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ABSTRACT

DATA ASSIMILATION FOR CONDUCTANCE-BASED NEURONAL
MODELS

by
Matthew Moye

This dissertation illustrates the use of data assimilation algorithms to estimate un-

observed variables and unknown parameters of conductance-based neuronal models.

Modern data assimilation (DA) techniques are widely used in climate science and

weather prediction, but have only recently begun to be applied in neuroscience.

The two main classes of DA techniques are sequential methods and variational

methods. Throughout this work, twin experiments, where the data is synthetically

generated from output of the model, are used to validate use of these techniques

for conductance-based models observing only the voltage trace. In Chapter 1, these

techniques are described in detail and the estimation problem for conductance-based

neuron models is derived. In Chapter 2, these techniques are applied to a minimal

conductance-based model, the Morris-Lecar model. This model exhibits qualitatively

different types of neuronal excitability due to changes in the underlying bifurcation

structure and it is shown that the DA methods can identify parameter sets that

produce the correct bifurcation structure even with initial parameter guesses that

correspond to a different excitability regime. This demonstrates the ability of DA

techniques to perform nonlinear state and parameter estimation, and introduces the

geometric structure of inferred models as a novel qualitative measure of estimation

success.

Chapter 3 extends the ideas of variational data assimilation to include a control

term to relax the problem further in a process that is referred to as nudging from

the geoscience community. The nudged 4D-Var is applied to twin experiments

from a more complex, Hodgkin-Huxley-type two-compartment model for various



time-sampling strategies. This controlled 4D-Var with nonuniform time-samplings

is then applied to voltage traces from current-clamp recordings of suprachiasmatic

nucleus neurons in diurnal rodents to improve upon our understanding of the driving

forces in circadian (∼ 24-hour) rhythms of electrical activity.

In Chapter 4 the complementary strengths of 4D-Var and UKF are leveraged to

create a two-stage algorithm that uses 4D-Var to estimate fast timescale parameters

and UKF for slow timescale parameters. This coupled approach is applied to data

from a conductance-based model of neuronal bursting with distinctive slow and

fast time-scales present in the dynamics. In Chapter 5, the ideas of identifiability

and sensitivity are introduced. The Morris-Lecar model and a subset of its

parameters are shown to be identifiable through the use of numerical techniques.

Chapter 6 frames the selection of stimulus waveforms to inject into neurons during

patch-clamp recordings as an optimal experimental design problem. Results on

the optimal stimulus waveforms for improving the identifiability of parameters for

a Hodgkin-Huxley-type model are presented. Chapter 7 shows the preliminary

application of data assimilation for voltage-clamp, rather than current-clamp, data

and expands on voltage-clamp principles to formulate a reduced assimilation problem

driven by the observed voltage. Concluding thoughts are given in Chapter 8.
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4.1 pre-Bötzinger complex neuron bursting time series. . . . . . . . . . . . . 99

4.2 Utilizing UKF and 4D-Var for long time-series data. . . . . . . . . . . . 100

4.3 Dynamics for BRS Model 1 at the onset of the burst. . . . . . . . . . . . 103

4.4 Burst for BRS Model 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5 Burst comparison between BRS Model 1 and estimated model via two-
stage strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Voltage and Iapp versus t and dV
dt

vs V for the NaKL model. The red is
under constant applied forcing and the grey is forced with the scaled
output of the Lorenz ‘63 model. . . . . . . . . . . . . . . . . . . . . . 118

6.2 Ellipsoid representation of the covariance matrix, Σ. . . . . . . . . . . . 123

6.3 A and D-optimal applied currents derived using OED strategies for NaKL
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Other nominal currents used as comparisons for success at estimating
parameters of NaKL model. . . . . . . . . . . . . . . . . . . . . . . . . 125

7.1 Voltage clamp data for INa. . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2 Full time course of voltage clamp data from INa. . . . . . . . . . . . . . 130

7.3 Recreation of voltage-clamp data using the estimated and initial param-
eter sets of Table 7.1 compared to the true data. . . . . . . . . . . . . 131

7.4 Simulation of HH model using the estimated and initial parameter sets of
Table 7.1 compared to the true data. . . . . . . . . . . . . . . . . . . 131

xv



CHAPTER 1

INTRODUCTION

1.1 Parameter Estimation and Data Assimilation

1.1.1 The Parameter Estimation Problem

The goal of conductance-based modeling is to be able to reproduce, explain, and

predict the electrical behavior of a neuron or networks of neurons. Conductance-based

modeling of neuronal excitability began in the 1950s with the Hodgkin-Huxley model

of action potential generation in the squid giant axon [56]. This modeling framework

uses an equivalent circuit representation for the movement of ions across the cell

membrane:

C
dV

dt
= Iapp −

∑
ion

Iion (1.1)

where V is membrane voltage, C is cell capacitance, Iion are ionic currents, and

Iapp is an external current applied by the experimentalist. The ionic currents arise

from channels in the membrane that are voltage- or calcium-gated and selective for

particular ions, such sodium (Na+) and potassium (K+). For example, consider the

classical Hodgkin-Huxley currents:

INa = gNam
3h(V − ENa) (1.2)

IK = gKn
4(V − EK). (1.3)

The maximal conductance gion is a parameter that represents the density of channels

in the membrane. The term (V − Eion) is the driving force, where the equilibrium

potential Eion is the voltage at which the concentration of the ion inside and outside

1



of the cell is at steady state. The gating variable m is the probability that one of

three identical subunits of the sodium channel is “open”, and the gating variable h is

the probability that a fourth subunit is “inactivated”. Similarly, the gating variable

n is the probability that one of four identical subunits of the potassium channel is

open. For current to flow through the channel, all subunits must be open and not

inactivated. The rate at which subunits open, close, inactivate, and de-inactivate

depends on the voltage. The dynamics of the gating variables are given by

dx

dt
= αx(V )(1− x) + βx(V )x (1.4)

where αx(V ) and βx(V ) are nonlinear functions of voltage with several parameters.

The parameters of conductance-based models are typically fit to voltage-clamp

recordings. In these experiments, individual ionic currents are isolated using

pharmacological blockers and one measures current traces in response to voltage

pulses. However, many electrophysiological datasets consist of current-clamp rather

than voltage-clamp recordings. In current-clamp, one records a voltage trace

(e.g. a series of action potentials) in response to injected current. Fitting a

conductance-based model to current-clamp data is challenging because the individual

ionic currents have not been measured directly. In terms of the Hodgkin-Huxley

model, only one state variable (V ) has been observed, and the other three state

variables (m, h, and n) are unobserved. Conductance-based models of neurons often

contain several ionic currents, and therefore more unobserved gating variables and

more unknown or poorly known parameters. For example, a model of HVC neurons

in the zebra finch has 9 ionic currents, 12 state variables, and 72 parameters [79].

An additional difficulty in attempting to fit a model to a voltage trace is that if one

performs a least-squares minimization between the data and model output, then small
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differences in the timing of action potentials in the data and the model can result

in large error [74]. Data assimilation methods have the potential to overcome these

challenges by performing state estimation (of both observed and unobserved states)

and parameter estimation simultaneously.

1.1.2 Data Assimilation

Data assimilation can broadly be considered to be the optimal integration of

observations from a system to improve estimates of a model output describing that

system. Data assimilation (DA) is used across the geosciences, such as in studying

land hydrology and ocean currents, as well as studies of climates of other planets

[24,50,93]. An application of DA familiar to the general public is its use in numerical

weather prediction [9]. In the earth sciences, the models are typically high dimensional

partial differential equations (PDEs) that incorporate dynamics of the many relevant

governing processes, and the state system is a discretization of those PDEs across the

spatial domain. These models are nonlinear and chaotic, with interactions of system

components across temporal and spatial scales. The observations are sparse in time,

contaminated by noise, and only partial with respect to the full state space.

In neuroscience, models can also be highly nonlinear and potentially chaotic.

When dealing with network dynamics or wave propagation, the state space can be

quite large, and there are certainly components of the system for which one would not

have time course measurements [57]. As mentioned above, if one has a biophysical

model of a single neuron, and measurements from a current-clamp protocol, the

only quantity in the model that is actually measured is the membrane voltage. The

question then becomes how does one obtain estimates of the full system state?

To begin, we assume we have a model to represent the system of interest and a

way to relate observations we have of that system to the components of the model.

Additionally, we allow, and naturally expect, there to be errors present in the model
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and measurements. To start, let’s consider first a general model with linear dynamics

and a set of discrete observations which depend linearly on the system components:

xk+1 = Fxk + ωk+1, xk ∈ RL (1.5)

yk+1 = Hxk+1 + ηk+1, yk+1 ∈ RM . (1.6)

In this state-space representation, xk is interpreted as the state of the system at

some time tk, and yk are our observations. For application in neuroscience, we can

take M � L as few state variables of the system are readily observed. F is our

model which maps states xk between time points tk and tk+1. H is our observation

operator which describes how we connect our observations yk+1 to our state space at

tk+1. The random variables ωk+1 and ηk+1 represent model error and measurement

error respectively. A simplifying assumption is that our measurements are diluted

by Gaussian white noise, and that the error in the model can be approximated by

Gaussian white noise as well. Then ωk ∼ N (0, Qk) and ηk ∼ N (0, Rk), where Qk

is our model error covariance matrix and Rk is our measurement error covariance

matrix. We will assume these distributions for the error terms for the remainder of

the dissertation.

We now have defined a stochastic dynamical system where we have characterized

the evolution of our states and observations therein based upon assumed error

statistics. The goal is now to utilize these transitions to construct methods to best

estimate the state x over time. To approach this goal, it may be simpler to consider the

evaluation of background knowledge of system compared to what we actually observe

from a measuring device. Background knowledge, in our context, would be some

representative model based on our physical understanding of the system. Consider

4



the following cost function [6]:

C(x) =
1

2
‖y −Hx‖2R +

1

2

∥∥x− xb∥∥2
P b (1.7)

where ‖z‖2A = zTA−1z. P b acts to give weight to certain background components xb,

and R acts in the same manner to the measurement terms. The model or background

term acts to regularize the cost function. Specifically, trying to minimize 1
2
‖y −Hx‖2R

is underdetermined with respect to the observations unless we can observe the full

system, and the measurement term aims to inform the problem of the unobserved

components. We are minimizing over state components x. In this way, we balance

the influence of what we think we know about the system, such as from a model,

compared to what we can actually observe. The cost function is minimized from

∇C = (HTR−1H + (P b)−1)xa − (HTR−1y + (P b)−1xb) = 0 (1.8)

This can be restructured as

xa = xb +K(y −Hxb) (1.9)

where

K = P bHT (HP bHT +R)−1 (1.10)

The optimal Kalman gain matrix, K, acts as a weighting of the confidence of our

observations to the confidence of our background information given by the model.
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If the background uncertainty is relatively high or the measurement uncertainty is

relatively low, K is larger, which more heavily weights the innovation y −Hxb.

The minimum of the cost functional (1.7), which is explicitly given by equation

(1.9) can be interpreted as the solution of a single time step in our state space problem

(1.5)-(1.6). In the DA literature, minimizing this cost function independent of time is

referred to as 3D-Var. However, practically we are interested in problems resembling:

C(x) =
1

2

N∑
k=0

‖yk −Hxk‖2Rk
+

1

2

N−1∑
k=0

‖xk+1 − Fxk‖2P b
k

(1.11)

where formally the background component xb has now been replaced with our model.

Now we are concerned with minimizing over an observation window with N + 1 time

points. Variational methods, specifically “weak 4D-Var”, seek minima of equation

(1.11) either by formulation of an adjoint problem [7], or directly from numerical

optimization techniques.

Alternatively, sequential data assimilation aims to use information from

previous time points tk−l, tk−l+1, . . . tk (or, in the case of the classical Kalman filter,

just tk), to optimally estimate the state at tk+1. The classical Kalman filter utilizes

the form of equation (1.10), which minimizes the trace of the posterior covariance

matrix of the system at step k + 1, P a
k+1, to update the state estimate and system

uncertainty.

The Kalman filtering algorithm takes the following form:

Our analysis estimate, x̂ak from the previous iteration, is mapped through the

linear model operator F to obtain our forecast estimate x̂fk+1:

x̂fk+1 = Fkx̂
a
k. (1.12)
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The observation operator, H, is applied to the forecast estimate to generate the

measurement estimate, ŷfk+1:

ŷfk+1 = Hk+1x̂
f
k+1. (1.13)

The forecast estimate covariance P f
k+1 is generated through calculating the covariance

from the model and adding it with the model error covariance Qk:

P f
k+1 = FkP

a
kF

T
k +Qk. (1.14)

Similarly, we can construct the measurement covariance estimate by calculating the

covariance from our observation equation and adding it to the measurement error

covariance Rk:

P y
k+1 = Hk+1P

f
k+1H

T
k+1 +Rk. (1.15)

The Kalman gain is defined analogously to equation (1.10):

Kk+1 = P f
k+1H

T
k+1(P

y
k+1)

−1. (1.16)

The covariance and the mean estimate of the system are updated through a weighted

sum with the Kalman gain:

P a
k+1 = (I −Kk+1Hk+1)P

f
k+1 (1.17)

x̂ak+1 = x̂fk+1 +Kk+1(yk+1 − ŷfk+1). (1.18)
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These equations can be interpreted as a predictor-corrector method, where the

predictions of the state estimates are x̂fk+1 with corresponding uncertainties P f
k+1

in the forecast. The correction, or analysis, step linearly interpolates the forecast

predictions with observational readings.

1.2 Nonlinear Data Assimilation Methods

1.2.1 Nonlinear Filtering

For nonlinear models, the Kalman equations need to be adapted to permit nonlinear

mappings in the forward operator and the observation operator:

xk+1 = f(xk) + ωk+1, ωk ∈ RL (1.19)

yk+1 = h(xk+1) + ηk+1, ηk+1 ∈ RM . (1.20)

Our observation operator for voltage data remains linear: h(x) = Hx = [e1 0 . . . 0]x,

where ej is the jth elementary basis vector, is a projection onto the voltage component

of our system. Note that h(x) is an operator, not to be confused with the inactivation

gate in equation (1.2). Our nonlinear model update, f(x) in equation (1.19), is taken

as the forward integration of the dynamical equations between observation times.

Multiple platforms for adapting the Kalman equations exist. The most

straightforward approach is the Extended Kalman filter (EKF) which uses local

linearizations of the nonlinear operators in equation (1.19)–(1.20) and plugs these

into the standard Kalman equations. By doing so, one preserves Gaussianity of the

state space. Underlying the data assimilation framework is the goal of understanding

the distribution, or statistics of the distribution, of the states of the system given the

observations:

p(x|y) ∝ p(y|x)p(x). (1.21)
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The Gaussianity of the state space declares the posterior conditional distribution,

p(x|y), to be a normal distribution by the product of Gaussians being Gaussian,

and the statistics of this distribution lead to the Kalman update equations [7].

However, the EKF is really only suitable when the dynamics are nearly linear between

observations, and can result in divergence of the estimates [66].

Rather than trying to linearize the transformation to preserve Gaussianity,

where this distributional assumption is not going to be valid for practical problems

anyway, an alternative approach is to preserve the nonlinear transformation and try

to estimate the first two moments of transformed state [66]. The Unscented Kalman

Filter (UKF) approximates the first two statistics of p(xk|yk) by calculating sample

means and variances, which bypasses the need for Gaussian integral products. The

UKF uses an ensemble of deterministically selected points in the state space whose

collective mean and covariance are that of the state estimate and its associated

covariance at some time. The forward operator f(x) is applied to each of these sigma

points, and the mean and covariance of the transformed points can then be computed

to estimate the nonlinearly transformed mean and covariance. Figure 1.1 depicts this

“unscented” transformation. The sigma points accurately estimate the true statistics

both initially (Figure 1.1 A) and after nonlinear mapping (Figure 1.1 B). A: Initial

data where blue corresponds to sampling points from a normal distribution of the

V, n state-space and the red circles are the sigma points. Blue corresponds to the

true uncertainty and mean of the sampled distribution. Magenta corresponds to the

statistics of the sigma points. B: Illustrates the forward operator f(x) acting on each

element of the left panel where f(x) is the numerical integration of the Morris-Lecar

equations (2.1)–(2.5) between observation times.

In the UKF framework, as with all DA techniques, one is attempting to estimate

the states of the system. The standard set of states in conductance-based models

includes the voltage, the gating variables, and any intracellular ion concentrations
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Figure 1.1 Unscented transformation for the Morris-Lecar model.

not taken to be stationary. To incorporate parameter estimation, parameters θ to

be estimated are promoted to states whose evolution is governed by the model error

random variable:

θk+1 = θk + ωθ
k+1 ωθ

k ∈ RD. (1.22)

This is referred to as an “artificial noise evolution model”, as the random disturbances

driving deviations in model parameters over time robs them of their time-invariant

definition [49, 75]. We found this choice to be appropriate for convergence and as a

tuning mechanism. An alternative is to zero out the entries of Qk corresponding to the

parameters in what is called a “persistence model” where θk+1 = θk [36]. However,

changes in parameters can still occur during the analysis stage.
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We declare our augmented state to be comprised of the states in the dynamical

system as well as parameters θ of interest:

Augmented State : x = (V,q,θ)T q ∈ RL−1, θ ∈ RD (1.23)

where q represents the additional states of the system besides the voltage. The filter

requires an initial guess of the state x̂0 and covariance Pxx.

An ensemble of σ points are formed whose position and weights are determined

by λ, which can be chosen to try to match higher moments of the system distribution

[66]. λ, to the best of our understanding, is introduced purely as a scaling parameter,

and certain implementations have found success by merely setting λ = 0. Practically,

this algorithmic parameter can be chosen to spread the ensemble for λ > 0, shrink the

ensemble for −N < λ < 0, or to have the mean point completely removed from the

ensemble by setting it to zero. The ensemble is formed on lines 80-82 of UKF Step.m.

The individual weights can be negative, but their cumulative sum is 1.

σ Points : Xj = x̂ak±
(√

(N + λ)Pxx

)
j
, j = 1 . . . 2N, X0 = x̂ak (1.24)

Weights : Wj =
1

2 (N + λ)
, j = 1 . . . 2N, W0 =

λ

N + λ
(1.25)

(1.26)

We form our background estimate x̂bk+1 by applying our map f(x) to each of the

ensemble members,

X̃j = f(Xj) (1.27)
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and then computing the resulting mean:

Forecast Estimate : x̂bk+1 =
2N∑
j=0

WjX̃j. (1.28)

We then propagate the transformed sigma points through the observation operator:

Ỹj = h(X̃j) (1.29)

and compute our predicted observation ŷbk+1 from the mapped ensemble:

Measurement Estimate : ŷbk+1 =
2N∑
j=0

WjỸj. (1.30)

We compute the background covariance estimate by calculating the variance of the

mapped ensemble and adding the process noise Qk:

Background Cov. Est. : P f
xx =

2N∑
j=0

Wj(X̃j − x̂bi+k)(X̃j − x̂bi+k)T +Qk (1.31)

and do the same for the predicted measurement covariance with the addition of Rk:

Predicted Meas. Cov. : Pyy =
2N∑
j=0

Wj(Ỹj − ŷbk+1)(Ỹj − ŷbk+1)
T +Rk+1. (1.32)
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The Kalman gain is computed by matrix multiplication of the cross-covariance:

Cross-Cov. : Pxy =
2N∑
j=0

Wj(X̃j − x̂bk+1)(Ỹj − ŷbk+1)
T (1.33)

with the predicted measurement covariance:

Kalman Gain : K = PxyP
−1
yy . (1.34)

When only observing voltage, this step is merely scalar multiplication of a vector. The

gain is used in the analysis, or update step, to linearly interpolate our background

statistics with measurement corrections. The update step for the covariance is:

P a
xx = P b

xx −KPT
xy, (1.35)

and the mean is updated to to interpolate the background estimate with the deviations

of the estimated measurement term with the observed data yk+1:

x̂ak+1 = x̂bk+1 +K(yk+1 − ŷbk+1). (1.36)

An implementation of this algorithm is shown in the Appendix with the parent

function UKFML.m and one time step of the algorithm computed in UKF Step.m.

The analysis step is performed on line 124 of UKF Step.m. Some implemen-

tations also include a redistribution of the sigma points about the forecast estimate

using the background covariance prior to computing the cross-covariance Pxy or the
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predicted measurement covariance Pyy [107]. So, after equation (1.31), we redefine

X̃j, Ỹj in equation (1.27) as:

X̃j = x̂bk+1 ±
(√

(N + λ)Pxx

)
j
, j = 1 . . . 2N

Ỹj = h(X̃j)

The above is shown in lines 98-117 in UKF Step. A particularly critical part of

using a filter, or any DA method, is choosing the process covariance matrix Qk and

the measurement covariance matrix Rk. The measurement noise may be intuited

based upon knowledge of one’s measuring device, but the model error is practically

impossible to know a priori . Work has been done to use previous innovations to

simultaneously estimate Q and R during the course of the estimation cycle [12],

but this becomes a challenge for systems with low observability (such as is the case

when only observing voltage). Rather than estimating the states and parameters

simultaneously as with an augmented state space, one can try to estimate the states

and parameters separately. For example, [101] used a shooting method to estimate

parameters and the UKF to estimate the states. This study also provided a systematic

way to estimate an optimal covariance inflation Qk. For high-dimensional systems

where computational efficiency is a concern, an implementation which efficiently

propagates the square root of the state covariance has been developed [108].

Figure 1.2 depicts how the algorithm operates. Between observation times, the

previous analysis (or best estimate) point is propagated through the model to come

up with the predicted model estimate. The Kalman update step interpolates this

point with observations weighted by the Kalman gain. The red circles are the result

of forward integration through the model using the previous best estimates. The

green are the estimates after combining these with observational data. The blue stars
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depict the true system output (without any noise), and the magenta stars are the

noisy observational data with noise generated by Equation (2.7) and ε = 0.1.

Figure 1.2 Example of iterative estimation in UKF.

1.2.2 Variational Methods

In continuous time, variational methods aim to find minimizers of functionals which

represent approximations to the probability distribution of a system conditioned on

some observations. As our data is available only in discrete measurements, it is

practical to work with a discrete form similar to Equation (1.7) for nonlinear systems:

C(x) =
1

2

N∑
k=0

‖yk − h(xk)‖2Rk
+

1

2

N−1∑
k=0

‖xk+1 − f(xk)‖2P b
k
. (1.37)

We assume the states follow the state-space description in Equations (1.19)–

(1.20) with ωk ∼ N (0, Q) and ηk ∼ N (0, R), where Q is our model error covariance

matrix and R is our measurement error covariance matrix. As an approximation,

we impose Q, R to be diagonal matrices, indicating that there is assumed to be

no correlation between errors in different states. Namely, Q, contains only the
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assumed model error variance for each state-space component, and R is just the

measurement error variance of the voltage observations. These assumptions simplify

the cost function to:

C(x) =
1

2

N∑
k=0

R−1 (yk − Vk)2 +
1

2

L∑
l=1

N−1∑
k=0

Q−1l,l (xl,k+1 − fl(xk))2 (1.38)

where Vk = x1,k. For the current-clamp data problem in neuroscience, one seeks to

minimize Equation (3.4) in what is called the “weak 4D-Var” approach. An example

implementation of weak 4D-Var is shown in w4DvarML.m in the Appendix. An

example of the cost function with which to minimize over is given in the child function

w4dvarobjfun.m. Each of the xk are mapped by f(x) on line 108. Alternatively,

“strong 4D-Var” forces the resulting estimates to be consistent with the model, f(x).

This can be considered the result of taking Q → 0, which yields the nonlinearly

constrained problem:

C(x) =
1

2

N∑
k=0

R−1 (yk − Vk)2 (1.39)

such that

xk+1 = f(xk), k = 0 . . . N. (1.40)

The rest of this chapter will be focused on the weak case, Equation (3.4), where

we can define the argument of the optimization as:

x = [x1,1, x1,2, . . . x1,N , x2,1, . . . xL,N , θ1, θ2, . . . θD] (1.41)
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resulting in an (N + 1)L+D dimensional estimation problem. An important aspect

of the scalability of this problem is that the Hessian matrix,

Hi,j =
∂2C

∂xi∂xj
(1.42)

is sparse. Namely, each state at each discrete time has dependencies based upon the

model equations, and the chosen numerical integration scheme. At the heart of many

gradient-based optimization techniques lies a linear system involving the Hessian and

the gradient, ∇C(xn), of the objective function that is used to solve for the next

candidate point. Specifically, Newton’s method for optimization is:

xn+1 = xn −H−1∇C(xn) (1.43)

Therefore, if (N+1)L+D is large, then providing the sparsity pattern is advantageous

when numerical derivative approximations, or functional representations of them,

are being used to perform minimization with a derivative-based method. One

can calculate these derivatives by hand, symbolic differentiation, or automatic

differentiation.

A feature of the most common derivative-based methods is assured convergence

to local minima. However, our problem is non-convex due to the model term, which

leads to the development of multiple local minima in the optimization surface as

depicted in Figure 1.3. Figure 1.3 A depicts a surface generated by taking the

logarithm of C(α, β), where C(α, β) = C (x0(1− α)(1− β) + αxmin,d + βxmin,s) so

that at α = β = 0, x = x0 (magenta circle), and at α = 1 and β = 0, x = xmin,d

for the deeper minima (gray square), and similarly for the shallower minima (gray

diamond). Figure 1.3 B shows the contour plot of the surface shown in (A). For the
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results in this tutorial we will only utilize local optimization tools, but see Section 2.3

for a brief discussion of some global optimization methods with stochastic search

strategies.

Figure 1.3 Example cost function for 4D-Var.

This chapter focuses on the introduction of Data Assimilation as a means to

optimally incorporate model uncertainty and measurement uncertainty to estimate a

systems’ dynamics. In UKF, observations are sequentially introduced and estimates

of the system states are sequentially improved. 4D-Var operates on a fixed time

window and estimates the system simultaneously. We will apply it to a minimal

conductance-based model, the Morris-Lecar model, in the following chapter.
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CHAPTER 2

DATA ASSIMILATION APPLIED TO THE MORRIS-LECAR MODEL

2.1 Twin Experiments

Data assimilation is a framework for the incorporation of system observations into an

estimation problem in a systematic fashion. Unfortunately, the methods themselves

do not provide a great deal of insight into the tractability of unobserved system

components of specific models. There may be a certain level of redundancy in the

model equations, and degeneracy in the parameter space leading to multiple potential

solutions [98]. Also, it may be the case that certain parameters are non-identifiable

if, for instance, a parameter can be completely scaled out [113]. Some further work

on identifiability is ongoing [102,103].

Before applying a method to data from a real biological experiment, it is

important to test it against simulated data where the ground truth is known. In these

experiments, one creates simulated data from a model, and then tries to recover the

true states and parameters of that model from the simulated data alone.

2.1.1 Recovery of Bifurcation Structure

In conductance-based models, as well as in real neurons, slight changes in a parameter

value can lead to drastically different model output or neuronal behavior. Sudden

changes in the topological structure of a dynamical system upon smooth variation of

a parameter are called bifurcations. Different types of bifurcations lead to different

neuronal properties, such as the presence of bistability and subthreshold oscillations

[42]. Thus, it is important for a neuronal model to accurately capture the bifurcation

dynamics of the cell being modeled [63]. In this chapter, we ask whether or not the

models estimated through data assimilation match the bifurcation structure of the

model that generated the data. This provides a qualitative measure of success or
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failure for the estimation algorithm. Since bifurcations are an inherently nonlinear

phenomenon, our use of topological structure as an assay emphasizes how nonlinear

estimation is a fundamentally distinct problem from estimation in linear systems.

2.1.2 Morris-Lecar Model

The Morris-Lecar model, first used to describe action potential generation in barnacle

muscle fibers, has become a canonical model for studying neuronal excitability

[82]. The model includes an inward voltage-dependent calcium current, an outward

voltage-dependent potassium current, and a passive leak current. The activation

gating variable for the potassium current has dynamics, whereas the calcium current

activation gate is assumed to respond instantaneously to changes in voltage. The

calcium current is also non-inactivating, resulting in a 2D model. The model exhibits

multiple mechanisms of excitability: for different choices of model parameters,

different bifurcations from quiescence to repetitive spiking occur as the applied current

is increased [42].

Three different bifurcation regimes—Hopf, saddle-node on an invariant circle

(SNIC), and homoclinic—are depicted in Figure 2.1 and correspond to the parameter

sets in Table 2.1. For a given applied current in the region where a stable limit cycle

(corresponding to repetitive spiking) exists, each regime displays a distinct firing

frequency and action potential shape. The bifurcation diagrams in the top row depict

stable fixed points (red), unstable fixed points, including saddles, (black), stable limit

cycles (blue), and unstable limit cycles (green). Gray dots indicate bifurcation points,

and the dashed gray lines indicate the value of Iapp corresponding to the traces shown

for V (middle row) and n (bottom row). A: As Iapp is increased from 0 or decreased

from 250 nA, the branches of stable fixed points lose stability through subcritical

Hopf bifurcation and unstable limit cycles are born. The branch of stable limit cycles

that exists at Iapp = 100 nA eventually collides with these unstable limit cycles and is
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destroyed in a saddle-node of periodic orbits (SNPO) bifurcation as Iapp is increased

or decreased from this value. B: As Iapp is increased from 0, a branch of stable fixed

points is destroyed through saddle-node bifurcation with the branch of unstable fixed

points. As Iapp is decreased from 150 nA, a branch of stable fixed points loses stability

through subcritical Hopf bifurcation and unstable limit cycles are born. The branch

of stable limit cycles that exists at Iapp = 100 nA is destroyed through a SNPO

bifurcation as Iapp is increased and a SNIC bifurcation as Iapp is decreased. C: Same

as (B), except that the stable limit cycles that exist at Iapp = 36 nA are destroyed

through a homoclinic orbit bifurcation as Iapp is decreased.

