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ABSTRACT

TRANSFER LEARNING: BRIDGING THE GAP BETWEEN
DEEP LEARNING AND DOMAIN-SPECIFIC TEXT MINING

by
Chaoran Cheng

Inspired by the success of deep learning techniques in Natural Language Processing

(NLP), this dissertation tackles the domain-specific text mining problems for which

the generic deep learning approaches would fail. More specifically, the domain-specific

problems are: (1) success prediction in crowdfunding, (2) variants identification in

biomedical literature, and (3) text data augmentation for domains with low-resources.

In the first part, transfer learning in a multimodal perspective is utilized to

facilitate solving the project success prediction on the crowdfunding application.

Even though the information in a project profile can be of different modalities such

as text, images, and metadata, most existing prediction approaches leverage only

the text modality. It is promising to utilize the visual images in project profiles

to find out how images could contribute to the success prediction. An advanced

neural network scheme is designed and evaluated combining information learned from

different modalities for project success prediction.

In the second part, transfer learning is combined with deep learning techniques

to solve genomic variants Named Entity Recognition (NER) problems in biomedical

literature. Most of the advanced generic NER algorithms can fail due to the restricted

training corpus. However, those generic deep learning algorithms are capable of

learning from a canonical corpus, without any effort on feature engineering. This work

aims to build an end-to-end deep learning approach to transfer the domain-specific

knowledge to those advanced generic NER algorithms, addressing the challenges in

low-resource training and requiring neither hand-crafted features nor post-processing

rules.



For the last part, transfer learning with knowledge distillation and active

learning are utilized to solve text augmentation for domains with low-resources. Most

of the recent text augmentation methods heavily rely on large external resources.

This work is dedicates to solving the text augmentation problem adaptively and

consistently with minimal resources for token-level tasks like NER. The solution can

also assure the reliability of machine labels for noisy data and can enhance training

consistency with noisy labels.

All the work are evaluated on different domain-specific benchmarks, respec-

tively. Experimental results demonstrate the effectiveness of those methods. The

advantages also indicate promising potential for transfer learning in domain-specific

applications.
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CHAPTER 1

INTRODUCTION

Though the generic deep learning models perform well in canonical tasks, there

is less evidence of them being utilized well in the improvement of domain-specific

applications due to the unique challenges in the varied background and restricted

resources. Nevertheless, the significant success of deep learning in generic tasks

demonstrated it is capable of learning tremendous knowledge given large corpus, and

it is promising to exploit that knowledge to solve other domain-specific problems.

In this dissertation, we propose to use transfer learning to bridge the gap between

generic deep learning models and domain-specific tasks.

For the first part, we consider the problem of project success prediction on

crowdfunding platforms by introducing a multimodal solution. Despite the fact

that the information in a project profile can be of different modalities such as

text, images, and metadata, most existing prediction approaches leverage only the

text dominated modality. Little study has been conducted to evaluate the effects

of visual images on success prediction. One focus is to transfer the information

learned from heterogeneous modality and to find a principle framework of combining

different modalities. Moreover, meta information has been exploited in many existing

approaches to improve prediction accuracy. However, such meta information is

usually limited to the dynamics after projects are posted. Such a requirement of

using after-posting information makes both project creators and platforms not able

to predict the outcome in a timely manner. We aim to design and evaluate advanced

neural network schemes that combine the transfer learning knowledge from different

modalities to study the influence of sophisticated interactions among textual, visual,

and metadata on project success prediction. Our approach requires only information

collected from the pre-posting profile, which makes pre-posting prediction possible.
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For the second part, we consider the problem of Named Entity Recognition

(NER) in biomedical scientific literature, more specifically in genomic variants

recognition. Most of the advanced generic NER algorithms can fail due to the

out-of-vocabulary words in the biomedical literature and low-resource corpus. Efforts

are needed to incorporate the domain-specific knowledge into those advanced generic

NER algorithms. Our focus in this research is to transfer the domain knowledge

learned from a large collection of scientific literature to facilitate the variants

recognition tasks. On the other hand, the state-of-art approaches in most of the

domain-specific applications are still heavily relying on feature engineering. The

hand-crafted features only work well on specifically customized methods but cannot

be generalized to other data, which most likely has out-of-scope rules, even sharing

the same domain-specific background. We aim to investigate the end-to-end deep

learning approaches to transfer the generic NER algorithms to genomic variation

recognition.

For the third part, we target the text augmentation problem for general token-

level natural language processing tasks by utilizing knowledge distillation and other

techniques. Data augmentation has proved its effectiveness in promoting performance

in computer vision and speech recognition applications. However, it is non-trivial to

do text augmentation, and it is more sophisticated than image augmentation due

to the fact that text augmentation is not an invariant transformation. One focus is

on how to select the non-informative words for replacement adaptively. The other

one is on how to train a model with a combination of clean data and noisy data

consistently and confidently as well as lifting the performance. Text augmentation is

an emerging field, and only a few approaches have been proposed recently. Most of

them require massive external resources, which poses impassable obstacles for domains

with restricted resources. We introduce, for the first time, a consistency-based

unsupervised data augmentation method for the token-level task and a model to

2



automatically infer true labels for the new noisy unlabeled dataset. We also consider

the low-resource domains, in which often large annotated sets are not available or

external resources are restricted.

In the end, we conclude with a discussion of the role of transfer learning in

those domain-specific tasks and some potential directions for future research towards

a fully automated approach in other domain-specific applications.
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CHAPTER 2

TRANSFER LEARNING IN MULTIMODAL DEEP LEARNING FOR
SUCCESS PREDICTION ON CROWDFUNDING PLATFORM

2.1 Background

Crowdfunding platforms, like Kickstarter (kickstarter.com), IndieGoGo (indiegogo

.com), and GoFundMe (gofundme.com), are emerging portals for designers, artists,

startups, small businesses and entrepreneurs to raise funds for their projects through

the internet. Such platforms provide opportunities for all the people who have creative

ideas to pitch a campaign to gather capital and bring their ideas into reality. The

fundraisers seek funding and will provide certain rewards depending on the amount

of money provided by the backer, either in the form of future tangible products,

experiences, services, or just having their names listed on a thank-you-board.

Moreover, the audience demographics, aesthetic design, and terminologies are entirely

different across varied fields from arts to sciences on crowdfunding platforms. For

example, the owners of a local restaurant started a campaign to rebuild their business,

which was devastated by Superstorm Sandy, and in return, the backers would have

their names listed on the restaurant’s website or a free dinner for the family as

acknowledgement1; a teenager created a project to raise money for her college

education and will give self-designed apparel back to donors2; a technician posted

a profile explaining his innovative product, monetary goal, and timeline to deliver the

goods while the backers could have the product after the project is completed3.

Particularly, crowdfunding collects perks from individuals in the crowd rather

than a large amount of funds from traditional fundraising professionals. Along

with other financial alternatives such as microfinance and peer-to-peer lending,

1www.kickstarter.com/projects/573995669/rebuild-a-better-bait-and-tackle (accessed on
Mar 31, 2020)
2www.kickstarter.com/projects/pythontear/pt-apparel (accessed on Mar 31, 2020)
3www.kickstarter.com/projects/jalousier/flipflic (accessed on Mar 31, 2020)
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crowdfunding platforms have quickly risen to prominence due to their promising

and attractive capital raising ability. Tens of thousands of innovative projects

were fostered in the past few years. With the JOBS ACT and its subsection the

CROWDFUND ACT 4 [8] signed into law by former President Obama, several new

crowdfunding sites are expected to emerge very soon.

Project success prediction in crowdfunding is very challenging. There are

recent efforts to elucidate contributing factors to make a successful project. The

major existing studies consider only dynamically factors after projects are posted.

Several factors relevant to success have been identified including the number of

backers [34, 114], promotion on social media [34, 59], comments and replies [120], or

funds pledged dynamic during a campaign [120]. All those post-launch factors show

powerful predictive potential. Nevertheless, both project creators and platforms can

predict the outcome only after the project has been posted for a certain period. It is

desirable to predict project outcomes even before a project is posted. For platforms,

they can reserve spaces for the projects more likely to succeed; for creators, they may

revise their profiles proactively and save their time of going through predicted failure.

Moreover, most existing research focuses primarily on the text in profiles. Visual

images as a critical modality in pre-launch profiles have not been studied yet, to

the best of our knowledge. In most contexts, images are used to deliver ideas in a

more effective way than text. For example, the product designers have to describe

their concrete idea about the prototype by images, while artists need to demonstrate

their artifacts by showing visible sketches. Some funding campaigns illustrate their

blueprint merely by images instead of words5. With the huge collection of images

available, it is appealing to ask: can we improve project success prediction accuracy

by leveraging image information? There are two major challenges, however. First, as

4http://www.gpo.gov/fdsys/pkg/BILLS-112hr3606enr/pdf/BILLS-112hr3606enr.pdf
(Accessed on Mar 31, 2020)
5www.kickstarter.com/projects/414768297/keepers-of-the-moonandsun-english-edition
(Accessed on Mar 31, 2020)

5



Figure 2.1 Examples of profile images on crowdfunding platform. For each case,
images in the left column are from the successful projects, while the ones in the right
column are from the failed projects. There is a clear difference in visual style between
successful and failed projects.
Source: kickstarter.com

shown in Figure 2.1, image content understanding in the context of crowdfunding is far

from trivial. Second, there may exist complex interactions among different modalities

(image, text, animation, etc.) in a profile that works together to deliver success.

The key solution for the first challenge is to transfer the knowledge from ImageNet,

the canonical task in computer vision. Then, we also need to investigate and

evaluate different multimodal representations and find a principled way to integrate

the heterogeneous textual and visual information, as well as other modalities.

In this research, we introduced a Multimodal Deep Learning (MDL) model to

predict the success of crowdfunding projects. To the best of our knowledge, our work

was the first attempt so far to introduce the image factor to crowdfunding success

prediction. The major contributions of this chapter can be summarized as follows.

• We designed the multimodal feature representation for the profile with textual,
visual contents, and metadata. We investigated fusion schemes with different
modalities and evaluated our multimodal architecture on the real crowdfunding
dataset.

• We systematically investigated the contribution of images to project success.
Our extensive experiments proved the effectiveness of images for promoting the
outcome prediction from different aspects.
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• Our approach requires only the information collected from the pre-launch
profiles, which makes early prediction of project outcome possible. Such early
predictions will benefit both platforms and creators.

The rest of this chapter is organized as follows. (1) We summarize previous

studies related to crowdfunding, multi-sources applications in social media, and

compare our work with the previous studies. (2) We highlight our proposed model

for analyzing and predicting crowdfunding success, as well as demonstrate our

feature representation for heterogeneous data sources. (3) We present our dataset,

preprocessing steps, and experimental settings. (4) We report the results, examine to

what extent the images could improve the performance of project success prediction,

investigate the specific components from images, and discuss the implications of our

findings. (5) We conclude with remarks and future directions of our research work.

2.2 Related Work

This work is connected to areas in project success prediction, and multimodal analysis.

2.2.1 Project Success Prediction

The booming trend of crowdfunding has drawn much attention from academia. Early

research in crowdfunding has been performed by scholars in economics, management,

and business, who primarily explored it from a financial perspective [1, 6, 71] or

investigated its impacts on public sectors like education, business, and healthcare.

Later researchers in fields of Computer Supported Cooperative Work (CSCW) and

Human-Computer Interaction (HCI) studied the profile design and reward design of

the campaign and tried to find why and how those crowdfunding sites are motivating

extrinsic participants to post or fund projects [39, 49, 4, 69, 3, 91]. Most of

the research in these fields is conducted from the perspective of project creators.

