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ABSTRACT 

NEUROBIOLOGICAL MARKERS FOR REMISSION AND PERSISTENCE OF 

CHILDHOOD ATTENTION-DEFICIT/HYPERACTIVITY DISORDER 

 

by 

Yuyang Luo 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most prevalent 

neurodevelopmental disorders in children. Symptoms of childhood ADHD persist into 

adulthood in around 65% of patients, which elevates the risk for a number of adverse 

outcomes, resulting in substantial individual and societal burden. A neurodevelopmental 

double dissociation model is proposed based on existing studies in which the early onset of 

childhood ADHD is suggested to associate with dysfunctional subcortical structures that 

remain static throughout the lifetime; while diminution of symptoms over development 

could link to optimal development of prefrontal cortex. Current existing studies only assess 

basic measures including regional brain activation and connectivity, which have limited 

capacity to characterize the functional brain as a high performance parallel information 

processing system, the field lacks systems-level investigations of the structural and 

functional patterns that significantly contribute to the symptom remission and persistence 

in adults with childhood ADHD. Furthermore, traditional statistical methods estimate 

group differences only within a voxel or region of interest (ROI) at a time without having 

the capacity to explore how ROIs interact in linear and/or non-linear ways, as they quickly 

become overburdened when attempting to combine predictors and their interactions from 

high-dimensional imaging data set.  

 This dissertation is the first study to apply ensemble learning techniques (ELT) in 

multimodal neuroimaging features from a sample of adults with childhood ADHD and 



 

 

controls, who have been clinically followed up since childhood. A total of 36 adult 

probands who were diagnosed with ADHD combined-type during childhood and 36 

matched normal controls (NCs) are involved in this dissertation research. Thirty-six adult 

probands are further split into 18 remitters (ADHD-R) and 18 persisters (ADHD-P) based 

on the symptoms in their adulthood from DSM-IV ADHD criteria. Cued attention 

task-based fMRI, structural MRI, and diffusion tensor imaging data from each individual 

are analyzed. The high-dimensional neuroimaging features, including pair-wise regional 

connectivity and global/nodal topological properties of the functional brain network for 

cue-evoked attention process, regional cortical thickness and surface area, subcortical 

volume, volume and fractional anisotropy of major white matter fiber tract for each subject 

are calculated. In addition, all the currently available optimization strategies for ensemble 

learning techniques (i.e., voting, bagging, boosting and stacking techniques) are tested in a 

pool of semi-final classification results generated by seven basic classifiers, including 

K-Nearest Neighbors, support vector machine (SVM), logistic regression, Naïve Bayes, 

linear discriminant analysis, random forest, and multilayer perceptron. 

 As hypothesized, results indicate that the features of nodal efficiency in right 

inferior frontal gyrus, right middle frontal (MFG)-inferior parietal (IPL) functional 

connectivity, and right amygdala volume significantly contributed to accurate 

discrimination between ADHD probands and controls; higher nodal efficiency of right 

MFG greatly contributed to inattentive and hyperactive/impulsive symptom remission, 

while higher right MFG-IPL functional connectivity strongly linked to symptom 

persistence in adults with childhood ADHD. The utilization of ELTs indicates that the 

bagging-based ELT with the base model of SVM achieves the best results, with the most 



 

 

significant improvement of the area under the receiver of operating characteristic curve 

(0.89 for ADHD probands vs. NCs, and 0.9 for ADHD-P vs. ADHD-R). The outcomes of 

this dissertation research have considerable value for the development of novel 

interventions that target mechanisms associated with recovery. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background and Significance 

1.1.1 General Introduction to Attention-Deficit/Hyperactivity Disorder 

Attention-deficit/hyperactivity disorder (ADHD) is one of the most commonly diagnosed 

neurodevelopmental disorders in children which has a prevalence of 5.29% worldwide 

(Polanczyk et al., 2007) and affect approximately 9.5% in school-age children in the 

United States (Visser et al., 2014; Pastor et al., 2015; Danielson et al., 2018; Xu et al., 

2018). Throughout an individual’s lifetime, ADHD can significantly increase risk for other 

psychiatric disorders, educational and occupational failure, accidents, criminality, social 

disability and addictions. ADHD is associated with widespread functional brain 

impairments that may result in substantial cognitive deficits, including inattention, 

hyperactivity and impulsivity, and thus lead to behavioral anomalies in ADHD patients 

(Sonuga-Barke, 2002). Symptoms of ADHD persist into adulthood in around 65% of 

patients, and impose enormous impairments and suffering in patients, their families, and 

society (Faraone et al., 2006). The behavioral abnormalities of ADHD and the 

characteristic of persistence elevate the risk for a number of adverse outcomes that result in 

substantial individual, familial and societal burden. This disparity among the different 

adult outcomes may be explained by the heterogeneity of ADHD. 
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Figure 1.1 Worldwide prevalence of ADHD. 

 

 

 
 

Figure 1.2 Prevalence of diagnosed attention-deficit/hyperactivity disorder in US children 

and adolescents from 1997 to 2016. 
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1.1.2 Characteristics of Attention-Deficit/Hyperactivity Disorder 

Previous studies have repeatedly emphasized that ADHD is a heterogeneous disorder, in 

terms of the multifactorial etiological risk factors, diverse expressions of the symptom 

domains, comorbid disorders, neuropsychological impairments, and long-term trajectories 

(Luo et al., 2019).  

1.1.2.1 Etiological Risk Factors in Attention-Deficit/Hyperactivity Disorder. The 

etiological heterogeneity in terms of the biological and environmental factors is likely 

reflected in variation in neural correlates, and results in the diverse cognitive and 

behavioral profiles and developmental trajectories of the disorder. Existing research 

suggests that genetic variants, and pre- and peri-natal risk factors relate to the 

manifestation of ADHD symptoms, and appear to be associated with various 

neurodevelopmental and psychiatric outcomes (Bonvicini et al., 2018; Uchida et al., 2018). 

Family-based studies have consistently found higher rates of ADHD in parents and 

siblings of affected probands, compared to the biological relatives of unaffected controls 

(Chen et al., 2008). Twins studies showed that monozygotic twin pairs have much higher 

concordance rates for ADHD than dizygotic twin pairs (Faraone et al., 2005). Adoption 

studies reported increased rates of ADHD in the biological parents of ADHD adoptees, 

compared to both the adoptive parents of the probands and parents of controls without 

ADHD (Sprich et al., 2000). All these studies suggest a strong genetic component of the 

disorder, with heritability estimates of 60%–80% (Faraone et al., 2005). 

 In the past three decades, molecular genetic association studies (Faraone et al., 

2005; Gizer et al., 2009), linkage studies (Ogdie et al., 2004), meta-analyses (Neale et al., 

2010), and recent reviews (Thapar et al., 2013; Klein et al., 2017) have identified a number 
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of genes that might contribute to the onset of childhood ADHD, including, but not limited 

to, dopamine receptor genes such as DRD4, DRD5, DRD2, DRD3, 

dopamine-beta-hydroxylase (DBH), dopamine transporter gene (DAT, SLC6A3), 

norepinephrine transporter gene (SLC6A2), noradrenergic receptor genes such as 

ADRA2A, 2C, and 1C, monoamine oxidase-A (MAO-A), catechol-O-methyltransferase 

(COMT) serotonin receptor and transporter genes including HTR2A, HTR1B, 5-HTT, 

SLC6A4, and at least one GABA gene, GABRB3. However, results have been inconsistent 

and many findings have not been consistently replicated. For example, multiple 

candidate-gene association studies have indicated that polymorphisms in DRD4 and DAT1 

are associated with childhood ADHD (Brookes et al., 2006a; Gornick et al., 2007), while 

results from a case-control study did not find any association between these two genes and 

ADHD (Johansson et al., 2008). Moreover, studies attempting to replicate the genetic 

associations have yielded mixed results. Several studies have suggested that DRD4 is more 

strongly associated with inattentive symptoms than hyperactive-impulsive symptoms of 

ADHD (McCracken et al., 2000; Gizer and Waldman, 2012), while other studies showed 

that DRD4 was implicated in both inattentive and hyperactive symptoms (Lasky-Su et al., 

2007; Bidwell et al., 2011). Despite evidence of a strong genetic contribution to ADHD, 

the inconsistent findings from genetic association studies may result from the relatively 

small effect sizes, with each gene only accounting for a small proportion of the overall 

ADHD risk (Gizer et al., 2009). 

 Environmental risk factors, including maternally related prenatal risks, pregnancy 

and birth complications, traumatic brain injuries and other external factors, have also been 

linked to ADHD (Lahey et al., 2009; Thapar and Rutter, 2009; Froehlich et al., 2011a; 
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Thapar et al., 2012; Van Batenburg-Eddes et al., 2013; Adeyemo et al., 2014; Glover, 

2014; Silva et al., 2014; Chang et al., 2018; Saez et al., 2018; Schwenke et al., 2018). 

Prenatal and perinatal factors, including maternal alcohol consumption and smoking 

(Yoshimasu et al., 2009; Silva et al., 2014; Schwenke et al., 2018), maternal stress 

(Grizenko et al., 2008; Van Batenburg-Eddes et al., 2013; Glover, 2014), and low birth 

weight and prematurity (Mick et al., 2002; Thapar et al., 2013) are frequently associated 

with ADHD. Exposures to other toxins in prenatal and postnatal life have also been 

considered as increasing the risk of ADHD (Thapar et al., 2013). In particular, 

organophosphate pesticides, polychlorinated biphenyls, and lead may damage the neural 

systems implicated in ADHD (Nigg, 2008; Chang et al., 2018). Damage to the brain after 

birth due to traumatic brain injury has also been considered as a risk factor for ADHD 

(Pineda et al., 2007; Adeyemo et al., 2014). Multiple indicators of psychosocial adversity, 

including conflict/parent-child hostility, family adversity and low income, severe early 

deprivation, have also been found to be associated with ADHD (Pheula et al., 2011). 

Although there are biologically plausible mechanisms through which these risks could 

contribute to ADHD, it remains controversial about whether the associations of these 

environmental risks are directly causal. For example, studies found that children’s ADHD 

symptoms impact mother-son hostility, rather than the hostility having a causal effect on 

ADHD (Lifford et al., 2009). However, such statement could not be applied on other 

environmental risk factors, such as perinatal complications or lead exposure. 

 Genes and environment do not work independently of each other (Nigg et al., 

2010). Studies have explored ways in which the inherited genetic factors might interact 

with environmental risk factors to influence ADHD development and outcomes. The 
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DAT1 gene has been found to interact with maternal smoking and alcohol use during 

pregnancy (Brookes et al., 2006b), while other studies have failed to replicate these results 

(Becker et al., 2008). Interaction between DAT1 and maternal alcohol use during 

pregnancy has also been reported to decrease risk for ADHD (Brookes et al., 2006b). Using 

a sample of twin pairs, one study found that the interaction between DAT1 9R-allele or 

DRD4 7R-allele and prenatal smoke exposure increased risk for combined-type ADHD by 

nine-fold (Neuman et al., 2007). In addition to increasing susceptibility to prenatal 

adversities, the DAT1 gene has also been found to increase risk for ADHD in the presence 

of psychosocial adversity. Specifically, the DAT1 10R-6R allele has been found to 

moderate the effects of early institutional deprivation (Stevens et al., 2009) and 

psychosocial adversity (Laucht et al., 2007) on ADHD risk. DRD4 has been reported to 

significantly interact with high stress level during pregnancy and some chemical toxins, 

e.g., dimethyl phosphate, in children with ADHD (Grizenko et al., 2012; Chang et al., 

2018). Nevertheless, these findings have either not been replicated or inconsistent. 

 Results from existing studies reviewed above suggest that multiple genetic and 

environmental risk factors with small individual effect sizes contribute to the heterogeneity 

of ADHD. These etiological risk factors may interact with each other and the complex 

developmental neural mechanisms, together result in the diverse clinical profiles and 

outcomes of ADHD. 

1.1.2.2 Clinical Information of Attention-Deficit/Hyperactivity Disorder. Currently, 

the diagnosis of ADHD is characterized by age-inappropriate symptoms of inattention 

and/or hyperactivity-impulsivity, categorized into three presentations including 

predominantly inattentive, predominantly hyperactive/impulsive and combined 
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presentation, based on the Diagnostic and Statistical Manual of Mental Disorders, fifth 

edition (DSM-5; American Psychiatric Association). A diagnosis of ADHD is typically 

determined by a clinician based on the number, severity, and duration of behavioral 

symptoms observed by parents/caregivers and teachers. They are not defined based on 

etiological sources, or any biologically identified markers. It still remains an open question 

about the relations between the clinical definitions, etiological sources and neurobiological 

substrates of ADHD. A wide range of comorbid behavioral and psychiatric conditions are 

associated with ADHD, including learning disabilities, language disorders, mood 

disorders, anxiety, and conduct/oppositional disorder. These comorbid problems can 

complicate both diagnosis and treatment of ADHD. 

 Most diagnoses of ADHD are made in school-age children. ADHD, according to 

DSM-5, requires symptoms to present in multiple settings before the age of 12 years. 

However, the course and outcome of childhood ADHD are highly heterogeneous. 

Cross-sectional studies have found that ADHD-related symptoms have 

development-specific features, with motor restlessness, aggressive and disruptive 

behaviors commonly observed in preschoolers, disorganized, impulsive, and inattentive 

symptoms more typically presented in adolescents and adults (Wilens et al., 2009). 

Long-term follow-up studies suggest that hyperactive and impulsive behaviors tend to 

decrease with age, while inattentive symptoms show greater persistence and may stay 

life-long (Biederman et al., 2000; Molina et al., 2009). Besides age effects, gender-related 

differences are also observed in ADHD. Boys are more likely to be diagnosed with ADHD 

than girls. In the 2011 National Health Interview Survey, the estimated prevalence of 

ADHD in males was 12 percent; by contrast, in females the estimated prevalence was only 
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4.7 percent (Perou et al., 2013). Meanwhile, symptom profiles differ between males and 

females, with females more likely to be diagnosed with predominantly inattentive 

presentation (Biederman et al., 2005).  

 Recently, an increasing number of adolescents and young adults have presented to 

clinics with ADHD symptoms started after 12 or even later in life (Moffitt et al., 2015). A 

recent longitudinal study found that 2.5%–10.7% of subjects with ADHD first emerge in 

adolescence or adulthood, with the majority of adults with ADHD (67.5%–90.0%) not 

experiencing symptoms in childhood (Agnew-Blais et al., 2016). It is still debatable about 

whether adult ADHD is defined as a childhood-onset neurodevelopmental disorder or not 

(Moffitt et al., 2015; Agnew-Blais et al., 2016). Results from a recent large sample 

Multimodal Treatment Study of ADHD (MTA) suggest that common sources of impairing 

late-onset ADHD symptoms in adolescence and young adulthood were heavy substance 

use and comorbid psychiatric or learning problems (Sibley et al., 2018). 

 Although DSM-5-based diagnosis of ADHD offers a common language and 

standard criteria for identification of the disorder and its sub-types (presentations), emotion 

lability-based sub-types were also suggested. Deficient emotional self-regulation has been 

suggested to be a core component of ADHD (Shaw et al., 2014). A recent meta-analysis of 

77 studies with a total of 32,044 participants observed the associations of ADHD with 

impaired emotional reactivity/negativity/liability, and empathy/callous-unemotional traits 

of emotional regulation (Graziano and Garcia, 2016). A study conducted by (Karalunas et 

al., 2014) attempted to define three distinct subtypes of ADHD based on temperament 

profiles, including a “Mild” type, whose members are characterized only by deficits in core 

ADHD symptom domains; a “Surgent” type, characterized by high levels of positive 
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approach-motivated behaviors and activity level, shorter cardiac pre-ejection period, 

parasympathetic withdrawal in response to positive emotions, and atypical amygdala 

connectivity to medial frontal areas; and an “Irritable” type, characterized by high levels of 

negative emotionality, weak parasympathetic response to negative emotional stimuli, 

reduced amygdala-insula connectivity, and a doubling of risk for onset of new behavioral 

or emotional disorders. 

 Nevertheless, categorical classification system has its shortcomings regarding to 

what is the best cut-off thresholds of the symptoms characterized as a dimension, the large 

number of intermediate cases, comorbidities, etc. (Lilienfeld and Treadway, 2016). The 

NIH Research Domain Criteria (RDoC) represents a new research framework for 

investigating ADHD by integrating multi-level information (from genomics and circuits to 

behavior and self-reports) to explore basic dimensions of functioning that span the full 

range of human behavior from normal to abnormal. The goal of RDoC is to understand the 

nature of mental health and illness in terms of varying degrees of dysfunctions in general 

psychological/biological systems (Harkness et al., 2014; Lilienfeld and Treadway, 2016). 

 Treatment strategies for ADHD symptoms include medication-based, 

behavior-based, and combined interventions (Antshel et al., 2011; Sibley et al., 2014). 

Stimulant medications that affect the dopaminergic system, including methylphenidate 

(Ritalin, Concerta, Metadate, Methylin) and certain amphetamines (Dexedrine, Dextrostat, 

Adderall), are most commonly prescribed for ADHD. Besides medications, 

behavior-based treatments, including education and/or behavior therapy, and social skills 

training have also been implemented in practice for ADHD interventions (Pelham et al., 

2016; DuPaul et al., 2017; Anastopoulos et al., 2018; Chacko et al., 2018). Nevertheless, 



 

10 

 

there is yet no curative treatment for ADHD without thoroughly understanding its 

heterogeneous and developmental pathophysiological mechanisms. 

 Psychiatric and behavioral comorbidities, such as depression, anxiety disorder, 

bipolar disorder, substance use, and personality disorders, often co-occur with ADHD and 

result in increased difficulties for appropriate diagnoses and treatments (Barkley and 

Brown, 2008; Rosler et al., 2010; Mao and Findling, 2014; Katzman et al., 2017). Although 

different pharmacological treatment strategies have been applied to ADHD patients with 

various comorbidities, evidence from a large body of studies showed that treatment 

responses from different patients are widely different in terms of the types of 

pharmacological treatments, dosage requirements, tolerability, response rates, and 

adverse-event profiles (Spencer et al., 1996; Efron et al., 1997; Pliszka, 2007; Newcorn et 

al., 2008; Victor et al., 2009; Wilens et al., 2011; Hodgkins et al., 2012). Multiple factors 

may contribute to the treatment response heterogeneity in ADHD. For instance, the 

treatment response of methylphenidate was suggested to rely on inter-individual variability 

in the amount of dopamine released by neurons (Volkow et al., 2002; Berridge et al., 2006; 

Hannestad et al., 2010). Certain polymorphisms, such as the 40-pb variable number 

tandem repeat polymorphism, noradrenaline, and serotonin transporter genes, were also 

suggested to be associated with the treatment response to methylphenidate (Winsberg and 

Comings, 1999; Yang et al., 2004; Thakur et al., 2010; Froehlich et al., 2011b; Bidwell et 

al., 2017; da Silva et al., 2018). However, recent meta-analyses did not support this 

polymorphism association hypothesis (Kambeitz et al., 2014; Bonvicini et al., 2016). 

Treatment response heterogeneity in ADHD, especially those with other psychiatric and 

behavioral comorbidities, should be more closed investigated in future. 
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 Neurocognitive impairments are hypothesized as a core part of ADHD 

symptomatology. Neurocognitive impairments including, but not limited to, domains of 

sustained attention or vigilance, executive function, working memory, and self-regulation, 

have been frequently reported in individuals with ADHD, even after controlling the effect 

of ADHD presentation, age and gender (Nigg et al., 2005; Willcutt et al., 2005). Notably, 

the nature of neurocognitive deficits is highly variable across individuals and some have no 

such difficulties. A number of theoretical models of the neurobiological and pathological 

substrates of ADHD have emerged in the past three decades, aimed at providing systematic 

guides for more effective strategies in diagnosis and treatment. These models included: (1) 

cognitive and motivational impairment models (Tannock et al., 1995; Barkley, 1997; 

Sonuga-Barke, 2003; Martinussen et al., 2005; Martinussen and Tannock, 2006; Rogers et 

al., 2011; Mawjee et al., 2017; Simone et al., 2018); (2) cognitive-energetic model (CEM) 

(Sergeant, 2000); and (3) neurodevelopmental model (Halperin and Schulz, 2006). 

1.1.3 Neuroimaging Studies of Attention-Deficit/Hyperactivity Disorder 

A large number of functional and structural neuroimaging studies have been conducted to 

identify the neurobiological mechanisms of emergence of ADHD. They suggest that 

ADHD symptoms in children are associated with widespread functional and 

neuroanatomical alterations in prefrontal cortex (PFC), parietal lobe, anterior cingulate 

cortex (ACC), striatum, and thalamus, which are key components in the 

cortico-striato-thalamo-cortical (CSTC) loops that subserve attention and cognitive 

processing. Functional aberrations in the fronto-thalamal/fronto-striatal circuitries have 

also been frequently reported to link with symptom onset in children with ADHD. For 

instance, significantly reduced task-responsive activation in frontal cortex, parietal areas, 
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anterior cingulate cortex, thalamus, and striatum, and their functional connectivities were 

observed in children with ADHD relative to the group-matched controls, when performing 

behavioral tasks that assess attentional and inhibitory control functions (such as the 

go/no-go task, stop signal task, continuous performance task, stroop task, etc.) (Durston et 

al., 2003; Booth et al., 2005; Durston et al., 2006; Pliszka et al., 2006; Smith et al., 2006; 

Durston et al., 2007; Suskauer et al., 2008; Li et al., 2012a; Li et al., 2013). Significantly 

reduced activation in these cortical and subcortical regions have also been consistently 

reported in children with ADHD relative to controls, when performing tasks assessing 

working memory, decision making, reward processing, and interference control functions 

(Vaidya et al., 2005; Konrad et al., 2006; Vance et al., 2007; Cao et al., 2008). 

Additionally, substantial structural magnetic resonance imaging (MRI) and Diffusion 

Tensor Imaging (DTI) studies have suggested that gray- and/or white-matter (GM/WM) 

structural underdevelopment in frontal lobe, thalamus, and striatum significantly 

contribute to the emergence of ADHD during childhood (Ellison-Wright et al., 2008; Xia 

et al., 2012). Structural neuroimaging studies have found ADHD symptoms in childhood to 

be associated with decreased regional GM volume in frontal cortex, striatum and 

cerebellum (Ellison-Wright et al., 2008; Bledsoe et al., 2011; Mahone et al., 2011). 

Reduced regional cortical GM thickness in frontal and parietal cortices have also been 

linked with ADHD symptoms (Batty et al., 2010; Almeida Montes et al., 2013). WM 

structural deficits, especially reduced WM volume and/or fractional anisotropy (FA) in the 

fronto-parietal, fronto-limbic, corona radiata, cerebellar- and temporo-occipital, and 

internal capsule fiber tracts have been consistently demonstrated in children with ADHD 



 

13 

 

(Durston et al., 2004; Nagel et al., 2011; Peterson et al., 2011; Qiu et al., 2011; Xia et al., 

2012). 

 The majority of existing clinical and neuroimaging studies in ADHD have focused 

on understanding the neural correlates of symptoms in cross-sectional samples of children 

and young adults. Far fewer studies have examined neural substrates associated with the 

diverse adult outcomes of childhood ADHD. For instance, altered task-driven or 

spontaneous neural activities in prefrontal cortex, thalamus, and striatum, and their 

functional connectives, have been found to significantly associate with increased 

inattentive and/or impulsive symptoms in children with ADHD (Rubia et al., 1999; 

Durston, 2003; Bush et al., 2005; Yang et al., 2011; Cubillo et al., 2012; Li et al., 2012a). 

Increasingly, neuroimaging studies have found that optimal structural/functional 

development in fronto-subcortical pathways may contribute to symptom reduction and 

remission of ADHD in adulthood. For instance, a longitudinal study found that persistently 

decreased GM thickness in dorsolateral prefrontal, middle frontal, and inferior parietal 

regions, and reduced WM FA in left uncinated and inferior frontal-occipital fasciculi were 

associated with a greater number of ADHD symptoms persisting into adulthood (Shaw et 

al., 2013; Shaw et al., 2015). Proal et al. reported that adults with persistent ADHD had 

thinner cortical thickness relative to the remitted ADHD in prefrontal region (Proal et al., 

2011). In addition, greater thalamo-prefrontal functional connectivity during cue-evoked 

attention process (Clerkin et al., 2013), and greater within-frontal functional connectivity 

during resting-state (Francx et al., 2015), have been observed in adult ADHD remitters 

(ADHD-R) relative to the ADHD persisters (ADHD-P). However, neuroimaging findings 

are widely inconsistent, partially due to the sample biases, differences of the implemented 
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imaging and analytic techniques, and the limitations of the traditional parametric models 

for group comparisons. Indeed, traditional statistical methods (e.g., t-tests, analysis of 

variance (ANOVA), correlation, etc.) estimate group differences only within a voxel or 

region of interest (ROI) at a time without having the capacity to explore how ROIs interact 

in linear and/or non-linear ways, as they quickly become overburdened when attempting to 

combine predictors and their interactions from high dimensional imaging data sets (Sun et 

al., 2009). 