Table 2.1 Morris-Lecar Parameter Values
Hopf SNIC Homoclinic

φ .04 .067 .23
gCa 4 4 4
V3 2 12 12
V4 30 17.4 17.4
gK 8 8 8
gL 2 2 2
V1 -1.2 -1.2 -1.2
V2 18 18 18

The equations for the Morris-Lecar model are:

Cm
dV

dt
= Iapp − gL(V − EL)− gKn(V − EK)

− gCam∞(V )(V − ECa) = f ?V (V, n;θ)

(2.1)

dn

dt
= φ(n∞(V )− n)/τn(V ) = f ?n(V, n;θ) (2.2)
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Figure 2.1 Three different excitability regimes of the Morris-Lecar model.

with

m∞ =
1

2
[1 + tanh((V − V1)/V2)] (2.3)

τn = 1/cosh((V − V3)/2V4) (2.4)

n∞ =
1

2
[1 + tanh((V − V3)/V4)] (2.5)

The eight parameters that we will attempt to estimate from data are gL, gK,

gCa, φ, V1, V2, V3, and V4. We are interested in whether the estimated parameters

yield a model with the desired mechanism of excitability. Specifically, we will conduct

twin experiments where the observed data is produced by a model with parameters

in a certain bifurcation regime, but the data assimilation algorithm is initialized with

parameter guesses corresponding to a different bifurcation regime. We then assess

whether or not a model with the set of estimated parameters undergoes the same

bifurcations as the model that produced the observed data. This approach provides
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an additional qualitative measure of estimation accuracy, beyond simply comparing

the values of the true and estimated parameters.

2.1.3 Results with UKF

The UKF was tested on the Morris-Lecar model in an effort to simultaneously estimate

V and n along with the 8 parameters in Table 2.1. For all simulations, C = 20,

ECa = 120, EK = −84, and EL = −60. For the Hopf and SNIC regime, Iapp = 100;

for the homoclinic regime, Iapp = 36. Data was generated via a modified Euler

scheme, a 2nd order Runge-Kutta method, at observation points every 0.1 ms, where

we take the step-size, ∆t, as 0.1 as well:

x̃k+1 = xk + ∆tf ?(tk, xk)

xk+1 = xk +
∆t

2
(f ?(tk, xk) + f ?(tk+1, x̃k+1))

= f(xk). (2.6)

The UKF is a particularly powerful tool when a lot of data is available; the

computational complexity in time is effectively the same as the numerical scheme of

choice, whereas the additional operations at each time point are O((L + D)3) [115].

f(x) in Equation (1.19) is taken to be the Morris-Lecar equations (2.1)–(2.2), acting

as f ?(tk, xk), integrated forward via modified Euler as in Equation (2.6), and is given

on line 126 of UKFML.m. The function fXaug.m, shown later in the Appendix,

represents our augmented vector field. Our observational operator H is displayed on

line 136 of UKFML.m. To reiterate, the states to be estimated in the Morris-Lecar

model are the voltage and the potassium gating variable. The 8 additional parameters

are promoted to members of state space with trivial dynamics resulting in a 10-D

estimation problem.
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These examples were run using 20 seconds of data which is 200,001 time points.

During this time window, the Hopf, SNIC, and homoclinic models fire 220, 477, and

491 spikes, respectively. Such a computation for a 10-D model takes only a few

minutes on a laptop computer. R can be set to 0 when one believes the observed

signal to be completely noiseless, but even then it is commonly left as a small number

to try to mitigate the development of singularities in the predicted measurement

covariance. We set our observed voltage to be the simulated output using modified

Euler with additive white noise at each time point:

Vobs(t) = Vtrue(t) + η(t) (2.7)

where η ∼ N (0, (εσtrue)
2) is a normal random variable whose variance is equal to

the square of the standard deviation of the signal scaled by a factor ε, which is kept

fixed at 0.01 for these simulations. R is taken as the the variance of η. The initial

covariance of the system is αII, where I is the identity matrix and αI is 0.001. The

initial guess for n is taken to be 0. Q is fixed in time as a diagonal matrix with diagonal

10−7 [max(Vobs)−min(Vobs), 1, |θ0|], where θ0 represents our initial parameter guesses.

We set λ = 5, however this parameter was not especially influential for the results

of these runs, as discussed further below. These initializations are displayed in the

body of the parent function UKFML.m.

Figure 2.2 shows the state estimation results when the observed voltage is from

the SNIC regime but the UKF is initialized with parameter guess corresponding to

the Hopf regime. Initially, the state estimate for n and its true, unobserved dynamics

have great disparity. As the observations are assimilated over the estimation window,

the states and model parameters adjust to produce estimates which better replicate

the observed, and unobserved, system components. In this way, information from the
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observations is transferred to the model. The evolution of the parameter estimates for

this case is shown in the first column of Figure 2.3, with φ, V3, and V4 all converging

to close to their true values after 10 seconds of observations. The only difference

in parameter values between the SNIC and homoclinic regimes is the value of the

parameter φ. The second column of Figure 2.3 shows that when the observed data

is from the homoclinic regime but the initial parameter guesses are from the SNIC

regime, the estimates of V3 and V4 remain mostly constant near their original (and

correct) values, whereas the estimate of φ quickly converges to its new true value.

Finally, the third column of Figure 2.3 shows that all three parameter estimates

evolve to near their true values when the UKF is presented data from the Hopf

regime but initial parameter estimates from the homoclinic regime.
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Figure 2.2 State estimates for UKF. This example corresponds to initializing with
parameters from the HOPF regime and attempting to correctly estimate those of the
SNIC regime. The noisy observed voltage V and true unobserved gating variable n
are shown in blue, and their UKF estimates are shown in red.

Table 2.2 shows the parameter estimates at the end of the estimation window

for all of the nine possible twin experiments. Promisingly, a common feature of the

results is the near recovery of the true value of each of the parameters. However, the
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Figure 2.3 Parameter estimates for UKF. This example corresponds to initializing
with parameters from the HOPF, SNIC, and HOMO regimes and attempting to
correctly estimate those of the SNIC, HOMO, and HOPF regimes (left to right
column, respectively). The blue curves are the estimates from the UKF, with ±2
standard deviations from the mean based on the filter estimated covariance shown in
red. The gray lines indicate the true parameter values.

estimated parameter values alone do not necessarily tell us about the dynamics of

the inferred model. To assess the inferred models, we generate bifurcation diagrams

using the estimated parameters and compare them to the bifurcation diagrams for the

parameters that produced the observed data. Figure 2.4 shows that the SNIC and

homoclinic bifurcation diagrams were recovered quite exactly. The Hopf structure

was consistently recovered, but with shifted regions of spiking and quiescence, and

minor differences in spike amplitude.

To check the consistency of our estimation, we set 100 initial guesses for n across

its dynamical range as samples from U(0, 1). Figure 2.5 shows that the state estimates

for n across these initializations quickly approached very similar trajectories. We

confirmed that after the estimation cycle was over, the parameter estimates for all

100 initializations were essentially identical to the values shown in Table 2.2. In this
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Figure 2.4 Bifurcation diagrams for UKF twin experiments. The gray lines
correspond to the true diagrams, and the blue dotted lines correspond to the diagrams
produced from the estimated parameters in 2.2.

paper, we always initialized the UKF with initial parameter values corresponding to

the various bifurcation regimes, and did not explore the performance for randomly

selected initial parameter guesses. For initial parameter guesses that are too far from

the true values, it is possible that the filter would converge to incorrect parameter

values or fail outright before reaching the end of the estimation window.

Additionally, we investigated the choices of certain algorithmic parameters for

the UKF, namely λ and αI . Figure 2.6A shows suitable ranges of these parameters,

with the color indicating the root mean squared error of the parameters at the end of

the cycle compared to their true values. We found this behavior to be preserved across

our 9 twin experiment scenarios. Notably, this shows that our results in Table 2.2 were

generated using an initial covariance, αI = 0.001, that was smaller than necessary.

By increasing the initial variability, the estimated system can converge to the

true dynamics more quickly, as shown for αI = 0.1 in Figure 2.6B. The color scale

represents the root mean squared error of the final parameter values at T = 200, 001
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from the parameters of the SNIC bifurcation regime. Gray indicates the filter failed

outright before reaching the end of the estimation window. B: Parameter estimates

over time for the run with λ = 5, αI = 0.1. The parameters (especially φ and V3)

approach to their true values more quickly than corresponding runs with smaller initial

covariances; see column 1 of Figure 2.3 for parameter estimates with λ = 5, αI =

0.001. C: Same as (A), but with a modification to the numerical integration scheme

that restricts the gating variable n to remain within its biophysical range of 0 to 1.

The value of λ does not have a large impact on these results, except for when αI = 1.

Here the filter fails before completing the estimation cycle, except for a few cases

where λ is small enough to effectively shrink the ensemble spread and compensate

for the large initial covariance. For example, with λ = −9, we have N − 9 = 1 and

therefore the ensemble spread in Equation (1.25) is simply Xj = x̂ak ±
√
Pxx. For

even larger initial covariances (αI > 1), the filter fails regardless of the value of λ.

We noticed that in many of the cases that failed, the parameter estimate for φ was

becoming negative (which is unrealistic for a rate) or quite large (φ > 1), and that

the state estimate for n was going outside of its biophysical range of 0 to 1. When

the gating variable extends outside of its dynamical range it can skew the estimated

statistics and the filter may be unable to recover. The standard UKF framework does

not provide a natural way of incorporating bounds on parameter estimates, and we do

not apply any for the results presented here. However, we did find that we can modify

our numerical integration scheme to prevent the filter from failing in many of these

cases, as shown in Figure 2.6C. Specifically, if n becomes negative or exceeds 1 after

the update step, then artificially setting n to 0 or 1 in the Modified Euler method

(2.6) before proceeding can enable the filter to reach the end of the estimation window

and yield reasonable parameter estimates.
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Figure 2.5 UKF state estimates of n for the Morris-Lecar model with 100 different
initial guesses of the state sampled from U(0, 1), with all other parameters held fixed.

2.1.4 Results with 4D-Var

The following results illustrate the use of weak 4D-Var. One can minimize the

cost function in Equation (3.4) using a favorite choice of optimization routine. For

the following examples, we will consider a local optimizer by using interior point

optimization with MATLAB’s built-in solver fmincon. At the heart of the solver is a

Newton-step which uses information about the Hessian, or a conjugate gradient step

Table 2.2 UKF Parameter Estimates at End of Estimation Window, with Observed
Data from Bifurcation Regime ‘t’ and Initial Parameter Guesses Corresponding to
Bifurcation Regime ‘g’

t:HOPF t:SNIC t:HOMO
g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.040 0.40 0.040 0.067 0.067 0.067 0.237 0.224 0.224
gCa 4.017 4.019 4.025 4.001 4.000 4.001 4.112 3.874 3.877
V3 1.612 1.762 1.660 11.931 11.937 11.912 11.751 11.784 11.772
V4 29.646 29.832 29.771 17.343 17.337 17.342 17.739 16.806 16.815
gK 7.895 7.926 7.892 7.970 7.971 7.958 7.929 7.854 7.850
gL 2.032 2.027 2.033 2.003 2.004 2.003 2.025 1.967 1.968
V1 -1.199 -1.195 -1.189 -1.193 -1.193 -1.190 -1.064 -1.346 -1.341
V2 18.045 18.053 18.067 17.991 17.991 17.991 18.179 17.734 17.740
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Figure 2.6 A: UKF results from runs of the t:SNIC/g:HOPF twin experiment for
various parameter combinations of λ and αI .

using gradient information [21,22,114]. The input we are optimizing over conceptually

takes the form of

x = [V0, V1, . . . VN , n0, n1, . . . nN , θ1, θ2, . . . θD] (2.8)

resulting in an (N+1)L+D dimensional estimation problem where L = 2. There are

computational limitations with memory storage and the time required to sufficiently
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solve the optimization problem to a suitable tolerance for reasonable parameter

estimates. Therefore, we can not be cavalier with using as much data with 4D-Var as

we did with the UKF, as that would result in a (200001)2 + 8 = 400, 010 dimensional

problem. Using Newton’s method, Equation (1.43), on this problem would involve

inverting a Hessian matrix of size (400, 010)2, which according to a rough calculation

would require over 1 TB of RAM. Initialization of the optimization is shown on line

71 of w4DVarML.m.

The estimated parameters are given in Table 2.4. These results were run using

N = 2001 time points. To simplify the search space, the parameter estimates were

constrained between the bounds listed in Table 2.3. These ranges were chosen to

ensure that the maximal conductances, the rate φ, and the activation curve slope V2 all

remain positive. We found that running 4D-Var with even looser bounds (Table 2.6)

yielded less accurate parameter estimates (Tables 2.7 and 2.8).The loose parameter

bounds in Table 2.6 were used for these trials. The white noise perturbations or the

4D-Var trials were the same as those from the UKF examples. Initial guesses for the

states at each time point are required. For these trials, V is initialized as Vobs, and

n is initialized as the result of integration of its dynamics forced with Vobs using the

initial guesses for the parameters, i.e. n =
∫
t
fn(Vobs, n; θ0)dt. The initial guesses are

generated beginning on line 38 of w4DvarML.m. We impose that Q−1 in Equation

(3.4) is a diagonal matrix with entries αQ[1, 1002] to balance the dynamical variance

of V and n. The scaling factor αQ represents the relative weight of the model term

compared to the measurement term. Based on preliminary tuning experiments, we

set αQ = 100 for the results presented.

Figure 2.7 depicts the states produced by integrating the model with the esti-

mated parameters across different iterations within the interior-point optimization.

Over iteration cycles, the geometry of spikes as well as the spike time alignments

eventually coincide with the noiseless data, Vtrue. Figure 2.9 shows the evolution
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Table 2.3 Bounds Used During 4D-Var Estimation for the Results Shown in
Tables 2.4 and 2.5

Lower Bound Upper Bound

φ 0 1
gCa 0 10
V3 -20 20
V4 .1 35
gK 0 10
gL 0 5
V1 -10 20
V2 .1 35

Table 2.4 4D-Var Parameter Estimates at the End of the Optimization for each
Bifurcation Regime

t:HOPF t:SNIC t:HOMO
g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.040 0.037 0.039 0.069 0.067 0.066 0.414 0.218 0.230
gCa 4.000 3.890 3.976 4.024 4.000 4.045 9.037 3.813 3.999
V3 2.000 3.404 3.241 12.695 12.000 12.076 7.458 13.022 12.004
V4 30.000 29.085 30.122 18.759 17.400 16.990 28.365 17.165 17.403
gK 8.000 8.386 8.287 8.284 8.000 8.009 9.817 8.472 8.002
gL 2.000 2.016 2.021 1.930 2.000 2.071 3.140 1.941 2.000
V1 -1.200 -1.335 -1.250 -1.078 -1.200 -1.179 2.872 -1.419 -1.202
V2 18.000 17.619 17.911 18.091 18.000 18.162 24.769 17.712 18.000

of the parameters across the entire estimation cycle. The blue traces are noiseless

versions of the observed voltage data (left column) or the unobserved variable n

(right column) from the model that produced the data. The red traces are the result

of integrating the model with the estimated parameter sets at various points during

the course of the optimization. A: Initial parameter guesses. B: Parameter values

after 100 iterations. C: Parameter values after 1,000 iterations. D: Parameter values

after 30,000 iterations (corresponds to t:SNIC/g:HOPF column of Table 2.4). The

Table 2.5 4D-Var Parameter Estimates at the End of the Optimization for Each
Bifurcation Regime, Derivative Provided

t:HOPF t:SNIC t:HOMO
g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.039 0.039 0.039 0.066 0.067 0.066 0.230 0.230 0.230
gCa 3.889 3.889 3.889 4.002 4.035 4.002 4.014 4.019 4.014
V3 1.971 1.971 1.971 11.825 12.176 11.825 12.321 12.320 12.320
V4 29.533 29.533 29.533 17.071 17.342 17.071 17.615 17.633 17.616
gK 8.050 8.050 8.050 7.923 8.057 7.923 8.157 8.158 8.157
gL 1.928 1.928 1.928 2.027 2.038 2.027 1.996 1.997 1.996
V1 -1.301 -1.301 -1.301 -1.232 -1.165 -1.232 -1.154 -1.148 -1.153
V2 17.600 17.600 17.600 18.004 18.126 18.004 18.050 18.057 18.050
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Table 2.6 Bounds Used During 4D-Var Estimation for the Results Shown in
Tables 2.7 and 2.8

Lower Bound Upper Bound

φ 0 ∞
gCa 0 ∞
V3 −∞ ∞
V4 0.1 ∞
gK 0 ∞
gL 0 ∞
V1 −∞ ∞
V2 0.1 ∞

Table 2.7 4D-Var Parameter Estimates at the End of the Optimization for each
Bifurcation Regime with Loose Parameter Bounds

t:HOPF t:SNIC t:HOMO
g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.040 0.041 0.040 0.066 0.067 0.066 0.406 0.225 0.229
gCa 4.011 3.959 3.989 4.016 4.035 4.040 8.623 3.992 3.983
V3 2.210 13.479 6.284 12.497 12.176 12.102 7.453 14.333 12.197
V4 29.917 37.854 32.748 17.589 17.342 16.998 27.569 18.593 17.464
gK 8.046 10.857 8.989 8.192 8.057 8.021 9.543 9.213 8.092
gL 2.026 1.806 1.959 2.009 2.038 2.067 3.029 1.960 1.990
V1 -1.222 -1.188 -1.208 -1.171 -1.165 -1.188 2.604 -1.198 -1.212
V2 18.030 17.921 17.979 18.087 18.126 18.148 24.260 18.089 17.985

parameter bounds in Table 2.3 were used for these trials. Hessian information was

not provided to the optimizer. For the UKF, the “plateauing” effect of the parameter

estimates seen in Figure 2.3 indicates confidence that they are conforming to being

constant in time. With 4D-Var, and in a limiting sense of the UKF, the plateauing

effect indicates the parameters are settling into a local minimum of the cost function.

In Figure 2.8 we show the bifurcation diagrams of the estimated models from our

Table 2.8 4D-Var Parameter Estimates at the End of the Optimization for each
Bifurcation Regime with Hessian Provided

t:HOPF t:SNIC t:HOMO
g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO g:HOPF g:SNIC g:HOMO

φ 0.039 0.039 0.039 0.066 0.066 0.066 0.571 0.560 0.549
gCa 3.889 3.889 3.889 4.002 4.002 4.002 831.907 911.887 913.350
V3 1.971 1.971 1.971 11.825 11.825 11.825 826.608 896.717 822.366
V4 29.533 29.533 29.533 17.071 17.071 17.071 1695.018 1816.501 1813.829
gK 8.050 8.050 8.050 7.923 7.923 7.923 847.999 932.249 885.392
gL 1.928 1.928 1.928 2.027 2.027 2.027 0.024 0.026 0.118
V1 -1.301 -1.301 -1.301 -1.232 -1.232 -1.232 53.706 54.172 53.913
V2 17.600 17.600 17.600 18.004 18.004 18.004 75.855 76.135 76.111
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Figure 2.7 Example of 4D-Var assimilation initializing with parameters from the
Hopf regime but observational data from the SNIC regime.

4D-Var trials. Notice, and shown explicitly in Table 2.4, when initializing with the

true parameters, the correct model parameters are recovered as our optimization

routine is confidently within the basin of attraction of the global minimum. In the

UKF, comparatively, there is no sense of stopping at a local minimum. Parameter

estimates may still fluctuate even when starting from their true values unless the

variances of the state components fall to very low values, and the covariance Qk can

be tuned to have a baseline variability in the system. The parameter sets for the

SNIC and homoclinic bifurcation regimes only deviate in the φ parameter, and so our

optimization had great success estimating one from the other. The kinetic parameters

(V3 and V4) for the Hopf regime deviate quite a bit from the SNIC or homoclinic.

Still, the recovered bifurcation structures from estimated parameters associated with

trials involving HOPF remained consistent with the true structure.

A drawback of the results shown in Table 2.4 is that for the default tolerances

in fmincon, some runs took more than two days to complete on a dedicated core.

Figure 2.9 shows that the optimal solution had essentially been found after 22,000

iterations, however the optimizer kept running for several thousand more iterations

34



-60
-40
-20
0
20
40

-60
-40
-20
0
20
40

50 95 140 185 230 275
-60
-40
-20
0
20
40

0 25 50 75 100 125 150 -10 0 10 20 30 40 50

t:HOPF t:SNIC t:HOMO

g:HOPF

g:SNIC

g:HOMO

Figure 2.8 Bifurcation diagrams for 4D-Var twin experiments. The gray lines
correspond to the true diagrams, and the blue dotted lines correspond to the diagrams
produced from the estimated parameters in Table 2.4.

before the convergence tolerances were met. Rather than attempting to speed up these

computations by adjusting the algorithmic parameters associated with this solver for

this specific problem, we decided to try to exploit the dynamic structure of the model

equations using automatic differentiation (AD). AD deconstructs derivatives of the

objective function into elementary functions and operations through the chain rule.

We used the MATLAB AD tool ADiGator, which performs source transformation

via operator overloading, and has scripts available for simple integration with various

optimization tools, including fmincon [119]. For the same problem scenario and

algorithmic parameters, we additionally passed in generated gradient and Hessian

functions to the solver. For this problem, the Hessian structure is shown in

Figure 2.10. Note that we are using a very simple scheme in the modified Euler

method in Equation (2.6) to perform numerical integration between observation

points, and the states at k + 1 only have dependencies upon those at k, and on

the parameters. Higher order methods, including implicit methods, can be employed
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naturally since the system is being estimated simultaneously. A tutorial specific to

collocation methods for optimization has been developed [69].

Figure 2.9 Example parameter estimation with 4D-Var initializing with Hopf
parameter regime and estimating parameters of SNIC regime.

Figure 2.10 A: Sparsity pattern for the Hessian of the cost function for the
Morris-Lecar equations for N + 1 = 2001 time points. The final eight rows (and
symmetrically the last eight columns) depict how the states at each time depend
upon the parameters. B: The top left corner of the Hessian shown in (A).

The results are shown in Table 2.5. The loose parameter bounds in Table 2.6

were used for these trials. Hessian information was provided to the optimizer. Each

twin experiment scenario took, at most, a few minutes on a dedicated core. These
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trials converged to the optimal solution in many fewer iterations than the trials

without using the Hessian. Since convergence was achieved within a few dozen

iterations, we decided to inspect how the bifurcation structure of the estimated model

evolved throughout the process for the case of HOPF to SNIC. Figure 2.11 shows that

by Iteration 10, the objective function value has decreased greatly, and parameters

that produce a qualitatively correct bifurcation structure have been found. The

optimization continues for another 37 iterations, and explores other parts of parameter

space that do not yield the correct bifurcation structure, before converging very close

to the true parameter values. The iterates were generated from fmincon with provided

Hessian and gradient functions. For Figure 2.11B, the blue is the initial bifurcation

structure, the gray is the true bifurcation structure for the parameters that generated

the observed data, the red is the bifurcation structure of the iterates, and the green

is the bifurcation structure of the optimal point determined by fmincon.

Figure 2.11 A shows the logarithm of the value of the cost function for a twin
experiment initialized with parameters from the Hopf regime but observational data
from the SNIC regime. B shows the bifurcation diagrams produced from parameter
estimates for selected iterations
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We also wished to understand more about the sensitivity of this problem to

initial conditions. We initialized the system with the voltage states as those of the

observation, the parameters as those of the initializing guess bifurcation regime, and

the gating variable [n0, n1, . . . nN ] to be i.i.d. from U(0, 1). The results confirm our

suspicions that multiple local minima exist. For 100 different initializations of n,

for the problem of going from SNIC to HOPF, 63 were found to fall into a deeper

minima, yielding better estimates and a smaller objective function value, while 16

fell into a shallower minima, and the rest into three different even shallower minima.

While one cannot truly visualize high-dimensional manifolds, one can try to visualize

a subset of the surface. Figure 1.3 shows the surface that arises from evaluating the

objective function on a linear combination of the two deepest minima and an initial

condition, x0, which eventually landed in the shallower of the two minima as points

in 4010-dimensional space.

Again, these results, at best, can reflect only locally optimal solutions of the

optimization manifold. The 4D-Var framework has been applied to neuroscience using

a more systematic approach to finding the global optimum. In [122], a population of

initial states x are optimized in parallel, and an outer loop incorporating an annealing

algorithm. The annealing parameter relates the weights of the two summations in

Equation (3.4), and the iteration proceeds by increasing the weight given to the model

error compared to the measurement error.

2.2 Application to Bursting Regimes of the Morris-Lecar Model

Many types of neurons display burst firing, consisting of groups of spikes separated by

periods of quiescence. Bursting arises from the interplay of fast currents that generate

spiking and slow currents that modulate the spiking activity. The Morris-Lecar model

can be modified to exhibit bursting by including a calcium-gated potassium (KCa)
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current that depends on slow intracellular calcium dynamics [95]:

Cm
dV

dt
= Iapp − gL(V − EL)− gKn(V − EK)

− gCam∞(V )(V − ECa)− gKCaz(V − EK)

(2.9)

dn

dt
= φ(n∞(V )− n)/τn(V ) (2.10)

dCa

dt
= ε (−µICa − Ca) (2.11)

z =
Ca

Ca+ 1
. (2.12)

Bursting can be analyzed mathematically by decomposing models into fast

and slow subsystems and applying geometric singular perturbation theory. Several

different types of bursters have been classified based on the bifurcation structure of

the fast subsystem. In square-wave bursting, the active phase of the burst is initiated

at a saddle-node bifurcation and terminates at a homoclinic bifurcation. In elliptic

bursting, spiking begins at a Hopf bifurcation and terminates at a saddle-node of

periodic orbits bifurcation. The voltage traces produced by these two types of bursting

are quite distinct, as shown in Figure 2.12. The bifurcation diagrams (top row) depict

stable fixed points (red), unstable fixed points (black), stable limit cycles (blue), and

unstable limit cycles (green) of the fast subsystem (V, n) with bifurcation parameter

z. The gray curves are the projection of the 3-D burst trajectory (V , second row;

n, third row; Ca, fourth row) onto the (V, z) plane, where z is a function of Ca.

A: During the the quiescent phase of the burst, Ca and therefore z are decreasing

and the trajectory slowly moves leftward along the lower stable branch of fixed

points until reaching the saddle-node bifurcation or “knee”, at which point spiking

begins. During spiking, Ca and z are slowly increasing and the trajectory oscillates
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Figure 2.12 Bursting model bifurcation diagrams and trajectories.

while traveling rightward until the stable limit cycle is destroyed at a homoclinic

bifurcation and spiking ceases. B: During the quiescent phase of the burst, z is

decreasing and the trajectory moves leftward along the branch of stable fixed points

with small-amplitude decaying oscillations until reaching the Hopf bifurcation, at

which point the oscillations grow in amplitude to full spikes. During spiking, z is

slowly increasing and the trajectory oscillates while traveling rightward until the

stable limit cycle is destroyed at a saddle-node of periodic orbits bifurcation and

spiking ceases. The particular parameters are given by Table 2.9. For square-wave

bursting Iapp = 45, and for elliptic bursting Iapp = 120. All other parameters are the

same as in Table 2.1.

2.2.1 Results with UKF

We conducted a set of twin experiments for the bursting model to address the

same question as we did for the spiking model: from a voltage trace alone, can
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Table 2.9 Parameters for Bursting in the Modified Morris-Lecar Model

Square-wave Elliptic

φ 0.23 0.04
gCa 4 4.4
V3 12 2
V4 17.4 30
gK 8 8
gL 2 2
V1 -1.2 -1.2
V2 18 18
gKCa 0.25 0.75
ε 0.005 0.005
µ 0.02 0.02

DA methods estimate parameters that yield the appropriate qualitative dynamical

behavior? Specifically, we simulated data from the square-wave (elliptic) bursting

regime, and then initialized the UKF with parameter guesses corresponding to elliptic

(square-wave) bursting. As a control experiment we also ran the UKF with initial

parameter guesses corresponding to the same bursting regime as the observed data.

The observed voltage trace included additive white noise generated following the same

protocol as in previous trials. We used 200,001 time points with observations at every

1 ms. Between observations, the system is integrated forward using substeps of 0.025

ms. For the square-wave burster, this includes 215 bursts with four spikes per burst,

and 225 bursts with two spikes for the elliptic burster.