Helpful supporting tools and strategies to reach a higher success rate are developed

for both platforms and founders. Hui et al. [49] studied the work of creators on
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their preparation, marketing, and follow through with projects. Similarly, Daoyuan

[25] discovered that the creator’s previous reputation and reciprocal history could

positively contribute to the success of projects on Kickstarter. Gerber et al. [39]

revealed that although the ideas on the crowdfunding platforms span across fields

and vary in scope the anticipated motivators are connected by the commitment to an

idea and a community with similar interests.

More recently, the project success prediction of crowdfunding projects has

become a hot topic in NLP fields. The conventional approach was to build a

machine learning classifier like SVM based on meta features from the campaign

profile. Greenberg et al. [40] showed an improvement by utilizing various decision

tree algorithms and SVM trained with features such as whether the video was

present, the sentence count in the profile, project goals, project duration, and other

possible additional factors like creators’ demographic attributes. Some advanced

approaches utilize textual descriptions while certain models additionally exploit

dynamic information by monitoring social media or crowdfunding campaigns. Mitra

and Gilbert [69] analyzed the linguistic features with 59 other common features to

predict project success. Yuan et al. [112] proposed a text analytic topic framework

to predict the fundraising success by extracting latent semantics from the text

description with a combination of common numerical features. Etter et al. [34]

and Zhao et al. [120] studied dynamic time-series factors by tracking social media

and monitoring the dynamic features like backers and money pledged status during

the campaign. Zheng et al. [121] found the degree of the creator’s social network

is positively associated with project success since creators can broadcast their

crowdfunding projects to a broader audience through their social network. Li et al.

[59] formulated the success prediction problem from the aspect of censored regression

and achieved better performance utilizing temporal features from pledging and social

media dynamics.
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From the prior descriptions, we can observe that most of the earlier works

focused on textual profile and post-launch information, which inhibits both project

creators and platforms from being able to predict the outcome early. Therefore, to

make pre-posting prediction possible, our approach focused on the joint analysis of

the textual and visual information collected from the pre-launch stage, which has

not been fully explored yet in previous studies. The dynamic conditions during the

funding process, like changes of the money pledged, creators’ social media accounts,

the number of comments and backers, are beyond the scope in our research. Daoyuan

[25] also discovered that the category could moderate the effect of the content related

factors, like narrative richness. Furthermore, none of them explored the role of images

in profiles. Introduction of the visual modality could leverage textual data and their

associated meta information to identify extra engaging underlying factors.

2.2.2 Multimodal Analysis

The multimodal approaches using joint text and image analysis have been explored

in social media for quite a while, e.g., multimodal semantic analysis [82], multimedia

market evolution monitoring [114], and multimodal news analysis [80]. To encode

visual information, most of the earlier approaches relied on hand-crafted features

combined with methods to aggregate manually engineered descriptors before the rise

of CNNs. The Bag-of-Visual-Words (BoVW) [21] model was the common choice of

image feature representation. It would collect codewords from feature descriptors like

Scale-Invariant Feature Transform (SIFT) [62], and then learn the codebooks from

unsupervised learning. The feature descriptors for BoVW usually are extracted from

local extrema, like edges and corners, inside a small sub-region. It ignores the global

semantic relations and can work effectively only if the provided feature descriptors

are well-matched. It is more suitable for tasks of classification or identification on

small data sets. However, it is hard to obtain the optimal size and computationally
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infeasible on large datasets [17]. As the generation of large codebooks requires

enormous computational resources, it fails on large datasets with more than millions

of descriptors as our case, and its performance is variable and less satisfactory due

to the complexity and diversity of image patterns [36]. In more recent works, a

hybrid architecture was introduced to leverage the best of the BoVW and deep

neural networks. One approach was to combine the pre-trained deep features with

BoVW [114]. In contrast, some other approaches projected the hand-crafted feature

descriptors to lower dimensionality and feed them to neural networks [77].

A CNN pre-trained with a large database, like ImageNet, can be used as

off-the-shelf feature extractor. The transfer feature learning from existing deep

convolutional neural networks showed promising results in varied research projects

[87, 51, 63, 99]. Nevertheless, this approach has not been proved to be an effective

method in crowdfunding project success prediction. Moreover, the adoption of the

existing approach was hindered due to the differences of scale of amount of images

per profile and much diverse visual context, which needs to be carefully addressed in

this problem.

2.3 Problem Formulation

As a crowdfunding project example illustrated in Figure 2.2, the typical structure

of the campaign page includes a goal, a project description (red box at the bottom)

embedded with tens of figures (red box in the middle), perk structure (right column

of the webpage), links to the creator’s social media platforms, and some metadata

(red box on the top) like category, location.

Let D represent the crowdfunding dataset with N profiles. The definition of

success is that the creators can reach their initial goal by the end of the limited

campaign period. Then yk ∈ {±1} specifies the ground-truth outcome whether

project k ∈ [1, N ] is successful or failed. Our goal is to learn a multimodal feature
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Figure 2.2 Framework Overview of Our Multimodal Deep Learning Framework.
The input is from pre-posting profile features. There are three pipelines in our
framework: (1) top branch for meta modality; (2) middle branch for visual modality;
(3) bottom branch for textual modality.

map F (X) for given D to predict the success outcome Y. The feature mapping is

defined as:

F (X) = f(WF · (φ(XT )⊕ φ(XI)⊕ φ(XM)) + bF ) (2.1)

where the symbol ⊕ means concatenation, f(·) is a non-linear activation function

such as rectified linear unit (ReLu), and WF , bF are weight and bias, respectively. In

this equation, φ(·) can be considered as a feature mapping of modalities for text XT ,

images XI , and metadata XM .

In our research, the training objective function is based on cross entropy:

L = −
N∑
k=1

[δ(yk = 1) log(pk) + δ(yk = −1) log(1− pk)] (2.2)

In the above, δ(·) is the indicator function, and pk ∈ [0, 1] is the estimated

probability for the class with label yk = 1. And our implementation of loss layer

combines the sigmoid operation for computing pk given F (X).
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2.4 Joint Fusion of Heterogeneous Features

Figure 2.2 illustrates how our system computes multimodal representations. As shown

in Figure 2.2, our MDL model has three branches: (1) bottom branch for encoding

textual input T ; (2) middle branch for encoding visual content of images I; (3) top

branch for encoding meta informationM. Each branch is composed of either a CNN

subnet or fully connected hidden layers. In general, each branch can have a different

number of layers, and the inputs for the three branches could be produced by their

own upstream networks, such as word embedding or pre-trained ImageNet. At the

end of each branch, the feature maps from three streams are concatenated into one

feature map.

Textual Feature. We applied two popular feature representations for the textual

input: Bag of Words (BoW) [10] with Term Frequency-Inverse Document Frequency

method (TF-IDF) [84], and word embedding. In BoW, the text in a given profile

is encoded as a histogram of weights for the words appearing in the T , and the

weights computed with the TF-IDF weighting scheme. Despite the fact that the

generated feature vector ignores the order and semantics of the word, the BoW model

shows its power in many of varied NLP applications. Moreover, its sparsity and high

dimensionality would lead to computational issues in some applications. In contrast

with the sparse BoW representation, a word embedding encodes text as the continuous

distributed representation of a short fixed-size vector. It is semantically compatible

with representing both words and their related context. The embedding model we

used is GloVe [75] with 300-dimensional vectors.

Visual Feature. The pre-trained ImageNet is used to extract the feature map for

each individual image. Specifically, we use a pre-trained 16-layer VGG model [89] and

take its output from the fully-connected layer (fc6). For any project k, Ik ⊆ I is used

as its input of images, and additionally `ı ∈ Ik in which ı is the index of images in
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profile k which may contain multiple images with varied size n. Given an image `i, it

is rescaled to 224× 224 and represented by a 4096-dimensional vector extracted from

the VGG16 model. Image feature maps for any `i, i ∈ [1, n] in Ik are used as visual

input for profile k. Then we applied two popular approaches to generate the visual

representations for profiles: BoVW and CNNs. The pre-trained deep features are used

as descriptors and clustered using mini-batch k-means model to generate the codebook

for BoVW. Each profile can then be represented by a bag of visual words. For

CNNs, those pre-trained deep features are aggregated in different ways, like averaging,

flattening, and stacking. Kornblith et al. [55] suggested ResNets the best feature

extractor for transfer learning tasks. However, we observed better performance using

the VGG16 model. Considering our feature vectors are generated from a large group

of sparse images, and the styles of images on crowdfunding platforms differ from

ImageNe as shown in Figure 2.1, this hypothesis may justify the observation in our

experiments to some extent.

Meta Feature. Metadata in our experiment is composed of campaign category

and funding goal extracted from the profile. Funding category was converted by

the one-hot encoder directly, while the funding goal is converted with the binning

transformation6. We grouped numerical funding goal values into a set of customized

discrete ranges and then assigned each numerical value to a range bin. Specifically,

we summarized the data and used (1) fewer bins to encode numeric values falling

inside the lower and higher quantile; (2) more bins for other values belonging to the

in-between quantile. Then, each numeric value of the funding goal would be assigned

to a binary vector. More specifically, we set three bins for the lower 0 - 0.3 quantile,

four bins for the upper 0.9 - 1 quantile, and 50 bins for the values in between.

6https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-
reference/group-data-into-bins (Accessed on Mar 31, 2020)
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2.5 Experiments

2.5.1 Data Set

Data Collection. The evaluation of our MDL framework was done on a dataset

scraped from Kickstarter. Kickstarter has become the largest crowdfunding platform

in the U.S. since it was launched in 2009. The campaign profiles may be modified

during the funding stage and thus not exactly the same as the pre-launch profiles.

Yet, it is likely to serve as a broadly useful model for examining crowdfunding efforts.

We crawled the data using the seed from webrobots7. We ran the scraping script for

two weeks to collect the data. For each campaign webpage, we extracted the textual

profile, images, category, funding goal, funding start date, and end date. The textual

profile includes the title, summary, funding description, and risk/challenges. Visual

contents include all the jpg format images but not the png or gif format. Furthermore,

the campaigns before 2015 were discarded.

Preprocessing. Before feature extraction, we carried out the following data

preprocessing procedures:

1. Project status. The status of the funding campaign on Kickstarter includes
successful, failed, canceled, suspended, removed, live, and others. We only kept
projects with the status of successful or failed.

2. Textual profile. We removed the stop words, punctuation and digits from the
text, and further removed the projects with text length less than 12 words.

3. Visual profile. We removed small images whose row dimension size is less than
200. We observed the small images function as banners that are the aesthetic
shape or section headers. They might increase the aesthetic value of the profile
but they cause excessive extra computational costs.

4. Category. We also removed the projects in skewed categories. That means if
the projects listed in a given category less than 1/10 of the largest category in
our data, we removed those categories and projects.

7https://webrobots.io/kickstarter-datasets/ (Accessed on Mar 31, 2020)
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Data Splitting. To train our model to select the best parameters and evaluate

the performance, we split the dataset into three parts, as shown in Table 2.1, which

describes the statistics of our dataset grouped by campaign year and funding outcome.

The reported overall success rate of Kickstarter was 43% in 20118, and increased

to 75% in 20179. To evaluate the predictive potential on a temporally changing

distribution, we used campaigns launched in 2015 and 2016 as the training set,

campaigns in 2017 as the validation set, and campaigns in 2018 as the testing set.

Table 2.1 Statistics of Our Dataset.

Data Set Year No. of Samples No. of

Success Fail Total Images

Training 2015/16 8705 9806 18511 135404

Validation 2017 4655 2687 7342 65907

Testing 2018 5429 2830 8259 83102

To evaluate the performance, the data is split by year.

