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ABSTRACT

EFFICIENT HARDWARE IMPLEMENTATIONS OF BIO-INSPIRED
NETWORKS

by
Anakha Vasanthakumaribabu

The human brain, with its massive computational capability and power efficiency in

small form factor, continues to inspire the ultimate goal of building machines that can

perform tasks without being explicitly programmed. In an effort to mimic the natural

information processing paradigms observed in the brain, several neural network

generations have been proposed over the years. Among the neural networks inspired

by biology, second-generation Artificial or Deep Neural Networks (ANNs/DNNs) use

memoryless neuron models and have shown unprecedented success surpassing humans

in a wide variety of tasks. Unlike ANNs, third-generation Spiking Neural Networks

(SNNs) closely mimic biological neurons by operating on discrete and sparse events

in time called spikes, which are obtained by the time integration of previous inputs.

Implementation of data-intensive neural network models on computers based

on the von Neumann architecture is mainly limited by the continuous data transfer

between the physically separated memory and processing units. Hence, non-von

Neumann architectural solutions are essential for processing these memory-intensive

bio-inspired neural networks in an energy-efficient manner. Among the non-von

Neumann architectures, implementations employing non-volatile memory (NVM)

devices are most promising due to their compact size and low operating power.

However, it is non-trivial to integrate these nanoscale devices on conventional

computational substrates due to their non-idealities, such as limited dynamic range,

finite bit resolution, programming variability, etc. This dissertation demonstrates

the architectural and algorithmic optimizations of implementing bio-inspired neural

networks using emerging nanoscale devices.



The first half of the dissertation focuses on the hardware acceleration of

DNN implementations. A 4-layer stochastic DNN in a crossbar architecture with

memristive devices at the cross point is analyzed for accelerating DNN training.

This network is then used as a baseline to explore the impact of experimental

memristive device behavior on network performance. Programming variability is

found to have a critical role in determining network performance compared to other

non-ideal characteristics of the devices. In addition, noise-resilient inference engines

are demonstrated using stochastic memristive DNNs with 100 bits for stochastic

encoding during inference and 10 bits for the expensive training.

The second half of the dissertation focuses on a novel probabilistic framework

for SNNs using the Generalized Linear Model (GLM) neurons for capturing neuronal

behavior. This work demonstrates that probabilistic SNNs have comparable perform-

ance against equivalent ANNs on two popular benchmarks - handwritten-digit

classification and human activity recognition. Considering the potential of SNNs

in energy-efficient implementations, a hardware accelerator for inference is proposed,

termed as Spintronic Accelerator for Probabilistic SNNs (SpinAPS). The learning

algorithm is optimized for a hardware friendly implementation and uses first-to-spike

decoding scheme for low latency inference. With binary spintronic synapses and

digital CMOS logic neurons for computations, SpinAPS achieves a performance

improvement of 4× in terms of GSOPS/W/mm2 when compared to a conventional

SRAM-based design.

Collectively, this work demonstrates the potential of emerging memory technolog-

ies in building energy-efficient hardware architectures for deep and spiking neural

networks. The design strategies adopted in this work can be extended to other spike

and non-spike based systems for building embedded solutions having power/energy

constraints.
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CHAPTER 1

INTRODUCTION

The human brain, in addition to controlling all bodily activities, also integrates and

processes information from the sense organs to perform complex cognitive tasks, all

within a power budget of approximately 20 Watts. The information is processed

and encoded through discrete and sparse events in time called action potentials or

spikes. The energy efficiency of the brain is attributed to the sparsity of the spikes

and event-driven communication between the neurons, with the information possibly

encoded in time, frequency, and phase of the spikes. Several worldwide efforts like

BRAIN Initiative [1], Human Brain Project [2], China Brain Project [3], etc., are

targeted to understand the unique architecture of the human brain and to unveil the

underlying cognitive mechanisms.

The human brain with 1011 neurons and 1015 synapses is estimated to have

almost 100,000 kilometers of complex interconnections and a storage capacity of 1

terabyte [4–6]. The fastest supercomputer, today is inferior to nature’s design by

at least five orders of magnitude in terms of power and the number of operations

that can be performed per Joule [7]. The human brain has been a constant

inspiration for building energy-efficient computing architectures since the beginning

of the computational era. Several neuroscience studies show that synapses, which

are the junctions between two nerve cells, form the memory elements, and neurons

(nerve cells) form the primitive computational nodes. Learning is typically achieved

by modulating the synaptic strength between the neurons, which is termed as the

synaptic plasticity. Memory (synapses) and computational elements (neurons) are

co-located in the brain when compared to modern digital computers where they are

physically separated. Thus, the performance of conventional computing architectures
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when handling data-intensive workloads gets limited by the energy/power required for

transferring data back and forth between the storage and processing units. Machine

learning workloads are typically data-intensive, and hence, von Neumann machines

are not suitable for providing energy-efficient implementations. While efforts are

still on-going to demonstrate brain-like energy efficiency in silicon-based computing

systems, challenges associated with co-locating memory and processing units, and

implementing large scale neural networks in silicon are yet to be solved [8,9]. In this

context, emerging nanoscale devices are considered as potential candidates to emulate

the brain’s connectivity in hardware owing to its small size, and low programming

power requirements.

In this dissertation, we study some architectural and algorithmic optimizations

for implementing deep and spiking neural networks using emerging nanoscale devices.

The results obtained in this work could help in building energy-efficient architectures

for embedded applications having power/energy constraints.

1.1 Bio-inspired Neural Networks

Inspired by biological neurons, several artificial neural networks have been explored

since 1940s for efficient information processing. The evolution of neuromorphic

computing can be traced back to the work by McCulloch and Pitts (1943) [10],

that demonstrated neurons can perform any arithmetic and logical operations.

A perceptron based network was demonstrated for solving non-linear separable

problems in 1958 [11]. With further development of the backpropagation algorithm

in 1974 [12, 13], the capability of neural networks was extended for solving more

complex tasks. The past decade has seen enormous growth in the field of machine

learning algorithms due to the ample availability of digital data for analysis and

powerful computing platforms. Neural networks can be classified into perceptron

based first-generation networks, second-generation artificial or deep neural networks
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(ANNs), and third-generation spiking neural networks (SNNs) [14]. We will discuss

the different generations of neural networks briefly in the next subsections.

1.1.1 Perceptron Neural Networks

Perceptron networks are first-generation neural networks, formulated by Rosenblatt

in 1951. These networks operate on binary inputs and outputs (0,1), similar to the

conventional computing systems. The output of a perceptron network is obtained by

simple thresholding of the weighted synaptic input. The concepts of the threshold and

synaptic weights are inspired by biology. Biological neurons propagate the electric

potential to the postsynaptic neurons only if it receives a strong presynaptic input,

exhibiting a thresholding behavior. While synaptic interaction in biology can be either

spatial or temporal, perceptron networks use spatial summation, which multiplies the

input with excitatory (positive) or inhibitory (negative) synaptic weights. Single and

multilayer (stacked) perceptrons have been demonstrated to solve several functions

like flip-flops, logical functions, etc. However, perceptrons are limited by their

inability to solve non-linear functions and did not attract much research attention

until the seventies. The development of non-linear models of neural networks,

the discovery of training methodologies for multilayered neural networks, and the

availability of computational resources in the late seventies led to the development of

second-generation neural networks. These second-generation neural networks have

demonstrated their ability to solve complex cognitive tasks, and the underlying

architecture will be discussed in the subsequent subsection.

1.1.2 Artificial Neural Networks (ANNs)

Artificial or Deep Neural Networks (ANNs/DNNs) are second-generation neural

networks in which the output of any neuron is a non-linear function of the weighted

sum of the inputs from the previous layer. A simple model of an ANN with N inputs
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and one output (N × 1 network) is shown in Figure 1.1 (a). The strength of the
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Figure 1.1 Biologically inspired networks illustrating a N×1 network, with N input
neurons and 1 output neuron (a) Artificial Neural Network (ANN) (b) Spiking Neural
Network (SNN) model.

connection between any neuron in the input and output layer is referred to as the

synaptic weight. The real-valued synaptic weights in the N × 1 network shown in

Figure 1.1 (a) can be represented as w = [w1, w2, w3, . . . wN ]. Here w1 corresponds

to the synaptic weight between the first input neuron and the output neuron.

Similarly, w2 is the synaptic strength between the second input neuron and the

output neuron, and so on. On asserting real-valued input x [x = x1, x2, x3, . . . xN ], the

effective input to the output neuron becomes wTx due to the fully connected network

architecture. The output y can be determined as y = f(wTx), where f is a non-linear

activation function and can be σ(x), sinh(x), tanh(x) or ReLU(x) = xH(x), with

H(x) denoting the Heaviside step function. The fundamental computation in ANNs

is the weighted sum calculation, usually quantified in terms of multiply-accumulate

(MAC) operations.

The continuous and differential nature of the neuron’s output or activation

in ANNs has helped in applying the gradient descent rule for training multilayered

(deeper) networks. These deep network models have shown superior performance
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surpassing humans and have become the state-of-the-art solution for problems like

object recognition, gaming, text classification, speech recognition, etc.

1.1.3 Spiking Neural Networks (SNNs)

Spiking Neural Networks (SNNs), widely accepted as the third-generation neural

networks, uses biologically plausible neuron models for computations. Unlike the

real-valued inputs observed in ANNs, SNNs operate on discrete and sparse events

in time called spikes. The spikes are binary with the information possibly encoded

in the time, frequency, or phase of these events. In the case of SNNs, the input

x1, x2, x3, . . . xN corresponding to each of the N neurons are time-dependent as shown

in Figure 1.1. Unlike real-valued synaptic weights in ANNs, synapses in SNNs are

modeled as a filter (α(t)), which converts the incoming spikes to postsynaptic current

waveforms. A real-valued synaptic strength (w) then weights this current. Here w1 is

the synaptic weight between the first input neuron and the output neuron, and so on.

The final postsynaptic current, Isyn(t) can be expressed as Isyn(t) = c(t)× w, where

c(t) is the filter output corresponding to the input spikes. c(t) can be obtained as,

c(t) =
∑
i

δ(t− ti) ∗ α(t) (1.1)

where ti is the time corresponding to the ith incoming spike and * is the convolution

operator. Typically, α(t) can be a double-decaying exponential function or a low pass

filter response [15]. The effective postsynaptic current from all the input neurons

is then used by the output neuron to generate the spike. The SNN neuron model

(indicated as f in Figure 1.1) can be the biologically plausible model developed by

Hodgkin and Huxley [16], the computationally simple leaky integrate-and-fire (LIF)

model [17], Izhikevich neuron model [18], adaptive exponential integrate-and-fire

neuron model (aEIF) [19], etc. Neuronal dynamics in these SNN models are captured

by n-order (n=1, 2, or 4) coupled differential equations with the additional constraint
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of generating an output spike (y(t)) whenever the neuron’s membrane potential

exceeds the threshold value. For example, the differential equations defining the

membrane potential V (t) of the LIF neuron model can be expressed as,

C
dV (t)

dt
= −gL(V (t)− EL) + Isyn(t) and V (t)← EL, if V (t) ≥ VT (1.2)

where C is the membrane capacitance, gL is the leak conductance, EL is the resting

potential of the neuron, Isyn(t) is the effective synaptic input current, and VT is the

threshold voltage.

The event-driven nature of the neurons is expected to provide energy-efficient

processing for SNNs. However, the computational capability of SNNs is not

well established when compared with DNNs due to the lack of powerful learning

algorithms. The conventional gradient-descent backpropagation algorithms cannot be

applied for SNNs as the cost-functions are discontinuous and hence, non-differentiable.

Another impeding factor for the development of SNNs is the training times involved

when they are implemented in conventional von Neumann and graphics processing

unit (GPU) architectures due to its temporal computing nature. We will review

the underlying architecture of traditional von Neumann machines and GPUs in the

following section.

1.2 Conventional Computing Architectures

Conventional computing systems are based on the von Neumann architecture, where

the memory and processing units are physically separated, as shown in Figure 1.2.

The processing unit typically constitutes of an arithmetic and logic unit (ALU),

registers for storing the operands needed for ALU computations, cache (static random

access memory (SRAM)), and a control unit that orchestrates and co-ordinates

the sequential execution of a program. Central Processing Unit (CPU) performs

at its best when the data is readily available in the system cache. However,
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(a) (b)

Figure 1.2 (a) Physically separated execution and memory units in a conventional
computing machine. Data is fetched from memory for processing and the result is
again stored back into the memory after execution. (b) An alternate architecture
where the computation is performed within the memory.
Source: [20].

for data-intensive applications, the processing unit has to depend on the off-chip

(external) memory as the on-chip cache is expensive and hence, limited in capacity.

Thus data is continuously transferred from the external dynamic random access

memory (DRAM) for execution in the CPU, and then the result is stored back into

the memory. For machine learning applications that are typically data-intensive,

the performance of these architectures gets limited by the memory access power,

latency, and bandwidth due to the continuous data transfer to and from memory.

This limitation imposed by memory is referred to as the “von Neumann bottleneck”.

CPU performance has been continuously improved over the years through aggressive

technology scaling, pipelining, parallelism, memory hierarchies, etc. However,

external off-chip memory does not scale as the CPU due to the difficulty in realizing

reliable DRAM cells at lower nodes with acceptable access energy, latency, and

cost [21]. While efforts are still on-going to improve the DRAM design, it must be

noted that every DRAM access requires approximately 200× energy when compared

to on-chip cache access [22]. There has been a growing interest in considering emerging

memory technologies for future memory designs due to their low programming energy

requirements. These emerging nanoscale devices like Phase Change Memory (PCM),

Spin Transfer Torque Random Access Memory (STT-RAM), etc., are scalable, have
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acceptable latency and bandwidth compared to DRAM with little to no idle power

consumption [23].

It is evident that energy-efficient computations are possible if the calculation is

done either close or within the memory, and one such architecture is shown in Figure

1.2 (b) [20]. In addition to the conventional memory for storage, computational

memory is proposed in Figure 1.2, which helps in co-locating memory and processing

units similar to the human brain. Emerging memory devices have been extensively

studied for energy-efficient in-memory computations of bio-inspired neural networks

in several previous works [20, 24], and we use this idea for implementing DNNs later

in the dissertation.

Considering the large number of parallel computations and high memory

bandwidth required for machine learning workloads, graphics processing units (GPUs)

are highly favored for implementing them. We will give a brief overview on the

application-specific GPUs in the next subsection.

1.2.1 Graphics Processing Units (GPUs)

Graphics processing units (GPUs) have the potential to handle applications requiring

enormous computational needs, parallelism, and higher throughput [25]. Historically

GPUs were used for realistic video graphic displays as they can process thousands of

pixels independently at the same time. GPUs act as slave devices to the CPU, and

programs can be offloaded to GPUs for execution from the host CPU. GPUs offer a

highly parallel architecture hosting multiple programming clusters, each containing

several streaming multiprocessors (SM). SM constitutes thousands of registers, shared

memory, warp schedulers for maximizing the resource utilization, and execution cores

that support integer and floating-point operations. GPUs are optimized to do a large

number of floating-point operations per Watt with ample resources providing higher

memory bandwidth. Figure 1.3 gives a glimpse of the computational capability of
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GPUs in terms of the number of floating-point operations per second per unit Watt

(FLOPS per Watt) over the years, and their corresponding die sizes [26]. The best

GPU performance indicated in Figure 1.3 is still behind the human brain by 7 orders

of magnitude in terms of FLOPS per unit Watt [27]. Though GPUs can provide

Figure 1.3 Trend of GPU compute power expressed in terms of floating point
operations performed per Watt over the years. Die size of the GPU is also indicated.
Source: [26].

high throughput for compute-intensive applications, they are far away from offering

energy-efficient architectures like the human brain.