The small parameters ε and µ in the calcium dynamics equation were assumed

to be known and were not estimated by the UKF. Thus, for the bursting model,

we are estimating one additional state variable (Ca) and one additional parameter

(gappKCa) than was the case for the spiking model. Table 2.10 shows the UKF

parameter estimates after initialization with either the true parameters or the

parameters producing the other type of bursting. The results for either case are

quite consistent and fairly close to their true values for both types of bursting. Since

small changes in parameter values can affect bursting dynamics, we also computed

bifurcation diagrams for these estimated parameters and compared them to their true
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counterparts. Figure 2.13 shows that in all four cases, the estimated models have the

same qualitative bifurcation structure as the models that produced the data. The

recovered parameter estimates were insensitive to initial conditions for n and Ca,

with 100 different initializations for these state variables sampled from U(0, 1) and

U(0, 5), respectively. Note, most predominantly in the top right panel, the location

of the bifurcations are relatively sensitive to small deviations in certain parameters,

such as gKCa. Estimating gKCa is challenging due to the algebraic degeneracy of

estimating both terms involved in the conductance GKCa = gKCaCa/(Ca + 1), and

the inherent time-scale disparity of the Ca dynamics compared to V and n. If one had

observations of calcium, or full knowledge of its dynamical equations, this degeneracy

is immediately alleviated. To address difficulties in the estimation of bursting models,

an approach has been developed that separates the estimation problem into two stages

based on timescales, first estimating the slow dynamics with the fast dynamics blocked

and then estimating the fast dynamics with the slow parameters held fixed [67]

Table 2.10 UKF Parameter Estimates for each Bursting Regime

t:Square-wave t:Elliptic
g:Square-wave g:Elliptic g:Square-wave g:Elliptic

φ 0.214 0.215 0.040 0.040
gCa 3.758 3.767 4.396 4.398
V3 12.045 12.023 1.603 1.685
V4 16.272 16.316 29.582 29.639
gK 7.955 7.952 7.866 7.889
gL 1.974 1.972 2.015 2.017
V1 -1.514 -1.511 -1.120 -1.199
V2 17.640 17.624 18.010 18.015
gKCa 0.251 0.251 0.767 0.763

2.2.2 Results with 4D-Var

We also investigated the utility of variational techniques to recover the mechanisms

of bursting. For these runs, we took our observations to be coarsely sampled at 0.1

ms, and our forward mapping is taken to be one step of modified Euler between
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g:Elliptic

t:Elliptict:Square-wave

g:Square-wave

Figure 2.13 Bifurcation diagrams for UKF twin experiments for the bursting
Morris-Lecar model. The gray lines correspond to the true diagrams, and the blue
dotted lines correspond to the diagrams produced from the estimated parameters in
Table 2.10.

observation times, as was the case for our previous 4D-Var Morris-Lecar results. We

used 10,000 time points, which is 1 burst for the square wave burster, and 1 full burst

plus another spike for the elliptic burster. We used the L-BFGS-B method [123], as we

found it to perform faster for this problem than fmincon. This method approximates

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton algorithm using a

limited memory (L) inverse Hessian approximation, with an extension to handle

bound constraints (B). It is available for Windows through the OPTI toolbox [33]

or through a nonspecific operating system MATLAB MEX wrapper [10, 23]. We

supplied the gradient of the objective function, but allowed the solver to define the

limited-memory Hessian approximation for our 30, 012 dimensional problem. The

results are captured in Table 2.11. We performed the same tests with providing the

Hessian; however, there was no significant gain in accuracy or speed. The value

for gKCa for initializing with the square wave parameters and estimating the elliptical

parameters is quite off, which reflects our earlier assessment for the value in observing

calcium dynamics. Figure 2.14 shows that we are still successful in recovering the true

bifurcation structure.
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g:Elliptic

t:Square-wave t:Elliptic

g:Square-wave

Figure 2.14 Bifurcation diagrams for 4D-Var twin experiments for the bursting
Morris-Lecar model. The gray lines correspond to the true diagrams, and the blue
dotted lines correspond to the diagrams produced from the estimated parameters in
Table 2.11.

Table 2.11 4D-Var Parameter Estimates for each Bursting Regime

t:Square-wave t:Elliptic
g:Square-wave g:Elliptic g:Square-wave g:Elliptic

φ 0.230 0.260 0.037 0.040
gCa 4.009 4.509 4.244 4.412
V3 12.009 11.920 6.667 1.971
V4 17.437 19.581 32.605 30.026
gK 8.006 8.244 9.485 8.002
gL 2.003 2.068 1.979 2.009
V1 -1.187 -0.627 -1.307 -1.172
V2 18.029 18.754 17.469 18.049
gKCa 0.250 0.237 0.554 0.741

2.3 Discussion and Conclusions of Twin Experiments

Data assimilation is a framework by which one can optimally combine measurements

and a model of a system. In neuroscience, depending on the neural system of interest,

the data we have may unveil only a small subset of the overall activity of the system.

For the results presented here, we used simulated data from the Morris-Lecar model

with distinct activity based upon different choices for model parameters. We assumed

access only to the voltage and the input current, which corresponds to the expected

data from a current-clamp recording.
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We showed the effectiveness of standard implementations of the Unscented

Kalman Filter and weak 4D-Var to recover spiking behavior and, in many circum-

stances, near-exact parameters of interest. We showed that the estimated models

undergo the same bifurcations as the model that produced the observed data, even

when the initial parameter guesses do not. Additionally, we are also provided with

estimates of the states and uncertainties associated with each state and parameter,

but for sake of brevity these values were not always displayed. The methods, while not

insensitive to noise, have intrinsic weightings of measurement deviations to account

for the noise of the observed signal. Results were shown for mild additive noise. We

also extended the Morris-Lecar model to exhibit bursting activity, and demonstrated

the ability to recover these model parameters using the UKF.

The UKF and 4D-Var approaches implemented here both attempt to optimally

link a dynamic model of a system to observed data from that system, with error

statistics assumed to be Gaussian. Furthermore, both approaches try to approximate

the mean (and for the UKF also the variance) of the underlying, unassumed system

distributions. The UKF is especially adept at estimating states over long time courses,

and if the algorithmic parameters such as the model error can be tuned, then the

parameters can be estimated simultaneously. Therefore, if one has access to a long

series of data, then the UKF (or an Unscented Kalman Smoother, which uses more

history of the data for each update step) is a great tool to have at one’s disposal.

However, sometimes one only has a small amount of time series data, or the tuning

of initial covariance, the spread parameter λ, and the process noise Qk associated

with the augmented state and parameter system becomes too daunting. The 4D-

Var approach sets the states at each time point and the parameters as optimization

variables, transitioning the estimation process from one which iterates in time, to

one which iterates up to a tolerance in a chosen optimization routine. The only

tuning parameters are those associated with the chosen optimization routine, and
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the weights, Q−1l,l , l ∈ [1 . . . L], for the model uncertainty of the state components

at each time. There are natural ways to provide parameter bounds in the 4D-Var

framework, whereas this is not the case for the UKF. However, depending upon the

implementation choices and the dimension of the problem (which is extremely large

for long time series data), then the optimization may take a computing time scale

of days to yield reasonable estimates. Fortunately, derivative information can be

provided to the optimizer to speed up the 4D-Var procedure. Both the UKF and

4D-Var can provide estimates of system uncertainty in addition to estimates of the

system mean. The UKF provides mean and variance estimates at each iteration

during the analysis step. In 4D-Var, one seeks mean estimates by minimization of

a cost function. It has been shown that for cost functions of the form in Equation

(3.4), the system variance can be interpreted as the inverse of the Hessian evaluated

at minima of Equation (3.4), and scales roughly as Q for large Q−1 [122]. The pros

and cons of implementing these two DA approaches are summarized in Table 2.12.

Table 2.12 Comparison of the Sequential (UKF) and Variational (4D-Var)
Approaches to Data Assimilation

UKF 4D-Var

Implementation choices
initial covariance (Pxx) model uncertainty (Q−1)

sigma points (λ) type of optimizer / optimizer settings
process covariance matrix (Q) state and parameter bounds

Data requirements
Pro: can handle a large amount of data Pro: may find a good solution

Con: may not find a good solution with a small amount of data
with a small amount of data Con: cannot handle a large amount of data

Run Time
Days, hours, or minutes

Minutes depending on choice of optimizer
and settings

Scalability to Larger Models
Harder to choose Q Search dimension is (N + 1)L+D

EnKF may use smaller number Sparse Hessian can be
of ensemble members exploited during optimization

The UKF and 4D-Var methodologies welcome the addition of any observables

of the system, but current-clamp data may be all that is available. With this

experimental data in mind, for a more complex system, the number of variables

increases while the total number of observables will remain at unity. Therefore, it

may be useful to assess a priori which parameters are structurally identifiable and
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the sensitivity of the model to parameters of interest in order to reduce the estimation

state space [88]. Additionally, one should consider what manner of applied current to

use to aid in state and parameter estimation. In the results presented above, we used

a constant applied current, but work has been done which suggests the use of complex

time-varying currents that stimulate as many of the model’s degrees of freedom as

possible [3].

The results we presented are based on MATLAB implementations of the derived

equations for the UKF and weak 4D-Var. Sample code is provided in the Appendix.

Additional data assimilation examples in MATLAB can be found in [73]. The UKF

has been applied to other spiking neuron models such as the FitzHugh-Nagumo model

[111]. A sample of this code can be found in [99], as well as further exploration

of the UKF in estimating neural systems. The UKF has been used on real data

from pyramidal neurons to track the states and externally applied current [118], the

connectivity of cultured neuronal networks sampled by a microelectrode array [52], to

assimilate seizure data from hippocampal OLM interneurons [107], and to reconstruct

mammalian sleep dynamics [101]. A comparative study of the efficacy of the EKF

and UKF on conductance-based models has been conducted [71].

The UKF is a particularly good framework for the state dimensions of a single

compartment conductance based model as the size of the ensemble is chosen to be

2(L + D) + 1. When considering larger state dimensions, as is the case for PDE

models, a more general Ensemble Kalman Filter (EnKF) may be appropriate. An

introduction to the EnKF can be found in [43, 44]. An adaptive methodology using

past innovations to iteratively estimate the model and measurement covariances Q

and R has been developed for use with ensemble filters [12]. The Local Ensemble

Tranform Kalman Filter (LETKF) [60] has been used to estimate the states associated

with cardiac electrical wave dynamics [57]. Rather than estimating the mean and

covariance through an ensemble, particle filters aim to fully construct the posterior
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density of the states conditioned on the observations. A particle filter approach has

been applied to infer parameters of a stochastic Morris-Lecar model [39], to assimilate

spike train data from rat layer V cortical neurons into a biophysical model [80], and to

assimilate noisy, model-generated data for other states to motivate the use of imaging

techniques when available [62].

An approach to the variational problem which tries to uncover the global minima

more systematically has been developed [122]. In this framework, comparing to

Equation (3.4), they define for diagonal entries of Q−1 that

Q−1 = Q−10 αβ

for α > 1 and β ≥ 0. The model term is initialized as relatively small, and over the

course of an annealing procedure, β is incremented resulting in a steady increase of

the model term’s influence on the cost function. This annealing schedule is conducted

in parallel for different initial guesses for the state space. The development of this

variational approach can be found in [1] and it has been used to assimilate neuronal

data from HVC neurons [67] as well as to calibrate a neuromorphic very large scale

integrated (VLSI) circuit [116]. An alternative to the variational approach is to frame

the assimilation problem from a probabilistic sampling perspective and use Markov

Chain Monte-Carlo (MCMC) methods [70]. We will present an associated formulation

using MCMC methods in Chaper 7, albeit without verifying results.

A closely associated variational technique, known as “nudging”, augments the

vector field with a control term. If we only have observations of the voltage, this

manifests as:

dV

dt
= f ?V (V,q;θ) + u(Vobs − V )
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The vector field with the observational coupling term is now passed into the strong

4D-Var constraints. The control parameter u may remain fixed, or be estimated along

with the states [2,106]. More details on nudging can be found [89]. A similar control

framework has been applied to data from neurons of the stomatogastric ganglion [17].

We will delve into this controlled 4D-Var in Chapter 3.

Many other approaches outside the framework of data assimilation have been

developed for parameter estimation of neuronal models, see [109] for a review. A

problem often encountered when fitting models to a voltage trace is that phase

shifts, or small differences in spike timing, between model output and the data can

result in large root mean square error. This is less of an issue for data assimilation

methods, especially sequential algorithms like UKF. Other approaches to avoid

harshly penalizing spike timing errors in the cost function are to consider spikes

in the data and model-generated spikes that occur within a narrow time window

of each other as coincident [97], or to minimize error with respect to the dV/dt

versus V phase-plane trajectory rather than V (t) itself [109]. Another way to avoid

spike mismatch errors is to force the model with the voltage data and perform

linear regression to estimate the linear parameters (maximal conductances), and

then perhaps couple the problem with another optimization strategy to access the

nonlinearly-dependent gating parameters [54, 61, 74]. A dive into this technique will

be presented in Chapter 7.

A common optimization strategy is to construct an objective function that

encapsulates important features derived from the voltage trace, and then use a genetic

algorithm to stochastically search for optimal solutions. These algorithms proceed by

forming a population of possible solutions and applying biologically inspired evolution

strategies to gradually increase the fitness (defined with respect to the objective

function) of the population across generations. Multi-objective optimization schemes

will generate a “Pareto front” of optimal solutions that are considered equally good.
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A multi-objective non-dominated sorting genetic algorithm (NSGA-II) has recently

been used to estimate parameters of the pacemaker PD neurons of the crab pyloric

network [35,46].

In this chapter, we compared the bifurcation structure of models estimated by

DA algorithms to the bifurcation structure of the model that generated the data. We

found that the estimated models exhibited the correct bifurcations even when the

algorithms were initiated in a region of parameter space corresponding to a different

bifurcation regime. This type of twin experiment is a useful addition to the field that

specifically emphasizes the difficulty of nonlinear estimation and provides a qualitative

measure of estimation success or failure. Prior literature on parameter estimation that

has made use of geometric structure includes work on bursting respiratory neurons

[104] and “inverse bifurcation analysis” of gene regulatory networks [41,76]. The work

discussed in Chapters 1 and 2 appeared in Moye and Diekman (2018) [83].

The following chapter will expand on the ideas of variational data and apply

controlled 4D-Var, i.e., nudging, to a two-compartmental Hodgkin-Huxley-type

model. We will then apply this technique estimate novel models of circadian neurons

of a diurnal species of rodent.
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CHAPTER 3

CONTROLLED 4D-VAR AND APPLICATION TO CIRCADIAN
NEURONS

We aim to do a deeper dive into the applicability of 4D-Var for more complex models

in neuroscience. We start by exploring the formulations of 4D-Var and settle on using

a controlled variant known as dynamical state and parameter estimation (DSPE). We

apply this to a two compartmental model of a Hodgkin-Huxley type model to assess

its performance. We then apply this technique to in vitro data from suprachiasmatic

nucleus (SCN) neurons of the Rhabdomys, a diurnal rodent.

3.1 4D-Var Formulation

4D-Var has a few formulations so, to begin, for our state-space system:

xk+1 = f(xk) + ωk+1, ωk ∈ RL (3.1)

yk+1 = h(xk+1) + ηk+1, ηk+1 ∈ RM (3.2)

Let us remind ourselves of the 4D-Var problem:

C(x) =
1

2

N∑
k=0

‖yk −H(xk)‖2Rk
+

1

2

N−1∑
k=0

‖xk+1 − f(xk)‖2P b
k

(3.3)

If one assumes the states follow the state space description in (3.1) and (3.2) with

ωk ∼ N (0, Q) and ηk ∼ N (0, R) where Q is our model error covariance matrix and

R is our measurement error covariance matrix, that these have no cross-covariance,
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and only voltage data is observed, the cost function can be simplified a bit:

C(x) =
1

2

N∑
k=0

R−1 (yk − Vk)2 +
1

2

L∑
l=1

N−1∑
k=0

Q−1l,l (xl,k+1 − fl(xk))2 (3.4)

where Vk = x1,k. (3.4) would be the equation one seeks to minimize for the current-

clamp data problem in neuroscience in what is called Weak 4d-var . Alternatively,

Strong 4d-var forces the resulting estimates to be consistent with the model, f . This

can be considered the result of taking Q→ 0, which yields the nonlinearly constrained

problem:

C(x) =
1

2

N∑
k=0

R−1 (yk − Vk)2 (3.5)

such that

xk+1 = f(xk), k = 0 . . . N (3.6)

where R−1 can now be scaled out completely. In the cost function in (3.4), the

estimated voltage is expected to be consistent with dynamics for large model weighting

Q−1, but the dynamics cannot possibly reproduce the irregularity in the data, so, by

default, it is not apparent what the utility of taking this limit may be. The problem

becomes far worse conditioned as we have removed the capacity of our optimization

problem to naturally account for the model errors which truly exist. However, more

specifically, we prevent ourselves from having a regularization.

One exceptional avenue which has been explored is known as variational

annealing [122]. When the coefficient of the model error in equation (3.3) is zero,

the minima is widely degenerate as the model, and any unmeasured parameters or
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variables, are noninfluential to the solution of the system, which is xk = H−1(yk). In

variational annealing, Rm ≡ Q−1 is incrementally increased such that the degeneracy

breaks, and different admissible solutions amongst the degenerate landscape are

tracked. The model coefficient is increased as Rβ
m = Rm,0α

β, for α > 1 and

β ≥ 0. The term “annealing” comes from the perspective of active particles in

the degenerate well slowly cooling to manufacture the multi-minima, nonconvex

landscape. In keeping with the temperature theme, this could be considered either

incremental “warm-starting” or “hot-starting” depending on how the optimization is

implemented. For warm-starting, purely the solution for one value of β is retained

before incrementing and solving for a larger value of β. For hot-starting, the dual

variables and multipliers are initialized as their final values from the previous iteration

if using an interior point method.

Another way to view variational annealing is through the use of slack variables

to lift the optimization. With strong 4D-Var, the dynamics are imposed as equality

constraints. If we would want to allow our model to be an imperfect match, we could

impose inequality constraints such that −ε ≤ xk+1 − f(xk) ≤ ε for ε small enough

to not completely override the dynamics between time points. Slack variables are

decision variables added to the inequality constraints to translate them to equality

constraints, although slack variables by traditional definition should not be negative

lest that point is infeasible. We can use these pseudo-slack variables to lift our

optimization problem to a higher dimension, where we incrementally impose that our

slack is penalized in place of our model error term. The problem then becomes:

C(x) =
1

2

N∑
k=0

R−1 (yk − Vk)2 +
1

2

L∑
l=1

N−1∑
k=0

Q−1l,l (sl,k+1)
2 (3.7)
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such that

xl,k+1 − fl(xk)− sl,k+1 = 0, k = 0 . . . N, l = 1 . . . L (3.8)

with

− εl ≤ sl,k+1 ≤ εl (3.9)

Which looks quite similar to 3.4, but the system dimension now has increased

proportionally to the number of constraints (LN).

We will not present any results using strict variational annealing in this

work, but we have validated many of our previous, and future results, through an

implementation of the “pseudo-slack” annealing. If a problem is highly irregular, we

include these slack variables for fixed, very large level of the slack coefficient Q−1l,l .

In addition, there is another mechanism to regularize the optimization problem

which utilizes dynamical systems theory for synchronizing two systems. Pecora and

Carrol coauthored a series of papers [92] describing extensions from a basic idea:

suppose one has a driving system and a response system; under what conditions and

to what degree does the response system synchronize to the driving system [91]? A

motivating example uses the Lorenz 1963 equations, where the primes denote the

response variables:

dx

dt
= σ(y + z) (3.10)

dy

dt
= −xz + rx− y, dy′

dt
= −xz′ + rx− y′ (3.11)

dz

dt
= xy − bz, dz′

dt
= xy′ − bz′ (3.12)
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The response variables are taken to have different initial conditions than the

driving variables. As time evolves to infinity, the response variables for this system

will converge to their counterparts in the driving subsystem. However, by choosing

a different driving variable (e.g., y), the response will not converge to the driving

subsystem. The authors formalized this by developing what are referred to as

“Conditional Lyapunov Exponents” (CLEs). Considering the Lorenz system above,

one can develop a variational equation by setting y′ = y + δy and z′ = z + δz, then

subtract the y − z subsystems:

δy

dt
= −δy − (δz)x (3.13)

δz

dt
= x(δy)− b(δz) (3.14)

For σ = 10, b = 8/3, r = 60, the CLEs of the system are (-1.81,-1.86). For this

variational system, the unstable manifold is empty. For the overall problem we can

say that the “synchronization manifold” is stable, and we expect the slave system to

synchronize to the driving system. Further examples are given in [92].

Dynamical State and Parameter Estimation (DSPE) is a technique described

in [2], with the premise being to stabilize the synchronization manifold of “nudging”

problems from data assimilation. Further details can be found in [1]. For instance,

recalling the Morris-Lecar example before, for equations (2.1) and (2.2), the controlled

system becomes

dV

dt
= fV (n, V ; θ) + u(Vobs − V ) (3.15)

dn

dt
= fn(n, V ; θ) (3.16)
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where u can be taken as time dependent or fixed. The cost function then becomes:

C(x) =
1

2

N∑
k=0

R−1 (yk − Vk)2 +
N∑
k=0

u2k (3.17)

This synchronization procedure has also been considered for specific function

forms of u in the neuroscience context in [17] wherein they set up an optimal search

strategy applied to real data. The nudging strategy in general has been used in

geosciences primarily for state estimation [89]. As shown in [2,106] the control u acts

to reduce conditional Lyapunov exponents.

The goal of DSPE is to define a high dimensional cost functional which weakly

constrains the estimated states to the system observations, and strongly constrains the

estimates to the controlled model dynamics while penalizing the control. Specifically,

the procedure aims to minimize equation (3.17) subject to equations (3.15)-(3.16) in

the case of Morris-Lecar. Without the control, the problem is explicitly formulated

as a strong constraint 4D-Var. However, the basin of attraction for global minima

along the optimization manifold is shallow. Also, while the minimization term itself

is convex, the nonlinearities present in the model constraints generate a large degree

of nonconvexity in the solution manifold. The intended effect of the nudging term

is to smoothen the surface. Given that the system is so high dimensional and

tightly-coupled, formally visualizing this surface is not achievable for our parameter

estimation problems.

In the DSPE framework, parameters and states at each point in time are taken

on equal footing. Namely, the solution space of the cost function is (L+1)(N+1)+D

where D is the number of fixed parameters to infer, L the number of dynamical

variables, and we are additionally solving for the control u(t) at each point in time.

The control is penalized in (3.17) quadratically in an effort to reduce the impact of it
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at the end of the optimization procedure. While having the control present enforces

the data in the model equations, by minimizing it, one is attempting to recover back

the minima subject to the uncontrolled model of the system. So, as u → 0 over the

course of the optimization, the physical system strong constraint is recovered.

There are theoretic underpinnings for this technique, but when working with

complicated models and real data, the reality is that whatever technique “works”

best and most reliably is the one that should be employed. Is strong 4D-var too

ill-conditioned to work at all and the weak variant unconditionally better? Does

nudging actually combat this ill-conditioning or does it merely introduce a higher-

dimensionality into our workspace? What are the requirements on the bounds of our

states and parameters?

To get started, let us be clear on the problem we are solving for. Here we are

performing what is known as “direct transcription”, where we transcribe our cost

functional and dynamical equations into a nonlinear program. For simplicity, let’s

take n = (L+ 1)(N + 1) +D

min
x∈Rn

C(x)

s.t. g(x) = 0

xL ≤ x ≤ xU

(3.18)

Where x is our combined state space at every time point, any controls, and

parameters, and C(x) is equation (3.17) if using a control, else the control term is

excluded.

We must choose a particular transcription method to prescribe our equality

constraints g(x) = 0. Prior to transcription, g(x) = 0 is the generalization of our

system dynamics. Let’s define our state vector as x = (V, x̄) and our uncontrolled

dynamics as:
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dx

dt
= fx(x, θ) (3.19)

where we can separate out the terms with observations. We assume we only

have observations of the voltage of one cell in one compartment (with natural

generalizations to network/ multi-compartment descriptions):

dV

dt
= fV (x̄, V ; θ) (3.20)

dx̄

dt
= fx̄(x̄, V ; θ) (3.21)

Then our controlled dynamics become

dV

dt
= fV (x̄, V ; θ) + u(Vobs − V ) (3.22)

dx̄

dt
= fx̄(x̄, V ; θ) (3.23)

Where it is understood that u(t) appears only at observational times.

For our results with Morris-Lecar, we used what could be considered a

multiple-shooting type approach, or very simple collocation, but incorporated them

into the cost function in our model error term. More recently, we have formulated

the constraints using either a multiple-shooting style approach using a fourth-order

Runge-Kutta method (RK4) or Hermite-Simpson Collocation. We will assume

measurements are taken uniformly at

tk = t0 + kτobs
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Neuroscience experimental machinery are fairly reliable, so we can operate

under the assumption that no time points of data are missed. High resolution of

our measurements are preferred so that we can have control and knowledge of the

system at basically every knot point. However, there are circumstances where we may

not have data with that level of precision or we may desire to downsample our data.

For that reason, we will say that we have a set of times upon which our constraint

equations are satisfied, namely

tm = t0 +mτcol

where we simply require that the ratio of these time differences is a positive integer.

τobs
τcol
∈ N

To reiterate, the constraints are what connect each our time points [tm, tm+1] to one

another. For a multiple shooting approach, we have an even further option of the

“integration” time-step underpinning our RK4 method, compared to the length of

time between segments in our transcription, compared to the observational sampling

time. Each of these values will be explicitly mentioned whenever results are presented.

More commonly, we choose to use a direct collocation method due to the stability

options afforded to us for our highly complex, nonlinear problem. With collocation,

implementation of implicit methods are effectively as simple as explicit methods. We

choose to use Hermite-Simpson collocation which approximates the set of discrete

integrations using Simpson’s rule. We introduce midpoints in this fashion (xk+ 1
2
),

which are approximated using Hermite interpolation.
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xk+1 − xk =
1

6
hk

(
fk + 4fk+ 1

2
+ fk+1

)
(3.24)

xk+ 1
2

=
1

2
(xk + xk+1) +

hk
8

(fk − fk+1) (3.25)

For fk = fx(xk, θ̂), and θ̂ is the present estimate of θ, constant across our time

window.

Here, we take the midpoint and endpoint conditions on equivalent footing for

our constraints, g(x) = 0, in what is known as its “separated form”. Therefore, we

implement these equations so that hk = 2τcol based upon our previous notation, and

we have LN equality constraints.

Often, additional constraints are imposed upon the control for completeness and

smoothness. If so, this will result in the number of variables itself being increased by

N/2 as the Hermite interpolation is imposed on the control, and additional variables

for the “slope” of the control can be utilized.

uk+ 1
2

=
1

2
(uk + uk+1) +

hk
8

(duk − duk+1) (3.26)

where du represent the additional slope control variables [31,105]

Through comparative experiments, we found no need for these additional

constraints, but there may be circumstances in which they are important. In fact, we

suspect that by imposing continuity, if the control is nonzero for even the lowest

minima, the continuous structure of the control may inform which channels are

missing in the model.

Boundary constraints xL ≤ x ≤ xU must be considered. While often completely

arbitrary, we have found that how these boundaries are specified can be of paramount
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importance. For the states, we specify that the voltage is within a survivable and

plausible range based on prior knowledge of the system and the variance in the

observations. The gating variables are restricted to their dynamic range between 0 and

1. As for the parameters, especially for real data, we shouldn’t necessarily know what

appropriately tight boundaries are. As a rule of thumb, if it is possible to parameterize

the model in a systematic and symmetric way, it may be easier to construct meaningful

bounds. Also, it is advisable to keep the parameters within a bounding box which

prevents blowup of the dynamics such as divisions by zero. The maximal conductances

are positive valued, and the sign of the slope for the steady-state gating functions

should dictate if they are activating (positive) or inactivating (negative). Background

knowledge of the passive properties of the system, such as the capacitance and reversal

potentials, can be informed from isolating step protocols by the electrophysiologist or

voltage-clamp data if that is available. The summation of this knowledge forges our

prior if considering the problem from the Bayesian perspective, although by nature of

this direct implementation, we are assuming a flat prior for the parameter variances

within their bounding box.

For the remaining results to come, we have implemented 4D-Var in a framework

with CasADi in MATLAB [5]. The “cas” comes from “computer algebra system”,

in which the implementation of mathematical expressions resembles that of any

other symbolic toolbox, and the “AD” for algorithmic (automatic) differentiation.

These expressions are easily then used for generating derivatives through breaking

the expressions into a number of atomic operations with explicit chain rules, with

natural extensions to vector and matrix-valued functions. CasADi data-types are

all sparse matrices, and low-level expressions (SX expressions) are stored as directed

acyclic graphs where their numerical evaluation is conducted using virtual machines.

For nonlinear programming problems, MX expressions are then built from function

evaluations to create a hierarchy of functions to prevent blow-up of memory. CasADi
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will generate the gradient and Hessian information through AD which are then passed

to the solver of choice. We elect to solve the optimization problem with IPOPT

(Interior Point OPTimize) [112]. The high-dimensional linear algebra calculations are

done using the linear solver MUMPS (MUltifrontal Massively Parallel sparse direct

Solver) which is readily distributed with CasADi and interfaced with IPOPT.

3.2 Twin Experiment: Two-Compartment Hodgkin-Huxley Model

3.2.1 Two-Compartment NaKL

There has been plenty of preceding work done on the applicability of 4D-var and its

variants on spiking neuronal models led primarily by Abarbanel et al. A standard

model they have used to validate their work against for simulated data, with

extensions used for real data, is based on the Hodgkin-Huxley model [106]. Here,

opening of sodium channels leads to an influx of sodium ions into the neuron driven

by a natural electrochemical gradient which generates the upstroke of the action

potential. A slower inactivation of this channel prevents further influx of sodium,

and the opening of potassium channels drives the cell nearer to its resting membrane

potential in the down-stroke of the action potential.

C
dV

dt
=Iinj − gNam

3h (V − ENa)

− gKn4 (V − EK)− gL (V − EL)

da

dt
=
a∞(V )− a
τa(V )

, a = {m,h, n}

a∞(V ) =
1

2
+

1

2
tanh

(
V − va
dva

)
τa(V ) =τa0 + τa1

(
1− tanh2

(
V − va
dva

) )
(3.27)
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We have validated similar results of this NaKL model for state and parameter

estimation using our framework, and these results will be presented later in the

optimal injected current section.