2.5.2 Experimental Settings

Evaluation Metrics. We evaluated the prediction performance of all methods in

terms of Recall, Precision, F1-Score, and AUC@ROC (AUC), respectively.

Evaluation Algorithms. Two important goals of our work were to introduce

image as an additional modality and to limit the analysis to pre-posting profiles.

Neither perspective has been addressed in previous work. Thus, the focus of our

evaluation lies in the investigation of different modalities and feature representations

for project success prediction without any post-posting information. We compared

8www.kickstarter.com/blog/happy-birthday-kickstarter (Accessed on Mar 31, 2020)
9www.kickstarter.com/blog/happy-8th-birthday-kickstarter (Accessed on Mar 31, 2020)
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Table 2.2 Statistics about Number of Words and Images in Profiles.

Level Quantile No. of Words No. of Images

1 - 0.25 150 1

2 - 0.5 260 4

3 - 0.75 450 10

4 - 1 (0.9) 4572 (725) 113 (18)

We used 0.9 quantile as a cut-off for the feature
dimension in the MDL model, so the values inside
the parentheses are the actual values for text length
and image numbers in our experiments.

our framework with the linear SVM in all investigated cases. Our research explored

the following questions and corresponding methods:

1. Which performance levels can be achieved by textual profile information only?
We studied classifications based on textual information only: SVM-BoW and
MDL-Text, and evaluated the boundaries of textuality only. The best text-
based approach serves as the baseline.

2. Which performance level is achievable by visual information? We investigated
the suitability of the visual modality only and evaluated different aggre-
gation strategies for SVM-BoVW and MDL-IMG. The best image-based
approaches are reported.

3. Which multimodal representation performs best? Does the multimodal combi-
nation of different feature representations facilitate classification? We
compared the methods with all modalities with Text, Image, and Metadata
(TIM), and reported the results of SVM-TIM and MDL-TIM. Moreover,
further studies on a varied combination of different modalities (MDL-Text/
IMG, MDL-Text/Meta, MDL-IMG/Meta) were conducted to learn the
most contributing element. In addition, the parameters were tuned for each
model, like the number of CNN layers, the value of kernel size for CNN layer,
the pooling size for max-pooling layers, the number of fully connected layers
and the value of neuron units, and the dropout rate for each dropout layer.
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4. How sensitive is the performance to the modalities? More specifically, is the
performance consistent on different project profiles with varied textual lengths
and image numbers? We performed an ablation analysis to different granularity
to test this.

Hyper-Parameter Tuning. For each case evaluated, we varied the most influ-

ential parameters to train the models. The models are tuned based on the validation,

and the optimal parameters are reported accordingly based on the F1 measure. Our

MDL model is implemented in Python using Keras with TensorFlow backend. We

used the RMSprop [97] optimizer and the learning rate is set to 1e-5 for 100 epochs.

We set the batch size to 128 campaign projects and employed early stopping with 20

epochs and dropout [92] to prevent overfitting. To reduce the computational cost of

training CNN, we truncated the length of text description and the number of images

in the profiles. The cut-off value we used is 0.9 quantile for both. Specifically, it is

725 for words in the text and is 18 for images as shown in Table 2.2. Nevertheless,

we are still dealing with a large set of images for each profile.

2.6 Results and Discussion

Baseline. As shown in Table 2.3, compared with MDL-Text, SVM-BoW achieved

decent performance in terms of all metrics, especially precision and recall. Thus,

SVM with textual modality only is the baseline.

Table 2.3 Results of Single Modality on Text Only

Methods Recall Precision F1 Score AUC

SVM-BoW 0.7356 0.7424 0.7387 0.7356

MDL-Text 0.6831 0.7153 0.6920 0.7788
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Visual Modality. We trained a linear SVM classifier with the BoVW feature

obtained by mini-batch k-means with cluster sizes varied from 30 to 300. With

respect to the visual representation for MDL-IMG, we tried different approaches to

aggregate the feature map `i, i ∈ [1, n] where n = 18 for a given Ik, e.g., average

pooling, flattening, and stacking. The stacking approach performed best on the

MDL-IMG model. As we can see from Table 2.4, the MDL-IMG model yields better

visual representations than BoVW. This demonstrated the deficiency of BoVW while

dealing with large datasets due to the complexity and diversity of image patterns and

confirmed the superiority of state-of-the-art feature transfer learning from computer

vision. However, its performance is worse than MDL-Text.

Table 2.4 Results of Single Modality on Images Only

Methods Recall Precision F1 Score AUC

SVM-BoVW 0.6570 0.6623 0.6592 0.6569

MDL-IMG 0.6738 0.6809 0.6768 0.7340

Multimodal Combination. We utilized all collected textual, visual, and meta

information to evaluate their effects on performance and investigated different feature

fusing approaches. The fusion techniques could be complicated as [95], and we found

the FC layer achieved the most effective results in our experiments. As demonstrated

in Table 2.5, both SVM-TIM, and our MDL-TIM outperformed baseline method

SVM-Text, which confirms the motivation outlined in the introduction: images as

an essential component in profile could help to improve the predictive performance.

Meanwhile, our proposed model MDL outperforms SVM, which demonstrated the

superiority of deep transfer learning in computer vision over the BoVW model.
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Table 2.5 Comparison with All Modalities

Methods Recall Precision F1 Score AUC

SVM-TIM 0.7411 0.7595 0.7483 0.7411

MDL-TIM 0.7505 0.7568 0.7534 0.8326

Ablation Analysis. Additionally, we investigated the most contributing modality

by removing one factor at a time. The performances of different modality combi-

nations (Text/Image, Text/Meta, Image/Meta) is reported in Table 2.6. As we can

see that IMG/Meta performs the worst after removing text from the model, thus

text still carries more predictive messages in general. Meanwhile, we observed that

metadata could introduce more distinctive signals. It becomes clear after checking

the images on Kickstarter because the patterns in different categories vary from each

other, e.g., styles of product design do differ tremendously in all respects.

Table 2.6 Ablation Analysis of MDL

Combinations Recall Precision F1 Score AUC

Text/IMG 0.7335 0.7241 0.7278 0.7995

IMG/Meta 0.7108 0.7191 0.7143 0.7807

Text/Meta 0.7385 0.7320 0.7348 0.8162

Table 2.7 Correlation between accuracy and images/text levels

Correlation Text+ Image+ All

Text Level 0.618 — —

Image Level — 0.776 0.570

19



Figure 2.3 Investigation on the ablation of modalities. Results are grouped by
the length of text profile and numbers of images. Accuracy is reported here by split
Levels of Word and Image Number in Profile for models MDL-Text/Meta (Text+),
MDL-Image/Meta (Image+) and MDL-Text/Image/Meta (All). The profiles are split
into groups by definition in Table 2.2. The higher the level is, the more words or
images are in the profiles.

Sensitivity analysis of the modalities. Furthermore, we investigated the effects

of textual length and image numbers to test the sensitivity of performance on different

modalities. Firstly, we split profiles into four levels as statistics shown in Table

2.2. Then we analyzed the accuracy of models MDL-Text/Meta (Text+), MDL-

Image/Meta (Image+), and MDL-TIM (All) from Table 2.5 and reported the fine-

sorted results in Fig. 2.3. In general, MDL-TIM outperforms significantly in most

cases. Moreover, we surprisingly found that the MDL-Image/Meta outperforms MDL-

Text/Meta in the last column (image-level four across all text levels). This indicates

better prediction can be achieved if given more images than text. Interestingly, we
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found that better success prediction will not necessarily be achieved if given more text

by checking the trend from bottom row (text level one across all image levels) to the

top row (text level four across all image levels). The correlation between accuracy and

text/image level reported in Table 2.7 also supported our observation. The entries

with p.value > 0.05 are removed from the table. Giving this important revelation, it is

suggested that the performance of success prediction will be enhanced by integrating

images despite limited text description. Yet to have the best outcome, all modalities

should be considered. To this end, we demonstrated the prevailing role of images in

crowdfunding success prediction.

2.7 Conclusions

In this chapter, we utilized the missing visual modality in previous approaches

and developed a multimodal deep learning model for the project success prediction

problem. The visual feature representation is built upon transfer learning repre-

sentations from ImageNet. The extensive experiments were carried on a real-world

data set collected from Kickstarter. The empirical studies illustrated that visual

images are as important as text and superior performance could be achieved by

incorporating them. The corresponding results showed that our model can deliver the

best performance over alternative methods. The ablation analysis of the modalities

also provided useful insights for project creators.
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CHAPTER 3

DEEPVAR: AN END-TO-END DEEP LEARNING APPROACH FOR
VARIANTS IDENTIFICATION IN BIOMEDICAL LITERATURE

3.1 Background

Due to the sheer volume of new biomedical literature in the last decade, automated

information extraction tools are critical for researchers to access the explosive amount

of published research. One of the most distinguishing features of scientific biomedical

literature is that it contains a large number of terms and entities, in which some

are explained in public electronic databases if researchers manually built professional

knowledge for them. In the biomedical context, entities would typically be short

phrases as the representations of a specific object, e.g., names of genes or proteins,

genetic variants, gene products, genetic diseases, drugs, etc. It is impossible to access

all that information among up-to-date published research manually. Information

extraction is a critical factor for efficiently accessing and integrating such knowledge.

The ultimate goal of information extraction is to extract knowledge automatically.

Still, usually, the first task is to identify name entities from text, more formally as

Named Entity Recognition (NER) task.

To identify named entities present in the text, statistical approaches, such as

Maximum Entropy (ME) [9] and Conditional Random Fields (CRFs) [56], are used

in most of the previous works by either learning patterns associated with a particular

type of entities or hand-built rules. The performance of such algorithms heavily

depends on the design of hand-crafted features, and the number of features could be

so large that the models are prone to overfit on training corpus and fail for practical

use.

Recently, the Deep Neural Network (DNN) models have increasingly been used

in generic Natural Language Processing (NLP) areas and achieved significant success,
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pushing most of the benchmarks to a new level of state-of-the-art. More importantly,

those models minimized the feature engineering efforts by learning the hidden patterns

from the large volume of labeled samples. However, due to the high cost of expert

curation, the size of curated training data is often restricted in biomedical domains.

As shown in Table 3.1, the benchmark data set of variants is much smaller than

other works. Moreover, we can also observe that the variant entity names contain

more diverse orthographic and morphological alterations. The heavier linguistic

heterogeneity exacerbates the challenge of this problem.

Our goal in this research is to develop an end-to-end DNN NER model that

automatically identifies variants in biomedical literature and classifies them into one

of a set of predefined types. Despite many attempts on other biomedical benchmarks

in the past, it is the first attempt to use a deep learning approach for the genomic

variants recognition, and it remains a challenging task. The main challenges are:

• To minimize feature engineering effort, automatically generalizing hidden
diverse linguistic patterns is harder from limited training resources.

• To differentiate the ambiguous entities or synonyms, learning some effective
feature representation is harder with shallow networks from limited trainable
resources.

• To limit the false positive errors, both the entity identification and the entity
boundaries need to be accurately inferred since it is critical for downstream
applications such as relation extraction.

In this research, we took full advantage of the generic state-of-the-art deep

learning algorithms and introduced our Deep Variant (DeepVar) Named Entities

Recognition model. We tried to find a principle way to transfer domain knowledge

in the biomedical literature and built an end-to-end DeepVar model. Our results

showed that our DeepVar could achieve better performance than the state-of-the-art

algorithms
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without any feature engineering. Meanwhile, our results from extensive empirical

studies may shed light on other low-resource applications.