1.1.4 Machine Learning Studies of Attention-Deficit/Hyperactivity Disorder 

The current ADHD diagnostic standards are fully clinical symptom-based, and relay on 

information collected from multiple sources through subjective observations, which often 

cause biases and inconsistencies of the diagnoses. Although existing neuroimaging studies 

utilized traditional parametric models to identify relatively objective biomarkers, 

compared to traditional parametric models, multivariate machine learning techniques are 

able to leverage high dimensional information simultaneously to understand how variables 

jointly distinguish between groups (Greenstein et al., 2012). In literature, support vector 

machine (SVM) is the most frequently applied machine learning classifier in neuroimaging 

data from children with ADHD, which has been aided by recursive feature elimination 

(RFE), temporal averaging, principle component analysis (PCA), fast Fourier transform 

(FFT), independent component analysis (ICA), 10-fold cross-validation (CV), hold-out, 

and leave-one-out CV (LOOCV) techniques, to distinguish children with ADHD from 

normal controls (NCs) (Brown et al., 2012; Chang et al., 2012; Cheng et al., 2012; Colby et 

al., 2012; Fair et al., 2012; Johnston et al., 2014; Iannaccone et al., 2015; Du et al., 2016; 

Yasumura et al., 2017; Sen et al., 2018). The commonly reported most important features 
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(according to importance score) that contribute to successful group discrimination included 

functional connectivity of bilateral thalamus, functional connectivity, surface area, cortical 

curvature and/or voxel intensity in frontal lobe, cingulate gyrus, temporal lobe, etc. (Brown 

et al., 2012; Colby et al., 2012; Iannaccone et al., 2015). SVM has also been applied to 

structural MRI and DTI data collected from adults with ADHD and controls, which 

reported between-group differences in widespread GM and WM regions in cortices, 

thalamus, and cerebellum (Chaim-Avancini et al., 2017). Meanwhile, neural 

network-based techniques, including deep belief network, fully connected cascade 

artificial neural network, convolutional neural network, extreme learning machine, and 

hierarchical extreme learning machine, have also been utilized to structural MRI and 

resting-state functional MRI (fMRI) data in children with ADHD and controls (Peng et al., 

2013; Kuang and He, 2014; Deshpande et al., 2015; Qureshi et al., 2016; Qureshi et al., 

2017; Zou et al., 2017). The most important group discrimination predictors identified by 

these neural network studies included functional connectivity within cerebellum, 

functional connectivity, surface area, cortical thickness and/or folding indices of frontal 

lobe, temporal lobe, occipital lobe and insula (Peng et al., 2013; Deshpande et al., 2015; 

Qureshi et al., 2017). In addition, principle component-based Fisher discriminative 

analysis (PC-FDA) (Zhu et al., 2008), Gaussian process classifiers (GPC) (Lim et al., 

2013; Hart et al., 2014), and multiple kernel learning (Dai et al., 2012; Ghiassian et al., 

2016) have also been used in functional and structural MRI data to discriminate children 

with ADHD from controls. More details of existing machine leaning studies in ADHD are 

provided in Table 1.1. These existing studies have either utilized features representing 

regional/voxel brain properties collected from only single imaging modality, or the 
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combination of two modalities (mostly structural MRI and resting-state fMRI) (Brown et 

al., 2012; Fair et al., 2012; Hart et al., 2014; Johnston et al., 2014; Iannaccone et al., 2015), 

or reported poor accuracy (Dai et al., 2012; Zou et al., 2017; Sen et al., 2018). Some studies 

did not conduct the very necessary step of estimating the most important features that 

contribute to accurate classifications (Chang et al., 2012; Dai et al., 2012; Kuang and He, 

2014; Tenev et al., 2014; Qureshi et al., 2016; Zou et al., 2017; Sen et al., 2018). In this 

field, systems-level functional and structural features, such as global and regional 

topological properties from functional brain networks during cognitive processes and WM 

tract properties have not been considered. In addition, relations between the suggested 

predictors from imaging features and clinical/behavioral symptoms in samples of ADHD 

patients, which can provide important clinical context, have not been studied. 
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Table 1.1 Existing Machine Learning Studies in Neuroimaging Data from Children and/or Adults with ADHD and Group-matched 

Controls (Continued) 

 
Author, Year Models Validation Features Feature Type Predictors Accuracy AUC 

Children with ADHD 

(Brown et al., 2012) SVM 10-fold CV rs-fMRI Voxel 
FC of bilateral thalamus, bilateral 

TL, MFG, PCC, Cerebellum 
0.71 N/A 

(Colby et al., 2012) SVM Hold-out 
sMRI, 

rs-fMRI 
Voxel 

FC, SA, cortical curvature in FL, 

CT and FC of CG and TL 
0.55 N/A 

(Dai et al., 2012) MKL 10-fold CV 
sMRI, 

rs-fMRI 
ROI N/A 0.68 0.71 

(Deshpande et al., 2015) FCCANN LOOCV rs-fMRI ROI FC of OFC and cerebellum 0.90 N/A 

(Du et al., 2016) SVM 10-fold CV rs-fMRI Network 
HSIC score of Operculum, Insula, 

putamen, STG 
0.95 0.97 

(Eloyan et al., 2012) Voting Hold-out 
sMRI, 

rs-fMRI 
Voxel FC between DM and DL in MC 0.78 N/A 

(Fair et al., 2012) SVM LOOCV rs-fMRI ROI FC in PFC, PL, Cerebellum 0.83 N/A 

(Ghiassian et al., 2016) MHPC Hold-out 
sMRI, 

rs-fMRI 
Voxel 

Voxel intensity and functional 

activation in FL, Cerebellum 
0.70 N/A 

(Hart et al., 2014) GPC LOOCV tb-fMRI Voxel 
Functional activation in PFC, CG, 

BG, Thalamus, PL 
0.77 0.81 

(Iannaccone et al., 2015) SVM LOOCV tb-fMRI Voxel 
Functional activation in SFG, PCC, 

TL, Brainstem, Cerebellum 
0.78 0.82 

(Johnston et al., 2014) SVM LOOCV sMRI Voxel Volume of Brainstem 0.93 N/A 

(Peng et al., 2013) ELM LOOCV sMRI ROI 
SA and FI of FL, SA and FI in TL, 

SA and volume in OL, FI of Insula 
0.90 0.88 

(Qureshi et al., 2016) H-ELM 
10-by-10 

Nested CV 
rs-fMRI ROI N/A 0.71 N/A 

(Qureshi et al., 2017) ELM Random CV 
sMRI, 

rs-fMRI 
ROI CT and FC in SFG and MTG 0.93 N/A 

(Sen et al., 2018) SVM Hold-out 
sMRI, 

rs-fMRI 
Voxel N/A 0.67 N/A 

(Zou et al., 2017) CNN Hold-out 
sMRI, 

rs-fMRI 
Voxel N/A 0.69 N/A 
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Table 1.1 (Continued) Existing Machine Learning Studies in Neuroimaging Data from Children and/or Adults with ADHD and 

Group-matched Controls 

 
Author, Year Models Validation Features Feature Type Predictors Accuracy AUC 

Children with ADHD 

(Yasumura et al., 2017) SVM 3-fold CV fNIRS ROI 
Oxygenated hemoglobin change in 

PFC 
0.86 0.898 

(Zhu et al., 2008) PC-FDA LOOCV rs-fMRI Voxel ReHo of PFC, ACC, Thalamus 0.85 N/A 

(Zhang-James et al., 2019) ELTs Hold-out sMRI ROI 
ICV, SA of FL, volume of Caudate 

and Thalamus 
0.61 0.67 

(Kuang and He, 2014) DBN Hold-out rs-fMRI Voxel N/A 0.45 N/A 

(Chang et al., 2012) SVM 3-fold CV sMRI ROI N/A 0.70 N/A 

(Lim et al., 2013) GPC LOOCV sMRI Voxel 
Voxel intensity in FL, Premotor, TL, 

Brainstem 
0.79 0.83 

(Cheng et al., 2012) SVM LOOCV rs-fMRI ROI, Voxel FC in FL and Cerebellum 0.76 N/A 

Adults with ADHD 

(Tenev et al., 2014) Voting 10-fold CV EEG ROI N/A 0.82 N/A 

(Zhang-James et al., 2019) ELTs Hold-Out sMRI ROI 
ICV, SA of FL, volume of Caudate 

and Thalamus 
0.62 0.66 

(Chaim-Avancini et al., 2017) SVM 10-fold CV sMRI, DTI ROI, Voxel 
GM and WM intensity across FL, 

TL, OL, Thalamus, Cerebellum, FA 
0.66 0.71 

 

(ICV: intracranial volume; MFG: middle frontal gyrus; MC: motor cortex; SMC: sensorimotor cortex; PFC: prefrontal cortex; FL: 

frontal lobe; PL: parietal lobe; TL: temporal lobe; OL: occipital lobe; BG: basal ganglia; CG: cingulate gyrus; MTG: middle temporal 

gyrus; OFC: orbitofrontal cortex; STG: superior temporal gyrus; PFC: prefrontal cortex; MHPC: (f)MRI HOG-feature-based patient 

classification; GPC: Gaussian process classifiers; ACC: anterior cingulate cortex; PCC: posterior cingulate cortex;  H-ELM: hierarchical 

extreme learning machine; ELM: extreme learning machine; DBN: deep belief network; CNN: convolutional neural network; MKL: 

multiple kernel learning; PC-FDA: principle component-based Fisher discriminative analysis; ROI: region of interest; Acc: accuracy; 

CV: cross validation; LOOCV: leave-one-out cross validation; sMRI: structural magnetic resonance imaging; rs-fMRI: resting-state 

functional magnetic resonance imaging; tb-fMRI: task-based functional magnetic resonance imaging; FC: functional connectivity; SA: 

surface area; CT: cortical thickness; FI: folding index; ReHo: regional homogeneity; HSIC: Hilbert-Schmidt Independence Criterion; 

DM: dorsomedial; DL: dorsolateral; GM: gray matter; WM: white matter; N/A: not available) 
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1.2 Significance, Objective and Specific Aims of Ph.D. Dissertation Research 

A neurodevelopmental double dissociation model was proposed based on existing studies 

in which the early onset of childhood ADHD is suggested to associate with dysfunctional 

subcortical structures that remain static throughout the lifetime; while diminution of 

symptoms over development could link to optimal development of prefrontal cortex 

(Halperin and Schulz, 2006). The current existing studies only assessed basic measures 

including regional brain activation and connectivity, which have limited capacity to 

characterize the functional brain as a high performance parallel information processing 

system. The field lacks systems-level investigations of the structural and functional 

patterns that significantly contribute to the symptom remission and persistence in adults 

with childhood ADHD. Moreover, neuroimaging findings are widely inconsistent, 

partially due to the sample biases, differences of the implemented imaging and analytic 

techniques, and the limitations of the traditional parametric models for group comparisons. 

Traditional statistical methods (e.g., t-test, ANOVA, correlation, etc.) estimate group 

differences only within a voxel or ROI at a time without having the capacity to explore how 

ROIs interact in linear and/or non-linear ways, as they quickly become overburdened when 

attempting to combine predictors and their interactions from high dimensional imaging 

data sets (Sun et al., 2009). It is urgent to fill this gap, which could aid clinical prediction 

and the development of individualized pharmacological and neurobehavioral interventions 

that yield enduring benefits and improve long-term outcomes. The overarching goal of this 

dissertation research is to assess functional and structural neurobiological substrates 

associated with variability of clinical adult outcomes in childhood ADHD by using 

machine learning techniques. The central hypothesis of this dissertation research is that the 
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remission of ADHD is associated with the optimal functional and structural frontal and 

associated circuits. To fill this gap, this dissertation research proposes three specific aims: 

Specific Aim 1: Identify the topological features of cue-evoked attention processing 

network, which associates with remission and persistence in adults with childhood ADHD. 

Hypothesis: Relative to ADHD-P, the ADHD-R will show optimal topological 

organization of the functional brain network for cue-evoked attention processing may be 

associated with symptom remission in adults with childhood ADHD, including 

significantly higher nodal efficiency in frontal lobe; improved functioning of 

fronto-parietal, subcortico-frontal circuits and the circuit-associated nodes, such as parietal 

lobe and thalamus. 

Specific Aim 2: Delineate the GM and WM structural correlates of remission and 

persistence of childhood ADHD. 

Hypothesis: Compared to ADHD-P, ADHD-R will present optimal structural development 

associated with the frontal and parietal lobes, such as greater regional GM thickness, 

higher FA of the WM tracts that connect subcortical structures (i.e., thalamus, caudate) and 

frontal/parietal cortices. 

Specific Aim 3: Construct prediction models by using ensemble learning techniques, and 

detected features in Aims 1 and 2, to identify the most important features that determine the 

diverse adult outcomes of childhood ADHD. 

Hypothesis: Structural and functional alterations in frontal, parietal and subcortical areas 

and their interactions would significantly contribute to accurate discrimination of ADHD 

probands (adults diagnosed with ADHD in childhood) from controls; while abnormal 

fronto-parietal hyper-communications in right hemisphere would play an important role in 
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inattentive and hyperactive/impulsive symptom persistence in adults with childhood 

ADHD. We also hypothesized that classification performance parameters (accuracy, area 

under the curve (AUC) of the receiver operating characteristics (ROC), etc.) derived from 

ensemble learning technique (ELT)-based procedures would be superior to those of basic 

model-based procedures. 

This Ph.D. dissertation research is significant because 1) understanding the 

neurobiological basis determining the diverse adult outcomes of childhood ADHD is 

urgently needed and vitally important for public health that can inform and ultimately 

guide individualized strategies for long-term treatment and interventions; 2) the utilization 

of ELT will greatly enhance the classification performance for identifying reliable 

neurobiological markers for remission and persistence of childhood ADHD. 
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CHAPTER 2  

GENERAL METHODOLOGY 

 

2.1 Participants 

This study was approved by the institutional review board (IRB) of New Jersey Institute of 

Technology (NJIT), City University of New York (CUNY), and Icahn School of Medicine 

at Mount Sinai. Participants provided signed informed consent and were reimbursed for 

their time and travel expenses. Seventy-two young adults [mean (standard deviation (SD)) 

age 24.4 (2.1) years] who provided good quality data from multimodal neuroimaging and 

clinical assessments, participated in this study. There were 36 ADHD probands diagnosed 

with ADHD combined-type (ADHD-C) in childhood and 36 group-matched comparison 

subjects with no history of ADHD. Among the 36 ADHD probands, 18 were classified as 

ADHD-R, who were endorsed no more than 3 inattentive or 3 hyperactive/impulsive 

symptoms in adulthood and had no more than 5 symptoms in total. The other 18 probands 

were classified as ADHD-P, endorsing at least five inattentive and/or 

hyperactive/impulsive symptoms in their adulthood and at least 3 symptoms in each 

domain. 

 ADHD patients were recruited from a childhood follow-up study, which consisted 

of three time points evaluations for childhood ADHD patients. The initial sample consisted 

of 106 young adults who had been clinically followed since childhood, including 60 

probands who were diagnosed with ADHD-C at their 7-11 years of age, were screened 

during their young adulthood. The comparison group was recruited during an adolescent 

follow-up study with two time points evaluations. A total of 46 young adults, who were 

evaluated as non-ADHD in childhood, were re-evaluated for the current study. Thirty-six 
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of them met the inclusion criteria for controls (had no history of childhood ADHD and no 

more than three inattentive or hyperactive/impulsive symptoms) and provided usable data. 

 Those with ADHD were recruited when they were 7-11 years-old and subsequently 

clinically followed. Childhood diagnoses were based on teacher rating using the IOWA 

Conners’ Teachers Rating Scale (Loney and Milich, 1982) and parent interview using the 

Diagnostic Interview Schedule for Children version 2 (DISC-2) (Shaffer et al., 1989). 

Exclusion criteria in childhood were chronic medical illness; neurological disorder; 

diagnosis of schizophrenia, autism spectrum disorder, or chronic tic disorder; Full Scale 

IQ<70; and not speaking English. The never ADHD comparison group was recruited in 

adolescence, as part of an adolescent follow-up of the ADHD sample, and history of 

ADHD was ruled out using the ADHD module of the DISC-2, the IOWA Conners, and the 

Schedule for Affective Disorders and Schizophrenia for School-Age Children (K-SADS) 

(Kaufman et al., 1997), which was administered to both the parent and adolescent. Adult 

psychiatric status was assessed using the Structured Clinical Interview for DSM-IV Axis I 

Disorders (First et al., 2002), supplemented by a semi-structured interview for ADHD that 

was adapted from the K-SADS and the Conners’ Adult ADHD Diagnostic Interview for 

DSM-IV (Epstein et al., 2006). Raw scores of inattentive and hyperactive/impulsive 

symptoms from the Conner’s Adult ADHD Self-Rating Scale (CAARS) were normalized 

into T-scores based on DSM-IV standard, and were used as dimensional measures for 

inattentive and hyperactive/impulsive behaviors. Exclusion criteria in adulthood were 

psychotropic medication that could not be discontinued and conditions that would preclude 

MRI (e.g., metal in body, pregnancy, too obese to fit in scanner). 
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Figure 2.1 Clinical evaluations and MRI data acquisition for participants. 

 

 Thirty-six probands had been treated with short-acting psychostimulants. Mean 

duration of treatment was 2.5 years (SD=3.85) for ADHD-R and 4.8 years (SD=4.19) for 

ADHD-P (t=-1.65, p=0.108). Two subjects with persistent ADHD were taking 

psychostimulants at the time of this study, and underwent a 48-hour medication wash-out 

period before MRI scan. Therefore, 36 NCs and 36 ADHD probands were involved in this 

dissertation research. Thirty-six ADHD probands were further split into 18 ADHD-P and 

18 ADHD-R. More specifically, thirty-three NCs and thirty-five ADHD probands, 

including 17 ADHD-P and 18 ADHD-R provided usable data in Specific Aim 1; thirty-five 

NCs and thirty-two ADHD probands, including 16 ADHD-P and 16 ADHD-R provided 

usable data in Specific Aim 2; and 36 NCs and 36 ADHD probands including 18 ADHD-P 

and 18 ADHD-R provided usable data in Specific Aim 3. 

 The initial exclusion criteria for participants were: Chronic medical illness or was 

taking systemic medication; Diagnosed neurological disorder; Diagnosis of schizophrenia, 

autism, pervasive developmental disorder or a chronic tic disorder; Full Scale IQ<70; Not 

attending school; Not English speaking. In addition, adults were excluded from the 
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imaging study if they: Currently have a chronic medical illness or are taking systemic 

medication; Have had a traumatic head injury or been diagnosed with neurological 

disorder; Have taken a psychotropic medication (including stimulants) within the past 3 

months; Present with a urine screen indicating recent illicit drug use on the day of 

assessment; Have history of surgery involving metal implants, possible metal fragments in 

the eyes, braces, or a pacemaker; Have a history of claustrophobia; Are pregnant (females 

only). Summary of the demographic information of 72 participants involved in this study 

were shown in Table 2.1. 

 

Table 2.1 Demographic Information of 72 Participants Involved in this Dissertation 

(Continued) 
 

Subject ID Group2 Group3 Age Gender T-score/IN T-score/HI 

6 NC NC 23.99 M 36 46 

9 NC NC 26.15 M 36 44 

17 NC NC 25.90 M 51 46 

21 NC NC 28.53 M 36 39 

23 NC NC 27.51 M 40 39 

24 NC NC 23.88 M 61 44 

26 NC NC 24.20 F 45 45 

30 NC NC 26.10 M 40 41 

34 NC NC 25.78 M 43 41 

36 NC NC 31.10 M 48 54 

58 NC NC 24.81 M 46 54 

61 NC NC 26.30 M 46 46 

63 NC NC 24.62 M 59 59 

75 NC NC 25.88 M 36 35 

80 NC NC 22.96 M 53 44 

90 NC NC 24.93 F 54 43 

95 NC NC 23.22 M 36 35 

97 NC NC 26.31 M 48 54 

100 NC NC 24.48 M 61 54 

113 NC NC 25.02 M 53 39 

120 NC NC 23.28 M 39 44 

128 NC NC 23.37 M 39 35 

154 NC NC 22.03 F 35 39 

158 NC NC 23.74 M 40 39 

159 NC NC 22.55 M 46 39 

162 NC NC 22.36 M 36 33 

165 NC NC 22.65 M 36 39 

169 NC NC 22.44 M 59 44 
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Table 2.1 (Continued) Demographic Information of 72 Participants Involved in this 

Dissertation 

 
Subject ID Group2 Group3 Age Gender T-score/IN T-score/HI 

171 NC NC 22.38 M 43 39 

172 NC NC 22.21 M 43 46 

176 NC NC 22.64 M 48 39 

179 NC NC 21.15 F 45 45 

185 NC NC 23.14 M 66 46 

187 NC NC 20.72 F 37 33 

188 NC NC 20.81 M 59 44 

203 NC NC 27.56 M 48 41 

1 ADHD ADHD-R 25.88 M 61 61 

5 ADHD ADHD-R 24.96 M 69 71 

7 ADHD ADHD-R 25.56 M 48 39 

8 ADHD ADHD-R 25.98 M 36 35 

18 ADHD ADHD-R 25.32 M 40 44 

28 ADHD ADHD-R 24.29 M 46 44 

29 ADHD ADHD-R 25.05 M 61 46 

31 ADHD ADHD-R 27.76 M 48 41 

78 ADHD ADHD-R 25.71 M 46 54 

112 ADHD ADHD-R 23.64 M 53 46 

131 ADHD ADHD-R 22.62 M 59 46 

140 ADHD ADHD-R 22.20 M 36 39 

163 ADHD ADHD-R 21.91 M 49 47 

175 ADHD ADHD-R 25.07 M 48 44 

202 ADHD ADHD-R 24.13 F 35 34 

207 ADHD ADHD-R 21.36 F 72 52 

208 ADHD ADHD-R 30.44 M 41 41 

209 ADHD ADHD-R 24.35 M 49 47 

2 ADHD ADHD-P 26.17 M 90 84 

10 ADHD ADHD-P 23.91 M 56 56 

22 ADHD ADHD-P 23.84 M 53 49 

42 ADHD ADHD-P 27.32 M 51 56 

43 ADHD ADHD-P 27.77 F 80 68 

51 ADHD ADHD-P 24.95 F 63 70 

55 ADHD ADHD-P 23.81 M 74 69 

67 ADHD ADHD-P 23.42 M 74 86 

68 ADHD ADHD-P 25.76 M 61 61 

81 ADHD ADHD-P 26.22 M 69 59 

106 ADHD ADHD-P 24.79 M 66 69 

133 ADHD ADHD-P 22.83 M 64 44 

139 ADHD ADHD-P 22.51 M 51 59 

144 ADHD ADHD-P 22.16 M 74 54 

174 ADHD ADHD-P 22.95 F 47 41 

182 ADHD ADHD-P 21.05 M 64 64 

189 ADHD ADHD-P 27.54 M 51 59 

210 ADHD ADHD-P 24.35 F 49 52 
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2.2 General Techniques for Magnetic Resonance Imaging 

2.2.1 The Components of a Magnetic Resonance Imaging Scanner 

MRI is one of the most commonly utilized instrumentations for disease detection, 

diagnosis, and treatment monitoring. MRI is a non-invasive imaging technology that 

produces three dimensional detailed anatomical/functional images. It is based on 

sophisticated technology that excites and detects the change in the direction of the 

rotational axis of protons found in the water that makes up living tissues. The three main 

components of an MRI scanner are the static magnetic field, radiofrequency coils, and 

gradient coils, which together allow maintaining the imaging collection. In addition, 

shimming coils, which ensure the homogeneity of the static magnetic field; specialized 

computer systems for controlling the scanner; the experimental task; and physiological 

monitoring equipment are other important components for functional MRI (fMRI).  

2.2.2 Basic Principles of Magnetic Resonance Signal Generation 

MRI employ powerful static magnets which produce a strong magnetic field that forces 

protons in the body to align with that field. An equilibrium state exists when the human 

body is placed in any magnetic field, such that the net magnetization of atomic nuclei (e.g., 

hydrogen) within the body becomes aligned with the magnetic field. The radiofrequency 

coils send electromagnetic waves that resonate at a particular frequency, as determined by 

the strength of the magnetic field, into the body, perturbing this equilibrium state. This 

process is known as excitation. When atomic nuclei are excited, they absorb the energy of 

the radiofrequency pulse. But, when the radiofrequency pulse ends, the hydrogen nuclei 

return to the equilibrium state and release the energy that was absorbed during excitation. 

