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ABSTRACT

ANALYSIS OF GAMEPLAY STRATEGIES IN HEARTHSTONE: A
DATA SCIENCE APPROACH

by
Connor W. Watson

In recent years, games have been a popular test bed for AI research, and the presence

of Collectible Card Games (CCGs) in that space is still increasing. One such CCG for

both competitive/casual play and AI research is Hearthstone, a two-player adversarial

game where players seeks to implement one of several gameplay strategies to defeat

their opponent and decrease all of their Health points to zero. Although some

open source simulators exist, some of their methodologies for simulated agents create

opponents with a relatively low skill level. Using evolutionary algorithms, this thesis

seeks to evolve agents with a higher skill level than those implemented in one such

simulator, SabberStone. New benchmarks are propsed using supervised learning

techniques to predict gameplay strategies from game data, and using unsupervised

learning techniques to discover and visualize patterns that may be used in player

modeling to differentiate gameplay strategies.
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Games have benchmarked AI methods since the inception
of the field, with classic board games such as Chess
and Go recently leaving room for video games with
related yet different sets of challenges. The set of
AI problems associated with video games has in recent
decades expanded from simply playing games to win,
to playing games in particular styles, generating game
content, modeling players, etc. Different games pose
very different challenges for AI systems, and several
different AI challenges can typically be posed by the same
game... Collectible card games are relatively understudied
in the AI community, despite their popularity and the
interesting challenges they pose.
While the successful tactics of a Hearthstone player are at
least partly determined by the deck, for many decks there
are several different playstyles possible, and individual
players will often prefer one playstyle over another. Can
we create AI agents that can learn and recreate these
playing styles, not only playing to win but doing so in
the style of a particular player?

Amy K. Hoover
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LIST OF DEFINITIONS

Agent An AI player using a gameplay strategy and deck of cards

in Hearthstone.

Aggro An aggressive playstyle which seeks to finish the game

quickly by swiftly attacking the opponent.

Cartesian Space The Cartesian coordinate system which specifies points

uniquely in a plane via a set of numerical coordinated.

Control A defensive playstyle which seeks to play a longer drawn
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CHAPTER 1

INTRODUCTION

While board games like Chess, Checkers, and Go are classic benchmarks in AI,

they share many properties. For instance, they are each two-player, turn-taking,

adversarial board games where both players have perfect information about the

state of the board and moves available to themselves and the opponents. Moves

are deterministic rather than stochastic, meaning that the next state of the board

is determined based on the current state, and whichever move the player chooses

to make next [45]. The games are also zero-sum, meaning that the loss of one

player is balanced by gain for the other. While Checkers was one of the first studied

for its relative simplicity compared to Chess and Go [46], a primary differentiating

characteristic is the total number of possible states, where the state space of even

Checkers has approximately 500 billion different states or possible positions (i.e.,

5 × 1020) [48]. Proposed as an alternative benchmark is the card game Hearthstone

[7] (described in more detail in Section 2.2), which differs from these board games in

its non-determinism, the size of the state space, and the exponential branching factor

of the game tree [32].

Algorithms designed to beat these games largely rely on building and searching

a game tree of possible positions for the game. An example of a game tree is shown for

Tic-Tac-Toe in Figure 1.2 with positions defined in Figure 1.1. Player X has placed

an X in the upper right hand corner, and Player O is searching for possible locations

to place its O. This partial tree shows three positions that Player O could place its

O, but note that there are a total of eight possible positions considering that one is

taken by the X. Complete game trees would show the states after all possible moves

by both players, until the final possible moves are achieved. Two popular human
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0 1 2

3 4 5

6 7 8

Figure 1.1 Tic-Tac-Toe is played on boards of size 3 × 3. Each positioned is
numbered for reference.

X

OX X X
O O

Play-O(4) Play-O(3)Play-O(1)

Figure 1.2 The initial state for Player O is shown at the top and all possible moves
played next to the X played by Player X shown in the next turn. Note that there are
five additional moves available to Player 0, but only three of eight are shown.

competitive algorithms Deep Blue [10] and AlphaGo [52] both rely on building and

pruning such trees to decide the next moves to play.

Inherent to picking the best actions in a game based on a game tree is

determining values of particular game states. While Monte Carlo Tree Search (MCTS)

approaches state value assignment based on how likely they are to result in a win for

the player, the complexity of Hearthstone often requires making narrow assumptions

about the players’ choices to perform well due to the stochastic nature of the game

[53]. An alternative to MCTS is developing scoring functions to determine the values

of states. While heuristics developed by hand can be effective [20], their success relies
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on expert knowledge and often perform poorly when played with a different set of

initial conditions.

Experiments in this thesis test the performance of two popular heuristics

provided by the Hearthstone simulator SabberStone 1 that are designed to emulate

a general form of basic gameplay strategies in Hearthstone, and compare their

performance relative to two learned with a technique called Covariance Matrix

Adapation MAP-Elites [23]. Beyond comparing their win rates, through supervised

and unsupervised approaches, additional experiments aim to uncover whether the

particular scoring function can be determined from game state information available

at each turn. The hope is that such an approach can form a basis for new approaches

to build effective algorithms for agents to play and win games of Hearthstone.

1.1 Hypotheses

By analyzing the performance of different simulated Hearthstone agents, the data

should show a clear difference in how two opposing strategies approach the game,

with the added expectation that evolved heuristics via CMA-ME should perform

better than the curated ones included with SabberStone. In addition, by comparing

supervised learning models trained on player data, a model should confidentally

predict which of two heuristics an agent is using based on game data. Finally, by

using unsupervised dimensionality reduction techniques, the data should result in

clear geometric separation in Cartesian space of the different types of agents.

1https://github.com/HearthSim/SabberStone
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CHAPTER 2

BACKGROUND

This chapter details collectible card games in general and Hearthstone in particular.

In addition, this chapter also includes a discussion of previous AI approaches to

Hearthstone, and briefly introduces a recently proposed algorithm included in the

experiments of this thesis.

2.1 Collectible Card Games

Although different types of card games have existed since the 1300s [21], the first

collectible card game called Magic: the Gathering was created in 1993 by Richard

Garfield [55]. CCGs are significantly different because players cannot own all of the

cards at once by making a simple purchase. Instead, players need to buy booster

packs, which are packets containing a small randomized subset from the entire set of

cards. This could have been an incentive for players to continue to buy more packs

to find more powerful cards, or cards that have synergy with their current collection

of cards. Not only that, but it has become a fun way to compete with friends; players

construct their own decks of 60 cards out of the over 9000 cards in the set of all

cards, and with more cards being added each year, the space of decks is large enough

that it is quite uncommon for two players to share the exact same deck of cards [58].

Since Magic: the Gathering, many other card games have been created with similar

yet unique rule sets such as Yu-Gi-Oh!, Pokémon, and Cardfight!! Vanguard. These

games see increased tournament level play, with players competing professionally all

over the world. Although these games have physical cards, the popularity of electronic

video games have also created digital versions of the games. One advantage of online

versions of card games is that with the right software, one can capture the turn by

turn plays that happen within a particular game.
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Player
Hero
Character

Opponent
Hero
Character

Opponent
Hero
Power

Player
Hero
Power

Opponent
Mana
Crystals

Player
Mana
Crystals

Figure 2.1 A game state in the first turn of a game of Hearthstone, showing some
of the different pieces for the player and opponent.