3.2 Related Work

Statistical machine learning systems have proven their success for NER in earlier

works. However, almost all these approaches relied on feature engineering to some

extent. They learned patterns associated with individual entity classes by many

hand-crafted features such as internal linguistic features or external knowledge. In

Biomedical Named Entity Recognition (BioNER), which extracts important entities

such as genes and proteins, various similar machine learning-based approaches have

also been applied and achieved good performance. The widely used hand-crafted

features include different types of linguistic features such as syntactic and semantic

information of words, as well as domain-specific features from biomedical termi-

nologies such as BioTesaurus [60] and Toxicogenomics Database [26].

With respect to the genomic variation recognition, all the previous work

including MutationFinder [12], EBNF [58], OpenMutationMiner [73], tmVar [103],

SETH [96], and NALA [13] employed dozens of regular expressions to build

orthographic and morphological features, like word shape, prefixes, and suffixes, for

their variants entities identification systems. Since the regular expressions used for

generating customized hand-crafted features are fixed and can only describe limited

patterns for variants, all the previous work mainly focused on techniques improving

the regular expression to capture more patterns [103, 96]. Nevertheless, they still

need to add a few post-processing steps to achieve better results [103, 13].

More recently, due to the development of deep learning techniques, it has become

a fashion in NER applications to minimize the efforts in feature engineering and

build an end-to-end system. The first attempt to use deep learning in the NER task

was the SENNA system [20], which still utilized lots of hand-crafted features. Then,
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varied works were applied at different levels to abolish the hand-crafted features. The

current state-of-the-art approaches now regulate both the word level and character

level representations intertwined by both Bidirectional Long Short-Term Memory

(LSTM) Neural Network [47] and Convolutional Neural Network (CNN) [113]. Some

works focused on building the shallow word-level representations with character-based

features through CNN [20, 117, 52, 94], or bidirectional LSTM [48, 64, 94]. The

majority of work combined both word-level and character-level features to achieve

the best performance. Nevertheless, some still applied slight pre-processing steps to

normalize digit characters [16, 57, 94], while some works employed marginal hand-

crafted features [20, 48, 16, 94]. For the first time in NER literature, [57, 64] used

the end-to-end structure without any hand-crafted features.

Various work has been done on varied BioNER domains to improve the

effectiveness of the aforementioned models. Habibi et al. [43] investigated the

effectiveness of the approach proposed in [57] for chemicals, diseases, cell lines, species,

and genes name recognition, while Dernoncourt et al. [27] verified the same approach

on patient notes. Yoon et al. [111] investigated the approaches of [64] on chemicals

and disease entities. Wang et al. [102] utilized the multitask architecture similar to

[61] and verified on chemicals, cell lines, disease, genes, and other name recognition.

Xu et al. [107] proposed a modified framework based on [57] by adding extra sentence

level representation as global attention information and verified on clinical NER

task. Nevertheless, even some recent state-of-the-art BioNER works still need to

elaborate marginal external information, the task of variant identification remains

open in literature, and to build an end-to-end approach can be challenging.

Meanwhile, it is worth noting that most of those studies employed the word-level

distributional representations, well-known as word embedding. Word embedding is

proposed to polish up the deficiency of Bag-Of-Words (BOW) model and becomes

a key component for word features in the NLP application. The most famous
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model is word2vec [68]. However, embeddings from generic corpora fail to capture

specific meanings within the biomedical domain. One of the common challenges

is the Out-Of-Vocabulary (OOV) words, which can be rare terms like mutants or

unseen forms of known words like disease names. Those entities are not typo and

have high occurrence but cannot be found in the canonical pre-trained embeddings.

Learning high-quality representations for biomedical literature can be challenging. Xu

et al. [108] employed {left, right, and max} surrounding embedding from surrounding

words as hand-crafted embedding features and achieved better accuracy in clinical

NER task. [65] used some character-based 1-in-m encoding schemes to solve rare

words or typos. Recently, the word representations pretrained on a large collection of

domain-specific texts (PubMed, PMC, etc.) have been proved superior than generic

word embeddings [43, 70]. It is promising in low-resources variant identification tasks,

yet the evidence is still missing.

3.3 Deep Variants Identification Model

In this section, we presented our Deep Variants (DeepVar) NER model for identifying

variants in a low-resource data set. We focused on neural sequence representation

learning to capture contextual information and hidden linguistic patterns without

hand-crafted features or regular expressions. The architecture is shown in Figure

3.1. The sentence “We identified T10191C(P.S45P) in ND3.” used in the figure is for

illustration purposes. As illustrated in Figure 3.1, our DeepVar model contains three

parts:

Input Embeddings Each word in the sentence has two types of input: word-level

(words in red color) and character-level (characters in green color). For character-level

input, we applied one-hot encoding (green circle on top) as character embedding; with

respect to word-level input, we used the word embedding (red circle icon; 3.3.2). It is

noted that the word embeddings are pre-trained on a separate large collection of the
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Figure 3.1 The Architecture of proposed DeepVar Model. The small green circle,
green rectangle, and large green circle icon represent character embedding, character
sequence representation learning module, and character sequence representation
respectively; the red circle icon represents word embedding; the gray boxes including
two BiLSTM layers and Residual represent the unit element of word sequence
representation learning module which may have n unit; the small blue circle represents
the hidden stats of word sequence representations from the hidden layer.
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biomedical corpus, while character embeddings are built from our variant BioNER

task.

Feature Representation Learning The character representation (green circle

icon) is learned from modules with LSTM or CNN (“Char Repr”; Section 3.3.1).

Then it would be concatenated to word embeddings as the input of word sequence

representation learning module (gray boxes in the middle; Section 3.3.3). This

module contains the stacked BiLSTM networks with integrated residual layer, and it

is designed to capture long-term information and effective contextual representations.

Inference Module Finally, the final word feature representation for each word will

be the hidden states from the hidden layer (blue circle). The CRFs inference layer

will take it and assign labels to each word (Section 3.3.4).

3.3.1 Character Embedding and Feature Representation

Character information has been proven to be critical for entity identification tasks

[16, 57, 64]. First of all, character embedding could handle the OOV words to some

extent since it could enclose the morphological similarities to some established words.

Moreover, it also could be able to insert the orthographic and linguistic patterns

for variants such as prefix, suffix, and punctuation. For example, mutation names

often contain alphabets, digits, hyphens, and other characters like “HIV-1”, “IL2”,

“rs2297882”, and “C>T”. It is crucial to learn all those hidden morphological and

orthographic patterns automatically for inference.

We represented the character embedding through a lookup table. The lookup

table we used contains 70 characters, including 26 English letters, ten digits, 33 other

characters, and one placeholder for the unknown character. The full alphabet is

shown in Table 3.2. More specifically, we employed 1-of-m encoding in which each

character is encoded as an m sized vector where all values are zero except the entry
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Table 3.2 Look-up Table for Character Embedding

letters abcdefghijklmnopqrstuvwxyz

digits 0123456789

others ,;.!?:‘’“”/\| @#$%ˆ&*˜+−=<>()[]{}

UNKNOWN

corresponding to the found character with a value of one. Based on the lookup table,

m = 70 is used. Subsequently, each instance is then represented by a sequence of

m = 70 sized vectors with character sequence length l , where l is a hyperparameter.

Then LSTM and CNN are used to capture the hidden morphological and

orthographic patterns and learn character-level representations:

Character CNN Chiu and Nichols [16], Ma and Hovy [64] have investigated the

effectiveness of using the CNN structure to encode character sequences. In our

research, we employed the same architecture as in [64]. More specifically, one CNN

layer was used following with max-pooling to capture character-level representations.

Character BiLSTM In study from Lample et al. [57], the BiLSTM is utilized to

model the global character sequence information. The final states from the left-to-

right forward LSTM and right-to-left backward LSTM are concatenated as character

sequence representations.

3.3.2 Word Embedding

Word embedding represents a word as a continuous dense vector with a low dimension

at the lexical level. In addition to character representations, word embeddings are

still crucial to represent semantic information. Habibi et al. [43], Mohan et al.

[70] demonstrated that the word representations pretrained on a large collection

30



of biomedical literature (PubMed, PMC, etc.) could outperform the generic word

embeddings. First of all, it can learn the good representations for biomedical named

entities (e.g., “IL2” for “Interleukin 2”), which are not in the canonical newswire

corpus. Moreover, it should be capable of capturing the syntactic and semantic

information for the ambiguous entities (e.g., “TNF alpha” can refer to a protein or

DNA) or different words referring to the same mutation (e.g., evolving of time or

simply the preference of authors).

Recently, the contextual embeddings such as ELMO [78], Flair [2], and BERT

[28] are proposed and achieved the state-of-the-art performance on all the generic

NLP applications. The domain-specific embeddings, which are trained on the large

biomedical corpus, well known as BioEmbedding, are simultaneously made available

to the public. Various works [50, 74] showed that the BioEmbedding outperforms

vanilla embedding on BioNER tasks. In our experiments, we also investigated

different pre-trained BioEmbeddings.

3.3.3 Word Representation Learning

Although CNN could be utilized to model word-level representations [20, 94], we

employed the BiLSTM in our research as it is more widely used [57, 64, 16, 48, 61]

and more powerful to capture the contextual distributional sensitivity. A BiLSTM

includes forward LSTM and backward LSTM. The forward LSTM captures the

contextual information from left to right, while the backward LSTM extracts

information in a reversed direction. The hidden states of the forward and backward

LSTM are concatenated for each word and are given to the next layer.

Basically, the input to an LSTM network is a sequence of vectors X =

{x1, x2, . . . , xT}, where xt is a representation of a word in the input sentence x at a

certain layer of the network. The output is a sequence of vectors H = {h1, h2, . . . , hT},

where ht is a hidden state vector storing all the useful information at time t. At step
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t of the recurrent calculation, the network takes xt, ct−1, ht−1 as inputs and produces

ct, ht through the input (it), forget (ft) and output (ot) gates via the following

intermediate calculations:

it = σ(Wixt + Uiht−1 + bi) (3.1)

ft = σ(Wfxt + Ufht−1 + bf ) (3.2)

ot = σ(Woxt + Uoht−1 + bo) (3.3)

ĉt = σ(Wcxt + Ught1 + bg) (3.4)

ct = ft � ct−1 + it � ĉt (3.5)

ht = ot � tanh(ct) (3.6)

where σ(·) and tanh(·) is the element-wise sigmoid and hyperbolic tangent functions,

and � denotes element-wise product. Wi,Wf ,Wo,Wc denote the weight matrices of

different gates for input xt, and Ui,Uf ,Uo,Uc are the weight matrices for recurrent

hidden state ht. bi,bf ,bo,bc denote the bias vectors. As shown in formulation (3.1),

we used the LSTM design [47] without peephole connections.

As shown in the gray boxes of Figure 3.1, our word representation learning

module includes n units of modules in which n is a hyper-parameter. Each

unit includes two BiLSTM layers stacked together followed by a residual layer.

First of all, word representations are concatenated from the word embedding and

character representations, then fed into the two-layer BiLSTM architecture. Then

the residual layer would take the hidden states from both BiLSTM layers and apply

the transformation.

The vanilla architecture in [57, 16, 64] includes only one BiLSTM layer.

The semantic representations learned from the shallow network is not able to

differentiate the variants apart from genes/proteins having similar orthographic
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patterns. However, simply increasing the depth of a network will not necessarily

improve the performance, and on the contrary, it often leads to a decline in

performance beyond a certain point [93]. The introduction of residual could bridge

some learned global information to lower layers and facilitate addressing the vanishing

gradient problem when training a deeper network [44]. Specifically, we used the

identity residual formulated as:

y(x) = F (x) + x (3.7)

where F (·) is a nonlinear parametric function, and in our case it is the BiLSTM.