The resulting release of energy can be detected by the radiofrequency coils, in a process 
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known as reception. The combination of a static magnetic field and a radiofrequency coil 

allows detection of MR signal, but MR signal alone cannot be used to create an image. The 

fundamental measurement in MRI is merely the amount of current through a coil, which in 

itself has no spatial information. By introducing magnetic gradients superimposed upon 

the strong static magnetic field, gradient coils provide the final component necessary for 

imaging. The purpose of a gradient coil is to cause the MR signal to become spatially 

dependent in a controlled fashion, so that different locations in space contribute differently 

to the measured signal over time. Similar to the radiofrequency coil, the gradient coils are 

only used during image acquisition, as they are typically turned on briefly after the 

excitation process to provide spatial encoding needed to resolve an image. To make the 

recovery of spatial information as simple as possible, gradient coils are used to generate a 

magnetic field that increases in strength along one spatial direction. The spatial directions 

used are relative to the main magnetic field, with z going parallel to the main field and x 

and y going perpendicularly to the main field. In combination with three different coils, the 

detected electromagnetic pulse defines the raw MR signal. The electromagnetic signal is 

then acquired in the frequency space and transformed using inverse Fourier transform to 

generate 3-D images. 
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Figure 2.2 Diagram of traditional MRI scanner.  

 

 The basis of MRI is the directional magnetic field, or moment, associated with 

charged particles in motion. Nuclei containing an odd number of protons and/or neutrons 

have a characteristic motion or precession. Because nuclei are charged particles, this 

precession produces a small magnetic moment. When a human body is placed in a large 

magnetic field, many of the free hydrogen nuclei align themselves with the direction of the 

magnetic field. The nuclei precess about the magnetic field direction like gyroscopes. This 

behavior is termed Larmor precession. The frequency of Larmor precession is proportional 

to the applied magnetic field strength as defined by the Larmor frequency, 𝜔0: 

 

𝜔0 = 𝛾𝐵0 (2.1) 

 

where 𝛾 is the gyromagnetic ratio and 𝐵0 is the strength of the applied magnetic field. The 

gyromagnetic ratio is a nuclei specific constant. For hydrogen, 𝛾 = 42.6 𝑀𝐻𝑧/𝑇𝑒𝑠𝑙𝑎. To 

obtain an MR image of an object, the object is placed in a uniform magnetic field, 𝐵0. As a 

result, the object's hydrogen nuclei align with the magnetic field and create a net magnetic 
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moment, 𝑀 , parallel to 𝐵0 . This behavior is illustrated in Figure 2.3. Next, a 

radio-frequency (RF) pulse, 𝐵𝑟𝑓 , is applied perpendicular to 𝐵0 . This pulse, with a 

frequency equal to the Larmor frequency, causes 𝑀 to tilt away from 𝐵0 as in Figure 

2.4(a). Once the RF signal is removed, the nuclei realign themselves such that their net 

magnetic moment, 𝑀, is again parallel with 𝐵0. This return to equilibrium is referred to as 

relaxation. During relaxation, the nuclei lose energy by emitting their own RF signal (see 

Figure 2.4(b)). This signal is referred to as the free-induction decay (FID) response signal. 

The FID response signal is measured by a conductive field coil placed around the object 

being imaged. This measurement is processed or reconstructed to obtain 3D gray-scale MR 

images. To produce a 3D image, the FID resonance signal must be encoded for each 

dimension. The encoding in the axial direction, the direction of 𝐵0, is accomplished by 

adding a gradient magnetic field to 𝐵0. This gradient causes the Larmor frequency to 

change linearly in the axial direction. Thus, an axial slice can be selected by choosing the 

frequency of 𝐵𝑟𝑓 to correspond to the Larmor frequency of that slice. The 2D spatial 

reconstruction in each axial slice is accomplished using frequency and phase encoding. A 

“preparation” gradient, 𝐺𝑦, is applied causing the resonant frequencies of the nuclei to vary 

according to their position in the 𝑦-direction. 𝐺𝑦 is then removed and another gradient, 𝐺𝑥, 

is applied perpendicular to 𝐺𝑦. As a result, the resonant frequencies of the nuclei vary in the 

𝑥-direction due to 𝐺𝑥 and have a phase variation in the 𝑦-direction due to the previously 

applied 𝐺𝑦. Thus, 𝑥-direction samples are encoded by frequency and 𝑦-direction samples 

are encoded by phase. A 2D Fourier Transform is then used to transform the encoded 

image to the spatial domain. 

https://www2.cs.sfu.ca/~stella/papers/blairthesis/main/node11.html#figMRI2
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 The voxel intensity of a given tissue type (i.e. white matter vs grey matter) depends 

on the proton density of the tissue; the higher the proton density, the stronger the FID 

response signal. MR image contrast also depends on two other tissue-specific parameters: 

the longitudinal relaxation time, 𝑇1, and the transverse relaxation time, 𝑇2. 𝑇1 measures the 

time required for the magnetic moment of the displaced nuclei to return to equilibrium (ie. 

realign itself with 𝐵0). 𝑇2 indicates the time required for the FID response signal from a 

given tissue type to decay. 

  

 
 

Figure 2.3 Hydrogen nuclei precession direction in the absence of a strong magnetic field 

and in the strong magnetic field. 
Source: https://www2.cs.sfu.ca/~stella/papers/blairthesis/main/node11.html. Accessed on April 10, 2020. 

 

https://www2.cs.sfu.ca/~stella/papers/blairthesis/main/node11.html
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Figure 2.4 Excitation and relaxation conditions when the radiofrequency pulse is on and 

off. 
Source: https://www2.cs.sfu.ca/~stella/papers/blairthesis/main/node11.html. Accessed on April 10, 2020. 

 

 When MR images are acquired, the RF pulse, 𝐵𝑟𝑓, is repeated at a predetermined 

rate. The period of the RF pulse sequence is the repetition time (TR). The FID response 

signals can be measured at various times within the TR interval. The time between which 

the RF pulse is applied and the response signal is measured is the echo delay time (TE). By 

adjusting TR and TE the acquired MR image can be made to contrast different tissue types. 

2.2.3 Functional Magnetic Resonance Imaging Technique 

FMRI is based on MRI, which in turn uses magnetic resonance coupled with gradients in 

magnetic field to create images that can incorporate brain activity by detecting alterations 

associated with blood flow. FMRI creates images of physiological activity that is 

correlated with neuronal activity. The information processing activity of neurons increase 

their metabolic requirements. To meet these requirements, energy must be provided. The 

vascular system supplies cells with two fuel sources, glucose and oxygen, the latter bound 

https://www2.cs.sfu.ca/~stella/papers/blairthesis/main/node11.html
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to hemoglobin molecules. The differential magnetic properties of oxygenated and 

deoxygenated hemoglobin are utilized to construct images based upon blood oxygen level 

dependent (BOLD) contrast. BOLD contrast is used in virtually all conventional fMRI 

experiments. BOLD contrast results from the change in magnetic field surrounding the red 

blood cells depending on the oxygen state of the hemoglobin. When fully oxygenated 

hemoglobin is diamagnetic and is magnetically indistinguishable from brain tissue. 

However, fully deoxygenated hemoglobin has four unpaired electrons and is highly 

paramagnetic (Thulborn et al., 1982). This paramagnetism results in local gradients in 

magnetic field whose strength depends on the oxygenated hemoglobin concentration. 

These endogenous gradients in turn modulate the intra- and extra-vascular blood’s T2 and 

T2* relaxation times through diffusion and intravoxel dephasing, respectively. 

2.2.4 Structural Magnetic Resonance Imaging Technique 

As one of the most frequently utilized technique, structural MRI is currently widely 

utilized in clinical diagnosis, especially T1 and T2 contrasts. As for T1-weighted imaging, 

if the relative signal intensity of voxels within the image depends upon the T1 value of the 

tissue, at very TR, there is no time for longitudinal magnetization to recover and thus no 

MR signal is recorded for either tissue. Conversely, at very long TR, all longitudinal 

magnetization recovers for both tissues. So, at short and long TR values, the amount of 

longitudinal magnetization will be similar between the tissues. At intermediate TR, 

however, there are clear differences between them. The tissue that has a shorter T1 value 

recovers more rapidly and thus has greater MR signal. For any two tissues that differ in T1, 

there is an optimal TR value that maximally differentiates between them. To generate 

images sensitive to T1 contrast, a pulse sequence with intermediate TR and short TE is 
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needed. As for T2-weighted images, the amount of signal loss depends upon the time 

between excitation and data acquisition, or echo time. An optimal combination of TR and 

TE exists for any two tissues to maximize the T2 contrast between them. If an image is 

acquired immediately after excitation, such that the TE is very short, then little transverse 

magnetization will be lost regardless of T2 and thus there will be no T2 contrast. If the TE 

is too long, then nearly all transverse magnetization will be lost and still the image will 

have no T2 contrast. But at an intermediate TE, the difference in transverse magnetization 

can be maximized. To have exclusive T2 contrast, a long TR and intermediate TE is 

needed. 

2.2.5 Diffusion Tensor Imaging Technique 

Diffusion tensor imaging can quantify the relative diffusivity among directional 

components. For example, white matter, which is composed mostly of nerve fibers, shows 

prominent anisotropy, such that water molecules diffuse most quickly along the length of 

the fiber and most slowly across the width of the fiber. A scalar quantity known as FA can 

be computed for each voxel to express the preference of water to diffuse in an isotropic or 

anisotropic manner. FA values are bounded by 0 and 1 and are calculated using Equation 

(2.1), where 𝐷𝑥, 𝐷𝑦, and 𝐷𝑧 represent the three principal axes of the diffusion tensor: 

 

𝐹𝐴 =
√(𝐷𝑥 − 𝐷𝑦)2 + (𝐷𝑦 − 𝐷𝑧)2 + (𝐷𝑧 − 𝐷𝑥)2

√2(𝐷𝑥
2 + 𝐷𝑦

2 + 𝐷𝑧
2)

 
(2.2) 

 

FA values approaching 1 indicate that nearly all of the water molecules in the voxel are 

diffusing along the same preferred axis, while FA values approaching 0 indicated that the 
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water molecules are equally likely to diffuse in any direction. Fractional anisotropy 

provides important information about the composition of tissue within a voxel. Notably, 

some neurological diseases, such as multiple sclerosis and vascular dementia, are 

characterized by potentially severe WM pathology. The resulting axonal damage can be 

identified as decreased FA values in affected voxels. More complex forms of diffusion 

tensor imaging can track nerve fibers as they travel between functionally associated brain 

regions. 

 

2.3 Multimodal Magnetic Resonance Imaging Data Acquisition Protocols for 

Projects 1 and 2 

 

2.3.1 Functional Magnetic Resonance Imaging Data Acquisition Protocol 

All participants were scanned using the same 3.0T Siemens Allegra (Siemens, Erlangen, 

Germany) head-dedicated MRI scanner. For each of the four runs, a total of 120 

T2*-weighted volumes were acquired in the axial plane with a gradient-echo echo-planar 

sequence with TR=2,500 ms, TE=27 ms, flip angle=82, matrix=6464, slice thickness=4 

mm, 40 slices, in-plane resolution=3.75 mm2). Images were acquired with slices positioned 

parallel to the anterior commissure-posterior commissure line. Stimuli were projected onto 

a rear projection screen mounted at the head of the magnet bore that was viewed through a 

mirror on the head coil. In order to implement the coregistration procedure, a high 

resolution T2-weighted anatomical volume of the whole brain was also acquired at the 

same 40 slice locations with a turbo spin-echo pulse sequence with TR=4050 ms, TE=99 

ms, flip angle=170, field of view (FOV)=240 mm, matrix=512336, slice thickness=4 

mm, in-plane resolution=0.41 mm2. 
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2.3.2 Structural Magnetic Resonance Imaging Data Acquisition Protocol 

High resolution 3-dimensional T1-weighted structural MRI and DTI data were acquired 

using the same MRI scanner. T1-weighted data was acquired using magnetization prepared 

rapid gradient echo pulse sequence with TR=2,500 ms, TE=4.38 ms, the inversion time 

(TI)=1.1 s, flip angle=8, voxel size=0.94 mm0.94 mm1 mm, FOV=256 mm256 

mm256 mm. 

2.3.3 Diffusion Tensor Imaging Data Acquisition Protocol 

DTI data were acquired using an echo planar imaging pulse sequence with a b-value=1250 

s/mm2 along 12 independent orientations with TR=5.2 s, TE=80 ms, flip angle=90º, voxel 

size=1.875 mm1.875 mm4 mm , FOV=128 mm128 mm, imaging matrix=12896, 

number of slices=63. One additional b0 image was collected for eddy current and head 

motion corrections in DTI data. 

 

2.4 Statistical Methods Utilized in Projects 1, 2 and 3 

2.4.1 Chi-square Test 

A chi-square statistic is one way to show a relationship between two categorical variables. 

There are two types of chi-square tests using the chi-square statistic and distribution for 

different purposes, including chi-square goodness of fit test and chi-square test for 

independence. The chi-square is based on the differences between the observed values and 

those that would be expected if the variables were independent.  

 

𝜒2 = ∑
(𝑓𝑜 − 𝑓𝑒)2

𝑓𝑒
𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑠

 (2.3) 



 

37 

 

 

where 𝑓𝑜 is observed frequency of an outcome; 𝑓𝑒 is expected frequency of that outcome, if 

null hypothesis is true. If these differences are small, there is little dependence between the 

variables; large differences indicate dependence. The actual chi-square statistic is the sum 

of squares of these differences in ratio to the expected value. A small chi-square statistic 

arises if the observed values are close to the values we would expect if the two variables 

were unrelated. A large chi-square statistic arises if the observed values are rather different 

from those we would expect from unrelated variables. If the chi-square statistic is large 

enough that it is unlikely to have occurred by chance, we conclude that it is significant and 

that the rows variable is not totally independent of the columns variable. 

2.4.2 One Sample T-test 

The one sample t-test is a statistical procedure used to determine whether a sample of 

observations could have been generated by a process with a specific mean.  

 

𝑡 =
𝑀 − 𝜇

𝑠𝑀
 (2.4) 

 

where 𝑀 is sample mean; 𝜇 is population mean; 𝑠𝑀 is estimated standard error of mean. 

There are two kinds of hypotheses for a one sample t-test, the null hypothesis and the 

alternative hypothesis. The alternative hypothesis assumes that some difference exists 

between the true mean and the comparison value, whereas the null hypothesis assumes that 

no difference exists. The purpose of the one sample t-test is to determine if the null 

hypothesis should be rejected, given the sample data. The alternative hypothesis can assume 

https://www.sciencedirect.com/topics/mathematics/sum-of-squares
https://www.sciencedirect.com/topics/mathematics/sum-of-squares
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one of three forms depending on the question being asked. If the goal is to measure any 

difference, regardless of direction, a two-tailed hypothesis is used. If the direction of the 

difference between the sample mean and the comparison value matters, either an 

upper-tailed or lower-tailed hypothesis is used. The null hypothesis remains the same for 

each type of one sample t-test. 

2.4.3 Independent Samples T-test 

The independent samples t-test, also called two samples t-test, is an inferential statistical 

test that determines whether there is a statistically significant difference between the means 

in two unrelated groups.  

 

𝑡 =
𝑀𝐴 − 𝑀𝐵

√
(𝑛𝐴 − 1)𝑠𝑀𝐴

2 + (𝑛𝐵 − 1)𝑠𝑀𝐵
2

𝑛𝐴 + 𝑛𝐵 − 2 (
1

𝑛𝐴
+

1
𝑛𝐵

)

 

(2.5) 

 

where 𝑀𝐴, 𝑀𝐵 are sample mean of groups A and B; 𝑛𝐴, 𝑛𝐵 are the sample size of groups A 

and B; 𝑠𝑀𝐴
, 𝑠𝑀𝐵

 are the standard error of mean of groups A and B. The null hypothesis for 

the independent t-test is that the population means from the two unrelated groups are equal; 

while the alternative hypothesis is that the population means are not equal. 

2.4.4 One-way Analysis of Variance and One-way Analysis of Covariance 

The one-way analysis of variance (ANOVA) is used to determine whether there are any 

statistically significant differences between the means of three or more independent 

unrelated groups. The one-way ANOVA compares the means between the groups you are 

interested in and determines whether any of those means are statistically significantly 
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different from each other. Specifically, it tests the null hypothesis: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘 , 

where 𝜇 is group mean and 𝑘 is number of groups. F-value is calculated in this statistic 

analysis: 

 

𝐹 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑔𝑟𝑜𝑢𝑝𝑠

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟
=

𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝𝑠

𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝𝑠
 (2.6) 

 

𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝𝑠 =
𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝𝑠

𝑑𝑓𝑏𝑒𝑡𝑤𝑒𝑒𝑛−𝑔𝑟𝑜𝑢𝑝𝑠
 (2.7) 

 

𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝𝑠 =
𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝𝑠

𝑑𝑓𝑤𝑖𝑡ℎ𝑖𝑛−𝑔𝑟𝑜𝑢𝑝𝑠
 (2.8) 

 

where 𝑆𝑆 stands for sum of squares; 𝑑𝑓 is degree of freedom. If the one-way ANOVA 

returns a statistically significant result, we accept the alternative hypothesis, which is that 

there are at least two group means that are statistically significantly different from each 

other. At this point, it is important to realize that the one-way ANOVA is an omnibus test 

statistic and cannot tell you which specific groups were statistically significantly different 

from each other, only that at least two groups were. To determine which specific groups 

differed from each other, you need to use a post hoc test, which attempts to control the 

experiment-wise error rate in the same manner that the one-way ANOVA is used instead of 

multiple t-tests. 

 Similar with one-way ANOVA, one-way ANCOVA can be thought of as an 

extension of the one-way ANCOVA to incorporate a covariate. Like the one-way ANOVA, 
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the one-way ANCOVA is used to determine whether there are any significant differences 

between two or more independent unrelated groups on a dependent variable. However, 

whereas the ANOVA looks for differences in the group means, the ANCOVA looks for 

differences in adjusted means (i.e., adjusted for the covariate). As such, compared to the 

one-way ANOVA, the one-way ANCOVA has the additional benefit of allowing you to 

statistically control for a third variable (sometimes known as a confounding variable), 

which you believe will affect your results. This third variable that could be confounding 

your results is called the covariate and you include it in one-way ANCOVA analysis. 

2.4.5 Pearson’s Correlation Analysis 

The Pearson’s correlation coefficient is a measure of the linear correlation between two 

variables with a value between -1 and 1, where -1 indicates a total negative linear 

correlation, 0 is no linear correlation, and 1 is stands for a total positive linear correlation. 

Given a pair of random variables X and Y, the Pearson’s correlation coefficient is defined as  

 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

𝐸[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (2.9) 

 

where 𝜇𝑋, 𝜇𝑌 are the mean of 𝑋 and 𝑌; 𝜎𝑋, 𝜎𝑌 are the standard deviation of 𝑋 and 𝑌. 
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CHAPTER 3  

TOPOLOGICAL FEATURES OF CUE-EVOKED ATTENTION 

PROCESSING NETWORK ASSOCIATED WITH REMISSION AND 

PERSISTENCE IN ADULTS WIHT CHILDHOOD 

ATTENTION-DEFICIT/HYPERACTIVITY DISORDER 

 

3.1 Introduction 

3.1.1 Background 

CSTC loops that support attention and cognitive processing have been implicated in both 

the etiology (Casey et al., 2007) and developmental remission of ADHD (Halperin and 

Schulz, 2006). Abnormal functional activation and connectivity in thalamic, striatal, and 

prefrontal areas have been reported in children and adults with ADHD, suggesting that 

they reflect a core pathophysiology that remains static over the lifespan (Cortese et al., 

2012; Hart et al., 2013). Abnormalities in prefrontal activation, and connectivity associated 

with ADHD have been found to vary as a function of adult outcome (Shaw et al., 2006; Li 

et al., 2007; Shaw et al., 2013; Mattfeld et al., 2014; Francx et al., 2015; Shaw et al., 2015; 

Schulz et al., 2017). Persistence of ADHD into adulthood has been linked to reduced 

prefrontal activation and connectivity within the caudal and subcortical regions (Mattfeld 

et al., 2014; Francx et al., 2015; Schulz et al., 2017).  

 Our existing studies in young adults with childhood ADHD suggested a double 

dissociation of functional anomalies linked to childhood onset and adult outcome. 

Childhood ADHD was associated with reduced cue-related thalamic activation and 
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connectivity with the brainstem regardless of adult outcome, while symptom remission 

was linked to enhanced cue-related thalamo-prefrontal connectivity (Clerkin et al., 2013). 

However, these basic measures of regional activation and connectivity have limited 

capacity to characterize the functional human brain as a high performance parallel 

information processing system (Figure 3.1). The field lacks systems-level investigations of 

the functional patterns that significantly contribute to symptom remission and persistence 

in adults with childhood ADHD. To fill this gap, graph theoretic techniques (GTT) was 

conducted to measure the global-, local- and nodal-efficiency, and network hubs for each 

subject to evaluate the performance of cue-evoked attention network. The objective of this 

aim is to determine the topological features of functional brain network for cue-evoked 

attention processing, which associate with the diverse adult outcomes of childhood ADHD. 
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Figure 3.1 General information of univariate, bivariate and network measures. 

 

3.1.2 Graph Theoretic Technique 

The human brain comprises about 86 billion neurons connected through approximate 150 

trillion synapses that allow neurons to transmit electrical or chemical signals to other 

neurons (Pakkenberg et al., 2003; Azevedo et al., 2009), which serve the human brain as a 

complex system to maintain the high efficient information transferring underlying 

cognition, behavior, and perception (Craddock et al., 2013; Park and Friston, 2013; 
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Farahani et al., 2019). Graph-based network analysis is a method that could be utilized to 

reveal the topological properties of human brain functional and structural networks, such 

as small-worldness, modular organization, high global, local and nodal efficiencies and 

highly connected or centralized hubs (Bullmore and Sporns, 2012; van den Heuvel and 

Sporns, 2013). 

 The first application of graph theory and network analysis can be traced back to 

1741 when Leonhard Euler solved the Konigsberg Bridge Problem (Euler, 1741). A graph 

consists of a finite set of nodes and edges, where the edges represent the connections 

between the nodes. A human brain network can be classified as one of the four different 

networks, including binary undirected network, weighted undirected network, binary 

directed network and weighted directed network (Figure 3.2). Such classification is based 

on whether the edges between nodes carry directional information (e.g., causal interaction) 

or not, and whether the edges between nodes are categorized as weighted or binary. Most 

exiting task-based functional neuroimaging studies have been devoted to the binary 

undirected networks because of the technical constraints surrounding the inference of 

directional networks (Liao et al., 2017); while the white matter anatomical network taken 

by DTI usually utilizes various fiber information, such as fiber number, fiber length, and 

fractional anisotropy to generate a weighted network (Fornito et al., 2013; Zhong et al., 

2015). 

 

https://www.frontiersin.org/articles/10.3389/fnins.2019.00585/full#F2
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Figure 3.2 Diagrams of four different types of mathematical graphs. 

 

In 1998, the characteristic of small-world was observed by Watts and Strogatz in 

many social, biological, and geoscience-based networks (Watts and Strogatz, 1998). A 

small-world network is a type of mathematical graph in which most nodes are likely to be 

neighbors of each other and most nodes can be reached from every other node by a small 

number of hops or steps. For the application in human brain, a small-world network has the 

ability for specialized processing to occur within densely interconnected groups of brain 
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regions (highly segregated), and also has the ability to combine specialized information 

from distributed brain regions (highly integrated) (Rubinov and Sporns, 2010). It 

represents the shortest path between each pair of nodes in the network using the minimum 

number of edges with a large clustering coefficient and small average path length. These 

two metrics are the result of a natural process to satisfy the balance between minimizing the 

resource cost and maximizing the flow of information among the network components 

(Bassett and Bullmore, 2006; Meunier et al., 2010; Bullmore and Sporns, 2012; Chen et al., 

2013; Samu et al., 2014). The wiring costs in connections among anatomically adjacent 

brain areas are lower than those among distant brain regions (Bullmore and Sporns, 2012). 

Theoretical examinations have pointed out that the brain regions are more likely to interact 

with their neighboring areas to reduce the whole metabolic costs, while at the same time 

they need to have a small number of long-distance connections among themselves to 

accelerate data transmission (Bullmore and Sporns, 2012; Vertes et al., 2012; Chen et al., 

2013). In agreement with theoretical studies, empirical investigations have also proved the 

dispersion of a few long connections among a plethora of short connections in the human 

brain network (Salvador et al., 2005; Hagmann et al., 2007; He et al., 2007). Thus, the 

small-world property of human brain is important for the synchronization of cortical 

regions to maintain the robustness to perturbations (Yu et al., 2008). 

 The main capability of graph theory in neuroscience studies is usually unveiled 

after the construction of a functional brain network. Several measures can be used to assess 
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the topological patterns of different networks such as global, local, nodal efficiency and 

network hub measurements, including degree and betweenness centrality, which have been 

described in detail (Sporns et al., 2004; van den Heuvel et al., 2008). Typically, it is 

difficult to claim which measures are more suitable for studying the brain network 

(Bullmore and Sporns, 2009), but given the complex structure of the human brain, 

measures that can represent the small-world properties of the brain network are of great 

importance (He and Evans, 2010; Liao et al., 2017). This critical property arises with the 

help of hubs (i.e., highly connected nodes in a network), causing the creation of local 

clusters (Bullmore and Sporns, 2009). Efficiency is another biologically relevant metric to 

describe brain networks from the perspective of information flow, which can deal with the 

disconnected graphs, nonsparse graphs or both (Latora and Marchiori, 2001; Bassett and 

Bullmore, 2006). Global efficiency and local efficiency measure the ability of a network to 

transmit information at the global and local level, respectively (Latora and Marchiori, 

2001). 