GPUs are favored for implementing machine learning workloads due to its

ability in handling massively parallel computations and the large memory bandwidth

offered. For example, Tesla GPU architecture from NVIDIA has dedicated Tensor

Cores that are optimized to accelerate large matrix computations and supports

mixed-precision mode for matrix multiply-accumulate operations [28]. One of the

latest Tesla GPUs, Tesla V100 GPU, can provide a peak high bandwidth memory

(HBM) of 900 GB/sec with the Tensor Cores delivering a maximum performance

of 125 TFLOPS (Tera Floating-Point Operations Per Second) in mixed-precision

mode [28]. However, the high throughput of the GPU based executions has the
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downside of implementation costs, especially power and area. For instance, the Tesla

V100 GPU consumes a maximum power of 300 W in a die area of 815 mm2 [28].

Thus GPUs are extremely power-hungry and are not feasible for machine learning

applications having energy/area constraints.

Having discussed the conventional CPU and GPU architectures, we will briefly

give an overview of dedicated hardware architectures that are optimized to handle

the workloads of bio-inspired networks efficiently in the next section.

1.3 Overview of Dedicated Hardware for Bio-inspired Networks

1.3.1 Hardware Accelerators for DNNs

Deep Neural Networks, has been successful in surpassing humans in a wide range of

tasks such as big data analytics, image recognition, natural language processing, and

many others [29]. However, huge computational and memory resources are required

for optimizing DNNs to achieve high accuracies. With ever-growing data and further

processing needs, handling these workloads in conventional CPUs has performance

impacts on throughput and power. Hence, hardware accelerators based on GPUs,

ASICs (Application Specific Integrated Circuits), and FPGAs (Field Programmable

Gate Arrays) have been considered for implementing DNNs.

Deep Learning typically has two phases - training and inference. Training is an

iterative procedure involving large amounts of training data and tuning of millions of

trainable parameters, which requires enormous memory and computational resources.

Hence, training workloads are typically managed in the cloud using robust GPU

architectures, Tensor Processing Units (TPU) [30], etc. Similar to GPUs, TPUs

act as slave devices and are interfaced to the host CPU using the PCI (Peripheral

Component Interconnect). TPUs are ASIC-based solutions originally introduced in

2015 by Google for accelerating neural network inference in data centers. The TPU

architectures can provide a speedup of up to 30× and a power efficiency of up to 80×
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when compared to GPUs. The heart of the TPU is a systolic array of 8-bit matrix

multiply and add units [30]. TPU architectures have improved over the years with

the latest Cloud TPUv3 capable of providing over 100 peta FLOPS computational

capability, and around 32 TB HBM for accelerating neural network training [31].

The inference is the repeated execution of the trained network on unseen data.

DNNs are nowadays ubiquitously adopted in end devices, from smartphones to IoT

(Internet of Things) sensors. These devices generate vast amounts of data at the

edge and expect real-time analysis or inference at low power and latency. Therefore,

dedicated hardware accelerators for DNNs are necessary for edge devices that can

meet the low power and low latency demands. Google’s Edge TPU, Intel’s Neural

Compute Stick 2 (NCS2), NVIDIA’s Jetson Nano, and NVIDIA’s AGX Xavier are

some of the popular ASIC-based hardware accelerators for inference which uses SRAM

synapses and conventional digital CMOS logic for accelerating the computations [32–

35].

Emerging nanoscale devices have also been considered for accelerating the

DNN training as well as inference in a crossbar architectural framework. Several

emerging nanoscale devices such as Phase Change Memory (PCM) [36–38], Resistive

Random Access Memory (RRAM) [24,39–42], Spin Transfer Torque Random Access

Memory (STT-RAM) [43–47], etc., have been explored for implementing synapses

in bio-inspired neural networks. Crossbar implementations with these memristive

devices at the cross point inherently support weighted sum calculations and are

shown to achieve O(1) time complexity for DNNs against the O(N2) time complexity

required by the generic computing machines, where N is the number of neurons in

each layer [48, 49]. Implementations using PCM devices have been shown to achieve

an acceleration factor of up to 25× and 3000× improvement in power compared to

GPUs [50,51]. Also, there are several DNN hardware accelerator designs incorporating

memristive synapses such as PUMA, PRIME, ISSAC, etc., proposed by the academic
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research community demonstrating improved latency and energy efficiency compared

to GPUs [52–57]. These architectures usually have well defined specific instruction

sets, dedicated compiler, and supports most of the machine learning workloads.

1.3.2 Neuromorphic Hardware for SNNs

As discussed in Section 1.2, the computational efficiency of the human brain in a

power budget of 20 W inspires the need for brain-like architectures with efficient

information processing capabilities. The term Neuromorphic computing, coined by

Carver Mead in 1990 [58], mainly focuses on building brain-inspired architectures that

offer high parallelism with low power/low latency execution, as well as co-locating

memory and computational elements in small footprints [59]. With machine learning

ubiquitously adopted for several day-to-day tasks, there is significant focus in building

algorithms for SNNs that closely mimic the biological neurons due to its potential to

demonstrate brain-like energy efficiency in hardware. The future implementations of

such algorithms are dependent on these neuromorphic platforms for faster execution

and further optimizations. Also, the temporal nature of the SNNs adversely slows-

down the algorithmic optimizations in conventional computing architectures. Hence,

it is necessary to have neuromorphic platforms that can accelerate large-scale SNN

implementations at low power.

In an effort to build large-scale and energy-efficient neuromorphic computing

systems similar to the human brain, several computing platforms have implemented

SNNs. Intel’s Loihi [60], fabricated in 14 nm process node, supports on-chip learning

with 128 neuromorphic cores, and it integrates 130,000 neurons with 130 million

synapses. TrueNorth is an inference engine from IBM built in 28 nm CMOS process

node, which supports 1 million neurons and 256 million configurable synapses

[61]. SpiNNaker [62] from the University of Manchester, BrainScaleS [63] from

Heidelberg University, Neurogrid from Stanford [64], DYNAP from INI Zurich
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[65], and Braindrop [66], are few other attempts to accelerate SNNs in hardware.

The synaptic implementation of these architectures uses conventional SRAM-based

designs. However, SRAMs are not the ideal choice for large scale implementation

of neural networks in hardware. The six transistor (6T) SRAM designs typically

take a minimum area of 120F 2, where F is the smallest feature size possible in a

technology node [67]. In this context, emerging nanoscale devices are considered

as potential candidates for emulating the brain’s connectivity in hardware owing to

its small size (4F 2), ability to be packed in dense crossbar arrays, and low power

programming requirements [68,69]. For instance, an all-spin neuromorphic processor

for SNNs, comprising of spintronic synapses and neurons with in-memory computing

architecture, has shown 1000× energy efficiency and 200× speed up compared to

CMOS [70].

Considering the potential of two-terminal nanoscale devices in offering energy-

efficient solutions, this dissertation focuses on architectural and algorithmic optimizati-

ons for implementing the bio-inspired neural networks using these devices. In this

dissertation, we initially focus on non-volatile memory (NVM) based implementations

for accelerating DNN training in a crossbar architectural framework with memristive

devices at the cross point [71,72]. Having discussed the DNN training, we then present

a novel spiking neural network architecture for learning based on a probabilistic

neuron model. We propose a hardware accelerator for performing the inference of

probabilistic SNNs, which integrates binary spintronic synapses and digital CMOS

logic for accelerating the computations. The performance evaluation of the proposed

hardware for spike-based systems is estimated using standard simulation tools for

digital CMOS logic as well as memory.
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1.4 Organization of the Dissertation

This dissertation aims to cover the hardware implementation strategies for spike

and non-spike based neural network systems using emerging nanoscale devices. The

dissertation is organized as follows.

In Chapter 2, we review the spiking neural networks discussing the basic neuron

and synapse models. We also discusses the motivation in building neuromorphic

platforms and review the existing hardware platforms for SNNs.

Following the discussion on SNNs, the fundamentals of DNNs and the compu-

tational complexity involved in training DNNs are reviewed in Chapter 3. Chapter

3 also discusses stochastic DNNs and how it can be used to accelerate training in

a crossbar implementation using memristive devices at the cross point. Chapter

4 details the implementation of a 4-layer stochastic DNN using PCMO devices in

a crossbar architecture. The dependence of network performance on programming

variability, the on-off ratio of the devices, and network resilience to noisy inputs is

also explored in Chapter 4.

The probabilistic framework for SNNs based on the Generalized Linear Neuron

Model (GLM) is discussed in Chapter 5. Probabilistic SNNs are then shown to achieve

comparable performance with an equivalent ANN having the same architecture.

The datasets used for benchmarking the SNN algorithm and the hardware-software

co-optimization used for hardware implementation is discussed here. Finally,

we discuss a hardware accelerator called SpinAPS (Spintronic Accelerator for

Probablistic Spiking Neural Networks) which uses binary spintronic synapses and

digital CMOS for computations. We show that the inference accelerator, SpinAPS

can achieve 4× improvement in terms of GSOPS/W/mm2 compared to conventional

SRAM-based synapses. Chapter 6 concludes the dissertation by presenting the future

outlook of this work.
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CHAPTER 2

INTRODUCTION TO SPIKING NEURAL NETWORKS

Spiking Neural Networks (SNNs), are third-generation neural networks, that closely

mimic the information processing observed in the human brain [73]. SNN models can

be efficiently used to solve complex cognitive problems and have higher computational

capabilities than the conventional artificial neural networks [73, 74]. The artificial

SNN models interact through sparse, asynchronous binary signals, and are considered

as potential candidates for energy-efficient implementations of neural networks in

hardware. This chapter discusses some of the artificial spiking neuron models,

synapses, and gives an overview on the dedicated hardware architectures used for

realizing SNNs.

This chapter is organized as follows. Section 2.1 describes the behavior and

structure of biological neurons. Some of the commonly used neuron and synapse

models are detailed in Sections 2.2 and 2.3, respectively. The basic idea of synaptic

plasticity is described in Section 2.4. Section 2.5 covers the advantages and challenges

of SNNs. We review some of the state-of-the-art neuromorphic hardware platforms

in Section 2.6. Finally, the chapter is summarized in Section 2.7.

2.1 Biological Neuron

Neurons are the primary computational elements in the human brain and are

responsible for generating action potential or discrete-time events called spikes. The

fundamental structure of the neuron, as shown in Figure 2.1 consists of a cell body,

dendrites, and an axon. Dendrites are nerve endings which carry input from other

connected neurons to the cell body. At equilibrium, the neuron maintains a resting

membrane potential usually between -55 mV, and -75 mV. This resting potential is

maintained by the concentration of K+ (Potassium) and Na+ (Sodium) ions in the
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Figure 2.1 Basic structure of a neuron showing the cell body, axon and dendrites.
Source: [75].

intracellular and extracellular fluids. At the resting state, the neuron’s membrane is

more permeable to K+ than Na+ ions, and the membrane is said to be polarized.

On receiving sufficient external stimuli/inputs through dendrites, the membrane

potential rapidly rises (depolarization) due to the influx of Na+ ions [76]. The peak of

depolarization is then followed by the inactivation of Na+ channels and activation of

K+ channels, resulting in a significant efflux of K+ ions. The outward movement

of positive charge reduces the membrane potential, and this process is referred

to as repolarization. Repolarization takes the membrane potential to levels more

negative than the resting potential (hyperpolarization) for a short amount of time,

and the cell finally returns to the resting state. This evolution of neuron’s membrane

potential to a sufficiently strong input stimulus is called an action potential. An

action potential involves multiple phases, such as depolarization, repolarization, and

hyperpolarization, as discussed above. It must be noted that the transitory changes in

the activation and deactivation of Na+ and K+ channels during the depolarization and

repolarization phases of the action potential make it harder for the neuron to produce

subsequent action potentials irrespective of the input stimulus for a brief interval of
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time. This time is called the refractory period and limits the number of action

potentials that can be produced by the neuron per unit time. The action potentials

or impulses are carried along the axon to the synaptic terminals. The information

encoded in the action potential of the presynaptic terminals can be transmitted

to the postsynaptic neuron through a chemical or an electrical process. Chemical

synapses are the most abundant synaptic transmission observed in the human nervous

system. In chemical synaptic transmission, the presynaptic neuron releases chemical

agents called neurotransmitters that produce current flow in postsynaptic neurons

by activating specific receptor molecules [77]. There have been several attempts to

model the neuronal and synaptic dynamics to understand the underlying complex

mechanisms in the brain. A few of the most commonly used models for artificial

spiking neurons and synapses are discussed in the subsequent sections.

2.2 Spiking Neuron Models

A complete and bio-physically accurate neuron model was developed by Hodgkin and

Huxley in 1952 which described the neuronal dynamics using fourth-order coupled

differential equations [16]. However, this model is computationally complex and

not necessary for most of the engineering applications [14]. The coupled differential

equations are complicated to solve analytically, and hence, they are solved through

an iterative procedure of the numerical methods like Runga-Kutta [78]. Izhikevich,

in 1973 reduced the original Hodgkin-Huxley equations to a two-dimensional system

[18, 79]. Izhikevich model combines the biological plausibility of Hodgkin-Huxley

neurons and computational efficiency of integrate-and-fire neurons. The second-order

differential equations of Izhikevich neuron model shown in Equations (2.1) and (2.2)

can simulate a rich set of firing patterns exhibited by real biological neurons, as
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Figure 2.2 Tunable parameters a, b, c, d of the differential equations v(t) and u(t) of
Izhikevich neuron model (left); Illustration of neuronal behaviors observed in cortical
regions of brain generated using the Izhikevich model (right).
Source: [18].

illustrated by Figure 2.2.

v′ = 0.04v2 + 5v + 140− u+ I (2.1)

u′ = a(bv − u) (2.2)

Here v is the membrane potential, and u is the recovery variable that accounts for

activation of K+ channels and inactivation of Na+ ionic channels. The spike condition

of the Izhikevich model is

if v ≥ 30mV then v ← c, u← u+ d. (2.3)

The simplest and computationally efficient model is the basic leaky integrate-

and-fire (LIF) model. Though the model does not capture the biological mechanisms

involved in the action potential generation, the LIF model is favored due to its low

implementation costs [78]. In the LIF model, the neuron behavior is captured in a

passive electrical circuit with cell membrane capacitance C and finite leak resistance R

in parallel. When an external input current is applied, the membrane capacitance will

be charged until it reaches the threshold value and then produces an action potential

(spike) followed by a reset. The membrane potential V (t) can be mathematically
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expressed as,

C
dV (t)

dt
= −gL (V (t)− EL) + Isyn(t) (2.4)

where C is the membrane capacitance, gL is the leak conductance, EL is the resting

potential of the neuron, and Isyn(t) is the effective synaptic current. As explained in

Section 2.1, biological neurons exhibit a refractory time period in which no new spikes

are issued after the generation of the first spike. This behavior can be captured in the

LIF neuron model by holding the membrane potential V (t) to the resting potential

EL for a time equivalent to the refractory period tf .