3.3.4 Inference Procedure

The CRFs is commonly used for labeling and segmenting sequences tasks, and also

has been extensively applied to NER. It is especially helpful for tasks with strong

dependencies between token tags. Reimers and Gurevych [81], Yang et al. [110]

demonstrated that CRFs could deliver a larger performance increase than the softmax

classifier across all NER tasks. Reimers and Gurevych [81] also suggested that a

dense layer followed by a linear-chain CRF as a variant CRF classifier would be able

to maximize the tag probability of the complete sentence. Specifically, we employed

the same variant CRF classifier design as the last layer of the network.

First of all, the transformed representation from the last residual layer for the

sequence is mapped with a dense layer and a linear chain CRF layer to the number of

tags. The linear-chain CRF maximizes the tag probability of the complete sentence.

More formally, given an input sentence x of length N x = [w1, w2, . . . , wN ] in which wt

is the a word in sentence, we predict corresponding variant types Y = [y1, y2, . . . , yN ].

The score of a sequence of tags z is defined as:
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S(x, y, z) =
N−1∑
t=1

Tzt−1,zt +
N∑
t=1

Uxt,zt (3.8)

where T is a transition matrix in which Tp,q represents the score of transitioning

from tag p to tag q and Uxt,zt represents the score of assigning tag z to word w

given representation x at time step t. Given the ground truth sequence of tags z, we

minimize the negative log-likelihood loss function during the training phase:

L = −logP(z|x)

= log
∑
ẑ∈Z

eS(x,y,ẑ) − S(x, y, z) (3.9)

where Z is the set of all possible tagging paths. For efficient training and decoding,

the Viterbi algorithm is used.

3.4 Experiment Setup

3.4.1 Data

We trained and tested our model on the same datasets from tmVar [103], while 20%

of the training is held out for validation.

Data Preprocessing The only preprocessing we performed on the data is tokeni-

zation. The conventional tokenization in generic NER tasks would split a sentence

by the white space and remove all the digits and special characters. However,

those digits and special characters like punctuation are part of the domain-specific

entities in biomedical text. Moreover, due to the great variations of those entities,

appropriate tokenization is an important preprocessing step for learning biomedical

word embeddings. Experimental results show that tokenization can significantly

affect the retrieval accuracy, and appropriate tokenization can significantly affect

the performance. For example, whether the sequence “(lL-2)” is tokenized to {“(”,
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“IL-2” and “)”} or {“(IL”, “-”, and “2)”} would result in considerable difference in

representation learning and accuracy. We first tokenize a sentence using white space

and characters in “# & $ * ” ’ ; / \∼ ! ? = } { ”, then for each token t, if there’s

any character from , . ’:” at the end of t, then strip this character. Finally, strip the

brackets if t is bracketed.

Annotation There is no consensus on which annotation scheme is better. The

choice varied from applications. Chiu and Nichols [16] demonstrated that BIOES

(for Begin, Inside, Outside, End, Single) could achieve considerable performance

improvements over BIO (for Begin, Inside, Outside). Lample et al. [57] showed Using

BIOES and BIO yields similar performance. Reimers and Gurevych [81] demonstrated

that the BIO scheme is preferred over BIOES through extensive experiments on varied

NER tasks. Therefore, we adopted the BIO scheme without comparing it with BIOES

or other schemes.

3.4.2 Evaluation

One challenge for NER research is establishing an appropriate evaluation metric

[72]. In particular, entities may be correctly delimited but misclassified, or entity

boundaries may be mismatched. In some generic NER tasks, they would consider

partial matching (text offsets overlap, e.g., left match or right match) or oversized

boundaries as accurate tagging. However, same as [103], we only considered exact

matching (two entities match if their boundaries are identical and tags are correctly

classified), and any other prediction was considered as misclassification.

Moreover, there are three types of variants in the tmVar dataset: DNA

mutation, protein mutation, and SNP. Therefore, the final set of tags used for

training and prediction in our research are B-DNAMutation, I-DNAMutation,

B-ProteinMutation, I-ProteinMuatation, B-SNP (no I-SNP), O, and PAD (for

padding purpose). To make a fair comparison with other works, we removed the
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tag header B- and I-, and only used the tag body with their entity boundaries to

calculate precision, recall, and F1 score.

3.4.3 Settings

We implemented our model using Keras with the TensorFlow backend. The

computations for a single model are run on Tesla P100 GPU. Table 3.3 summarizes the

chosen hyperparameter settings for all DNN models. Moreover, the embedding size

for BioW2V is also a hyperparameter, which includes 50, 100, and 200. With respect

to the SGD optimizer, besides the common settings, we also set the momentum to

0.9 and used Nesterov.

3.5 Results and Discussion

In this section, we report our experimental results and investigate some key

components used in our experiments. We discuss their roles in the low-resource

training process.

3.5.1 Results

We compared our proposed DeepVar with state-of-the-art NER systems [57, 64] and

variant identification system tmVar [103] and nala [13]. We performed extensive

parameter tuning for all generic DNN models using settings shown in Table 3.3,

while for vanilla models we used the same setting in [57, 64] on character feature

learning and greedily tuned other settings like the word embeddings and optimizer.

For tmVar and nala, we quoted their experiment results directly.

The results are reported in Table 4.3. First of all, we observed that the DeepVar

model achieves significantly higher F1 scores than state-of-the-art vanilla models,

nala, and tmVar (a,b without post-processing). DeepVar also achieves appreciably

higher F1 scores than generic DNN models. Meanwhile, the result of DeepVar is

very close to the best record of tmVar (c with extensive hand-crafted features and
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Table 3.3 Hyperparameters and Training Settings in Our Experiments

Parameters Values

char-level

configuration

max char length 15, 30, 50

char emb size 25, 50, 100

char emb dropout 0, 0.25, 0.5

char CNN filter size 30, 50, 70

char CNN window 3, 5, 7

char LSTM states 25, 50, 100

char LSTM dropout 0, 0.25, 0.5

word-level

configuration

max word length 115

word emb BioW2V, BioELMO, BioFlair, BioBert

word repr. learning unit n 1, 2

word LSTM states 50, 100, 200

word LSTM dropout 0, 0.25, 0.5

hidden-layer
hidden states 50, 100, 200

hidden layer dropout 0, 0.25, 0.5

training

and

optimization

batch size 32, 64, 128

optimizer SGD, RMSP, ADAM

learning rate 1e-4

learning rate decay 1e-5

clipnorm 1.0

epochs 100
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Table 3.4 Results of Comparisons in Our Experiments

Model Char Repr Word EMB P(%) R(%) F(%)

DeepVar
BiLSTM

CNN

BioW2V

BioELMO

91.72

90.67

89.86

90.48

90.78

90.58

DNN†
BiLSTM

CNN

BioELMO

BioELMO

91.84

90.91

89.05

89.25

90.42

90.07

Vanilla‡
BiLSTM[57]

CNN[64]

BioELMO

BioELMO

88.76

90.32

89.66

87.02

89.20

88.64

tmVar (reported in [103])

85.81

92.01

91.38

80.82

83.72

91.40

83.24a

87.67b

91.39 c

NALA (reported in [13] ) 87.00 92.00 89.00d

†with greedy tuning

‡same character learning settings, while greedy tuning other settings

ausing BIO annotation scheme, without post-processing

busing 11 hand-crafted annotation scheme, without post-processing

cusing 11 hand-crafted annotation scheme, with post-processing

dusing partial match. Performance of the exact match would be lower.

post-processing). However, it is worth noting that DeepVar is a truly end-to-end

system without any preprocessing, feature engineering, or post-processing.

Moreover, the DeepVar and generic DNN models differ at the introduction of the

residual layer, which is designed to learn better semantic representations by training

deeper networks. For the results reported in Table 4.3, the generic models achieved

the best performance using the shallow network with one BiLSTM layer while n = 2

in DeepVar for word-level representation learning. We also investigated both BiLSTM
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and CNN in learning the character-level representation and compared their role in

different models. As we can see from Table 4.3, BiLSTM performs better than CNN

in all scenarios.

3.5.2 Word Embeddings

In our experiments, we used the weights from pretrained models on biomedical

literature to extract the word embeddings for the BioW2V, BioElmo1, BioFlair2, and

BioBert3, respectively. More specifically, BioW2V used CBOW word2vec [68] model

and was pre-trained on the large up-to-date collection of PubMed corpus. While

BioELMO used the concatenated representations from the last three layers, BioFlair

took the stacked representations from pubmed-forward and pubmed-backward, while

BioBert used the concatenated representations from the last four layers.

The best performance of DeepVar is reported on BioW2V, however, as shown in

Table 3.5, the overall performances of BioELMO, BioBert, and BioFlair significantly

outperform BioW2V in generic DNN NER models. This interesting observation

demonstrated that word2vec can achieve compelling performance in deeper networks.

Moreover, the performances of BioBert and BioELMO are very close and slightly

better than BioFlair.

3.5.3 Optimizer

For DeepVar training, we observed that Rmsp slightly outperforms Adam while both

of them significantly outperform SGD. For generic DNN models, we had the same

observation over Rmsp and Adam while SGD has much worse performance. Moreover,

SGD is easily failed on training a valid classifier on most settings if using generic

models with BioW2V as word embedding input. This observation is significantly

1https://allennlp.org/elmo (Accessed on Mar 31, 2020)
2https://github.com/zalandoresearch/flair (Accessed on Mar 31, 2020)
3SciBert [7] https://github.com/allenai/scibert (Accessed on Mar 31, 2020)
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Table 3.5 Comparisons on Pre-trained Word Embeddings

Model Embedding P(%) R(%) F(%)

DeepVar

BioW2V

BioELMO

BioBert

BioFlair

91.72

90.67

91.49

91.27

89.86

90.48

89.45

89.05

90.78

90.58

90.46

90.14

DNN

BioW2V

BioELMO

BioBert

BioFlair

87.52

91.84

90.97

90.22

89.47

89.05

89.86

89.86

88.49

90.42

90.41

90.04

divergent from knowledge learned from generic NER tasks [57, 64, 81, 110] in which

SGD and Adam are preferred over Rmsp.

Table 3.6 Comparisons on Optimizers

Model Optimizer P(%) R(%) F(%)

DeepVar

SGD

RMSP

ADAM

87.45

91.72

91.84

85.86

89.86

89.05

86.65

90.78

90.42

DNN

SGD

RMSP

ADAM

82.52

91.84

88.36

82.35

89.05

90.87

82.44

90.42

89.60

3.6 Conclusions

In this chapter, we discussed our DeepVar neural network for biomedical variant entity

identification. Despite being simple and not requiring any feature engineering, the
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proposed approach achieved comparable performance to the state-of-the-art system.

It outperformed other benchmark systems on the low-resource dataset. We also

showed through detailed analysis that the performance gain is achieved by the

introduced residual, which facilitates to train a deeper network and confirmed the

domain-specific contextual word embeddings make significant contributions to the

performance gain. Our investigation on key components may also shed light to other

deep low-resource applications.
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CHAPTER 4

CONSISTENCY-BASED UNSUPERVISED DATA AUGMENTATION
FOR NAMED ENTITY RECOGNITION WITH MINIMAL

RESOURCES

4.1 Background

Deep learning has accomplished revolutionary achievements on a wide range of

Natural Language Processing (NLP) tasks in recent years due to its extraordinary

language understanding capability from a large amount of data. Despite their success,

those state-of-the-art deep neural networks are generally data-hungry, which builds

impassable obstacles for domains without large corpus. The performance could be

improved when deep neural models are trained with more data. In certain domains,

the shortage of labeled data can be addressed by annotating unlabeled data with

crowdsourcing [37, 19, 32] or regular expression matching [5, 115, 116]. However, the

labeled data collection can be prohibitive in many real-world scenarios due to the

high cost of annotation and/or the scare target of interests, especially when expert

annotations are required (i.e. the disease or genomic variant names in biomedical

applications), or when personal privacy issues are concerned (i.e. medical clinic notes

or sensitive social user profiles). In those scenarios, data augmentation can be an

appealing alternative means to produce an adequate amount of new labeled data in

a more affordable way.