3.1.3 Current Applications of Graph Theoretic Technique in ADHD Neuroimaging 

Studies 

From multiple lines of evidence, it is known that the human brain exhibits both locally 

specialized processing units within relatively circumscribed regions or clusters (Bartels 

and Zeki, 2000), as well as distributed interregional interactions [e.g., the front-parietal 

attention network (Dosenbach et al., 2008). The functional brain networks are small-world 
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and economical in the sense of providing high global and local efficiencies of parallel 

information processing with low rewiring cost (Achard and Bullmore, 2007). The 

development of GTT provided powerful methods to characterize the nodal (regional) and 

global topological properties of such functional brain network, which has been 

implemented in ADHD studies. Multiple resting-state fMRI studies have reported 

abnormal global and regional topological properties in children with ADHD when 

compared to typically developing children (TDC), such as lower global efficiency, reduced 

nodal efficiency in frontal areas (Fair et al., 2009; Supekar et al., 2009; Wang et al., 2009; 

Cao et al., 2014b); delayed maturation of the default mode network (DMN) (Fair et al., 

2009; Fair et al., 2010); and different connectivity patterns among nodes of the entire 

resting-state functional brain network in children with ADHD-inattentive, 

-hyperactive/impulsive, and -combined subtypes (Fair et al., 2012). Resting-state GTT 

studies in adults with ADHD reported increased coherence in the DMN when comparing to 

children with ADHD (Fair et al., 2008); no significant alterations in global network 

properties, but significantly lower nodal path length of right medial frontal and right 

superior occipital cortices, and significantly higher nodal clustering coefficient in left 

orbitofrontal and right superior temporal cortices, relative to group-matched control adults 

(Cocchi et al., 2012). A few task based GTT studies have also been conducted in children 

with ADHD. A multi-source interference task-based electroencephalography (EEG) study 

showed increased local characteristics combined with decreased global characteristics in 
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children with ADHD compared to the group-matched TDC (Liu et al., 2015). A visual 

sustained attention task-based fMRI study observed significantly reduced nodal efficiency 

in frontal and occipital regions in children with ADHD, and a hyperactive network hub in 

anterior cingulate cortex (Xia et al., 2014). These existing GTT studies in resting-state and 

task-based functional neuroimaging data demonstrated altered global and regional 

topological patterns of the functional brain networks in children and adults with ADHD 

(Cao et al., 2014a). However, systems-level functional brain characteristics associated with 

the diverse adult outcomes of childhood ADHD have not yet been investigated. Aim 1 

utilized GTT to examine the systems-level neurophysiological mechanisms associated 

with symptom persistence and remission of childhood ADHD in young adults diagnosed 

with the disorder during childhood and matched comparison subjects (Luo et al., 2018). 

Within the 69 participants of this study, 67 overlapped with those in a previous study which 

reported that greater thalamo-frontal functional connectivity during response preparation 

stage of attention processing significantly linked to ADHD symptom remission (Clerkin et 

al., 2013). Both the current and the previous studies used fMRI data acquired during the 

same cued attention task, but focused on different components of attention that were 

represented by different contrasts of the task. The current study focused on the cue-evoked 

attention stage defined by the cue vs. baseline contrast, while the previous study focused on 

the response preparation stage defined by the cue minus non-cue contrast. During cued 

attention processing, the cue-evoked attention component occurs prior to the response 
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preparation component. Existing clinical studies have found a delayed pattern of attention 

development in children with ADHD, especially on the cue-evoked attention component 

(Suades-Gonzalez et al., 2017). We hypothesized that optimal topological organization of 

the functional brain network for cue-evoked attention processing may be associated with 

symptom remission in adults with childhood ADHD. 

 

 

Figure 3.3 General workflow of individual-level analysis. 
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3.2 Experimental Strategy 

3.2.1 Participants 

Neuroimaging and clinical data from 69 young adults were included in analyses of this 

project, including 36 probands and 33 group-matched NCs. Of these 36 adults with 

childhood ADHD, 17 were classified as ADHD-P and the other 19 were classified as 

ADHD-R. In these 17 ADHD-P, 14 were diagnosed with ADHD-C, 1 met criteria for 

ADHD-inattentive subtype, and 2 met criteria for ADHD-hyperactive/impulsive subtype, 

based on DSM-IV criteria for adult ADHD. 

3.2.2 Experimental Task 

During fMRI data acquisition in Project 1, each participant performed a cued attention task 

(CAT), which have an ability to evoke alerting state of readiness that suppresses ongoing 

activity and lowers motor thresholds to prepare for a rapid response. The CAT was 

developed and described in detail in (Clerkin et al., 2009; Clerkin et al., 2013; Luo et al., 

2018). The event-related task consisted of four 300 seconds runs that each began and ended 

with a 30-second fixation cross. As shown in Figure 3.4, each run consisted of a series of 

120 letters containing 24 targets (“X”), half preceded by a cue (“A”), and the other half 

preceded by a non-cue letter (“B” through “H”). Participants were told that the letter “A” 

(the cue) was always followed by the target letter (“X”); but not all targets (i.e., “X”) were 

preceded by a cue letter (“A”). The stimuli were presented for 200 ms with a 
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pseudorandom inter-stimulus interval which ranged from 1550 to 2050 ms (mean=1800 

ms/run). Participants were instructed to respond to each target as rapidly as possible using 

their right index finger. Before entering the scanner, detailed instructions and practice trials 

of the task were provided to each participant to ensure satisfactory performance. 

 

 

 

Figure 3.4 Schematic representation of the cued attention task. 
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3.2.3 Individual-level Functional Magnetic Resonance Imaging Data Preprocessing 

and Seed Regions Detection 

The fMRI data from each subject was preprocessed and analyzed using SPM version 8 

(SPM8, Wellcome Trust Centre for Neuroimaging, London, United Kingdom; 

http://www.fil.ion.ucl.ac.uk/spm/) implemented on a MATLAB platform. The fMRI raw 

data was slice timing corrected, realigned to the first volume, coregistered to the T2 

structural image, segmented, normalized to the Montreal Neurological Institute (MNI) 

template with a voxel size of 2×2×2 mm3, and spatially smoothed with an 8-mm full-width 

at half maximum (FWHM) Gaussian kernel. Additional frame-wise head motion analyses 

were conducted by calculating the mean absolute displacement of each brain volume 

compared with the previous volume from the translation parameters (Power et al., 2012). 

No participant was excluded for excessive head motion detected by frame-wise analyses 

(Mean Motion<0.2 mm in all data). The six basic motion parameters created during 

realignment and three frame-based motion parameters were regressed out from each fMRI 

data. The residual time series were analyzed to generate the cues (“A”), targets (“X”), and 

non-cues (letters other than “A” and “X”)-related activation maps by FMRIB improved 

linear regression model (FILM), which uses a nonparametric estimation of time series 

autocorrelation to prewritten each voxel’s time series (Smith et al., 2004). The average 

activation map responding to the cues was generated for each group. Multiple comparisons 

were controlled in both individual-level and group-level analyses by applying family-wise 

http://www.fil.ion.ucl.ac.uk/spm/)
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error rate (FWER), i.e., Gaussian random-field theory at a cluster corrected significance 

threshold of p<0.05. 

 As shown in Table 3.1, a total of 52 cortical and subcortical seed regions (nodes of 

the functional brain network for cue-evoked attention processing) were determined based 

on the combination of the activation maps of the groups of ADHD probands and controls. 

The combined activation map was parceled according to the structural and functional 

connectivity-based Brainnetome atlas (Fan et al., 2016). The seed regions were spheres 

(radius=4 mm) identified from the coordinates of the local activation peaks containing at 

least 50 contiguous voxels surrounding the peak voxel (See from Figure 3.5 and 3.6, and 

Table 3.1 for details of seed region determination). The size of the seed regions was 

determined based on the estimation of average cortical thickness of adult human brain 

(Power et al., 2011; Wig et al., 2014). 

 

 
 

Figure 3.5 Diagram of combination of the cue-evoked attention processing-related 

activation maps from the groups of ADHD probands and controls. 
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Figure 3.6 Locations of the seeds determined from the combination of the activation maps 

in controls and ADHD probands. 

 

 

 

Figure 3.7 The 52×52 functional connectivity matrices in both controls and probands. 

 

 



 

56 

 

Table 3.1 Definition of Selected 52 Nodes (Continued) 

 

Node ID Anatomical Regions BA Abbreviation COG MNI coordinates [x y z] 

1 L. Superior frontal gyrus medial 8 SFG_L_7_1 -2 14 43 

2 L. Superior frontal gyrus medial 6 SFG_L_7_5 -3 -3 52 

3 L. Middle frontal gyrus, dorsal 9/46 MFG_L_7_1 -32 40 29 

4 R. Middle frontal gyrus, dorsal 9/46 MFG_R_7_1 32 38 28 

5 R. Middle frontal gyrus 46 MFG_R_7_3 29 49 21 

6 L. Middle frontal gyrus, ventral 9/46 MFG_L_7_4 -38 39 24 

7 R. Middle frontal gyrus, ventral 9/46 MFG_R_7_4 39 44 13 

8 R. Middle frontal gyrus, ventrolateral 8 MFG_R_7_5 38 27 37 

9 R. Inferior frontal gyrus, caudal 45 IFG_R_6_3 53 20 4 

10 L. Inferior frontal gyrus, opercular 44 IFG_L_6_5 -38 13 7 

11 R. Inferior frontal gyrus, opercular 44 IFG_R_6_5 44 16 3 

12 L. Inferior frontal gyrus, ventral 44 IFG_L_6_6 -50 12 2 

13 R. Inferior frontal gyrus, ventral 44 IFG_R_6_6 54 14 9 

14 L. Precentral gyrus (upper limb region) 4 PrG_L_6_3 -32 -26 56 

15 L. Precentral gyrus (tongue and larynx region) 4 PrG_L_6_5 -49 0 7 

16 R. Precentral gyrus (tongue and larynx region) 4 PrG_R_6_5 52 5 8 

17 L. Precentral gyrus, caudal ventrolateral 6 PrG_L_6_6 -54 6 13 

18 R. Precentral gyrus, caudal ventrolateral 6 PrG_R_6_6 56 9 17 

19 R. Superior temporal gyrus 41 STG_R_6_3 53 9 -4 

20 R. Middle temporal gyrus, anterior superior temporal sulcus  MTG_R_4_4 56 -27 -5 

21 R. Posterior superior temporal sulcus, rostral  pSTS_R_2_1 53 -37 0 

22 L. Superior parietal lobule, postcentral 7 SPL_L_5_3 -35 -44 50 

23 L. Inferior parietal lobule, rostrodorsal 40 IPL_L_6_3 -51 -32 39 

24 R. Inferior parietal lobule, rostrodorsal 40 IPL_R_6_3 46 -40 44 

25 L. Inferior parietal lobule, caudal 40 IPL_L_6_4 -54 -45 36 

26 R. Inferior parietal lobule, caudal 40 IPL_R_6_4 55 -43 36 

27 R. Inferior parietal lobule, rostroventral 39 IPL_R_6_5 50 -52 34 

28 L. Inferior parietal lobule, rostroventral 40 IPL_L_6_6 -55 -31 24 

29 R. Inferior parietal lobule, rostroventral 40 IPL_R_6_6 60 -27 30 

30 L. Postcentral gyrus (upper limb, head and face region) 1/2/3 PoG_L_4_1 -40 -25 51 
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Table 3.1 (Continued) Definition of Selected 52 Nodes 

 

Node ID Anatomical Regions BA Abbreviation COG MNI coordinates [x y z] 

31 L. Postcentral gyrus (tongue and larynx region) 1/2/3 PoG_L_4_2 -55 -17 18 

32 L. Postcentral gyrus 2 PoG_L_4_3 -45 -29 45 

33 R. Insular gyrus, dorsal agranular insular  INS_R_6_3 38 17 0 

34 L. Insular gyrus, dorsal granular insular  INS_L_6_5 -39 -7 7 

35 L. Insular gyrus, dorsal dysgranular insular  INS_L_6_6 -38 5 6 

36 R. Insular gyrus, dorsal dysgranular insular  INS_R_6_6 39 5 3 

37 L. Cingulate gyrus, caudodorsal 24 CG_L_7_5 -4 5 40 

38 R. Cingulate gyrus, caudodorsal 24 CG_R_7_5 4 6 40 

39 L. Basal ganglia, globus pallidus  BG_L_6_2 -24 0 7 

40 R. Basal ganglia, globus pallidus  BG_R_6_2 23 1 6 

41 L. Basal ganglia, ventromedial putamen  BG_L_6_4 -24 5 -3 

42 R. Basal ganglia, ventromedial putamen  BG_R_6_4 23 7 -2 

43 R. Basal ganglia, dorsal caudate  BG_R_6_5 16 4 16 

44 L. Basal ganglia, dorsolateral putamen  BG_L_6_6 -29 -4 2 

45 R. Basal ganglia, dorsolateral putamen  BG_R_6_6 29 1 1 

46 L. Thalamus, pre-motor thalamus  Tha_L_8_2 -20 -16 7 

47 L. Thalamus, sensory thalamus  Tha_L_8_3 -19 -22 7 

48 L. Thalamus, posterior parietal thalamus  Tha_L_8_5 -17 -22 10 

49 L. Thalamus, lateral Pre-frontal thalamus  Tha_L_8_8 -15 -17 6 

50 R. Thalamus, lateral Pre-frontal thalamus  Tha_R_8_8 15 -11 11 

51 Brainstem, pons  BS_P 0 -28 -34 

52 Brainstem, midbrain  BS_MB 0 -24 -12 
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3.2.4 Network Analyses 

To construct the cue-evoked attention processing network, the single-trial beta value maps 

from the total of 48 cue-related events in the preprocessed data from each subject was first 

extracted (technical details see from (Rissman et al., 2004)). These 48 maps were 

sequentially combined to form the whole brain single-trial beta value series. The average 

beta value series in each of the 52 seed regions was then calculated. Pearson correlation of 

the average beta value series in each pair of the seed regions was calculated. The functional 

connectivity matrix was constructed using the absolute values of the correlation 

coefficients, and was converted into a binary graph, by using the network cost as threshold. 

The network cost was defined as: 

 

𝐶𝐺 =
𝐾

𝑁(𝑁 − 1)/2
 (3.1) 

 

Where 𝑁 and 𝐾 were the total number of nodes and edges respectively; 𝑁(𝑁 − 1)/2 was 

the number of all possible subnetworks in the graph 𝐺 (Latora and Marchiori, 2001). 

 Resting-state fMRI studies often use only positive or only negative values in the 

correlation coefficient matrices to construct brain networks, with concerns that positive 

and negative functional connectivities in brain regions may have different physiological 

substrates during resting-state (Shehzad et al., 2009; Di et al., 2014). The current study 
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chose to use the absolute values of the functional correlation coefficients, which is 

consistent with the majority of existing task-based functional brain network studies, with 

an understanding that strong functional connections of brain regions in both positive and 

negative ways represent strong regional interactions for sensory and cognitive information 

transferring during the task (Meunier et al., 2014). Again, consistent with existing 

task-based functional network studies, we chose to use the binarized, instead of weighted 

connectivity matrix that were often implemented in resting-state studies (Tomasi et al., 

2014; Iraji et al., 2016). 

 We investigated the network topological properties over a wide range of the cost 

values from 0.1 to 0.5 (with increments of 0.01). This selected cost value interval was 

widely suggested to allow the small-world properties to be properly estimated and the 

subnetworks to be connected with enough discriminatory power in functional connectivity 

(Watts and Strogatz, 1998; Bullmore and Sporns, 2009; Xia et al., 2014). 

Global-efficiency, 𝐸𝑔𝑙𝑜𝑏(𝐺)  and local-efficiency, 𝐸𝑙𝑜𝑐(𝐺) , were defined using the 

following: 

 

𝐸𝑔𝑙𝑜𝑏(𝐺) =
1

𝑁(𝑁 − 1)
∑

1

𝑙𝑖𝑗
𝑖≠𝑗∈𝐺

 (3.2) 

 

𝐸𝑙𝑜𝑐(𝐺) =
1

𝑁
∑ 𝐸𝑔𝑙𝑜𝑏(𝐺𝑖)

𝑖∈𝐺

 (3.3) 
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where 𝑙𝑖𝑗  was the shortest path length between node 𝑖  and 𝑗 ; 𝐸𝑔𝑙𝑜𝑏(𝐺𝑖)  the global 

efficiency of the sub-network 𝐺𝑖  that was constructed by the set of nodes that were 

immediate neighbors of node 𝑖 (Latora and Marchiori, 2001). The graph is considered a 

small-world network if it met the criteria: 𝐸𝑔𝑙𝑜𝑏(𝐺𝑟𝑒𝑔𝑢𝑙𝑎𝑟)<𝐸𝑔𝑙𝑜𝑏(𝐺)<𝐸𝑔𝑙𝑜𝑏(𝐺𝑟𝑎𝑛𝑑𝑜𝑚) and 

𝐸𝑙𝑜𝑐(𝐺𝑟𝑎𝑛𝑑𝑜𝑚) < 𝐸𝑙𝑜𝑐(𝐺) < 𝐸𝑙𝑜𝑐(𝐺𝑟𝑒𝑔𝑢𝑙𝑎𝑟) , where 𝐸𝑔𝑙𝑜𝑏(𝐺𝑟𝑒𝑔𝑢𝑙𝑎𝑟) , 𝐸𝑔𝑙𝑜𝑏(𝐺𝑟𝑎𝑛𝑑𝑜𝑚) , 

𝐸𝑙𝑜𝑐(𝐺𝑟𝑒𝑔𝑢𝑙𝑎𝑟) and 𝐸𝑙𝑜𝑐(𝐺𝑟𝑎𝑛𝑑𝑜𝑚) represent the global- and local-efficiency of the node- 

and edge-matched regular and random networks, respectively (Achard and Bullmore, 

2007) (Figure 3.8). In this study, the network cost range from 0.15 to 0.3 was determined 

based on these criteria (Figure 3.9). 

 

 

Figure 3.8 Diagrams of regular, small-world and random networks. 

 

 Nodal-efficiency, 𝐸𝑛𝑜𝑑𝑎𝑙(𝐺, 𝑖), was defined as following: 

𝐸𝑛𝑜𝑑𝑎𝑙(𝐺, 𝑖) =
1

𝑁 − 1
∑

1

𝑙𝑖𝑗
𝑗∈𝐺

 (3.4) 
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where 𝑙𝑖𝑗 was the shortest path length between node 𝑖 and 𝑗. It was a local measurement to 

evaluate the communication efficiency between a node 𝑖 and all other nodes in the network 

𝐺 (Latora and Marchiori, 2001). 

  

 
 

Figure 3.9 The small-world properties of the functional brain networks. The global and 

local efficiency curves of both controls and probands showed small world pattern over a 

range of 0.15≤cost≤0.3. The Degree distribution curves fitted by an exponentially 

truncated power of the form, 𝑃(𝑘)~ 𝑘𝛼−1𝑒−𝑘/𝑘𝑐, showed an estimated exponent 𝛼=1.618 

and a cutoff degree 𝑘𝑐 =5.092 for the control group and 𝛼 =1.558, 𝑘𝑐 =5.438 for the 

probands group. 

 

 Network hubs in each diagnostic group were also investigated. Degree (D) and 

betweenness-centrality (BC) were utilized to determine whether a node acts as a network 

hub. The definition of degree (𝐷𝑖) of node 𝑖 was the number of edges connected to that 
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node, while the betweenness-centrality (𝐵𝐶𝑖) of node 𝑖 was defined by the number of all 

the shortest paths between two nodes (other than node 𝑖) that pass through node 𝑖 (Sporns 

et al., 2007). In each individual, the average values of the D and BC measures of each node 

over the network cost range of 0.15-0.3 were calculated and then normalized by converting 

into z scores using a normal distribution. The network hubs in each group were identified 

by estimating the grand sample means of D and BC in each diagnostic group. These 

standardized values were then tested with a normal distribution. A node 𝑖 was defined as an 

acting network hub if 1-  𝛷(𝑧𝑖)<𝛼 , where 𝛷(∙)  was the standard normal cumulative 

distribution function, and 𝛼=0.05 was the level of significance (Li et al., 2012b). 

3.2.5 Group Statistic Analyses 

Group comparisons of clinical, behavioral and demographical characteristics and fMRI 

task performance measures were carried out using chi-square tests for discrete variables, 

and/or unpaired two-sample t-tests for continuous variables between the controls and 

ADHD probands, and further between the two ADHD subgroups (i.e., ADHD-R and 

ADHD-P). 

Group comparisons of the functional brain network topological measures, 

including efficiency measures 𝐸𝑔𝑙𝑜𝑏(𝐺), 𝐸𝑙𝑜𝑐(𝐺) and 𝐸𝑛𝑜𝑑𝑎𝑙(𝐺, 𝑖) at each 𝑖, and network 

hub measures 𝐷𝑖  and 𝐵𝐶𝑖  at each 𝑖 , were carried out using the one-way analysis of 

covariance (ANCOVA) and post-hoc t-tests among the three groups; controls, ADHD-R 
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and ADHD-P, with gender as a fixed-effect covariate and age as a random-effect covariate. 

Bonferroni correction was used to control multiple comparisons at α=0.05. 

Pearson’s correlation analyses were applied in the ADHD-R and ADHD-P groups, 

respectively, to determine associations between the ADHD symptoms (measured using the 

T-scores of the DSM-IV Inattentive and Hyperactive-Impulsive Indices and the fMRI task 

performance measures) and the brain network measures that showed significant alterations 

in either ADHD-R or ADHD-P relative to controls. Again, bonferroni correction was 

applied to control multiple comparisons at α=0.05. 

 

3.3 Results 

3.3.1 Clinical, Behavioral and Demographic Measures 

As shown in Table 3.2, demographic measures did not show significant between-group 

differences. All participants achieved a >85% rate for response accuracy when performing 

the fMRI task. Task performance measures, including response accuracy rate, omission 

error rate, commission error rate, did not show between-group differences. Compared to 

the controls, the ADHD probands showed significantly larger standard deviation of the 

reaction time for the cued targets (p=0.005) and all targets (p=0.006), and significantly 

longer mean reaction time for the cued targets (p=0.048). 
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Table 3.2 Demographic and Clinical Characteristics in Groups of Controls and ADHD Probands (and Further in the Sub-groups of 

Remitters and Persisters of the ADHD Probands) 

 
 Controls 

(N=33) 

Probands 

(N=35) 

 ADHD-R 

(N=18) 

ADHD-P 

(N=17) 

 

 Mean (SD) Mean (SD) p Mean (SD) Mean (SD) p 

Age 24.27 (2.2) 24.69 (2.1) 0.44 24.79 (2.2) 24.55 (2.2) 0.77 

Full-scale IQ 102.81(15.5) 99.11 (14.5) 0.33 99.57 (14.9) 98.46 (14.9) 0.84 

Conners’ Adult ADHD Rating Scale (T-score)       

     Inattentive 45.19 (8.3) 55.29 (12.6) <0.001 49.94 (10.9) 62.69 (11.1) <0.01 

     Hyperactive/impulsive 42.73 (6.1) 52.36 (12.3) <0.001 46.06 (9.0) 61.08 (11.0) <0.001 

     ADHD Total 43.42 (7.7) 55.48 (14.2) <0.001 48.44 (11.2) 65.23 (12.1) <0.001 

ADHD semi-structured interview (number of symptoms) 0.81(1.3) 6.26 (4.8) <0.001 2.52 (1.8) 10.69 (3.2) <0.01 

 N (%) N (%) p N (%) N (%) p 

Male 28 (84.8) 29 (80.6) 0.64 16 (84.2) 13 (76.5) 0.56 

Right-handed 31 (93.9) 32 (88.9) 0.46 17 (89.5) 15 (88.2) 0.91 

Race   0.21   0.42 

     Caucasian 12 (36.4) 17 (47.2)  9 (47.4) 8 (47.1)  

     African American 12 (36.4) 5 (13.9)  4 (21.1) 1 (5.9)  

     More than one race 6 (18.2) 6 (16.7)  4 (21.1) 2 (11.8)  

     Asian 2 (6.1) 0  0 0  

Ethnicity   0.33   0.96 

     Hispanic/Latino 10 (30.3) 15 (41.7)  8 (42.1) 7 (41.2)  

Current mood disorder 4 (12.1) 6 (16.7) 0.59 3 (15.8) 3 (17.6) 0.88 

Current anxiety disorder 8 (24.2) 10 (27.8) 0.74 3 (15.8) 7 (41.2) 0.09 

Current substance disorder 7 (21.2) 13(36.1) 0.17 8 (42.1) 5 (29.4) 0.43 
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3.3.2 Brain Network Topological Measures 

The network global- and local-efficiency measures did not significantly differ among the 

controls, ADHD-R and ADHD-P. Relative to ADHD-P, ADHD-R showed significantly 

higher nodal-efficiency in both right (p=0.027) and left middle frontal gyrus (MFG) 

(p=0.029). 