A natural extension, which arises in many situations, is that we have mea-

surements from the soma, but that the active channels and origination of the

action potential are located in the axonal initial segment. As an aside, detailed

multi-compartmental models are a less explored avenue in data assimilation, but the

techniques are completely amenable to spatial incorporation. However, for 4D-Var,

at least, for a detailed large multi-compartment model, the number of variables for

the problem will increase on the order of number of compartments. These large scale

optimizations will be put off, for the time being.

Our two-compartment variant of the NaKL model is:

Cs
dVs
dt

=Iinj − gL,s (V − EL )− gs,ax (Vs − Vax )

Cax
dVax
dt

=Iinj − gNam
3h (Vax − ENa )

− gKn4 (Vax − EK )

− gL,ax (Vax − EL )− gax,s (Vax − Vs )

da

dt
=
a∞(V )− a
τa(V )

, a = {m,h, n}

a∞(V ) =
1

2
+

1

2
tanh

(
V − va
dva

)
τa(V ) =τa0 + τa1

(
1− tanh2

(
V − va
dva

) )

(3.28)

where ax refers to the axonal compartment and s refers to the passive somatic

compartment. Figure 3.1 depicts the schematic for this model. Figure 3.2 shows some

characteristic plots of this model for Cs = Cax = 1 and gs,ax = gax,s = 1, and the rest

of the parameters are the same as the default model. Figure 3.2 shows a typical run
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Figure 3.1 Circuit diagram of two-compartment NaKL model. Current is injected
into the soma, where a probe will measure the voltage, Vm.

Figure 3.2 Example simulations of two-compartment NaKL model. Left panel:
First row depicts the somatic compartment, the second row depicts the axonal
compartment, and final row are the stimulating applied currents. Right panel: voltage
speed plots for these compartments for steady-firing.

of the model. The top left two rows of Figure 3.2 show the somatic compartment and

axonal compartment, respectively, and the bottom row is the applied current used for

each of these runs. The somatic compartment average voltage is highly affected by the

applied current. These compartments are tightly coupled so the action potentials fire

synchronously. The action potentials themselves have highly differing shape, as the

somatic compartment acts as a filter for some of the nonlinearities, and the substantial

difference in rate of change for the two compartments is visualized in the phase-plane

trajectory plots on the right two rows in Figure 3.2.
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Figure 3.3 Bifurcation diagrams for the two compartment NaKL model A and one
compartment model B.

While this extension is small, there is a subtlety that I feel requires further

consideration: the nonlinear dynamics are completely isolated to the additional,

unobserved compartments, and the somatic compartment, acting as a passive filter,

is the lens by which we are trying to observe this information.

We will present some results on strong 4D-Var for twin experiments of this two-

compartment model. We will assume we have knowledge of the passive parameters

(capacitance and reversal potentials), that gL,ax = gL,s, and that gs,ax = gax,s. We will

use a series of upward and downward sloping ramps as our applied current. We make

this choice because it mimics the derivation of a bifurcation diagram with the applied

current as the bifurcation parameter, and we allow the system to traverse a broad

range of dynamics to ideally traverse each of the gating variables dynamical ranges.

The bifurcation diagram for this system is shown in Figure 3.3 B. The somatic voltage

value is reflected on the y-axis and the applied current, acting as the bifurcation

parameter, is varied along the x-axis. Spiking emerges through a subcritical Hopf

bifurcation and the system undergoes depolarization block via a supercritical Hopf

bifurcation after injecting several hundred nA of current.

3.2.2 Twin Experiments on Two Compartment NaKL

We motivate these experiments with a series of questions: Can we uncover the global

minimum for this problem given that we are observing from a passive compartment?
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Figure 3.4 Dynamics of our data used for twin experiment of the two compartment
NaKL model. The only observed quantity, shown in blue, is the somatic voltage
perturbed by white noise. The remaining unobserved variables, shown in red, are
contained in the axonal compartment.

What value, from a practical standpoint, does the control bring? If the control

case eases our transition to a minima during the optimization iterations, does its

contribution vanish in the end? If we can’t uncover the true parameters, do our

yielded parameter sets have similar dynamical properties, and what does this say

about the underlying degeneracy of the problem? What can we say with regard to

uncertainty quantification? What sampling rates are necessary to achieve sufficient

precision of our results?

We will use data which is originally sampled at 50 kHz riddled with additive

white noise which leaves the signal to noise ratio around 43 dB calculated from

SNR = 10 log

(∑
Vsomatic(t)

2∑
ε(t)2

)
(3.29)
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Table 3.1 Bounds of Parameters Used in Estimation of Two Compartment NaKL
Model

LB UB
Csoma 1.00 1.00
Caxon 1.00 1.00
ENa 50.00 50.00
EK -77.00 -77.00
ELeak -54.40 -54.40
GNa 1.00 1000.00
GK 1.00 1000.00
GLeak 0.00 10.00
Gaxon 0.00 10.00

LB UB
vm -100.00 0.00
dvm 10.00 100.00
tm0 0.01 10.00
tm1 0.01 10.00
vh -100.00 0.00
dvh -100.00 -10.00
th0 0.01 10.00
th1 0.01 10.00
vn -100.00 0.00
dvn 10.00 100.00
tn0 0.01 10.00
tn1 0.01 10.00

The full dynamics of the system can be observed in Figure 3.4. By sending

the system to a hyperpolarized regime, we can fully exercise the inactivation gating

variable for sodium, and uncover broader details about the potassium activation

variable.

The answer to the first question we posed, “can we recover the global

minimum?”, simply is yes ! We can systematically recover parameter sets which

are quite close to the true values of the data. To test the fidelity of our approach

when encountering noise, we used 10 different observations generated by ten different

realizations of our noise. We used the parameter bounds given by Table 3.1.

Parameters with equivalent lower and upper bounds are assumed to be fixed and

known. The results when sampling the data at 50kHz and using this as our collocation

time step are shown in Figure 3.5. The error bars represent two standard deviations

drawn from the statistics of ten estimated models from our ten different noise

realizations, and the height of the bar is the mean of these ten model parameters.

This figure shows when using the control and when not using the control, within

two standard deviations, each of the parameters were successfully identified from the

deepest minima using our technique. Interestingly, when not using the control, the

means of the estimates for many of these parameters even more closely align with the

true values. Herein lies the question: is the more tightly coupled standard deviation

a significant enough justification for using the control? I would argue, at least in this
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circumstance, it is useful, but not conclusive. From various experiments, what we

can claim, is that the control regularizes the first-order optimality conditions for the

log barrier problem in IPOPT. The infeasibility of the dual problem is calculated as:

||∇C(x) +∇g(x)λg − λb||∞ (3.30)

where here λ represents the Lagrangian multipliers for the equality and bound

constraints, respectively, and sufficiently reducing the dual infeasibility is one of the

stopping criterion for IPOPT [112].

The control has, in general, prevented this quantity from blowing up, which

stalls, potentially indefinitely, the search for minima. The drawback is that sometimes

the solver pushes the difficulty of finding the solution onto merely increasing the

control; such local minima are improper given that the control must vanish to return

to the default model dynamics. We utilize a measure of the influence of the control

described in [106].

R(t) =
fV (Vs(t), Vax(t),m(t), h(t), n(t))2

fV (Vs(t), Vax(t),m(t), h(t), n(t))2 + (u(t)(y(t)− Vs(t))2
(3.31)

When R(t) ≈ 1, the control term has little to no relative contribution to the dynamics.

Conversely, when R(t) ≈ 0, the control term dominates the dynamics and everything

else is trivial to generating data which matches the observations.

Let’s focus in on one realization for the time being. For the deepest minima for

the control case in this circumstance, the R(t) plot can be shown in the left panel of

Figure 3.6. For most time points, our R(t) is quite close to one, indicating that the

control is no longer contributing significantly to the dynamics. Conversely, Figure

3.8 depicts a local minima which, while reducing the cost function to the same order
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Figure 3.5 Statistics of 50kHz sampling 2 compartment twin experiments using
100ms ramp injected current. For visual purposes, a scaling factor α = 100 is applied.

of magnitude as our deeper minima, has depended thoroughly upon control in order

to do so. The resulting parameters, now in absence of the control, do not generate

behavior matching the observations.

We anticipate that our model should perform well at reconstructing the

assimilated dynamics given the relatively tight fit of the parameters. As a check

of certainty we can plot the simulations generated by our optimal parameter sets

using the same control current, and also predict for a target window beyond our

original 100ms observation. For a real experiment, one might assimilate for only

some portion of the overall data. Then using the estimated parameters from that

assimilation, one can predict beyond to see how well the estimated model matches

the data not used for the estimation. In other fields, such as machine learning and

statistical inference, these are referred to as training data sets and validation data

sets. Figure 3.7 shows how well the sets from our 50 kHz sampling perform. Here, our

series of ramps was generated by randomly sampling target applied currents every 25

ms and interpolating between them.
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Figure 3.6 R(t) for a preferred local minima. Left panel is R(t) over time. Right
panel is a histogram for the range of R(t) values.

Figure 3.7 Simulations of the two compartment NaKL model over a longer time
window than the orignal 100ms assimilation window. The estimated parameter sets
from the control and non-controlled 4D-var closely align for the data even beyond the
assimilation window.
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Figure 3.8 Comparison of R(t) for a local minima exhibiting preferential dependence

upon the control to match the observed voltage.

Figure 3.9 Observations of the two compartment NaKL model using different
sampling rates.

Two cases we wanted to explore further were the requirement for fine collocation

sampling and the requirement for fine observational sampling. An observational

sampling restriction might result from some experimental or otherwise limitation,

whereas the collocation sampling would merely sacrifice stability and precision of the

result in exchange for a decrease in problem size by the corresponding factor. Figure

3.9 illustrates what the sampling looks like for 50kHz compared to 10kHz and 1 kHz.

The top panel of Figure 3.10 illustrates the prediction window by downsampling

the observed data to 10 kHz and also using a 10kHz collocation discretization. The
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difference in the resulting somatic voltage time series is minimal, with a substantial

increase in computational speed. Such a downsampling also allows us to potentially

integrate much longer time windows of data, although the precision of our technique

will naturally be degraded by using a larger value of hk in our collocation.

We also wanted to test a limiting case of observational information, i.e., 1

kHz sampling rate. With regard to neuronal data, action potentials may only be

characterized by a handful of points with this sampling rate. Still, as shown in the

bottom panel of Figure 3.10, at least for this model while using a fine collocation time

grid of 50kHz, the data is sufficient for generating dynamics akin to the true voltage

during even the prediction window of our data. Natural extensions to real data,

beyond merely these substantially coarse grids, are constructing adaptive grids for

data to optimally incorporate the most informational time points and downsampling

elsewhere.
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Figure 3.10 Comparison of prediction windows for data generated by using coarser

sampling. The top panel uses a collocation time difference and observational time grid of

.1 ms. The bottom grid uses a collocation time difference of .02 ms and an observational

time difference of 1 ms.

3.3 Application to Rhabdomys Circadian Neurons

Organ systems including the heart, liver, and pancreas contain oscillators whose

day/night rhythms are synchronized by central pacemaker neurons. These neurons

dwell in the suprachiasmatic nucleus (SCN) in the hypothalamus. The SCN is

subdivided into a ventral (core) and a dorsal (shell) region, with approximately 20,000

neurons in total. The core cells integrate external input projected from the retina

as well as the geniculohypothalamic tract and projections from the raphe nuclei [81].

The neurons are tightly compacted with small diameter and the suprachiasmatic
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nucleus orients itself atop the optic chasm. The dorsal shell exhibits robust circadian

oscillations of gene expression [51, 85, 121] , and secretes arginine vasopressin (AVP)

or prokineticin 2 (PK2), along with GABA. Interestingly, 60-70% of SCN neurons

can fire rhythmically when dissociated from the rest of the network [8, 117].

SCN neurons have the ability to generate autonomous circadian (∼24 hour)

rhythms in neuronal firing frequency. Other tissues synchronize to the SCN via direct

and indirect pathways. Therefore, these cells are referred to as pacemakers, as they

are the metronome by which a collection of oscillators act in concert.

Intracellular Gene Regulatory Feedback Loop The expression of “clock genes”

within SCN neurons operates on roughly a 24 hour period. These rhythms are the

result of a transcriptional and translational feedback loop. The transcription factors

CLOCK and BMAL bind to the E-Box to activate the transcription of the Period

(Per) and Cryptopchrome (Cry) genes. The mRNA transcripts are then translated

which increases levels of their associated proteins. These proteins dimerize and

ultimately suppress the E-box activation. Of course, that leads to lower levels of

PER and CRY proteins, and the lower dimer levels allow the transcription rate to

increase again [30].

Therefore, within the nucleus of these cells there exists an intrinsic gene

expression cycle with a circadian rhythm, and a circadian rhythm in terms of electrical

activity of the neuron at the membrane level.

Electrophysiology A mammalian SCN neuron has a set of characteristic currents

to drive changes in its membrane potential, as well as induce changes in ionic

concentrations. The changes in voltage act on a timescale of milliseconds. Any

downstream network effects, or changes in gene expression due to calcium uptake or

other neurotransmitters can happen across hours. The summation of currents with

specific windows of activation and inactivation culminates in the rhythmic, or silent,
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membrane potential. There is persistent sodium current which acts as an excitatory

drive, leading to depolarization. A hyperpolarization-actived cyclic nucleotide-gated

(HCN) ion is another excitatory drive with slow dynamics responding to hyperpo-

larizations of the membrane. Additionally, in response to hyperpolarization, the

hyperpolarization-activated conductance (IH) creates a depolarizing voltage sag. A

T-type calcium current has low-voltage activation and inactivation, and an L-type

calcium current is a mediator for subthreshold activity. The sodium-potassium pump

maintains the resting membrane potential at the cost of cellular ATP. The amplitude

of the fast delayed rectifying (FDR) potassium current plays an important role in

circadian modulation. An A-type potassium (IA) current is involved in the timing of

action potentials and subthreshold responses. Calcium-activated potassium channels

(BK channels) play a role in the nightly hyperpolarization of cells and repolarization

of the membrane after an action potential [30].

SCN Modeling History The first conductance-based mammalian model for SCN

neurons was developed by Sim and Forger [29]. The model included Hodgkin-Huxley

like sodium and potassium currents. Potassium channel properties were fit to data

from rat SCN slices [16]. The sodium channel is fit to voltage-clamp data, and an

L-type calcium channel is included which was also fit to voltage-clamp data, assuming

both activation and inactivation of the channel [64]. The single-compartment model

assumes that total cell capacitance and conductance are used for parameters, and

the capacitance, is recorded as 5.7 pF [64]. Their model is capable of explaining

distinct behaviors of SCN neurons, including spontaneous firing, responses to random

inhibitory postsynaptic currents (IPSCs), and the contributions of individual ionic

currents during an action potential [29].

Later on, the model was adapted to try to further understand day/night

differences in firing activating of SCN neurons [11]. The typical bifurcation parameter
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for conductance-based models is the applied current. However, we are frequently

expecting to measure spontaneous activity of these cells. For SCN neurons, the

bifurcation parameters of interest are their maximal conductances. Some ion channel

genes have expression which operates with a circadian rhythm. Therefore, we expect

some of the maximal conductances to change over the course of the day-night cycle.

Circadian variations in potassium conductances and calcium conductances, as well

as intracellular calcium concentration through the reversal potential, were able to

account for changes in firing rate and resting membrane potential. They were also

able to account for the emergence of depolarized low amplitude oscillations recorded

in a particular subset of SCN neurons expressing the clock gene per1 in the vicinity

of Hopf bifurcation points of the model [37]

The model was developed from [11] :

C
dV

dt
= Iapp − INa − ICa − IK − Ileak

= Iapp − gNam
3
NahNa(V − ENa)− gKn4(V − EK)

− gCaLmCahCa(V − ECa)− gleak(V − ENa)

(3.32)

The gating variable dynamics are all expressible by

da

dt
=
a∞(V )− a
τa(V )

(3.33)

for a = mi, hi, n.
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The steady-state activation functions were described by:

mNa,∞(V ) =
1

1 + exp (−(V + 35.2)/8.1)

hNa,∞(V ) =
1

1 + exp ((V + 62)/4))

n∞(V ) =
1

(1 + exp (V − 14)/−17).25

mCa(V ),∞ =
1

1 + exp (−(V + 25)/7.5)

hCa(V ),∞ =
1

1 + exp ((V + 260)/65)

with rates

τm,Na = exp (−(V + 286)/160)

τh,Na = .51 + exp (−(V + 26.6)/7.1)

τn = exp−(V − 67)/68

τm,Ca = 3.1

τh,Ca = exp−(V − 444)/220

SCN Recordings Most rodents are nocturnal. Interestingly, the Four-striped grass

mice, Rhabdomys pumilio, of Southern Africa are diurnal. Also, they have enhanced

activity during the mornings periods in the evening, with a lull during the midday

[100]. These species are then of great intrigue to study, as humans are diurnal, and
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we desire to understand a bit more about the similarities and differences between the

developed models based on nocturnal species.

Figure 3.11 Rhabdomys electrical variation over day/night cycle. Colormap
corresponds to ZT of data collection, illustrating 5 seconds of data. Data was recorded
by Mino Belle and Beatriz Baño-Otálora in the laboratory of Robert Lucas at the
University of Manchester.

Our hope is to be able to explain some of these various behaviors based on

the activity of individual currents within our model. We anticipate there will be

degree of heterogeneity amongst these cells, so we endeavor to parameterize them

individually, and restrict conclusions of causality of behaviors to hypothesis. Some

typical day/night variations are shown in Figure 3.11. Day is characterized by

Zeitgeber Time (ZT) between 0 and 12, whereas night starts at 12 and runs to ZT

24. Each panel contains 5 seconds of spontaneous current-clamp data. During the
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day, the resting membrane potential (RMP) is more depolarzized than during the

evening, as depicted by Figure 3.11 A, B. During periods of the day, some cells

exhibit deploarized low amplitude membrane osclliations, as shown in Figure 3.11 B.

Slower, large amplitude firing, ∼1-2 Hz, is characteristic of early evening, 3.11 D,

with a slight increase in RMP and firing rate, with a lower amplitude, later in the

evening Figure 3.11 E. Bouts of time in evening are characterized by quiescence, with

a hyperpolarized RMP, Figure 3.11 F. The colormap for this figure, organized by ZT,

is shown in Figure 3.11 C.

Modeling Rhabdomys SCN A fault with the original version the SCN model

is that the structure is asymmetric with huge ranges of parameter values, which

creates complications when constructing our optimization problem. We aim to fit to

current-clamp data of the Rhabdomys using the same types of currents, but expressing

their kinetics uniformly as in equation 3.28.

Additionally, we separate the leak into sodium and potassium components to

investigate the role each may play in altering the resting membrane potential of

cells in day versus night, as was done in [37]. Lastly, we will approximate the

sodium activation as instantaneous, as was previously done to reduce this model

[29]. Conversely, we will allow the inactivation of sodium to have a wide range of

permissible time constant values, as persistent sodium is known to play a role in

maintaining the pace of firing [53], and thus our sodium channel functionally plays

the role of transient generation of the upstroke of the action-potential, but also in

possibly governing certain sub-threshold properties with the remaining persistence

compensated by the sodium leak. The full system is shown in equation 3.34.
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C
dV

dt
=Iinj − INa − IK − ICa − INa,Leak − IK,Leak

=Iinj − gNam
3
NahNa (V − ENa)

− gKn4 (V − EK)− gCamCahCa (V − ECa)

− gNa,Leak (V − ENa)− gK,Leak (V − EK)

da

dt
=
a∞(V )− a
τa(V )

, a = {mi, hi, n}

a∞(V ) =
1

2
+

1

2
tanh

(
V − va
dva

)
τa(V ) =τa0 + τa1

(
1− tanh2

(
V − va
dva

))

(3.34)

Table 3.2 Bounds of Parameters Used in Estimation of SCN Model

LB UB
C 0.8 Crec 1.2 Crec

ENa 40.00 50.00
EK -100.00 -80.00
ECa 54.00 130.00
GNa 0.10 500.00
GK 0.10 300.00
GCa 0.01 300.00

GLeak,Na 0.00 10.00
GLeak,K 0.00 10.00
vmNa -50.00 0.00
dvmNa 5.00 50.00
vhNa -70.00 0.00
dvhNa -50.00 -5.00
th0Na 0.01 40.00
th1Na 0.01 400.00
vhtNa -70.00 0.00
dvhtNa 5.00 50.00

LB UB
vn -70.00 0.00
dvn 5.00 50.00
tn0 0.01 10.00
tn1 0.01 40.00
vnt -70.00 0.00
dvnt 5.00 50.00
vmCa -40.00 0.00
dvmCa 5.00 50.00
tm0Ca 0.01 40.00
tm1Ca 0.01 40.00
vmtCa -70.00 0.00
dvmtCa 5.00 50.00
vhCa -70.00 0.00
dvhCa -50.00 -5.00
th0Ca 0.10 1000.00
th1Ca 0.10 1000.00
vhtCa -70.00 0.00
dvhtCa 5.00 50.00

These neurons fire fairly slowly, between 1-8 Hz while firing spontaneously, with

irregular firing patterns. The cells may exhibit slow firing adaptation to depolarizing

pulses, delays to return to firing from hyper-polarizing pulses, and slow return to

normal firing from depolarizing pulses. The firing rate difference alone is a factor
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of 10 between the NaKL model for Iapp > 25, as the NaKL model does not fire

spontaneously as shown in Figure 3.3.

Our data is recorded every 25 kHz, which, assuming a firing rate of 3Hz, would

require 25, 000 time points to capture a train of three action potentials. To our

knowledge, the largest data sets used for variational data assimilation in neuroscience

have been around 100, 000 time points in total [86]. For the Morris-Lecar model,

observing three action potentials may be sufficient to characterize the system with 4D-

Var. For real cells, capturing the spontaneous firing is only a small portion of a much

larger problem; we want to also capture the response to stimulating currents so as to

have some predictive power. We therefore create a budget for our problem in terms

of incorporating novel information for assimilation while creating an optimization

problem which can fit into memory.

For each set of data used, we utilize a downsampling strategy. We set a threshold

of -20 mV for each action potential, and within a region of 30 ms either side of when

this threshold is hit, the full 25 kHz sampling is preserved. Outside of this threshold,

the data used is down-sampled by some factor. For the results presented here, we use

a downsampling factor of 5 so that during the action potential the resolution is 25kHz

and outside the time window of the action potential it is 5kHz. The reasoning behind

this that we can maintain as many points during the action potential as possible which

occurs on a much faster timescale than the afterhyperpolarization or subthreshold

repolarization, and we hope to better fit the spike-shape. The current-clamp data we

are using is exclusively driven by steps. At the time of discontinuous change of the

step, we similarly preserve the data so as to maximize the transitional information.

An example of this is shown in Figure 3.12.

To reiterate, we can only use a small fraction of the data due to our

computational budget. We are afforded several seconds worth of data from an array

of depolarizing and hyperpolarizing step protocols, varying from -30pA to 30pA
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Figure 3.12 Sampling strategy for SCN data. Black corresponds to full data used,
whereas gray corresponds to downsampling used. Red ‘x’ shows the midpoint for the
high-resolution sampling.

in increments of 5pA. Not only do we want to be able to accurately capture the

spontaneous firing and spike shape, but we want to capture delays, adaptations,

silencing, etc. The data we used for our assimilation, in totality, is shown in Figure

3.13. Figure 3.13 A contains the response to a -30pA pulse, which may contain

information about non-active channels, such as the leaks, and the capacitance. How

the cell recovers from hyperpolarization is also of intrigue, as some cells immediately

return to firing, a behavior we denote as “rebound”, while some cell exhibits delays

to firing. Figure 3.13 B-C provide similar information about the passive-properties

and capacity / speed to return to spontaneous firing. Figure 3.13 D contains a longer

strand of spontaneous firing activity, which we hope to aid in capturing that behavior

to a greater fidelity, as spontaneous firing is a hallmark of these cells. Figure 3.13

E-F contain information regarding the response to a depolarizing pulses of varying

amplitude. Figure 3.13 F specifically should reveal if the cell’s firing envelope changes

in amplitude, a behavior we denote as “adapting-firing”, maintains similar amplitude,

or ceases-firing from excess injected current.
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Technically, we implement this through a natural adaptation of our 4D-Var

setup, where we are solving several individual data assimilation problems simultane-

ously which are connected through mutually shared parameters. In the problem

construction shown by Figure 3.13, 4.5 seconds of data in total are used for

the assimilation, amounting to around 36, 000 time points after incorporating our

downsampling strategy.

Figure 3.13 SCN data used for assimilation. Blue corresponds to full current-clamp
data, whereas orange corresponds to training data used for assimilation.

The fit to the data from Figure 3.13 can be seen in Figure 3.14. Here, the green

dashed line corresponds to the time in which the data was assimilated, and the red

dashed line signals the end of the assimilation window. Given that the cell is assumed

to be spontaneously firing at any given time t = 0, we set the initial conditions for

the model simulation merely as the initial condition estimated from 4D-var for a
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segment of data which also was firing spontaneously at the start. Deviations from

the spontaneous activity are expected regardless give the irregular emergence of action

potentials in the data. The purple is the estimated model for this cell.

One caveat to the estimated model parameters are that it is chosen through a

developed heuristic. We recognized that none of the estimated models were successful

in fully eliminating the dependence on the control term; this may mean that our model

is inadequate, or this dependence marks a deeper coupling to the unobserved driving

forces in the neuron e.g., external inputs, channel noise, etc. This also leads to an

even greater multi-modality in the cost function, as for dozens of initial conditions,

there may yet yield even dozens of final model candidates. Therefore, the “lowest

extrema” in exclusion may be misleading, because this model may not produce even

spontaneous activity. When we curate the optimal model, we look along a sort of

Pareto front consisting of the cost function evaluation and a mismatch in firing rate

between the model output and the data. To stress, we cannot claim with a high

degree of certainty that this is in fact the global minimum for this set of data, but

we will claim that amongst at least 50 initial guesses, it is the most optimal one.

In general, the estimated model is capturing the behavior of the cell quite well,

even beyond the assimilation window. One misalignment occurs in the return to firing

after depolarization, in that our estimated model re-initiates firing quite a bit earlier,

as seen in Figure 3.14 F. To incorporate this information into the estimation, we might

require, in this case, an additional 1500 ms of data to account for this. However, the

real cell is quite close to threshold for this duration, so this delay may be attributed

to a degree of noise compared to intrinsic dynamics. The bifurcation diagram and FI

curve for this model are shown in Figure 3.15. Firing emerges through a subcritical

Hopf bifurcation and ceases through a supercritical Hopf bifurcation, similarly to the

NaKL model Figure 3.3, but for a smaller range of applied currents and lower voltage
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Figure 3.14 SCN data assimilation for training data for cell exhibiting rebound
from hyperpolarization.

amplitude. The estimated model’s firing rate, even for unobserved step protocols,

matches the measurements within a couple Hz.

Figure 3.15 Bifurcation diagram and FI curve for estimated model of Rhabdomys
cell exhibiting rebound.
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3.3.1 Behavioral Responses to Hyperpolarizing Pulses

We classify this cell as exhibiting “rebound” or immediate return to spiking after a

hyperpolarizing step. Figure 3.16 illustrates, for this cell model, what the generating

mechanisms for this rebound are. The top panel shows the currents varying over time

for the -30 pA data trace immediately after release from the hyperpolarizing pulse.

The calcium channel is fully de-inactivated, as shown in the top right panel of Figure

3.16 B, and has a long time scale for its dynamics. Thus, the calcium channel acts

as the pacing inward current, aided in small part by the sodium leak channel and

repelled by the larger potassium leak channel, and the cell swiftly depolarizes enough

to fire. Calcium slowly inactivates, and the cell returns to its spontaneous firing rate.

The sodium channel is also mostly deinactivated, but the timescale for sodium is a

bit quicker, leading to it returning to its steady activity within a couple APs. One

hallmark of this cell’s estimated model, as with many to follow, are the repulsive

forces persistently created by the potassium leak channel, an outward current, and

the calcium channel, an inward current. We have found that many of the cellular

properties may be retained by appropriately scaling the conductances for these two

channels in a symmetric fashion.

The shape of the action potential is also of paramount importance to capture,

as this contains a vast amount of information relating to maximal conductances and

kinetics during the AP. Figure 3.17 shows the dV
dt

vs V plot for the data versus the

model for spontaneous firing. The data is noisy and achieves different amplitudes for

different APs in the time series leading to its cloudy appearance. The model is quite

close to approximating the mean phase plot of the data for this cell which gives us

hope that our included channels are sufficient to at least characterize spontaneous

firing.

The alternative response exhibited by the SCN cells when exposed to hyperpo-

larizing pulses are delays to return to spiking. The default model, equation 3.34, when
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Figure 3.16 SCN rebound mechanism.

presented with data which exhibited these delays, significantly struggled, indicating

that there may be insufficient currents present to explain this behavior. An additional

feature, often associated with these delays, are sags during the initiation of the

hyperpolarizing pulse, which, again, is a behavior which our model struggled to deal

with.