Adaptive exponential integrate-and-fire (aEIF) model, introduced by Brett and

Gerstner is a modified form of the basic LIF model [19]. This model uses an additional

exponential term in the membrane potential calculation to account for the early

activation of voltage-gated channels. aEIF based neuron models have also been able

to demonstrate several real neuronal spiking behaviors in the brain, e.g., adapting,

bursting, delayed spike initiation, initial bursting, fast spiking, and regular spiking.

The aEIF model can be mathematically expressed as,

C
dV (t)

dt
= −gL(V (t)− EL) + gL∆T exp

(
V (t)− VT

∆T

)
− w + Isyn(t) (2.5)

where gL is the leak conductance, EL is the resting potential, ∆T is the slope factor

which determines the sharpness of the threshold, VT is the threshold, w is the

adaptation current, and V (t) is the membrane potential. The membrane potential is

reset to the resting potential Vr when the potential V (t) exceeds the threshold value

VT . The evolution of the adaptation current is modeled as,

τw
dw

dt
= a(V (t)− EL)− w. (2.6)
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Here a corresponds to the level of subthreshold adaptation, and τw is the adaptation

time constant. The adaptation variable w is updated as w ← w + b, after a spike is

issued.

2.2.1 Generalized Linear Models

Generalized Linear Models (GLMs) represent a new class of neuron models that

are entirely tractable for computational and statistical analyses [80]. GLMs are

closely related to integrate-and-fire models, in addition to the linear dynamics,

they incorporate spike-dependent feedback which helps in capturing the non-linear

dynamics following a spike generation [81]. GLM neuron models have been successful

in mimicking the physiological readings from different regions in the human brain

[80, 82, 83]. The GLM model shown in Figure 2.3 is characterized by a set of linear

filters, a non-linear activation function, and a conditionally Poisson model is used for

generating spikes.

Figure 2.3 Generalized Linear Model (GLM): A generalized linear model in which
a neuron’s spiking rate, y(t), is nonlinearly determined by a linear function of input
stimulus and spike history. A wide variety of neuronal behaviors can be generated by
adjusting the shape of the stimulus and feedback filters.
Source: [80].

In GLMs, a linear function of the input (stimulus) and spike history is non-

linearly transformed to determine the spike response of the neuron, as shown in Figure

2.3. GLM is characterized by a stimulus filter
−→
k , to integrate the input stimulus,

20



and has a post spike filter
−→
h , which captures the dependence of spike history in the

probability of spikes and µ, determines the baseline spike rate. The summed output

of all these filters is passed to a non-linear activation function f to determine the

conditional intensity λ(t). The conditional intensity λ(t) governs the probability of a

spike in the current time bin and can be mathematically expressed as,

λ(t) = f(
−→
k .−→x (t) +

−→
h .−→y hist(t) + µ) (2.7)

where −→x (t) is the spatio-temporal input, −→y hist(t) is the vector corresponding to

the spike history at time t, and f is the non-linear exponential activation function

which ensures a positive spike rate. The output spikes are then generated based

on a conditionally Poisson process. The stochastic nature of GLMs enables it to

closely mimic several neuronal behaviors, including single as well as multi spiking

characteristics from different regions of the brain. Based on this probabilistic model,

an algorithm for training a spiking neural network is derived for the problem of

handwritten-digit recognition in [84]. A hardware accelerator for inference is proposed

for this GLM-based spiking neural network and the corresponding design strategies

are discussed in Chapter 5.

2.3 Synapse Models

Synapses are believed to be the key elements in determining the inter-connectivity

of the neurons and hence, responsible for the communication pathways in the brain.

Synapses are plastic in nature, which means the strength of the connections between

the neurons changes wih respect to the activity patterns of the post and presynaptic

neurons. Synapse connects the axon terminal of the presynaptic and dendrites of the

postsynaptic neurons. These synapses control the flow of signals at the junction by

releasing neurotransmitters. Neurotransmitters bind to the receptors of post synaptic

neuron ensuring a current flow to the downstream neurons [14]. This behavior of
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biological neurons is essentially modeled as a synaptic weight which is a real number

in first and second generation neural networks. In the case of spiking networks,

synapse is usually modeled as a filter that converts input spike to a current weighted

by the real valued synaptic strength. The filter response α(t) is modeled using single

or double-decaying exponential functions, or a low pass filter. Some typical choices

for the synaptic filter; α(t) = (e

(
−t
τ1

)
– e

(
−t
τ2

)
), α(t) = ( t

τ
)e
−t
τ and α(t) = τδ(t). The

synaptic current Isyn(t) flowing to the post-synaptic neuron can be expressed as,

c(t) =
∑
i

δ(t− ti) ∗ α(t) (2.8)

Isyn(t) = c(t)× w (2.9)

where c(t) is the filter output obtained by the convolution operation of the filter α(t)

and the input spikes, and w is the synaptic strength. Here ti is the time corresponding

to the ith input spike. The synaptic strength w undergoes modulation based on the

spike patterns in the pre- and postsynaptic neurons and the biologically inspired

learning rule for synapses is discussed in the next section.

2.4 Synaptic Plasticity

Electrical impulses or action potentials are transmitted through synapses, which is

the junction/gap between two nerve cells. Several physiological studies show that the

strength of the synapses is modulated by the activity patterns in the upstream and

downstream neurons. Synaptic changes could last for a few seconds called short term

plasticity, or it could last longer, resulting in long term plasticity [85]. A well-defined

postulate for synaptic modulation was put forward by Hebb, according to which

the synapses can be either strengthened or weakened depending on the correlated

spiking events of pre- and postsynaptic neurons [86]. However, Hebb’s rule doesn’t

take care of bounding the weights under the persistent firing of pre- and postsynaptic

neurons. The Spike-timing-dependent-plasticity (STDP) rule addresses this issue by
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Figure 2.4 Causal firing of pre- and postsynaptic neurons increases the synaptic
conductivity and an anti-causal firing would weaken the synaptic strength between
the neurons.
Source: [87, 88].

the precise timing of the pre- and postsynaptic spikes. An illustration of the basic

STDP protocol plotted as a function of synaptic weight change and the relative timing

of pre- and postsynaptic action potentials are shown in Figure 2.4. Here, wij is the

synaptic strength between the presynaptic neuron j, and the postsynaptic neuron i, tfj

corresponds to the presynaptic spike arrival times, and tfi represents the postsynaptic

spike firing times. The total synaptic change ∆wij can then be expressed as,

∆wij =
N∑
f=1

N∑
n=1

W (tni − t
f
j ) (2.10)

where W is the STDP function or the learning window [89, 90]. One of the typical

choices of W is

W (s) = A+ exp(−s/τ+) for s ≥ 0 (2.11)

W (s) = −A− exp(s/τ−) for s < 0 (2.12)

where s = tposti − tprej . Here, parameters (A+, A−) depends on the current synaptic

weight wij, and the rate constants (τ+, τ−) are typically on the order of 10 ms. The
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causal firing of the pre- and postsynaptic neurons increases the synaptic conductivity,

and the anti causal firing weakens the synaptic strength. The biologically inspired

STDP rule has been widely used for unsupervised training of SNNs [91].

In addition to the biologically inspired local learning rules like STDP, there

are several supervised training rules which illustrated learning in SNNs [15, 92]. The

discontinuous and hence, the non-differentiable nature of spikes makes it non-trivial

to use the conventional backpropagation based training algorithms for multi-layered

SNNs. Besides the STDP based approaches, methods like variations of error

backpropagation [93], and converting the conventionally trained DNNs to SNNs are

also used to realize deep SNN models [94]. Other approaches like training the DNNs

by incorporating the constraints of spiking neurons [95], and using binary activations

or spikes are also explored in several of the previous works [96].

Having discussed the commonly used spiking neural network models, synapses,

and synaptic plasticity, we will now outline the advantages and challenges associated

with cognitive demonstrations using SNNs.

2.5 Advantages and Challenges with SNNs

One of the biggest motivations behind SNN research is its energy efficiency in

performing complex cognitive tasks in the human brain at a power consumption

of just 20 W. It is believed that as the artificial neuron models stay closer to biology,

computational capability and energy efficiency will improve significantly compared

to the current computing architectures. Driven by the fact that the information

from the outside world is sparse, biologically inspired SNNs could pave the way for

energy-efficient computing in the future. The temporal, sparse and event-driven

computing nature of SNNs makes it an ideal candidate for efficient information

processing [97–100]. SNNs compute on an event-driven manner, that is, computing

occurs if sudden bursts of activity (more spikes/information) are recorded at the input,
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and not much computations are performed with little or fewer input information.

SNNs also have an additional advantage of local processing, which means the

computation in any network layer can be initiated when it receives sufficient activity

from the previous layer. In contrast, computations in DNNs cannot be completed until

all the input sequences are presented. SNNs compute based on the spike activity, and

schemes like first-to-spike decoding rule can be used to make output decisions with

low latencies, and lower memory accesses [84].

Even though SNNs have the potential of building computationally powerful

and power-efficient algorithms, their performance on standard benchmark datasets

like MNIST (Modified National Institute of Standards and Technology), ImageNet

[101], and CIFAR (Canadian Institute For Advanced Research) [102] are inferior to

conventional DNNs [103]. The performance deficit of SNNs against standard DNNs

is attributed to the lack of powerful learning algorithms similar to gradient-based

backpropagation in DNNs. The discontinuous nature of spikes makes it non-trivial

to derive algorithms like backpropagation in SNNs. In addition, the inherent

temporal nature of SNNs slows-down the optimization of algorithms in von Neumann

architectures. Hence, neuromorphic hardware accelerator platforms are necessary to

exploit the potential of SNNs completely. Another critical factor in SNN research is

the lack of time-series benchmark datasets. Currently, SNNs are benchmarked against

the standard DNN image classification and object detection datasets, which uses static

image frames as inputs. The input images from these datasets have to be converted

to spike trains before feeding to SNNs, and usually, rate based conversion schemes are

used. In rate encoding scheme, the spikes are generated using a Poisson process with

the firing rate proportional to the pixel intensity. This method is inefficient and would

degrade the performance of SNNs. Therefore, time-series benchmark datasets and

efficient signal encoding schemes are necessary for SNNs to validate its performance

in solving complex cognitive problems.
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There have been significant efforts from the neuromorphic research community

to demonstrate the power efficiency and computational ability of SNNs in hardware

[104, 105]. We will review some of the hardware platforms and their performance

attributes in the next section.

2.6 Neuromorphic Hardware for SNNs

To emulate the brain’s power efficiency and to demonstrate the potential of

SNNs, several hardware architectures based on state-of-the-art Si CMOS have been

illustrated and reviewed in several previous works [104–107]. Here we will give a brief

overview of some of the popular hardware architectures used for realizing SNNs.

SpiNNaker from the University of Manchester, a million core microprocessor

architecture, fabricated in 130 nm can support up to 1000 neurons per core.

The system is designed to simulate large SNNs with brain-like complexity [62].

SpiNNaker2, fabricated in 22 nm a successor of the original chip, is extended to host

10 million microprocessors supporting both spiking and deep neural networks in the

same platform [108].

BrainScaleS is a mixed-analog-digital hardware using the wafer-scale integration

technology [63]. It uses analog circuits for implementing the neurons and synapses,

while communication is done digitally. The basic building unit of the BrainScaleS

system is an analog neural network core (ANNC) that combines all the analog

circuitry for neurons and synapses. These ANNC cores called High Input Count

Analog Neural Network (HiCANN) forms the building block of the wafer-scale

system. While BrainScaleS is fabricated in a 180 nm process, the second prototype

BrainScaleS-2 is expected to use a 65 nm process with support for dendritic

computations and hybrid plasticity [109].

TrueNorth from IBM is a million spiking neuron integrated CMOS inference

chip fabricated in 28 nm process technology [61]. TrueNorth has a tiled array of
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interconnected 4096 neurosynaptic cores, which can map 1 million spiking neurons

and 256 million configurable synapses. Each input neuron in the neurosynaptic core

inherently supports a fan-out of 256, and they can also be configured to communicate

to neurons in other cores. TrueNorth chip can deliver 46 billion synaptic operations

per second (SOPS) in real-time with one synaptic operation corresponding to a

multiply-accumulate operation upon an input spike arrival. TrueNorth implements

an extension of integrate-and-fire neurons, and they are digitally time-multiplexed

to amortize the area and power. With just 26 pJ per synaptic event, TrueNorth

has been successfully demonstrated its potential in several object detection, gesture

recognition, and image classification problems [110].

Loihi is a neuromorphic chip from Intel, fabricated in 14 nm FinFET process

with a die size of 60 mm2 [60]. The Loihi chip has 128 neurosynaptic cores, with each

core mapping up to 1024 spiking neurons and 2 Mb of local SRAM. Loihi can perform

30 billion synaptic operations per second (SOPS), with an energy consumption of

15 pJ per synaptic operation [111]. The chip supports several learning rules like

pairwise STDP, triplet STDP, and reinforcement learning.

The Tianjic chip is a hybrid architecture, which integrates the support for

spiking and non-spiking (artificial neural networks) neural networks in the same

platform [112]. Each core of the Tianjic chip is termed as a unified functional

core (FCore), which combines the functional elements like axon, synapse, dendrite,

and soma. The chip uses a many-core architecture arranged in a two-dimensional

mesh with flexible fan-in and fan-out capability. The chip comprises 156 FCores,

with approximately 40, 000 neurons and 10 million synapses. Fabricated in 28 nm

CMOS process, the chip has a distributed SRAM memory and a total die area of

14.44 mm2. The chip is reported to provide a peak performance of 1.28 trillion

operations per second (TOPS) per Watt for ANNs when running at a clock frequency

of 300 MHz. For SNNs, the chip is observed to achieve a peak performance of 650
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billion synaptic operations per second (SOPS) per Watt. The chip demonstrated

several state-of-the-art DNN and SNN models by programming it with pre-trained

models exhibiting a parallel and seamless on-chip communication.

Dynamic neuromorphic asynchronous processors (DYNAP) are a family of

neuromorphic processor chips from INI, Zurich [65]. The multicore architecture

of these chips uses subthreshold analog circuits for neuronal computations and

asynchronous digital logic for communication. DYNAP-SE is one among the

chips in the DYNAP family, fabricated in 180 nm CMOS process having four

neuromorphic cores. The neuronal dynamics in DYNAP-SE uses adaptive exponential

integrate-and-fire (aEIF) and combines 256 such neurons in each core. Subthreshold

analog circuits are susceptible to variability; however, this variability is exploited to

implement neural sampling and reservoir computing in DYNAP-SE.

Neurogrid, from Stanford University, is a mixed-signal chip intended to simulate

large scale neural networks in real-time [64]. Neurogrid has been demonstrated to

simulate a system of 1 million neurons, and a billion synapses in real-time with a

power consumption of 3 Watts. The neuronal and synaptic dynamics are realized

using the subthreshold regime of the MOS devices in the core. Neurogrid integrates

16 NeuroCores with each core hosting 256×256 neurons, and the cores are connected

using a tree network. Braindrop [66] is the second neuromorphic chip from Stanford

University, which uses a mixed-analog-digital design like Neurogrid. However,

braindrop has an added feature of high-level programming abstraction, which does

not require hardware expertise up to the neurosynaptic level. Braindrop is estimated

to consume just 0.38 pJ per synaptic operation for typical network configurations.