Group comparisons of the network hub measures showed that compared to the 

controls, ADHD-P had significantly lower D in right MFG (p=0.045), and significantly 

lower BC in left superior frontal gyrus (SFG) (p=0.016), left MFG (p=0.002), right inferior 

frontal gyrus (IFG) (p=0.004) and left precentral nodes (p=0.003). 

Figure 3.10 and Table 3.3 showed the anatomical regions and locations of the 

acting network hubs (see definition in Section 2.5), which were significantly more active 

than the average of all the nodes within each of the three diagnostic groups. Distinct 

patterns of acting network hub distribution were observed among these groups. The group 

of controls showed acting network hubs in bilateral inferior parietal lobule (IPL) and 

functional connections between the left IPL and left SFG hubs, that were not found in the 

groups of ADHD-R and ADHD-P. The right MFG, and right globus pallidus and putamen 

were shown as acting network hubs only in the ADHD-R, while left MFG and left 

precentral gyrus were shown as acting network hubs only in the ADHD-P. In addition, a 
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unique pattern of significant bilateral MFG functional connectivity in the subgroup of 

ADHD-P (p=0.005) was observed when compared to controls and the ADHD-R. 

3.3.3 Associations Between Brain and Behavioral Measures 

As shown in Figure 3.11, right IFG, right IPL, and bilateral MFG played different roles in 

ADHD symptom manifestation in the ADHD-R and ADHD-P. Specifically, higher nodal 

efficiency of right IFG was significantly associated with lower inattentive (r=-0.592, 

p=0.01) and hyperactive/impulsive (r=-0.544, p=0.02) symptom severity scores in 

ADHD-R, but significantly associated with higher inattentive (r=0.614, p=0.026) and 

hyperactive/impulsive (r=0.62, p=0.024) symptom severity scores in the ADHD-P. 

Stronger bilateral MFG functional connectivity was significantly associated with increased 

inattentive symptoms (r=0.484, p=0.042) in the ADHD-R but not in the ADHD-P. Higher 

nodal efficiencies of right IPL was strongly associated with increased inattentive 

symptoms in the ADHD-P (r=0.56, p=0.046). In addition, reduced average reaction time 

for cued targets was significantly associated with higher right IPL nodal efficiency in the 

group of ADHD-R (r=-0.583, p=0.011). 
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Figure 3.10 Network hubs in the groups of controls, ADHD remitters; and persiters. (A): 

Hubs identified with only degree measures; (B): Hubs identified with only 

between-centrality measure; (C): Combination of hubs identified using degree and 

between-centrality measures. 
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Table 3.3 Network Hubs in ADHD Persisters, Remitters, and Normal Controls 

 

 

   Controls ADHD-R ADHD-P 

Node ID Anatomical Region BA Degree BC Degree BC Degree BC 

1 L. Superior frontal gyrus 8       

2 L. Superior frontal gyrus 6       

3 L. Middle frontal gyrus 9/46       

4 R. Middle frontal gyrus 9/46       

7 R. Middle frontal gyrus 9/46       

9 R. Inferior frontal gyrus 45       

10 L. Inferior frontal gyrus 44       

11 R. Inferior frontal gyrus 44       

13 R. Inferior frontal gyrus 4       

15 L. Precentral gyrus (tongue and larynx region) 4       

16 R. Precentral gyrus (tongue and larynx region) 4       

26 R. Inferior parietal lobule 40       

28 L. Inferior parietal gyrus 40       

35 L. Insula        

36 R. Insula        

37 L. Cingulate gyrus 24       

38 R. Cingulate gyrus 24       

40 R. Globus pallidus        

45 R. Dorsolateral putamen        

49 L. Thalamus        

50 R. Thalamus        
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Figure 3.11 Regions that showed significant correlations between their nodal efficiency 

and the clinical symptom measures, including the T-scores of inattentive and 

hyperactive/impulsive symptoms, in the remitters and persisters study cohort. 

 

3.4 Discussion 

To our knowledge, this is the first study in the field to report distinct topological properties 

of the cue-evoked attention processing brain network in persisters and remitters who were 

diagnosed with ADHD during childhood. Specifically, missing network hubs in IPL, and 

lacking fronto-parietal functional communications were observed in the ADHD probands 

(both ADHD-R and ADHD-P) relative to the controls. Furthermore, the ADHD-P showed 

even lower nodal efficiency in bilateral MFG relative to the ADHD-R, and a unique pattern 

of hyper-interactions between bilateral MFG during the cue-evoked attention processing. 
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 A variety of existing clinical and neuroimaging studies have suggested that 

functional and structural abnormalities in the frontal and parietal areas (especially MFG 

and IPL) are associated with the onset of childhood ADHD. Both task-based and 

resting-state fMRI studies have reported functional alterations in MFG in children with 

ADHD (Yang et al., 2011; Li et al., 2012a; Li et al., 2013; Posner et al., 2014; Schulz et al., 

2017). Decreased MFG cortical thickness has also been frequently reported in children 

with ADHD (Shaw et al., 2006; Li et al., 2007; Batty et al., 2010), and was found to be 

associated with the persistence of more severe childhood ADHD into adulthood (Shaw et 

al., 2006; Rajendran et al., 2013; Shaw et al., 2013). On the other hand, improved MFG 

activation and connectivity with other brain regions were found to be associated with the 

reduction of ADHD symptoms over development (Shaw et al., 2006; Shaw et al., 2010). 

The parietal lobe is another critical component of the attention network, which has been 

frequently reported in studies of ADHD (Bush, 2011). One of our previous fMRI studies 

showed significantly decreased right IPL activation for cognitive and motor control in 

adults with childhood ADHD that has persisted relative to the ADHD-R and healthy 

controls (Schulz et al., 2017). DTI studies suggested that disrupted white matter integrity in 

tracts connecting IPL and prefrontal cortices significantly contribute to the persistence of 

childhood ADHD into adulthood (Makris et al., 2008; Cortese et al., 2013). Together with 

these existing results, our findings suggest that severe functional impairments of right 

hemisphere frontal areas, especially right MFG, may impact normal fronto-parietal 
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functional interactions for sensory and cognitive information processing, and play an 

important role for the persistence of ADHD symptoms in young adults. 

 We further found that the nodal efficiency of right IFG was significantly negatively 

correlated with the ADHD symptom severity scores and reduced mean reaction time for 

cued targets in ADHD-R, while significantly positively correlated with the ADHD 

symptom severity scores in the ADHD-P. And nodal efficiency of right IPL was 

significantly positively correlated with increased inattentive symptoms in the ADHD-P. 

These findings depict distinct roles of the right frontal lobes for the remission or 

persistence of ADHD symptoms, respectively; and further suggest the significant 

involvement of right frontal and parietal lobes for symptom persistence of childhood 

ADHD. 

 In the results of this study, the putamen nucleus of the right striatum acted as a 

network hub for cue-evoked attention processing in ADHD-R. Based on the nature of the 

degree and betweenness-centrality measures, a network hub has significantly more 

connections with other nodes in the network, but not necessarily has higher nodal 

efficiency for transferring functional information in the network (Li et al., 2012b). 

Structural and functional alterations in the striatum have been widely reported in children 

(Xia et al., 2012) and adults (Wang et al., 2013) with ADHD. The super active putamen 

hub for cue-evoked attention processing in the ADHD-R may suggest the importance of 

optimal putamen function for symptom remission of childhood ADHD. 
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 Some limitations of the study need to be considered. First, the study included both 

male and female subjects. Although it is unclear yet whether the neuropathological 

underpinnings of ADHD have gender differences, clinical studies have observed different 

symptoms and comorbidity profiles in male and female patients (Quinn and Madhoo, 

2014). To partially remove gender-related effect, we added sex as a fixed effect covariate 

in the group-level analyses. We further compared the network property measures between 

the 16 male ADHD-R and 13 male ADHD-P and found a pattern of between-group 

differences similar with the primary results reported in the results section. Female-specific 

tests were not conducted due to the very limited number of female participants in the study. 

Second, the sample size of this study is relatively small. Therefore, the findings may have 

the preliminary nature. Our future research will focus on investigating the neuroanatomical 

bases of the functional and behavioral aberrances associated with symptom persistence of 

childhood ADHD, in a much larger sample that improves the statistic power. 

 

3.5 Conclusion 

This study found that right frontal lobe functional impairments that may relate to 

inefficient fronto-parietal functional interactions for sensory and cognitive information 

processing and symptom persistence in young adults with childhood ADHD. 
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CHAPTER 4  

GRAY MATTER AND WHITE MATTER STRUCTURAL CORRELATES OF 

REMISSION AND PERSISTENCE IN ADULTS WITH CHILDHOOD 

ATTENTION-DEFICIT/HYPERACTIVITY DISORDER 

 

4.1 Introduction 

4.1.1 Background 

A large number of existing studies suggest that ADHD symptoms in children are 

associated with widespread neuroanatomical alterations of brain. Substantial structural 

neuroimaging studies have found ADHD symptoms in childhood to be associated with 

decreased regional GM volume in frontal cortex, striatum, thalamus and cerebellum 

(Ellison-Wright et al., 2008; Bledsoe et al., 2011; Mahone et al., 2011). Reduced regional 

cortical GM thickness in frontal and parietal cortices have also been linked with ADHD 

symptoms (Batty et al., 2010; Almeida Montes et al., 2013). WM structural deficits, 

especially reduced WM volume and/or FA in the fronto-parietal, fronto-limbic, corona 

radiata, cerebellar- and temporo-occipital, and internal capsule fiber tracts have been 

consistently demonstrated in children with ADHD (Durston et al., 2004; Nagel et al., 2011; 

Peterson et al., 2011; Qiu et al., 2011; Xia et al., 2012).  

 The majority of existing clinical and neuroimaging studies in ADHD have focused 

on understanding the neural correlates of symptoms in cross-sectional samples of children 

or young adults. Far fewer studies have examined neural substrates associated with the 
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diverse adult outcomes of childhood ADHD. Neuroanatomical studies showed diverse 

results in adults with childhood ADHD. With structural MRI, Proal et al. found that 

compared to matched controls, ADHD probands had significantly decreased GM volume 

in prefrontal lobe, cerebellum, thalamus, and caudate, regardless of ADHD symptom 

remission or persistence (Proal et al., 2011); while Shaw et al. showed that significantly 

reduced cortical thickness was linked with symptom persistence (Shaw et al., 2013). A DTI 

study suggested that ADHD probands had WM disruptions in the superior longitudinal 

fasciculus (SLF) and cortico-limbic areas regardless of symptom remission or persistence 

(Gehricke et al., 2017); another study found that greater adult inattentiveness, but not 

hyperactivity/impulsivity, was associated with lower FA in inferior occipito-frontal 

fasciculus and uncinated fasciculus (Shaw et al., 2015); where Cortese et al. indicated no 

significant WM differences between the ADHD-R and ADHD-P (Cortese et al., 2013). 

The inconsistent findings from these neuroimaging studies in adults with childhood ADHD 

may be partially explained by differences in imaging modalities, analytic methods, and 

study cohorts. These existing studies have demonstrated neuroanatomical alterations in 

adults with childhood ADHD. However, most of them applied only single imaging 

modality (either structural MRI or DTI) to investigate GM morphometrical or WM 

integrity properties, without reporting both the GM and WM patterns in the same study 

cohort, and their impact on the adult outcome of childhood ADHD. This study aimed to fill 

this gap by applying both structural MRI and DTI in the same study sample to identify the 
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structural markers in GM and WM, that are associated with symptom persistence and 

remission in young adults with childhood ADHD (Luo et al., 2020b). Based on findings of 

previous studies from our group and others, we hypothesized that optimal structural 

development associated with the frontal and parietal lobes, such as greater regional GM 

thickness, higher FA of the WM tracts that connect subcortical structures (i.e., thalamus, 

caudate) and frontal/parietal cortices, may play an important role in symptom remission in 

young adults with childhood ADHD. 

4.1.2 Bayes Inference and Monte Carlo Markov Chain Utilized in Project 2 

For both structural MRI and DTI data analyses, Bayesian Inference was widely performed 

in Aim 2 with a Bayesian probabilistic model to calculating an expected probability, 

estimating the density, or other properties of the probability distribution. The direct 

calculation of the desired quantity from a model of interest is intractable for all but the most 

trivial probabilistic models. Instead, the expected probability or density must be 

approximated by other means. The desired calculation is typically a sum of a discrete 

distribution of many random variables or integral of a continuous distribution of many 

variables and is intractable to calculate. This problem exists in both schools of probability, 

although is perhaps more prevalent or common with Bayesian probability and integrating 

over a posterior distribution for a model. The typical solution is to draw independent 

samples from the probability distribution, then repeat this process many times to 
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approximate the desired quantity. This is referred to as Monte Carlo sampling or Monte 

Carlo integration, named for the city in Monaco that has many casinos. The problem with 

Monte Carlo sampling is that it does not work well in high-dimensions. This is firstly 

because of the curse of dimensionality, where the volume of the sample space increases 

exponentially with the number of parameters (dimensions). Secondly, and perhaps most 

critically, this is because Monte Carlo sampling assumes that each random sample drawn 

from the target distribution is independent and can be independently drawn. This is 

typically not the case or intractable for inference with Bayesian structured or graphical 

probabilistic models. 

 The solution to sampling probability distributions in high-dimensions is to use 

Markov Chain Monte Carlo (MCMC). Like Monte Carlo methods, MCMC was first 

developed around the same time as the development of the first computers and was used in 

calculations for particle physics required as part of the Manhattan project for developing 

the atomic bomb. It is the combination of Monte Carlo and Markov Chain. 

 Monte Carlo is a technique for randomly sampling a probability distribution and 

approximating a desired quantity. Monte Carlo methods typically assume that we can 

efficiently draw samples from the target distribution. From the samples that are drawn, we 

can then estimate the sum or integral quantity as the mean or variance of the drawn samples. 

A useful way to think about a Monte Carlo sampling process is to consider a complex 

two-dimensional shape, such as a spiral. We cannot easily define a function to describe the 

https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Monte_Carlo_method
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spiral, but we may be able to draw samples from the domain and determine if they are part 

of the spiral or not. Together, a large number of samples drawn from the domain will allow 

us to summarize the shape (probability density) of the spiral. 

 Markov chain is a systematic method for generating a sequence of random 

variables where the current value is probabilistically dependent on the value of the prior 

variable. Specifically, selecting the next variable is only dependent upon the last variable in 

the chain. Consider a board game that involves rolling dice, such as snakes and ladders (or 

chutes and ladders). The roll of a die has a uniform probability distribution across 6 stages 

(integers 1 to 6). You have a position on the board, but your next position on the board is 

only based on the current position and the random roll of the dice. Your specific positions 

on the board form a Markov chain. Another example of a Markov chain is a random walk 

in one dimension, where the possible moves are 1, -1, chosen with equal probability, and 

the next point on the number line in the walk is only dependent upon the current position 

and the randomly chosen move. 

 Combining these two methods, Markov Chain and Monte Carlo, allows random 

sampling of high-dimensional probability distributions that honors the probabilistic 

dependence between samples by constructing a Markov Chain that comprise the Monte 

Carlo sample. Specifically, MCMC is for performing inference (e.g. estimating a quantity 

or a density) for probability distributions where independent samples from the distribution 

cannot be drawn, or cannot be drawn easily. As such, Monte Carlo sampling cannot be 

https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Snakes_and_Ladders
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used. Instead, samples are drawn from the probability distribution by constructing a 

Markov Chain, where the next sample that is drawn from the probability distribution is 

dependent upon the last sample that was drawn. The idea is that the chain will settle on 

(find equilibrium) on the desired quantity we are inferring. Yet, we are still sampling from 

the target probability distribution with the goal of approximating a desired quantity, so it is 

appropriate to refer to the resulting collection of samples as a Monte Carlo sample, e.g. 

extent of samples drawn often forms one long Markov chain. The idea of imposing a 

dependency between samples may seem odd at first, but may make more sense if we 

consider domains like the random walk or snakes and ladders games, where such 

dependency between samples is required. 

 
 

Figure 4.1 Workflow of structural magnetic resonance imaging data analysis. 

 

https://machinelearningmastery.com/gentle-introduction-random-walk-times-series-forecasting-python/
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Figure 4.2 Workflow of diffusion tensor imaging data analysis. 

 

4.2 Experimental Strategy 

4.2.1 Participants 

A total of 32 ADHD probands and 35 controls were involved in this project. Among the 32 

ADHD probands, 16 were classified as ADHD-P and 16 as ADHD-R, and were able to 

provide usable T1-weighted and DTI data. All the ADHD probands had a history of 

treatment with short-acting psychostimulants. Mean duration of treatment was 2.03 years 

(SD=3.21) for the subgroup of ADHD-R and 4.18 years (SD=4.12) for the subgroup of 

ADHD-P (t=-1.604, p=0.12). Clinical and demographic information are listed in Table 4.1. 
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4.2.2 Individual-level Structural Magnetic Resonance Imaging Data Analyses 

T1-weighted data were reconstructed into a 3-dimensional cortical model for thickness and 

area estimations using FreeSurfer v.5.3.0 (https://surfer.nmr.mgh.harvard.edu). Each data 

point was first registered with the Talairach atlas to compute the transformation matrix 

using an affine registration method, which was developed and distributed by the MNI. 

Then intensity variations caused by magnetic field inhomogeneities were corrected using 

Voronoi partitioning algorithm. The skull was stripped using a deformable template model. 

Cutting planes were defined to separate the left and right hemispheres and to remove the 

cerebellum and brainstem. Two mess surfaces (mess of grids created using surface 

tessellation technique) were then generated between WM and GM (white matter surface), 

as well as between GM and cerebrospinal fluid (pial surface). The distance between the 

two closet vertices of the white matter and pial surfaces presented the cortical thickness at 

that specific location, validated using training data (Rosas et al., 2002). Regional cortical 

thickness and area in 68 bilateral cortical regions were estimated based on the Desikan 

atlas (Desikan et al., 2006).  

 Each of 37 subcortical structures/nuclei was first labelled after the initial 

registration with the Talairach atlas, and then refined based on a manually labelled model 

constructed according to prior knowledge of spatial relationships acquired with a training 

data set (Fischl et al., 2002). Volume of each subcortical structure was then calculated. 

https://surfer.nmr.mgh.harvard.edu/
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 To adjust head-size variation related influence on these cortical and subcortical GM 

measures, the head-size scaling factor of each subject was calculated by normalizing the 

T1-weighted data with the template provided in FSL/SIENA (Smith et al., 2002). The 

normalized thickness and area of each cortical region and volume of each subcortical 

structure were finally estimated by multiplying the original value with the scaling factor of 

that subject. 

4.2.3 Individual-level Diffusion Tensor Imaging Data Analyses 

DTI data from each subject was first processed using the Diffusion Toolbox (FDT Version 

3.0) from FSL (Behrens et al., 2007). After eddy current and head motion corrections, the 

diffusion-weight images were registered to the additionally acquired 

non-diffusion-weighted reference image (b0 image) using an affine, 12 degrees of freedom 

registration. The FA value and principle diffusion direction at each brain voxel were 

calculated. WM probabilistic tractography between each pair of 18 ROIs was constructed 

using the FSL/BEDPOSTX toolbox (Behrens et al., 2007). These 18 ROIs (including 

thalamus, putamen and caudate nuclei from striatum, hippocampus, and frontal, parietal, 

occipital, temporal, and insular cortices in both hemispheres) were created based on the 

Harvard-Oxford Cortical Atlases and the Julich Histological Atlas from the MNI standard 

space, and mapped to the DTI data. We used the multi-fiber probabilistic 

connectivity-based method to determine the number of pathways between each seed and 
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target ROIs. The default setting of parameters for Markov Chain Monte Carlo estimation 

of the probabilistic tractography was utilized: 5000 individual pathways were drawn on the 

principle fiber direction of each voxel within the seed ROI; curvature threshold of 80° to 

exclude implausible pathways; a maximum number of 2000 travel steps of each sample 

pathway and a 0.2 mm step length. The number of pathways that existed through each 

voxel from the remainder of the brain was labeled. The non-zero labeling voxels were 

taken as the initial elements of the tracts between the seed and target ROIs. The brain 

voxels with low probability of connection were removed from the tract, if one had a 

number of pathways that was less than the average of the pathway numbers from all the 

non-zero labeling voxels. At the end, a total of 20 cortico-cortical (including bilateral 

fronto-parietal, fronto-occipital, fronto-temporal, fronto-insular, parieto-occipital, 

parieto-temporal, parieto-insular, occipito-temporal, occipito-insular, temporo-insular) 

and 40 subcortico-cortical (including bilateral thalamo-frontal, thalamo-parietal, 

thalamo-occipital, thalamo-temporal, thalamo-insular, putamen-frontal, putamen-parietal, 

putamen-occipital, putamen-temporal, putamen-insular, caudate-frontal, caudate-parietal, 

caudate-occipital, caudate-temporal, caudate-insular, hippocampo-frontal, 

hippocampo-parietal, hippocampo-occipital, hippocampo-temporal, hippocampo-insular) 

WM fiber tracts were generated. Average FA and volume (number of voxels times voxel 

size) of each identified WM tract were estimated. 
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4.2.4 Group Statistical Analyses 

The clinical, neurocognitive and demographic measures were compared using chi-square 

tests for discrete variables and unpaired two-sample t-tests for continuous variables, 

between groups of controls and ADHD probands, and further between the two ADHD 

subgroups (ADHD-R and ADHD-P) using SPSS18 (SPSS Inc, Somers, NY). 

 The structural MRI- and DTI-based neuroimaging measures (including regional 

cortical thickness, surface area, volume of each subcortical structure, FA and volume of 

each WM fiber tract) were compared between the groups of controls and ADHD probands, 

as well as between the subgroups of ADHD-R and ADHD-P, using ANCOVA with 

gender, age, IQ and socioeconomic status (SES) as covariates. Bonferroni correction for 

multiple comparisons (at a corrected α=0.05) was applied to control potential false positive 

results of these group comparisons. For the structural MRI-based measures, the number of 

ROIs (a total of 105 ROIs, including 68 bilateral cortical regions and 37 subcortical 

structures) were controlled; while for DTI-based measures, the number of WM tracts (a 

total of 60 tracts) were controlled. 

 Partial correlation analysis was utilized to assess associations between the GM and 

WM brain measures that showed between-group differences and the clinical symptom 

measures (the T-scores for inattentive and hyperactive-impulsive symptoms derived from 

the CAARS collected during the visit of MRI scan) in the group of ADHD probands Age, 
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gender, IQ and SES were added as covariates. Bonferroni correction was used to correct 

the number of partial correlation procedures (a total of 16) at a corrected α=0.05. 

 

4.3 Results 

4.3.1 Clinical, Behavioral and Demographic Measures 

As shown in Table 4.1, there were no significant demographic differences between the 

groups although relative to controls, ADHD probands tended to have lower IQ and SES. 

4.3.2 Brain Anatomical Measures 

Significantly decreased volume in right putamen was observed in ADHD probands when 

compared to controls (p=0.045). Compared to the ADHD-P group, those with ADHD-R 

showed significantly increased cortical surface area in bilateral parahippocampal gyri (Left: 

p=0.05; Right: p=0.008), left paracentral gyrus (p=0.012), and right transverse temporal 

gyrus (p=0.037) (see Table 4.2). 

 Group comparisons of WM measures showed significantly decreased volume of 

the left parieto-insular fiber tracts (p=0.041) in ADHD probands relative to controls. 