2.2 Hearthstone

To gain an understanding of the test bed for this research, this section introduces the

game, how it is played, and what the different pieces of the game mean in reference to

each player. Because Hearthstone is not open-source, one developer-friendly simulator

called SabberStone is discussed as well as the gameplay AI used for the experiments

in this thesis. This section briefly introduces other research areas related to AI

methods for Hearthstone, as well as outlining the interconnected research challenges

of generating decks and gameplay strategies [32].
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Player
Hand
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Player
Deck

Figure 2.2 A game state in the first turn of a game of Hearthstone, showing some of
the different pieces for the player and opponent. This includes a card on the current
player’s side of the board, as well as a timer (the burning rope animation) indicating
time is running out for their turn.
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2.2.1 Introduction to Hearthstone: The Basics

Hearthstone is another collectible card game, created by Blizzard Entertainment in

2014, designed as a two-player adversarial CCG for solely online digital play between

two players on unique devices (mobile or desktop). Shown in Figure 2.1, the hero

controlled by the player on the current device (surrounded by the light blue square),

is at the bottom of the board, shown as the portrait of one of the hero characters in

the game named Gul’dan. The board contains both players’ hero characters, and the

common space between the two players to play cards. Before starting a game, players

must create their own decks of cards which can be assigned to one of ten hero classes

available in the game, each with their own name and image [1]. A player’s turn ends

after 75 seconds or when the player presses the End Turn button highlighted in green

on the right-hand side of the board shown in Figure 2.1. As shown in Figure 2.2,

the current player is running out of time, so they are given a text warning, as well

as a rope with a burning animation from left to right, horizontally in the middle of

the screen, until it reaches the End Turn button. A round in Hearthstone concludes

after both players have completed a turn. Games can last a maximum of 44 rounds

and a turn, or 89 turns in total. In Hearthstone, there are also two types of formats

that a player can use to build a deck and play games with other players. In the Wild

format, all cards from the beginning of the game’s creation are allowed for play. In

the Standard format, players are only allowed to play with all Basic and Classic cards,

as well as a subset of cards from roughly the past two years of packs from a point in

time, which are changed in a rotating format throughout each year as new packs are

released. In this thesis, the cards and decks used represent a subset of the Standard

format active at the time when the "Rise of Shadows" booster pack was released.
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2.2.2 Resource Management: Mana

One aspect of Hearthstone which is unique from other games is resource management.

Turns are partially controlled by the resources owned by each player called Mana

Crystals. Most player actions in the game are initiated by cards, which have a given

mana cost to play it from the hand. As shown using circles in Figure 2.1, both the

player and the opponent have visible numbers showing their Mana Crystal summaries;

on the left is the player’s available mana, or simply mana, and on the right is the

player’s permanent Mana Crystals, or simply maximum mana. At the start of the

game, players start with one permanent Mana Crystal on their first turn, and gain an

additional Mana Crystal added to their maximum mana on each of their successive

turns until they reach the maximum of ten. Thus, in the first turn, players can only

play cards which cost one mana, and by turn ten players can play cards that cost ten

mana. At the start of each player’s turn, the turn player’s available mana available

is refilled to the maximum amount available for that player’s turn.

Resource management in Hearthstone is a partial contributor to a player’s turn

by turn gameplay. The progression of available mana per turn dictates the types

of cards that a type of player can use. For example, on turn one, a player is only

allowed to play one card that costs one mana. On turn two, a player is allowed to play

one card that costs two mana, or two cards that cost one mana each. This excludes

the presence of cards which cost zero mana, since this will not decrease the player’s

amount of available mana. These possibilities continue to grow with each turn as the

amount of available mana for the turn player increases each turn.

2.2.3 Classes, Heroes

There are ten classes that a player can choose from to construct their deck. As shown

in Figure 2.3, each class has a set of hero characters that a player can choose from to

construct their decks [1]. While some heroes are gained through purchases or through
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events, each class has one available hero by default for the player to access. Each of

the heroes have a name, and a unique Hero Power which they can use once per turn

at the cost of two mana. Each Hero Power provides a unique effect shown in Table

2.1. The classes of cards and heroes together form an expanded lore based on the

game World of Warcraft, also created by Blizzard.

Table 2.1 Hero Powersa

Class Hero Power Name Hero Power Text

Demon Hunter Demon Claws +1 Attack this turn.

Druid Shapeshift +1 Attack this turn. +1 Armor.

Hunter Steady Shot Deal 2 damage to the enemy hero.

Mage Fireblast Deal 1 damage.

Paladin Reinforce Summon a 1/1 minion.

Priest Lesser Heal Restore 2 Health.

Rogue Dagger Mastery Equip a 1/2 Dagger.

Shaman Totemic Call Summon a random Totem.

Warlock Life Tap Draw a card. Take 2 damage.

Warrior Armor Up! Gain 2 armor.

aHero Powers are unique to each class, but all cost two mana to play. Some may naturally
fit a particular gameplay strategy like that of the Hunter class, which when played does two
damage to the enemy hero. However, others like the Warlock’s Lifetap (i.e., costs 2 mana
to draw an additional card from the player’s deck) may fit other types of strategies different
than those which use the Hunter’s Hero Power.

9



Figure 2.3 The ten hero classes available for players to choose from, and their
default hero characters.
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2.2.4 Decks of Cards

Players may register for free accounts and can retrieve cards completely free of charge,

but they also have the option to purchase additional booster packs for the chance to

get more cards faster (hence collectible card game). Upon successful registration,

players have access to a set of 143 Basic cards to customize and build their decks

of cards, which rarely changes unless game designers determine the set should be

changed. In addition to the Basic cards, each class has a set of class specific cards;

each class has ten collectible cards in the Basic set, and even more in the additional

booster packs. Players have access to all ten of the classes, and when creating a

deck must select one as the basis of the deck. This then limits the cards they can

put into the deck to the class-agnostic Basic cards, and any class-specific cards the

player owns. Once a class is selected, a player can utilize any combination of those

to create a deck of 30 cards, with the exception that generally, a player can only put

a maximum of two copies of a card in a deck.

Each card has a rarity, and the rarity influences the relative likelihood of

receiving that card, and the amount of those types of cards a player can include

in a deck. Players can include two copies of a card if its rarity is free, common,

rare, or epic. However, a player can only include one copy of each legendary card

in the deck. Although the increasing rarity decreases the likelihood of receiving the

card, rarity is not necessarily indicative of the usefulness of a card. When building a

deck, players should keep in mind the cards themselves, and how they play together.

Details on the cards selected in this thesis are found in Appendix E, and the amount

of common cards between the decks are found in Appendix F.

2.2.5 Types of Cards

There are four categories of cards in Hearthstone, each of which shown in Figure 2.4.

Common to all playable cards is the mana cost, which is displayed in the top left-hand
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Figure 2.4 Four types of playable cards in Hearthstone shown left to right as follows:
minion, spell, weapon, and hero.

Figure 2.5 The minion named "Voidwalker" is a one-mana cost card (shown in the
top left). It’s attack power is one (shown in the bottom right), and its total Health
is three (shown in the bottom right).
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Figure 2.6 The spell named "Soulfire" is a one-mana cost card (shown in the top
left). It has an effect which when played, allows the player to deal four damage to a
target on the field, but also forces the player to discard a random card.