To address these issues, for cells which exhibited these behaviors, we added

two additional currents: a non-inactivating H-current which can generate a sag

[15], and a transient outward potassium channel with slower inactivation, but we

approximate the activation as instantaneous. The transient potassium channel may be

representative of an A-current which has been modeled with instantaneous activation
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Figure 3.17 SCN rebound speed plot.

before [47]. It has been shown that blocking IA with the drug 4-Aminopyridine

eliminates the delay in mouse orexin neurons [18]. We based boundaries for the

parameters of the H-current and A-current from recordings of SCN neurons [16,34].

When including these currents, we were successful in estimating these behaviors,

as shown in Figure 3.18 A. Because of the long timescales at which these behaviors

operate on, we exposed the assimilation to around 3 seconds of current-clamp data

with a hyperpolarizing pulse. To ensure that the model is robust, we also included

responses to depolarizing pulses. Figure 3.18 B shows that this model, for certain

depolarizing pulses, actually bursts as opposed to tonic firing, whereas the data is

tonic firing. However, the firing rate of the burst is similar to that of the tonic firing.

This assimilation problem was found to be particularly stiff; to help in regularizing

the problem, we used the slack form of the constraints and penalized the slacks as

in equation 3.7. We felt that this model comfortably accounted for the delay, but to

illustrate the mechanism behind it, we explored the dynamics in Figure 3.19. The

potassium leak and calcium channels are both open during the return step to Iapp = 0,

and as is the transient outward potassium channel Ito. Slowly, this channel inactivates,
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as its time scale for inactivation is shown in the bottom right panel of Figure 3.19 B.

If we alter the conductance for this current, the delay is similarly affected, as shown

in Figure 3.19 D. Here, if we take the estimated conductance Gto and reduce it by

five percent, the delay is reduced, and if we increase it the delay is increased.

3.3.2 Behavioral Responses to Depolarizing Pulses

The SCN neurons also show distinctive responses to depolarizing pulses. Figure 3.20

F is an example of cell exhibiting a non-adapting firing behavior. When exposed to a

depolarizing pulse, the firing rate and amplitude of spiking is fairly consistent across

the pulse duration. An explanation for this behavior can be seen in Figure 3.21. If

one compares the current contributions before and after the pulse, as shown in Figure

3.21 C, the prominent features are mostly retained, as the summation of the currents

during the onset of the AP closely hug the sodium channel. The inactivation time

constants for sodium are fairly fast during the AP, as shown in the bottom left of

Figure 3.21 B, and they quickly respond to the change in applied current.

Conversely, some cells’ firing rate and firing amplitude alter during the course

of the pulse, as shown in Figure 3.22 F. Here, the cell’s firing rate increases and the

waveform amplitude decreases. An explanation for this behavior is given in Figure

3.23. In panel D of Figure 3.23, sodium becomes inactivated with smaller window of

activation and slower response time. Comparing the current contributions in Figure

3.23 A and C, the driving for firing during the 30pA pulse becomes mainly calcium,

although the upstroke during spontaneous firing is driven by sodium as the sodium

channel is less inactivated.

Other cells’ firing becomes silenced when injected with depolarizing protocols

of sufficient strength. An example of one such cell is given in Figure 3.24 F. We

investigate the mechanism for this silencing in Figure 3.25. During spontaneous

firing, the calcium contributes a persistent pacemaking inward current to depolarize
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the membrane, and here, the sodium is the main initiator of spiking, as shown in

Figure 3.25 A. However, when exposed to a depolarizing pulse of 30 pA, the cell’s

sodium channel almost immediately inactivates, and the calcium channel also slowly

inactivates. No inward flux of positively charged ions are driving the cell to threshold,

and opposing the outward potassium leak channel, so the cell maintains at rest.

To be clear, we cannot claim with certainty that these are the biological

mechanisms which are producing these observed behaviors. However, we have

explored the dynamics that were evoked from our data assimilation procedure, using

our particular down-sampling protocol, to understand better the possible mechanisms

for the behaviors’ emergence.
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Figure 3.18 SCN data assimilation for training data for cell exhibiting delay from
hyperpolarization.

91



Figure 3.19 SCN delay mechanism.
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Figure 3.20 SCN data assimilation for training data for cell which is non-adapting
when exposed to depolarizing pulses.
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Figure 3.21 SCN non-adapting mechanism.
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Figure 3.22 SCN data assimilation for training data for cell which is adapting-firing
when exposed to depolarizing pulses.
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Figure 3.23 SCN adapting-firing mechanism.

Figure 3.24 SCN data assimilation for training data for cell which is adapting-silent
when exposed to depolarizing pulses.
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Figure 3.25 SCN adapting-silent mechanism.
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CHAPTER 4

TWO STAGE ESTIMATION COMBINING 4D-VAR AND UKF

As we have shown with our experiments with the Morris-Lecar model in Chapter

2, variational data assimilation and ensemble filtering seem to have certain niches.

Filtering has excellent utility in, well, filtering noisy data to obtain fairly accurate

state estimates, and can be augmented to estimate parameters well. Unfortunately,

there are few cut and dry mechanisms to ensure global optimality, and tuning the error

covariances and prior distribution is a daunting task when there are many components

at play. 4D-Var, to an extent, allows the tuning of optimization options to increase

precision while being penalized with potentially longer optimization run times. 4D-

Var requires very little in the way of prior knowledge, aside from appropriate bounds

on states and parameters as well as the weights associated with each term in the

Lagrangian.

From an outside perspective, if one is looking for accuracy, 4D-Var might seem

to be the catch-all. Unfortunately, there are circumstances in which utilizing 4D-Var

is not so straightforward. Memory limitations may prohibit formulating or solving

the resulting high-dimensional optimization problem if the optimization variable size

enters the hundreds of thousands or greater. Certain cells, like those of the SCN

during early ZT, may have firing rates of less than 10 Hz. For example, in the 10 Hz

case, we would require on average 100 ms of data before capturing an action potential.

Some features of the spike shape, for certain, could be estimated by 4D-Var for this

case, but to capture the dynamics underlying spiking one would likely require data

from at least a few action potentials. Especially in the case of noisy data, and despite

using a driving current to elicit non-stationary responses from the cell, we very well

may be utilizing hundreds of milliseconds of data before we can confidently say we have

captured the spike-generating mechanisms of the model. If we use a discretization of
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0.02 ms, we are, at a bare minimum, looking at 100(1/.02)(L+ 1) +D where L is the

number of dynamic variables. Even if we can estimate the spiking dynamics using

only several hundred milliseconds of data, what if the system is undergoing some slow

adaptation?

Figure 4.1 shows an in vitro voltage recording from neurons of pre-Bötzinger

complex (pre-BötC), the bursting pacemaker neurons for breathing [38]. This cell

has an inter-burst interval of dozens of seconds, and it simply would be impossible

to utilize an entire burst, as well as the subthreshold pacing between bursts, in one

problem setup of 4D-Var. However, we may be able to capture the fast-timescale

dynamics associated with the generation of spiking using a shorter recording using

variational data assimilation. The creation and destruction of the burst occurs over

a long-time scale, but at the onset of spiking, the system isn’t displaying this slow

adaption. Hence we would anticipate that the parameters associated with any slow

timescale would not have a high degree of sensitivity in this recording.

Figure 4.1 pre-Bötzinger complex neuron bursting time series.

A common practice in mathematical biology is to separate dynamics of disparate

time scales, for example as in the Michaelis-Menten model of enzymatic reactions in

biochemistry [65]. Partially motivated by this asymptotic technique, we propose

separating the estimation into fast and slow subproblems. A similar idea associated
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Figure 4.2 Utilizing UKF and 4D-Var for long time-series data.

with calcium dynamics was proposed in [67], wherein the authors separated channels

of the model into different compartments based upon their timescales. Here, we don’t

intend to use time-scale separation to inform the structure of the proposed model a

priori, but to alter the estimation strategy.

The idea for the two-stage estimation strategy is shown in Figure 4.2. For

data similar to the pre-BötC data in Figure 4.1, we would try to estimate the

full model using a short observation window. Afterwards, we would fix the

parameters for the spike-generation channels/variables, and estimate exclusively the

slow channels/variables using the Unscented Kalman Filter with the data in Figure

4.1 as the observation. Ideally, by piecing these stages together, we would have a

holistic representation of the model.

Slow timescales emerge in many systems, including bursters, systems undergoing

synaptic plasticity, and slowly modulating neocortical inhibitory interneurons. Two

models for respiratory rhythm generation were developed by Butera, Rinzel, and

Smith (BRS) in a series of papers in 1999 in which intrinsic cell properties were
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sufficient to explain burst generation similar to recorded in vitro data from neonatal

rodent [20]. Within this model exists a faster depolarizing drive for the initiation of

the burst and a slow time scale associated with burst termination. BRS developed two

models to explain the manifestation of the pacemaking bursting, wherein both were

initiated through the activation of a persistent sodium channel. Burst termination in

Model 1 occurs through the slow inactivation of persistent sodium channel, whereas

Model 2 terminates though a slowly activating potassium current. We only consider

Model 1 in this analysis as was used in a recently developed closed-loop respiratory

control model [38].

Model 1:

C
dV

dt
= −INaP − INa − IK − IL − Itonic-e + Iapp (4.1)

with
dx

dt
=
x∞(V )− x
τx(V )

xinf(V ) = {1 + exp [(V − θx) /σx]}−1

τx = τ̄x/cosh [(V − θx) /(2σx)]

(4.2)

We reformulate these equations using hyperbolic tangents which have more safely

controlled derivatives when performing automatic differentiation:

ainf(V ) =
1

2
{1 + tanh [(V − vx) /dvx]}

τx = τ̄x

√
1− tanh [(V − vx) /(dvx)]2

(4.3)

where dvx = −2σx and va = σx
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Therefore, each time-dependent gating variable can be represented by merely

three parameters in this model while still adhering to the typical sigmoidal form for

the steady-state functions and bell-shaped curves for the time constants.

To further reduce the complexity of the model, the activation of the fast

sodium INa channel is assumed to happen instantaneously, and the inactivation is

approximated as function of the activation of the potassium channel, IK. Thus:

INa = ḡNam
3
x(V )(1− n) (V − ENa)

IK = ḡKn
4 (V − EK)

(4.4)

The persistent sodium with slow inactivation also has instantaneous activation,

with distinct parameters to the fast sodium activation, while the time constant

for inactivation is orders of magnitude larger than those for the spiking dynamics.

Precisely, τ̄h = 10, 000 milliseconds.

INaP = ḡNaPm∞(V )h (V − ENa) (4.5)

Additionally, for our simulations, we assume that there will be no excitatory

input from the system, so the maximal conductance for Itonic will be zero. The

dynamics of the system at the onset of the burst can be seen in Figure 4.3. Figure

4.3 A shows that the change in voltage during the spike is primarily driven by the

transient sodium current, and repolarizes through the transient potassium current.

Smaller contributions to the depolarization come from the persistent sodium current

and repolarization from the leak current. Figure 4.3 B illustrates that the inactivation

of the persistent sodium channel changes extremely slowly during the burst and can

almost be perceived as constant. The model is capable of traversing from quiescence,
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to bursting, to tonic spiking through shifts in the applied current, or equivalently,

the leak reversal potential. For our data assimilation experiments, we assumed that

the system would be reminiscent of expected in vitro activity, so we fixed the applied

current as zero and the reversal potential for the generating model was such to elicit

burst activity. Specifically, EL = −60.

Figure 4.3 Dynamics for BRS Model 1 at the onset of the burst.

We simulate Model 1 for several seconds as the burst duration and interburst

intervals are seconds long. In keeping with our established twin experiment tradition,

we add some white noise atop our signal to degrade it. For this particular experiment,

we will only subject our variational method to a subset of the data which contains the

burst initiation. This data segment is shown in Figure 4.4, where only the first 100

milliseconds of the burst are used in the variational assimilation, with a sampling rate

of 50 kHz. Because the inactivation time-constant is orders of magnitude in difference
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from the rest of the system, we estimate the natural logarithm of the parameter, and

feed in the exponentiation of this natural log into the dynamical equations.

Figure 4.4 Burst for BRS Model 1.

After the 4D-Var trial is over, we then fix the parameters for everything aside

from the slowly inactivating channel, INap. In practice, we would have no knowledge

that our other parameters were sufficiently close to their true values besides blind

faith. We are working towards integrating sensitivity measures and other uncertainty

quantifiers into our variational framework.

For the remaining parameters, we allow them to vary slowly within UKF

alongside the states which are being estimated using our augmented state space model.

Here, to fully ascertain the slow dynamics, we use a lot of data, namely, 300 seconds

worth which is roughly 50 bursts. Additionally, we performed 5 incremental runs,

using the initial guesses of the system at the final time point as starting conditions for

the next run. A final effort we undertook to speed up the process was to down-sample

the observational data between bursts significantly and down-sample a bit during the

burst. Observations are recorded every 1 millisecond between bursts and every .1

millisecond during the burst phase.
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Figure 4.5 Burst comparison between BRS Model 1 and estimated model via two-
stage strategy

The estimated parameters are shown in Table 4.1. Some of the parameters are

still off by a bit, leading to slightly incorrect predictions of the behavior. Figure 4.5

shows the voltage versus time plot for the original model compared to the estimated

model. The original model had 29 APs per burst, whereas the estimated model has

26. Figure 4.5 B shows that the bursts themselves have roughly the same interburst

duration.

Table 4.1 BRS Estimated Model Parameters from Two-Stage DA Strategy.
Parameter Original Value 4D-Var 4D-Var → UKF

gNa 28 27.98 27.98
gK 11.2 11.27 11.27
gNap 2.8 3.78 ∗ 3.02
gL 2.8 2.74 2.74
vm -34 -33.97 -33.97
dvm 10 9.97 9.97
vn -29 -29.07 -29.07
dvn 8 8.08 8.08
τn 10 9.70 9.70

vmNap -40 -39.58 -39.58
dvmNap 12 12.07 12.07
vhNap -48 -99.91 ∗ -48.40
dvhNap -12 -17.46 ∗ -12.76
τhNap 1e4 8.71e4 ∗ 9.15e3

The intention of this work is to apply to real neural data which contain a

mix of slow and fast timescales. What would aid in this quest, and in parameter

estimation in general, is perform a priori analysis to determine whether our data

contains information relevant to the model parameters in question. We extend this

thought into the following chapters. Chapter 5 defines the ideas of sensitivity and

identifiability in the context of parameter estimation. Chapter 6 explores sensitivity
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and its relation to information-rich data, as we endeavor to optimize the amount of

information within our data by appropriately designing an injected current.
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CHAPTER 5

IDENTIFIABILITY OF CONDUCTANCE-BASED MODELS

There are two complementary ideas regarding the estimation of parameters: sensi-

tivity analysis and identifiability. Sensitivity analysis predominantly describes how

sensitive one’s data, with an observation operator mapping model output to the data,

is to one’s model parameters, and how variations in parameters introduce variation in

the data. Identifiability analysis involves interactions among the model’s parameters.

Particularly, structural identifiability involves how the structure of the model may

create degeneracies in the sets of unknown parameters. For instance, consider the

trivial case where we can observe some quantity xn, and the system has linear rates

for two processes ax and bx:

xn+1 = axn + bxn. (5.1)

Without knowing any further information to disambiguate a and b, perhaps coming

from some algebraic constraint, it is obvious that we can only hope to estimate the

summation of the two. Namely, this system can be solved for by regression to obtain

ĉ = a+ b. However, the system may be insensitive to some parameters. For instance,

in this system, if the initial condition was x0 = 0, the system will remain at 0 for

any parameter values given that it is a steady-state. Therefore, for our parameters,

the regression problem would be underdetermined. Collectively, while the quantity

ĉ = a+ b is structurally identifiable, it is not practically identifiable since the data is

insensitive to it. Olsen et al. provide an excellent overview of these relations and the

modern techniques to determine which subset of one’s parameters may be practically

identified [87].
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To further complicate the problem, there are additional layers to these cate-

gorizations. Namely, global versus local descriptions of identifiablity and sensitivity.

Hong et al. gives an excellent methodology to understand global identifiability for

models whose parameters enter as rational expressions [58]. Villaverde et al. provides

a digestible discussion of the differences [110].

For models in neuroscience, we are often left in an unfortunate position. The

parameters for gating variables typically enter into the equations nonlinearly, and

as of now, no algebraic-based technique can deal with the level of complexity in

these expressions, nor the number of variables and parameters in useful models.

Walch et al. has approached the problem from a differential algebra perspective,

and can compute input-output equations of the dynamics through Groebner bases

[113]. With voltage-clamp and under certain assumptions, they have shown the

identifiability of kinetic time constants, but the non-identifiability of the combination

of maximal conductances and steady-state functions. However, we are working

with current-clamp data. This introduces an additionally level of complexity in

that we are only seeing the effect of the summation of all the channels during an

experiment as opposed to an isolated individual channel. While Walch et al. have

proved that the activation functions cannot be disambiguated from the maximal

conductances for voltage-clamp, we have shown that these, for at least small models

in the Morris-Lecar, can be estimated. Therefore, my personal thoughts are that

these analyses are important in constructing subsets of parameters to focus efforts

on which have the highest sensitivity and aren’t “obviously” unidentifiable, but the

computational techniques need to catch up for the approach to be generally applicable.

Regardless, we endeavored to understand, as a bare minimum, the local

structural identifiability of a conductance-based model beyond the performance

yielded with our parameter estimates. We have shown that in Tables 2.2 and 2.4

that the appropriate parameters are estimated regardless of initial condition of the
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parameters; if this was true for any subset of parameters in their permissible domains,

the system would be globally identifiable. In some regard, this is analogous to

attracting states in dynamical systems.

The Structural Identifiability criterion merely states that

y(t, θ̂) = y (t, θ∗)⇒ θ̂i = θ∗i (5.2)

If Equation (5.2) holds in some neighborhood of θ̂, we say that, dropping the accents,

θ is locally identifiable. If multiple parameter sets have identical observations, then

θ is unidentifiable. If this condition holds for any neighborhood, then θ is globally

identifiable.

To compound the problem, there may be regions in parameter space where

∥∥∥y(t, θ̂)− y (t, θ∗)
∥∥∥ < ε ∀θ̂, θ∗ (5.3)

In these regions, we say that θ is non-influential [120]. This refers back to the example

earlier, Equation (5.1), regarding the system being at steady state. When a parameter

is structurally identifiable and influential, it is practically identifiable.

A major issue is that may not know where these neighborhoods are. We may

have an idea; namely, between bursts of the bursting Morris-Lecar, the observed data

probably is not influenced too heavily by the parameters of the spiking channels.

Whether or not our parameters have some structural degeneracy, like in Equation

(5.1), may not be apparent when working with possibly dozens of equations with

nonlinear interactions.

Principal to this area is a seminar paper by Kalman outlining the notions of

controllability and observability for linear systems [68]. This work was extended by
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Hermann and Krener to nonlinear systems [55]. Effectively, controllability is the

ability to use an external input, in our case an applied current, to transition the

system from any initial state x0 to any final state xf in finite time. Observability is

the dual problem; can we fully observe our system (all states) in finite time given our

measurements. For the moment, we will focus explicitly on the latter question.

For linear systems, a simple check is to construct the observability matrix. For

example, consider the controlled linear system:

ẋ = Fx+ Cu

ẏ = Hx

(5.4)

We can take repeated derivatives of the observation equation to arrive at a system of

equations:

ẏ = Hx

ÿ = H(Fx+ Cu)

...

dyn−1

dtn−1
= H(F . . . (Fx+ Cu)) = HF n−1x+HCu

(5.5)

In matrix vector form, this looks like:



y

ẏ −HCu
...

dyn−1

dtn−1 −HCu


=



H

HF

...

HF n−1


x = Ox (5.6)
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To understand the observability, we need only to calculate the rank of O. A

system of size n is fully observable if rank(O) = n. The extension to nonlinear

systems requires use of Lie derivatives. Suppose h is a smooth scalar function and f

a smooth vector field operating on some manifold M ⊆ Rn. The Lie derivative of h

with respect to f is the directional derivative in f ’s direction:

Lfh(x) = ∇h(x)f(x, u) =
∂h(x)

∂x
f(x, u) (5.7)

This relation can be applied recursively to obtain

Lifh(x) =
∂Li−1f h(x)

∂x
f(x, u) (5.8)

When only observing one state variable, h(x) is scalar, and ∂h(x)
∂x

is 1× n.

To preserve notation, our system dimensions in question are x ∈ RL, θ ∈ RD.

Thus, we form the L× L observability matrix

O(x) =



∂
∂x
h(x)

∂
∂x

(Lfh(x))

∂
∂x

(
L2
fh(x)

)
...

∂
∂x

(
LL−1f h(x)

)


. (5.9)

So far, we have only outlined observability of the states of our system under

certain controls. Naturally, like during our augmented state-space approach with

Kalman Filtering, we can augment the state space, where parameters have trivial
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dynamics, and arrive at the matrix and condition we need for local observability:

O(x) =



∂
∂x
h(x)

∂
∂x

(Lfh(x))

∂
∂x

(
L2
fh(x)

)
...

∂
∂x

(
LL+D−1f h(x)

)


. (5.10)

Observability Rank Condition (ORC): if the observability matrix of the

dynamical system has full rank, i.e. for O(x0) from Equation (5.10),

rank (O(x0)) = L+D

then the system is (locally) observable and identifiable around x0 [110]. Calculation

of observability coefficients has been conducted previously for neural models in the

context of trajectory estimation [4]. An alternative partial observability metric for

neural systems has been developed based on the capacity of the model to reconstruct

the data [101].

Beyond motivating further exploration into the scalability of identifiability tools

for nonlinear systems, this chapter has a simple, and previously considered result:

the Morris-Lecar model is locally identifiable and this can be proved numerically.

For this, we used the MATLAB toolbox named STRIKE-GOLDD (STRuctural

Identifiability taKen as Extended-Generalized Observability using Lie Derivatives

and Decomposition) package which is freely available (a common theme in this

dissertation) [110]. This package makes use of the symbolic toolbox in MATLAB.
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Table 5.1 Matrix of ORC for Morris-Lecar Model Evaluated for Hopf Parameters
V n φ GCa V 3 V 4 GK Gleak V 1 V 2

1e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00 0e+00
-1e-01 -2e+01 0e+00 1e-01 0e+00 0e+00 -4e-01 -1e+00 -5e-02 1e-01
2e-02 3e+00 3e+00 -1e-02 2e-03 -3e-03 6e-02 1e-01 4e-03 -1e-02
-3e-03 -5e-01 -6e-01 3e-03 -2e-04 3e-04 -1e-02 -2e-02 -1e-03 2e-03
4e-04 1e-01 1e-01 -4e-04 7e-05 -9e-05 2e-03 4e-03 2e-04 -4e-04
-5e-05 -2e-02 -3e-02 9e-05 -1e-05 2e-05 -3e-04 -7e-04 -4e-05 8e-05
-7e-06 2e-03 5e-03 -1e-05 3e-06 -5e-06 3e-05 6e-05 6e-06 -1e-05
1e-05 7e-04 -7e-04 2e-07 -5e-07 7e-07 2e-05 4e-05 -3e-08 -2e-06
-6e-06 -7e-04 -2e-04 2e-06 -3e-08 1e-07 -2e-05 -4e-05 -8e-07 3e-06
4e-06 5e-04 3e-04 -2e-06 1e-07 -2e-07 1e-05 2e-05 7e-07 -2e-06

STRIKE-GOLDD can try to decompose the model into submodels and has the

capacity to find identifiable combinations of otherwise unidentifiable parameters.

However, we have found, and as is stressed by the developers, that systems

where L + D > 10 are infeasible to try to compute. Thankfully, L + D = 10 for the

Morris-Lecar parameter estimation problem we investigated in Chapter 2.

To take it a bit further, we tried to develop our own simple implementation for

calculating identifiability using automatic (algorithmic) differentiation, using CasADi

[5]. We were able to validate our result for Morris-Lecar from the resulting matrix

rank of our expression matrix evaluated on nominal parameter values. That matrix is

shown in Table 5.1 using the parameters for the Hopf regime and an intial condition

for V and n taken from the limit-cycle. The rows are indexed by orders of the Lie

derivatives of Equation (5.10). The columns are organized as the partial derivatives

with respect to that particular state or parameter.

We were additionally able to take the system dimension up to 12 to check

that the bursting Morris-Lecar model was similarly identifiable. Unfortunately, past

this level, we were unable to keep the expression graphs from being too memory

intensive, so any further investigation into more complex models is left for future

work. Some other toolboxes for global identifiability for rational expressions, such as

those emerging in models of chemical reactions, epidemiology, and pharmacokinetics,

are available [28,59]. The following chapter delves further into sensitivity analysis for

optimal experimental design in neuroscience.
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CHAPTER 6

OPTIMAL DESIGN OF INJECTED CURRENTS

6.1 The Optimal Injected Current Problem

Thus far, we have touched on sensitivity of our parameters to data, and whether

our parameters, based on their structure, are observable. An associated condition,

whose conditions for nonlinear systems were summarized by Hermann and Krener,

is controllability [55]. Namely, controllability refers to the capacity of a system

to produce a trajectory which, from an arbitrary initial condition, can arrive at a

final state in finite time. The dual problem for nonlinear systems has already been

presented in our earlier chapter on observability, where we can consider a control “u”

as our input to the system.

When collecting data, electrophysiologists are capable of controlling the real

neural system to do many things and there are a number of natural protocols to choose

from to extract particular information. Often, step currents of different amplitudes

are used to construct FI curves. Hyperpolarizing steps may reveal the input resistance

of the cell, and, thereby, the capacity of the cell to respond to external drives. Sharp

transitions, or pulses, may unveil certain latent time scales in the system. Sinusoidal

currents, or zap currents which vary in amplitude and frequency, can unveil resonance

properties.

The above stimuli have functional implications to understanding biological

phenomena. Modelers are interested in these biological properties, but are also

interested in having data which can unveil aspects of their model. When the

system can’t be sufficiently influenced to reveal all of the parameters in a model,

it is the responsibility of the modeler to fix certain parameters, or drop completely

non-influential terms if they contribute little to the dynamics. We arrive then at a
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motivation for a protocol: one which reveals the most information about our model,

and thus, can further the understanding of existing biological phenomena.

In absence of a time varying applied current, or in complement to one, one can

drive a neural system by the observed voltage; we will touch on this in Chapter 7. The

issue is whether that observed voltage is dynamically rich enough to estimate all model

parameters of interest. Others have chosen to drive a system with a chaotic input

current for both twin experiments and real data assimilation, which seeks to push the

dynamics between attracting regions and spend adequate time in the transient states.

By using a chaotic current, broad frequency bands are spanned, but can be chosen

so as not to be filtered out by the membrane time constant. However, depending on

the framework chosen to perform the estimation, these open questions remain:

• How much data to use?

• What is the appropriate time discretization is in the estimation procedure (tk

from Equation (1.5))

• What type of current can elicit the “best” responses for both model-generated

data and real-world cells?

Thankfully, some work has been done on the number of observations required

[94]. Before devising an optimal control strategy, the metrics by which we consider

optimality have to be declared. What is the best response of the dynamical system for

estimation? Is it related to the CLEs of the synchronization system? Is it a measure

of entropy? Or the fractal dimension? One thought process is that the resultant

phase space is dense in some capacity. For some fixed amount of time, the system

has exhausted its dynamics so much so that the inverse problem has relaxed.

Consider Figure 6.1. For any problem, these are likely the data we have at

our disposal to inform any optimization problem of choice. For data riddled with

noise, small deviations caused by noise will lead to large deviations in the numerical
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derivative of the observations so using this as a metric directly can sometimes be

ill-advised. However, as a motivation, we can see that the system stimulated by a

constant applied current will only traverse its stable limit cycle (if it exists) after

transient departure from an arbitrarily imposed initial condition. If we consider

problems from synchronization, one could consider such stable limit cycles using a

circle map which deconstructs an L dimensional phase space to a one dimensional

problem of phase. Similarly here, we have reduced the data to one of infinitely many

trajectories in phase space. Alternatively, when forced with the scaled chaotic output

from the Lorenz ’63 model, as conducted in [106], the system traverses a denser region

of phase space.

Some work on optimal driving currents for neuroscience has been done [25, 26,

45]. However the goal of these applications was to initiate, or silence, spiking using

terminal conditions on the voltage using a minimum energy stimulus. Namely, to

impose that at the final time, the voltage matches expected values at the beginning

or end of an action potential which would signal the initiation of a spike or fading

to quiescence. Instead, our problem would be even less constrained as we give no

considerations as to what the values at the end of the estimation window would be.

Here is the setup (following [40, 48]). Per usual, define our conductance-based

model as:

dV

dt
= −

∑
i

Ii + Iapp(t) (6.1)

da

dt
=
a∞(V )− x
τa(V )

(6.2)

for all additional states, a. For notational convenience, define u = Iapp and our system

to be

dx

dt
= f(x, u), x ∈ RL (6.3)
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where u enters only in the current balance equation. We can take initial conditions of

the system to be approximately known, if we set the voltage at its resting membrane

potential and the states to be their corresponding steady state values a(t0) = a∞(Vrest)

so x(t0) = x0 and we allow the terminal conditions to be free (even this restriction of

the initial conditions can be relaxed, as will be shown).

We desire to minimize some performance index

J [u] =

∫ tf

t0

G(u, x, t)dt (6.4)

subject to Equation (6.3). From here, we have some choices. Two flavors exist

for such optimal control problems: direct and indirect methods. Practically, the

difference between these methods is when one chooses to discretize the problem. In

the direct approach, we discretize Equation (6.4) directly. The collocation methods we

have employed for variational data assimilation, for instance, are a product of direct

transcription. For the indirect approach, we can derive the equations of motion

assuming that G is differentiable and use an appropriate numerical scheme to try

to solve for the optimal current u after discretizing the resulting boundary value

problem. This requires simultaneously integrating Lagrange multiplier equations,

which has been shown to, in some cases, improve accuracy of the solution [13, 14].

