the orthogonal components. This 

measurement is achieved by using lock-in detection technique with a photo elastic 

polarization modulator associated with an analyzer [46-48]. As the CCD maximum readout 

frequency is much lower than the modulation frequency. A synchronization relationship 

must be built between light source, photo elastic polarization modulator and CCD camera.  

Photo elastic polarization modulator introduces a periodic phase shift between two 

orthogonal light, while analyzer axes remain at 45° from these two [49]. Only the 

interferential part could be modulated. The modulation amplitude is set approximately 2.0 

rad (according to the first maximum of the Struve function H0) [47]. The photo elastic 

polarization modulator is set to be the main clock for the whole system [49]. Synchronized 

with the photo elastic polarization modulator, the light source is set to tuning a periodic 

phase shift (0°, 90°, 180°, 270°). This phase is shifted at each camera readout.  For each 
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phase shift, an image is transferred to CCD camera. Four images are thus recorded for one 

period, corresponds to 4 phase shifts. Linear combinations of these data is proportional to 

the amplitude of a sinusoidal coherent backscattered component. Thus, the two-

dimensional image of the sample located only in the focus plane is produced at the same 

time stamp. 

3.4 Comparison Between Three Scanning Technique 

All the above described techniques can be used to perform 3D imaging with microscopic 

resolution. Point by point scanning and LF-OCT takes advantage of spectrum domain 

interferogram processing method to generate the whole axial image without any scanning 

involved. However, they require a long scanning time to generate 2D images that are not 

in Bscan planes. The FF-OCT performs fast scanning in en face plane. Still, the cross talk 

from backscattered light is the main problem that limited the sensitivity of FF-OCT system. 
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CHAPTER 4 

OPTICALLY COMPUTED OPTICAL COHERENCE TOMOGRAPHY FOR 
VOLUMETRIC IMAGING  

 

4.1 Introduction 

Optical coherence tomography (OCT) has the capability of high-resolution cross-sectional 

imaging. A wide range of biomedical applications of OCT has been found, in 

ophthalmology, cardiology and oncology [6]. High-speed OCT has been used to perform 

functional imaging, such as quantitative blood flow imaging, dynamic optical coherence 

elastography, and large-scale neural recording [36-38]. In many application of OCT, high-

speed imaging in en-face plane is more desirable that the capability to image the entire 3D 

volume at a low speed. However, conventional OCT imaging system lacks the 

spatiotemporal resolution and flexibility to perform high speed imaging within an arbitrary 

2D plane, although the acquisition of one OCT pixel on average takes an extremely short 

period of time [39].  Time domain (TD) OCT performs axial scanning mechanically. Ascan 

in TD OCT is acquired pixel by pixel in sequence. As a result, TD OCT is inherently slow. 

For Fourier domain OCT (FD OCT), an entire Ascan scan is generated by capturing a 

spectral domain interferogram and performing Fourier transform on the interferogram. 

Comparing to TD OCT, FD OCT is able to generate all the pixels within an A-scan without 

mechanical scanning. Hence the imaging speed and sensitivity are increased enormously 

in FD OCT compared to TD OCT [40, 41]. Nevertheless, as to the 3D volumetric data 

acquisition, both systems has the same challenge.  

 In order to acquire OCT data in a 3D Cartesian coordinate system (x, y, z), 

conventional TD and FD OCT system perform fast axial (z) scanning and it takes a short 
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period of time δt to acquire a pixel in an Ascan. By mechanically scanning the probing 

beam, multiple Ascans form a Bscan in x-z domain. Hence it takes a time interval of N2δt 

to acquire a B-scan with N2 pixels, assuming each Ascan has N pixels and each Bscan has 

N Ascans. Multiple Bscans form a Cscan data cube and it takes a time interval of N3δt to 

acquire a Cscan with N3 voxels. Consider an en face plane (x-y plane at a specific depth) 

that with N2 pixels. Given the sequential data acquisition strategy, the OCT system has to 

scan the entire 3D volume and select pixels within the plane through post processing. 

Hence, it takes a time interval of N3δt to acquire an en face image that has N2 pixels, 

suggesting it on average takes a time period of Nδt to acquire a pixel in the en face image. 

In addition, the 3D scanning generates a massive amount of data. It is a burden for the 

computer to transfer, store, and process 3D data cubes obtained. In addition to challenges 

in managing massive volumetric data, current scanning strategy uses mechanical scanners 

(galvanometers, MEMS scanners and scanning motors) and these mechanical devices 

further limit the imaging speed. In this study, we took an optical computation strategy to 

overcome the limit in current scanning method. Optical computation has been utilized in 

imaging studies. X. Zhang generated optical computed OCT imaging through fast temporal 

modulation by using arbitrary waveform generation [42]. In a different study, optical 

computing was used to deliver a solution to acquire massive 3D data by using photons to 

perform computation tasks [43].  

Optically computed OCT (OC-OCT) technology developed in this study eliminates 

the need for mechanical scanning in 3D OCT imaging by employing a highly novel optical 

computation system to perform Fourier transform. For conventional Fourier domain OCT, 

data is acquired and transferred to PC where Fourier transform is performed to reconstruct 
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depth profiles of the sample. OC-OCT performs signal processing optically before the 

signal is detected by the camera. The optical computation procedure is achieved by using 

a spatial light modulator (SLM). SLM is used in applications such as optical pulse shaping, 

structured illumination and optical computation [44, 45]. Using SLM, light wave can be 

precisely modulated to have the anticipated amplitude and phase. The spectral 

interferogram output from a spectral domain OCT system is modulated by a programmable 

SLM to achieve Fourier transform optically. The signal is later detected without spectral 

discrimination. An optically computed two-dimensional image at a specific depth 

determined by the SLM pattern is thus produced. The optical computation strategy allows 

volumetric OCT imaging without axial or lateral mechanical scanning, which is unique has 

not been demonstrated before 

4.2 Principle of OC-OCT Imaging 

OC-OCT is a Fourier domain technique that achieves depth resolution by performing Fourier 

transform optically. Consider an A-scan S (S∈ℂN and S= [s1, s2, s3, …, sN]T ). With sample light 

originating from a specific transverse coordinate, the interferometer generates a spectral 

interferogram M after a disperser. M is a 1D vector (M∈ℝN and M=[m1, m2, m3, …, mN]T) and is 

mathematically related to the spatial domain A-scan through Fourier transform: S=FM which is 

more explicitly shown in Equation (4.1) (sn represents spatial domain OCT signal at the nth discrete 

depth in an A-scan; mk represents spectral signal at the kth wavenumber; F∈ℂN×N is the Fourier 

transform matrix and  Fnk=ej2πnk/N).  
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 As illustrated in Figure 4.1 (a), a conventional FD OCT system measures the entire 

interferometric spectrum M that has N discrete Fourier bins, streams the data into a computer, 

performs Fourier transform in the computer and reconstructs the entire A-scan.  Figure 4.1 (a) also 

implies N Fourier bins have to be acquired to fully reconstruct the A-scan S, even if a small subset 

of pixels are of interest in the A-scan. OC-OCT takes a completely different approach to resolve a 

pixel in 3D space.  