Figure 2.7 The hero card named "Bloodreaver Gul’dan" allows the player to
upgrade their chosen hero when played from the hand. It’s a ten-mana cost card
(shown in the top left). When played, the player’s chosen hero gains five additional
armor (shown in the bottom right), and activates the Battlecry effect shown in the
lower region of the card. The player’s Hero Power is also changed, but this is not
depicted as part of the card.
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Figure 2.8 The weapon card named "Overlord’s Whip" is a three-mana cost card
(shown in the top left) which gives the player’s hero character two additional attack
points (shown in the bottom left). It also has four durability (shown in the bottom
right), and when decreased to zero, the weapon will be destroyed. This weapon also
has an additional effect, and as long as it’s equipped to the hero, when the player
plays a minion, it is automatically damaged by one point.

corner next to the card’s portrait. Some cards even have a mana cost of zero. Cards

can be referred to as an N-mana cost card, where N is an integer that refers to the

card’s mana cost.

Minions are cards that once played, become movable units that can do damage

to other minions and to the opposing hero. An example minion is shown in Figure 2.5.

The amount of damage a minion can do is shown in the bottom left-hand corner of the

card and is called its attack power. Each minion can sustain a finite amount of damage

defined by its Health (or health points) displayed in the bottom right-hand corner.

Some minions have effects which are shown in the middle of the card underneath the

card’s name. There are different types of effects like Battlecry which only activates

once when the minion is played from a player’s hand, Deathrattle which activates

once when the minion has died, or Taunt which is a continuously active effect which

forces the opponent attacks to target this minion for attacks before any choosing

other targets for attacks.
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Spells are another type of card which do not have attack power or health points.

An example spell is shown in Figure 2.6. Spells do cost a number of mana, but are

a type of card which when activated, activates its effect, and then disappears. Two

exceptions exist with spells, as some can have the Secret ability or the Quest ability.

Secret spells are spells that stay hidden on the board until a condition is met, and

then the effect is activated. Quest spells have a continuous condition which allows the

spell to stay in effect until the player that owns the spell has completed the condition,

and then they gain an additional benefit. Neither Secret or Quest spells are used in

this thesis.

In addition, a player’s hero character can be upgraded during gameplay with

one of few hero cards. These cards belong to a particular hero class and change the

current hero to a new hero character, set the change the current Health value, add

an amount of armor (extra Health not included in the total Health value), and a

changed Hero Power. An example hero card is shown in Figure 2.7. Although hero

cards are not explicitly used, some decks in this thesis feature a minion card which

changes the player’s hero character.

Lastly, weapons are a unique type of card which have a mana cost, attack power,

and durability (Health), but are not placed on the board like minions. Instead, once

activated, the weapon is equipped to the player and transforms the player’s hero into

a minion-like unit that can also place attacks, just like minions. Each attack that the

player’s hero character makes while equipped with a weapon decreases the weapon’s

durability by one, and once it reaches zero, the weapon breaks and leaves the game.

An example weapon is shown in Figure 2.8. Weapons are not used in this thesis.

Note that over time some of these generalizations blur, especially given that

there are many different types of effects applicable to each card. For instance, some

minions can’t be damaged while on the board, others can’t deal damage, and the list

goes on. There are even some cards that belong to a particular class which give decks
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that use those cards a unique advantage over other classes. For example, the Druid

class has access to cards which manually increase the maximum available mana for

that player by one (but never above 10).

2.2.6 Gameplay: Turn Sequencing

In a game of Hearthstone, both players start by drawing three cards, always from

the top of the deck (which is face down so that cards in the deck are hidden to both

players). Before the first turn, both players have the option to perform mulligan

once by optionally deciding to put back some of the cards from their hand into the

deck, shuffling the deck, then re-drawing the same amount of cards from the top of

their deck. Each player has 30 Health to start, and the primary goal of defeating

the opponent is achieved by decreasing the opponent’s Health from 30 to zero. The

decisions made per turn are somewhat limited by the amount of mana the turn player

has. The player who goes first has the advantage of being the first person to have

potential cards played. But, the player who goes second has the advantage of receiving

an additional card added to their hand called "The Coin." This card is not a part

of any deck, and it comes from outside of the game. It costs zero mana to play and

has the effect of giving the player who activates it an extra mana to spend during the

turn they play the card. This means that on Player Two’s first turn, they can even

play a card that costs two mana by playing "The Coin".

When starting a turn, the turn player’s maximum mana gets one additional

Mana Crystal, and is fully replenished so that their available mana is equal to their

maximum available mana. They also draw the top card of their deck, adding one card

into their hand (unless their hand is at maximum capacity of 10 cards, in which the

card drawn is removed from the game). This then opens up their turn so that they

can execute tasks. For example, players can play minions, spells, or weapons from

their hand, they can use their Hero Power, or they can choose to attack with any
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minions they already have on board. Players can execute any combination of these

tasks, so long as they have available mana for each task.

2.2.7 Decision Making

Players have a large variety of decisions that they can make per turn, and these can

vary based on the goal(s) of the deck they are playing, the deck the opponent is

playing, the cards available in their hand or on the board, etc. If the turn player has

at least one minion on their side of the field, they can choose to attack with those

minions. If the player has a weapon, they can choose to attack with their hero as

well. Because some portions of the game are not visible to players, they may also

need to make quick assumptions about the game in order to make decisions.

2.3 Human Player Strategies

Two major gameplay aspects of Hearthstone include building a deck, and executing a

gameplay strategy. Both of these elements are intertwined through a reliance on one

another, and present their own areas of interesting research questions [32].

2.3.1 Building a Deck: Mana Curve

Because each card costs a certain amount of mana, decks tend to develop different

types of balance for cards that have different mana costs so that they can be played

at various turns in the game [6]. For example, if a deck has only one-mana cost cards,

then the player would have the guaranteed ability to play cards in the early turns,

but may find themselves quickly running out of cards in their hand. On the other

hand, if a deck has only five-mana cost cards, while the cards generally have more

attack power and Health, the player would have to wait until at least turn five to

play their cards. By balancing the amount of cards in a deck at each level of mana

cost, a player can have a better chance to get cards in their hand with appropriate

mana costs at different points in the game. In doing this, players will see their cards
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form a mana curve which is a histogram that maps the number of cards in the deck

at each mana cost. Mana curves for the decks used in this thesis can be referred to

via Appendix D.

2.3.2 Building a Deck: Metagame

In addition to having a balanced mana curve, players can also consider building

their cards around a metagame, which refers to the cards and types of cards that

are popular at a given point in time. The metagame is an always changing list of

cards which can be impacted by the format players design decks around, the booster

packs available at the time, and even the decks used by professional players. One

issue which can arise is when a metagame becomes over-saturated with particular

cards or particular decks, which can be difficult to play in if a player does not have

cards to defeat those in the metagame. Although both players and Hearthstone game

designers play an active effort in creating more balance in the meta, there may be

more ways to balance the metagame with the use of multi-objective optimization and

evolutionary algorithms [51].