ODIN is a digital ASIC fabricated in 28 nm CMOS process, and supports

online learning with a minimum energy per synaptic operation of 12.7 pJ [113]. The

neuron implementation in ODIN supports both LIF and Izhikevich behaviors. The

online learning implementation is based on spike-driven synaptic plasticity (SDSP).
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Darwin Neural Processing Unit (NPU) from Zhejiang University and Hangzhou

Dianzi University in China is a system-on-chip (SoC) solution mainly targeted for

embedded applications using SNNs [114]. Darwin NPU is a hardware co-processor

and uses a digital logic implementation for leaky integrate-and-fire (LIF) neurons.

Fabricated in 180 nm CMOS process, NPU supports 8 physical neurons on the

chip, and digital time multiplexing is used to implement a maximum of 2048

neurons. It consumes 0.84 mW/MHz at 1.8 V power supply for typical applications

like handwritten recognition, electroencephalogram (EEG) decoding, etc.

As discussed, various neuromorphic platforms are hoping to demonstrate the

energy efficiency of SNNs for complex cognitive problems in hardware. These

hardware platforms are usually benchmarked against the number of synaptic operations

performed per second (SOPS) per unit area, and on the energy required per synaptic

activity. The main target of these platforms as well as its successor chips is to achieve

maximum throughput at lower energy and area costs, definitely a sweet spot for SNN

hardware.

2.7 Summary

In this chapter, we reviewed the basic working of a biological neuron and discussed

the standard artificial spiking neuron models and synapses. We also described a

probabilistic framework for SNNs using the Generalized Linear Model (GLM) neurons

and discussed its basic functionality. We briefly presented the biologically inspired

learning rule for SNNs and outlined the advantages as well challenges faced by the

third generation SNNs in comparison with conventional DNNs. Finally, some of the

dedicated hardware platforms that support SNN implementations are reviewed.

In the next chapter, we will give a review on the deep neural network models

and discusses the basic steps involved in DNN training. This chapter also presents
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possible computing schemes of accelerating the DNN computations using nanoscale

devices in a crossbar architecture with memristive devices at the cross point.

30



CHAPTER 3

DEEP NEURAL NETWORKS: TRAINING AND ACCELERATION

3.1 Introduction

Deep Neural Networks (DNNs), also popularly referred to as Deep Learning, has

influenced the day-to-day activities of humans through its super-human performance

in big data analytics, image recognition, object detection, gaming, and many

more [115–117]. DNNs are part of the broad field of Artificial Intelligence (AI),

which hopes to provide computers an ability to perform tasks without any explicit

programming. The origin of the widely accepted second-generation Artificial or

Deep Neural Networks can be traced back to the early 1940s. The perceptron

neuron model developed by Rosenblatt in 1958 demonstrated neuron’s ability to

solve linearly separable problems [11]. With the development of the backpropagation

algorithm in 1974 for training multi-layered networks, DNNs became successful in

solving complex cognitive tasks [12]. Deeper network models have the advantage

of generating high-level features with complex abstractions than what is possible

with shallow networks. The massive success of DNNs is mainly attributed to the

availability of vast amounts of training data, high-performance computing resources,

and new algorithmic developments [117].

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs)

are the two most popular classes of DNNs. CNNs are widely used for computer

vision applications, while RNNs are used for processing time-series data as in

speech recognition, text classification, etc [118]. CNNs, inspired by the functional

architecture of visual processing observed in the neocortex of animals, is one of

the widely used networks for object classification today [119]. Deep CNNs showed

promising results in the late 1980s; however, it maintained a dormant state till
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the 2000s due to the lack of enough labeled data, better algorithms, and powerful

computational resources [120, 121]. Deep CNNs saw significant advances in 2012,

whose work won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

with remarkable network performance [122]. Since then, deep CNNs have become

the underlying architecture for all the visual recognition problems. Several deep

CNN models have shown exceptional performance over the years on the ImageNet

benchmark (shown in Figure 3.1). The ImageNet dataset is a standard benchmark for

visual object recognition problems and has around 1 million images in 1000 object

categories [101].

The performance of some of the popular deep CNN models is summarized in

Figure 3.1 in terms of the ratio of the top-5 percentage accuracy on the ImageNet

classes and the number of trainable parameters in millions. The deep CNN models

in Figure 3.1 are selected in such a way that the top-5 percentage accuracy has an

increasing trend over the years, but the number of trainable network parameters

would differ substantially. Over the years, CNNs have undergone significant

architectural and algorithmic improvements for achieving a remarkable performance

on the ImageNet dataset. With performance improvement, deep CNNs also have to

pay for excessive computations in terms of multiply-accumulate (MAC) operations

and an increase in the number of trainable parameters. Deep CNNs also presented

yet another difficult problem of vanishing gradients, which affected the convergence

and accuracy compared to relatively shallower networks. The introduction of

residual connections with ResNet-50 from Microsoft resolved the issue of vanishing

gradients and became the winner of ILSVRC in 2015 with an error rate beating the

humans [123]. Inception series of network models, initially introduced by Google in

2015, incorporated techniques like factorized convolutions to reduce the number of

parameters without impacting the network performance [124,125]. Xception combines

the advantages of residual connections and depth-wise convolutions to achieve an
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Figure 3.1 Performance of some of the popular deep CNNs expressed in terms
of ratio of the top-5% accuracy to the number of trainable parameters in millions.
EfficientNet is reported to have the best error rate of 2.9% with minimum number of
parameters on the ImageNet database at the time of writing this thesis.

error rate of 5.7% on the ImageNet database [126]. Squeeze-and-Excitation Networks

(SENet), attempts to recalibrate channel-wise features by explicitly modeling the

dependencies between the channels and achieves a top-5 error rate of 3.8% on

ImageNet [127]. Progressive Neural Architecture Search Networks (PNASNet) rely on

automatically figuring out the CNN architecture, which achieves the best performance

on the selected dataset through novel network search algorithms [128]. EfficientNet

models are the latest deep CNNs that achieved the best error rate of 2.9% on ImageNet

with fewer parameters compared to the other state-of-the-art models. The base model

EfficientNet-B0 has a similar performance to ResNet-50 on ImageNet database, and

it requires just 5× fewer parameters and 11× fewer computations than the later [115].

EfficientNet details a principled method of scaling the convnet parameters like depth,

width, and resolution for obtaining better performance [115]. The different scaled

versions of EfficientNet are available ranging from EfficientNet-B0 to EfficientNet-B7.

At present, deep CNNs are highly successful and form the primary architectural

component in computer vision applications like object tracking, pose estimation, text

detection, scene labeling, etc [129–131]. The high-performance of these networks
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comes with the downside of enormous memory and computational requirements.

Among the two phases of DNN implementation, training involves an iterative

procedure of updating millions of trainable network parameters using massive

datasets. Hence, training is typically managed in powerful cloud GPU servers, cloud

TPUs, etc., as they have ample computational resources and memory bandwidth. For

example, Figure 3.2 shows the training times of ResNet-50 model using GPUs back

in 2015 and the acceleration in training observed with GPU architectures over the

years. The latest DGX SuperPOD, an AI platform from NVIDIA, can execute the

training for ResNet-50 in just 80 secs, however, with a whopping power consumption of

1 MW [132,133]. DGX SuperPOD is a supercomputer optimized for high-performance

computing and hosts around 1500 VOLTA GPUs for deep learning acceleration [133].

Figure 3.2 NVIDIA’s AI platform accelerated the training time from 8 hours to 8 secs
for ResNet-50 in the image classification task.
Source: [132].

GPUs are evidently power-hungry, and hence, novel architectural solutions are

necessary for ubiquitous adoption of DNNs in day-to-day tasks. Memristive imple-

mentation of DNNs in a crossbar architectural framework has been estimated to offer

34



energy/power-efficient designs for DNNs as well as CNNs [24, 51, 134]. These imple-

mentations have been estimated to provide 25× speedup and 3000× improvement

in power compared to GPU based implementations [51, 135]. Considering the

energy efficiency and acceleration offered by the crossbar architectures, we focus on

implementing DNN training on these architectures using experimental memristive

devices at the cross point. Recently, IBM proposed a scheme for accelerating DNN

training with a time complexity of O(1) using stochastic computing with memristive

devices like RPU (Resistive Processing Units) at the cross point [48, 49]. We use the

principle of stochastic computing to realize a 4-layer DNN and the study described

in this chapter is published in the Neurocomputing journal [71].

This chapter is organized as follows. Section 3.2 reviews the basic operations

involved in training DNNs and their computational time complexity. Hardware

acceleration of DNN training in a crossbar architecture using RPUs at the crosspoint

is introduced in Section 3.3. The concept of stochastic computing is discussed in

detail in Section 3.4 and its realization in a 4-layer DNN is considered in Section 3.5.

Finally, the chapter is concluded in Section 3.6.

3.2 DNN Training

DNN training is done in two steps - forward pass and a backward pass. In forward

pass, the output activations of all the neurons are calculated to determine the cost

function and in the backward pass, network weights get updated with the goal of

minimizing the cost function. The output of any neuron in layer (l+1) is a non-linear

function of the weighted sum of input from layer l and the synaptic weights between

these two layers, given by

y
(l+1)
j = f

(
N∑
i=1

w
(l)
ij x

(l)
i

)
(3.1)
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where f is a non-linear activation function and can be σ(x), sinh(x), tanh(x) or

ReLU(x) = xH(x), with H(x) denoting the Heaviside step function. The forward

pass shown in Equation (3.1) has a time complexity of O(N2), where N is the number

of neurons in each layer. In backward pass, the weight update required for any layer

(l) depends on the error in the succeeding layer (l + 1), given by

w
(l)
ij ← w

(l)
ij ± ηx

(l)
i δ

(l+1)
j (3.2)

where δ
(l+1)
j is the error in the succeeding layer (l + 1) and in turn depends on the

synaptic weights in the layer (l+1) and the error in layer (l+2) as shown by Equation

(3.3).

δ
(l+1)
j ∝

N∑
k=1

w
(l+1)
jk δ

(l+2)
k (3.3)

The time complexity involved in backward pass with reference to Equations

(3.3), (3.2) is O(N2). Therefore, network training for data intensive applications such

as audio and video analysis could take several days or months even when implemented

in parallel architectures such as GPUs [136]. In order to accelerate DNN training,

the forward pass, backward pass and the weight update have to be executed in

parallel. Many of the previous works demonstrated the forward pass and the first

step of backward pass shown in Equations (3.1) and (3.2) using crossbar arrays with

memristive devices at the cross point [137–140]. Hence, the challenge is to achieve

parallel weight update using memristive devices for accelerating DNN training.

3.3 Parallel Weight Update Using RPU Devices

Recently a scheme has been processed for implementing parallel weight update using

resistive processing units (RPUs), with the idea of stochastic weight updates [48].

In the stochastic weight update scheme, stochastic pulses of constant amplitude and

opposite polarity representing xi and δj is presented across the rows and columns
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respectively. The pulsing scheme is designed in such a way that when there is no

overlap between the two pulses, the device conductance remains unperturbed. On the

overlap of these two pulses, the device conductance changes by an integer multiple of

minimum allowed conductance change (∆wmin) per coincident pulse pair. Therefore,

DNN training can be implemented with O(1) time complexity using RPU devices

at the crossbar as the stochastic weight update can happen in parallel for all the

synapses. Based on simulations, it has been projected that the proposed RPU device

must satisfy the stringent requirement of 1000 levels and at least a dynamic range of

10.

3.4 Stochastic Computing

Stochastic computing was introduced in the late 1960s [141,142]. Using the stochastic

framework for computation, a number X ∈ [0,1] can be represented as a Bernoulli

sequence X 1, X 2, X 3...XN such that the random variable X has a probability of

P(Xi = 1) = X , and N is the length of the Bernoulli sequence [143]. For example

in the stochastic framework, X = 6
8

can be represented as 01011111. Consider two

scalar quantities a, b appropriately scaled to lie in the range [0,1]. Let A and B are

two uncorrelated N bit long sequences representing a and b such that P(Ai = 1) = a,

P(Bi = 1) = b. Let C represent the bit wise logical AND operation of sequences A

and B. Therefore,

P (Ci = 1) = P (Ai = 1)P (Bi = 1) = ab (3.4)

P (Ci = 0) = 1− P (Ai = 1)P (Bi = 1) = 1− ab (3.5)

The expectation and variance of the binary random variable Ci is E(Ci) = ab, Var(Ci)

= ab(1−ab). Let the number represented by the Bernoulli sequence C = C1, C2, ...CN
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be obtained by averaging the N independent random variables Ci,

C =
1

N

N∑
i=1

Ci (3.6)

=⇒ E(C) = ab , V ar(C) =
ab(1− ab)

N
(3.7)

As the length of Bernoulli sequence increases, the estimated average approaches

the scalar product of a × b. Therefore, a key advantage of stochastic framework is

that multiplication can be implemented using simple coincidence detection [144–146].

Moreover, stochastic arithmetic can be implemented by computational elements which

are very small and compatible with VLSI design technology. Stochastic computation

is suitable for applications where certain level of inexactness can be tolerated such as

in image processing [147], error correcting codes [148] as well as in artificial neural

networks [149,150].

In order to achieve O(1) time complexity for DNN training, the proposed ideal

RPU device requires 1000 levels which is difficult to meet experimentally. However,

the experimental memristive devices are highly non-ideal with limited dynamic range,

finite conductance resolution and has significant programming variability. Therefore,

here we study a 4-layer stochastic DNN using memristive devices, whose synaptic

behavior is derived from the experimentally observed electrical behavior of fabricated

Pr0.7Ca0.3MnO3 devices. We then analyze the performance of stochastic DNNs to

various device parameters such as - on-off ratio, programming variability and tolerance

to noisy input for inference.

3.5 Stochastic DNNs

3.5.1 Network Architecture

A basic 4-layer deep network is used as the baseline for studying stochastic DNNs

for the handwritten-digit classification benchmark. The network architecture of

the 4-layer deep network is shown in Figure 3.3 and is trained with a standard
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database for handwritten digits - MNIST (Modified National Institute of Standards

and Technology) with 50,000 digits for training, 10,000 digits for validation from the

training set. The performance of the network is tested on the unseen set of 10,000
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Figure 3.3 A 4-layer deep neural network with 784-256-128-10 neurons in each layer
used for hand-written digit classification (Simulated using MATLAB).
Source: [68].

digits in the test set. Each of the input image is of size 28×28 and hence, 784 input

neurons are used in the input layer. The network uses sigmoid activation function for

the hidden layer neurons and softmax function for the output layer. Network training

is done with an aim to minimize the multi-class cross entropy objective function and

the weights are updated after every image is presented. The entire representation of

50,000 images constitutes one epoch and the network is trained for over 30 epochs.

3.5.2 Floating Point DNN

The 4-layer DNN which uses floating point precision during training is taken as the

baseline network and is referred to as the ‘floating DNN’. The corresponding error in

the training and test set as a function of epochs is shown in Figure 3.4. The network

reaches a maximum test accuracy of 98% after 30 epochs and is used as the baseline

to determine the number of bits required for the stochastic DNNs.
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Figure 3.4 Training and test error for floating point DNN with weight update using
Equation (3.2). Training and test error decreases with epoch and reaches a maximum
test accuracy of 98%. This network is used as the baseline to determine the bit length
required for stochastic DNNs.
Source: [71].