The performance index would then be expanded to include these terms:

P (u(t)) = G(u(t)) + λx1
(
dx1
dt
− f1(x, u)

)
+λx2

(
dx2
dt
− f2(x, u)

)
+ · · ·+ λxn

(
dxn
dt
− fn(x, u)

) (6.5)

However, the introduction of additional variables in the augmented system with

poorly quantified initial conditions leads to a high likelihood of divergence and a
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Figure 6.1 Voltage and Iapp versus t and dV
dt

vs V for the NaKL model. The red is
under constant applied forcing and the grey is forced with the scaled output of the
Lorenz ‘63 model.

smaller basin of attraction. For the remainder of this work, we elect to consider only

the direct problem.

Outside of biological applications, constructing optimal inputs for parameter

estimation spans back to early work from Mehra, Nahi, and Payne, amongst others

[77,78,84,90]. Many of these applications sought to understand systems which could

be heavily controlled and repeated experiments could be costly, such as with aircraft

flight tests. Here, the optimal input might be deflections of the elevator located on

the rear stabilizer and one can measure pitch rate and attack angle [77]. Optimal

experimental design, as a general problem, has gained popularity across fields and

across models types, as the principal ideas extend to arbitrarily parameterized models.

Recall from Chapter 1 that we related data assimilation to Bayesian estimation,

as for our states and parameters,

P (X|Y) ∝ P (Y|X)P (X). (6.6)
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where

P (X|Y) = P (X (t0) , . . . ,X (tN) ,θ, |y (t0) , . . . ,y (tN)) (6.7)

Data assimilation can be derived from this formulation, and it can be shown

that the cost functions we’ve been using for variational data assimilation can be

reformulated as

− log (P (X|Y)) = Ĉ(X; Y) (6.8)

for Ĉ(x) ≈ C(x) + Constant terms, for C(x) from Equation (3.3) [1].

Functionally, seeking minima of this cost function relates to the expected states

and parameters conditioned on the measurements [122].

E[X|Y] =

∫
dX (X) exp

[
−Ĉ(X)

]
∫
dX exp

[
−Ĉ(X)

] (6.9)

From its structure, with an exponential kernel of the cost function, from

variational calculus we know that by using Laplace’s method we can approximate

equation 6.9 by finding extremum paths such that the Jacobian is zero

∂Ĉ(X)

∂X

∣∣∣∣∣
X=Xk

= 0, k = 0, 1, . . . (6.10)

and the Hessian, ∂2Ĉ(X)
∂X2

∣∣∣
X=Xk

, is positive definite [72].
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When a particular minimum, Ĉ(Xmin), is uniquely smaller than any other,

it exponentially dominates the integral in equation 6.9, and thus provides a good

approximation to the mean of the distribution as our maximum likelihood estimate.

This statistical information is presented now to try to bridge the gap towards

another statistical topic in information theory. We can separate the cost function, as

we have alluded to thus far, into the “measurement term” and “background term”.

The measurement term

L(x) =
1

2

N∑
k=0

‖yk − h(xk)‖2Rk
=

1

2

N∑
k=0

R−1 (yk − Vk)2 (6.11)

equates to our log-likelihood function under a Gaussian error approximation. We

want to investigate how much information our signal contains, and in particular, how

changes in parameters relate to changes in our data. These dependencies are restricted

to our likelihood function. We can relate these dependencies using the well-known

Fisher Information theorem, which relates the variance of our likelihood function to

the curvature of the likelihood function for a given parameter. The entries of the

Fisher matrix are given by:

[I(θ)]i,j = E

[(
∂

∂θi
L(y|θ)

)(
∂

∂θj
L(y|θ)

)
|θ
]

(6.12)

An unbiased estimator for this expectation can come from linearizing around some

nominal parameter set, θ̂. Thus we arrive at our linearized, Gaussian error

approximation for the Fisher Information Matrix (FIM).
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F = XTX, where X =


∂y(t1)
∂θ1

. . . ∂y(t1)
∂θD

...
. . .

...

∂y(tN )
∂θ1

· · · ∂y(tN )
∂θD

 (6.13)

Of course, we still need a way to not only construct this matrix in practice, but

to use it meaningfully. For constructing and evaluating the FIM, we will unfortunately

need to make a sacrifice in that we will operate from a local approximation. For the

rest of the analysis here, we will assume that perhaps we have a nominal model for

the system, with nominal parameter values, and we ascertain the information from

perturbations of this nominal model. Of course, this is problematic, as we are then

biasing our signal generation a bit to that of a set of parameters which may very

well be far removed from the actual globally optimal parameters of the system. For

systems with large dimensions of parameters, this is a necessary evil.

Global sensitivity measures exist, but are computationally intractable for the

parameter sizes we are interested in. Variance-based global sensitivity measures,

such as Sobol’ indices, describe how the output variance of a model is attributed to

parameters. Composition of a similar matrix to the FIM using Sobol’ indices for

optimal experimental design of bioreactors has been conducted [96]. An overview

of recent developments for constructing local and global sensitivities is available,

including derivative-based and variance-based (integral) methods [87]. There are a

few candidates for how to construct these sensitivities. One can extract the partial

derivative of the data with a simple numerical derivative, e.g., with forward difference

∂y(t, θ)

∂θi
=
y (t, θ + hei)− y(t, θ)

h
(6.14)
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where here ei is a projection operator onto the ith parameter, and h may be tuned

appropriately for each parameter in question. Another method draws from the

dynamics themselves, to construct an augmented series of equations, known as the

sensitivity equations, which are simultaneously integrated with the original ODEs.

∂ (dxi/dt)

∂θj
=

d

dt

(
∂xi
∂θj

)
=

D∑
k=1

[(
∂fi
∂xk

)(
∂xk
∂θj

)
+
∂fi
∂θj

]
(6.15)

∂xi(0)

∂αj
= 0 (6.16)

A final option to constructing the sensitivities is to use automatic differentiation,

and we elect to use AD via CasADi for this. For convenience, we will express our

covariance matrix as the inverse of the FIM.

Σ ≡ F−1 (6.17)

A few interpretations of maximal information come from equivalently minimizing the

variance of Σ. These fall under what are known as the “alphabet”: criterion, where

each metric is given a different letter.

The A-criterion

argmin(trace(Σ)) (6.18)

is understood to minimize the average variance of estimates.

The D-criterion:

argmin(det(Σ)) (6.19)
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λ1(Σ)

λ3(Σ)λ3(Σ)
λ2(Σ)λ2(Σ)

Figure 6.2 Ellipsoid representation of the covariance matrix, Σ.

is understood to minimize generalized variance of estimates.

The differences between these two can be visualized in Figure 6.2. The D-

criterion aims to minimize the volume of the ellipsoid formed from the principle

axes of the ordered eigenvalues of Σ, as the volume is proportional to det(Σ). The

A-criterion aims to shorten each of the principal axes of the ellipsoid, respectively.

An implementation of efficient matrix operations for OED via the FIM for

ODEs has been done in the software package casiopeia (Casadi Interface for Optimum

experimental design and Parameter Estimation and Identification Applications), built

on CasADi [19].

6.2 Optimal Current for Hodgkin-Huxley Type Model

As a first pass, we decided to conduct twin experiments for a fixed time window

on the standard NaKL model to see which currents emerged from satisfying the A

and D criteria. We assume an observational frequency of 50kHz for 100 ms. Due

to a scalability constraint via the implementation strategy, the optimal currents are

only estimated on 1 ms intervals, and remain constant between forming a fine-grid

series of steps. The estimated currents are shown in Figure 6.2. The optimally

derived currents have different properties, as the D-optimal current traverses more

hyperpolarized regions. The voltage speed plots, organized by color of the action

potential train, show a dense catalog of different shapes and transitional regions.
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We then wanted to conduct a formal comparison of how the currents and

their generated observations would do when estimating the parameters of NaKL in a

twin experiment. Their challengers were some standard currents used for estimating

properties, including steps, ramps, flat currents, and a segment of the output of the

chaotic system, Lorenz ’63. As per usual, the observations were then diluted by

additive white noise. The results for a specific random seed of the noise generation

are shown in Table 6.2. If we take a relative error,
∑

i|
pesti −ptruei

ptruei
|, the computed

errors are shown in Table 6.1. The “optimal” currents were more successful than

their counterparts for this illustrative example, but in actuality, each injected current

faired fairly well in terms of estimating the parameter values. Further exploration

into optimal currents for more complex models and, ultimately, for injecting into real

cells is ongoing.

One last avenue which we have yet to touch on is how we can drive a neuron

through its voltage, as opposed to an injected current. Chapter 7 touches on how we

can integrate data assimilation with voltage-clamp data if such data is available. The

second part of this chapter details how we can use current-clamp data in a manner

that’s related to voltage-clamp to reduce the complexity of the parameter estimation

problem.

Table 6.1 Relative Error for Various Currents for Estimating NaKL Model

Aopt Dopt L63 Ramp Steps Constant

Relative Error 0.1277 0.1872 0.9224 0.2435 0.8060 1.3044
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(a) A-optimal applied current (b) D-optimal applied current
.

Figure 6.3 A and D-optimal applied currents derived using OED strategies for
NaKL model.

.

Figure 6.4 Other nominal currents used as comparisons for success at estimating
parameters of NaKL model.
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Table 6.2 NaKL Estimated Model Parameters from Strong 4D-Var with Nudging
for Various Applied Currents

Parameter Original Value Aopt Dopt L63 Ramp Steps Constant

gNa 120.0 119.14 121.25 158.95 116.85 116.04 124.99
gK 20.0 19.69 19.72 17.50 21.06 23.98 27.38
gL 0.3 0.30 0.30 0.30 0.30 0.30 0.28
vm -40.0 -39.94 -39.75 -39.45 -39.98 -40.10 -40.22
dvm 15.0 14.93 15.25 15.18 15.00 14.67 15.16
τm0 0.1 0.10 0.10 0.11 0.10 0.10 0.09
τm1 0.4 0.40 0.41 0.40 0.40 0.43 0.39
vh -60.0 -59.87 -59.81 -61.89 -59.39 -60.18 -61.46
dvh -15.0 -14.83 -15.04 -15.68 -14.71 -14.33 -15.85
τh0 1.0 0.99 1.00 0.94 1.00 1.05 1.04
τh1 7.0 7.25 7.20 6.90 7.47 5.84 7.34
vn -55.0 -55.01 -55.28 -56.02 -54.57 -53.22 -52.97
dvn 30.0 30.25 30.15 29.88 30.81 31.58 33.70
τn0 1.0 0.99 0.98 0.84 1.02 1.10 1.29
τn1 5.0 4.99 4.87 4.98 4.95 4.95 4.47

126



CHAPTER 7

DATA ASSIMILATION FOR VOLTAGE-CLAMP RECORDINGS

7.1 Real Time Estimation with Voltage-Clamp Data

Current-clamp experimentation provides access to the voltage time series of a cell.

However, there are other data sets which could be utilized to characterize a neural

system. For instance, in voltage-clamp protocols, the voltage of the cell is controlled

and current response is measured. In dynamic clamp [32], the voltage of the cell

is recorded, while, in real-time, fed into a model representative of a current or

summation of currents to be injected back into a cell. We propose the following

strategy:

1. Accurately and quickly perform parameter estimation of a neuron. The
timescale will be in seconds, so that after characterization of the currents, the
neuron is still alive and its biophysical properties have not degraded.

2. Use a dynamic clamp with our estimated model and identify if the voltage
recorded matches the initially recorded dynamics.

While the goal would be applying this procedure to real data, the starting point,

of course, is with simulated data. The following twin experiment is on a simulated

voltage-clamp protocol. The model we are using (7.1) is a modified Hodgkin-Huxley

model adapted from [122]. Our observed data is the sodium current INa with both

activation and inactivation.

C
dV

dt
= −INa − IK − IL + Iapp (7.1)

= −gNam
3h(V − ENa − gKn4(V − EK)− gL(V − EL) + Iapp

dx

dt
=
x∞(V )− x
τx(V )

(7.2)
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with

x∞ =
1

2
(1 + tanh((V − vx)/dvx)) (7.3)

τx = tx0 + tx1(1− tanh((V − vxt)/dvxt)2) (7.4)

for x = m,h, n.

The voltage-clamp data we are using is displayed in compact form in Figure 7.1.

As the voltage is held fixed after a period of hyperpolarization, the current response

is recorded. While overlaying the current response across different voltage steps is

the typical way voltage-clamp data is presented, the time series form of the data is

more useful for filtering and is displayed in Figure 7.2. The data is sampled every .05

ms.

Perhaps the most straightforward and fastest data assimilation scheme at our

disposal is an Unscented Kalman Filter. For this twin experiment, the aim is to infer

the parameters and estimate the states associated with INa. The state space then

comprises x = [m,h, gNa, vm, dvm, tm0, tm1, vh, dvh, th0, th1]′ as, for simplicity, we

impose that vm = vmt, dvm = dvmt, vh = vht, dvh = dvht and ENa is taken as

known. The sodium current observation is perturbed with the same level of noise

as described in the twin experiments in the preceding sections. Our observational

operator, H, is now truly nonlinear, as H(xk) = x(3)kx(1)3kx(2)k(Vk−ENa) where the

system is being forced with the voltage data Vk at time tk. To reiterate, our forward

model is (7.2) forced with known voltage Vk at every observation point. The resulting

parameters are shown in Table 7.1. For this trial, the initial guesses are taken to be

70% of their true values.

Since the estimated parameters are not necessarily a perfect recovery of the

truth, it is useful at least to compare the resulting INa time courses and, ultimately,
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Figure 7.1 Voltage clamp data for INa.

Table 7.1 Voltage-Clamp UKF Results for INa

Parameter True Estimated Initial Guess

gNa 120.0 113.511 84.0
vm -40.0 -39.779 -28.0
dvm 15.0 15.267 10.5
tm0 0.1 0.076 0.07
tm1 0.4 0.356 0.28

vmt = vm -40.0 -39.779 -28.0
dvmt = dvm 15.0 15.267 10.5

vh -60.0 -61.199 -42.0
dvh -15.0 -15.936 -10.5
th0 1.0 1.033 0.7
th1 7.0 7.594 4.9

vht = vh -60.0 -61.199 -42.0
dvht = dvh -15.0 -15.936 -10.5
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Figure 7.2 Full time course of voltage clamp data from INa.

simulations with these parameters for the full system Equations (7.1)-(7.2). These

are displayed in Figure 7.3 and Figure 7.4.

This appears to be promising given that for these results we are using far fewer

time points than in the UKF twin experiments in the previous sections. The total

number of time points is 8414, and the run time for the UKF on my quad-core laptop

(without any form of parallelization) is around 2 seconds which is of similar order to

the data collection time.

7.2 Voltage-Forcing and Decoupling the System

One mechanism for trying to circumvent the irregular voltage problem is to explicitly

drive the system through these observations. In DSPE, the dynamics are driven

through a coupling to the observations via a control term. A slightly different

way, as described by [54, 61, 74], is to insert the observed forcing in the model

equations. Namely, we aim to induce these irregularities in some capacity or prevent
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Figure 7.3 Recreation of voltage-clamp data using the estimated and initial
parameter sets of Table 7.1 compared to the true data.

Figure 7.4 Simulation of HH model using the estimated and initial parameter sets
of Table 7.1 compared to the true data.

our estimation from penalizing parameter sets which exhibit the appropriate spiking

behavior aside from a slight misspecification of spike times.
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The basis for this methodology is that we hope our model is an adequate enough

approximation to real world dynamics, and that our observed driving voltage has a

strong enough influence on the system to drive the other equations. So, we say that

should an observed component, Vobs, be generated from a model, then it formally can

be inserted into the model equations and drive the unobserved variables in the system

to their attractor in solution space. An initial step is to show this using CLEs, but

from my experience it has been the case for twin experiments at least.

As an example, for the time being assuming continuous observation, we can

drive the the Morris-Lecar system with the voltage:

dVobs
dt

= Iapp − gL(Vobs − EL)− gKn(Vobs − EK)

− gCam∞(Vobs)(Vobs − ECa) = fV (Vobs, n; θ)

(7.5)

dn

dt
= φ(n∞(Vobs)− n)/τn(Vobs) = fn(Vobs, n; θ) (7.6)

Now, Equation (7.6) is actually decoupled from the overall system, and can be

solved analytically using integrating factors.

We arrive at a solution for n(t) conditioned on Vobs. One can then plug this

value into Equation (7.5) and at this stage consider either

min C(Vobs; θ) =

∫ (
dVobs
dt
− fV (Vobs, n; θ)

)2

(7.7)

after taking a numerical derivative of Vobs or

min C(Vobs; θ) =

∫ (
Vobs −

∫
fV (Vobs, n; θ)

)2

(7.8)
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after numerical integration of our vector field forced by our observed voltage. The

structure of Equation (7.5) can be harnessed if one is considering estimating maximal

conductances. Should the parameters of the model excluding the conductance values

be known exactly, the values for the maximal conductances can be solved via linear

regression. Namely for Ia = gax
αyβ(V − Ea) = gaJa, the problem for estimating

conductances in Equation (7.7) becomes:



JNa(Vobs(t0)) JK(Vobs(t0)) JL(Vobs(t0))

JNa(Vobs(t1)) JK(Vobs(t1)) JL(Vobs(t1))

...
...

...

JNa(Vobs(tN)) JK(Vobs(tN)) JL(Vobs(tN))


︸ ︷︷ ︸

A


gNa

gK

gL


︸ ︷︷ ︸

g

≈



dVobs
dt

(t0)− Iapp(t0)

dVobs
dt

(t1)− Iapp(t1)

...

dVobs
dt

(tN)− Iapp(tN)


︸ ︷︷ ︸

y

An analogous construction for Equation (7.8) can be made.

In [54], a simplex optimization routine was run over top of Equations (7.8) and

(7.7) in an effort to optimize over the remaining hidden parameters. That formulation

is shown in Algorithm 1.

Algorithm 1 Synchronization-based estimation

1: procedure OptimizeHHModel(Vobs,M) . Optimize parameters of model M
2: Initialize guess for θh
3: while ε ≤ TOL do
4: Integrate M(Vobs, θh)
5: Solve for θl from regression
6: Compute ε from C(Vobs, Vest)

The cost function C(Vobs; θ) would be Equation (7.7) or (7.8). An immedi-

ate amendment to this procedure would be some manner of acceptance-rejection

algorithm based upon features we may find most important. For instance, simply

simulating the model with a candidate parameter set without the driving voltage and
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checking if it at least exhibits the same electrical behavior as the observed voltage.

Other heuristics include firing rate, known bifurcation structures, spike-width or

amplitude, etc. Hopefully, this would guide our procedure towards parameter sets

which not only can reconstruct the system dynamics when slaved to the voltage, but

can exhibit intrinsic dynamics reminiscent of the observations although perhaps with

spike-time matching removed.

If we desired to use an acceptance-rejection method from the branch of Markov

Chain Monte Carlo methods, we need to be cautious of the statistics at play. First we

would need to construct the necessary likelihood function (or a function proportional

to it). One could make an argument that this is a form of smoothing, where any

evolution of the dynamic variables at play is due to their initial conditions and the

stationary parameter values.

Then after discretization

xk+1 = Φ(θ, n), xk+1 ∈ RL−1 (7.9)

yk+1 = G(Φ(θ, n)) + ηk+1, ηk+1 ∈ RM (7.10)

For θ being the parameters of interest and possibly the initial conditions of the system,

Φ being the mapping of our reduced system, y being Vobs or Vobs
dt

, G representing the

observational operator corresponding to
∫
fV (Vobs, n; θ) or fV (Vobs, n; θ) respectively,

and with ηk ∼ N (0, R). For the Morris-Lecar system, L − 1 = 1 reflecting that the

dynamics of the voltage are taken out of the estimation, but used as a forcing and

incorporated into the observation function. If using only the voltage or its derivative,

M = 1, but this formulation considers any integral or derivative of the data and the

respective vector fields. Thereby, one could use say both the voltage and its derivative

as “observables”. The posterior density that we are trying to estimate would be [6]:
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P (θ|Vobs) ∝ P (θ) exp

{
−1

2

N∑
k=0

R−1 (yk −G(xk+1))
2

}
(7.11)

In the strictest sense, this is not our problem, because Equation (7.9) implies

that the dynamics are deterministic, and Equation (7.10) implies the observations

have noise. But our system is conditioned on the observations, i.e. xk+1 = F (xk, yk).

We can lie to ourselves for convenience, since we lie about lack of correlations between

observation points and noise distributions in practice, but there may be a better

mathematical way to set up this problem. Additonally, smoothers are primarily

concerned with the recovery of initial conditions, but the synchronization of Pecora

and Caroll concerns long term behavior. It may be necessary to truncate the time

window which we estimate over after some initial transient behavior of the response

variables for better performance. Regardless, we would also desire to augment

Equation (7.11) with additional information about the heuristics we are primarily

concerned with.

However, as a baseline, under these assumptions, one can use a Metropolis

Hastings algorithm as shown in Algorithm 2. µ ∈ RD ∼ U(−α/2, α/2) and b ∈ RD is

Algorithm 2 Synchronization-based Metropolis Hastings

1: procedure OptimizeHHModel(Vobs,M) . Optimize parameters of model M
2: Initialize guess for θ0
3: for i = 0 to Nens do
4: if i > 0, propose: θpi = θi + µ · b
5: Integrate M(Vobs, θh)
6: Solve for θl from regression
7: Evaluate C(θpi )
8: if U(0, 1) < min (1, exp{−(C(θpi )− C(θi)}) then
9: θi+1 = θpi

10: else
11: θi+1 = θi

a scaling factor determined by the bounds. Statistics can then be calculated from the

collection of samples θi to find the best estimate and its variance. A version of the
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above algorithm for application to 4D-Var has been applied to neural systems [70].

The lower dimensionality of our search space (D, the dimension of the parameters) of

our problem may provide great opportunity for different cost functions incorporating

appropriate heuristics while having the overall computational complexity being low.

7.2.1 Pushing the Synchronization

Alternatively, one can consider algebraic manipulations of the vector field. For

Equation (7.5), for Vobs 6= EK,

nobs ≡
dVobs
dt
− Iapp − gL(Vobs − EL)− gCam∞(Vobs)(Vobs − ECa)

gK(Vobs − EK)
(7.12)

for the fictitious definition of nobs. Certainly now we could try to perhaps generate

a cost functional incorporating a minimization of nobs and an n from numerical

integration with Vobs as a forcing. However, it is not immediately apparent what

usefulness this produces.

One manner would be to write another vector field which would be self-

consistent in accordance with Equation (7.12):

dn

dt
= fn(n, V ; θ) + un(nobs − n) (7.13)

Thus, we have reduced our system dimension by 1. We have introduced

dependence now on performing a formal numerical derivative, but [27] may provide

suitable approximations. For a larger conductance-based model, by incorporating

Equation (7.13) ideals in DSPE, we trade estimating the voltage and its control for

controls on each of the state components. If Equation (7.12) is used in a filtering

framework, we may actually overcome the observability criterion of the system, and
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could use an adaptive algorithm to try to recover the process noise associated with

the system. Unfortunately, even in that limit, there is no guarantee for a nonlinear

system to converge to the global optima of the system [12].

The formulations discussed in this section have yet to be implemented into

code; this will be left as future work. We will conclude with some final thoughts in

the following chapter.
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CHAPTER 8

CONCLUDING THOUGHTS

There are some overarching themes that I am trying to address with this work.

Driving forces in dynamics, in estimation, and in the behaviors of circadian neurons.

Optimality, how to characterize it, and how to traverse the complex landscape

in a high-dimensional optimization manifold. Observability, the incorporation of

known geometric features of phase-space, motivating experiments for informed data

collection, and the incorporation of the data we have in different ways.

I hope I didn’t give off a false impression; even with the amazing capacity

afforded to our efforts by data assimilation algorithms, solving these problems,

particularly for real data, remains exceedingly hard. If our parameters of interest

are not practically identifiable, our hard work can ultimately yield an incomplete

or misleading result. Therefore, if there is any takeaway I want to impart the

reader of this dissertation, it is to critically analyze one’s data, model, estimation

algorithm, and own understanding of the underlying mechanisms, and try to extract

out the meaningful picture. The automation of data assimilation routines seriously

aid, but cannot replace, the insights that the modeling and biological community

can provide. Looking forward, data assimilation can complement the growth of

new recording technologies for collecting observational data from the brain. The

joint collaboration of these automated algorithms with the painstaking work of

experimentalists and model developers may help answer many remaining questions

about neuronal dynamics and applications beyond.
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APPENDIX A

CH2: MATLAB CODE

The following MATLAB code files are provided to implement the Unscented Kalman

Filter and weak 4-D Var methods for state and parameter estimation of the Morris-

Lecar model in Chapter 2. Thanks to Franz Hamilton, Tyrus Berry, and Tim Sauer

for sharing their UKF code which has been modified and presented here.

1. UKFML.m

2. w4DvarML.m

3. w4DvarOutputFun.m

4. generateMLME.m

5. fXaug.m

6. fV.m

7. fn.m

8. ninf.m

9. taun.m

10. minf.m

1 func t i on UKFML()

2 %% UKFML

3 % Adapted from code by Franz Hamilton , Tyrus Berry , and Tim Sauer ( George Mason Unive r s i ty ) .

4 % Produces example f i g u r e f o r i n i t i a l i z i n g with HOPF regime parameters f o r

5 % est imat ing parameters a s s o c i a t ed with SNIC regime .

6 %%% Pre l iminary setup

7 obsNoise =.01; s=4; rng ( s ) ;

8 T = 200000; dt =.1; dT=.1; nn=f i x (dT/dt ) ;
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9 %%% Def ine parameters

10 truep = [ . 0 6 7 , 4 , 1 2 , 1 7 . 4 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ;

11 guessp= [ . 0 4 , 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ;

12 SimName=’tSNICgHOPF ’ ;

13 EstSet={ ’V ’ , ’n ’ , ’ phi ’ , ’ gCa ’ , ’V3 ’ , ’V4 ’ , ’gK ’ , ’ gL ’ , ’V1 ’ , ’V2 ’ } ;

14 dx = length ( EstSet ) ;

15 icovmat=.001∗ eye (dx ) ; % pr ior , P {{xx} 0}

16 lambda=5;

17 %%% Generate Data

18 x00 = [ 4 . 1 4 ] ’ ;

19 parameters=ones (T+1 ,1)∗ truep ; time=0:dT :dT∗T;

20 x0=generateMLME(x00 ,T, parameters ,dT) ; x0=generateMLME(x0 ( : , end ) ,T, parameters ,dT) ;

21 s i gna lS tdev=std ( x0 ( 1 , : ) ) ;

22 ML Noisy=x0 ( 1 , : )+obsNoise ∗( s i gna lS tdev .∗ randn ( s i z e ( x0 ( 1 , : ) ) ) ) ;

23 obs = ML Noisy ’ ;

24 %%% Def ine i n i t i a l gue s s e s f o r s t a t e components

25 i s t a t e = ze ro s (dx , 1 ) ∗10;

26 i s t a t e (2 ) =0; i s t a t e (1 )=obs (1) ; i s t a t e ( 3 : end )=[ guessp ( 1 : 4 ) guessp ( 8 : 1 1 ) ] ;

27 %%% Def ine best gue s s e s f o r Q,R

28 Vrange=max( obs ) min ( obs ) ;

29 Qscale=1e 7 ; Q = Qscale∗diag ( [ Vrange , 1 , abs ( i s t a t e ( 3 : end ) ) ’ ] ) ;

30 R = ( obsNoise∗ s i gna lS tdev ) ˆ2 ; i f R==0, R=1e 4 ; end

31 redistEnsemble=1; % Can make 0 and compare performance

32 %%% Run F i l t e r

33 [ stateEst imate , var iance ]= . . .

34 UKF Estimate ( time , i s t a t e , obs ’ , @MLstatefctModEuler , @MLstateobsfct ,Q,R , . . .

35 parameters ( 1 : end , : ) , lambda , icovmat , dt , nn , redistEnsemble ) ;

36 %%% Make parameter e s t imat ion p lo t

37 f o r i =3:dx

38 f i g u r e (11)

39 p lo t ( time , s tateEst imate ( i , : ) , ’ l i n ew idth ’ ,3 )

40 hold on

41 end

42 paramLegend={ ’\phi ’ , ’ g {Ca} ’ , ’ V 3 ’ , ’V 4 ’ , ’ g {K} ’ , . . .

43 ’ g l ’ , ’ V 1 ’ , ’V 2 ’ } ;

44 xlim ( [ 0 time ( end ) ] )

45 legend ( paramLegend )

46 s e t ( gca , ’ FontSize ’ ,16)

47 x l ab e l ( ’Time (ms) ’ , ’ FontSize ’ ,25)

48 end

49 func t i on [ f s t a t e , fcovmat , innovat ion ] = UKF STEP( it ime , ft ime , i s t a t e , . . .