2.3.3 Gameplay Strategies

Like other games, Hearthstone has a variety of styles of play, also known as gameplay

strategies that players can execute during a game [51]. The deck that a player builds

belongs to one of several archetypes which closely relates to the gameplay strategy

used. Despite having many types of strategies, the two discussed in this thesis are

aggro and control. Generally, aggro players attempt to win the game quickly by

filling their deck with lower cost cards, and tend to focus on aggressively dealing

direct damage to the opponent while ignoring the opponent’s minions. On the other

hand, control players attempt to play a longer game and seek to win in later turns

after controlling the board for the duration of the game; using removal spells and

defensive minions help the control player last long enough to execute their strategy
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effectively. Because aggro players seek to win quickly, they generally have more lower

cost cards in their decks, which causes their mana curve to be right skewed, as in

Figures D.6-D.10. Meanwhile, because control players seek to win in later turns, their

mana curves tend to either be more uniform or ragged with no clear distribution, as

in Figures D.1-D.5.

2.4 Artificial Intelligence in Games

Although AI has always proven to be useful when applied to games, in recent years,

research has seen a growing spike in the number and variety of studies revolved around

games. Especially since the defeat of Garry Kasparov by Deep Blue, researchers have

an increased interest in games such as Go [52], StarCraft [56], and Hearthstone [59].

2.4.1 Game Tree Search for Playing Games

Early on, games proved to be useful for research in AI methods. For example, machine

learning began with the idea that a computer can be programmed so that it will

learn to play a better game of Checkers than can be played by the person who wrote

the program [46]. This early application started to drive further interest in general

purpose learning machines, but also confirmed that machines can learn to play games

at human level. Not only that, this study utilized the notion of searching through a

tree of possible moves with a look-ahead to determine the next move. Another major

groundbreaking moment for AI recognized the defeat of Garry Kasparov by the Deep

Blue computer Chess system developed by IBM [10]. This massively parallel system

was designed for calculating searches through Chess game trees with an automated

evaluation function analysis. Complete game trees will show all possible moves and

states in a game, but compared to Checkers, games like Chess are shown to have

upwards of 1043 possible game states [49]. One pass through the game tree from

the root node to a leaf is considered a solution to the game; successful strategies for

playing games based on these trees should decide which parts of the tree to explore.

19



Since then, other games have also been used for the application of search

algorithms through game trees, especially Monte-Carlo Tree Search [12]. This

tree search algorithm combines multiple parts including a selection function which

recursively finds a leaf node (some ending state of a series of game states), expands and

simulates more branches after that game state, then backpropogates to the current

state to determine a decision based on the simulated outcomes. Thus, the values for

a state is based on how likely a player is to win, should they make that decision. This

tree search algorithm proved effective in board games like Kriegspiel [13], AlphaGo’s

success in Go [25, 52], and even multiplayer Poker [9]. Some approaches have

seen success in combining MCTS with deep learning in Atari [27], and others use

reinforcement learning techniques, such as the OpenAI approach for Dota 2 [40].

But the application of MCTS to card games like Magic: the Gathering [58] helps to

highlight previous gameplay research in Hearthstone [19, 35, 47, 54].

2.4.2 Previous AI Approaches to Hearthstone

The main research areas of Hearthstone mirror the major elements of the game,

including deck building and gameplay strategy. For players, deck building may be

challenging due to the expansive amount of cards, and not knowing how they work

together, or not knowing how to counter popular cards. Using vector embeddings and

dimensionality reduction algorithms like t-SNE [37], it’s possible to visualize decks by

class [36], which may help to recommend decks for players. The use of dimensionality

reduction for visualization is also utilized in this thesis. Through the use of genetic

algorithms, one study explored evolving competitive decks for the nine original classes

a player can choose from [24]. Another utilized evolutionary algorithms focused on

three hero classes which are typically used for aggressive playstyles to develop twice

evolved decks whose agents could beat agents that played using once evolved decks
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[6]. Using their performance in games, one can even use neural networks to predict

the win rate of decks as well [34].

In terms of gameplay research in Hearthstone, some progress has been made

to help AI play Hearthstone by optimizing the decision making process using feature

engineering and supervised learning [43]. Given its previous successes in algorithms

like AlphaGo, MCTS has been the main approach for simulated Hearthstone players

[47, 35, 19, 54], but the game’s complexity creates issues for MCTS alone to succeed.

For example, the branching factor of Hearthstone often requires players to make

narrow assumptions about the game and the succeeding turns. Although a similar

decision making process can be found in other games like Chess, the difference in

Hearthstone is that the board and pieces are not fully observable to both players,

which may lead to ill-informed guesses and presumptions about the cards in the

opponent’s hand, and in both players’ decks. Still, there may be other algorithms

which can develop agents with high success rates.

To contrast the experiments previously explored via MCTS, the experiments in

this thesis utilize the newly proposed quality diversity algorithm called CMA-ME [23]

to evolve several ANNs which are used to produce enhanced functions for evaluating

game states. Because of the challenges of MCTS applied to Hearthstone, this

thesis compares the win rates of agents using hand curated evaluatoin functions

found in SabberStone, with those using ANNs for evaluating game states. By

analyzing the set of games these agents play, the data may show patterns which not

only indicate differences in gameplay strategy, but may also help move AI towards

conquering Hearthstone and other AI problems. The use of CMA-ME should also

lead towards agents whose decision making process is better (thus producing a higher

win rate) when compared to the agents included in SabberStone [17]. In addition,

other experiments provide new benchmarks for predicting and visualizing gameplay

strategies in Hearthstone. By utilizing Principal Component Analysis [44, 50], the
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player strategies can be projected from a higher dimension onto a smaller feature

space [15, 26]. Inspired by research in other fields [3, 42], supervised learning models

are used to predict the gameplay strategies of simulated players in both the original

and principal component feature spaces. Through the use of simulated agents and

their verbose logging via SabberStone, extensive feature engineering similar to [43]

is used to coerce the AI logs into table based data sets which can be used for the

analysis process and model training.

2.5 A Hearthstone Simulator: SabberStone

Because Hearthstone is not an open-source game, one group of community developers

named HearthSim have developed a simulator named SabberStone [17], mostly

maintained by darkfriend77. SabberStone is developed as a .NET Core application

modeling the Hearthstone ruleset, gameplay, and interactions of different pieces in

the game to work as a console application. SabberStone also has a test project

which uses an AI with predefined gameplay strategies to run AI simulations. The

AI agents utilize heuristic scoring functions which are used to evaluate the quality

of a game state in the game tree. Although the AI can mimic aggro and control

strategies to a degree, this thesis utilizes the AI to capture differences between the

gameplay strategies during the simulation, and determines which of these are better

when compared against each other.

2.6 Covariance Matrix Adaptation MAP-Elites: CMA-ME

Some algorithms focus on generating a single artificial neural network, but a

new algorithm [23] searches to optimize the parameters of an ANN’s weights by

combining Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [16] with

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [28, 29, 30, 33]. Instead

of generating one best-performing network, the goal is to optimize a variety of

networks known as candidate solutions along any of the desired characteristics for
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the given problem. The newly developed Covariance Matrix Adaptation MAP-Elites

(CMA-ME) does not converge towards one singular good solution, instead it searches

for a variety of high-quality solutions by utilizing a process similar to natural

evolution; this can be referred to as a quality diversity algorithm.