3.5.3 Stochastic DNN

The network which uses stochastic pulses for forward pass, backward pass and the

weight update is referred to as the ‘stochastic DNN’. In forward pass, the real valued

input to each layer is converted to a stochastic pulse stream of length BL to compute

the neuronal output. In the first step of backward pass, (shown in Equation (3.3))

the error in the layer (l + 1) is calculated by sending stochastic pulses corresponding

to the real valued error in layer (l + 2). In order to perform the weight update for

any layer l, the error at layer l and input to the same layer xi has to be multiplied as

shown in Equation (3.2). In the stochastic framework, if xi, δj ∈ [0,1] is represented

by stochastic pulses of length BL, then the multiplication of xi and δj can be

implemented by coincidence detection of the two sequences as explained in section

3.4

w
(l)
ij = w

(l)
ij ±B

(
BL∑
n=1

x
(l)
i,n ∧ δ

(l+1)
j,n

)
(3.8)

Hence, the weight update rule can be modified as shown in Equation (3.8), where BL

is the length of the stochastic pulse sequence that can be used to approximately

represent the Bernoulli sequences, B is the bin-width or the minimum possible
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Figure 3.5 Training and test error for floating point DNN with weight update using
Equation (3.2). Training and test error decreases with epoch and reaches a maximum
test accuracy of 98%. This network is used as the baseline to determine the bit length
required for stochastic DNNs.
Source: [71].

conductance change corresponding to one coincidence event of δ
(l+1)
j,n and x

(l)
i,n.

Therefore, the overall conductance changes by integer multiple of the number of

coincidences of the two stochastic pulse streams.

In order to determine the length of the stochastic bit sequence BL, we converted

the baseline floating point network to a stochastic network which uses stochastic

pulses for forward and backward pass. We used BL of 2, 10, 50 and 100 for training

the 4-layer network and the corresponding training error is shown in Figure 3.5. The

test accuracies of the trained network after 30 epochs of training is shown in the Table

??. In order to have a fair comparison of stochastic DNN with floating point DNN,

the learning rates for both the networks are kept the same. As the length of the

stochastic pulse stream BL increases, the test accuracy increases and becomes closer

to the floating point baseline network. The Table ?? shows the average test accuracy

over five different MATLAB iterations. As there is only marginal improvement in

test accuracy when BL is changed from 10 to 100, BL = 10 is used for the rest of

the study.
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Table 3.1 Maximum Test Accuracy of Floating Point and Stochastic DNNs for
Hand-written Digit Classification

Network BL Test Accuracy

Stochastic 2 95.95%

Stochastic 10 97.74%

Stochastic 50 98.09%

Stochastic 100 98.14%

Floating Point 98%

3.6 Summary

In this chapter, we reviewed some of the state-of-the-art deep CNNs and the basic

steps in training DNNs using the backpropagation algorithm. It can be noticed

that the different steps of the backpropagation algorithm for training DNNs has a

time complexity of O(N2), where N is the number of neurons in any layer. We

also show that the principle of stochastic computing offers a way to implement the

costly multiplication using coincidence (AND) gates in hardware. We simulated a

4-layer DNN with the backpropagation algorithm implemented using the stochastic

computing principles and found that a bit length of 10 bits is sufficient to maintain

acceptable accuracy with the floating-point baseline. Stochastic DNNs with BL=10

will be used as the baseline for studying the dependence of experimental memristive

synapses in the training phase of DNNs in the next chapter.
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CHAPTER 4

IMPLEMENTATION OF STOCHASTIC DNNS USING MEMRISTIVE

SYNAPSES

4.1 Introduction

DNNs have shown remarkable success in many of the machine learning problems

recently. However, training of deep neural networks is computationally intensive and

requires large training times with a time complexity of O(N 2 ) (N is the number of

neurons in each layer) in von-Neumann machines; hence, several hardware approaches

have been proposed for accelerating DNN training [151,152]. However, none of these

approaches have mitigated the limitations with respect to power, area and training

time. Hence, there are several proposals to employ non-volatile memory (NVM) based

synapses for an efficient acceleration of neural network training and inference [36,

153–155]. We focus on NVM-based implementations for accelerating DNN training

in this chapter and the methodologies described are published in the Neurocomputing

journal [71].

Two-terminal memristive devices are an ideal choice for implementing electrical

synapses due to its small size, enabling them to be densely packed in crossbar arrays.

Further, thanks to their low power programming and read characteristics and the

ability to store and retain multiple bits in a single device [41, 156], they offer one

possible way to emulate the brain’s connectivity in hardware. Moreover, it has been

numerically estimated that NVM based on-chip learning systems promise upto 25×

speed up and 3000× improvement in power compared to GPU (Graphics Processing

Unit) based implementations [51]. However, most of the memristive devices being

explored today also have non-ideal characteristics such as finite on-off ratio, finite

conductance resolution and has temporal and spatial conductance variability during
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programming and read [24, 157]. Therefore, new architectural and device level

optimizations are necessary to obtain the projected performance enhancements in

hardware.

It has recently been proposed that DNNs can be implemented using tiled arrays

of 2D crossbars of resistive processing units (RPU), which are memristive devices that

can store multiple analog states and also adjust its conductivity based on identical

sequence of voltage pulses [48]. If such crossbar arrays can be designed and all the

weights in the array can be updated in parallel, the training time can be accelerated

by replacing the vector cross-product operation with AND operation of stochastic bit

streams representing neuronal signals. One of the most challenging requirements to be

satisfied by an ideal RPU device is that it must be possible to incrementally program

it to nearly 1000 reliable conductance states within a dynamic range of 10 by the

application of identical sequence of voltage pulses. This is a stringent requirement

and has not been demonstrated so far on experimental devices. Pr0.7Ca0.3MnO3

(PCMO) based RRAM devices have been explored for neuromorphic hardware due

to its analog conductance response by previous authors. However, most of these

schemes use complex programming methods which cannot support parallel synaptic

communication or updates, which is crucial for obtaining O(1 ) time complexity

operation and hardware acceleration. In [135], numerical simulations of a 3-layer

network with experimental PCMO characteristics having an on-off ratio of 5 and

256 conductance states showed a recognition accuracy of 90.55% for hand-written

digit classification, although pulses with variable amplitudes were used for device

programming. Linear and symmetric conductance response are shown to improve

network performance [135] and several programming strategies have been explored to

compensate for the non-linear and asymmetric conductance response at the cost of

higher power and chip area [50,158,159].
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Towards the goal of attaining parallel synaptic communication and weight

update, we fabricated and characterized PCMO devices specifically optimized for

analog and incremental programming upon the application of identical programming

pulses. Using the measured characteristics, we study the performance of DNNs

trained in a stochastic fashion for the exemplary hand-written image recognition task.

We then conduct several numerical studies to determine the crucial device parameters

for improving network accuracy and training times.

This chapter is organized as follows. We will discuss the basic characteristics of

PCMO devices used in the crossbar implementation in Section 4.2. The basic 4-layer

network discussed in the previous chapter is then extended to a crossbar compatible

implementation with PCMO device conductances as the synaptic weights at the

crossbar in Section 4.3. Section 4.4 discusses the algorithm level optimizations, and

Section 4.5 presents the performance of stochastic DNNs for different optimizations

of the PCMO device characteristics. Section 4.7 demonstrates the robustness of

stochastic inference engines using low on-off ratio devices to noise corrupted test data

by using higher precision for network encoding for inference as compared to training.

Finally, the chapter is concluded in Section 4.8.

4.2 PCMO Device as Synapse

PCMO based RRAM devices are non-filamentary in nature and hence, exhibit high

endurance and low variability compared to the filamentary switching devices such as

those based on HfO2 [160]. PCMO devices are favored for neuromorphic hardware due

to its simple structure, fast switching speed and area scalability [161,162]. Therefore,

we choose PCMO device as the memristive synapse for studying the acceleration of

stochastic DNNs.
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Figure 4.1 Pr0.7Ca0.3MnO3 device structure with Tungsten (W) as the top contact
and Platinum (Pt) as the bottom contact.
Source: [71].

4.2.1 Device Fabrication

The Pr0.7Ca0.3MnO3 based RRAM devices were fabricated on 4” Si wafer using a 2

mask lithography process by our collaborators at IIT Bombay. To isolate the device

from substrate, 300 nm thick SiO2 was grown by thermal wet oxidation. Ti (20 nm)/

Pt (70 nm) was then deposited on SiO2 by DC sputtering. Ti acts as an adhesion

layer between SiO2 and Pt with Pt as the bottom contact for the device. This was

followed by deposition of 65 nm thick PCMO alloy using RF sputtering. Different

sizes of devices were obtained by defining via-holes of 1µm in SiO2 by electron beam

lithography (EBL). Finally, Tungsten (W) top contact pads were created using EBL

followed by liftoff of W. The device schematic is shown in Figure 4.1. All the electrical

measurements were done using Agilent B1500A/B1530A semiconductor analyzer at

room temperature at IIT Bombay.

4.2.2 Device Characterization

The fabricated Pr0.7Ca0.3MnO3 device is characterized and the corresponding resistive

switching behavior is shown in Figure 4.2 (a). As can be seen from the current-voltage

characteristics, significant non-linearity is observed in the conductance of the device as

a function of voltage. For instance, the ratio η = g(V )/g(V/2) > 50 for the operating
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(a) (b)

Figure 4.2 (a) Current-Voltage characteristics of the fabricated PCMO device
showing non-linearity. (b) The conductance response of the PCMO device showing the
variability across five different measurements on the same device. The approximately
linear region of the conductance response from pulse #5 to pulse # 30, with an on-off
ratio of 1.8 and a resolution of 26 states is used for training stochastic DNNs.
Source: [71].

region of the device, where g(V ) is the conductivity of the device measured at voltage

V . This allows PCMO based crossbar arrays to be used for synaptic and memory

applications without a current limiting diode or access device at every cross point,

based on a V/2 programming scheme, as explained in Section 4.3.1 [163, 164]. The

selectivity of PCMO devices during programming greatly depends on the non-linearity

in the I-V characteristics and is in-turn determined by the PCMO composition [162].

On the application of positive and negative voltage polarity, the PCMO

RRAM shows SET (i.e., low to high conductance state) and RESET (i.e., high

to low conductance state) switching respectively. The device is initialized to low

conductance state by applying a RESET pulse with amplitude 2 V lasting 1 ms

[164]. After initializing, WRITE pulses of amplitude −2.2 V and duration 100 ns

were applied. A READ pulse (−0.5 V, 5µs) follows each WRITE pulse to measure

conductance change. The conductance response of PCMO device across five different

measurements on the same device is shown in the Figure 4.2 (b). The approximate

linear region in the conductance characteristics ranging from pulse number 5 to 30

is utilized for training stochastic DNNs. The conductance response clearly shows
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a variability for repeated measurements and the average programming variability is

captured in the simulation of stochastic DNNs.

4.3 Crossbar Compatible Implementation

This section describes the details of the crossbar implementation of the 4-layer

network for stochastic DNN training (Figure 3.3).

4.3.1 Two Devices per Synapse

As proposed in [165], two PCMO devices are used per synapse, so that both positive

and negative weights can be realized in the network. The synaptic weight is encoded

as the difference of the PCMO device conductances, i.e., Geff = G+ - G− as shown

in Figure 4.3.

+ -
G+ G-

Geff = G+ - G-

w

Synapse

Figure 4.3 Every synapse is represented using two PCMO devices scheme such that
the effective synaptic weight, Geff= G+ −G− (left); Illustration of a fully connected
crossbar network with four input neurons and four output neurons (right).
Source: [71].

If the minimum voltage required for increasing the device conductance is Vp, a

Vp/2 pulsing scheme is used, where pulses of +Vp/2 amplitude are used to encode the

1s in the stochastic streams of the xi in the rows and pulses of amplitude −Vp/2 are

used to encode the 1s in the stochastic streams of the δj in the columns. Thus, when

there is a coincidence of 1s in the two pulse streams, Vp voltage drops across the device,
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perturbing its conductance. For this pulsing scheme to work accurately, the synaptic

device conductance is un-perturbed for pulses of amplitude ±Vp/2, but undergoes

conductance transitions for pulses of amplitude Vp. This condition is satisfied in

PCMO devices as they exhibit a strong non-linearity as described earlier.
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Figure 4.4 Crossbar compatible implementation of forward pass (Read mode). The
real valued input to each neuron in any layer is converted to a stochastic pulse stream
and depending on the presence or absence of the pulse, current flows downstream to
layer 2. This configuration is used for inference as it requires only forward pass.
Source: [71].

Forward Pass In forward pass, the devices will be operated in read mode and

a voltage much lesser than the programming voltage (denoted by Vr) can be used

(Figure 4.4). The real valued input that lie in the range [0,1] is converted to a

stochastic pulse stream with BL = 10 and applied to the cross-bar wires across the

rows. The forward pass is illustrated in Figure 4.4 with 3 neurons in layer 1 and 2

neurons in layer 2. The stochastic pulse stream has 10 slots (since BL = 10), and

depending on the presence or absence of pulse a current flows downstream and gets

sensed by the sense amplifier. Thus the forward activation functions can be calculated

across all layers in parallel achieving a time complexity of O(1 ).

Backward Pass The backward pass involves two steps - illustrated by Equations

(3.2), (3.3) and is demonstrated in Figure 4.5 (a), (b). In the first step, matrix
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Figure 4.5 Illustration of backward pass. (a) First step of backward pass (Read
mode): Matrix multiplication of the error term with the transpose of the weight
matrix is done by feeding the error voltage as stochastic pulses to the column such
that the total current is summed across the neurons in layer 2. (b) Second step of
backward pass (Write mode): For updating the weights in layer 1, the error obtained
at layer 2 and input to layer 1 is scaled by the learning rate and applied as stochastic
pulses through the crossbar wires. A Vp/2 pulsing scheme is used such that the
conductance changes only when each device experiences a minimum voltage of Vp. In
the case of inference, the configurations shown in (a) and (b) will not be used as no
training is involved.
Source: [71].

multiplication of transpose of the weight matrix with the error term is achieved by

passing the stochastic error voltage pulses as input to the columns (layer 3) and the

currents get summed up across the rows in layer 2. Since the devices are operated in

read mode, a voltage of Vr is used to encode the stochastic pulse stream. In the second

step of back propagation, voltages corresponding to these current values are then

adequately scaled to incorporate the learning rate and presented across the column

as stochastic pulses as shown in Figure 4.5 (b). The input to layer 1 will also be scaled

and subsequently converted to stochastic pulse streams and applied along the rows.

Based on the number of coincidences in the two pulse streams (across the column and

row), the device will experience an effective voltage of Vp/2− (−Vp/2) = Vp, thereby

changing the conductance by an integral multiple of the minimum resolution B (which

in real devices could exhibit significant variability). As a result, by effectively utilizing
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the locality and parallelism of the back propagation algorithm, weight updates can

happen in parallel across all devices in the crossbar achieving a time complexity of

O(1 ) [138–140].