50 icovmat , fobs ,F ,H,Q,R, p , lambda , t , dt , nn , red istEnsemble )

51 %%%Propagate from one obse rvat ion time step to the next

52 % it ime : the cur rent time

53 % ft ime : the f i n a l time f o r t h i s s tep o f the f i l t e r

54 % i s t a t e : an Nx1 vector conta in ing the s t a t e at i t ime
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55 % icovmat : an NxN matrix conta in ing the covar iance matrix at i t ime

56 % fobs : an Mx1 vector which conta ins the obse rvat ion at f t ime

57 % F : a func t i on handle which computes the vector f i e l d as a

58 % func t i on o f the s t a t e and time

59 % H : a func t i on handle which computes the obse rvat ion as a

60 % func t i on o f the s t a t e and time

61 % Q : the NxN covar iance matrix f o r the dynamical no i s e

62 % R : the MxM covar iance matrix f o r the obse rvat ion no i s e

63 % p : f i x ed parameter s e t f o r the model . i n i t i a l gue s s e s f o r

64 % parameters to be est imated are inc luded in i s t a t e .

65 % lambda : a l go r i thmic parameter to spread or shr ink ensemble

66 %

67 N = length ( i s t a t e ) ;

68 M = length ( fobs ) ;

69 %%% Fix up the covar iance matr i ces

70 icovmat = ( icovmat+icovmat ’ ) /2 ;

71 [ u , l ]=svd (Q) ; Q = u∗ l ∗u ’ ;

72 [ u , l ]=svd (R) ; R = u∗ l ∗u ’ ;

73 %%% I n i t i a l i z e F i l t e r

74 xhat a = i s t a t e ;

75 Pxx = icovmat ;

76 %%% Build the matrix square root and ensemble

77 [U, S ,V] = svd (Pxx) ;

78 squareRoot = U∗diag ( sq r t ( diag (S) ) )∗U’ ;

79 xEnsemble = ze ro s (N,2∗N+1) ;

80 xEnsemble ( : , 1 ) = xhat a ;

81 xEnsemble ( : , 2 :N+1) = repmat ( xhat a , 1 ,N)+sq r t (N+lambda )∗ squareRoot ;

82 xEnsemble ( : ,N+2:2∗N+1) = repmat ( xhat a , 1 ,N) sq r t (N+lambda )∗ squareRoot ;

83 W = [ lambda /(N+lambda ) 1/(2∗(N+lambda ) )∗ones (1 ,2∗N) ] ; %weights

84 xUpdatedEnsemble = F( xEnsemble , p , t , dt , nn) ; % forward mapping

85 yEnsemble = H( xUpdatedEnsemble ) ; % obs e rva t i ona l mapping

86 yhat b = sum( repmat (W,M, 1 ) .∗ yEnsemble , 2 ) ;

87 ob s e rva t i onD i f f e r en c e = yEnsemble repmat ( yhat b ,1 ,2∗N+1) ;

88 Pb = (W.∗ ob s e rva t i onD i f f e r en c e )∗ obs e rva t i onD i f f e r ence ’ ;

89

90 %%% Calcu la te the background s t a t e es t imate

91 xhat b = sum( repmat (W,N, 1 ) .∗ xUpdatedEnsemble , 2 ) ;

92 %%% Calcu la te the background covar iance es t imate

93 ensembleDi f f e r ence = xUpdatedEnsemble repmat ( xhat b ,1 ,2∗N+1) ;

94 FPa = (W.∗ ensembleDi f f e r ence )∗ ensembleDi f f e rence ’ ;

95 Pxx f = FPa+Q;

96 Pxx f = min ( Pxx f , 2 ) ; %Re s t r i c t uncerta inty , can remove

97

98 i f red istEnsemble

99 %%% Red i s t r i bu t e sigma po int s around background mean

100 %%% Build the matrix square root and ensemble
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101 [U, S ,V] = svd ( Pxx f ) ;

102 squareRoot = U∗diag ( sq r t ( diag (S) ) )∗U’ ;

103 xUpdatedEnsemble = ze ro s (N,2∗N+1) ;

104 xUpdatedEnsemble ( : , 1 ) = xhat b ;

105 xUpdatedEnsemble ( : , 2 :N+1) = repmat ( xhat b , 1 ,N)+sq r t (N+lambda )∗ squareRoot ;

106 xUpdatedEnsemble ( : ,N+2:2∗N+1) = repmat ( xhat b , 1 ,N) sq r t (N+lambda )∗ squareRoot ;

107 %%% Rea lcu la te the background s t a t e es t imate

108 xhat b = sum( repmat (W,N, 1 ) .∗ xUpdatedEnsemble , 2 ) ;

109 %%% Reca l cu la t e the background covar iance es t imate

110 ensembleDi f f e r ence = xUpdatedEnsemble repmat ( xhat b ,1 ,2∗N+1) ;

111 Pxx f = (W.∗ ensembleDi f f e r ence )∗ ensembleDi f f e rence ’ ;

112 %%% Calcu la te pred i c t ed measurements

113 yEnsemble = H( xUpdatedEnsemble ) ;

114 yhat b = sum( repmat (W,M, 1 ) .∗ yEnsemble , 2 ) ;

115 ob s e rva t i onD i f f e r en c e = yEnsemble repmat ( yhat b ,1 ,2∗N+1) ;

116 Pb = ((W.∗ ob s e r va t i onD i f f e r en c e )∗ obs e rva t i onD i f f e r ence ’ ) ;

117 end

118 %%% Construct the Kalman gain

119 Pyy = Pb+R;

120 Pxy = (W.∗ ensembleDi f f e r ence )∗ obs e rva t i onD i f f e r ence ’ ;

121 K = Pxy/Pyy ;

122 innovat ion = ( fobs yhat b ) ;

123 %%% Analys i s ( e s t imat ion ) step

124 xhat a = xhat b+K∗ innovat ion ;

125 Pxx = Pxx f K∗Pyy∗K’ ; % same as Pxx f KPxy ’

126 fcovmat = Pxx ;

127 f s t a t e = xhat a ;

128 end

129

130 func t i on r=MLstatefctModEuler (x , p , j , dt , nn)

131 xnl=x ;

132 f o r n=1:nn

133 k1=dt∗ fXaug (0 , xnl , p ( j , : ) ) ;

134 k2=dt∗ fXaug (0 , xnl+k1 , p( j +1 , :) ) ;

135 xnl=xnl+k1 ./2+k2 . / 2 ;

136 end

137 r=xnl ;

138 end

139

140 func t i on Hx=MLstateobsfct ( x )

141 Hx=x ( 1 , : ) ;

142 end

143 func t i on [ stateEst imate , varEstimate ] = UKF Estimate ( time , i s t a t e , obs ,F ,H , . . .

144 Qguess , Rguess , p , lambda , icovmat , dt , nn , red istEnsemble )

145 N = length ( i s t a t e ) ; M = s i z e ( obs , 1 ) ; T = s i z e ( obs , 2 ) ;

146 Q = Qguess ; R = Rguess ;
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147 stateEst imate = ze ro s (N,T) ; s tateEst imate ( : , 1 )=i s t a t e ;

148 varEstimate = ze ro s (N,T) ; varEstimate ( : , 1 )=diag ( icovmat ) ;

149 innovseq = ze ro s (M,T) ;

150 f o r t = 1 :T 1

151 %%% One step o f UKF ( t k > t {k+1})

152 [ i s t a t e , icovmat , innovat ion ] = UKF STEP( time ( t ) , time ( t+1) , i s t a t e , . . .

153 icovmat , obs ( : , t+1) ,F ,H,Q,R, p , lambda , t , dt , nn , red istEnsemble ) ;

154 s tateEst imate ( : , t+1) = i s t a t e ;

155 varEstimate ( : , t+1) = diag ( icovmat ) ;

156 innovseq ( : , t+1) = innovat ion ;

157 end

158 end

1 func t i on w4DvarML( )

2 %% Weak 4d Var i a t i ona l f o r Morris Lecar

3 % Produces example f i g u r e f o r i n i t i a l i z i n g with HOPF regime parameters f o r

4 % est imat ing parameters a s s o c i a t ed with SNIC regime .

5 %%% Pre l iminary setup

6 obsNoise =.01; sd=4; rng ( sd ) ;

7 T=2000; dT=.1; dt =.1; nn = f i x (dT/dt ) ;

8 truep = [ . 0 6 7 , 4 , 1 2 , 1 7 . 4 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ;

9 guessp= [ . 0 4 , 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ;

10 SimName=’tSNICgHOPF ’ ;

11 EstSet={ ’V ’ , ’n ’ , ’ phi ’ , ’ gCa ’ , ’V3 ’ , ’V4 ’ , ’gK ’ , ’ gL ’ , ’V1 ’ , ’V2 ’ } ;

12 dx = length ( EstSet ) ; Ntheta=8;

13 %%% Def ine we ight ings f o r co s t func t i on ( inv (Q) , inv (R) )

14 measStdDev=1;% obs e rva t i ona l no i s e var iance i s StDevˆ2

15 Rinv=inv (measStdDev ˆ2) ;

16 % The dynamic range o f v i s l a r g e r than n by order s o f magnitude . Need to

17 % weight dev i a t i on s appropr i a t e l y . Also need to choose r a t i o o f measurement

18 % to model no i s e .

19 we ightSca l e s = 1 0 . ˆ [ 4 : 5 ] ; weightIndex = 7 ;

20 we ightSca le=we ightSca l e s ( weightIndex ) ;

21 Qinv=weightSca le ∗Rinv∗diag ( [ 1 10000 ] ) ;

22 % Presumes each time s e r i e s component o f the system has equal weight ing

23 % For s imp l i c i t y o f implementation , Q,R taken as d iagona l matrix

24 %%% Generate Data

25 x00 = [ 4 . 1 4 ] ’ ;

26 Ttota l=5∗T;

27 parameters=[ ones ( Ttota l +1 ,1)∗ truep ] ;

28 x0=generateMLME(x00 , Ttotal , parameters ,dT) ;

29 x0=generateMLME(x0 ( : , end ) , Ttotal , parameters ,dT) ;

30 parametersGuess=[ ones ( Ttota l +1 ,1)∗guessp ] ;

31 %%% gues s e s

32 % Set i n i t i a l gue s s e s .

33 Vtruth=x0 ( 1 , : ) ; ntruth=x0 ( 2 , : ) ;

34 s i gna lS tdev=std ( Vtruth ) ;
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35 y=Vtruth+ obsNoise ∗( s i gna lS tdev .∗ randn ( s i z e ( Vtruth ) ) ) ;

36 % Guess n to be i n t e g r a t i o n o f guessed model f o r c ed with obse rva t i on s

37 x02=generateMLMEVforced ( x00 (2) , Ttotal , parametersGuess , dT, y ) ;

38 nguess=x02 ( 1 , : ) ;

39 % Used more data than needed , p ick subset to es t imate over

40 windowInds=2∗T+1:3∗T+1;

41 Vobswindow=y(windowInds ) ;

42 nguesswindow=nguess ( windowInds ) ;

43 In i tGuess=ze ro s (2 ,T+1) ;

44 In i tGuess ( 1 , : )=Vobswindow ;

45 In i tGuess ( 2 , : )=nguesswindow ;

46 In i tGuess=[ In i tGuess ( 1 , : ) ’ ; In i tGuess ( 2 , : ) ’ ] ;

47 pEstInds=[1 2 3 4 8 9 10 1 1 ] ;

48 In i tGuess =[ In i tGuess ; guessp ( pEstInds ) ’ ] ;

49 %%%

50 % Ini tGuess i s a s tack o f gue s s e s f o r system components

51 % In i tGuess = [ V 1 V 2 . . . V {J+1} n 1 n 2 . . . n {J+1} , phi , gCa , V3 , V4 , gK , gL , V1 , V2 ] ’ ;

52 % Next s e t the bounds .

53 LB = ze ro s ( s i z e ( In i tGuess ) ) ; RB=LB;

54 LB( 1 :T+1)= 100 ; LB(T+2:end Ntheta )=0;

55 RB( 1 :T+1)=100; RB(T+2:end Ntheta )=1;

56 LB( end Ntheta+1:end )= [0 0 2 0 . 1 0 0 1 0 0 . 1 ] ’ ;

57 RB( end Ntheta+1:end )= [1 10 20 35 10 5 20 3 5 ] ’ ;

58 %%% Construct an output f i l e / func t i on to save data stream

59 ClockTime=f i x ( c l o ck ) ;

60 ClockStr ing=[num2str ( ClockTime (1) ) , ’ ’ , num2str ( ClockTime (2) ) , ’ ’ , num2str ( ClockTime (3) ) ] ;

61 FileName=[ ’w4dvar ’ ,SimName , ’ obs ’ , num2str ( obsNoise ) , . . .

62 ’ wsca le ’ , num2str ( weightIndex ) , ’T ’ , ClockStr ing ] ;

63 FileName=s t r r ep ( FileName , ’ . ’ , ’ pt ’ ) ; % same output during i t e r a t i o n cyc l e

64 myOutputFun =@(x , optimValues , s t a t e )w4dvarOutputFun (x , optimValues , s tate , [ FileName , ’ . txt ’ ] ) ;

65 %%% Options can be changed based on performance , p r e f e r ence s , e t c .

66 opt ions1 = optimoptions ( ’ fmincon ’ , ’ Display ’ , ’ i t e r ’ , . . .

67 ’ MaxFunctionEvaluations ’ ,4 e8 , ’ MaxIterat ions ’ ,1 e5 , . . .

68 ’ HessianApproximation ’ , ’ l b f g s ’ , ’ In i tBarr ierParam ’ ,1 e 3 , . . .% l im i t ed memory hes s i an approx

69 ’OutputFcn ’ ,@(x , optimValues , s t a t e )myOutputFun(x , optimValues , s t a t e ) ) ;

70 %%% Run opt imizat ion

71 [ xest , fva l , e x i t f l a g , output ] = fmincon (@(u) w4dvarobjfun (u , Vobswindow , Qinv , . . .

72 Rinv , @MLstatefctw4dvarModEuler ,T, truep , Ntheta , dt , nn , dx ) , In itGuess , . . .

73 [ ] , [ ] , [ ] , [ ] , LB,RB, [ ] , opt ions1 ) ;

74 %save ( FileName ) %(uncomment to save a l l data at end in .mat)

75 end

76 func t i on [ fout ]=w4dvarobjfun ( xbold , y , Qinv , Rinv ,F ,T, truep , Ntheta , dt , nn , dx )

77 % The f o l l ow ing code accepts as arguments :

78 %

79 % xbold : vec tor o f N∗(T+1) + P dimensions , f o r N being t o t a l number o f

80 % s t a t e s in dynamical model (2 f o r Morris Lecar )
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81 %

82 % y : obse rvat ion . Current ly s e t to operate on an obse rvat ion operator

83 % which i s a s imple p r o j e c t i on onto the f i r s t system component i . e .

84 % H {1 ,1} = 1 , H { j , k} = 0 otherwi se .

85 %

86 % Qinv : i nv e r s e covar iance matrix a s s o c i a t ed with model e r r o r .

87 % inv ( sma l l e r va lues o f covar iance ) imply l a r g e r weights towards those

88 % terms in co s t f un c t i ona l . Taken to be a d iagona l matrix .

89 %

90 % Rinv : i nv e r s e covar iance matrix a s s o c i a t ed with measurement

91 % no i s e

92 %

93 % F : d i s c r e t e map r ep r e s en t a t i on o f model . f o r our purposes , F i s a

94 % numerical i n t e g r a t i o n scheme app l i ed to a model in ques t ion e . g .

95 % Morris Lecar . Currently , us ing modi f ied Euler s e t up f o r autonomous system .

96 %

97 % T : T+1 po int s in time

98 %

99 % truep : pass ing parameters to model . f o r those which w i l l be

100 % determined from the scheme , t h e i r truep counte rpar t s w i l l not be

101 % used , but t h e i r component in xbold w i l l . These are at the end o f xbold .

102 theta=xbold ( end Ntheta+1:end ) ;

103 v=xbold ( 1 :T+1) ;

104 n=xbold (T+2:end Ntheta ) ;

105 u = [ reshape (v , 1 ,T+1) ; reshape (n , 1 ,T+1) ] ;

106 MeasurementMismatch=0; ModelMismatch=0;

107 %%% Compute F( x k ; \ theta ) f o r a l l k

108 fwdmapj=F(u , theta , truep , dt , nn , dx ) ;

109 %%% Model term

110 f o r l =1:2

111 ModelMismatch=ModelMismatch + . . .

112 1/2∗sum(Qinv ( l , l ) ∗ ( ( u( l , 2 : end ) fwdmapj ( l , 1 : end 1 ) ) ) . ˆ 2 ) ;

113 end

114 %%% Measurement term

115 MeasurementMismatch=MeasurementMismatch+1/2∗sum(Rinv ∗ ( ( y ( 1 , : ) u ( 1 , : ) ) ) . ˆ 2 ) ;

116 fout=MeasurementMismatch+ModelMismatch ;

117 end

118 func t i on r=MLstatefctw4dvarModEuler (x , theta , p , dt , nn , dx )

119 Ntheta=length ( theta ) ;

120 xnl=ze ro s (dx , s i z e (x , 2 ) ) ;

121 xnl ( 1 : 2 , : )=x ;

122 xnl ( 3 : end , : )=repmat ( reshape ( theta , Ntheta , 1 ) ,1 , s i z e (x , 2 ) ) ;

123 f o r n=1:nn

124 k1=dt∗ fXaug (0 , xnl , p ) ;

125 k2=dt∗ fXaug (0 , xnl+k1 , p) ;

126 r=xnl+k1 ./2 + k2 . / 2 ;

145



127 end

128 end

129 func t i on x=generateMLMEVforced ( x0 ,T, p , dt ,V)

130 x ( : , 1 )=x0 ;

131 f o r j =1:T

132 k1=dt∗ fXVforced (0 , x ( : , j ) ,p ( j , : ) ,V( j ) ) ;

133 k2=dt∗ fXVforced (0 , x ( : , j )+k1 , p( j +1 , :) ,V( j +1) ) ;

134 x ( : , j +1)=x ( : , j )+k1 ./2+k2 . / 2 ;

135 end

136 end

137 func t i on dy = fXVforced ( t , y , p ,V)

138 phi=p (1) ;

139 V3=p (3) ;

140 V4=p (4) ;

141 n = y ( 1 , : ) ;

142 dy=ze ro s ( s i z e (y ) ) ;

143 dy ( 1 , : )=fn (V, n , phi ,V3 ,V4) ;

144 end

1 func t i on stop =w4dvarOutputFun (x , optimValues , s tate , FileName )

2 % Writes out text f i l e which , a f t e r each i t e r a t i o n ,

3 % w i l l d i sp l ay :

4 % [ IterationNumber CostFunctionEval ParameterEstimates ]

5 funEval=optimValues . f v a l ;

6 iterNumber=optimValues . i t e r a t i o n ;

7 importantDeta i l s=x( end 7 : end ) ;

8 importantDeta i l s = [ iterNumber funEval reshape ( importantDeta i l s , 1 , 8 ) ] ;

9 dlmwrite ( FileName , importantDeta i l s , ’ append ’ , . . .

10 ’ d e l im i t e r ’ , ’ ’ , ’ r o f f s e t ’ , 1 )

11 stop=f a l s e ;

12 end

1 func t i on x=generateMLME(x0 ,T, p , dt )

2 %%% Modified Euler f o r Morris Lecar with f i x ed time step

3 x ( : , 1 )=reshape ( x0 , 1 , 2 ) ;

4 f o r j =1:T

5 k1=dt∗fX (0 , x ( : , j ) ,p ( j , : ) ) ;

6 k2=dt∗fX (0 , x ( : , j )+k1 , p( j +1 , :) ) ;

7 x ( : , j +1)=x ( : , j )+k1 ./2+k2 . / 2 ;

8 end

9 func t i on dy = fX ( t , y , p)

10 phi=p (1) ;

11 Gca=p (2) ;

12 V3=p (3) ;

13 V4=p (4) ;

14 Eca=p (5) ;

15 Ek=p (6) ;
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16 El=p (7) ;

17 Gk=p (8) ;

18 Gl=p (9) ;

19 V1=p(10) ;

20 V2=p(11) ;

21 Cm=p(12) ;

22 Iapp=p(13) ;

23 V = y ( 1 , : ) ;

24 n = y ( 2 , : ) ;

25 dy=ze ro s ( s i z e (y ) ) ;

26 dy ( 1 , : )= fV (V, n , Iapp ,Gca ,Gk, Gl , Eca ,Ek , El ,Cm,V1 ,V2) ;

27 dy ( 2 , : )=fn (V, n , phi ,V3 ,V4) ;

28 end

29 end

1 func t i on dy = fXaug ( t , y , p)

2 % Vector f i e l d f o r augmented s t a t e ( s t a t e s + parameters )

3 Eca=p (5) ;

4 Ek=p (6) ;

5 El=p (7) ;

6 Cm=p(12) ;

7 Iapp=p(13) ;

8 V = y ( 1 , : ) ;

9 n = y ( 2 , : ) ;

10 phi=y ( 3 , : ) ;

11 Gca=y ( 4 , : ) ;

12 Gk=y ( 7 , : ) ;

13 Gl=y ( 8 , : ) ;

14 V3=y ( 5 , : ) ;

15 V4=y ( 6 , : ) ;

16 V1=y ( 9 , : ) ;

17 V2=y ( 1 0 , : ) ;

18 dy=ze ro s ( s i z e (y ) ) ; % parameters ’ d e r i v a t i v e s are 0

19 dy ( 1 , : )= fV (V, n , Iapp ,Gca ,Gk, Gl , Eca ,Ek , El ,Cm,V1 ,V2) ;

20 dy ( 2 , : )=fn (V, n , phi ,V3 ,V4) ;

21 end

1 func t i on dVdt= fV (V, n , Iapp ,Gca ,Gk, Gl , Eca ,Ek , El ,Cm,V1 ,V2)

2 dVdt= (1/Cm) ∗( Iapp Gl .∗ (V El ) Gk.∗n .∗ (V Ek) Gca .∗minf (V,V1 ,V2) .∗ (V Eca ) ) ;

3 end

1 func t i on dndt = fn (V, n , phi ,V3 ,V4)

2 dndt = phi .∗ ( n in f (V,V3 ,V4) n) . / taun (V,V3 ,V4) ;

3 end

1 func t i on nout = n in f (V,V3 ,V4)

2 nout = .5∗(1+ tanh ( (V V3) . /V4) ) ;

3 end

147



1 func t i on tau = taun (V,V3 ,V4)

2 tau = 1 . / ( cosh ( (V V3) ./ (2∗V4) ) ) ;

3 end

1 func t i on mout = minf (V,V1 ,V2)

2 mout = .5∗(1+ tanh ( (V V1) . /V2) ) ;

3 end

148



APPENDIX B

CH5: MATLAB CODE

The following MATLAB code files are provided to implement identifiability analysis of

the Morris-Lecar model in Chapter 5. For STRIKE-GOLDD, options ml1.m are the

original options. After running the analysis once, several parameters are recognized

to be identifiable. After rerunning, fixing these as identifiable in options ml2.m, the

identifiability is achieved.

An example of a symbolic construction of the observability rank criterion in

CasADi, but evaluated numerically, is given by run morris lecar identifiability casadi.m

with helper function morris lecar identifiability casadi.m

1. STRIKE-GOLDD Output

2. z create MorrisLecar model.m

3. options ml1.m

4. options ml2.m

5. morris lecar identifiability casadi.m

6. run morris lecar identifiability casadi.m

1 >> ed i t z c r ea t e Morr i sLeca r mode l

2 >> opt ions

3

4 ans =

5

6 ’ Morr isLecar ’

7

8 >> STRIKE GOLDD

9

10

11
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12 >>> StrIkE GOLDD TOOLBOX

13

14

15 Analyzing i d e n t i f i a b i l i t y o f Morr isLecar . . .

16

17 >>> The model conta in s :

18 2 s t a t e ( s ) :

19 V

20 n

21

22 1 output ( s ) :

23 V

24

25 1 input ( s ) :

26 Iapp

27

28 8 parameter ( s ) :

29 Gl

30 Gk

31 Gca

32 phi

33 V1

34 V2

35 V3

36 V4

37

38 >>> Bui ld ing the ob s e rvab i l i t y i d e n t i f i a b i l i t y matrix r e qu i r e s at l e a s t 9 Lie d e r i v a t i v e s

39 Ca l cu la t ing d e r i v a t i v e s : 1 2 3 4 5 6 7 8

40 The model w i l l be decomposed .

41

42

43 >>> Finding an optimal submodel i n c l ud ing s t a t e number 1 . . .

44 I n i t . po int : Best f : 0 . 1 2 5 CPUTime : 0.156250

45 NFunEvals : 7 Best f : 0 . 1 6 6667 CPUTime : 21.015625

46 NFunEvals : 145 Best f : 0 . 1 6 6667 CPUTime : 303.531250

47 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

48 END OF THE OPTIMIZATION

49 Best s o l u t i on value 0 . 1 6 6667

50 Dec i s ion vector

51 1

52 0

53 CPU time 303.531

54 Number o f func t i on eva lua t i on s 145

55

56

57
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58 >>> Analysing i d e n t i f i a b i l i t y o f a submodel conta in ing :

59 1 s t a t e s :

60 V

61 1 outputs :

62 V

63 1 inputs :

64 Iapp

65 6 parameters :

66 matrix ( [ [ Gl ] , [Gk ] , [ Gca ] , [V1 ] , [V2 ] , [ n ] ] )

67

68 >>> Bui ld ing the ob s e rvab i l i t y i d e n t i f i a b i l i t y matrix r e qu i r e s at l e a s t 6 Lie d e r i v a t i v e s

69 Ca l cu la t ing d e r i v a t i v e s : 1 2 3 4 5 6

70 >>> Observab i l i ty I d e n t i f i a b i l i t y matrix c a l cu l a t ed with 6 Lie d e r i v a t i v e s

71 ( c a l cu l a t ed in 6.676544 e 0 1 seconds )

72 >>> Rank = 6 ( ca l cu l a t ed in 2.331481 e+00 seconds )

73 >>> Observab i l i ty I d e n t i f i a b i l i t y matrix c a l cu l a t ed with 7 Lie d e r i v a t i v e s

74 ( c a l cu l a t ed in 1.953944 e+00 seconds )

75 >>> Rank = 6 ( ca l cu l a t ed in 1.202557 e+01 seconds )

76 The submodel i s s t r u c t u r a l l y u n i d e n t i f i a b l e

77 => Parameter Gl i s s t r u c t u r a l l y i d e n t i f i a b l e

78 => We cannot dec ide about i d e n t i f i a b i l i t y o f parameter Gk at the moment

79 => Parameter Gca i s s t r u c t u r a l l y i d e n t i f i a b l e

80 => Parameter V1 i s s t r u c t u r a l l y i d e n t i f i a b l e

81 => Parameter V2 i s s t r u c t u r a l l y i d e n t i f i a b l e

82

83 >>> Finding an optimal submodel i n c l ud ing s t a t e number 2 . . .

84 I n i t . po int : Best f : 0 . 1 2 5 CPUTime : 0.093750

85 NFunEvals : 135 Best f : 0 . 1 2 5 CPUTime : 303.781250

86 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

87 END OF THE OPTIMIZATION

88 Best s o l u t i on value 0 . 1 2 5

89 Dec i s ion vector

90 1

91 1

92 CPU time 303.781

93 Number o f func t i on eva lua t i on s 135

94

95

96

97 >>> Analysing i d e n t i f i a b i l i t y o f a submodel conta in ing :

98 2 s t a t e s :

99 matrix ( [ [V] , [ n ] ] )

100 1 outputs :

101 V

102 1 inputs :

103 Iapp
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104 8 parameters :

105 matrix ( [ [ Gl ] , [Gk ] , [ Gca ] , [ phi ] , [V1 ] , [V2 ] , [V3 ] , [V4 ] ] )

106

107 >>> Bui ld ing the ob s e rvab i l i t y i d e n t i f i a b i l i t y matrix r e qu i r e s at l e a s t 9 Lie d e r i v a t i v e s

108 Ca l cu la t ing d e r i v a t i v e s : 1 2 3 4 5 6 7 8

109 Rank = 9 ( ca l cu l a t ed in 1.625555 e+03 seconds )

110 Parameter Gl has a l ready been c l a s s i f i e d as i d e n t i f i a b l e .

111 => We cannot dec ide about i d e n t i f i a b i l i t y o f parameter Gk at the moment

112 Parameter Gca has a l ready been c l a s s i f i e d as i d e n t i f i a b l e .

113 => We cannot dec ide about i d e n t i f i a b i l i t y o f parameter phi at the moment

114 Parameter V1 has a l ready been c l a s s i f i e d as i d e n t i f i a b l e .

115 Parameter V2 has a l ready been c l a s s i f i e d as i d e n t i f i a b l e .

116 => We cannot dec ide about i d e n t i f i a b i l i t y o f parameter V3 at the moment

117 => We cannot dec ide about i d e n t i f i a b i l i t y o f parameter V4 at the moment

118 => We cannot dec ide about s t a t e n at the moment

119

120

121 >>> RESULTS SUMMARY:

122

123

124 >>> These parameters are i d e n t i f i a b l e :

125 matrix ( [ [ Gca , Gl , V1 , V2 ] ] )

126 >>> These s t a t e s are d i r e c t l y measured :

127 V

128 Total execut ion time : 8 .898812 e+03

129

130 STRIKE GOLDD

131

132

133

134 >>> StrIkE GOLDD TOOLBOX

135

136

137 Analyzing i d e n t i f i a b i l i t y o f Morr isLecar . . .

138

139 >>> The model conta in s :

140 2 s t a t e ( s ) :

141 V

142 n

143

144 1 output ( s ) :

145 V

146

147 1 input ( s ) :

148 Iapp

149
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150 4 parameter ( s ) :

151 Gk

152 phi

153 V3

154 V4

155

156 >>> Bui ld ing the ob s e rvab i l i t y i d e n t i f i a b i l i t y matrix r e qu i r e s at l e a s t 5 Lie d e r i v a t i v e s

157 Ca l cu la t ing d e r i v a t i v e s : 1 2 3 4 5

158 >>> Observab i l i ty I d e n t i f i a b i l i t y matrix bu i l t with 5 Lie d e r i v a t i v e s

159 ( c a l cu l a t ed in 1.270037 e+00 seconds )

160 >>> Calcu la t ing rank . . .