Compared to ADHD-R, the subgroup of ADHD-P showed significantly decreased volume 

in two cortico-cortical fiber tracts (right hippocampo-frontal (p=0.037) and right 

parieto-insular (p=0.038)), and in the WM tracts connecting bilateral caudate nuclei of the 

striatum with all the five cortical ROIs of the same hemispheres (p<0.001) (see Table 4.3). 
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Table 4.1 Demographic and Clinical Characteristics in Groups of Controls and ADHD Probands (including Remitted and Persistent) 

 

 Controls 

(N=35) 

Probands 

(N=32) 

 ADHD-R 

(N=16) 

ADHD-P 

(N=16) 

 

 Mean (SD) Mean (SD) p Mean (SD) Mean (SD) p 

Age 24.24 (2.3) 24.60 (2.1) 0.51 24.81 (2.3) 24.39 (1.9) 0.57 

Full-scale IQ* 104.21 (15.7) 96.81 (14.3) 0.07 99.58 (14.2) 94.11 (11.5) 0.24 

Conners’ Adult ADHD Rating Scale (T-score)  

 

     

     Inattentive 45.74 (8.9) 55.72 (12.8) 0.001 49.99 (11.5) 61.44 (11.6) <0.01 

     Hyperacitive/impulsive 42.89 (6.3) 52.35 (12.0) <0.001 45.57 (9.3) 59.13 (10.7) 0.001 

     ADHD Total 43.43 (8.3) 55.22 (13.9) <0.001 48.12 (11.9) 62.31 (12.2) 0.002 

ADHD semistructured interview (number of symptoms) 0.83 (1.4) 6.30 (4.7) <0.001 2.04 (1.6) 10.73 (3.0) <0.01 

 N (%) N (%) p N (%) N (%) p 

Male 30 (85.7) 27 (84.4) 0.88 14 (87.5) 13 (81.3) 0.63 

Right-handed 31 (88.6) 28 (87.5) 0.89 14 (87.5) 14 (87./5) 1 

Race   0.41   0.70 

     Caucasian 14 (40.0) 17 (53.1)  8 (50.0) 9 (56.3)  

     African American 13 (37.1) 7 (21.9)  4 (25.0) 3 (18.8)  

     More than one race 6 (17.1) 8 (25)  4 (25.0) 4 (25.0)  

     Asian 2 (5.7) 0 (0)  0 (0) 0 (0)  

Ethnicity   0.21   0.72 

     Hispanic/Latino 12 (34.3) 15 (46.9)  7 (43.8) 8 (50.0)  

Current mood disorder 4 (11.4) 8 (25.0) 0.15 2 (12.5) 6 (37.5) 0.10 

Current anxiety disorder 10 (28.6) 10 (31.3) 0.81 3 (18.8) 7 (43.8) 0.13 

Current substance disorder 7 (20) 15 (46.9) 0.02 7 (43.8) 8 (50.0) 0.72 

*Assessed in adolescence 
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Table 4.2 Gray Matter Neuroimaging Measures that Show Significant Between-group Differences 

 

Group Anatomical location Measure F-value p-value after Bonferroni correction 

CON>PRO R. Putamen Volume 8.245 0.048 

ADHD-R>ADHD-P 

L./R. Parahippocampal gyrus 

Regional Cortical Surface Area 

8.311/13.547 0.048/0.006 

L. Paracentral gyrus 10.294 0.018 

R. Transverse temporal gyrus 8.906 0.036 

 

Table 4.3 White Matter Neuroimaging Measures that Show Significant Between-group Differences 

 

Group White matter fiber tract Measure F-value p-value after Bonferroni correction 

CON>PRO L. parieto-insular tract Volume 9.622 0.039 

ADHD-R>ADHD-P 

L./R. caudate-frontal tracts 

Volume 

42.983/33.712 <0.001/<0.001 

L./R. caudate-parietal tracts 53.104/32.716 <0.001/<0.001 

L./R. caudate-occipital tracts 56.444/32.722 <0.001/<0.001 

L./R. caudate-temporal tracts 56.349/32.687 <0.001/<0.001 

L./R. caudate-insular tracts 56.448/32.66 <0.001/<0.001 

R. hippocampo-frontal tract 14.197 0.036 

R. parieto-insular tract 13.262 0.036 
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4.3.3 Associations Between Brain and Behavioral Measures 

Dimensional analyses between the GM and WM measures (listed in Tables 4.2 and 4.3) 

and the clinical symptom measures indicated that among the ADHD probands, greater FA 

of the left caudate-parietal WM fiber tract was significantly associated with reduced 

hyperactive/impulsive symptoms (Figure 4.3, r=-0.389, p=0.037). 

 

 

 

Figure 4.3 In the group of ADHD probands, greater fractional anisotropy of the left 

caudate-parietal white matter fiber tract was significantly associated with reduced 

hyperactive-impulsive symptoms measured by the DSM standard T-score. 

 

4.4 Discussion 

The present study investigated GM and WM structural differences between young adults 

with childhood ADHD and group-matched controls, and between the subgroups of 

remitters and persisters within the ADHD probands. Compared to controls, significantly 
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reduced GM volume of the putamen in right hemisphere was observed in the ADHD 

probands. The putamen and caudate nucleus together form the dorsal striatum, and play a 

key role in the CSTC loops for attention and higher order cognitive processes (Alexander 

et al., 1986; Ring and Serra-Mestres, 2002). A large number of structural MRI and fMRI 

studies have reported the linkage of putamen-related anatomical and functional 

abnormalities and onset of ADHD in children (Max et al., 2002; Ellison-Wright et al., 

2008; Nakao et al., 2011; Frodl and Skokauskas, 2012). Putamen-related structural 

alterations have also been tested in neuroimaging studies focusing on adults with ADHD 

which yielded inconsistent results, with some reported reduced putamen volume in adults 

with ADHD (Seidman et al., 2011; Onnink et al., 2014), and others reported increased 

putamen volume (Greven et al., 2015) or no significant differences (Seidman et al., 2006) 

when compared to group-matched controls. The inconsistence of these existing studies 

may have been caused by technical differences for putamen extractions, and 

sample-related biases such as the very wide age ranges involved in these studies (Greven et 

al., 2015). Adding into the debating literature, our result of significantly reduced putamen 

GM volume in young adults with childhood ADHD (regardless of their clinical outcomes) 

suggests its significant linkage with the emergence of ADHD during their childhood. 

 Comparing to controls, we also found that the ADHD probands had significantly 

reduced volume of the left hemisphere parieto-insular WM tract; while relative to the 

ADHD-R, the ADHD-P had significantly smaller volume of the right hemisphere 
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parieto-insular WM tract. The parieto-insular WM fiber tract is an important structural 

component of the vestibular system, and has been suggested to link with static and dynamic 

balance control (Perennou et al., 2000; Ustinova et al., 2001; Shum and Pang, 2009; Frank 

and Greenlee, 2018). Vestibular system deficiency, which can cause inappropriate postural 

condition or impaired balance function, has been found to associate with cognitive deficits 

and behavioral symptoms in ADHD patients (Clark et al., 2008; Shum and Pang, 2009; 

Haghshenas et al., 2014). Merging with the results of existing studies, our findings of the 

underdeveloped parieto-insular WM fiber tracts in adults with childhood ADHD, 

especially in those with persistent ADHD symptoms, suggest that parieto-insular WM 

structural alterations may interact with the vestibular system functional alterations, and 

together contribute to the onset and symptom persistence of ADHD. 

 Within the probands, we further found that the ADHD-R had significantly larger 

surface area in bilateral parahippocampal, left paracentral, and right transverse temporal 

gyri, as well as significantly greater volume of WM fiber tracts connecting caudate with the 

frontal, parietal, occipital, temporal, and insular cortices when compared to the ADHD-P. 

Existing studies have reported that ADHD-R had increased parahippocampal cortical 

thickness compared to ADHD-P (Proal et al., 2011). Further studies have implicated that 

parahippocampal gyrus interacts with the ventralateral prefrontal cortex (VLPFC), both 

significantly contribute to appropriate inhibitory control (Deacon et al., 1983; Schulz et al., 

2005). Parahippocampal cortical volume reduction has been observed in both children and 



 

90 

 

adolescents with ADHD, compared to group-matched controls (Carmona et al., 2005; 

Noordermeer et al., 2017). 

 Caudate plays a critically important role in cognitive control (Grahn et al., 2008; 

Chiu et al., 2017). Structural and functional deficits associated with caudate have been 

widely observed in children and adults with ADHD (Frodl and Skokauskas, 2012; Onnink 

et al., 2014; Szekely et al., 2017). Substantial structural MRI studies have revealed that 

children with ADHD had smaller caudate volume relative to controls (Castellanos et al., 

2002). Task-based fMRI studies showed significantly decreased caudate activation in 

children with ADHD (Vaidya et al., 2005) and adults with childhood ADHD (Szekely et 

al., 2017), during attention and inhibitory control processes. Our findings of significantly 

smaller volume of the WM fiber tracts connecting caudate with all five cortices bilaterally 

in the ADHD-P suggest that caudate-associated widespread WM underdevelopment may 

play important roles in symptom persistence of ADHD. This hypothesis can also be 

supported by multiple existing DTI studies that showed immature WM organizations 

involving caudate and cortical structures in children and adults with ADHD (Casey et al., 

1997; Castellanos et al., 2002; Ashtari et al., 2005; Shang et al., 2013). 

 In addition, we found that the FA of left caudate-parietal tracts was significantly 

negatively correlated with the CAARS T-score for hyperactive/impulsive symptoms in 

ADHD probands. The caudate-parietal WM tract is one of the most important structural 

component of the CSTC loops, which subserves maintaining the modifications of spatial 
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attention via reinforcement learning, and supports the integration of reward, attention, and 

executive control (Jarbo and Verstynen, 2015). Reduced parietal activation during 

cognitive control has been linked to the persistence of ADHD symptoms in adults with 

childhood ADHD (Schulz et al., 2017; Szekely et al., 2017). Reduced caudate and parietal 

lobe activation during inhibitory control processing were found to be associated with 

increased inattentive and impulsive symptoms in adults with ADHD diagnosed in 

childhood (Schneider et al., 2010). Together with these existing findings, we suggest that 

optimal structural development in the caudate-parietal WM tract may partially modulate 

the functional integrity of caudate and parietal cortex, and together contribute to symptom 

remission in adults with childhood ADHD. 

 

4.5 Conclusion 

In summary, together with existing findings, results of this study suggest that WM 

structural development in tracts that connect caudate with cortical areas, especially in the 

caudate-parietal path, is a critical determining factor of outcomes in adults with childhood 

ADHD. The current study has some limitations. First, our cohort consisted of both male 

and female subjects, but many more males. It is still unclear whether the neuropathological 

underpinnings of ADHD differ between males and females. To partially remove 

gender-related effects, sex was added as a fixed effect covariate in the group-level 

analyses. Second, the sample size of this study is relatively small. Therefore, the findings 
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must be considered preliminary. Future work will need a much larger cohort from a 

longitudinal study consisting of multi-scan neuroimaging data, to determine the neural 

underpinnings of longitudinal trajectories of childhood ADHD. 
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CHAPTER 5  

MULTIMODAL NEUROIMAGING-BASED PREDICTION OF ADULT 

OUTCOMES IN CHILDHOOD-ONSET 

ATTENTION-DEFICIT/HYPERACTIVITY DISORDER USING ENSEMBLE 

LEARNING TECHNIQUES 

 

5.1 Introduction 

5.1.1 Background 

ADHD is a highly prevalent heterogeneous neurodevelopmental disorder. Diagnostic 

standards for ADHD are clinical symptom-based, and rely primarily on subjective reports 

collected from multiple sources, which often cause biases and inconsistencies of the 

diagnoses. ELTs, which integrate results from multiple basic classifiers by using voting 

(Lam and Suen, 1997; Ruta and Gabrys, 2005), bagging (Breiman, 1996), stacking 

(Wolpert, 1992), or boosting (Schapire, 1990; Yoav Freund and Schapire, 1997; Johnston 

et al., 2014) strategies, have been recently developed in the big data science field, to deal 

with complicated feature variations, biases, and optimized prediction performances (Wang 

et al., 2011; Deng and Platt, 2014). ELTs have been applied in three recent studies to 

discriminate patients with ADHD from controls (Eloyan et al., 2012; Tenev et al., 2014; 

Zhang-James et al., 2019). Eloyan and colleagues applied a voting-based ELT, along with 

hold-out technique for CV, in structural MRI and resting-state fMRI data from children 

with ADHD and controls, and reported an important group discrimination predictor of 

dorsomedial-dorsolateral functional connectivity in the motor network (Eloyan et al., 
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2012). Voting-based ELT has also been applied in EEG data collected from adults with 

ADHD and controls, without reporting the most important discrimination predicators 

(Tenev et al., 2014). Very recently, Zhang-James et al. applied ELTs in structural MRI data 

from patients with ADHD (both adults and children) and controls, and suggested that GM 

volume of bilateral caudate and thalamus and orbitofrontal surface area significantly 

contribute to successful group discrimination (Zhang-James et al., 2019). However, 

clarifications about optimization strategies was lacking and low accuracy of 

discriminations (<0.65) was reported. 

The current study applied ELTs to structural MRI, DTI, and task-based fMRI data 

collected from a sample of adults with childhood ADHD who were clinically followed 

from ages 7-11 years and never-ADHD controls who have been followed since 

adolescence (Luo et al., 2020a). All currently available optimization strategies (i.e., voting, 

bagging, boosting and stacking techniques) were tested in a pool of semi-final 

classification results generated by seven basic classifiers (including K-Nearest Neighbors 

(KNN), SVM, logistic regression (LR), Naïve Bayes (NB), linear discriminant analysis 

(LDA), random forest (RF), and multilayer perceptron (MLP)). A nested CV including an 

inner LOOCV and an outer 5-fold CV were applied with grid search to tune the 

hyperparameters and minimize the overfitting. The high-dimensional neuroimaging 

features for classification included regional cortical GM thickness and surface area, GM 

volume of subcortical structures estimated from structural MRI data, volume and FA of 
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major WM fiber tracts derived from DTI data, the pair-wise regional connectivity and 

global/nodal topological properties (i.e., global-, local-, and nodal-efficiency, etc.) of the 

cue-evoked attention processing network computed from task-based fMRI data. Based on 

findings from existing studies (Proal et al., 2011; Clerkin et al., 2013; Shaw et al., 2013; 

Francx et al., 2015; Shaw et al., 2015; Luo et al., 2018), we hypothesized that structural and 

functional alterations in frontal, parietal, and subcortical areas and their interactions would 

significantly contribute to accurate discrimination of ADHD probands (adults diagnosed 

with ADHD in childhood) from controls; while abnormal fronto-parietal 

hyper-communications in right hemisphere would play an important role in inattentive and 

hyperactive/impulsive symptom persistence in adults with childhood ADHD. Finally, we 

hypothesized that classification performance parameters (accuracy, AUC) of the ROC, 

etc.) derived from ELT-based procedures would be superior to those of basic model-based 

procedures. 

5.1.2 Introduction to Machine Learning Classification Models 

5.1.2.1 K-Nearest Neighbors. KNN algorithm is a type of supervised machine 

learning algorithm which can be used for both classification as well as regression 

predictive problems. However, it is mainly used for classification predictive problems in 

industry. KNN algorithm uses ‘feature similarity’ to predict the values of new data points 
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which further means that the new data point will be assigned a value based on how closely 

it matches the points in the training set (Figure 5.1). 

 

 

 

Figure 5.1 Diagram showing the classification performance of KNN algorithm. Each point 

in the plane is colored with the class that would be assigned to it using the KNN algorithm; 

points for which the KNN algorithm results in a tie are colored white.  

 

5.1.2.2 Support Vector Machine. A support vector machine (SVM) is a supervised 

machine learning model that uses classification algorithms for two-group classification 

problems. The objective of the support vector machine algorithm is to find a hyperplane in 

an N-dimensional space that distinctly classifies the data points. To separate the two classes 
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of data points, there are many possible hyperplanes that could be chosen. Our objective is to 

find a plane that has the maximum margin, i.e., the maximum distance between data points 

of both classes. Maximizing the margin distance provides some reinforcement so that future 

data points can be classified with more confidence. Hyperplanes are decision boundaries 

that help classify the data points. Data points falling on either side of the hyperplane can be 

attributed to different classes. Also, the dimension of the hyperplane depends upon the 

number of features. If the number of input features is 2, then the hyperplane is just a line. If 

the number of input features is 3, then the hyperplane becomes a two-dimensional plane. It 

becomes difficult to imagine when the number of features exceeds 3 (Figure 5.2). 

 

 

 

Figure 5.2 Best hyperplane for linear and non-linear data in SVM algorithm. 
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5.1.2.3 Logistic Regression. Logistic regression is a statistical model that in its basic form 

uses a logistic function to model a binary dependent variable, although many more complex 

extensions exist. Mathematically, a binary logistic model has a dependent variable with two 

possible values, such as pass/fail which is represented by an indicator variable, where the 

two values are labeled 0 and 1 (Figure 5.3). In the logistic model, the log-odds for the value 

labeled 1 is a linear combination of one or more independent variables; the independent 

variables can each be a binary variable or a continuous variable. The corresponding 

probability of the value labeled 1 can vary between 0 and 1, hence the labeling; the function 

that converts log-odds to probability is the logistic function. 

 

 
 

Figure 5.3 A simple logistic regression using sigmoid function. 

Source: https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/. Accessed on April 

10, 2020. 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Binary_variable
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Logistic_regression#Extensions
https://en.wikipedia.org/wiki/Indicator_variable
https://en.wikipedia.org/wiki/Log-odds
https://en.wikipedia.org/wiki/Linear_function_(calculus)
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Continuous_variable
https://en.wikipedia.org/wiki/Probability
https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/


 

99 

 

5.1.2.4 Naïve Bayes. A Naive Bayes classifier is a probabilistic machine learning model 

that’s used for classification task. The crux of the classifier is based on the Bayes theorem, 

which is defined as: 

 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (5.1) 

 

Using Bayes theorem, we can find the probability of A happening, given that B has 

occurred. Here, B is the evidence and A is the hypothesis. The assumption made here is that 

the predictors/features are independent. That is presence of one particular feature does not 

affect the other. Hence it is called naive. 

5.1.2.5 Linear Discriminant Analysis. LDA is a dimensionality reduction technique 

used as a preprocessing step in machine learning and pattern classification applications. The 

main goal of dimensionality reduction techniques is to reduce the dimensions by removing 

the redundant and dependent features by transforming the features from higher dimensional 

space to a space with lower dimensions, which maximizes the between class variance and 

minimize the within class variance. LDA is a supervised classification technique which 

takes labels into consideration. This category of dimensionality reduction is used in 

biometrics, bioinformatics and chemistry. 
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Figure 5.4 Different projections in linear discriminant analysis. 
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5.1.2.6 Random Forest. The random forest is a model made up of many decision trees. 

Rather than just simply averaging the prediction of trees (which we could call a “forest”), 

this model uses two key concepts that gives it the name random, which includes (a) random 

sampling of training data points when building trees; (b) random subsets of features 

considered when splitting nodes. 

 When training, each tree in a random forest learns from a random sample of the data 

points. The samples are drawn with replacement, known as bootstrapping, which means that 

some samples will be used multiple times in a single tree. The idea is that by training each 

tree on different samples, although each tree might have high variance with respect to a 

particular set of the training data, overall, the entire forest will have lower variance but not 

at the cost of increasing the bias. At test time, predictions are made by averaging the 

predictions of each decision tree. This procedure of training each individual learner on 

different bootstrapped subsets of the data and then averaging the predictions is known as 

bagging, short for bootstrap aggregating. 

 The other main concept in the random forest is that only a subset of all the features 

are considered for splitting each node in each decision tree. Generally, this is set to square 

root of the number of features for classification. 

 

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/
https://sebastianraschka.com/faq/docs/random-forest-feature-subsets.html
https://sebastianraschka.com/faq/docs/random-forest-feature-subsets.html
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Figure 5.5 Workflow of random forest. 

Source: 

https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by

-step-explained-95d49d1e2725. Accessed on April 10, 2020. 

 

5.1.2.7 Multilayer Perceptron. A MLP is a class of feedforward artificial neural 

network. The term MLP is used ambiguously, sometimes loosely to refer to any 

feedforward ANN, sometimes strictly to refer to networks composed of multiple layers of 

perceptrons (with threshold activation). Multilayer perceptrons are sometimes colloquially 

referred to as "vanilla" neural networks, especially when they have a single hidden layer. An 

MLP consists of at least three layers of nodes: an input layer, a hidden layer and an output 

layer. Except for the input nodes, each node is a neuron that uses a nonlinear activation 

function. MLP utilizes a supervised learning technique called backpropagation for training. 

https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
https://towardsdatascience.com/basic-ensemble-learning-random-forest-adaboost-gradient-boosting-step-by-step-explained-95d49d1e2725
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Backpropagation
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Its multiple layers and non-linear activation distinguish MLP from a linear perceptron. It 

can distinguish data that is not linearly separable. 

 

 

 

Figure 5.6 Structure of multilayer perceptron. 

 

https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Linear_separability
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5.1.2.8 Hierarchical Clustering. In data mining and statistics, hierarchical clustering 

is a method of cluster analysis which seeks to build a hierarchy of clusters. Strategies for 

hierarchical clustering generally fall into two types: agglomerative and divisive. 

Agglomerative is a bottom-up approach with each observation starts in its own cluster, and 

pairs of clusters are merges as one moves up the hierarchy; while divisive is a top-down 

approach with all observations start in one cluster, and splits are performed recursively as 

one moves down the hierarchy. 

 

 

Figure 5.7 Structure of hierarchical clustering. 

 

5.1.3 Introduction to Ensemble Learning Technique 

5.1.3.1 Voting. Voting is one of the simplest ways of combining the predictions 

from multiple machine learning algorithms. It works by first creating two or more 
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standalone models from your training dataset. A Voting Classifier can then be used to wrap 

your models and average the predictions of the sub-models when asked to make predictions 

for new data. The predictions of the sub-models can be weighted, but specifying the weights 

for classifiers manually or even heuristically is difficult. Thus, the majority voting is widely 

utilized in many existing studies. 

 

 

Figure 5.8 Workflow of voting. 

 

5.1.3.2 Bagging. Bootstrap Aggregation (or Bagging for short), is a simple and very 

powerful ensemble method. An ensemble method is a technique that combines the 

predictions from multiple machine learning algorithms together to make more accurate 
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predictions than any individual model. Bootstrap Aggregation is a general procedure that 

can be used to reduce the variance for those algorithm that have high variance. An 

algorithm that has high variance are decision trees, like classification and regression trees 

(CART). Decision trees are sensitive to the specific data on which they are trained. If the 

training data is changed (e.g. a tree is trained on a subset of the training data) the resulting 

decision tree can be quite different and in turn the predictions can be quite different. 

Bagging is the application of the Bootstrap procedure to a high-variance machine learning 

algorithm, typically decision trees. 

 

 

 

Figure 5.9 Workflow of bagging. 
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5.1.3.3 Boosting. Boosting is a kind of algorithm that trains a bunch of individual 

models in a sequential way. Each individual model learns from mistakes made by the 

previous model. AdaBoost is a boosting ensemble model and works especially well with 

the decision tree. Boosting model’s key is learning from the previous mistakes, e.g. 

misclassification data points increasing the weight of misclassified data points. The core 

principle of AdaBoost is to fit a sequence of weak learners (i.e., models that are only 

slightly better than random guessing, such as small decision trees) on repeatedly modified 

versions of the data. The predictions from all of them are then combined through a 

weighted majority vote (or sum) to produce the final prediction. The data modifications at 

each so-called boosting iteration consist of applying weights 𝝎𝟏, 𝝎𝟐,…, 𝝎𝑵 to each of the 

training samples. Initially, those weights are all set to 𝝎𝒊 = 𝟏/𝑵, so that the first step 

simply trains a weak learner on the original data. For each successive iteration, the sample 

weights are individually modified and the learning algorithm is reapplied to the reweighted 

data. At a given step, those training examples that were incorrectly predicted by the 

boosted model induced at the previous step have their weights increased, whereas the 

weights are decreased for those that were predicted correctly. As iterations proceed, 

examples that are difficult to predict receive ever-increasing influence. Each subsequent 

weak learner is thereby forced to concentrate on the examples that are missed by the 

previous ones in the sequence. 
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The AdaBoost makes a new prediction by adding up the weight (of each tree) 

multiply the prediction (of each tree). Obviously, the tree with higher weight will have more 

power of influence the final decision. 

 

 
 

Figure 5.10 Workflow of boosting. 

 

5.1.3.4 Stacking. Stacking mainly differ from bagging and boosting on two points. 

First stacking often considers heterogeneous weak learners (different learning algorithms 

are combined) whereas bagging and boosting consider mainly homogeneous weak learners. 

Second, stacking learns to combine the base models using a meta-model whereas bagging 
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and boosting combine weak learners following deterministic algorithms. The idea of 

stacking is to learn several different weak learners and combine them by training a 

meta-model to output predictions based on the multiple predictions returned by these weak 

models. Thus, to build stacking model, two things need to be defined: The L learners 

utilized to fit and the meta-model that combines them. The algorithm of stacking is as 

followed: 

1) Split the training data in two folds. 

2) Choose L weak learners and fit them to data of the first fold. 

3) For each of L weak learners, make predictions for observations in the second fold. 

4) Using predictions from weak learners as inputs to fit the meta-model on the second fold. 

In the previous steps, the dataset was split in two folds because predictions on data 

that have been used for the training of the weak learners are not relevant for the training of 

the meta-model. Thus, an obvious drawback of this split in two parts is that half of the data 

is used to train the base models and half of the data is utilized to train the meta-model. In 

order to overcome this limitation, some kind of “k-fold cross-training” approach such that 

all the observations can be used to train the meta-model: for any observation, the prediction 

of the weak learners are done with instances of these weak learners trained on the k-1 folds 

that do not contain the considered observation can be followed. In other words, it consists in 

training on k-1 fold in order to make predictions on the remaining fold and that iteratively so 

that to obtain predictions for observations in any folds. Doing so, relevant predictions for 
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each observation of the dataset can be produced and then train meta-model on all these 

predictions. 

 

 

 

Figure 5.11 Workflow of stacking. 