2.6.1 Evolving Scoring Functions by Combining CMA-ES and MAP-

Elites

Evolutionary strategies are algorithms that use generations of sampling solutions to

a problem and move the overall population towards areas of desired goals, or fitness,

similar to the process of evolution in nature. CMA-ES via Figure 2.9 is a type

of evolutionary strategy which is a derivative-free optimizer for optimizing single-

objective functions in continuous domains [31]. CMA-ES utilizes an evolutionary

path of changes over each generation, and with each generation a selection of µ most

fit solutions, which update the covariance matrix C of the successive generation.

CMA-ES also uses a restart rule if a good solution is not found in the current evolution,

by generating a new mean and covariance matrix from the current best candidate

solution. Meanwhile, MAP-Elites maintains a behavior space of solutions called elites

in a Cartesian grid, shown in Figure 2.10. This algorithm not only tries to maximize

the amount of cells filled in the grid, but also maximize the quality of the solutions

used to fill each grid [39].

CMA-ME is a quality diversity algorithm which seeks to combine some of the

elements of both CMA-ES and MAP-Elites. This algorithm keeps the map and

archive technique of MAP-Elites, and alters CMA-ES by using emitters, a population

of modified searches. The solutions from the emitters are kept in the grid of elites,

which can be better than those found by just CMA-ES or MAP-Elites alone. The

end goal is to optimize a wide variety of artificial neural networks along any desired

characteristics of the generated candidate solutions (i.e. candidate ANNs).
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Figure 2.9 CMA-ES features four general steps. First, calculate the fitness score
of each candidate solution in the current generation. Then, select top 25% of the
population (purple). Using those only, calculate the covariance matrix of the next
generation. And finally, sample a new set of candidate solutions.

Source: [28]

Figure 2.10 Quality diversity algorithms such as MAP-Elites produce a wide variety
of high-performing solutions for the problem space. This example grid shows each
candidate solution mapped in Cartesian space, and the fitness of the solution in
normalized performance.

Source: [39]
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Figure 2.11 CMA-ME generated scoring functions which are represented as fully
connected ANNs with fixed network topology, described in Figure 2.12.

The artificial neural networks are then used instead of the SabberStone scoring

functions used to evaluate game states. Each network uses 15 observable Hearthstone

game features via Table 2.2 and combines the results into a scalar value, similar to

the AggroScore or ControlScore functions. This algorithm uses a fully connected

feed-forward network of 26 nodes to transform each of the observable features into a

score which is used to evaluate the state, the topology shown in Figure 2.12. With

each network, a pre-determined N number of games are played, and the map of elites

uses three quantities called behavior characteristics to determine how it is saved on

the grid: the horizontal axis is the average number of turns per game, the vertical

axis is the average number of cards in the agent’s hand, and the weight of the solution

on the grid is its average win rate across the N games. Only one network can occupy

each cell, so networks with higher win rates replace those with lower win rates; with

each generation during evolution, networks with higher win rates are saved on the

grid. Not only does this algorithm finds networks which score game states that lead

to a high win rate, but also a wider variety of solutions compared to CMA-ES or

MAP-Elites alone.
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Table 2.2 ANN Input Layera

Game Feature Description

HeroHp Total health points for the current player.

OpHeroHp Total health points for the current opponent.

HeroAtk Attack points for the current player.

OpHeroAtk Attack points for the current opponent.

HandTotCost Total mana cost of cards in hand for the current player.

HandCnt Amount of cards in hand for the current player.

OpHandCnt Amount of cards in hand for the current opponent.

DeckCnt Amount of cards left in the deck for the current player.

OpDeckCnt Amount of cards left in the deck for the current opponent.

MinionTotAtk Total attack points of current player’s minions on board.

OpMinionTotAtk Total attack points of current opponent’s minions on board.

MinionTotHealth Total health points of current player’s minions on board.

OpMinionTotHealth Total health points of current opponent’s minions on board.

MinionTotHealthTaunt Total health points of current player’s Taunt minions on
board.

OpMinionTotHealthTaunt Total health points of current opponent’s Taunt minions on
board.

a15 observable game features that are used as input to the ANN.
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HeroHp x0
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HeroAtk x2
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HandTotCost x4

HandCnt x5

OpHandCnt x6

DeckCnt x7

OpDeckCnt x8

MinionTotAtk x9

OpMinionTotAtk x10

MinionTotHealth x11

OpMinionTotHealth x12

MinionTotHealthTaunt x13

OpMinionTotHealthTaunt x14

Game Features (Input Layer) 2 Hidden Layers Output Layer

Game
State
Score

Figure 2.12 CMA-ME evolves a set of ANNs used to evaluate game states as a
substitute for the heuristic scoring functions provided with SabberStone.
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CHAPTER 3

METHODOLOGY

This section describes the methods for both generating and testing scoring functions in

the Hearthstone simulator SabberStone, and methods for an unsupervised approach

to data exploration, including a supervised classification of game states based on

strategy. The code for this paper including feature engineering, experiments and

results, can be found on GitHub 1.

To explore the robustness of CMA-ME, ten different Warlock deck lists are

used to run the experiments in this thesis. CMA-ME is also run to evolve several

different types of ANNs such that they can be used in matchups against agents using

AggroScore and ControlScore as the game state evaluators.

By comparing the differences in strategy, the data should confirm the basis that

learning how to play a particular strategy requires a different approach than learning

how to play other strategies.

Although it is possible that a subset of the population of human Hearthstone

players could have been considered, given the challenge of surveying Hearthstone

players, the SabberStone code base is utilized in a High Performance Computing

environment to run a large amount of games quickly. To aid the analysis process

and allow for increased accessibility of data, this thesis utilizes simulated players to

retrieve samples of games played between different strategy matchups. Although this

method may be faster, these simulated players are not truly playing at human level,

which means that by nature the types of moves detected may be different than those

that could be detected for human players. The experiments and results in this thesis

may be able to be used as a basis for player modeling.

1https://github.com/cww5/Sabber_Work_2019F
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3.1 Methods for Generating and Testing Scoring Functions

SabberStone simulates games through a turn-local game tree search illustrated in

Figure 3.1. Starting from the game state at the beginning of the turn (i.e., the root

node), these agents then build a partial game tree by determining all of the available

actions and game states reachable from that node. From the initial game state, this

player can either end the turn or play the card "Murloc Raider." The AI tries each

available action, and the resulting game state is evaluated and added to the next level

of the tree. Ending the turn would result in a score of 0 while playing the card is

worth 1002. While there are only two available actions from the game state at the

root node of this tree, if the number of possible resulting game states exceeds the

maximum width parameter of the AI, only the highest rated are kept. The decks and

scoring functions examined in this thesis are designed to replicate two different styles

of play called aggro and control (see Section 2.3.3 for more detail).

Figure 3.2 shows the beginning of the first turn for two warlock heroes named

Gul’dan where the bottom, friendly player goes first. While Gul’dan (Player 1) has

four cards in total, only one is playable with one mana crystal. However, the End

Turn button can be pressed at any time regardless of whether the mana is spent.