Figure 4.6 Unidirectional weight update scheme in two PCMO devices per synapse
in the crossbar. When the required weight update (∆W ) for a synapse > 0, G+ will
get selected and the conductance increases such that Geff = G+ − G− is effectively
increased. On the other hand, if ∆W < 0 then G− is selected for weight increment
and Geff = G+ − G− is reduced. The device marked green is selected for weight
increment and the unselected is indicated in red.
Source: [71].

Since most of the memristive devices exhibit gradual conductance change in one

direction, we assume a unidirectional weight update scheme [166]. In this scheme,

conductance of the device will be always increased and the device representing G+

(G−) will be selectively programmed to increase (decrease) the weight. The weight

update schematic is illustrated in Figure 4.6. If the calculated incremental weight

update (∆W ) using the back propagation algorithm is positive, then the conductance

of G+ (shown in green in Figure 4.6) is increased so that Geff is increased. On the

other hand, if the weight update required is negative, then the conductance of G− is

increased to effectively reduce Geff .
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4.4 Modifications to the Four-layer Network

All the PCMO devices in the network are initialized randomly between the minimum

and maximum conductance values. As the actual device conductance values are not

compatible for network learning, they are appropriately scaled during training. The

scaling factor is absorbed in the calculation of activation functions. Due to the limited

on-off ratio and conductance resolution, the devices could easily saturate and learning

could stop. To avoid this, the devices are reset periodically (data refresh) based on

the conductance values [165]. During reset, if the effective synaptic weight (Geff ) is

positive, then G+ is set to (Gmin + Geff ) while G− is kept to Gmin such that Geff

is unperturbed. Similarly, when Geff is negative, G+ is set to Gmin and G− is set to

(Gmin +Geff ). Therefore, the effective weight Geff = G+ −G−, at any synapse will

remain unaffected after a reset operation.

We studied two possible reset mechanisms - conditional reset and global reset. In

conditional reset, the devices are reset whenever one of the two devices of the synapse

reach the maximum conductance value and no more increment in conductance is

possible. However, conditional reset requires constant monitoring of conductance at

every synapse. A cost effective solution is hence, to use a global reset in which all

the devices are reset after a fixed number of training steps [38]. The optimization of

reset intervals is discussed in the subsequent Section 4.5.1.

4.5 Network Response with PCMO Device

The baseline stochastic network is extended to a crossbar compatible implementation

as mentioned in the previous section with two PCMO devices per synapse. Here we

simulate stochastic DNNs using Pr0.7Ca0.3MnO3 devices, whose synaptic behavior is

determined from the electrical measurements as explained in section 4.2.2. These

PCMO devices has an on-off ratio of 1.8 and approximately only 26 discernible levels

including the minimum and maximum conductance states. The conductance of the

52



B

B /B = 1

/B = 1.5B

/B = 0.5

Figure 4.7 Illustration of programming variability as a function of σ/B. Here σ
is the standard deviation of the Gaussian noise and B is the minimum change in
conductance obtainable under the chosen programming conditions.
Source: [71].

device varies linearly with pulse number and has a programming variability associated

for each incremental change. The impact of programming variability on network

performance is studied using the parameter σ/B, where σ is the standard deviation

of the Gaussian noise and B is the minimum change in conductance obtainable

under the chosen programming conditions. The illustration of different programming

variability as a function of σ/B is shown in Figure 4.7. It can be noticed from the

Figure 4.7 that as the ratio σ/B is increased, the conductance can easily spill over

to the neighboring bins. As discussed, the devices have to be periodically reset to

facilitate continuous learning and the reset interval in turn depends on the amount

of programming variability (σ/B).

4.5.1 Optimization of Reset Interval

During network training, the devices are periodically reset after presenting a fixed

number of input images to the network. Here we study the optimization of reset

interval for Pr0.7Ca0.3MnO3 devices with different programming variability (captured

by the parameter σ/B). The optimization of reset interval for σ/B=0.5, 1, 1.5 is

shown in Figure 4.8.
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Figure 4.8 Simulated maximum test accuracies for stochastic DNNs with different
choices of reset intervals. An optimum reset interval of 400 is chosen for devices
having a variability ratio of σ/B=0.5, 1 and 100 is used for devices with variability
ratio of σ/B=1.5. The accuracy of the experimental PCMO device based network
from Figure 4.9 is also indicated.
Source: [71].

The choice of the reset frequency is based on the network performance. In these

simulations, the variability encountered by the devices during the reset process is

assumed to be negligible compared to the programming variability associated with

the weight update as iterative programming schemes can be used at the time of

the infrequent reset operation [167]. Therefore, from Figure 4.8, the reset interval

is chosen to be 400, 400, 100 for σ/B = 0.5, 1 and 1.5 respectively. In the case of

devices with low programming variability having σ/B ≤ 0.5, the network can tolerate

a higher reset interval with minimum degradation in test accuracy.

The conductance deviation for our experimental PCMO is approximately 1.59×

the bin-width (B) of the conductance states (σ = 1.59B). The training and test

accuracy corresponding to stochastic DNN with PCMO device is shown in Figure 4.9.

A reset interval of 100 is used for simulating PCMO based memristive synapses to

obtain a maximum test accuracy of 88.1% after 10 epochs. The inferior performance

of the network from the baseline is due to the increased variability in programming,

causing the device conductance levels to spill over into the neighboring levels. In order
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Figure 4.9 Simulated test and training accuracy of stochastic DNNs with experi-
mental PCMO device at the synapse. Shown here is the average response of three
different MATLAB iterations. The test accuracy reaches a maximum value of 88.1%
after 10 epochs.
Source: [71].

to understand the fundamental reasons for performance degradation with memristive

implementations and to optimize device and network performance, we now study the

role of specific device characteristics on training and inference accuracy.

4.6 Impact of Device Parameters on Network Performance

4.6.1 Sensitivity to Conductance Variability

Conductance variability is a critical parameter of practical NVM devices and its effect

on the learning of stochastic networks for hand-written digit classification is discussed

here. Repeated pulse measurements on the fabricated Pr0.7Ca0.3MnO3 device shows

significant variations in the conductance values for the same pulse number (see Figure

4.2). The parameter σ/B, which is the ratio of the standard deviation of the PCMO

conductance variability to the bin-width of the conductance levels, is used to study

the impact of programming variability on network performance. An illustration of

memristive programming variability is shown in Figure 4.10 [68]. The conductance

variations are introduced in the simulations as a zero mean Gaussian noise with a

standard deviation σ/B = 0.1, 0.3 and so on. The synaptic devices are randomly
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Figure 4.10 Cartoon illustrating the effect of memristive programming variability
with an initial conductance Gi, final conductance Gf and σ representing the standard
deviation of programming noise. (a) Final Conductance (Gf ) obtained by a pulse
overlap of 2 from the initial conductance (Gi) exhibits an underestimate, and
(b) represents an overestimate of Gf ; Maximum generalization (test) accuracy
of stochastic DNNs (BL = 10) when trained with PCMO devices of different
programming variability. Here σ/B is the ratio of standard deviation of the
conductance variability to the bin-width of the conductance states (right).
Source: [68, 71].

initialized to any of the 26 conductance states with programming variability. Except

for the standard deviation of the conductance variations, all the other parameters such

as on-off ratio and number of levels are kept the same as that of experimental PCMO

device. The response of stochastic DNNs is observed for σ/B = 0, 0.1, 0.3, 0.8, 1, 1.5

as shown in Figure 4.10. For σ/B < 0.5, where the standard deviation of the Gaussian

is lesser than the bin-width, the obtained device conductance is close to the desired

conductance resulting in close-to baseline accuracies. With standard deviations close

to zero, the network achieves a test accuracy close to 95% even with a low on-off ratio

of 1.8. This shows that programming variability is critical for training of stochastic

DNNs when compared to on-off ratio of the memristive devices. When σ/B ratio

is gradually increased from 0 to 0.3, the test accuracy remains almost constant and

degrades by 2% at σ/B = 1. For σ/B > 1, where the standard deviation is more

than the bin-width, the device conductance could easily jump to the neighboring

conductance states thus showing inferior network performance.
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Figure 4.11 Comparison of test accuracy of stochastic DNNs for different on-off
ratios of PCMO device at the crossbar. Here, r denotes the experimental on-off ratio
of 1.8. The average test accuracies of three different MATLAB iterations is shown
here. The accuracy is almost independent of the on-off ratio of the device for a fixed
σ/B ratio.
Source: [71].

4.6.2 Impact of On-off Ratio

The performance of stochastic DNNs is analyzed for different on-off ratios of the

PCMO devices while keeping the number of levels and programming variability (σ/B)

invariant. The device is assumed to have a resolution of 26 states and different scaling

for the device on-off ratio compared to the experimental value. The corresponding

test accuracy for different on-off ratios (4r, 10r and 20r compared to the baseline

experimental on-off ratio of r = 1.8) is shown in the Figure 4.11. It can be noticed

that the test accuracy is largely independent of the on-off ratio of the PCMO devices

when the programming noise is kept fixed. This study illustrates the need for synaptic

devices with minimum programming variability rather than high on-off ratio. Since

programming variability is inherent to most nanoscale memristive devices, algorithm

level optimizations are necessary to obtain better performance.
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4.7 Inference in the Presence of Noise

One of the advantages of systems based on stochastic encoding is its inherent tolerance

to noise and lesser vulnerability to variability than their deterministic counterparts

[168, 169]. Here, we study the stability of stochastic inference engines by observing

the network response to noise-corrupted test data. The stochastic DNNs are trained

with BL = 10 using synaptic devices and these trained weights corresponding to

the best generalization accuracy is then used for inference analysis [68]. Zero mean

Gaussian noise of variances σ2
i = 0, 0.01, 0.1 is added to the normalized input images

in the MNIST test set. The noise added input is then limited in the range [0,1] for

evaluating the robustness of stochastic inference engines. A noise corrupted sample

image with its corresponding signal to noise ratio (SNR in dB) is shown in the Figure

4.12. Noise resilience for inference is studied for PCMO devices with programming

Figure 4.12 A sample test image ‘7’ showing the signal to noise ratio (SNR) after
introducing Gaussian noise of different variances. The noise added images are then
fed as input to stochastic DNNs to evaluate the inference response.
Source: [71].

variability ratios of σ/B = 0.5, 1, 1.5. Two variants of stochastic inference engines are

used in our study, one with BL = 10 and the other BL = 100 even though training

is done using BL = 10.

The inference response of PCMO based synapses with different programming

variability to noise added test set is shown in Figure 4.13. The percentage

improvement in test accuracy for stochastic inference engines with BL = 100 over

BL = 10 is shown in Figure 4.13. It is observed that as the programming variability

58



Figure 4.13 Study of stochastic inference engines to noise corrupted test data
using trained weights as a function of the programming variability of the device
(σ/B = 0.5, 1 and 1.5) (left); Percentage improvement in test accuracy of stochastic
inference engines with BL = 100 when compared to BL = 10 using devices
with different conductance variability. Using inference engines with BL = 100,
a remarkable improvement in test accuracy can be noticed for devices with higher
programming variability (right).
Source: [71].

increases, stochastic inference engines with BL = 100 has a superior performance

compared to BL = 10. This study shows that even though the expensive network

training is performed using as few as 10 bits, the inference accuracy of the network

can be improved, especially when dealing with noisy inputs, just by increasing the bit

resolution used during the relatively in-expensive forward pass operations necessary

for inference.

4.8 Summary

In this chapter, we discussed the need for non-von Neumann architecture and a

hardware based approach for implementing neuromorphic systems with memristive

synapses at the crossbar. DNNs can be trained with a time complexity of O(1 ) using

RPU devices at the crossbar by representing the real-valued neuronal output and

feedback terms as stochastic bit-streams. We used a non-filamentary Pr0.7Ca0.3MnO3

device to understand the device parameters that are critical to the performance

of stochastic DNNs. These devices were fabricated using a standard lithography
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process and electrically characterized to determine the on-off ratio, bit-resolution

and programming variability. Using these measured characteristics, we studied

the network performance as a function of the device parameters such as on-off

ratio, frequency of conductance reset to account for the limited dynamic range and

programming variability. We showed that programming variability is paramount

to the network performance and demonstrated that if the conductance variability

is kept minimum, network test accuracies close to 95% is obtainable using PCMO

based devices. Since programming variability is inherent to most nanoscale devices,

algorithms that could mitigate these non-ideal characteristics have to be developed

for enhanced network performance. We also demonstrated approaches to improve

network inference accuracy without incurring significant costs for realizing on-chip

learning, especially for noisy real-world inputs.

Having discussed the memristive implementation of DNNs for accelerating the

DNN training, we will present the design strategies for spiking networks based on

a probabilistic framework using the GLM neuron model in the next chapter. The

proposed accelerator SpinAPS - Spintronic Accelerator for Spiking Networks is an

ASIC that combines the advantages of emerging spintronic memory for synaptic

storage and digital CMOS logic for neuronal computations.
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CHAPTER 5

SPINAPS: A HIGH-PERFORMANCE ACCELERATOR FOR

PROBABILISTIC SNNS

5.1 Introduction

The growth of data and associated processing requirements has resulted in intensive

research efforts for energy-efficient computing architectures that are capable of

approaching the performance of the human brain. Unlike the dominant Deep Neural

Networks (DNNs) which rely on real-valued activations, Spiking Neural Networks

(SNNs) communicate through discrete and sparse tokens in time called spikes,

mimicking the operation of the brain. SNNs are ideal for real-time applications as they

take advantage of the temporal dimension for data encoding and processing. However,

SNNs lag behind DNNs in terms of computational capability demonstrations due to

the current lack of powerful learning algorithms [14].

Conventional neural networks have millions of trainable parameters and are

trained using von Neumann machines, where the memory and computation units are

physically separated. The performance of these implementations is typically limited

by the “von Neumann bottleneck” caused by the constant transfer of data between

the processor and the memory. SNN implementations on these platforms becomes

inherently slow due to the need to access data over time in order to carry out temporal

processing. Hence, hardware accelerators are necessary to exploit the full potential of

SNNs and also to develop efficient learning algorithms. In an effort to build large-scale

neuromorphic computing systems that can emulate the energy efficiency of the human

brain, several computing platforms have implemented SNNs. While Tijanic chip

[112], Intel’s Loihi [60] and IBM’s TrueNorth [61] realize spiking neurons and make

use of static random access memory (SRAM) to store the state of synapses and
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neurons, recent research efforts have proposed the use of tiled crossbar arrays of two

terminal nanoscale devices for implementing large-scale DNN systems [39,48,56,170].

Spintronic devices have also been explored for implementing synaptic weights owing

to their fast read/write characteristics, high endurance, and scalability [43, 44]. The

stochastic nature of the spintronic devices has been leveraged to model neural transfer

functions in a crossbar architecture [171]. These designs for SNNs have shown over

20× energy improvements over conventional CMOS designs. Notably an all-spin

neuromorphic processor for SNNs, comprising of spintronic synapses and neurons

with in-memory computing architecture, has shown 1000× energy efficiency and 200×

speed up compared to CMOS [70].

5.1.1 Our Contributions

The main contributions of this work are listed as follows.

• We propose a hardware accelerator for inference, Spintronic Accelerator for
Probabilistic SNNs (SpinAPS) that integrates binary spintronic devices to store
the synaptic states and digital CMOS neurons for computations. The potential
of hardware implementations of Generalized Linear Model (GLM)-based proba-
bilistic SNNs trained using the energy efficient first-to-spike rule are evaluated
for the first time in this work.