161 Rank = 6 ( ca l cu l a t ed in 1.181469 e+00 seconds )

162

163

164 >>> RESULTS SUMMARY:

165

166

167 >>> These parameters are i d e n t i f i a b l e :

168 matrix ( [ [ Gk, V3 , V4 , phi ] ] )

169 >>> The model i s obse rvab le :

170 Al l i t s s t a t e s are observab le .

171

172 Total execut ion time : 4 .813718 e+00

1 func t i on [ ] = z c r ea te Morr i sLeca r mode l ( )

2

3 %c l e a r a l l ;

4

5 syms V n . . .

6 Gl Gk Gca Iapp . . .

7 phi V1 V2 V3 V4

8 % s t a t e s :

9 x = [V; n ] ;

10

11 % outputs :

12 h = [V ] ;

13

14 % input :

15 u = Iapp ;

16 El = 6 0 ;

17 Eca = 120 ;

18 Ek = 8 4 ;

19 Cm = 20 ;

20 % parameters :

21 %p = [ a ; b ; AA; sigma ; alpha ; beta ; gamma; de l t a ] ;

22 p = [ Gl Gk Gca . . .

23 phi V1 V2 V3 V4 ] . ’ ;
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24 % dynamic equat ions :

25 f = [ ( 1/Cm) ∗( Iapp Gl∗(V El ) Gk∗n∗(V Ek) Gca∗minf (V,V1 ,V2) ∗(V Eca ) ) ;

26 phi ∗( n in f (V,V3 ,V4) n) /taun (V,V3 ,V4) ] ;

27

28 % i n i t i a l c ond i t i on s :

29 i c s = [ 4 . 1 4 ] . ’ ;

30

31 % which i n i t i a l c ond i t i on s are known :

32 known ics = [ 1 , 1 ] ;

33

34 save ( ’ Morr isLecar ’ , ’ x ’ , ’h ’ , ’u ’ , ’p ’ , ’ f ’ , ’ i c s ’ , ’ known ics ’ ) ;

35

36

37 end

38 func t i on mout = minf (V,V1 ,V2)

39 mout = .5∗(1+ tanh ( (V V1) /V2) ) ;

40 end

41

42 func t i on tau = taun (V,V3 ,V4)

43 tau = 1/( cosh ( (V V3) /(2∗V4) ) ) ;

44 end

45 func t i on nout = n in f (V,V3 ,V4)

46 nout = .5∗(1+ tanh ( (V V3) /V4) ) ;

47 end

1 %==========================================================================

2 % THE USER CAN DEFINE THE PROBLEM AND SET OPTIONS IN THE FOLLOWING LINES :

3 %==========================================================================

4

5 func t i on [ modelname , paths , opts , submodels , p r ev i d en t pa r s ] = opt ions ( )

6 %%% (1) MODEL:

7 %modelname = ’MAPK’ ;

8 %modelname = ’Goodwin ’ ;

9 %modelname= ’MorrisLecarReduced ’

10 %modelname=’simpleBCVA ’ ;

11 %modelname = ’MorrisLecarReduced ’ ;

12 % modelname=’NaKLred ’ ;

13 %modelname=’NaKLext ’ ;

14 %modelname=’NaKL conductances ’ ;

15 %modelname=’NaKL’ ;

16 modelname=’ Morr isLecar ’ ;

17 %%% (2) PATHS:

18 % laptop

19 paths . meigo = ’C:\ Users\Matt\Documents\meigo64\MEIGO’ ;

20 paths . models = s t r c a t (pwd , f i l e s e p , ’ models ’ ) ;

21 paths . r e s u l t s = s t r c a t (pwd , f i l e s e p , ’ r e s u l t s ’ ) ;

22 paths . f unc t i on s = s t r c a t (pwd , f i l e s e p , ’ f unc t i on s ’ ) ;
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23

24 %%% (3) IDENTIFIABILITY OPTIONS:

25 opts . numeric = 0 ; % ca l c u l a t e rank numer ica l ly (= 1) or symbo l i c a l l y (= 0)

26 opts . r ep lace ICs = 0 ; % rep l a c e s t a t e s with known i n i t i a l c ond i t i on s (= 1) or use g ene r i c

va lues (= 0) when c a l c u l a t i n g rank

27 opts . checkObser = 1 ; % check ob s e r v ab i l i t y o f s t a t e s / i d e n t i f i a b i l i t y o f i n i t i a l c ond i t i on s

(1 = yes ; 0 = no ) .

28 opts . f indcombos = 0 ; % try to f i nd i d e n t i f i a b l e combinations ? (1 = yes ; 0 = no ) .

29 opts . un i d en t i f = 0 ; % use method to try to e s t a b l i s h u n i d e n t i f i a b i l i t y in s t ead o f

i d e n t i f i a b i l i t y , when us ing decomposit ion .

30 opts . forcedecomp= 0 ; % always decompose model (1 = yes ; 0 = no ) .

31 opts . decomp = 1 ; % decompose model i f the whole model i s too l a r g e (1 = yes ; 0 = no :

instead , c a l c u l a t e rank with few Lie d e r i v a t i v e s ) .

32 opts . decomp user= 0 ; % when decomposing model , use submodels s p e c i f i e d by the user (= 1) or

found by opt imizat i on (= 0) .

33 opts . maxLietime = 30 ; % max . time al lowed f o r c a l c u l a t i n g 1 Lie d e r i v a t i v e .

34 opts . maxOpttime = 300 ; % max . time al lowed f o r every opt imizat i on ( i f opt imizat ion based

decomposit ion i s used ) .

35 opts . maxstates = 3 ; % max . number o f s t a t e s in the submodels ( i f opt imizat ion based

decomposit ion i s used ) .

36 opts . nnzDerIn = [ 1 0 ] ; % number o f nonzero d e r i v a t i v e s o f the inputs ( s p e c i f y them in one

column per input ) .

37

38 %%% (4) User de f ined submodels f o r decomposit ion (may be l e f t = [ ] ) :

39 submodels = [ ] ;

40 %%% Submodels are s p e c i f i e d as a vector o f s ta t e s , as e . g . :

41 % submodels = [ ] ;

42 % submodels{1} = [1 2 ] ;

43 % submodels{2} = [1 3 ] ;

44

45 %%% (5) Parameters a l ready c l a s s i f i e d as i d e n t i f i a b l e may be entered below .

46

47 % syms Gk vq dvq tq0 tq1

48 % pr ev i d en t pa r s = [Gk vq dvq tq0 tq1 ] ;

49 p r ev i d en t pa r s=’ ’ ;

50 %syms Gl

51 %pr ev i d en t pa r s =[Gl ] ;

52 %%% They must f i r s t be dec la r ed as symbol ic v a r i a b l e s . For example :

53 % syms mRNA0

54 % prev i d en t pa r s = mRNA0;

55 end

1 %==========================================================================

2 % THE USER CAN DEFINE THE PROBLEM AND SET OPTIONS IN THE FOLLOWING LINES :

3 %==========================================================================

4

5 func t i on [ modelname , paths , opts , submodels , p r ev i d en t pa r s ] = opt ions ( )
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6 %%% (1) MODEL:

7 %modelname = ’MAPK’ ;

8 %modelname = ’Goodwin ’ ;

9 %modelname= ’MorrisLecarReduced ’

10 %modelname=’simpleBCVA ’ ;

11 %modelname = ’MorrisLecarReduced ’ ;

12 % modelname=’NaKLred ’ ;

13 %modelname=’NaKLext ’ ;

14 %modelname=’NaKL conductances ’ ;

15 %modelname=’NaKL’ ;

16 modelname=’ Morr isLecar ’ ;

17 %%% (2) PATHS:

18 % laptop

19 paths . meigo = ’C:\ Users\Matt\Documents\meigo64\MEIGO’ ;

20 paths . models = s t r c a t (pwd , f i l e s e p , ’ models ’ ) ;

21 paths . r e s u l t s = s t r c a t (pwd , f i l e s e p , ’ r e s u l t s ’ ) ;

22 paths . f unc t i on s = s t r c a t (pwd , f i l e s e p , ’ f unc t i on s ’ ) ;

23

24 %%% (3) IDENTIFIABILITY OPTIONS:

25 opts . numeric = 0 ; % ca l c u l a t e rank numer ica l ly (= 1) or symbo l i c a l l y (= 0)

26 opts . r ep lace ICs = 0 ; % rep l a c e s t a t e s with known i n i t i a l c ond i t i on s (= 1) or use g ene r i c

va lues (= 0) when c a l c u l a t i n g rank

27 opts . checkObser = 1 ; % check ob s e r v ab i l i t y o f s t a t e s / i d e n t i f i a b i l i t y o f i n i t i a l c ond i t i on s

(1 = yes ; 0 = no ) .

28 opts . f indcombos = 0 ; % try to f i nd i d e n t i f i a b l e combinations ? (1 = yes ; 0 = no ) .

29 opts . un i d en t i f = 0 ; % use method to try to e s t a b l i s h u n i d e n t i f i a b i l i t y in s t ead o f

i d e n t i f i a b i l i t y , when us ing decomposit ion .

30 opts . forcedecomp= 0 ; % always decompose model (1 = yes ; 0 = no ) .

31 opts . decomp = 1 ; % decompose model i f the whole model i s too l a r g e (1 = yes ; 0 = no :

instead , c a l c u l a t e rank with few Lie d e r i v a t i v e s ) .

32 opts . decomp user= 0 ; % when decomposing model , use submodels s p e c i f i e d by the user (= 1) or

found by opt imizat i on (= 0) .

33 opts . maxLietime = 30 ; % max . time al lowed f o r c a l c u l a t i n g 1 Lie d e r i v a t i v e .

34 opts . maxOpttime = 300 ; % max . time al lowed f o r every opt imizat i on ( i f opt imizat ion based

decomposit ion i s used ) .

35 opts . maxstates = 3 ; % max . number o f s t a t e s in the submodels ( i f opt imizat ion based

decomposit ion i s used ) .

36 opts . nnzDerIn = [ 1 0 ] ; % number o f nonzero d e r i v a t i v e s o f the inputs ( s p e c i f y them in one

column per input ) .

37

38 %%% (4) User de f ined submodels f o r decomposit ion (may be l e f t = [ ] ) :

39 submodels = [ ] ;

40 %%% Submodels are s p e c i f i e d as a vector o f s ta t e s , as e . g . :

41 % submodels = [ ] ;

42 % submodels{1} = [1 2 ] ;

43 % submodels{2} = [1 3 ] ;
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44

45 %%% (5) Parameters a l ready c l a s s i f i e d as i d e n t i f i a b l e may be entered below .

46

47 % syms Gk vq dvq tq0 tq1

48 % pr ev i d en t pa r s = [Gk vq dvq tq0 tq1 ] ;

49 syms Gca Gl V1 V2

50 p r ev i d en t pa r s =[Gca , Gl , V1 , V2 ] ;

51 %syms Gl

52 %pr ev i d en t pa r s =[Gl ] ;

53 %%% They must f i r s t be dec la r ed as symbol ic v a r i a b l e s . For example :

54 % syms mRNA0

55 % prev i d en t pa r s = mRNA0;

56 end

1 func t i on [ f , fVout , fnout , xaug ] = mo r r i s l e c a r i d e n t i f i a b i l i t y c a s a d i ( )

2 %import casad i .∗

3 truep = [ . 0 4 , 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ; %hopf

4 % truep = [ . 0 6 7 , 4 , 1 2 , 1 7 . 4 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ; % sn l c , Iapp 100 f i n e f o r t h i s

5 % %truep = [ . 2 3 , 4 , 1 2 , 1 7 . 4 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 3 6 ] ; % homocl inic , choose y0 i n s i d e b . o . a e . g

. y0 = [ 4 . 1 4 ] f o r Iapp= 36

6 import ca sad i .∗

7 V= MX. sym( ’V ’ ) ;

8 n = MX. sym( ’n ’ ) ;

9 %x = [V, n ] ’ ;

10 %C = MX. sym( ’C’ ) ;

11 %Ena = MX. sym( ’Ena ’ ) ;

12 %Ek = MX. sym( ’Ek ’ ) ;

13 %Eca= MX. sym( ’ Eca ’ ) ;

14 %Eleak = MX. sym( ’ Eleak ’ ) ;

15 %Gna= MX. sym( ’Gna ’ ) ;

16 Gk= MX. sym( ’Gk ’ ) ;

17 Gca = MX. sym( ’Gca ’ ) ;

18 Gleak = MX. sym( ’ Gleak ’ ) ;

19 phi = MX. sym( ’ phi ’ ) ;

20 V1= MX. sym( ’V1 ’ ) ;

21 V2 = MX. sym( ’V2 ’ ) ;

22 V3 = MX. sym( ’V3 ’ ) ;

23 V4 = MX. sym( ’V4 ’ ) ;

24 % phi=p (1) ;

25 % Gca=p (2) ;

26 % V3=p(3) ;

27 % V4=p(4) ;

28 Eca=truep (5) ;

29 Ek=truep (6) ;

30 El=truep (7) ;

31 %Gk=truep (8) ;

32 %Gl=p (9) ;
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33 % V1=p(10) ;

34 % V2=p(11) ;

35 Cm=truep (12) ;

36 Iapp=truep (13) ;

37 fVout = fV (V, n , Iapp ,Gca ,Gk, Gleak , Eca ,Ek , El ,Cm,V1 ,V2) ;

38 fnout =fn (V, n , phi ,V3 ,V4) ;

39 xdot = [ fVout . . .

40 fnout ] ;

41 xaug= [V, n , phi Gca V3 V4 Gk Gleak V1 V2 ] ;

42 f = Function ( ’ f ’ , {xaug } , {xdot }) ;

43 end

44 func t i on dVdt= fV (V, n , Iapp ,Gca ,Gk, Gl , Eca ,Ek , El ,Cm,V1 ,V2)

45 dVdt= (1/Cm) ∗( Iapp Gl∗(V El ) Gk∗n∗(V Ek) Gca∗minf (V,V1 ,V2) ∗(V Eca ) ) ;

46 end

47 func t i on nout = n in f (V,V3 ,V4)

48 nout = .5∗(1+ tanh ( (V V3) . /V4) ) ;

49 end

50 func t i on tau = taun (V,V3 ,V4)

51 tau = 1 . / ( cosh ( (V V3) ./ (2∗V4) ) ) ;

52 end

53 func t i on mout = minf (V,V1 ,V2)

54 mout = .5∗(1+ tanh ( (V V1) /V2) ) ;

55 end

56 func t i on dndt = fn (V, n , phi ,V3 ,V4)

57 dndt = phi .∗ ( n in f (V,V3 ,V4) n) . / taun (V,V3 ,V4) ;

58 end

1 import ca sad i .∗

2 [ f , fVout , fnout , xaug ] = mo r r i s l e c a r i d e n t i f i a b i l i t y c a s a d i ( ) ;

3 g=xaug (1) ;

4 %O = MX. sym( ’O’ , l ength ( xaug ) , l ength ( xaug ) ) ;

5 %O = DM( length ( xaug ) , l ength ( xaug ) ) ;

6 O = MX( length ( xaug ) , l ength ( xaug ) ) ;

7 Lfg = MX. sym( ’ Lfg ’ , l ength ( xaug ) ,1) ;

8 % f (x ) = [ fv (x ) fn (x ) 0 0 0 0 0 0 0 0 ] ’ ;

9 l fgtemp = fVout ;

10 Lfg (1) = lfgtemp ; % dg/dx = [1 0 . . . ] ; , dg/dx f ( x ) = fv (x ) ;

11 otemp = jacob ian ( xaug , xaug (1) ) ;

12 O( 1 , : ) = otemp ;

13 otemp=jacob ian ( lfgtemp , xaug ) ;

14 f o r i =2: l ength ( xaug )

15 O( i , : ) = otemp ;

16 l fgtemp = otemp (1) ∗ fVout + otemp (2) ∗ fnout ;

17 otemp = jacob ian ( lfgtemp , xaug ) ;

18 end

19

20 fO = Function ( ’ fO ’ , {xaug } , {O}) ;
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21

22 truep = [ . 0 4 , 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ; %hopf

23 true xpaug =[ 40 .175 truep ( 1 : 4 ) truep ( 8 : 1 1 ) ] ’ ;

24 % primes

25 %p l i s t=primes (100) ;

26 %true xpaug =[ 40 .175 p l i s t ( 1 : 8 ) ] ;

27 fO true xp=fO( true xpaug ) ;

28 f u l l fO t r u e x p=f u l l ( fO true xp )

29 rankO=rank ( f u l l fO t r u e xp , 1 e 1 2 )

30

31 %% make tab l e

32 input . data=f u l l fO t r u e x p ;

33 input . makeCompleteLatexDocument=0;

34 input . tableCapt ion = ’Matrix o f ORC fo r Morris Lecar Model Evaluated f o r Hopf Parameters ’ ;

35 input . dataFormat = { ’%.0e ’ } ;

36 % p = { ’C ’ ; ’Ena ’ ; ’Ek ’ ; ’ Eca ’ ; ’Gna ’ ; ’Gk ’ ; ’Gca ’ ; ’ Gleak na ’ ; ’ Gleak k ’ ;

37 % ’vm na ’ ; ’ dvm na ’ ;

38 % ’ vh na ’ ; ’ dvh na ’ ; ’ th0 na ’ ; ’ th1 na ’ ; ’ vht na ’ ; ’ dvht na ’ ; . . .

39 % ’vn ’ ; ’ dvn ’ ; ’ tn0 ’ ; ’ tn1 ’ ; ’ vnt ’ ; ’ dvnt ’ ; . . .

40 % ’ vm ca ’ ; ’ dvm ca ’ ; ’ tm0 ca ’ ; ’ tm1 ca ’ ; ’ vmt ca ’ ; ’ dvmt ca ’ ;

41 % ’ vh ca ’ ; ’ dvh ca ’ ; ’ th0 ca ’ ; ’ th1 ca ’ ; ’ vht ca ’ ; ’ dvht ca ’ ; } ;

42 % p=[Csoma , Caxon , Ena , Ek , Enaleak , Gna , Gk, Gnaleak , Gaxon , vm, dvm, tm0 , tm1 , vh , dvh , th0 , th1

, vn , dvn , tn0 , tn1 ] ;

43 p latex format = . . .

44 { ’ $V$ ’ , ’ $n$ ’ , ’ $\phi$ ’ , ’ $G {\ textrm{Ca}}$ ’ , ’ $V3$ ’ , ’ $V4$ ’ , ’ $G {\ textrm{K}}$ ’ , . . .

45 ’ $G {\ textrm{ l eak }}$ ’ ’ $V1$ ’ ’ $V2$ ’ } ;

46 % Set column l a b e l s ( use empty s t r i n g or no l a b e l ) :

47 %input . tab l eCo lLabe l s = ;

48 % Set row l a b e l s ( use empty s t r i n g f o r no l a b e l ) :

49 input . tab l eCo lLabe l s = platexformat ’ ;

50

51 l a t ex = latexTable ( input ) ;

52

53

54 %%

55 %% te s t aga in s t known f a i l u r e

56 import ca sad i .∗

57

58 [ f , fVout , fnout , xaug ] = mo r r i s l e c a r i d e n t i f i a b i l i t y c a s a d i b a d ( ) ;

59 g=xaug (1) ;

60 %O = MX. sym( ’O’ , l ength ( xaug ) , l ength ( xaug ) ) ;

61 %O = DM( length ( xaug ) , l ength ( xaug ) ) ;

62 O = MX( length ( xaug ) , l ength ( xaug ) ) ;

63 Lfg = MX. sym( ’ Lfg ’ , l ength ( xaug ) ,1) ;

64 % f (x ) = [ fv (x ) fn (x ) 0 0 0 0 0 0 0 0 ] ’ ;

65 l fgtemp = fVout ;
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66 Lfg (1) = lfgtemp ; % dg/dx = [1 0 . . . ] ; , dg/dx f ( x ) = fv (x ) ;

67 otemp = jacob ian ( xaug , xaug (1) ) ;

68 O( 1 , : ) = otemp ;

69 otemp=jacob ian ( lfgtemp , xaug ) ;

70 f o r i =2: l ength ( xaug )

71 O( i , : ) = otemp ;

72 l fgtemp = otemp (1) ∗ fVout + otemp (2) ∗ fnout ;

73 otemp = jacob ian ( lfgtemp , xaug ) ;

74 end

75

76 fO = Function ( ’ fO ’ , {xaug } , {O}) ;

77

78 truep = [ . 0 4 , 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ; %hopf

79 %true xpaug =[ 40 .175 truep ( 1 : 4 ) truep ( 8 : 1 1 ) truep (11) +1] ’ ;

80 true xpaug =[ 40 .175 p l i s t ( 1 : 9 ) ] ;

81

82 fO true xp=fO( true xpaug ) ;

83 f u l l fO t r u e x p=f u l l ( fO true xp ) ;

84 rankObad=rank ( f u l l fO t r u e xp , 1 e 1 2 )

85 % remove l a s t column , check i f rank changed .

86 f u l l f 0 t r u e x p r e d =f u l l ( fO true xp ( : , 1 : end 1 ) )

87 rankObad red = rank ( f u l l f 0 t r u e x p r e d , 1 e 1 2 )

88

89 f u l l f 0 t r u e x p r e d 2 =f u l l ( fO true xp ( : , 1 : end 2 ) )

90 rankObad red2 = rank ( f u l l f 0 t r u e x p r e d 2 , 1 e 1 2 )

91

92 %% KNOWN f a i l u r e in s t a t e v a r i a b l e s

93

94 import ca sad i .∗

95 [ f , fVout , fnout , xaug ] = mo r r i s l e c a r i d e n t i f i a b i l i t y c a s a d i b a d 2 ( ) ;

96 g=xaug (1) ;

97 %O = MX. sym( ’O’ , l ength ( xaug ) , l ength ( xaug ) ) ;

98 %O = DM( length ( xaug ) , l ength ( xaug ) ) ;

99 O = MX( length ( xaug ) , l ength ( xaug ) ) ;

100 Lfg = MX. sym( ’ Lfg ’ , l ength ( xaug ) ,1) ;

101 % f (x ) = [ fv (x ) fn (x ) 0 0 0 0 0 0 0 0 ] ’ ;

102 l fgtemp = fVout ;

103 Lfg (1) = lfgtemp ; % dg/dx = [1 0 . . . ] ; , dg/dx f ( x ) = fv (x ) ;

104 otemp = jacob ian ( xaug , xaug (1) ) ;

105 O( 1 , : ) = otemp ;

106 otemp=jacob ian ( lfgtemp , xaug ) ;

107 f o r i =2: l ength ( xaug )

108 O( i , : ) = otemp ;

109 l fgtemp = otemp (1) ∗ fVout + otemp (2) ∗ fnout ;

110 otemp = jacob ian ( lfgtemp , xaug ) ;

111 end
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112

113 fO = Function ( ’ fO ’ , {xaug } , {O}) ;

114

115 truep = [ . 0 4 , 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ; %hopf

116 true xpaug =[ 40 0 truep ( 1 : 4 ) truep ( 8 : 1 1 ) ] ’ ;

117

118 fO true xp=fO( true xpaug ) ;

119 f u l l fO t r u e x p=f u l l ( fO true xp )

120 rankOn0=rank ( f u l l fO t r u e xp , 1 e 1 2 )

121

122 %%

123 %% t e s t aga in s t known f a i l u r e , g l eak = g l ∗V5

124 import ca sad i .∗

125

126 [ f , fVout , fnout , xaug ] = mo r r i s l e c a r i d e n t i f i a b i l i t y c a s a d i b a d 3 ( ) ;

127 g=xaug (1) ;

128 %O = MX. sym( ’O’ , l ength ( xaug ) , l ength ( xaug ) ) ;

129 %O = DM( length ( xaug ) , l ength ( xaug ) ) ;

130 O = MX( length ( xaug ) , l ength ( xaug ) ) ;

131 Lfg = MX. sym( ’ Lfg ’ , l ength ( xaug ) ,1) ;

132 % f (x ) = [ fv (x ) fn (x ) 0 0 0 0 0 0 0 0 ] ’ ;

133 l fgtemp = fVout ;

134 Lfg (1) = lfgtemp ; % dg/dx = [1 0 . . . ] ; , dg/dx f ( x ) = fv (x ) ;

135 otemp = jacob ian ( xaug , xaug (1) ) ;

136 O( 1 , : ) = otemp ;

137 otemp=jacob ian ( lfgtemp , xaug ) ;

138 f o r i =2: l ength ( xaug )

139 O( i , : ) = otemp ;

140 l fgtemp = otemp (1) ∗ fVout + otemp (2) ∗ fnout ;

141 otemp = jacob ian ( lfgtemp , xaug ) ;

142 end

143

144 fO = Function ( ’ fO ’ , {xaug } , {O}) ;

145

146 truep = [ . 0 4 , 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ; %hopf

147 true xpaug =[ 40 .175 truep ( 1 : 4 ) truep ( 8 : 1 1 ) 2 ] ’ ;

148

149 fO true xp=fO( true xpaug ) ;

150 f u l l fO t r u e x p=f u l l ( fO true xp ) ;

151 rankObad=rank ( f u l l fO t r u e x p )

152 % remove l a s t column , check i f rank changed .

153 f u l l f 0 t r u e x p r e d =f u l l ( fO true xp ( : , 1 : end 1 ) )

154 rankObad red = rank ( f u l l f 0 t r u e x p r e d , 1 e 1 2 )

155

156

157
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158 %% Burst ing

159 import ca sad i .∗

160 CSE=1;

161 [ f , xdot , xaug ] = mo r r i s l e c a r b u r s t i n g i d e n t i f i a b i l i t y c a s a d i (CSE) ;

162 %truep = [ . 0 4 , 4 . 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , . 7 5 , . 0 0 5 , . 0 2 , 1 2 0 ] ;

163 truep = [ . 2 3 , 4 , 1 2 , 1 7 . 4 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , . 2 5 , . 0 0 5 , . 0 2 , 4 5 ] ;

164

165 Nstates =3;

166 g=xaug (1) ;

167 %O = MX. sym( ’O’ , l ength ( xaug ) , l ength ( xaug ) ) ;

168 %O = DM( length ( xaug ) , l ength ( xaug ) ) ;

169 O = SX( length ( xaug ) , l ength ( xaug ) ) ;

170 Lfg = SX. sym( ’ Lfg ’ , l ength ( xaug ) ,1) ;

171 % f (x ) = [ fv (x ) fn (x ) 0 0 0 0 0 0 0 0 ] ’ ;

172 l fgtemp = xdot (1) ;

173 Lfg (1) = lfgtemp ; % dg/dx = [1 0 . . . ] ; , dg/dx f ( x ) = fv (x ) ;

174 %otemp = jacob ian ( xaug , xaug (1) ) ;

175 otemp = ze ro s ( l ength ( xaug ) ,1) ;

176 otemp (1) =1;

177 O( 1 , : ) = otemp ;

178 otemp=jacob ian ( lfgtemp , xaug ) ;

179 f o r i =2: l ength ( xaug )

180 O( i , : ) = otemp ;

181 %lfgtemp = otemp (1) ∗ fVout + otemp (2) ∗ fnout ;

182 l fgtemp = dot ( otemp ( 1 : Nstates ) , xdot ) ;

183 otemp = jacob ian ( lfgtemp , xaug ) ;

184 %otemp = j t imes ( otemp ( 1 : 4 ) , xaug , xout ’ ) ;

185 i

186 end

187

188 fO = Function ( ’ fO ’ , {xaug } , {O}) ;

189

190 %truep = [ . 0 4 , 4 , 2 , 3 0 , 1 2 0 , 8 4 , 6 0 , 8 , 2 , 1 . 2 , 1 8 , 2 0 , 1 0 0 ] ; %hopf

191 %true xpaug =[ 40 .175 truep ( 1 : 4 ) truep ( 8 : 1 1 ) ] ’ ;

192 %truep=paramboundsSpecsdotText ( : , 3 ) ;

193 %true xpaug=[ 3 8 . 9 3 3 8 0.3083 0.2684 0.5845 truep ’ ] ; % good f o r Iapp=50;

194 truex=[ 4 .951947538278363 0.062735819057212 0 .694917947518991 ] ;

195 switch CSE

196 case 1

197 true xpaug=[ truex truep ( 1 : 4 ) truep ( 8 : 1 1 ) truep (13) ] ;

198 case 2

199 true xpaug=[ truex truep ( 1 : 4 ) truep ( 8 : 1 1 ) truep (13 : 14 ) ] ;

200 case 3

201 true xpaug=[ truex truep ( 1 : 4 ) truep ( 8 : 1 1 ) truep ( [ 1 3 15 ] ) ] ;

202

203 case 4
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204 true xpaug=[ truex truep ( 1 : 4 ) truep ( 8 : 1 1 ) truep ( [ 1 3 14 15 ] ) ] ;

205

206 end

207 %truep xaug = [

208 fO true xp=fO( true xpaug ) ;

209 f u l l fO t r u e x p=f u l l ( fO true xp )

210 rankO=rank ( f u l l fO t r u e xp , 1 e 1 2 )
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