Shown in Algorithm 3.1 the AggroScore prioritizes placing minions on the board

before the opponent (lines 10 and 11) and maximizing their total attack power (line

16). When the opponent begins to build a defense with Taunt minions, which are

required to be killed before the opponent can be attacked, the game state is penalized

(lines 14 and 15). An aggro playstyle favors aggressively attacking the opponent hero

(line 19). Scores are saved in the result variable declared on line 9 and returned

on line 19. AggroScore is the function determining the scores for the game states

in Figure 3.1. The right node representing the game state after playing the card is

calculated as 1002 because the current player has one minion on the board while the

opponent has zero (+1000 from line 11). On line 16 the attack power of this minion
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Figure 3.1 On the left is a game tree search available to this player at the beginning
of the first turn, indicated by the number of available mana crystals (right, top). While
the player has four cards in hand to play (right, bottom), the two actions available for
one mana ending the turn (free) or playing the card "Murloc Raider" for one mana
and highlighted in green. Nodes are scored by a function to determine the value of
each selection. Ending the turn does not increase the score while playing the card
results in a score of 1002.
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(a) Before Playing Card: Murloc Raider (b) After Playing Card: Murloc Raider

Figure 3.2 Corresponding to the game tree shown in Figure 3.1, this player starts
with only one card it can afford to play in a (left), and plays it in b (right). The End
Turn button is highlighted in green when it is the only available option, but it could
have been selected instead of playing the card.

is added to the result for a total of 1002. Figure 3.2a shows the initial state of the

game at the root node of the game tree in Figure 3.1, while Figure 3.2b shows the

rightmost leaf node after playing the card "Murloc Raider."

Algorithm 3.1 The AggroScore Evaluation Heuristic

1 pub l i c c l a s s AggroScore : Score

2 {

3 pub l i c ov e r r i d e i n t Rate ( )

4 {

5 i f (OpHeroHp < 1)

6 re turn i n t . MaxValue ;

7 i f (HeroHp < 1)

8 re turn i n t . MinValue ;

9 i n t r e s u l t = 0 ;
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10 i f (OpBoardZone . Count == 0 &&

BoardZone . Count > 0)

11 r e s u l t += 1000 ;

12 // D i f f e r e n c e l i n e s 13−14

13 i f ( OpMinionTotHealthTaunt > 0)

14 r e s u l t += OpMinionTotHealthTaunt ∗

−1000;

15

16 r e s u l t += MinionTotAtk ;

17 // D i f f en c e l i n e 18

18 r e s u l t += (HeroHp − OpHeroHp) ∗ 1000 ;

19 re turn r e s u l t ;

20 }

21 }

While ControlScore in Algorithm 3.2 considers many of the same game features,

a key difference is the emphasis on aggressively attacking the opponent’s hero. Instead

of weighting the difference in hero health by 1000 (line 19 in Algorithm 3.1), in

Algorithm 3.2 on line 18 it is only weighted by 10. Rather than the difference in

hero health, control strategies in Hearthstone encourage reducing the power of the

opponent by first destroying the minions currently on the board. Lines 13 and 14

both reward the game state when the friendly player is able to have more minions

than the opponent, and reward the state when the friendly player has Taunt minions

with more attack power than the opponent.

Algorithm 3.2 The ControlScore Evaluation Heuristic

1 pub l i c c l a s s Contro lScore : Score

2 {
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3 pub l i c ov e r r i d e i n t Rate ( )

4 {

5 i f (OpHeroHp < 1)

6 re turn i n t . MaxValue ;

7 i f (HeroHp < 1)

8 re turn i n t . MinValue ;

9 i n t r e s u l t = 0 ;

10 i f (OpBoardZone . Count == 0 &&

BoardZone . Count > 0)

11 r e s u l t += 1000 ;

12 // D i f f e r e n c e l i n e s 13−14

13 r e s u l t += (BoardZone . Count −

OpBoardZone . Count ) ∗ 50 ;

14 r e s u l t += (MinionTotHealthTaunt −

OpMinionTotHealthTaunt ) ∗ 25 ;

15

16 r e s u l t += MinionTotAtk ;

17 // D i f f en c e l i n e 18

18 r e s u l t += (HeroHp − OpHeroHp) ∗ 10 ;

19 re turn r e s u l t ;

20 }

21 }

Figure 3.3 shows the beginning of the first turn for the second player of a

Hearthstone game. To offset the advantage the first player receives, the second player

is given an additional card from their deck, and a card called "The Coin." If the player

starts the turn by playing "The Coin," he will have two mana to spend. Since "Kobold

33



Figure 3.3 The second player begins the first turn at a disadvantage as the first
player has placed a minion on the board. The ControlScore heuristic described in
Algorithm 3.2 calculates the value of the different options available to the player. To
offset this imbalance, second players are given an extra card from their deck and a
special card called "The Coin," which gives the player an additional Mana Crystal. If
"The Coin" is played, it is possible to play the "Kobold Geomancer", and "Felstalker"
cards or play the "Lifetap" hero power. Because the Felstalker results in the highest
reward, it is chosen by the player following "The Coin."
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Figure 3.4 Verbose logs of the SabberStone AI agents during runtime of the
simulation.

Geomancer" and "Felstalker" both cost two mana, they then become possible to play.

The solution is selected by choosing the the actions that lead to the highest value leaf

node, which is scored at four. The solution is then playing the card "The Coin" and

then "Felstalker."

These scoring functions are designed to replicate aggro and control strategies

playable by most decks and heroes. For instance when choosing between attacking a

minion or the opponent hero directly, many human players may choose to attack the

hero. However, players trying to control the board may choose the former, but each

decision depends on the power of the particular minion and the value of the opponent

hero’s health.

3.2 Methods for Collecting and Analyzing Data

To prepare the data for analysis, first the SabberStone code was altered to output

logs as shown in Figures 3.4 - 3.7. In order to run a large amount of games quickly,

the repository was also configured to run in a High Performance Computing cluster

environment. Python scripts were used to mine the logs for the relevant statistics, and

cleaned into pandas based DataFrames [38]; this includes the end of turn statistics

for each player during run-time of the games. This proved to be useful, especially

when comparing the win rates across N games of particular matchups.
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Figure 3.5 Verbose logs reformatted into an easily parsable format. The
reformatted logs are printed only after each turn is complete.
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Figure 3.6 This sample of reformatted logs shows the current player P2 Roffle
executing four additional tasks during the turn.
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Figure 3.7 This sample of reformatted logs shows the current player P2 Roffle
executing one task to win the game.
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Figure 3.8 Each player in SabberStone has a set number of instance attributes
available which describe tasks they’ve executed each turn, and cumulatively each
game. The logs are parsed to cleanly display this information. The description of
each can be found in Tables 3.1 and 3.2
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Figure 3.9 Sample of the raw logs output from SabberStone formatted into a
structured table based csv. Each row of the table represents the end of turn statistics
for the player described in the CURRENT_PLAYER column.

Figure 3.10 Sample of a structured game from the raw output logs transformed into
a smaller table of game statistics for the two players. Each observation is a player,
and the features are the player’s game statistics. Full descriptions of the columns can
be found in Table 3.10.
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Figure 3.11 Sample of the structured games seen in Figure 3.10 based from the
raw output logs transformed into a table of game statistics for all players across a
given matchup. Full descriptions of the columns can be found in Table 3.10.