 According to Equation (4.1), sn, the OCT signal at the nth discrete depth in an A-scan, can 

be expressed in Equation (4.2) that shows sn is the inner product between vector fn (the transpose 

of nth row of the Fourier matrix F ) and vector M. In Equation (4.2), • indicates vector inner product. 
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Equation (4.2) provides an alternative approach to address a spatial location in OCT imaging. As 

illustrated in Figure 4.1 (b), the OC-OCT system calculates fn•M optically and directly obtains sn 
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at the point of data acquisition. Optical computation of Equation (4.2) is further illustrated in Figure 

4.1 (c). The chosen Fourier basis function (fn) is projected to the SLM along the dimension of 

spectral dispersion. The spectrum modulated by the SLM is essentially the element-wise product 

of fn and M (fn◦M). The detector then performs spectrally non-discriminative detection, generating 

sn, the inner product between vector fn and vector M. 

 

Figure 4.1. Data flow in (a) conventional FD OCT and (b) in OC-OCT; (c) Fourier transform of 
spectral interferogram. 

 
 The configuration of OC-OCT system that allows depth resolved imaging with an extended 

field of view is illustrated in Figure 4.2.  The OC-OCT system uses a broadband source to 

illuminate the Michaelson interferometer with an extended field of view. A 2D reflective SLM is 

used for light modulation and a 2D camera is used for signal detection.  
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Figure.4.2. Configuration of the OC OCT system for 3D imaging. BS: beam splitter; PBS: 
polarization beam splitter; OBJ: objective. 

 
 The imaging principle of OC-OCT is explained as the follows. First, the OC-OCT 

configuration in Figure 4.2 establishes a one-to-one mapping between the transverse spatial 

coordinate at the sample plane and at the detector plane, illustrated as solid and dashed light beam 

profiles in Figure 4.2. This is similar to conventional light microscopy. Optical signal originating 

from transverse coordinate (x0, y0) at the sample is mapped to the same y coordinate (y=y0) at the 

detector, because the light beam is not altered along y dimension by the grating or the SLM. On 

the other hand, the spectrum originating from different x coordinate arrives at the SLM plane with 

a global shift proportional to the x coordinate after the diffraction grating. Reflected by the SLM 

and diffracted again by the grating, the light rays originating from (x0,y0) at the sample are 

collimated and eventually focused to (x0,y0) at the detector plane for spectrally non-discriminative 

detection, for a magnification of 1 from the sample plane to detector plane without loss of 

generality. On the other hand, depth resolution is achieved through optical computation. The 

diffraction grating disperses the output of the interferometer along x direction and the SLM projects 

a Fourier basis function (fn) to its row at a specific y coordinate (y=y0), as illustrated in the upper 
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right inset of Figure 4.2. Spectral interferogram originating from different x coordinate at the 

sample is modulated by a laterally (in x dimension) shifted version of fn, which does not affect the 

results of optical computation of OCT signal magnitude. Spectrally non-discriminative detection 

of the modulated interferometric spectrum generates depth resolved OCT signal from the nth 

discrete depth, for pixels corresponding to different x coordinates. Notability, when all the rows of 

the SLM projects the same pattern for spectral modulation, the OC-OCT system generates an en 

face imaging from a specific depth. If different rows of the SLM project different Fourier basis 

functions, signals can be simultaneously obtained from different depths. Therefore, OC-OCT 

allows snap-shot imaging from an oblique plane.  

 OC-OCT system set up is shown in Figure 4.2. A mounted LED (Thorlabs) at 470nm with 

25nm bandwidth is employed (1mm by 1mm emitter size) as the broadband source. The 

interferometric spectrum was dispersed by a 600/mm grating, modulated by a 2D SLM (Holoeye 

LC-R 720), and detected by a CMOS camera (Basler acA2000). The achromatic doublet lens in 

front of the SLM had a focal length of 250mm and the achromatic doublet lens in front of the 

CMOS camera has a focal length of 100mm. Identical objectives (20X Olympus, dry) are used in 

reference and sample arms of the interferometer. The lateral field of view was approximately 

0.5mm by 0.5 mm, limited by the active area of camera sensor used for imaging and the 

magnification from the sample to the camera. The maximum axial imaging range was estimated to 

be 1.2mm, limited by the digital frequency of spectral modulation imposed by the SLM. To 

demonstrate 3D OC-OCT imaging within a large depth range, achromatic doublet is used as 

imaging objectives to obtain results shown in Figure 4.6. Notably, a polarized beam splitter (PBS) 

was inserted between the Michaelson interferometer and the optical computation module. The PBS 
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functions as a polarizer and an analyzer and ensures that a one to one mapping between the pixel 

value of the SLM and light reflectivity.  

 Prior to imaging experiments, K(k) the mapping between the pixel index (k) in a row of 

SLM and the corresponding wavenumber K is calibrated, because the pixels in a row of the SLM 

generally do not sample wavenumber domain spectral data uniformly. The calibration was 

achieved by measuring the interferometric spectrum obtained from a specular sample and 

enforcing linear phase [12]. Axial resolution degradation at different lateral coordinates due to the 

nonlinearity of K(k) is moderate because of the small FOV. R(v), the mapping between the value 

v projected to SLM pixels and the actual light reflectivity (R) of the SLM is also calibrated, because 

R(v) depends on the wavelength and polarization of the incident light, and is generally nonlinear. 

When v takes value of Fourier basis function (Fnk in Eq (1)) and is directly projected to the kth pixel 

in a row of SLM pixels, the spectral modulation is non-sinusoidal, leading to diminished signal 

amplitude and ghost high harmonic peaks after optical Fourier transformation. To ensure that 

precise sinusoidal modulation was imposed to the interferometric spectrum, the value of R-1(FnK(k)) 

is projected to the kth pixel in a row of SLM pixels. Moreover, the SLM cannot directly generate 

complex exponential function needed in Fourier transform (Eqs (1) and (2)). Therefore, cosine and 

sine patterns (Fcos=(cos(2πnK(k)/N) +1)/2 and Fsin=(sin(2πnK(k)/N) +1)/2) are projected to the 

SLM. fcos (Fcos with k=1, 2, 3, …) and fsin  (Fsin with k=1, 2, 3, …) are temporally interlaced for 

spectral modulation, synchronized the data acquisition with the alternation of cos and sin patterns, 

acquired signals from cosine and sine channels (scos=fcosTM-sDC and ssin=fsinTM-sDC) and extracted 

the magnitude of the OC-OCT signal: I=(scos2+ssin2)1/2. With reference light much stronger than 

sample light, sDC could be estimated by ∑mk obtained with sample arm blocked. To simplify 
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subsequent description, the function projected to the SLM is referred as fn that was generated after 

wavenumber calibration, reflectivity calibration, and temporal interlacing.  

4.3 Results 

The z sectioning capability of OC-OCT was first validated experimentally. The axial point spread 

function (PSF) of the OC-OCT imaging system is assessed, using A-scans obtained from a mirror 

with an impulse reflectivity profile. A series of complex exponential functions (fn, n=1, 2, 3, …) is 

projected to different rows (different y coordinate) of SLM pixels. As a result, different rows of the 

detector received signals modulated by different complex exponential functions and came from 

different depths of the sample. The axial PSF (a 1D vector) was then obtained by averaging the 

image directly obtained from the camera along x direction. The axial position of the mirror is varied 

using a translation stage and obtained axial PSFs as shown in Figure 4.3 (a). The horizontal axis at 

the bottom of Figure 4.3 is the row index (nR) of the sensor array and is linearly related to the depth 

z: z= anR+b. The peak pixel index is correlated with the actual axial position of the sample (Figure 

4.3 (b)) and extracted the values for a and b through linear fitting (a≈0.17μm and b≈36.91μm) that 

allowed us to convert nR to actual depth shown as the horizontal axis at the top of Figure 4.3 (a). 