 

5.1.4 Introduction to Regression Models 

Regression analysis is a statistical technique that models and approximates the relationship 

between a dependent and one or more independent variables. Four commonly used 

regression models include ordinary least squares (OLS), ridge, least absolute shrinkage and 

selection operator (LASSO), and elastic net regression.  
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5.1.4.1 Ordinary Least Squares In statistics, OLS is a type of linear least squares 

method for estimating the unknown parameters in a linear regression model. OLS chooses 

the parameters of a linear function of a set of explanatory variables by the principle of least 

squares: minimizing the sum of the squares of the differences between the observed 

dependent variable (values of the variable being observed) in the given dataset and those 

predicted by the linear function. 

 The equation for this model is referred to as the cost function and is a way to find 

the optimal error by minimizing and measuring it. The gradient descent algorithm is used 

to find the optimal cost function by going over a number of iterations. Let's kick off with 

the basics: the simple linear regression model, in which you aim at predicting 𝑛 

observations of the response variable, 𝑌 , with a linear combination of 𝑚  predictor 

variables, 𝑋, and a normally distributed error term with variance 𝜎2: 

 

𝑌 = 𝑋𝛽 + 𝜀, 𝜀~𝑁(0, 𝜎2) (5.2) 

 

As we don't know the true parameters, 𝛽, we have to estimate them from the sample. In the 

OLS approach, we estimate them as 𝛽̂ in such a way, that the sum of squares of residuals is 

as small as possible. In other words, we minimize the following loss function: 

 

𝐿𝑂𝐿𝑆(𝛽̂) = ∑(𝑦𝑖 − 𝑥𝑖
′𝛽̂)2 =

𝑛

𝑖=1

||𝑦 − 𝑋𝛽̂||
2
 (5.3) 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Linear_least_squares
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Least_squares
https://en.wikipedia.org/wiki/Dependent_variable
https://en.wikipedia.org/wiki/Dataset
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in order to obtain the infamous OLS parameter estimates, 𝛽̂𝑂𝐿𝑆 = (𝑋′𝑋)−1(𝑋′𝑌). One 

situation is the data showing multi-collinearity, this is when predictor variables are 

correlated to each other and to the response variable. The high correlation of two variables 

can inflate the standard error of their coefficients which may make them seem statistically 

insignificant. 

 To produce a more accurate model of complex data we can add a penalty term to 

the OLS equation. A penalty adds a bias towards certain values. These are known as L1 

regularization (LASSO regression) and L2 regularization (ridge regression). The best 

model we can hope to come up with minimizes both the bias and the variance: 

 

 

 

Figure 5.12 Variance/bias trade off. 

Source: https://hackernoon.com/an-introduction-to-ridge-lasso-and-elastic-net-regression-cca60b4b934f. 

Accessed on April. 10, 2020. 

https://hackernoon.com/an-introduction-to-ridge-lasso-and-elastic-net-regression-cca60b4b934f
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5.1.4.2 Ridge Regression. Ridge regression uses L2 regularization which adds the 

following penalty term to the OLS equation. 

 

𝐿𝑟𝑖𝑑𝑔𝑒(𝛽̂) = ∑(𝑦𝑖 − 𝑥𝑖
′𝛽̂)

2
+ 𝜆 ∑ 𝛽̂𝑗

2
𝑚

𝑗=1

=

𝑛

𝑖=1

||𝑦 − 𝑋𝛽̂||
2

+ 𝜆||𝛽̂||
2
 (5.4) 

 

Solving this for 𝛽̂ gives the ridge regression estimates 𝛽̂𝑟𝑖𝑑𝑔𝑒 = (𝑋′𝑋 + 𝜆𝐼)−1(𝑋′𝑌) , 

where 𝐼 denotes the identity matrix. The L2 term is equal to the square of the magnitude of 

the coefficients. In this case if 𝜆 is zero then the equation is the basic OLS but if it is greater 

than zero then we add a constraint to the coefficients. This constraint results in minimized 

coefficients (aka shrinkage) that trend towards zero the larger the value of lambda. 

Shrinking the coefficients leads to a lower variance and in turn a lower error value. 

Therefore, ridge regression decreases the complexity of a model but does not reduce the 

number of variables, it rather just shrinks their effect. 

5.1.4.3 LASSO Regression. LASSO regression uses the L1 penalty term and stands for 

Least Absolute Shrinkage and Selection Operator. The penalty applied for L2 is equal to 

the absolute value of the magnitude of the coefficients: 

 

𝐿𝑙𝑎𝑠𝑠𝑜(𝛽̂) = ∑(𝑦𝑖 − 𝑥𝑖
′𝛽̂)

2
+ 𝜆 ∑ |𝛽̂𝑗|

𝑚

𝑗=1

𝑛

𝑖=1

 (5.5) 
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Similar to ridge regression, a lambda value of zero spits out the basic OLS equation, 

however given a suitable lambda value LASSO regression can drive some coefficients to 

zero. The larger the value of lambda the more features are shrunk to zero. This can 

eliminate some features entirely and give us a subset of predictors that helps mitigate 

multi-collinearity and model complexity. Predictors not shrunk towards zero signify that 

they are important and thus L1 regularization allows for feature selection (sparse 

selection). 

5.1.4.4 Elastic Net Regression. A third commonly used model of regression is the 

Elastic Net which incorporates penalties from both L1 and L2 regularization: 

 

𝐿𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑛𝑒𝑡(𝛽̂) =
∑ (𝑦𝑖 − 𝑥𝑖

′𝛽̂)
2𝑛

𝑖=1

2𝑛
+ 𝜆(

1 − 𝛼

2
∑ 𝛽̂𝑗

2
+ 𝛼 ∑ |𝛽̂𝑗|)

𝑚

𝑗=1

𝑚

𝑗=1

 (5.6) 

 

In addition to setting and choosing a lambda value elastic net also allows us to tune the 

alpha parameter where 𝛼 = 0 corresponds to ridge and 𝛼 = 1 to LASSO. Therefore, an 

alpha value between 0 and 1 could be chosen to optimize the elastic net. Effectively this 

will shrink some coefficients and set some to 0 for sparse selection. 
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5.1.5 Introduction to Cross Validation 

Cross validation, sometimes called out-of-sample testing, is any of various similar model 

validation techniques for assessing how the results of a statistical analysis will generalize 

to an independent data set. It is mainly used in settings where the goal is prediction, and 

one wants to estimate how accurately a predictive model will perform in practice. In a 

prediction problem, a model is usually given a dataset of known data on which training is 

run (training dataset), and a dataset of unknown data against which the model is tested 

(called the validation dataset or testing set). The goal of cross-validation is to test the 

model's ability to predict new data that was not used in estimating it, in order to flag 

problems like overfitting or selection bias and to give an insight on how the model will 

generalize to an independent dataset (i.e., an unknown dataset, for instance from a real 

problem). To reduce variability, in most methods multiple rounds of cross-validation are 

performed using different partitions, and the validation results are combined (e.g. 

averaged) over the rounds to give an estimate of the model’s predictive performance. 

 In summary, cross-validation combines (averages) measures of fitness in prediction 

to derive a more accurate estimate of model prediction performance. K-fold cross 

validation and leave-one-out cross validation are most commonly utilized cross validation 

techniques. 

 In K-fold cross validation, the original sample is randomly partitioned into K equal 

sized subsamples. Of the K subsamples, a single subsample is retained as the validation 

https://en.wikipedia.org/wiki/Selection_bias
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data for testing the model, and the remaining K-1 subsamples are used as training data 

(Figure 5.13). The cross validation process is then repeated K times, with each of the K 

subsamples used exactly once as the validation data. The K results can then be averaged to 

produce a single estimation. The advantage of this method over repeated random 

sub-sampling is that all observations are used for both training and validation, and each 

observation is used for validation exactly once. Five-fold cross validation is commonly 

used, but in general K remains an unfixed parameter. When K equals to the number of data 

in the set, leave-one-out cross validation is treated as a particular case of K-fold cross 

validation (Figure 5.14). 

 

 

 

Figure 5.13 Workflow of k-fold cross validation. 
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Figure 5.14 Workflow of leave-one-out cross validation. 
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Figure 5.15 Ensemble learning flow chart for discrimination between ADHD and normal controls. 
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Figure 5.16 Ensemble learning flow chart for discrimination between ADHD persisters and ADHD remitters. 
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5.2 Experimental Strategy 

5.2.1 Participants 

Seventy-two young adults [mean (SD) age 24.4 (2.1) years] who provided good quality 

data from multimodal neuroimaging and clinical assessments, participated in this study. 

There were 36 ADHD probands diagnosed with ADHD-C in childhood and 36 

group-matched comparison subjects with no history of ADHD. Among the 36 ADHD 

probands, 18 were classified as ADHD-R and the other 18 probands were classified as 

ADHD-P.  

5.2.2 Multimodal Imaging Data Processing for Feature Extractions 

For each subject, the T1-weighted data was reconstructed into a 3-dimensional cortical 

model for thickness and area estimations using FreeSurfer v.5.3.0 

(https://surfer.nmr.mgh.harvard.edu). Each volume was first registered to the Talairach 

atlas. Intensity variations caused by magnetic field in homogeneities were corrected and 

non-brain tissue was removed. A cutting plane was used to separate the left and right 

hemispheres and to remove the cerebellum and brainstem. Two mess surfaces (mess of 

grids created using surface tessellation technique) were generated between GM and WM 

(WM surface), as well as between GM and cerebrospinal fluid (pial surface). The distance 

between the two closest vertices of the WM and pial surfaces represented the cortical 

thickness at that specific location. Cortical subregions were parcellated based on the 

https://surfer.nmr.mgh.harvard.edu/
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Desikan atlas. A total of 202 structural MRI features, including regional cortical GM 

thickness, surface area, and GM volume of subcortical structures were extracted from each 

subject. 

The DTI data was corrected for eddy current-induced distortions due to the 

changing gradient field directions. Head motion was corrected with 

non-diffusion-weighted reference image (b0 image) using an affine, 12 degrees of freedom 

registration. Then the FA value and principle diffusion direction at each brain voxel were 

calculated. WM probabilistic tractography between each pair of 18 ROIs (bilateral thalami, 

putamen and caudate nuclei from striatum, hippocampus, and frontal, parietal, occipital, 

temporal, and insular cortices based on the Harvard-Oxford Cortical Atlases and Julich 

Histological Atlas) were constructed using the FSL/BEDPOSTX tool.  The multi-fibre 

probabilistic connectivity-based method was applied to determine the number of pathways 

between the seed and each of the target clusters, with the default setting of parameters for 

the Markov Chain Monte Carlo estimation of the probabilistic tractography. At the end, a 

total of 120 DTI-based features, including the volume and FA of cortico-cortical and 

subcortico-cortical WM fiber tracts were extracted for each subject. 

The fMRI data from each participant was preprocessed using Statistical Parametric 

Mapping version 8 (SPM8, Wellcome Trust Centre for Neuroimaging, London, United 

Kingdom; http://www.fil.ion.ucl.ac.uk/spm/) implemented on a MATLAB platform. The 

preprocessing procedures included slice timing correction, realignment, co-registration, 

http://www.fil.ion.ucl.ac.uk/spm/
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segmentation, normalization, and spatial smoothing. The first-level analyses were 

conducted using general linear model to generate the activation map responding to the 

cues. The group average activation maps for ADHD probands and controls were generated, 

respectively. A total of 52 cortical and subcortical seed regions, which was parceled 

according to the structural and functional connectivity-based Brainnetome atlas, were 

determined based on the results of the combination of the functional activation maps of the 

groups of ADHD probands and controls (Fan et al., 2016). To construct the cue-evoked 

attention processing network, the single-trial beta value series from the 48 cue-related 

events in the four runs were extracted. Among all the voxels in each of the 52 node ROIs, 

the average beta value series was calculated and used to create a 52×52 pair-wise Pearson 

correlation matrix. Then the GTTs were carried out. More details of the fMRI data 

processing can be found in (Luo et al., 2018). A total of 200 fMRI features, including the 

global- and local-efficiency of the entire network, the nodal efficiency, degree, and 

betweenness centrality measures of the 52 nodes, as well as their pair-wise functional 

connectivities, were generated for each subject. 

5.2.3 Modeling of Ensemble Learning Architecture 

Modeling of the ELTs for classifications between ADHD probands and controls, as well as 

between ADHD-P and ADHD-R, is described in Figures 5.15 and 5.16, respectively. 

Specifically, Part A of Figures 5.15 and 5.16 presents feature selection and preparation 
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flow. In order to decrease the risk of overfitting, two-sample t-tests were applied and a total 

of 20 neuroimaging features that showed the largest between group differences were first 

selected from the 522 multimodal neuroimaging features derived from structural MRI, 

DTI, and fMRI data. Then each value of the 20 selected features was normalized by using a 

z-score transformation in the feature-specific space. The normalized 20 top-ranked 

neuroimaging features were then entered to the training and validation procedures (Part B 

of Figures 5.15 and 5.16), which consisted of a nested CV (there were two CV loops, 

including an outer 5-fold CV loop to split the data into training set and validation set, and 

an inner loop to tune the hyperparameters for 7 basic models and 4 ELTs-based models 

using grid search in combination with LOOCV). More specifically, the 20 neuroimaging 

features were split into a total of 5 stratified folds such that each fold consisted of balanced 

20% of the entire data. The five-fold CV was performed by using these 5 stratified folds, 

where each trial dedicated four folds for training data and the remaining one for validation. 

Then for each iteration in 5-fold CV, the corresponding training set was sent into the 

LOOCV processing. In each iteration, one subject was extracted from the training set to act 

as a validation data, and the remaining subjects were trained to construct the models. 

According to the classification performance of the validation data, the hyperparameters for 

each model were tuned and the optimal hyperparameters setup were selected using grid 

search. More details of the hyperparameters are described in Table 5.2. We utilized the 

LOOCV to tune the hyperparameters of 7 basic models, including KNN, SVM, LR, NB, 
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LDA, RF, and MLP. Based on the hyperparameters of basic models, we applied LOOCV 

to tune the hyperparameters of 4 ELTs-based models, including max Voting, Bagging, 

AdaBoost, Stacking. As shown in Part C of Figures 5.15 and 5.16, during iterations of 

5-fold CV outer loop, the performance of each basic and ELTs-based models with the 

optimal hyperparameters derived from LOOCV inner loop iterations was evaluated. The 

group average of classification performance of each classifier derived from each iteration 

of 5-fold CV was generated. The 7 basic and 4 ELTs-based models were assessed 

according to the group average value of AUC of the ROC from iterations of 5-fold CV 

outer loop. The basic and ELTs-based models with the highest average AUC were selected 

as optimal classifiers. Based on the types of ELT-based models we evaluated and selected, 

the importance score corresponding each feature was then calculated using the ELT-based 

model and the corresponding basic models. 

 We also applied unsupervised learning (i.e., the hierarchical clustering) in our 

dataset. The hyperparameters, including the metric used to compute the linkage (affinity), 

the linkage criterion used to determine which distance between sets of observation 

(linkage) were also tuned by using grid search. Then the model with best classification 

performance (i.e., accuracy) was selected. 
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Table 5.1 Hyperparameters of 7 Basic Models and 4 ELTs-based Models 

 

Classifiers Hyperparameters 

K-Nearest Neighbors n_neighbors: [1, 3, 5, 7, 9]; algorithm: [‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’]; p: [1, 2, 3] 

Support Vector Machine C: [0.001, 0.01, 0.1, 1, 10, 100, 1000]; gamma: [‘auto’, ‘scale’]; kernel: [‘linear’, ‘rbf’, ‘poly’, ‘sigmoid’]  

Logistical Regression solver: [‘newton-cg’, ‘lbfgs’, ‘sag’, ‘saga’]; multi_class: [‘ovr’, ‘multinomial’, ‘auto’] 

Naïve Bayes N/A 

Random Forest 
n_estimators: list(range(3, 60, 5)); criterion: [‘gini’, ‘entropy’]; min_samples_leaf: [3, 5, 10]; max_depth: [3, 4, 5, 

6]; min_samples_split: [3, 5, 10]; bootstrap: [True, False] 

Linear Discriminant Analysis solver: [‘svd’, ‘lsqr’, ‘eigen’] 

Multilayer Perceptron 
activation: [‘identity’, ‘logistic’, ‘tanh’, ‘relu’]; solver: [‘lbfgs’, ‘sgd’, ‘adam’]; hidden_layer_sizes: np.arange(1, 

72, 10); max_iter: [4000] 

Ensemble Learning Technique-Voting estimators; voting: [‘hard’, ‘soft’] 

Ensemble Learning Technique-Bagging 
base_estimator; n_estimators: list(range(10, 150, 10)); max_samples=[0.2, 0.3, 0.4, 0.5]; max_features=[0.5, 0.6, 

0.7, 0.8, 0.9, 1.0] 

Ensemble Learning Technique-Boosting base_estimator; n_estimators: list(range(10, 150, 10)); learning_rate: list(range(0.01, 1, 0.01)) 

Ensemble Learning Technique-Stacking classifiers; meta_classifiers 
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5.2.4 Regression Models 

Following the classification procedures, we constructed the regression models to identify 

the relations between the neuroimaging features and the clinical inattentive and 

hyperactive/impulsive symptom T-scores. Based on the ELT-based classification results, 

the top three neuroimaging features were selected based on the weight of each feature in 

the optimal discriminators between ADHD and NCs, as well as between ADHD-P and 

ADHD-R. Then, we applied OLS, ridge regression (Hoerl and Kennard, 1970), LASSO 

regression (Santosa and Symes, 1986; Tibshirani, 1996), elastic net regression (Zou and 

Hastie, 2005) to construct the prediction models for inattentive and hyperactive/impulsive 

T-scores, respectively. The same nested CV utilized in previous steps were also conducted 

in regression model construction. The hyperparameters included the regularization 

strength (alpha), solver to use in the computational routines (solver) for ridge regression, 

the constant that multiplies the L1 term (alpha) for LASSO regression, the constant that 

multiplies the penalty terms (alpha), the elastic net mixing parameter (l1_ratio) for elastic 

net regression. During the iteration of 5-fold CV outer loop, the performance of each 

regression model with the optimal hyperparameters derived from LOOCV inner loop 

iterations was evaluated. The group average of regression performance, including the 

Pearson correlation coefficient and mean squared error (MSE) between predicted and 
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observed values, of each regression model derived from each iteration of 5-fold CV were 

calculated. 

5.2.5 Evaluation Measures 

The performance of each classification procedure classifier was measured in terms of 

classification accuracy, sensitivity, and specificity. The accuracy of a machine learning 

classification algorithm is to measure how often the algorithm classifies a data point 

correctly. It is defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.7) 

 

where 𝑇𝑃  is true positive, 𝑇𝑁  is true negative, 𝐹𝑃  is false positive, and 𝐹𝑁  is false 

negative. 

Sensitivity describes the proportion of actual positive cases that are correctly identified as 

positive. It implies that there will be another proportion of actual positive cases, which 

would get predicted incorrectly as negative. The sensitivity is defined as: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.8) 
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Specificity is a measure of the proportion of actual negatives, which got predicted as the 

negative. It implies that there will be another proportion of actual negative, which got 

predicted as positive and could be termed as false positives. It is defined as: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5.9) 

 

In addition, a ROC curve was plotted to illustrate the diagnostic ability of a binary 

classifier system as its discrimination threshold is varied. In the classification case, we 

calculated the confusion matrix for each iteration cycle of the classifier and calculated the 

AUC of ROC. AUC provides an aggregate measure of performance across all possible 

classification thresholds. One way of interpreting AUC is as the probability that the model 

ranks a random positive example more highly than a random negative example. The AUC 

of ROC is defined as: 

 

𝐴𝑈𝐶 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5.10) 

 

Among the equation of AUC, Precision and Recall are defined, respectively, as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.11) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.12) 

 

For the regression model, the Pearson correlation coefficient and MSE between predicted 

values and actual values were calculated. The Pearson correlation coefficient is a measure 

of the linear correlation between two variables. It is defined as: 

 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 (5.13) 

 

where 𝑐𝑜𝑣 is the covariance, 𝜎𝑋 is the standard deviation of 𝑋, 𝜎𝑌 is the standard deviation 

of 𝑌. 

The MSE of an estimator measures the average squared difference between the estimated 

values and the actual value, which is defined as: 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌̂𝑖)

2

𝑛

𝑖=1

 (5.14) 

 

Where 𝑌𝑖 and 𝑌̂𝑖 represent the actual and predicted value. 
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5.3 Results 

5.3.1 Demographic, Clinical and Behavioral Measures 

The demographic, clinical information and behavioral performance of all groups are 

summarized in Table 5.1. There were no significant demographic between-group 

differences. Moreover, all participants achieved a >85% rate for response accuracy when 

performing the fMRI task. Task performance measures, including reaction time, response 

accuracy rate, omission error rate, commission error rate did not show between-group 

differences (p>0.05). 
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Table 5.2 Demographic and Clinical Characteristics in Groups of Controls and ADHD Probands (and Further in the Sub-groups of 

Remitters and Persisters of the ADHD Probands) 

 

 
Controls 

(N=36) 

Probands 

(N=36) 
 

ADHD-R 

(N=18) 

ADHD-P 

(N=18) 
 

 Mean (SD) Mean (SD) p Mean (SD) Mean (SD) p 

Age 24.3 (2.3) 24.66 (2.0) 0.48 24.79 (2.2) 24.52 (2.0) 0.7 

Full-scale IQ 103.83(15.4) 97.96 (14.1) 0.1 99.22 (14.9) 96.71 (13.6) 0.6 

CAARS (T-score)       

     Inattentive 45.75 (8.8) 56.5 (13.2) <0.001 49.83 (10.9) 63.17 (12.0) 0.001 

     Hyperactive/Impulsive 42.97 (6.2) 53.64 (12.9) <0.001 46.17 (9.0) 61.11 (12.0) <0.001 

     ADHD Total 43.89 (8.2) 56.5 (14.7) <0.001 42.61 (7.5) 54.33 (8.8) <0.001 

ADHD semistructured interview (number of symptoms) 0.79 (1.6) 6.17 (5.2) <0.001 2.64 (2.0) 10.24 (3.6) <0.01 

 N (%) N (%) p N (%) N (%) p 

Male 31 (86.1) 30 (83.3) 0.74 16 (88.9) 14 (77.8) 0.37 

Right-handed 32 (88.9) 32 (88.9) 1 15 (83.3) 16 (88.9) 0.63 

Race   0.17   0.59 

     Caucasian 15 (41.7) 21 (58.3)  9 (50.0) 12 (66.7)  

     African American 13 (36.1) 7 (19.4)  4 (22.2) 3 (16.7)  

     More than one race 6 (16.7) 8 (22.2)  5 (27.8) 3 (16.7)  

     Asian 2 (5.6) 0 (0.0)  0 (0.0) 0 (0.0)  

Ethnicity   0.09   0.74 

     Hispanic/Latino 10 (27.8) 17 (47.2)  8 (44.4) 9 (50.0)  

Task performance measures Mean (SD) Mean (SD) p Mean (SD) Mean (SD) p 

     Reaction time average 395.8 (53.1) 422.8 (74.3) 0.08 431.1 (67.0) 
439.1 

(107.8) 
0.79 

     Reaction time std 129.6 (24.8) 137.2 (29.9) 0.25 136.2 (27.6) 138.2 (32.8) 0.84 

     Anticipation error 1.86 (2.1) 1.74 (1.6) 0.78 1.69 (1.6) 1.78 (1.7) 0.88 

     Commission error 0.33 (0.8) 0.85 (1.4) 0.07 0.75 (1.6) 0.94 (1.3) 0.7 

     Omission error 4.97 (5.8) 8 (10.8) 0.15 4.38 (4.0) 11.22 (13.8) 0.06 
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5.3.2 Classification Model Performance 

Tables 5.3 and 5.4 summarize the seven basic models classification performance between 

ADHD probands vs. controls, and between ADHD-P vs. ADHD-R, respectively. The 

classifier of SVM performed the best among the seven basic models regarding the AUC, 

accuracy, and specificity (AUC=0.87, accuracy=0.816, specificity=0.942) for the 

discrimination between ADHD probands and NCs; and again SVM performed the best 

among all the basic models regarding the AUC and accuracy (AUC=0.85, accuracy=0.7) 

for the classification between ADHD-P and ADHD-R. 
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Table 5.3 Results of Seven Basic Classifications Between the Groups of ADHD and 

Normal Controls 

 

Classifiers Specificity Sensitivity Accuracy AUC 

KNN 0.72 0.66 0.689 0.69 

SVM 0.942 0.69 0.816 0.87 

LR 0.756 0.742 0.75 0.85 

NB 0.778 0.718 0.748 0.86 

RF 0.866 0.75 0.705 0.82 

LDA 0.734 0.774 0.754 0.78 

MLP 0.782 0.746 0.764 0.84 

 

Table 5.4 Results of Seven Basic Classifications Between the Groups of ADHD Persisters 

and ADHD Remitters 

 