• We evaluate the performance of probabilistic SNNs on two benchmarks -
handwritten digit recognition and human activity recognition datasets, and
show that SNN performance is comparable to that of equivalent ANNs.

• SpinAPS achieves 4× performance improvement in terms of GSOPS/W/mm2

when compared to an equivalent design that uses SRAM to store the synaptic
states.

The rest of the chapter is organized as follows. In Section 5.2, we review the

architecture of GLM-based probabilistic SNNs and also explain the first-to-spike rule

for classification. The algorithm optimization strategies for an efficient hardware

implementation for the first-to-spike rule is considered in Section 5.3. The architecture

details of SpinAPS core and the mapping of the GLM kernels into the memory
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is discussed in Section 5.4. Section 5.5 details the relevant digital CMOS neuron

logic blocks and memory design. We then evaluate the performance of our hardware

accelerator for different bit precision choices in Section 5.6. Finally, we conclude the

chapter in Section 5.7.

5.2 Review of FtS Classification Using GLM-based SNN

Generalized Linear Models (GLM) yield a probabilistic framework for SNNs that

is flexible and computationally tractable [80, 172]. As shown in Figure 5.1, in the

GLM neuron model the inputs (stimuli) are filtered by the stimulus kernels (α),

while the output spike history is filtered by the feedback kernel (β) to define the

neuron’s membrane potential. The spiking probability at each time instant is given

by a non-linear function of the membrane potential. GLM neurons have reproduced

a wide range of spiking neuronal behaviors observed in human brain by appropriately

tuning the stimulus and feedback kernels [80]. Learning rules for a GLM SNN based

on rate and first-to-spike decoding rules have been derived in a number of works

reviewed in [172–174].

5.2.1 GLM Architecture

  Sigmoid 

ui,t

  Bernoulli
    r.v. gen

yi

g (u    ) - 
i,t

τ
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1
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X

X
NX,i
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γi

T
τ

τ

α

Activation

spiking 

- Membrane Potential

probability

Figure 5.1 The Generalized Linear Model (GLM) model used for SNN learning in
this work. NX input neurons and one output neuron is shown for simplicity.
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The basic architecture of GLM-based probabilistic SNNs used for SNN training

is shown in Figure 5.1. We focus on a 2-layer SNN, which has NX presynaptic neurons

encoding the input and NY output neurons corresponding to the output classes. Each

of the input neurons receives a spike train having T samples through rate encoding.

The input is normalized in the range [0,1] for image classification and in the range

[-1,1] for activity recognition. The spikes are then issued through a Bernoulli random

process. For cases where the sign of the input is vital in achieving learning, the

negative sign is absorbed in the sign bit of the corresponding weights. The membrane

potential of ith output neuron at any instant t can be expressed as,

ui,t =

NX∑
j=1

αTj,ix
t−1
j,t−τ + βTi y

t−1
i,t−τ + γi (5.1)

where αj,i denotes the stimulus kernel; xt−1
j,t−τ represents the input spike window having

τ spike samples, βi denotes the feedback kernel; yt−1
i,t−τ represents the output spike

window with τ samples; and γi is the bias parameter. Here j refers to the index of

the pre-synaptic neuron and i refers to the index of the post-synaptic neuron. The

stimulus and feedback kernels in GLM can be defined as the weighted sum of fixed

basis functions with the learnable weights, and they are expressed as shown below.

αj,i = Awj,i , βi = Bvi (5.2)

The matrices A, B are the basis vectors, defined as A=[a1, . . . aKα ] and B=[b1, . . . bKβ ].

The prior work in GLM [84] uses real-valued raised cosine basis vectors for the stimulus

and the feedback kernels. The vectors wj,i=[wj,i,1, . . . wj,i,Kα ]T and vi = [vi,1, . . . vi,Kβ ]T

are the learnable weights in the network with Kα, Kβ denoting the number of basis

functions. The spiking probability of the output neuron is then decided based on the

sigmoid non-linearity applied to the membrane potential.

Two main decoding strategies have been considered for the given SNN

architecture - rate decoding and first-to-spike decoding, discussed in detail below.
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When using the rate decoding scheme for inference, the network decision is based on

the neuron with the maximum spike count as illustrated in Figure 5.2. During the

training phase, the labeled neuron is assigned with a desired spike train pattern and

the unlabeled neurons are assigned with a pattern of all zeros. Using the maximum

likelihood definition, the sum of log probabilities of the output spikes of the desired

neuron is maximized i.e.,

L(θ) =

NY∑
i=1

log pθi(yi(c)|x) (5.3)

where θi denotes the learnable parameters of the network θ = W, V, γ with W

= wi, V = vi and γ = γi, i = 1 . . . NY . The negative log-likelihood - L(θ) is

convex with respect to θ and can be minimized by stochastic gradient descent. For

1

8

Ny

i

Nx

1

2

Per pixel rate 
encoding

T

Class 7
7

T

Figure 5.2 Illustration of rate decoding for an input image of ‘7’. The eighth output
neuron corresponding to the class ‘7’ will issue more spikes compared to others once
the network is fully trained.

the first-to-spike scheme, a decision is made when one of the output neuron spikes. It

has been shown in [84] that the first-to-spike rule exhibits a low inference complexity

compared to rate decoding due to its ability to make decisions early. Hence, we choose

the first-to-spike scheme for our hardware optimization studies.
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Figure 5.3 Illustration of first-to-spike (FtS) rule decoding scheme for the GLM-
based SNN on the handwritten digit benchmark.

5.2.2 First-to-Spike (FtS) Decoding

The fundamental idea of first-to-spike scheme is illustrated in Figure 5.3. The kernels

for the GLM-based SNN are trained using the maximum likelihood criterion, which

maximizes the probability of obtaining the first spike at the labeled neuron and no

spikes for all other output neurons up to that time instant. This probability can be

mathematically expressed as

pt(θ) =

NY∏
i=1,i 6=c

t∏
t′=1

g(ui,t′)g(uc, t)
t−1∏
t′=1

g(uc,t′) (5.4)

where c corresponds to the labeled neuron, u denotes the membrane potential, and

g(u) denotes the sigmoid activation function applied to the membrane potential u.

Also g(u) = 1 − g(u). The weight update rules are derived by maximizing the log

probability in Equation (5.4) and are summarized below [84].

∇wj,i
L (θ) =


−

T∑
t=1

htg (ui,t) ATxt−1
j,t−τy i 6= c

−
T∑
t=1

[htg (uc,t)− qt] ATxt−1
j,t−τy i = c

∇γiL (θ) =


−

T∑
t=1

htg (ui,t) i 6= c

−
T∑
t=1

[htg (uc,t)− qt] i = c
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where

qt =
pt (θ)
T∑
t=1

pt (θ)

ht =
T∑
t′=t

qt′

Note that the feedback kernels are not necessary for the first-to-spike rule as the

network dynamics need not be calculated after the first spike is observed.

5.2.3 Datasets Used in This Study

Throughout this work, we evaluate the performance of Probabilistic SNNs on

handwritten digit recognition and human activity recognition (HAR) datasets [175].

With 60, 000 training and 10, 000 test images, each of the input image in the

handwritten digit database has 784 (28 × 28) pixels corresponding to the 10

(0, 1, . . . , 9) digits. The HAR dataset has a collection of physical activities feature

extracted from the time series inputs of the embedded sensors in a smart phone. The

database has roughly 7, 000 training samples and 3, 000 test samples corresponding

to six types of physical activities. Each record in the HAR dataset has a 561

feature datset vector with time, frequency domain variables and an activity label

corresponding to the six physical activites such as walking, walking upstairs, walking

downstairs, sitting, standing and laying.

5.3 Hardware-Software Co-optimization

In this section, we discuss the design choices that facilitate our hardware implemen-

tation. We start by observing the floating-point baseline accuracy of FtS in Figure

5.4, where the kernels are trained using the techniques demonstrated in [84]. For the

purpose of designing the inference engine, we assume that the kernels are fixed.

Choice of Basis Vectors Most prior works using GLM neuron models use

real-valued raised cosine basis functions for implementing the stimulus and the
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feedback kernels [80, 82, 84]. The stimulus kernel (α) and feedback kernel (β) can

be obtained as the weighted combination of the basis vectors and the learnable

parameters in the network as shown in Equation (5.2). Hardware implementation of

kernels employing real-valued basis vectors would require K multipliers and (K − 1)

adders at every synapse, where K is the number of basis functions used per kernel.

Hence, we propose the hardware friendly binary basis vectors for realizing the kernels.

This would simplify the kernels as, αi,j = wi,j and βi = vi eliminating the need for

multipliers and adders at the synapses. It can be seen that the network performance

Figure 5.4 The test accuracy of GLM on human activity recognition (HAR) and
handwritten digit recognition. A comparable performance is achieved with respect to
an ANN having the same architecture. Here presentation time T is kept the same as
the spike integration window τ .

improves with higher presentation times T and spike integration windows τ , reaching

a maximum test accuracy for T = 16 and τ = 16. Note that for the handwritten digit

benchmark, the network accuracy of the GLM SNN trained using the FtS rule with

(T = 8, τ = 8) is 93.5%, which is at par with the 93.1% accuracy of a 2-layer artificial

neural network (ANN) with the same architecture. In the case of HAR dataset, GLM

achieves a maximum test accuracy of 94.5% with T = 16, τ = 16 which is comparable

with ANN test accuracy of 96.3%. Hence, we chose T = 8, τ = 8 for handwritten

digit recognition and T = 16, τ = 16 for HAR benchmarks as the baseline. We now

discuss software optimization strategies for implementing the first-to-spike scheme in

an energy efficient manner in hardware.
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Sigmoid Activation Function As shown in Figure 5.1, the basic GLM neuron

architecture uses a sigmoid activation function to determine the spike probability of

the output neurons. The implementation of sigmoid functions in hardware is relatively

complex as it involves division and exponentiation, incurring significant area and

power [176]. Digital implementations for sigmoid mainly fall into three categories-

piecewise linear (PWL) approximations, piecewise second order approximations and

combinational approximations. Here we follow the piecewise linear approximation

(PWL) demonstrated in [177] for implementing the sigmoid activation function. In

the PWL approximation, the sigmoid is broken up into integer set of break points

such that the resulting function can be expressed as powers of two. Considering the

negative axis alone, the PWL approximation y for input x can be expressed as

yx<0 =
1
2

+ x̂
4

2|(x)| (5.5)

where (x) is the integer part of x and x̂ is the fractional part of x. Using the symmetry

of sigmoid function, the values in the positive x-axis can be obtained as yx>0 =

1 − yx<0. The output of the PWL approximation is then compared with a pseudo-

random number generated from the linear feedback shift register (LFSR) and a spike

is generated if the PWL value is greater than the LFSR output. A 16-bit LFSR is

used and is assumed to be shared among all the output neurons.

Quantization We now aim at finding the minimum bit precision required for the

learnt weights wj,i and biases γi in order to maintain close to baseline floating-point

accuracy for the network. Starting with the baseline networks for the two datasets

obtained using floating point parameters, we quantize them into discrete levels and

study the inference accuracy with the PWL approximation for the sigmoid. With

b-bit quantization, one bit is reserved for the sign to represent both positive and

negative parameters. We use a uniform quantizer with quantization step given by the
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relation

wq =
wmax − wmin

2b−1
, γq =

γmax − γmin
2b−1

, (5.6)

respectively for weights and biases. We also quantize the membrane potential

and the output of the PWL activation to b bits. We summarize the inference

performance of the GLM SNN as a function of bit precision in Figure 5.5 (a). Network

performance degrades with lower choices of b, but we note that 5 bit resolution is

sufficient for maintaining close to baseline floating-point inference accuracy for the

two benchmarks. Even though the input spike pattern lasts for T algorithmic time

(a) (b)

Figure 5.5 (a) Test performance of the GLM SNN after quantization of weights with
PWL approximation and by using a 16-bit LFSR. (b) Cumulative distribution of the
number of input samples classified as a function of decision time td. An early decision
can be made in first 4 time steps for classifying 75% of the images in the handwritten
digit benchmark.

steps, the first-to-spike learning rule allows a decision to be made even before all the

spikes are presented to the network. The cumulative distribution of the number of

samples classified as a function of decision time td is shown in Figure 5.5 (b). It can

be observed for the handwritten digit benchmark, around 75% of the samples are

classified in the first 4 algorithmic time steps. Furthermore this network achieves the

same performance as that of a 2-layer ANN in 8 time steps. Thus GLM SNN can
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leverage the ability of first-to-spike rule in making decisions with reduced latency and

memory accesses.

5.4 Overview of SpinAPS Architecture

As illustrated in Figure 5.6, the core architecture of SpinAPS consists of binary

spintronic devices to store the synaptic states and digital CMOS neurons to perform

the neuronal functionality. The SpinAPS core accepts input spike at every processor

time step t, reads the synapses corresponding to the spike integration window τ from

the memory to compute the membrane potential and applies the non-linear PWL

activation function to determine the spike probability of the output neurons. A

pseudo-random number generated from the LFSR is then used to actually determine

whether a spike is issued or not as explained in Section 5.3. The word width,

and hence, the memory capacity of the banked STT-RAM memory used in the

SpinAPS core can be designed based on the bit precision b required for the synapses.

The generic “neuro-synaptic core” of SpinAPS consists of a banked memory with

spintronic synapses and peripheral driver circuits to perform both read or write

operations into the memory. The word width of the memory, and hence, the memory

capacity, can be designed based on the bit precision b required for the synapses. The

design of the synaptic memory for different bit precision values of the synapses is

discussed in Section 5.5.2. SpinAPS co-locates the dense STT-RAM memory array

and digital CMOS computations in the same core, thereby avoiding the traditional

von Neumann bottleneck. Following the principles demonstrated in IBM’s TrueNorth

chip [61], a tiled architecture with 4096 SpinAPS cores, with each core having 256

neurons, can be used to realize a system with 1 million neurons as illustrated in

Figure 5.7. If the network has more number of neurons than that is possible from

a core, then the feature can be split to a different core while maintaining the same

performance [61, 178]. We next discuss the basic characteristics of the spintronic
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Figure 5.6 The core architecture of SpinAPS having binary STT-RAM devices to
store the synaptic states and digital CMOS neurons. Assuming a spike integration
window of τ = 7, the core can map 256 input and 256 output neurons.

synapses and how we can map the parameters of probabilistic SNNs into the memory.