Figure 3.9 shows how the raw logs are streamlined into a clean comma separated

values file. Each file has 23 columns (not including the index column), and the logs

stored for all N games run for a particular matchup between two simulated agents.

Although this data set contains the data for all of the games in a given matchup,

additional feature engineering is used to succinctly describe each player as rows in a

table based format, where the columns represent their averaged game statistics. Each

game’s worth of data is transformed into a smaller data table with only two rows of

data via Figure 3.10, containing data on the two players involved in the game, and

can be collected into a set of players across a set of unique games via Figure 3.11.

More details can be found in Table 3.3.

Hearthstone game states are comprised of many features. Which are most

important for describing the game depend on the problem to solve and particular

heroes and decks in play. For instance, the feature “Base Mana” describes the amount

of mana available to a player at the beginning of a turn, discounting additional

mana provided through other means. Likely, this feature alone would accurately
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Figure 3.12 Blessing of wisdom is a card that when played casts a spell on a minion.
Every time that minion attacks another minion or the heroes, the player who cast
the spell draws card from its deck.

disambiguate the current turn number if it were the first through tenth turn and

the base mana had not been affected by other cards in the game. However, the

amount of mana available to a player stops increasing after the tenth turn and could

not disambiguate the eleventh turn from others above the tenth. Because players

begin each turn by automatically drawing a single card from their decks, the feature

“Current Deck Size” could help disambiguate turns one through eleven. However,

because some playable cards like “Blessing of Wisdom” shown in Figure 3.12 can

draw cards from the deck based on other game features like the number of times a

minion attacks, the current deck size is also not sufficient for determining the current

turn of a player. Which features and how many are necessary is a problem in feature

engineering [43].

While it is unknown exactly how the features of the game will change with

game states of different gameplay strategies, Tables 3.1 and 3.2 show 19 game features

belonging to SabberStone AI agents which were chosen to differentiate game states

played with the hand-coded AggroScore and ControlScore heuristics and those evolved

through CMA-ME. Although 19 features were found to belong to AI in SabberStone,

there may be more that have not been utilized yet. In addition, because of the choice

of hero character and decks used in this thesis, four of the features are unused (noted
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in Table 3.2). Appendix B also offers visualizations which compare the distribution

of the game features across a collection of players utilizing different scoring functions.

Like the example of differentiating game state data to determine the current

turn of a player, different features are more likely to differentiate state data based on

the scoring function selected, assuming the strategy picks the top rated states. One

distinguishing feature separating these gameplay strategies is the mana curve in that

aggro strategies tend to have many low-cost cards. Control strategies on the other

hand have a broader range of cards with different costs. Aggro decks often have a large

number of low-cost minions that they can play quickly and aggressively, to accomplish

their main goal of directly attacking the opponent’s hero character. Compared to

control strategies, on average, turns played by an aggressive strategy should have a

larger number of minions played per turn (logged with the feature “Number of Minions

Played this Turn,”), number of minion attacks per turn (“Number of Friendly Minion

Attacks this Turn”), and number of cards played per turn (“Number of Cards Played

this Turn”). The distributions of these game features compared between aggro and

control strategies can be found via Figures B.6, B.4, and B.2 respectively. In the

SabberStone simulator, option is a term encompassing all of the actions a player

can take in the game. With a larger number of low-cost cards and minions on the

board, aggro strategies should also have a higher number of options than a control

strategy. The feature “Number of Options Played this Turn” is also included, and

the comparison across aggro and control can be found via Figure B.3. Because the

number of minions played by the aggro strategy is likely higher than the control and

cost less, “Number of Friendly Minion Attacks this Turn” and the number of low cost

minions that die should be higher as well (“Number of Friendly Minions that Died this

Turn” via Figure B.5). The main goal of an aggro strategy is to attack the opponent

hero quickly and end the game before it is necessary to play high cost minions and

cards. Requiring fewer turns should be reflected in the “Total Mana Spent this Game”
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Table 3.1 Game Featuresa

Game Feature Description

AmountHealedThisTurn Total Health Points a player healed in a turn.

HeroPowerActivations
ThisTurn

Total amount of times the player activated their Hero
Power in a given turn.

NumAttacksThisTurn Total amount of times the player’s hero character
attacked in a given turn.

NumCardsDrawnThisTurn Total number of cards drawn by the player during a
given turn.

NumCardsPlayedThisTurn Total number of cards played (minion, spell, weapon,
and hero) during a given turn.

NumMinionsPlayedThisTurn Total number of minions played in a given turn.

NumOptionsPlayedThisTurn Total number of tasks carried out by a player in a given
turn. Each task is an OptionNode on the game tree.

NumSpellsPlayedThisGame Total number of spells played during the current game.

RemainingMana The amount of available mana the player has leftover
after ending their turn.

TotalManaSpentThisGame Total amount of mana a player spent during the whole
game.

UsedManaThisTurn Total amount of mana a player used during a given turn.

aMany variables describe the state of a game after a player completes a turn. These features
show the subset logged for experiments in this paper.
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Table 3.2 Game Features Continueda

Game Feature Description

NumFriendlyMinionsThat
AttackedThisTurn

Total number of minions owned by the player that
attacked in a given turn.

NumFriendlyMinionsThat
DiedThisTurn

Total number of minions owned by the player that died
in a given turn.

NumMinionsPlayer
KilledThisTurn

Total number of minions owned by the opponent that
the current player defeated in a given turn.

NumTimesHeroPower
UsedThisGame

Total number of times a hero has used their hero power
during a game.

NumElementalsPlayed
LastTurn

Total number of elemental cards played during the
previous turn by the player. NOTE: This feature is
unused because the decks do not have elementals.

NumElementalsPlayed
ThisTurn

Total number of elemental cards played during the
current turn by the player. NOTE: This feature is
unused because the decks do not have elementals.

NumSecretsPlayedThisGame Cumulative number of secret spells played by the player
during the game. NOTE: This feature is unused because
the decks do not have secret spells.

NumCardsToDraw NOTE: This feature is unused - not clear what this does.

aContinued table of game features and their descriptions.
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shown in Figure B.11, where aggro strategies should have fewer turns and therefore

less mana spent than the later game turns of control strategies.

Control strategies on the other hand play tend to play higher cost minions

with more health, include removal spells of varying mana cost, and try to kill the

opponent’s minions before attacking the opponent’s hero. If any minions are healed,

it may be likely that single attacks do not kill these minions, staying alive long enough

to be healed. The game feature “Amount Healed this Turn” logs this property.

While the Warlock hero power is not explicitly rewarded by the AggroScore or

ControlScore functions, several features are included to explore whether it is played

and in what circumstances including: “Hero Power Activations This Turn,” “Number

of Times Hero Power Used this Game, ” “Used Mana this Turn,” “Remaining Mana,”

and “Number of Cards Drawn this Turn.” The “Number of Spells Played this Game”

feature is included to see which of the two strategies tend to use spells more. The

distributions for the above game features are also included in B. The following

additional features are included to explore whether they impact the classification

of game states by strategy: “Number of Elementals Played this Turn,” “Number of

Secrets Played this Game,” “Number of Cards to Draw.” The former two are not

utilized in the experiments in this paper particularly because the decklists included

do not include these types of cards, and the latter of the three is shown to have no

usage as well, shown in Figure B.15. These game features may be utilized in future

work.