To evaluate the axial resolution, a Gaussian envelope is used to fit the PSFs obtained at different 

depths and the axial resolution of our OC-OCT system was estimated to be 5µm according to the 

full width half maximum (FWHM) of the Gaussian function. The theoretical axial resolution is 

calculated using Equation (4.3)  

𝛿𝛿𝑧𝑧 = 0.44
𝜆𝜆02

𝛥𝛥𝜆𝜆
 (4.3) 

With the central wavelength λ0=470nm and the bandwidth Δλ=25nm, the 

theoretical axial resolution of our OC-OCT system is expected to be 3.9 μm. The 

experimental axial resolution is inferior to the theoretical value, probably because of the 
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following reasons. First, the effective spectral bandwidth used for OCT imaging is smaller 

than the bandwidth of the light source (Δλ). Second, the modulation projected by the SLM 

may be different from ideal sinusoidal modulation.  

 

Figure 4.3. (a) A-scan obtained from a mirror at different depths; (b) linear relationship between 
the nR and the actual depths. 

 
Theoretical calculation of lateral resolution involves multiple factors. Consider a 

single wavelength plane wave incident into the grating (600 line per mm) and is focused to 

a spot at the surface of the SLM. Due to the limited spectral resolution of the grating, the 

size of the spot (𝛿𝛿𝛥𝛥𝑔𝑔𝑗𝑗𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑔𝑔) is estimated to be 1.175μm at the sample plane using Equation 

(4.4). The spot size limited by light diffraction of the objective lens (𝛿𝛿𝛥𝛥𝐹𝐹𝑜𝑜𝑗𝑗) is expected to 

be 0.72μm according to Equation (4.5), given the objective with NA=0.4 and λ0=470nm. 

The lateral resolution determined by spatial sampling of the camera (𝛿𝛿𝛥𝛥𝑐𝑐𝑡𝑡𝑠𝑠𝐹𝐹𝑗𝑗𝑡𝑡) satisfying 

Nyquist sampling theorem is estimated using Equation (4.6), given 5.5μm by 5.5μm pixels 

(Δx=5.5μm) of the camera and a magnification M=11 from the sample plane to the camera 

sensor plane. With all these factors considered, the lateral resolution 𝛿𝛿𝛥𝛥 of the OC-OCT 

system is estimated using Equation (4.7) and the value is 2 μm. 

𝛿𝛿𝛥𝛥𝑔𝑔𝑗𝑗𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑔𝑔 =
𝜆𝜆0𝐹𝐹𝐹𝐹𝑜𝑜𝑗𝑗
𝐷𝐷𝑔𝑔𝑗𝑗𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑔𝑔

 
(4.4) 
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𝛿𝛿𝛥𝛥𝐹𝐹𝑜𝑜𝑗𝑗 =
0.61𝜆𝜆0
𝑁𝑁𝑁𝑁

 (4.5) 

𝛿𝛿𝛥𝛥𝑐𝑐𝑡𝑡𝑠𝑠𝐹𝐹𝑗𝑗𝑡𝑡 =
2𝛥𝛥𝛥𝛥
𝑀𝑀

 (4.6) 

𝛿𝛿𝛥𝛥 = ��𝛿𝛿𝛥𝛥𝑔𝑔𝑗𝑗𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛𝑔𝑔�
2 + �𝛿𝛿𝛥𝛥𝐹𝐹𝑜𝑜𝑗𝑗�

2+(𝛿𝛿𝛥𝛥𝑐𝑐𝑡𝑡𝑠𝑠𝐹𝐹𝑗𝑗𝑡𝑡)2 (4.7) 

 

The capability of OC-OCT for depth resolved en face imaging has been 

demonstrated to achieve en face slicing of the sample at depth z0. The same modulation 

pattern (fn0) is projected to different rows of the SLM. The sample, a USAF1951 resolution 

target, is brought to depth z0 (z0=32.30 μm) and obtained the image shown in Figure 4.4 (a). The 

area within the red square is enlarged in Figure 4.4 (b), in which the smallest discernable structure 

is the 6th element of the 8th group, suggesting a lateral resolution of 2.2µm, similar to theoretical 

estimation of 2µm that considers the convolution of multiple factors (camera sampling, diffraction 

limit of the imaging objective, spectral resolution of the grating). The experimental lateral 

resolution is slightly inferior to the theoretical value, probably because of misalignment of the 

optical components within the imaging system. 

To validate the image in Figure 4.4 (a) was indeed sectioned through optical computation, 

fn0 is projected to the top rows of the SLM and projected a constant value to pixels at the bottom 

rows of the SLM. The sample remained at depth z0 and other settings remained unchanged. The 

resultant OC-OCT image (Figure 4.4 (c)) shows large brightness at the top and appears to be 

completely dark at the bottom. In Figure 4.4 (d), (e) and (f), en face images obtained from the 

resolution target when the SLM modulation pattern selected different imaging depths (z0=32.30μm, 

z0+1.25μm, z0+2.5μm) are compared. When the virtual plane determined by the SLM moved away 

from sample surface, the brightness of OC-OCT image decreases.  
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Figure 4.4. (a) en face image of USAF 1951 resolution target; (b) the 6th element of the 8th group 
in the resolution target can be resolved; (c) the top part of SLM was programed to obtain OCT 
signal from the resolution target; (d)-(e) en face images of the resolution target when the plane 
chosen by the SLM moved away from the sample surface. 

 
 OC-OCT for 3D imaging is validated using onion skin cells. The same Fourier basis 

function is projected to different rows of the SLM to obtain en face OCT image at a specific depth. 

By varying the Fourier basis function, en face images obtained at different depths are shown in 

Figure 4.5 (a), (b) and (c), with 5μm axial displacement in between. Figure 4.5 (d) is the image 

obtained by averaging OC-OCT signals within a depth range of 15μm.  

 

Figure 4.5. OC-OCT image of onion skin cells at different depths (a), (b) and (c); (d) image 
generated by averaging signal with a depth range from image a to image c. Scale bars represent 
50µm. 

 
 3D rendered volume is also obtained through OC-OCT imaging. Lateral patterns are 

designed on a laser-plotted polyester-based photomask and a 3D phantom is fabricated by 

depositing photoresist layer (SU-8 2035) with 37µm elevation on silicon substrate using the 

photolithography facility at Brookhaven National Laboratory. The modulation function projected 

to the SLM is changed to acquire en face OC-OCT data from different depths for volumetric 

imaging. With 2D images obtained from different depth (29 en face images obtained with a 1.25μm 
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axial interval), a 3D rendered volume is obtained (Figure 4.6 (a)). Figure 4.6 (b) and (c) show 

images corresponding to the surface of silicon substrate and the top of the deposited pattern. Figure 

4.6 (d) is the image generated by averaging OC-OCT signal at different depths. Along the red lines 

in Figure 4.6 (d), cross sectional images (Figure 4.6 (e), (f) and (g)) are generated using the 

volumetric data. The rectangles in Figure 4.6 (e), (f) and (g) correspond to depth profiles for the 

areas within  rectangles of Figure 4.6 (d),  from which the top of the letters “I” and “T”, middle of 

the letter “N” and  bottom of the letter “J” are discernable. 