5.4.1 STT-RAM as Synapse

Synapses in neural networks scale as N2, where N is the number of neurons in each

layer. SRAM circuits have been used to realize the synapses of the neuromorphic

chips demonstrated so far [60, 61]. However this approach does not scale well for a

large-scale neural network system. Hence, there have been extensive efforts to use

two terminal nanoscale devices as synapse in the neuromorphic hardware owing to its

small size and its ability to be packed in dense crossbar arrays [179,180]. These devices

have the potential to emulate brain’s connectivity and power efficiency in hardware

due to their dimensional scalability, nonvolatile nature, low-power programming and

read characteristics. Recently, spintronic devices have been explored for its use as

nanoscale synapses [43,44,171] mainly due to its high read and write bandwidths, low
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Figure 5.7 The tiled architecture of SpinAPS obtained by arranging the neuro-
synaptic cores that communicate to each other using a packet routing digital mesh
network.
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Figure 5.8 Illustration of basic cell structure of 1T/1MTJ STT-RAM with low (“0”)
and high resistance (“1”) states.

power consumption and excellent reliability [181–183]. These spintronic devices are

compatible with CMOS technology and fast read/write has been demonstrated in sub

10 ns regime [184, 185]. Here we propose binary STT-RAM devices as the nanoscale

electrical synapses for the SpinAPS core illustrated in Figure 5.6. Structurally, STT-

RAM uses a Magnetic Tunnel Junction (MTJ) with a pair of ferromagnets separated

by a thin insulating layer. These devices have the ability to store either ‘0’ or ‘1’

depending on the relative magnetic orientation of the two ferromagnetic layers as
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shown in Figure 5.8. The memory array is typically configured based on the crossbar

architecture with an access transistor connected in series with the memory device to

selectively read and program it.

5.4.2 Synaptic Memory Architecture

Crossbar memory architectures with memristive devices at the cross point have been

explored for accelerating the hardware implementation of neural networks [48, 170].

Here we discuss the mapping of the learnable parameters, stimulus kernel (α) and

the bias parameters (γ) of GLM-based SNN into the spintronic memory to achieve

accelerated hardware performance.

1
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 Bias(γ)
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Figure 5.9 Kernel mapping of GLM SNN to the spintronic memory of SpinAPS core,
showing that devices on τ word-lines are used to represent the kernel parameters of
every input neuron.

Kernel Mapping Here we choose (T = 8, τ = 7) to describe the mapping of 8-bit

synapses, hence, the word width (vertical lines in Figure 5.9) required for the memory

is 256× 8 = 2048 bits. Each of the input neuron generates a bit pattern of length τ ,

hence, unique kernel weights are provided for every neuron, requiring 256× 7 = 1792

word lines in the array. Thus, a network with 256 input and 256 output neurons

can be mapped to a memory array with 2048 × 2048 memory devices. At the input

side, each of the input neuron generates a bit pattern of length τ using the spike

window generator shown in Figure 5.6. For example if the bit pattern generated by

the first input neuron is “1010010”, then the synaptic weights corresponding to 1st,
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3rd, and 6th word line will be read sequentially. The address corresponding to these

word lines are stored in registers, indicated as address storage registers in Figure 5.6.

These synaptic weights will be added at the output neuron to compute the membrane

potential. One word line will be sufficient for mapping γ as (256×8) bits is equivalent

to the word width of the core. As γ determines the baseline firing rate of the output

neurons, the word line voltage corresponding to the γ line is kept high indicating an

“always read” condition. Once all the active word lines are read sequentially, the

accumulated membrane potential will be fed into the sigmoid generator to determine

the firing probability.

In this memory architecture, each neuron inherently supports a fan-out of 256.

Assuming every output neuron in any core supports a fan-out connectivity of 1000

spanning across multiple cores, each of them will have to store 4 destination addresses

(256×4 = 1024). In a memristive implementation, these addresses can be stored using

binary STT-RAM cells within the array. This could save the area required for LUTs

(look up tables) for storing the destination addresses [69]. For example, if there are

4096 cores, 12 bits will be required to address these cores and an additional 11 bits

to uniquely identify the word line within a core. This would result in roughly storing

24K bits per core; which is equivalent to 12 lines in the array for storing the required

fan-out.

5.5 High-level Design

5.5.1 Neuron Implementation

We now describe the digital CMOS implementation of the relevant blocks. The

baseline design assumes 8-bit precision and is synthesized using TSMC 45 nm logic

process running at a clock frequency of 500 MHz. We assume 8-bit precision for the

computational blocks for our baseline design, and will discuss how this architecture

can be modified to implement reduced bit precision architectures.
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Figure 5.10 The digital CMOS logic blocks of SpinAPS core which is used to perform
the probabilistic computations. Here we show the computations associated with one
of the neurons in the core.

Generation of Spike Window As discussed in Section 5.2, normalized input

spikes are transformed to generate spikes of length T using a Bernoulli random

process. At each time instant, t = 1 . . . T , incoming spikes are latched at the input

neuron (marked as ‘In. Reg’, a serial-in, parallel out shift register in Figure 5.6) which

is then translated into an activation pattern of length τ , and applied as read enable

signals to the word lines associated with each kernel weights. The spike window

generator circuit uses a multiplexer for selecting the bit pattern of length τ from

the input register and whose select lines are configured by the controller for every t.

For example, when t = 1, the select line will be “000” and as no input spikes have

arrived before, the output of the multiplexer would be “0000000”. When t = 3, the

select line becomes “010”, and the multiplexer output will be “s2s1000000”, where

si = 1/0 represents the presence/absence of a spike at t = i and so on. As discussed

in Section 5.4, the synapses associated with the input neurons are read sequentially
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and hence, the logic circuit for the spike window generator can be shared among all

the input neurons. The synaptic weights are stored in the registers and the sign bit

of the weights can be optionally flipped depending on the sign of the input before

computing the membrane potential (u). Membrane potential (u) is obtained by

adding the synaptic weights, whose word lines are active depending on the bits in

the spike integration window τ . Here we assume a fixed point representation for the

synaptic weights. u is calculated at every time instant, t ∈ [1 . . . T ] using an 18-bit

signed adder. The addition is pipelined with the memory read providing dedicated

adders for each of the output neurons and the result is stored in an 18-bit register.

The accumulation continues until all the active word lines are read one by one.

Piecewise Linear Approximation (PWL) for Sigmoid Calculation Our

GLM neuron model uses a non-linear sigmoid activation function for generating the

spike probabilities for the output neuron based on the value of u. Here we adopt the

traditional piecewise linear approximation (shown in Equation 5.5) for the sigmoid

using adders and shift registers as described in [177]. The 18-bit membrane potential

u is clipped to an 8-bit fixed point number in the range [-8,8] before applying to the

Piecewise Linear Approximation (PWL) sigmoid generator which is shared among

16 output neurons. The clipped fixed point representation assumes 1 bit for the

sign, 4 bits for the integer and 3 bits for the fractional part. The output of the

sigmoid generator is an unsigned 8-bit number whose values lie in the range [0, 255]

and is compared with the 8-bit pattern from the 16-bit LFSR (Linear Feedback Shift

Register) to generate output spikes.

5.5.2 Design of the Synaptic Memory

We describe the memory organization for the baseline design with 8-bit precision and

(T = 8, τ = 7) as discussed in Section 5.3. The required memory capacity for any b-bit

precision would become 2048 × 256× b bits. We design and analyze the STT-RAM
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Figure 5.11 Banked STT-RAM organization for mapping the synapses of GLM SNN
having 256 input and 256 output neurons with 8-b precision weights.

based synaptic memory using DESTINY, a comprehensive tool for modeling emerging

memory technologies [186]. STT-RAM cell architecture with 1T/1MTJ configuration

is simulated using the parameters mentioned in Table ?? with the feature size F =

70 nm [187]. In Table ??, Vr is the read voltage, tr is the read pulse width, Ip

is the programming current and tw denotes the write pulse width. Representative

values for read and write pulse width is assumed based on experimentally reported

chip-scale demonstrations of STT-RAM [184,187]. For the baseline design, a 512 KB

Table 5.1 Simulation Parameters for STT-RAM Array using DESTINY with the
Feature Size F = 70 nm

Parameter Cell Area Ron Roff Vr tr Ip tw

F2 Ω Ω mV ns µA ns

Value 24 2500 5000 80 5 150 10

array is simulated with an optimization target of minimizing the read-energy-delay

product. The optimized solution of the memory mapping for 8-bit precision is shown

in Figure 5.11. The read energy per word line for 8b is around 535 pJ with a latency of

7.34 ns. The simulated STT-RAM array running at 100 MHz has an area efficiency of

43% with a total synaptic area of 1.14 mm2 and power of 53.5 mW. In addition to the

base-line design, we also studied memory organization for reduced precision (b= 5−7

bits), translating to a total memory capacity of 2048× 256× b bits respectively. The

corresponding subarray organization for each of the bit precision using DESTINY

simulations comes to 64× (2× 256× b).
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5.6 Performance Evaluation

We use a commonly used performance metric to benchmark our accelerator design

- the number of billions of synaptic operations that can be performed per second

per watt (GSOPS/W) and per unit area (GSOPS/W/mm2). A synaptic operation

refers to reading one active word line (256 b-bit synapses), computing the spike

probability and then issuing the output spike. We compare these performance

metrics of SpinAPS with an equivalent SRAM-based design for different bit precisions

(shown in Table 5.2), with neuron logic implementation kept the same. The SRAM

memory is simulated using DESTINY [186] and clocked at 250 MHz. Independent

of bit precision, SpinAPS can perform 25.6 GSOPS while the SRAM-based design

achieves 64 GSOPS due to its higher clock rate. For 8-bit precision, SpinAPS core is

approximately 6× better in synaptic power and 3× in synaptic area when compared

to SRAM. For the values reported in Table 5.2, a 10% overhead is considered for

the spike routing infrastructure between the cores and 20% overhead is added to

consider the area and power of the core’s controller [61, 65, 188]. It can be noticed

Table 5.2 Performance Comparison of STT-RAM and SRAM-based Designs

Precision GSOPS/W GSOPS/W/mm2

SRAM STT-RAM SRAM STT-RAM

5 353 474 177 559

6 283 412 119 415

7 230 366 83 322

8 193 311 61 239

that the SpinAPS core can achieve a maximum performance improvement of 4× and

a minimum of 3× in terms of GSOPS/W/mm2 when compared to an equivalent

SRAM-based design for 8b and 5b precision choices respectively. The average energy
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per algorithmic time step t of the SpinAPS core and the total area for the design as

a function of the bit precision is shown in Fig. 5.12.

(b)(a) (b)

Figure 5.12 (a) Average energy per processor time step (t) of SpinAPS for each
of the bit choices for the handwritten digit benchmark. One processor time step
corresponds to reading all the active word lines (on an average 365), compute the
membrane potential and generating an output spike. (b) Area of the SpinAPS core
as a function of bit precision.

Here we compare the performance of SpinAPS with an STT-RAM based

inference accelerator for SNNs, memristor-based inference engines for DNNs, and

GPUs. For instance, the 4× performance improvement in terms of GSOPS/W/mm2

obtained for SpinAPS in comparison with the SRAM-based synaptic implementation

is comparable with the 6× performance improvement reported in [189], which

benchmarks custom design of STT-RAM and SRAM synapses. In addition, SpinAPS

design, when extrapolated to 32 nm technology node achieves 850 GSOPS/W, which

is competitive with recent memristor-based DNN inference engines that reported

800 GSOPS/W [57] at 32 nm and 1060 GSOPS/W [56] at 32 nm. Though not a

fair comparison, SpinAPS can achieve approximately 20×, and 4× improvement in

terms of GSOPS/W, and GSOPS/mm2 respectively against state-of-the-art GPUs

like Tesla V100 [28]. While implementations employing analog phase change

memory (PCM) devices in crossbar arrays have been projected to provide two

orders of magnitude improvement in energy efficiency when compared to GPUs
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using all-parallel array operations and analog neuron excitations [170], SpinAPS

achieves moderate improvement over GPUs with sequential synaptic accesses and

representative design choices.

5.7 Summary

In this chapter, we discussed a hardware accelerator for inference of probabilistic

spiking neural networks, SpinAPS using binary STT-RAM devices and digital CMOS

neurons. The probabilistic SNNs based on the GLM neuron model are trained using

the novel first-to-spike rule and its performance is benchmarked on two standard

datasets, exhibiting comparable performance with an equivalent ANN. We discussed

the design of the basic elements in the SpinAPS core, considering different bit

precision choices and the trade-off associated with the performance and hardware

constraints. SpinAPS leverages the ability of first-to-spike rule in making decisions

with low latency achieving approximately 4× performance improvement in terms of

GSOPS/W/mm2 compared to SRAM-based design.
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CHAPTER 6

CONCLUSIONS AND FUTURE OUTLOOK

The current digital era is witnessing an exponential growth of data due to the plethora

of devices generating data in the form of videos and images, machine to machine

communication, Internet of Things (IoT) sensors, metadata created by the edge

devices, etc. Machine learning is going to be ubiquitously applied to process these

data for analytics and for improving end-to-end performance. Hence, it is necessary

to deploy the neural networks in a hardware friendly way for power-constrained

applications without compromising the throughput.

Two terminal nanoscale devices are capable of implementing large scale neural

networks in hardware owing to its compact size and lower programming energy

requirements. However, these nanoscale devices are non-ideal and pose a significant

challenge to integrate with computational substrates. We captured the non-ideal

characteristics of the memristive devices in training the deep neural networks through

several simulation studies discussed in this work. Among the non-ideal characteristics

of the two-terminal nanoscale devices, programming variability is found to be having

a critical role in determining the network performance.

We also showed the potential of the probabilistic framework for spiking neural

networks (SNNs) in achieving comparable performance with equivalent second-

generation artificial neural networks on two popular datasets. The inference engine

SpinAPS, a spintronic accelerator for probabilistic spiking networks, combined one

of the emerging memory technology STT-RAM for implementing the synapses and

digital CMOS logic for neuronal computations. SpinAPS was shown to achieve

4× improvement in terms of GSOPS/W/mm2 when compared to a conventional
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SRAM-based design. During this research, we could identify several aspects of future

work and are listed below.

• Implementation of on-chip learning for probabilistic SNNs: Dedicated hardware
could accelerate the training time for probabilistic SNNs, just like ASIC
and FPGA-based solutions became handy for accelerating the DNN training.
Initial hardware-software co-optimization studies for GLM-based probabilistic
SNNs revealed that a minimum of 13-bit precision multipliers are required
for computing the probabilities at every time instant. It might be interesting
to optimize the algorithm so that the costly multipliers can be replaced with
hardware friendly operations like stochastic computing.

• Encoding schemes for time-series datasets: SNNs can process time-series inputs
due to its inherent temporal nature. The time-series input to the SNNs could
be either a real number or discrete output events from a neuromorphic sensor
[190–192]. For example, the HAR dataset used in our work also has additional
raw time-series inputs that are real-valued, and the feature extracted time-
invariant data values were used in Chapter 5. Send-on-delta and Sigma-delta
schemes can be potentially used for encoding such time-series inputs [193–195].
Initial experiments using the send-on-delta scheme for GLM-based probabilistic
SNNs on the HAR dataset did not yield high accuracies. It could be due to
the limitation of having a single layer of GLM neurons for training. However,
the effectiveness of send-on-delta and other possible encoding schemes [196]
inspired by biology can be pursued for multilayered SNN architectures for better
validation [197].

• Random number generation in hardware: Random number generators are an
integral block in brain-inspired systems. Our studies on stochastic DNNs using
memristive networks showed that programming variability is inherent to the
nanoscale devices, and there are several prior works on utilizing this variability
for generating true random numbers in hardware [198–201]. Conventionally,
digital CMOS-based pseudo-random linear feedback shift registers (LFSRs) are
used in hardware and faces challenges concerning the area as well as power when
implementing large scale neural network systems. It is interesting to explore
and model STT-RAM based true random number generators for our proposed
inference engine for probabilistic spiking networks - SpinAPS.
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