Various studies have demonstrated the benefits and pitfalls of data augmen-

tation in computer vision [122, 76, 22, 15] and speech recognition [86, 104].

Hernández-Garćıa and König [45] exploited techniques on how to increase the

number of training examples using domain knowledge, and showed its effectiveness

on controlling overfitting as well as improving generalization capability. A common

approach is to introduce more realistic-looking noise in data space through creating

perturbed synthetic over-samplings from existing examples, like random flip, crop,
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rotate, or zoom, RandAugment [23] or GridMask [14]. It is noted that most of the

methods are invariant transformations for those applications (i.e., the class of an

instance will not be changed after transformation).

However, data augmentation in NLP is a more sophisticated problem as there

are no straightforward invariant transformations for texts. Despite the difficulty of

obtaining universal invariant rules that can be applied easily and automatically in

diversified NLP domains, a few works have been proposed recently to address the

problem using various approaches. For example, some methods manipulated the

augmentation on feature space [106, 41]. At the same time, more studies focused

on augmenting data directly, such as word replacement with synonyms learned from

language models or machine translation models. The augmentation policies varied in

how to generate diverse paraphrases (e.g., by random sampling [105], word synonyms

replacement [100, 35, 53], beam search [33, 54], or back translation [105, 119]).

It is worth noting that almost all of those methods utilized domain-dependent

external resources, such as filtering the domain-related instances from an external

reference set [66], translating the text by machine translation model [105], and

utilizing the existing well-established model in the domain to assist annotation. Such

domain dependencies introduce additional constraints on the capacity of adapting

the source model to the new domains and can be prohibitively infeasible for

under-represented applications with low resources, such as scientific terminologies

or machinery logging, as shown in Table 4.1. Even for newswire articles, those

external resources or machine translation tools are only regularly available for a few

well-studied natural languages like English and French.

Little work in data augmentation has been performed for under-represented

domains with low resources. Also this has rarely been considered by the mainstream

data-hungry deep learning community. In addition, it is challenging to accomplish

data augmentation for token-level tasks in a logical and discriminating manner,

43



Table 4.1 Examples of Broader Languages for NLP Tasks

Data Source Example

Newswire Article
Influenza is still going strong in the United States and isn’t

expected to slow down for at least several more weeks

Scientific Article

The polymorphism rs2234671 at position Ex2+860G>C

of the CXCR1 gene causes a conservative amino acid

substitution (S276T)

Machinery Logs

214.1.211.251–[15/Apr/2011: 9:39:30 0700] ”GET/modules

.php?Name=Reviews & rop=post & title =% 253c

scriptcomment>alert2528document.cookie%)% 253c/script>

HTTP/1.0 ”404 316” - ”” - ”

because it may result in even worse performance using inappropriately augmented

data than just using clean data. As shown in Figure 4.1, the top and bottom examples

illustrate augmentations on sentence-level and token-level tasks, respectively. For

sentence-level tasks, only a single label would be affected for the sentence after

augmentation, as shown by the orange color in Figure 4.1. While, for token-level

tasks like part-of-speech tagging (POS) or named entity recognition (NER), every

word in the corpus needs to be properly labeled. The objective of augmentation for

the token-level task is slightly different from the sentence-level task but results in

more demanding challenges.

To the best of our knowledge, no comprehensive solution has been proposed yet

to tackle the challenges mentioned above in one task. In this research, we proposed

a new consistency-based unsupervised data augmentation method as well as a model

to train neural network with a combination of a limited amount of clean data and a
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larger set of automatically augmented noisy samples in active learning settings. Our

augmentation approach and training model employ the following “BCD” principles:

• Burden-free Augmentation: our augmentation with adaptive topic alignment
is conducted in an unsupervised manner without any requirement of external
resources, neither large unlabeled reference set nor machine translation tool.
This greatly relieves the burden for under-represented domains with low
resources.

• Confidence-based Training: our model training is guided by a confidence-based
annealing scheduler. It encourages the model to focus on learning more robust
representation confidently without being distracted by the noisy information,
which in return can control the gap of training signal learned between labeled
clean data and unlabeled noisy data.

• Diversity-oriented Labeling: our labeling for noisy augmented data is prioritized
by the diversity-based selection, and labels are actively propagated during
the training process from teacher-student distillation. It lowers the demand
for applications when no well-established model exists to do the machine
annotation. It can acquire a higher quality of annotation during active
distillation.

The proposed model, coupled with the BCD principles, applies to different

token-level scenarios. In this work, we apply it to several NER tasks from varied

domains to demonstrate its effectiveness. Our experimental results, on a variety of

publicly available datasets, show that it steadily outperforms baselines with minimal

resources. Our ablation analysis indicates that the performance improvement is

obtained from training with both clean and noisy instances as well as from effectively

handling the noise in the data. We also compare it with other recent proposed

sentence-level augmentation strategies and discuss more insights on the components

in our design.

4.2 Related Work

In this section, we briefly review the recent developments of several research lines we

deem to be most relevant to our work.
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Figure 4.1 Illustration of text augmentation. The yellow color represents unlabeled
data, orange color represents affected data by augmentation, and green color
represents labeled data. wt and l are the word and label, respectively.

Knowledge Distillation Knowledge Distillation (KD) was first introduced by

Hinton et al. [46] to the deep learning communities, and various forms of extended

techniques were discussed comprehensively by [83]. The effective recipe of KD is

to compress the knowledge from the huge and computationally expensive teacher

model to optimize a simpler student model. Typically, the teacher model can be a

cumbersome ensemble of networks [24] or tasks [18]. In our research, we introduce it

in the context of data augmentation. Rather than building multiple teacher models

or groups of tasks, we particularly train a single (weak) teacher model to generate

pseudo-gold labels for noisy augmented instances, and leave the student model to

learn more generalized information progressively from differently selected high-valued

augmented data on-the-fly.

Active Learning The ultimate goal of Active Learning (AL) is to maximize model

performance with minimal labeling cost. It usually consists of iterative procedures

that judiciously select unlabeled samples for labeling [38]. Approaches often differ
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on sample selection criteria and weak labeling schema. A common practice is to

uniformly select a small starting subset of data using heuristic rules for labeling.

Human interventions [116] or ensembling [88] are then involved in the loop to acquire

weak labels. In our research, we consider the same pool-based AL technique that has

been used in Gao et al. [38], where a pool of unlabeled data is initially constructed, and

then small batches are iteratively selected to label in conjunction with training. We

are also intending to demonstrate that teacher-student distillation can automatically

improve the accuracy of weak label propagation.

Semi-Supervised Learning Given the rich variety of Semi- Supervised Learning

(SSL) techniques, we focus on recent developments in deep neural networks that are

more relevant to our work. Many approaches for SSL have been developed for NLP

tasks to train large models with massive data [109, 30, 79, 42]. Similar to AL, SSL can

also describe algorithms that seek to improve learning with a small portion of labeled

data and a comparably larger set of unlabeled data [118, 90]. Thus they are naturally

related and can be combined to improve performance by learning meaningful data

representations from the unlabeled pool [98].

However, only a few works have considered combining KD, AL and SSL during

training. To the best of our knowledge, very few existing works, if any, focused on

the data augmentation that coupled SSL with AL and KD as our approach in this

work has been used.

4.3 Modeling and Proposed Framework

In this section, we formulate the model, discuss the details of how we solve those

problems with the BCD principles, and train the model in active learning settings.
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Figure 4.2 Comparison of existing approaches and our model. The green color
represents clean data with ground truth, orange color represents component to
generate unlabeled data, yellow color represents clear data which is filtered from
unlabeled data with annotated weak labels. The pipeline on the left is an illustration
of existing approaches (e.g.: [66, 105]) with dependency on large external resources
and existing machine annotator; the framework on the right is our proposed model
for token-level task without dependency on external resources nor existing machine
annotators.

4.3.1 Problem Demarcation

Given a token-level NLP task, our problem of interest consists of three coherent

sub-problems:

• Valid Data Augmentation: how to decide the proper tokens to be revised
selectively to maximize the diversity of augmented context, while preserving
the primary information, as well as choose the appropriate tokens to replace
them to minimize the risk of altering the true label distribution;

• Reliable Label Annotation: how to annotate the new noisy instances in a reliable
way to minimize the divergence between distributions of machine labels and true
labels without oracle referenced resources nor robust machine annotator;

• Enforcing Smoothness of Training : how to enforce the deep neural network
on training a robust model consistently and confidently in the combination of
limited labeled data and larger noisy augmented data with weak labels.

We proposed three corresponding principles to tackle them, which were

mentioned previously, BCD principles. More specifically, they are Burden-free
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augmentation, Confidence-based training and Diversity-oriented labeling, respec-

tively. More importantly, in contrast to previous works, we propose to address the

problem for the under-represented domains in low-resource settings. Particularly,

we make no presumption that a large unlabeled external dataset is available or a

well-established machine learning model should exist for machine annotation.

The high-level framework of our model about how these components are

connected is shown on the right side of Figure 4.2. Nodes in green color represent

the limited size of clean data D with ground truth, while the node in gray color

denotes augmented noisy data A in which |A| � |D|, and the node in yellow

color means distilled clear data B. The component in orange color represents

burden-free adaptive augmentation and is discussed in Section 4.3.2; the meta model

g(·) tries to annotate clear data from the noisy examples through teacher-student

distillation; the main model (in blue color) f(·) is updated through active learning.

How to train neural networks consistently, in the combination of limited labeled

data and a large amount of noisy augmented data with weak labels, is discussed

in Section 4.3.3. The semi-supervised objective function contains two parts: the

supervised loss L(y, f(x)) and the divergence L(f(x), f(x̃)). We discuss the objective

functions and the annealing technique, which is used to enforce confident training in

Section 4.3.4. Note that the arrows in blue color represent the training procedure

with back-propagation involved. It should be mentioned that the parameters for the

main models are not changed when distilling the labels on the clear samples. The

fully trained main model will be used to predict the unseen test data.

In the rest of this chapter, unless otherwise denoted, we will keep using D,A,B

to denote the clean data, augmented noisy data, and distilled clear data, respectively.
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4.3.2 Burden-free Augmentation

Intuitively, the goal of text augmentation is to introduce a more diverse context by

revising some tokens, while maintaining the nature of original labels. The dilemma

is that we want to maximize the possibility to introduce more diversity but, at the

same time, minimize the risk of disturbing the original true distribution. Therefore,

how to design the augmentation transformation has become critically important.

Formally, let’s denote a labeled sentence by x = {w0, w1, . . . , wn}, where wi

is the ith word in the given sentence and n is the sentence length. Let q(x′|x) be

an augmentation transformation from which one can draw augmented samples x′ =

{w′0, w′1, . . . , w′n}. The desired instances are expected to be diverse and valid. Hence,

the augmentation should retain primary information and only replace uninformative

words with other words. For q(x′|x), we customize the sentence-level word replacing

method in [105] to token-level task, and further extend with adaptive topic alignment.