 

Figure 4.6. (a) 3D rendering image of 3D phantom; en face image from the substrate (b) and the 
top of photoresist layer (c); (d) en face image generated by averaging OC-OCT signal within a 
depth range of  36μm; (e)-(g) cross sectional images of three positions indicated by red lines in 
Figure 4.6 (d). Scale bars represent 300µm.  

 
If fast imaging is needed in an oblique plane, the OC-OCT system can project 

different Fourier basis to different rows of the SLM and make the oblique plane the 
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dimension for preferential data acquisition. For structural OCT imaging, the real and 

imaginary parts of complex OCT signal are measured with the SLM generating cosine and 

sine modulations and calculated the amplitude of OCT signal. To demonstrate complex OCT 

imaging, we used the cosine and sine channels output from the OC-OCT system to generate the 

amplitude and phase of complex signal. We projected the same modulation pattern (fn0) to all the 

rows of the SLM to generate OC-OCT signal from depth z0. We then used the OC-OCT system to 

image the substrate and the top of the 3D phantom fabricated by photolithography. The amplitude 

and phase images of the elevated photoresist pattern are shown in Figure 4.7 (a) and (b). The 

amplitude and phase images of the silicon substrate are shown in Figure 4.7 (c) and (d). In summary, 

the OC-OCT system described in this dissertation enabled optically computed complex OCT 

imaging for the first time to the best of our knowledge.  

 
Figure 4.7, Cosine and sine channels output from the OC-OCT. 

4.4 System Performance. 

The imaging field of view is one of the key parameters of the system. It consists of lateral 

field of view and axial field of view. Because of one-to-one mapping between the sample 

plane and sensor plane, the lateral field of view (L) for OC-OCT can be determined based 

on the size of sensor array (Lsensor), and the magnification (M=11) from the sample plane 

and sensor plane (Equation (4.8)). For OC-OCT imaging based on 20X Olympus 

microscopic objectives (9mm effective focal length), a magnification of 11 from the sample 

plane to the camera sensor plane (5.5mm by 5.5mm), the lateral FOV is approximately 

0.5mm (x) by 0.5mm (y).  
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𝐿𝐿 =
𝐿𝐿𝑠𝑠𝐹𝐹𝑛𝑛𝑠𝑠𝐹𝐹𝑗𝑗
𝑀𝑀

 (4.8) 

 

The theoretical axial field of view determined by spectral sampling is 

approximately 1.2mm. The continuous interferometric spectrum can be expressed as 

Equation (4.9). On the other hand, the SLM projects a discrete modulation pattern: 𝑒𝑒𝑗𝑗
2𝜋𝜋𝜋𝜋𝑠𝑠
𝑁𝑁  

where k is the index of SLM pixel in a row and N is the total number of pixels in the row. 

Due to the sampling of wavenumber, 𝑘𝑘 = �2𝜋𝜋
𝜆𝜆
− 2𝜋𝜋

𝜆𝜆0
� 𝛿𝛿𝑘𝑘⁄  where 𝛿𝛿𝑘𝑘 = 2𝜋𝜋𝜋𝜋𝜆𝜆

𝜆𝜆02
 is the interval 

of wavenumber sampled by SLM pixels. The discrete modulation pattern can thus be re-

written as Equation (4.10). By correlating Equation (4.9) and Equation (4.10), the axial 

imaging range can be estimated using Equation (4.11). It is noted that the discrete signal 

cannot have a frequency larger than π. Hence the maximum value of n is N/2. In addition, 

wavelength sampling interval 𝛿𝛿𝜆𝜆 = 𝑑𝑑0𝐿𝐿𝑐𝑐𝐹𝐹𝑠𝑠𝐿𝐿
𝐹𝐹

≈ 0.094𝑛𝑛𝑚𝑚.  With groove width of the grating 

d0 =1mm/600 and the pixel width of the SLM L=20μn, 𝛿𝛿𝜆𝜆 is estimated to be 0.094𝑛𝑛𝑚𝑚. 

Accordingly, the theoretical axial imaging range is 1.2mm.  

𝑆𝑆(𝑧𝑧) =  𝜐𝜐𝑒𝑒𝑗𝑗�
2𝜋𝜋
𝜆𝜆 −

2𝜋𝜋
𝜆𝜆0
�𝑧𝑧 (4.9) 

𝑆𝑆𝑗𝑗 = 𝑒𝑒𝑗𝑗�
2𝜋𝜋
𝜆𝜆 −

2𝜋𝜋
𝜆𝜆0
�𝑛𝑛𝜆𝜆0

2

𝑁𝑁𝜋𝜋𝜆𝜆 (4.10) 

𝑧𝑧 =
𝑛𝑛𝜆𝜆02

𝑁𝑁𝛿𝛿𝜆𝜆
 (4.11) 

 

The above analysis gives the depth range in which OCT signal can be acquired. 

However, the imaging depth into a scattering sample is much smaller due to factors 

including sensitivity roll off and signal attenuation.  
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Another key parameter to describe system performance is the sensitivity. The 

theoretical sensitivity of the OC-OCT system is be estimated following a classical 

approach. Assume the detection is shot noise limited. The OCT signal magnitude (SOCT) 

can be expressed as Equation (4.12) in which τ is exposure time, ρ is spectrometer 

efficiency, η denotes the detector quantum efficiency, h is the Planck constant, ν0 is the 

center frequency of the light source spectrum, N is the number of pixels and P0 is the output 

power of the light source. The shot noise variance can be expressed as Equation (4.13), and 

the signal to noise ratio (SNR) is estimated using Equation (4.14). Given Rr>>Rs and the 

camera exposure time is adjusted to almost saturate the detector, Equation (4.14) can be 

re-written as Equation (4.15). The maximum number of photons detected is Nmax as shown 

in Equation (4.16). Therefore, the SNR could be represented in Equation (4.17). According 

to R. Leitgeb et al, the sensitivity (ε) is the reciprocal of the sample reflectivity when 

SNR=1, as shown in Equation (4.18) where Nmax=5000 is the number of photons that 

saturates individual pixels of the camera. The sensitivity of the imaging system is 73dB 

with Rr=1 and is 87dB with Rr=4%. 

𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂 =
𝛼𝛼𝜌𝜌𝜌𝜌𝑃𝑃0
𝑁𝑁ℎ𝜐𝜐0

�𝑅𝑅𝑗𝑗𝑅𝑅𝑠𝑠 
(4.12) 

 

𝜎𝜎𝑠𝑠ℎ𝐹𝐹𝑡𝑡2 =
𝛼𝛼𝜌𝜌𝜌𝜌𝑃𝑃0
𝑁𝑁2ℎ𝜐𝜐0

(𝑅𝑅𝑗𝑗+𝑅𝑅𝑠𝑠) (4.13) 

 

𝑆𝑆𝑁𝑁𝑅𝑅 =
〈𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂2 〉
𝜎𝜎𝑠𝑠ℎ𝐹𝐹𝑡𝑡2 =

𝛼𝛼𝜌𝜌𝜌𝜌𝑃𝑃0
ℎ𝜐𝜐0

𝑅𝑅𝑗𝑗𝑅𝑅𝑠𝑠
𝑅𝑅𝑗𝑗+𝑅𝑅𝑠𝑠

 
(4.14) 

 

𝑆𝑆𝑁𝑁𝑅𝑅 =
〈𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂2 〉
𝜎𝜎𝑠𝑠ℎ𝐹𝐹𝑡𝑡2 =

𝛼𝛼𝜌𝜌𝜌𝜌𝑃𝑃0
ℎ𝜐𝜐0

𝑅𝑅𝑠𝑠 
(4.15) 
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𝑁𝑁𝑠𝑠𝑡𝑡𝑚𝑚 = (
𝛼𝛼𝜌𝜌𝜌𝜌𝑃𝑃0
ℎ𝜐𝜐0

/4)𝑅𝑅𝑗𝑗 (4.16) 

 

𝑆𝑆𝑁𝑁𝑅𝑅 = 4𝑁𝑁𝑠𝑠𝑡𝑡𝑚𝑚𝑅𝑅𝑠𝑠/𝑅𝑅𝑗𝑗 (4.17) 

 

𝜀𝜀 =
1
𝑅𝑅𝑠𝑠

=
4𝑁𝑁𝑁𝑁𝑠𝑠𝑡𝑡𝑚𝑚

𝑅𝑅𝑗𝑗
 (4.18) 

 

 

4.5 Comparison with Existing Technologies 

OC-OCT provides a novel approach to address specific coordinate in 3D space for OCT 

imaging. By projecting Fourier basis functions by the SLM, OC-OCT can perform 2D 

parallel detection of signal from a specific depth (if the same Fourier basis function is 

utilized) or depths (if different Fourier basis function is utilized). In our OC-OCT system 

with the camera operated at 340 fps, it is feasible to achieve a smallest sampling interval 

of 3ms for enface imaging with 1000 by 1000 pixels. On the other hand, the spectral domain 

(SD) and swept source (SS) OCT systems in our lab takes 100k A-scans per second and 

the speed is comparable with most OCT systems used in research labs. With raster 

scanning, the SD and SS OCT systems have to acquire the entire 3D volume to generate 

an enface image. Hence it takes 10 seconds to generate an enface image. Therefore, OC-

OCT has the potential to improve the imaging speed within enface plane by three orders of 

magnitude. Notably, this improvement is not achieved by reducing the time needed to 

acquire each pixel, but is achieved by directly addressing the pixel of interest.  

The major contribution of this dissertation study is the development of innovative 

technologies to address limitations of raster beam scanning in conventional OCT imaging. 
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In addition to the generate technical advancements mentioned previously, comparison 

between our technology with several studies is presented.  

(1) W. Zhang et al, describes an optically computed OCT imaging system (Figure 

4.8). It uses the arbitrary waveform generator to generate optical signal with its amplitude 

modulated to be a cos(t2). The modulated source signal then passes through a normal OCT 

Michaelson interferometer system. At the detector, an A-scan data processed by optical 

computed Fourier transformation system is detected.  

The imaging system shown in Figure 4.8 performs A-scan through optical 

computation through the use of AWG modulated light source. However, the system still 

requires mechanical devices to help capture 2D images or 3D volumetric data. The 

significant advantage of OC-OCT developed in this dissertation study is its capability to 

address pixel in 3D space without mechanical scanning. This results in a simple and stable 

sample arm that has the potential to enable better spatiotemporal resolution. 

 

Figure 4.8, AWG for light modulation in optically computed OCT imaging. 

Source: [63] 
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(2) Branislav Grajciar et al, developed a parallel spectral domain OCT system 

(Figure 4.9) that uses a cylindrical lens to generate line field illumination. The line 

illumination can be viewed as a set of parallel channels, each of them associated with a 

different lateral position on the sample. These channels are spectrally dispersed by the 

diffraction grating and recorded individually on different rows of the CCD area. Line field 

OCT system shown in Figure 4.9, eliminates the need of mechanical scanning for 2D B-

scan. However, it still requires mechanical scanning for volumetric imaging. The line-field 

Fourier domain OCT technology developed in this dissertation study utilizes a similar 

mechanism for parallel imaging. However, our imaging system uses a programmable 

spatial light modulator to generate an arbitrary line field for parallel OCT imaging. It also 

scans the line field at the spatial light modulator for volumetric imaging. 

 

Figure 4.9, Spectral domain parallel OCT system. 

Source: [62]. 
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(3) S. Lee et al, developed a line-field OCT use a swept source and a line CCD 

camera (Figure 4.10) instead of the field CCD and spectrometer. It generates an elliptical 

beam onto a sample by using a cylindrical lens, and detects the wavelength-resolved 

interference signal using a line CCD camera. The sample is mechanically translated by a 

linear stage to generate volumetric image. Our technologies (OC-OCT and LF-FDOCT) 

completely remove the need for mechanical scanning device in 2D and 3D volumetric 

imaging. The imaging result of an arbitrary plane is not only fast but also more stable, 

because there is no movement through the whole process.  

 

Figure 4.10, Line-Field Optical Coherence Tomography Using Frequency-Sweeping 
Source. 

Source: [64] 
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4.6 Conclusion and Discussion. 

 The OC-OCT system described in this section enabled optically computed 3D OCT 

imaging for the first time to the best of our knowledge. OC-OCT is fundamentally different from 

existing technologies that take transverse plane as the preferential scanning dimension. For optical 

coherence microscopy (OCM) and full field OCT, mechanical scanning cannot be eliminated [62] 

[63] [64] [65]. For structural OCT imaging, the real and imaginary parts of complex OCT signal 

are measured with the SLM generating cosine and sine modulations and calculated the amplitude 

of OCT signal. The current OC-OCT system generated temporally interlace cosine and sine 

patterns for spectral modulation. Hence, its imaging speed was limited by the speed of the SLM 

(60Hz refreshing rate). Dispersion mismatch can also be compensated through optical computation 

by introducing a nonlinear phase term to the Fourier basis projected by the SLM. To fully utilize 

the speed of the camera, complex modulation of interferometric spectrum can also be achieved by 

projecting spatially interlaced cosine and sine patterns to the SLM. As discussed above, the small 

dynamic range of the camera (Nmax) for parallel detection limits the sensitivity of OC-OCT. The 

sensitivity of our OC-OCT system is estimated to be 87dB, limited by the small dynamic range of 

the camera.  
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CHAPTER 5 

LINE FIELD FOURIER DOMAIN OCT BASED ON A SPATIAL LIGHT 
 

5.1 Introduction 

Currently, in most implementations of OCT imaging, the broadband light output from a 

single mode fiber is focused to a point at the sample [55]. The light beam is steered 

mechanically in the transverse plane to generate B-scan or C-scan images. With a high-

speed detector, it on average takes an extremely short period of time to acquire OCT data 

from one voxel from 3D space [57]. However, the spatiotemporal resolution of OCT 

imaging has been limited because of the raster scanning protocol utilized to acquire data in 

3D space. The inter-Bscan sampling interval is large, and the inter-Cscan sampling interval 

is even larger. Moreover, the use of a mechanical beam scanner such as a galvanometer or 

a micro-electromechanical system (MEMS) increases the dimension, cost and complexity 

of the sample arm for an OCT imaging system.  