Classifiers Specificity Sensitivity Accuracy AUC 

KNN 0.4 0.934 0.667 0.72 

SVM 0.65 0.75 0.7 0.85 

LR 0.6 0.682 0.642 0.85 

NB 0.734 0.65 0.692 0.77 

RF 0.734 0.6 0.667 0.76 

LDA 0.568 0.518 0.542 0.63 

MLP 0.634 0.75 0.692 0.84 

 

 Table 5.5 summarizes the ADHD probands vs. controls classification performances 

of the ELTs. Additional details of ADHD probands vs. controls classification performance 

of ELTs are shown in Table 5.6. The bagging-based ELT with SVM as the basic model 

performed the best among all ensemble models (AUC=0.89). Tables 5.7 and 5.8 show 

ADHD-P vs. ADHD-R classification performances of ELTs with diverse basic models, 

and again demonstrated that the bagging-based ELT with SVM as the basic model 

performed the best among all ensemble models (AUC=0.9). 
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Table 5.5 Results of Four ELTs-based Classifications Between the Groups of ADHD and 

Normal Controls 

 

Classifiers Specificity Sensitivity Accuracy AUC 

ELT-Voting 0.808 0.718 0.763 0.87 

ELT-Bagging 0.734 0.798 0.766 0.89 

ELT-Boosting 0.67 0.77 0.721 0.88 

ELT-Stacking 0.756 0.742 0.75 0.82 

 

Table 5.6 Details of Four ELTs-based Classifications Between the Groups of ADHD and 

Normal Controls 

 

Classifiers Specificity Sensitivity Accuracy AUC 

ELT-Voting 

SVM, NB, LR 0.808 0.718 0.763 0.87 

ELT-Bagging 

KNN 0.894 0.66 0.777 0.85 

SVM 0.734 0.798 0.766 0.89 

LR 0.806 0.718 0.763 0.87 

NB 0.832 0.746 0.789 0.84 

RF 0.862 0.746 0.804 0.88 

LDA 0.836 0.748 0.791 0.82 

MLP 0.834 0.718 0.777 0.86 

ELT-Boosting 

KNN N/A N/A N/A N/A 

SVM 0.67 0.77 0.721 0.88 

LR 0.862 0.718 0.789 0.87 

NB 0.81 0.72 0.763 0.82 

RF 0.862 0.634 0.746 0.83 

LDA N/A N/A N/A N/A 

MLP N/A N/A N/A N/A 

ELT-Stacking 

First-level: SVM, LR; Second-level: LR 

 

0.756 0.742 0.75 0.82 
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Table 5.7 Results of Four ELTs-based Classifications Between the Groups of ADHD 

Persisters and ADHD Remitters 

 

Classifiers Specificity Sensitivity Accuracy AUC 

ELT-Voting 0.8 0.65 0.725 0.82 

ELT-Bagging 0.75 0.582 0.67 0.90 

ELT-Boosting 0.75 0.682 0.717 0.86 

ELT-Stacking 0.884 0.684 0.783 0.82 

 

Table 5.8 Details of Four ELTs-based Classifications Between the Groups of ADHD 

Persisters and ADHD Remitters 

 

Classifiers Specificity Sensitivity Accuracy AUC 

ELT-Voting 

SVM, NB, LR 0.8 0.65 0.725 0.82 

ELT-Bagging 

KNN 0.368 0.934 0.65 0.78 

SVM 0.75 0.582 0.67 0.9 

LR 0.55 0.616 0.65 0.86 

NB 0.95 0.568 0.758 0.85 

RF 0.784 0.684 0.73 0.82 

LDA 0.7 0.95 0.825 0.85 

MLP 0.634 0.782 0.67 0.86 

ELT-Boosting 

KNN N/A N/A N/A N/A 

SVM 0.75 0.682 0.717 0.86 

LR 0.684 0.616 0.65 0.79 

NB 0.734 0.668 0.7 0.78 

RF 0.784 0.7 0.742 0.77 

LDA N/A N/A N/A N/A 

MLP N/A N/A N/A N/A 

ELT-Stacking 

First-level: SVM, RF; Second-level: LR 0.884 0.684 0.783 0.82 

 

5.3.3 Receiver Operating Characteristic Curves of Classification Models 

The ROC curve for each basic classification procedure, including the unsupervised 

hierarchical clustering, for ADHD vs. NCs and ADHD-P vs. ADHD-R is plotted in Figures 
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5.17 and 5.18, respectively. In addition, The ROC curve for each ensemble learning 

classification procedure for ADHD vs. NCs and ADHD-P vs. ADHD-R is plotted in 

Figures 5.19 and 5.20, respectively. Results showed that classification performance 

parameters of the ELTs-based procedures were greatly improved compared to those of the 

basic model-based procedures. In addition, relative to the performance improvement 

between ensemble learning and basic models of the classification between ADHD and 

NCs, the performance improvement of classification between ADHD-P and ADHD-R is 

greater. 

 
 

Figure 5.17 AUC of each basic classification procedure for discrimination between 

ADHD probands and normal controls. 
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Figure 5.18 AUC of each basic classification procedure for discrimination between 

ADHD persisters and ADHD remitters. 
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Figure 5.19 AUC of each ELT-based classification procedure for discrimination between 

ADHD probands and normal controls. 
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Figure 5.20 AUC of each ELT-based classification procedure for discrimination between 

ADHD persisters and ADHD remitters. 

 

5.3.4 Importance Score of Classification Models 

The importance score of top three features for the classifications between ADHD probands 

and NCs, and between ADHD-P and ADHD-R are shown in Table 5.9. More specifically, 

the nodal efficiency of right IFG, the functional connectivity between right MFG and right 

IPL, the volume of right amygdala served as the top three important features in the 

classification model between ADHD and NCs. The nodal efficiency of right MFG, 



 

140 

 

functional connectivity between right MFG and right IPL, and betweenness centrality of 

left putamen played the three most important characteristics in the classification between 

ADHD-P and ADHD-R. 

 

Table 5.9 Importance Scores of Top Three Features in Classifications Between ADHD 

Probands and Normal Controls, as well as Between ADHD Persisters and ADHD 

Remitters 

 

Feature Importance Score 

ADHD vs. NC 

Nodal efficiency of right Inferior Frontal gyrus 0.134 

FC between right Middle Frontal gyrus and right Inferior Parietal lobule 0.111 

Volume of right amygdala 0.1 

ADHD-P vs. ADHD-R 

Nodal efficiency of right Middle Frontal gyrus 1.028 

FC between right Middle Frontal gyrus and right Inferior Parietal lobule 0.852 

Betweenness-centrality of left putamen 0.677 

 

5.3.5 Regression Model and Importance Score 

The regression results (Table 5.10) indicate that elastic net regression performed the best 

for the prediction of both inattentive and hyperactive/impulsive T-scores. Table 5.11 

shows the importance scores of the top three features of elastic net regression for 

inattentive and hyperactive/impulsive symptom T-scores. Specifically, the top three 

features for the prediction of inattentive T-score were the nodal efficiency of right IFG, the 

functional connectivity between MFG and IPL in right hemisphere, the volume of right 

amygdala. The top three features for the prediction of hyperactive/impulsive T-score 
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included the nodal efficiency in right IFG, the functional connectivity between right MFG 

and right IPL, the nodal efficiency of right MFG. 

 

Table 5.10 Pearson Correlation Coefficient and Mean Squared Error Performance of 

Regression Models 

 

Regression Pearson Correlation Coefficient MSE 

T-Inattentive 

OLS r=0.4603; p<0.001 126.3 

LASSO r=0.4592; p<0.001 124.6 

Ridge r=0.4605; p<0.001 126.1 

Elastic Net r=0.4689; p<0.001 121.1 

T-Hyperactive/Impulsive 

OLS r=0.3329; p=0.0043 126.5 

LASSO r=0.3395; p=0.0035 123.3 

Ridge r=0.3334; p=0.0042 126.3 

Elastic Net r=0.3488; p=0.0027 119.8 

 

Table 5.11 Importance Scores of Top Three Features in Elastic Net Regression for 

Inattentive and Hyperactive/Impulsive Symptom T-scores 

 

Feature r p Importance Score 

Inattentive 

Nodal efficiency of right Inferior Frontal gyrus -0.399 0.001 3.471 

FC between right Middle Frontal gyrus and right Inferior 

Parietal lobule 

0.405 <0.001 2.126 

Volume of right Amygdala -0.011 0.928 1.819 

Hyperactive/Impulsive 

Nodal efficiency of right Inferior Frontal gyrus -0.345 0.003 2.289 

FC between right Middle Frontal gyrus and right Inferior 

Parietal lobule 

0.361 0.002 2.134 

Nodal efficiency of right Middle Frontal gyrus -0.333 0.004 1.997 

 

5.4 Discussion 

To the best of our knowledge, this is the first study to apply ELT to multimodal 

neuroimaging features generated from structural MRI, DTI, and task-based fMRI data 
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collected from a sample of adults with childhood ADHD and controls, who have been 

clinically followed up since childhood. We found that the nodal efficiency in right IFG, 

functional connectivity between MFG and IPL in right hemisphere, and right amygdala 

volume were the most important features for discrimination between the ADHD probands 

and controls, while the nodal efficiency of right MFG, functional connectivity between 

right MFG and right IPL, and betweenness-centrality of left putamen played the most 

important roles for discrimination between the ADHD-P and ADHD-R. Moreover, the 

classification performance parameters of ELT-based procedures were superior to those of 

the basic classifiers. 

5.4.1 Neurobiological Markers for Discriminations 

Our current study observed the important roles of nodal efficiency in right IFG and 

functional connectivity between right MFG and right IPL for discrimination between 

ADHD probands and NCs. The abnormalities of these regions have been supported by a 

variety of existing neuroimaging and machine learning studies. Specifically, both 

task-based and resting-state fMRI studies have consistently reported the decreased 

functional activation in right IFG (Rubia et al., 1999; Silk et al., 2005; Cao et al., 2006; 

Konrad et al., 2006; Smith et al., 2006; Rubia et al., 2019) and reduced functional 

connectivity between right MFG and right IPL (Vance et al., 2007; Lin et al., 2015) in 

children with ADHD as compared with NCs. In addition, multivariate machine learning 



 

143 

 

and ELT-based studies have commonly reported that functional activation and 

connectivity in frontal and parietal areas are associated with improved classification 

between children with ADHD and NCs (Brown et al., 2012; Colby et al., 2012; Fair et al., 

2012; dos Santos Siqueira et al., 2014; Deshpande et al., 2015; Iannaccone et al., 2015; 

Qureshi et al., 2017). They have supported the hypothesis that functional abnormalities in 

frontal and parietal areas, which are critical components of the attention network in human 

brain, especially stimulus-driven top-down control, are associated with the symptom 

emergence of childhood ADHD (Posner and Rothbart, 2009). Additionally, we found that 

the volume of right amygdala played a vital role in discrimination of ADHD probands and 

controls. The findings of amygdala anatomical abnormities in children with ADHD were 

supported by many previous studies. Amygdala plays as a critically important role in 

emotion regulation (Davidson et al., 2000; Banks et al., 2007; Domes et al., 2010) and thus 

structural anomalies associated amygdala have been widely observed in children (Van 

Dessel et al., 2019) and adults with ADHD (Tajima-Pozo et al., 2018), which suggests that 

the aberrant structure of amygdala may be associated with less control of impulsivity and 

delay aversion (Van Dessel et al., 2018). 

 Additionally, our findings point to the important roles of nodal efficiency in right 

MFG, functional connectivity between right MFG and right IPL for discrimination 

between ADHD-P and ADHD-R, and findings were supported by a variety of existing 

neuroimaging studies. More specifically, reduced activation and functional connectivity in 
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IFG, MFG, and fronto-parietal regions were observed in ADHD-P when compared to 

ADHD-R (Clerkin et al., 2013; Mattfeld et al., 2014; Schulz et al., 2017). The functional 

activation and connectivity in frontal and parietal regions during cognitive control were 

associated with the diverse adult outcomes of ADHD diagnosed in childhood, with 

symptom persistence linked to reduced activation or symptom recovery associated with 

higher connectivity within frontal areas (Clerkin et al., 2013; Mattfeld et al., 2014; Francx 

et al., 2015; Schulz et al., 2017). Although several existing multivariate machine learning 

and ELT-based studies have commonly reported that the anatomical features in frontal and 

parietal areas are associated with the classification performance between adults with 

ADHD and group-matched NCs (Chaim-Avancini et al., 2017; Zhang-James et al., 2019), 

no machine learning study has been conducted to identify the classification pattern for 

discrimination between ADHD-P and ADHD-R. We further observed that the features of 

nodal efficiency in right IFG, functional connectivity between right MFG and right IPL, 

and right amygdala volume were associated with inattentive symptom severity T-score, 

while the nodal efficiencies of right IFG and MFG and functional connectivity between 

MFG and IPL in right hemisphere were associated with hyperactive/impulsive symptom 

severity T-score. These findings suggest the significant involvement of frontal and parietal 

lobes in right hemisphere for both inattentive and hyperactive symptom persistence of 

childhood ADHD (Francx et al., 2015). 
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5.4.2 Performance of Classification and Regression Models 

Moreover, we found that the classification performance parameters of ELT-based 

procedures were improved compared to those of basic models. The ELTs have been 

developed in the big data science field to adaptively combine multiple basic classifiers in 

order to strategically deal with feature variance and bias, and optimize prediction 

performances (Hansen and Salamon, 1990; Schapire, 1990; Dror et al., 2011; Balakrishnan 

et al., 2012). According to our classification results, bagging, sampling with replacement, 

would help to reduce the chance overfitting complex models. In our study, bagging with 

the basic model of SVC was applied to train our model and proved to be the best classifier 

for both discriminations. In addition, we used AUC statistic for model evaluation, instead 

on commonly used accuracy, which can be influenced by case-control imbalance in data 

sets (Hanley and McNeil, 1982; Fawcett, 2006). Our study showed a satisfactory 

performance of AUC with 0.89 and 0.9 for the discrimination between groups of ADHD 

and NCs, and between the groups of ADHD-P and ADHD-R, respectively. Although we 

had a relatively small sample size, our findings suggest that ELT-based models performed 

better than basic models. 

 In addition, the elastic net-based regression model demonstrated the best 

performance parameters when investigating the relations between the neuroimaging 

features and clinical symptom measures in the ADHD probands. The reason elastic net 

regression had the best performance was that it compromised the LASSO penalty (L1) and 
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the ridge penalty (L2) (Zou and Hastie, 2005). The LASSO (L1) penalty function performs 

variable selection and dimension reduction by shrinking coefficients (Tibshirani, 1996), 

while the ridge (L2) penalty function shrinks the coefficients of correlated variables toward 

their average (Hoerl and Kennard, 1970). Therefore, as for the study with relatively small 

sample size, the combined method obviously performed better than isolated ones, e.g., 

LASSO regression and ridge regression. 

5.4.3 Limitations 

Although the ELTs improved the model classification performance, especially for the 

cases when the base models had weak classification results, the current study has some 

limitations. First, our cohort consisted of both male and female subjects, but many more 

males. It is still unclear whether the discrimination models of ADHD differ between males 

and females. The future work may focus on constructing the classification models for both 

males and females. Second, the sample size of this study is relatively small. Although our 

study provided a considerable robust algorithm to reduce the overfitting, the relative small 

sample size may still influence the model’s performance. Future work will need a much 

larger cohort to test the ELTs. 
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5.5 Conclusion 

In summary, together with existing findings, results of this study suggest that structural and 

functional alterations in frontal, parietal, and amygdala areas and their functional 

interactions significantly contribute to accurate discrimination of ADHD probands from 

controls; while abnormal fronto-parietal functional communications in the right 

hemisphere plays an important role in symptom persistence in adults with childhood 

ADHD. Furthermore, the classification performance parameters (accuracy, AUC of the 

ROC, etc.) of the ELT-based procedures were improved than those of basic model-based 

procedures, which suggests that ELTs may have the potential to identify more reliable 

neurobiological markers for neurodevelopmental disorders. 
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CHAPTER 6  

CONCLUSION AND FUTURE DIRECTIONS 

 

This dissertation is the first study to identify the neurobiological markers for remission and 

persistence of childhood-onset ADHD using multimodal MRI and advanced machine 

learning techniques. It is one of the first studies to comprehensively examine the functional 

and structural alterations associated with onset and diverse adult outcomes of childhood 

ADHD, and utilized advanced machine learning technique to identify the importance of 

features. First, this research has been conducted to determine the neurobiological 

mechanisms associated with remission and persistence of childhood ADHD. Most existing 

ADHD neuroimaging studies have focused on the etiology of ADHD while few of them 

have been conducted to determine the pathology of ADHD. Second, as to fMRI data 

analysis project, the utilization of topological properties of cue-evoked attention 

processing network could help us investigate the complex organization of the functional 

brain network. Such a complexity arises from several, integrated, segregated, and 

distributed functional networks around critical areas involved in the specific cognitive 

function. The characteristic of small-world network enables information to travel quickly 

and efficiently even between far brain structures, as well as to prevent the uncontrolled 

spread of information across the whole network (Hilgetag and Kaiser, 2004). Graph 

theoretic technique provides powerful mathematical tools to study the behavior of complex 
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systems of interacting elements (Bullmore and Sporns, 2009). It has been widely used to 

characterize local and distributed interactions in the brain, and altered topological 

characteristics in functional brain networks have been observed in psychiatric disorders 

(Bassett and Bullmore, 2009). Third, this dissertation applied functional and structural 

MRI and DTI in the same study sample to identify the functional and structural markers, 

that are associated with symptom persistence and remission in young adults with childhood 

ADHD. Fourth, ensemble learning technique in combination with cross validation were 

applied in this research to deal with complicated feature variations, biases, and optimized 

prediction performances. 

 

6.1 Implications of Current Findings 

Our current findings of neurobiological mechanisms regarding emergence and diverse 

adult outcomes are tremendously valuable to the current diagnosis, longitudinal inference 

and treatment. Although the diagnostic criteria for ADHD have evolved over time, the 

assessment and tools for evaluation have remained essentially the same. The use of 

teacher- or parent-reported behavior-rating scales started in the late 1960s; now focus is on 

the behavioral criteria for ADHD as described in the DSM-5. Unfortunately, the objective 

assessments currently available for ADHD are of limited use in clarifying the diagnosis, 

including neuropsychological tests as well as neuroimaging. In addition, current treatment 

strategies for ADHD symptoms include medication-based, behavior-based, and combined 
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interventions. Stimulant medications that affect the dopaminergic system, including 

methylphenidate (Ritalin, Concerta, Metadata, Methylin) and certain amphetamines 

(Dexedrine, Dextrostat, Adderall), are most commonly prescribed for ADHD. Besides 

medications, behavior-based treatments, including education and/or behavior therapy, and 

social skills training have also been implemented in practice for ADHD interventions. 

Nevertheless, there is yet no curative treatment for ADHD without thoroughly 

understanding its heterogeneous and developmental pathophysiological mechanisms. 

Psychiatric and behavioral comorbidities, such as depression, anxiety disorder, bipolar 

disorder, substance use, and personality disorders, often co-occur with ADHD and result in 

increased difficulties for appropriate diagnoses and treatments. Although different 

pharmacological treatment strategies have been applied to ADHD patients with various 

comorbidities, evidence from a large body of studies showed that treatment responses from 

different patients are widely different in terms of the types of pharmacological treatments, 

dosage requirements, tolerability, response rates, and adverse-event profiles. Multiple 

factors may contribute to the treatment response heterogeneity in ADHD. Understanding 

the neural mechanisms that underpin this variability in the adult outcomes of childhood 

ADHD can inform novel treatment approaches and might provide biomarkers to help 

predict outcome. 

  In the light of such potential, the results from Aim1 of this dissertation highlight 

the importance of cue-evoked attention processing brain network. Among such brain 



 

151 

 

network, missing network hubs in IPL and lacking fronto-parietal functional 

communications were observed in ADHD probands relative to NCs. Furthermore, right 

frontal lobe functional impairments may relate to inefficient fronto-parietal functional 

interactions for sensory and cognitive information processing and symptom persistence in 

young adults with childhood ADHD. Thus, this finding could help better understand the 

relationship between inefficient fronto-parietal functional communications and inattentive 

symptom. It is believed that results from this dissertation would encourage future studies to 

identify the role of fronto-parietal functioning in the diverse adult outcomes of childhood 

ADHD. Results from Aim2 observed a reduced GM volume in right putamen and a 

decreased volume in left parieto-insular WM tract in ADHD probands relative to NCs; as 

well as an important role of striato-cortical, especially caudate-parietal WM fiber tracts 

determining the outcomes in adults with childhood ADHD. The findings indicated that 

optimal structural development in the caudate-parietal WM tract may partially modulate 

the functional integrity of caudate and parietal cortex, and together contribute to symptom 

remission in adults with childhood ADHD.  

 Although Aims 1 and 2 applied statistical analysis to identify the neural 

mechanisms of remission and persistence of childhood ADHD, two possibilities existed to 

be further identified. One possibility is that symptom remission in adulthood is due to the 

correction of childhood neural anomalies, whereas clinical persistence is tied to the 

persistence of neural anomalies. Alternatively, remission might arise from neural 
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reorganization as novel systems are recruited to help the individual compensate for core 

deficits of ADHD. These two models make different predictions about the remitted brain. 

In the first model, neural features in those with symptom remission will resemble those 

seen among individuals never affected by ADHD. If, however, neural reorganization and 

compensation drives remission, then the remitted brain will differ from the never affected, 

albeit in potentially beneficial ways. Finally, it is also possible that some anomalies that 

reflect the childhood presence of ADHD could persist, regardless of clinical recovery. By 

this reckoning, both those who have symptom remission and those with symptom 

persistence will show very similar atypical neural features, despite different clinical 

presentation. 

 Current recommendations for diagnostic evaluation of possible ADHD include a 

comprehensive history taking of prenatal, perinatal, and family history; school 

performance; environmental factors; and a detailed physical examination. During the 

physical examination, particular attention should be paid to vital signs, and a mental health 

assessment used to probe for comorbid conditions should be performed. Although 

neuroimaging provides a window into the developing brain, allowing us to examine safely 

and noninvasively brain anatomy, function, biochemistry, and connectivity. When applied 

to neurodevelopmental disorders, such as ADHD, imaging in vivo could provide objective 

tools to inform diagnosis, prognosis, and stimulate discovery of novel therapeutics. Thus, 

the efforts to translate neuroimaging into clinical tools should be highlighted. 
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 The most significant contribution of this dissertation towards understanding the 

neurobiological mechanisms of onset and remission/persistence of childhood ADHD and 

the translation from neuroimaging to clinical tools is the utilization of machine learning, 

i.e., ensemble learning technique in Aim 3. Although this dissertation implemented novel 

analytic approaches applied to multimodal neuroimaging data to help bring imaging into 

the clinic of the future. The one objective of this dissertation is that we can translate the 

modest, but significant neural differences between groups—those with and without ADHD 

or those with remitted ADHD and persistent ADHD—to the individual level. This 

dissertation achieved a 0.89 of AUC for discrimination between ADHD proands and NCs 

with the important roles of nodal efficiency in right IFG and functional connectivity 

between right MFG and right IPL, as well as the volume of right amygdala as well as a 0.9 

of AUC for discrimination between ADHD-P and ADHD-R with the important roles of 

nodal efficiency of right MFG, functional connectivity between right MFG and right IPL, 

and BC of left putamen. The results of Aim 3 indicated that for both diagnosis and recovery 

treatment, relative to neuroanatomy, the functional neuroimaging studies should be central 

in demonstrating how psychostimulants may work, and in the future might be used to 

provide neurofeedback to shift brain activation into more neurotypical ranges. 
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6.2 Limitations and Future Directions 

Several limitations in the methodology and the research process employed in this 

dissertation must be noted. First, a major limitation in these studies is that imaging data 

were acquired in adulthood. Thus, the similarity between the remitted and never affected 

groups could arise if, in the group with remission, there were more typical neural features 

in childhood that had been carried forward into adulthood. A critical next stage is to collect 

prospectively both clinical and imaging data from childhood into adulthood and use these 

data to define the bonds between neural and clinical trajectories. Second, The scientific 

community has also been interested in understanding how neurotransmitter systems are 

involved in ADHD because animal models, neuroimaging studies, and pharmacologic 

studies provide support for the involvement of dopaminergic and adrenergic derangements 

in ADHD (Solanto, 2002; Del Campo et al., 2011). However, no evidence-based methods 

for assessing these neurotransmitter systems have been developed and shown to have 

utility in the ADHD diagnostic assessment. Future studies should be conducted to identify 

the relationship between neurotransmitter systems and neuroimaging findings. In addition, 

this dissertation has a limited sample size since the characteristic of longitudinal study. To 

overcome this barrier, collaborative studies that will provide more robust measures of the 

functional and structural brain abnormalities in ADHD should be conducted before 

neuroimaging becomes clinically useful. Such collaborations face challenges and need to 
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be further solved, such as integrating data acquired using different scanners and sequences, 

ideally reflecting a process central to ADHD or one of its underlying.  
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