Our Adaptive Augmentation utilizes the topic model to do the topic alignment

for each instance, and then adaptively draw the less informative candidate tokens

{wi} for revision by the normalized TFIDF score. The detailed steps of Adaptive

Augmentation with Topic Alignment method are shown in Algorithm 1. Specifically,

we train a Latent Dirichlet Allocation (LDA) topic model [11] (Algorithm 1: line 1)

to align the topic for each sample x ∈ D. Then, for each word w, we calculate a

replacement probability based on the tfidf(w) score (Algorithm 1: line 5 to line 6).

In addition, we further compute a discriminative weight for each word w in sentence x

(Algorithm 1: line 8 to line 10) to measure whether a word carries primary information

or not by aligning with topicx. When the word w ∈ x is going to be replaced, we

randomly sample an uninformative word v ∈ D, with respect to topicx, from the

vocabulary based on the calculated discriminative weights (Algorithm 1: line 15).

Our augmentation transformation q(x′|x), which is built upon the unsupervised

TFIDF bag-of-word scheme and LDA topic model, is burden-free to the low-resource

50



Algorithm 1: Adaptive Augmentation with Topic Alignment q(x′|x)

Data: Labeled data D;

Output: Augmented set A;

Input:

Number of hidden topics h; Augmentation temperature t;

Number of augmentations (for each instance) m;

Initialization: A = Ø;

Process:

1 (topics, scores) ← LDA(D, h) ;

2 (tfidf, idf) ← TF (D) · IDF (D) ;

3 forall sentence x ∈ D do

4 # compute probability for replacement in sentence x

5 C = max
w∈x

tfidf(w); Z1 =
∑
w∈x

(C− tfidf(w)) ;

6 replace prob = (C− tfidf(w))/Z1 · t for w ∈ x;

7 # compute sampling score for v in vocabulary

8 topicx ← LDA.predict(x); Sadapt2x ← scores(topicx);

9 Z2 =
∑
v∈D

(max(Sadapt2x(v))− Sadapt2x(v));

10 Samplingprob = (max(Sadapt2x(v))− Sadapt2x(v))/Z2 ;

11 # sampling word in v to replace word in x

12 forall j = 0, 1, . . . , m do

13 x′ ← forall w ∈ x do

14 if replace prob(w) > rand prob then

15 w′ ← random(v ∈ D, Samplingprob) ;

16 end

17 A← A ∪ x′

18 end

19 end
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applications. Despite being simple, the introduced discriminative weights encourage

the candidates {w′i} to be adaptable to the topic of each sentence and can avoid

selecting the primary keyword for revision.

4.3.3 Diversity-oriented Labeling

To obtain high-quality machine labels, we propose the diversity-oriented labeling

algorithm to propagate the labels iteratively through teach-student annealing. We

consider the setting of pool-based active learning [38]. Specifically, the unlabeled

samples are generated via Algorithm 1.

Diversity-oriented Selection Metric Intuitively, the unsupervised objective can

benefit from exploiting samples that can be recognized to some extent by machine

annotator or human but not labeled consistently [38]. Thus, with respect to the

selection criterion, we propose a token-level diversity-oriented selection metric to

selectively prioritize the high-value data (x̃, g(x̃)). The selection metric is defined

as:

C(A,M) =
∑

x∈D,x′∈A

ε(x,M)

ε(x,M)
wt∈x,ŵt∈x′,x∼{x′}

=

|x|∑
t=1

J∑
`=1

Var(P (Y = ` | wt,M),

P (Ŷ = ` | ŵt1 ,M),

P (Ŷ = ` | ŵt2 ,M),

. . . ,

P (Ŷ = ` | ŵtm ,M))

(4.1)

where J is the number of response classes; m is the number of augmented examples

{x′}; x ∼ {x′} are the paired original sentence and augmented examples, respectively.
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wt is word in x and Y is its corresponding predicted label; while ŵtm is word in x′

with label Ŷ . M is the model used for annotation;

Labeling Distillation Moreover, with respect to the labeling function g(x′)

presented in Figure 4.2, a well-established neural network would be utilized to

do annotation in previously proposed NLP augmentation tasks. However, in our

research, we do not assume such resources are available for the under-represented

applications. The limited amount of clean data is not sufficient to train a

well-performing model solely for machine annotation. In this work, we employ the

“born-again” distillation presented in Clark et al. [18]. In “born-again” networks, the

student model has the same model architecture as the teacher model and is expected

to outperform the teachers accuracy [18]. Formally, let’s define both the teacher

model and student model, which share the same architecture and prediction function

f(·) as the main model in Figure 4.2. The meta model as annotation machine and

its prediction function g(·) can be defined as follows:

g(x′) = λf(x′, θteacher) + (1− λ)f(x′, θstudent), (4.2)

where λ is a weight increasing from zero to one throughout training, and θ are the

weights of the model.

Distill Label by Active Learning we demonstrate in Figure 4.3 how we

consistently propagate the reliable labeling through active learning by iteratively

training student model fθstudent
(·) and updating meta model g(·). Concretely, the

noisy unlabeled data U are the pool for active learning. The unlabeled data in

pool are labeled by M, which is set to fθstudent
(·) in our design, and evaluated

by the diversity-oriented selection metric (Equation 4.1). The scoring function C

measures the inconsistency across all the perturbations. Then a batch of K prioritized

high-value samples is selected into the clear data set B and removed from A. All the
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augmented instances in B are labeled again by labeling Equation (4.2). We update

the main model until the model is fully trained, or no more candidates are available.

Early in training, the meta model g(·) is mostly relying on student model

fθstudent
to make inconsistent labeling such that fθstudent

is largely learning to get

as useful of a training signal as possible from inconsistent samples. The progressively

infused diverse realistic noise by the pool-based active learning setting can enhance

the learning of fθstudent
. Towards the end of the training, the g(·) is mainly relying

on the teacher model having more standard labels from fθteacher . The “born-again”

teacher-student annealing not only improves the training of fθstudent
and g(·) with

more reliable annotations but also enhances fθstudent
to outperform fθteacher in return,

thereby facilitating to train a more robust main model.

4.3.4 Confidence-based Annealing Masking

Our overall training objective, showing in Equation (4.4), is defined as consistency

losses in SSL settings, which is to train the neural network in the combination of small
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labeled data and extensive unlabelled data. Note that L`(x, y,M) for the supervised

loss can be cross-entropy or other forms of likelihood, depending on the task. In this

research, we set it to the negative log-likelihood for the NER task.

Moreover, for an augmentation to be valid, it requires that any example x̃ ∈

q(x̃|x) drawn from the distribution shares the same ground-truth as x, i.e., y(w̃t) =

y(wt) given any w̃t ∈ x̃, wt ∈ x. To enforce such an objective, we minimized the

Kullback-Leibler (KL) divergence between the predicted distribution of augmented

instances and their original samples to make the {f(w̃t), t ∈ [0, n]} approximate

{yt, t ∈ [0, n]}. More specifically, we defined it as follows:

Lu(x, x̃,M)
x∈D;x̃∈B

=Lu(y, f(x̃))

=DKL(pθ̃(f(x)|x)‖pθ(f(x̃)|x̃)),

(4.3)

where ‖ is the KL measure of two probability distributions, θ̃ is a copy of the current

parameters θ of model f(·), indicating that the gradient is not propagated through

θ̃, as presented in Xie et al. [105].

Furthermore, a good model should be invariant to any small perturbations that

do not change the nature of a sample. Here, we employ the Training Signal Annealing

(TSA) technique in Xie et al. [105] to encourage the model to focus on the confident

representation but not disturbing by the less confident signals, especially the noisy

signal from augmented examples. We integrate this technique into our architecture

by referring to the authors’ codebase 1. And for the integrity of our work, we reiterate

the formulation of three schedulers here:

ηt = αt ∗ (1− 1

J
) +

1

J


αt = 1− exp(− t

T
∗ 5) : log

αt = t
T

: linear

αt = exp(( t
T
− 1) ∗ 5) : exp

(4.9)

1https://github.com/google-research/uda (Accessed on Mar 31, 2020)
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Algorithm 2: Train our Model in Active Learning

Data: Labeled data D; Augmented unlabeled data pool A;

Result: Main model M ;

Input: Active learning batch size K;

Initialization:

U0 = A;

L0 = {(x, y) : (x, y) ∈ D};

Process:

1 forall t = 0, 1, . . . , T − 1 do

2 (training main model - SSL)

Mt ←arg min
M

{ 1

|D|
∑

(x,y)∈D

L`(x, y,M)

+
1

|Lt|
∑
x∈Lt

Lu(x,M)}
(4.4)

3 (selection of clear data)

Bt ← arg max{C(Ut,Mt)}

s.t. |Bt| = K, C = Equation (4.1)

(4.5)

4 (labeling for clear data - KL)

Jt ←λf(x̃,Mt) + (1− λ)f(x̃,Mt−1)

w.r.t. (x̃ ∈ B)

(4.6)

5 (labeled data update)

Lt+1 ← Lt ∪ {B, Jt} (4.7)

6 (unlabeled pool update)

Ut+1 ← UtBt (4.8)

7 end
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where J is the number of response classes, t is the current step, T is the global step.

This policy works with minimizing the loss of the model (Equation 4.4) during the

training procedure, which is summarized in Algorithm 2 of which we show detailed

steps for the framework. Since it is costly to train LDA on-the-fly during training, we

generate the augmented examples offline. Multiple augmented examples are generated

for each sample. In rare cases, some augmented instances would be duplicated, and

we remove them from the pool A.

4.4 Experiments and Results

We present the data, experiments and results in this section. Our ablation study

teases apart the contribution of each component in Sections 4.3.2, 4.3.3 and 4.3.4.

4.4.1 Datasets

For our study, we selectively evaluate the effectiveness and generalization ability of our

model on two previously published benchmarks in the biomedical domain including

NCBI disease corpus [31] and Genomic Variant corpus tmVar [103], of which the

language exhibits different levels of exotic linguistic heterogeneity from newswire

articles. It could inspire other similar NLP tasks like tweets and machinery logging,

which are less likely to have substantial domain-dependent resources compared with

generic NLP tasks. The statistics of the data are reported in Table 4.2. We used the

standard split of training/validation/test sets, and the hyperparameters were tuned

based on the performance on the validation set.

4.4.2 Baseline NER Model

Recent high-performing neural architecture for NER tasks is BiLSTM-CRF [16, 57].

The latest improvements mainly stem from using new types of representations learned

from character-level embeddings [64, 61] and contextualized embeddings derived from

language models pre-trained on large unlabeled corpus like ELMO [78] and BERT
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Table 4.2 Statistics of Different Datasets

Data Size Types and Counts Entity Examples

NCBI
8,336

sentences
Disease (6,881)

MCF-7 tumours;

sporadic T-PLL

tmVar
4,783

sentences

Protein Variant (653)

DNA Variant (751)

SNP (136)

p.Pro246HisfsX13;

Ex2+860G>C;

rs2234671

[29]. Unless otherwise indicated, we use the BiLSTM-CNN-CRF model proposed in

[64] to initialize the teacher and student models in all experiments.

For the character-level CNN encoder, we use single-layer CNNs with 50 filters

and kernel width three. For the LSTM word-level encoder, we use a single-layer model

with 100 hidden units. Dropout rates are all set as 0.5. We used the 200 dimensional

Word2vec [67] embedding trained by [85] on PubMed, PubMed Central (PMC) and

Wikipedia text. We didn’t fine-tune the word embedding in our experiments. Finally,

we used RMSP [97] as the optimizer and uniformly set the step size as 0.001 and the

batch size as 64.