An alternative approach to achieve extended transverse field of view (FOV) in OCT 

imaging is through parallel imaging. A parallel OCT system, such as a full field OCT and 

a line field OCT, illuminates an extended FOV and detects optical signal using an array 

detector (area scan or line scan camera) [59][60]. Parallel OCT imaging eliminates 

mechanical beam scanning, and has the potential to reduce instrument footprint, improve 

system robustness, and achieve ultra-high imaging speed.  

In this section, a novel line field Fourier domain OCT (LF-FDOCT) imaging 

technology is investigated based on a 2D spatial light modulator (SLM) [58]. In the LF-

FDOCT system, line field illumination is achieved by generating a line pattern at the SLM 
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and projecting the SLM plane to the sample and reference arm. Interferometric spectra 

from different transverse locations at the line field are detected in parallel using a 2D 

camera for B-scan imaging. By scanning the line field at the SLM, multiple B-scans can 

be obtained for 3D imaging. The use of SLM to perform transverse scanning in volumetric 

OCT imaging is highly innovative and has not been investigated before to the best of our 

knowledge.  

In conventional OCT imaging, mechanical scanners perform raster scanning along 

specific dimensions that are determined by the configuration and geometry of the scanner. 

Our LF-FDOCT technology achieves line field illumination by the SLM. The 

programmable SLM used in LF-FDOCT allows the fast scanning axis of OCT imaging to 

be conveniently altered. Given limited data acquisition bandwidth, LF-FDOCT imaging 

has the capability to achieve high spatiotemporal resolution along preferred fast scanning 

direction for specific applications.  

The focus of this study is to investigate LF-FDOCT that uses SLM to perform 

transverse scanning. SLM also allows the acquisition of OCT signals from a set of spatial 

locations that are not continuous [61]. For example, SLM can be used for structured 

illumination and point spread function optimization in OCT imaging, which will be 

investigated in our future study. 

The rest of this chapter is organized as follows. The principle of LF-FDOCT 

imaging is first described Afterwards, we present experimental results and conclude the 

chapter with discussions.  
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5.2 Principle of LF-FDOCT imaging 

The configuration of LF-FDOCT is illustrated in Figure 5.1 (a). an LED is used as the light 

source. The output of the LED goes through a polarization beam splitter (PBS), and is 

imaged to the SLM (Holoeye LC-R 720) through an achromatic doublet lens (L1, 

f=250mm). The broadband light is modulated by the SLM and deflected by the PBS to 

illuminate the Michelson interferometer. With the PBS, the light incident into the SLM and 

the light detected by the camera have orthogonal polarizations, which is needed to ensure 

a one-to-one mapping between the pixel value of the SLM and its light reflectivity. A line 

pattern is generated at the SLM. Pixels along the line have high reflectivity and other pixels 

have 0 reflectivity. The line field is split by a beam splitter (BS), and imaged to the sample 

and reference mirror via an achromatic doublet lens (f=75mm). As illustrated in Figure 5.1 

(a), the dimension of line field extension is difined as x direction, the direction of light 

beam propagation as z, and the direction orthogonal to x-z plane as y. After the beam 

splitter (BS), the optical fields from sample arm and reference arm superimpose and the 

interferometric signal is dispersed by a diffraction grating (600lp/mm), as illustrated in 

Figure 5.1 (b). It is worth mentioning that the spatial mapping in x dimension is not altered 

by the grating. The dispersed light is detected by a CMOS camera (Basler acA2000), 

streamed to the computer via a frame grabber (NI1433, National Instruments) and 

processed by graphic processing units (Quadro P2000, Nvidia).  
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Figure.5.1 (a) The configuration of the LF-FDOCT system; (b) collimated 
interferometric light incidents into a grating and gets dispersed in a plane 
orthogonal to x direction. PBS: polarization beam splitter; SLM: spatial light 
modulator; BS: beam splitter; L1 –L4: achromatic doublet lenses (f=250mm, 
75mm, 75mm and 100mm respectively). 

 
The principle of line field FDOCT imaging is further illustrated in Figure 5.2 (a) 

and (b) show LF-OCT imaging with line field along x direction. Signal originating from a 

specific x coordinate (red box for x=xA) at the sample is mapped to its conjugate x 

coordinate in the camera sensor plane. Because of the dispersion introduced by the grating, 

light with different wavelength (or wavenumber k=2π/λ) is mapped to different pixels of 

the camera (red interferometric spectrum illustrated in Figure 5.2 (b)). Ideally, there is no 

crosstalk between channels at different transverse coordinates (red/green box at the sample 

plane corresponds to red/green interferometric spectrum at the camera plane). The camera 

is set such that each row of the pixels effectively detects a spectral interferogram 

originating from an x coordinate. An interferometric spectrum 𝑆𝑆(𝑘𝑘)𝑚𝑚=𝑚𝑚0,𝑦𝑦=𝑦𝑦0 is related to 

sample profile 𝐼𝐼(𝑧𝑧)𝑚𝑚=𝑚𝑚0,𝑦𝑦=𝑦𝑦0 through Fourier transform:𝑆𝑆(𝑘𝑘)𝑚𝑚=𝑚𝑚0,𝑦𝑦=𝑦𝑦0 = 𝑭𝑭�𝐼𝐼(𝑧𝑧)𝑚𝑚=𝑚𝑚0,𝑦𝑦=𝑦𝑦0� 

where F indicates Fourier transform operator between z and k. To extract a 2D spatial 

domain OCT image, Fast Fourier transform (FFT) is applied to each row of data obtained 

from the camera after wavenumber linearization (wavelength to wavenumber 
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interpolation). By varying the y coordinate of the line pattern at the SLM (y=0, Δy, 2Δy…), 

B-scans from different y coordinates are obtained to form a C-scan.  

The programmable SLM also offers unique advantage of flexible choice of fast 

scanning dimension.  As shown in Figure 5.2 (c), the SLM can generate line illumination 

that has an angle (α) with regard to the x axis of the Cartesian coordinate system. The 

spectral interferogram from an x coordinate (xA or xB) is then detected by camera pixels at 

the corresponding x coordinate without transverse crosstalk. As shown in Figure 5.2 (d), 

spectral interferograms from different points of the oblique line field are linearly shifted 

from one another at the detector plane (red and green spectra), because of the shift along y 

coordinate in the sample plane. However, spectral shift in Fourier domain does not affect 

the magnitude of spatial domain OCT signal, because spatial domain OCT signal is 

obtained by performing Fourier transform on Fourier domain measurement and spectral 

shifting in Fourier domain corresponds to a linear phase term in spatial domain signal. 

Using line field shown in Figure 5.2 (c), a B-scan can be obtained by performing FFT on 

the rows of data acquired by the camera. Similarly, C-scan can be obtained by scanning 

the line field in y dimension.  
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Figure 5.2. (a) line field illumination along x dimension; (b) spectral interferograms 
corresponding to line illumination along x axis; (c) line field illumination that has 
an angle α with regard to x axis; (d) spectral interferograms corresponding to line 
illumination that has an angle α with regard to x axis. 

 

5.3 Results 

The depth resolved imaging capability of the LF-FDOCT system has been validated. Line 

illumination along x axis is generated and imaged a mirror with an impulse reflectivity 

profile in axial dimension. To characterize the axial point spread function (PSF) of the 

imaging system, the interferometric spectra is acquired, and performed FFT on rows of 

data detected by the camera, and averaged A-scans obtained from x coordinates to generate 

the axial PSF. Before Fourier transform, pixel to wavenumber calibration is performed, 

because the camera did not sample the wavenumber uniformly. Consider the sample is 

illuminated by a line field at y=y0. After the grating, the wavenumber seen by the nth pixel 

of the camera is k0(n)=ay0+b+g(n) where the first two terms describe the global shifting 

of the spectrum dependent on y coordinate and g(n) describes the non-uniform sampling 

of wavenumber by camera pixels. To convert the measurement to wavenumber domain, 
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k0(n) is calibrated by linearizing the phase extracted from interferometric spectrum and 

performed FFT on k linearized spectral data. Axial PSFs obtained without and with 

wavenumber linearization are shown in Figure 5.3 (a), as solid curves in red and in black. 

Gaussian fitting is used to obtain the results and extracts the axial resolution was estimated 

to be 11 µm. It is clear that wavenumber linearization is essential to preserve the axial 

resolution of FDOCT imaging. Theoretically, the above described wavenumber calibration 

and interpolation process is only valid for line field at y=y0. For a line field at a different 

y coordinate, the camera sees shifted interferometric spectra: k(n)= k0(n)+a(y-y0). The 

wavenumber calibration performed for line field at y0 can be used to linearize wavenumber 

for other y coordinates, because the global shifting in Fourier domain (α(y-y0)) 

corresponds to a linear phase modulation term in spatial domain OCT signal after Fourier 

transform, and does not affect the magnitude of OCT signal. To validate this, pixels of the 

SLM are selected to generate line field illumination at y=-0.2mm, -0.1mm, 0, 0.1mm and 

0.2mm at the sample plane and obtained axial PSFs shown in Figure 5.3 (b). The PSF is fit 

with a Gaussian function and quantified the axial resolution of OCT using the full width 

half maximum (FWHM) of the Gaussian function. As shown in Figure 5.3 (c), axial 

resolution remained consistent for line field at different y coordinate, using the same 

wavenumber calibration.  

 
Figure 5.3. (a) Experimental axial PSFs obtained without (solid, red) and with 
(solid, black) wavenumber linearization, and Gaussian fittings of the PSFs (dashed 
curves); (b) experimental axial PSFs obtained with line field illumination at y=-
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0.2mm, -0.1mm, 0, 0.1mm and 0.2mm; (c) axial resolution for line field 
illumination at y=-0.2mm, -0.1mm, 0, 0.1mm and 0.2mm.  

 
The lateral resolution of LF-FDOCT is validated by imaging a variable line grating 

resolution target. Different regions of the resolution target are imaged with increasing line 

density (line pairs per millimeter, lp/mm). Figure 5.4 (a) (b) were obtained from regions 

with 50lp/mm patterns and 100 lp/mm. 50 lp/mm is the highest density that the LF-FDOCT 

system can resolve, suggesting a lateral resolution of 20μm. Figure 5.4 (b) was obtained 

from the line pattern at a density of 100 lp/mm and the structure was no longer resolvable 

in LF-FDOCT.  

 
Figure 5.4. B-scan image obtained with LF-FDOCT from the variable line grating 
resolution target at a region with (a) 50 lp/mm pattern; (b) 100 lp/mm pattern. 

 
 Flexible selection of fast scanning dimension is demonstrated with LF-FDOCT. 

As illustrated in Figure 5.5 (a), a region of the variable line grating resolution target is 

imaged and the SLM is programmed to generate a series of line fields for illumination. The 

first line field was along x direction. Subsequent line patterns had larger angles (αi=(i-1)α0 

for the ith line pattern) with regard to the x axis of the Cartesian coordinate. The first line 

field acquired signal from a region with uniform reflectivity. Hence the LF-FDOCT image 

obtained (Figure 5.5 (b)) shows a uniform signal magnitude along x direction. For the 2nd 

line field (α=α0), the left part of the line acquired OCT signal from a region with constant 

reflectivity and the right part of the line acquired OCT signal from a region with periodical 
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reflectivity pattern, as shown in Figure 5.5 (c). When illuminated by the 3rd to 6th line 

pattern, the LF-FDOCT image shows an increasingly larger portion obtained from the 

region with alternating reflectivity (Figure 5.5 (d)-(g)). This is consistent with the geometry 

shown in Figure 5.5 (a). 

 
Figure 5.5. (a) SLM generated patterns that had an angle with regard to x axis: 
αi=(i-1)α0 for the ith line fields; (b) –(g) 2D images obtained from the 1st to the 6th 
line fields.  

 
3D imaging capability of LF-FDOCT is demonstrated along different fast scanning 

directions. A 3D phantom made by depositing photoresist layer (SU-8 2035) with 37µm 

elevation on silicon substrate using photolithography facility is imaged. An area with 

checker patterns is first imaged. Line field along x direction is generated and a B-scan 

(𝐼𝐼(𝛥𝛥, 𝑧𝑧)𝑦𝑦=𝑦𝑦0) is acquired at the corresponding y coordinate (𝑦𝑦 = 𝑦𝑦0). By scanning the line 

field along y direction (Figure 5.6 (a)), B-scans from different y coordinates are obtained 

to generate a 3D data set (𝐼𝐼(𝛥𝛥,𝑦𝑦, 𝑧𝑧)). From the 3D data set acquired, signal along z axis is 

averaged and the en-face image is generated showing the checker pattern in Figure 5.6 (b). 

In Figure 6 (c) and (d), 2D cross-sectional images obtained along the dashed lines is shown 
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in Figure 5.6 (b). On the other hand, the same 3D phantom is imaged using a different set 

of line fields along axis x’ as illustrated in Figure 5.6 (e). With these line fields, the 

transverse plane is scanned for volumetric imaging. Signal along z axis is averaged and the 

en-face image is generated shown in Figure 5.6 (f). B-scans corresponding to the dashed 

lines in Figure 5.6 (f) are shown in Figure 5.6 (g) and (h). Figure 5.6 (f) appears to be a 

sheared version of Figure 5.6 (b). This is because the line fields in Figure 5.6 (e) effectively 

samples the pixels in spatial coordinate x’-h and �𝛥𝛥′
ℎ
� = �𝑐𝑐𝑐𝑐𝑠𝑠(𝛼𝛼) −𝑠𝑠𝑠𝑠𝑛𝑛(𝛼𝛼)

0 1
�  �
𝛥𝛥
𝑦𝑦� = 𝝓𝝓�

𝛥𝛥
𝑦𝑦�  

(Figure 5.6 (i)). With the coordinate transformation matrix 𝝓𝝓, image shown in Figure 5.6 

(f) is converted to Cartesian coordinate 𝜙𝜙 and the image is shown in Figure 5.6 (j) that is 

consistent with Figure 5.6 (b). The 3D phantom at a region with the pattern of “NJIT” is 

also imaged. Line scanning is performed using the pattern shown in Figure 5.6 (a) and 

acquired the volumetric data set. 3D rendering of the volumetric data is shown in Figure 

5.7. The area under the letters is dark because of light attenuation.  

 
Figure 5.6. (a) SLM scanning patterns that samples the pixels in the coordinate 
system of x-y; (b) en-face image of the checker pattern obtained using scanning 
pattern shown in Figure 5.6 (a); (c) and (d) 2D cross-sectional images along the 
dashed lines in Figure 5.6 (b); (e) SLM scanning patterns that samples the pixels in 
the coordinate system of x’-h; (b) en-face image of the checker pattern obtained 
using scanning pattern shown in Figure 5.6 (e); (g) and (h) 2D cross-sectional 
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images along the dashed lines in Figure 5.6 (e); (i) coordinate system x’-h is a 
rotated version of x-y; (j) En-face image converted to coordinate system x-y from 
measurement based on coordinate system x’-h. 