Our goal is to evaluate the effectiveness of the proposed model and BCD

principles with minimal resources. We didn’t perform the cost extensive hyper-

parameter tuning on the BiLSTM-CNN-CRF architecture. Noted without further

exceptions, we uniformly use the same set of hyperparameters for all the teacher and

student models in our experiments. We first trained the baseline NER model for 100

epochs with early stopping. The pretrained model will be regarded as the baseline

in our experiments. Moreover, we also used the baseline model to define the teacher

model described in Section 4.3.3.
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4.4.3 Hyperparameters

While we sealed the hyperparameters for the baseline model, we still introduced a

few hyperparameters in our model to guide optimization with unlabeled noisy data.

We focused on exploring a few critical factors in our experiments and fixed some less

critical ones.

More specifically, we set the number of hidden topics h for LDA model in

our experiment to the number of tags for each task, with the number of unlabeled

augmentations m as 20, and the batch size K for active learning in Algorithm 2 as

|A|/epochs. In our experiments, we set the number of epochs to train the student

model as half of the epochs to train the baseline model, which is 100/2 = 50. We

focused on investigating the effects of the augmentation temperature t in Algorithm 1,

the distillation weight λ in Equation (4.2) and the choice of annealing scheduler

in Equation (4.9). Moreover, while we use CRF to make the final prediction, we

replace the CRF layer with a softmax function to produce the probability score for

Equation (4.2) and 4.3.

We fix the seed in our experiments and report the F1 score for each method,

which is standard for NER tasks. It is important to note that we evaluate the exact

match in all the results. All the experiments are implemented in Keras 2.3.1 with

TensorFlow backend 2.0 using Python 3.6.8. All the code will be publicly available

after the double-blind review process.

4.4.4 Main Results

When training with unlabeled data, the noise can easily undermine training and

performance. As the first step, we try to verify the fundamental idea of the model and

BCD principles. Based on the NCBI-disease and tmVar, we compare the performance

of our method with two recently proposed text augmentation approaches:

• AWR: our adaptive replacement method in Section 4.3.2;
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• TFIDF: TFIDF replacement method in [105];

• Random: replace a token with a random token uniformly sampled from the

vocabulary [101].

We also compared our training strategy with another recent annealing technique:

• TSA: the training signal annealing [105];

• CD: our diversity-oriented active labeling principle in combination with TSA.

We report the results in Table 4.3. The baseline is defined and described

in Section 4.4.2, which is also the teacher model in our model. The other results

are reported from the student model by searching the parameter space described in

Section 4.4.3. As we can see from the results, our model can significantly outperform

the baseline and other recently proposed strategies, when training with the noisy

augmented data. It demonstrates that our framework can guide the training to

learn informative representations from the augmented set, and in return, improve

the performance of the baseline model.

More specifically, as we can see from Table 4.3, our AWR consistently

outperforms the Random and TFIDF augmentation methods across two data

sets in various settings. We argue that it is because our AWR can adaptively

align the topic for each instance; therefore it can keep more informative signals.

More encouragingly, when training under the guidance of our CD principles, all

the augmentation strategies, including random sampling, can achieve marginal

performance improvement while our AWR achieves the best record. And TSA can

achieve marginal performance gains when working with our AWR. It failed to achieve

consistent performance improvement across two data sets with random sampling and

TFIDF. It indicates that our active labeling algorithm substantially improves the

quality of weak labels, and in return, facilitates training a more robust model.
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Table 4.3 Results and Comparisons

Data Set Methods Precision Recall F1 Score

NCBI-Disease

Baseline 82.32 74.45 78.18

Random-TSA 77.8 77.07 77.43

TFIDF-TSA 78.1 77.54 77.82

AWR-TSA 78.85 78.45 78.65

Random-CD 79.56 75.1 77.27

TFIDF-CD 81.43 80.25 80.84

AWR-CD 81.22 81.39 81.31

tmVar

Baseline 79.22 79.91 79.57

Random-TSA 74.20 85.10 79.28

TFIDF-TSA 76.15 86.17 80.85

AWR-TSA 72.65 88.34 79.73

Random-CD 75.87 84.23 79.83

TFIDF-CD 76.76 84.88 80.61

AWR-CD 79.18 82.94 81.01

4.4.5 Component Analysis

We also study the effect of each component in our design and try to understand to

what extent they can improve the task.

Distillation Strategy First of all, we study the strategies to distill knowledge

defined in Equation (4.2). In our experiments, we tried two approaches: (1) annealing,

and (2) ensemble. For the annealing approach, the λt is set to t
T

, where the t is the

current time step, and T is the global step. For the ensemble approach, we set the

λt to a fixed value 0.5 across all the time steps during training. The results are

reported in Table 4.4. It turns out that the ensemble method works better than
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the annealing distillation. One potential reason is that the teacher model in our

experiments essentially is still a weak learner without tuning any hyperparameter,

and cannot provide enough gold knowledge at the end of the training. Setting too

much weight for the teacher model in the second half of the training stage may

introduce some weak labels from the weak teacher model.

Table 4.4 Comparison of Different Distill Strategies

Data Set Distillation Augment Precision Recall F1 Score

NCBI-Disease

annealing

Random 75.40 77.36 76.37

TFIDF 81.43 80.25 80.84

AWR 79.53 81.10 80.31

ensemble

Random 79.56 75.1 77.27

TFIDF 80.32 81.33 80.82

AWR 81.22 81.39 81.31

tmVar

annealing

Random 76.08 83.80 79.75

TFIDF 77.4 83.59 80.37

AWR 76.76 84.88 80.61

ensemble

Random 75.87 84.23 79.83

TFIDF 76.76 84.88 80.61

AWR 79.18 82.94 81.01

The TSA Scheduler Lastly, we investigated the effect of the training signal

annealing scheduler in our experiments. As shown in Table 4.5, on NCBI-disease,

both TFIDF and AWR prefer the linear scheduler, while on tmVar, they both favor

the log scheduler. The difference between those schedulers is the speed of releasing

supervised training signals. More specifically, the log scheduler will release the

training signal rapidly at the beginning of the training, while the exp scheduler does
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the opposite. The linear scheduler will release the signal progressively along with the

training. The results in Table 4.4 indicate that, when the size of the corpus is severely

restricted like tmVar, the training can benefit from the quickly released supervised

training signal from the log scheduler. However, when the data is of medium size

like NCBI-disease, the model can learn more from the progressively released training

signals by linear scheduler where the amount of noisy data won’t overwhelmingly

flush into the training.

Table 4.5 Ablation Results on TSA Scheduler

Data Set Scheduler Augment Precision Recall F1 Score

NCBI-Disease

exp
TFIDF 80.73 80.81 80.77

AWR 80.85 79.42 80.13

linear
TFIDF 81.43 80.25 80.84

AWR 81.22 81.39 81.31

log
TFIDF 80.33 81.33 80.82

AWR 79.53 81.10 80.31

tmVar

exp
TFIDF 77.4 83.59 80.37

AWR 72.08 88.12 79.30

linear
TFIDF 76.62 84.23 80.25

AWR 74.81 84.66 79.43

log
TFIDF 76.76 84.88 80.62

AWR 79.18 82.94 81.01

4.4.6 Retraining Cost

At the end of our experiments, we further investigated the retaining effect in the active

learning setting. Traditional active learning schemes are expensive for deep learning

because they require complete retraining after each round with newly annotated
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samples. Since retraining from scratch in each round is not practical for deep

learning, Shen et al. [88] proposed to carry out incremental training with each batch

of new labels and update neural network weights for a small number of epochs before

querying new labels. In our experiment, we tried two different retraining strategies:

(1) retraining single epoch in each round; (2) retraining ten epochs in each round.

As the results shown in Table 4.6, our model can achieve a significant performance

increment even with the single retrain epoch. Further retraining with more epochs

can only achieve marginal gains but with significantly higher retraining cost, as shown

in the last column.

Table 4.6 Comparisons on Retrain-cost for Active Labeling

Data Set Retain Epoch Precision Recall F1 Score AvgHour

NCBI-Disease
1 81.62 80.69 81.15 5.5

10 81.22 81.39 81.31 17.5

tmVar
1 76.76 84.88 80.61 2.5

10 79.18 82.94 81.01 4.5

To this end, we demonstrate the effectiveness and significance of our model.

4.5 Conclusion

In this chapter, we discussed a novel consistent-based unsupervised data augmen-

tation approach with the “Burden-free, Consistent-based, and Diversity-oriented”

training principle. Our method can train a model using a combination of small-sized

clean data and large-sized noisy data, which leads to consistent and significant

performance improvement. Our extensive experiments demonstrated the superiority

of our method and confirmed that enhanced data augmentation, with proper training

guidance, could boost performance significantly.
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More importantly, our method offers a competitive lightweight alternative for

under-represented domains with limited resources. Our augmentation approach is

burden-free and domain-independent. Our active labeling algorithm eliminates the

dependency on well-established machine annotators, which may not always exist. We

hope that our encouraging results can inspire more future research to investigate the

challenges for NLP tasks in resource-limited environments.
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CHAPTER 5

CONCLUSION

In this dissertation, we considered bridging the gap between deep learning and

domain-specific text mining applications by utilizing different techniques of transfer

learning. We explored the pretrain-finetune and knowledge distillation with other

deep learning techniques for improving the performance of two specific domains:

success prediction in crowdfunding and named entity recognition in biomedical

literature.

In Chapter 2, we took the multimodal approach with pretrain-finetune efforts

towards enhancing success prediction in crowdfunding projects. While other

work in this field focused on utilizing rich post-launch dynamic information from

crowdfunding and social media platforms, we wanted to make the prediction before

the projects are launched to avoid predictable failure. We integrated knowledge from

different modalities collaboratively, like text and images, while limited resources are

available at the pre-launch stage. In particular, we acquired the feature representation

by transferring the domain knowledge from the large benchmark, Wikipedia and

ImageNet, for text and images, respectively. We implemented a multimodal deep

learning framework to combine different modalities simultaneously to predict project

success. We demonstrated the effectiveness of doing this by evaluating our approach

on a large collection of project profiles.

In Chapter 3, we addressed the named entity recognition problem in a specific

biomedical application, genomic variant identification, of which only restricted

training corpus is available. This task also exposes highly heterogeneous linguistic

patterns of entities. The traditional machine learning approaches heavily relied on

hand-crafted features, while we wanted to build an end-to-end approach in fully

automated construction. We explored several generic NER models and their ability
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to identify variants. To further improve the performance, we built a DeepVar model

that integrated the residual technique and pretrain-finetune principle to support the

training of a deep model. We also explored and demonstrated the effectiveness of

different word embedding benchmarks in low-resource settings.

In Chapter 4, we introduced the consistency-based unsupervised data augmen-

tation model, which aimed to tackle the data insufficiency situation for low-resource

applications in general, and also facilitate to address the overfitting problem when

training the deep learning model in low-resource settings. It’s the first proposed

model which is designed with minimal resources in low-resource settings in this field.

Compared to previous text data augmentation approaches, this model doesn’t rely

on any large external resources or assume any robust annotation machine exists. We

defined three principles: adaptive, active, annealing, and described all the elements of

those three modules. All the modules are jointly optimized together, utilizing active

learning and knowledge distillation techniques. Through empirical experiments, we

examined and demonstrated the effectiveness and efficiency of the model on two

low-resource biomedical applications.

Altogether, we believe transfer learning is a promising technique to address

the challenges in domain-specific applications. At the same time, we are still facing

enormous challenges in many unique domain-specific problems. One key challenge

is the limitation of the size of labeled data in those domains where labels are cost-

prohibitive to obtain. Often this occurs due to the high cost of expert annotation

or scarceness of the target. In the future, we will have to address the challenges for

those domains, rather than just answering problems for large corpus, to bridge the

gap between the generic deep learning community and the domain-specific tasks.
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