 

 
Figure 5.7. 3D render volumetric data showing the pattern of “NJIT”. 

 
LF-FDOCT imaging on scattering samples is further demonstrated. A phantom is 

made by stacking three layers of scotch tape together. The B-scan obtained from LF-

FDOCT is shown in Figure 5.8 (a). Onion cells is also imaged using the LF-FDOCT 

system. Individual onion cells can be identified in Figure 5.8 (b).  

 
Figure 5.8 (a) cross-sectional image of onion cells; (b) cross-sectional image of 
three layers of scotch tape layer; The white bar indicates 100 µm. 

 

5.4 Conclusion and Discussion 

In this research, line field Fourier domain OCT system using an SLM for lateral scanning 

and uses a 2D camera for parallel signal detection has been developed and validated. 

Imaging experiments have been performed to demonstrate the cross-sectional imaging 

capability of the LF-FDOCT system. It is known that the signal quality of a parallel OCT 
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imaging system can be affected by the cross-talk between different transverse signal 

channels. For turbid sample, photons scattered by a particle at pixel with lateral coordinate 

xA (Figure 5.2(a)) may undergo multiple scattering events and reach transverse coordinate 

xB at the camera. If coherence is still preserved, these multiply scattered photons contribute 

to signal that is misinterpreted in the origin of lateral and axial coordinate. If coherence is 

not preserved, multiply scattered photons generate a noise flood and reduce the effective 

dynamic range of the detector. Conventional OCT system based on fiber-optic 

interferometry and pointwise scanning can effectively suppress multiple scattering through 

confocal gating. Compared to other implementations of parallel OCT imaging, the LF-

FDOCT system can be conveniently modified to effectively suppress the contribution of 

multiple scattering.  
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CHAPTER 6 

SUMMARY AND FUTURE WORK 

6.1 Summary 

In this dissertation research, innovative technologies were developed to address limitations 

of raster beam scanning in conventional OCT imaging. Novel methods to address specific 

coordinate in 3D space were utilized in scanless OCT imaging.  

Chapter 2 describes the principle and applications of OCT technology.  

Chapter 3 describes scanning strategies utilized in conventional OCT imaging and 

their limitations. In conventional OCT imaging, raster scanning is performed to address 

different spatial locations within the 3D space. It requires a mechanical scanner to steer the 

light beam and results in limited spatiotemporal resolution in OCT imaging.  

Chapter 4 describes an innovative optically computed optical coherence 

tomography (OC-OCT) technology that addresses spatial location through optical 

computation. The OC-OCT system performs depth resolved imaging by computing the 

Fourier transform of the interferometric spectra optically. The OC-OCT system modulates 

the interferometric spectra with Fourier basis function projected to a spatial light modulator 

and detects the modulated signal without spectral discrimination. The novel optical 

computation strategy enables volumetric OCT imaging without performing mechanical 

scanning and without the need for Fourier transform in a computer. The principle of OC-

OCT imaging system is presented. The effectiveness of the system is validated using 

experimental results. 
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Chapter 5 describes a line field (LF) Fourier domain optical coherence tomography 

(FDOCT) system that addresses spatial location by scanning a line field electronically with 

a spatial light modulator. The LF-FDOCT system performs lateral scanning using a two-

dimension spatial light modulator and performs parallel signal detection using a two-

dimensional sensor (CMOS camera). The LF-FDOCT system allows parallel acquisition 

of OCT signal from an entire cross-sectional 2-D image (B-scan) and offers flexibility to 

select arbitrary fast scanning dimension. The principle of LF-FDOCT imaging are 

demonstrated. Experimental results are obtained from the LF-FDOCT imaging system. 

6.2 Future Work 

In conclusion, by investigating novel methods to address 3D spatial locations in OCT 

imaging, this dissertation study provides solutions to overcome the limitation of 

conventional raster scanning approach in OCT imaging. Future development will involve 

technological advancement and the application of scanless OCT imaging to study different 

dynamic events for biomedical research.  

 The OC-OCT technology allows flexible data acquisition within an oblique plane by 

projecting different Fourier basis to different SLM rows. In this dissertation, 3D imaging was 

acquired by projecting the same Fourier basis function to different rows of the SLM and 

sequentially acquiring en face images at different depths. In the future, if fast imaging is needed in 

an oblique plane, the OC-OCT system can project different Fourier basis functions to different 

rows of the SLM and make the oblique plane the dimension of preferential data acquisition. In 

addition, OC-OCT captures the real and imaginary part of complex OCT signal, by projecting 

cosine and sine patterns through the SLM to generate structural OCT image. This implies the 

technology can be directly used for phase resolved imaging that is sensitive to nanometer scale 
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displacement. This suggests OC-OCT’s applications in optical coherence elastography and 

imaging study of cell dynamics. Initial results of phase resolved OC-OCT imaging was reported in 

our recent conference paper (Optical computation for complex OCT, OSA Biophotonics Congress: 

Biomedical Optics, OTu1E.5). In the future, a systematic study can be conducted to validate and 

optimize phase resolved OC-OCT imaging. Current OC-OCT system generates temporally 

interlace cosine and sine patterns for spectral modulation. Hence, its imaging speed was limited by 

the speed of the SLM (60Hz refreshing rate). Complex modulation of interferometric spectrum can 

also be achieved by projecting spatially interlaced cosine and sine patterns to the SLM. The pattern 

is temporally stationary. This will allow the imaging system to fully utilize the bandwidth of the 

camera. 

 OC-OCT is essentially a parallel imaging technique. Hence, the imaging quality is affected 

by lateral cross-talk. However, SLM can be conveniently programmed to perform structured 

illumination and suppress lateral cross talk. For example, we can selectively activate a 

discontinuous set of SLM rows and take measurements at corresponding locations to reject 

multiply scattered photons. The entire field of view can be covered by repeating the above process 

with different areas illuminated.  

 For LF-FDOCT system, the LF-FDOCT system has the potential to be modified to 

effectively suppress the contribution of multiple scattering. As mentioned above, the SLM can be 

programmed to enable a discontinuous set of pixels along the illumination line field. A digital 

confocal mechanism can be achieved by detecting signals only at these pixels. A Bscan image can 

be assembled using measurements obtained under different illumination patterns.  Moreover, 

LFOCT allows an asymmetric optical configuration for illumination and detection. This facilitates 



67  

parallel measurement of complex output from a series of point illuminations and full reconstruction 

of scattering field of the sample. 
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