However, despite domain knowledge, what is important to consider is that these

features may act in unexpected ways. Unknown is whether combined they will result

in meaningful differences of game states.
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Table 3.3 Succinct Statistics for Supervised Learninga

Game Feature Description

PlayerStrategy Strategy used by the player aggro (0) or control
(1).

AvgHealedPerTurn Average amount of Health healed per turn.

AvgCardsDrawnPerTurn Average amount of cards drew per turn.

AvgCardsPlayedPerTurn Average amount of cards played per turn.

AvgFriendlyMinionAttacksPerTurn Average number of friendly minions that attacked
per turn.

AvgFriendlyMinionDeathsPerTurn Average number of friendly minions that died per
turn.

AvgMinionsPlayedPerTurn Average number of minions played per turn.

AvgNumMinionsKilledPerTurn Average number of opponent minions killed per
turn.

AvgOptionsPlayedPerTurn Average number of options played per turn.

AvgRemainingManaPerTurn Average amount of mana remaining after ending
each turn.

AvgManaUsedPerTurn Average amount of mana used per turn.

NumSpellsPlayedPerGame Total number of spell cards played per game.

NumHeroPowersUsedPerGame Total number of times the Hero Power was usedper game.

TotalManaSpentPerGame Total (cumulative) amount of mana spent per
game.

AvgHeroAttacksPerTurn Average amount of hero attacks per turn.

AvgNumCardsToDraw NOTE: This feature is unused - not clear what
this does.

aThese features (excluding the last two) are used in the models for supervised learning, and
PCA as well. Each row of the data set represents a player in a game, and each feature is
listed above belonging to that player.
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CHAPTER 4

EXPERIMENTS

Experiments aim to explore properties of the heuristic scoring functions, including

the hand-curated ones described in Section 3.1. In the first set of experiments, these

heuristics are compared to those generated with CMA-ME with the aim of finding the

highest performing game state evaluator. The second set explores the data gathered

from the first with supervised and unsupervised learning techniques.

4.1 Comparing Scoring Functions

While the difficulty of playing with certain classes and archetypes differs between

players, because each hero is equipped with unique Hero Powers and class cards, they

necessarily require different styles of play. However, AggroScore in Algorithm 3.1

and ControlScore in Algorithm 3.2 are generalized heuristic functions designed for

adequate performance across a range of different styles of play for the ten classes.

In addition, Hero Powers differ by class as shown in Table 2.1. The Hero Power

for the Hunter class is to spend two mana to damage the opponent’s hero character by

two Health points, and is accounted for in both heuristics through the consideration of

each player’s total Health. However, the Warlock class must do two damage to itself

to draw a card when using its Hero Power. Because the number of cards in the player’s

hand is not counted, these functions do not explicitly reward playing the Hero Power

(for Warlock), despite its strategic importance in competitive, human-level play. Both

of these scoring functions ignore the importance of the number of cards a player has in

their hand, such that the Hero Power is only rewarded when the new card drawn can

be immediately played. While there are other classes that are indirectly rewarded

for playing their Hero Powers by these heuristics (i.e., the Rogue), experiments in

this paper focus on the Warlock class because of the direct relationship between the

48



Hero Power and a feature ignored in these heuristics. The goal of the experiments

in this section are to use the Warlock class to compare which of the AggroScore or

ControlScore are better as scoring functions. In addition, they are using win rates to

compare the performance of ANNs for game state evaluation evolved via CMA-ME

to the AggroScore and ControlScore scoring functions.

4.1.1 AggroScore vs. ControlScore

The first experiment explores whether there is an implicit advantage for either scoring

function when playing with the Warlock class. Strategies are in part determined by

the decks that players select for their classes, so five aggro and five control decks

are gathered from websites like http://hearthstonetopdecks.com, where human

players regularly upload and tag their favorite decks to share with the community

(more details on each deck are found in Appendices E and F). For each set of

two decks of the ten, four hundred games are played and logged for a total of 45

different matchups between two scoring functions. Each matchup is played with

all combinations AggroScore and ControlScore functions such that there are 180

matchups of specific combinations of decks, and strategies. The setup for this

experiment is described in Table 4.1. The goal is to determine which scoring function

performs best and why, given the Warlock hero class and collection of decks. Because

the ControlScore heuristic places less emphasis on the health difference between

players, the control Warlock is inadvertently incentivized to play the Hero Power

more often. This provides more possibility to play cards by having increased hand

size, and therefore plays more successfully. The hypothesis is that the average win

rate of aggro players (AggroScore) should be less than the average win rate of control

players (ControlScore).
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4.1.2 AggroScore and ControlScore vs. ANNs

The second experiment explores whether evolved artificial neural networks (i.e.,

scoring functions) with access to fifteen different observable game features (shown

in Table 2.2) can perform better than the curated scoring functions found in

SabberStone. In addition to the game state features considered by AggroScore and

ControlScore, the ANNs consider observable properties of the players including the

number of cards in each of the players’ hands and decks, and the total mana cost

of the turn player’s hand. Each ANN also inputs the defensive power of the turn

player indicated by the total health of all of their minions with taunt. The behavior

characteristics for the evolved strategies considered the average number of turns it

took to play games during evolution, and the average count of the cards in the player’s

hand per turn, as these features tend to best differentiate aggro and control playstyles.

(Generally, aggro players seek to finish games in a shorter amount of turns than

control strategies; see Appendix A for more details. Likewise, aggro players have less

cards in their hand because they are rapidly using their cards to aggressively attack

the opponent; see Figure B.2 for more details.) The idea is to see whether evolved

scoring functions can better estimate the value of game states for Warlock players

using the same decks described in the first experiment, AggroScore vs. ControlScore.

The experimental setup for changing behavior characteristics is described in Table

4.2, whereas the matchups used in this experiment are described in Table 4.3. The

hypothesis is that agents playing via evolved scoring functions should have higher

average win rates compared to agents playing with SabberStone scoring functions.
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Table 4.1 Experiment 1 Configurationsa

P1Score P1Decks P2Score P2Decks NumGames
x Matchup

Total Num
Games

AggroScore Aggro AggroScore Aggro 400 10000

AggroScore Aggro ControlScore Control 400 10000

ControlScore Control ControlScore Control 400 10000

AggroScore Aggro ControlScore Aggro 400 10000

ControlScore Control AggroScore Control 400 10000

ControlScore Aggro AggroScore Control 400 10000

aThese are the configurations used for each of the initial matchups.
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Table 4.2 CMA-ME Behavior Configurationsa

Network
Name

Num
Games per
ANN

Num
ANNs To
Evaluate

HandSize
[Min,Max]

NumTurns
[Min,Max]

PlayerScore,
OpponentScore

Warlock
Net_CC_sm

100 5000 [1,7] [5,15] Control,Control

CvsNNC_2.0 100 5000 [1,7] [25,35] Control,Control

CvsNNC_
Large

200 50000 [1,9] [5,45] Control,Control

Warlock
Net_AA_sm

100 5000 [1,7] [5,15] Aggro,Aggro

Warlock
Net_AA_lg

200 50000 [1,9] [5,45] Aggro,Aggro

aThese are the configurations used for each of the ANN evolutions via CMA-ME.
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Table 4.3 Experiment 2 Configurationsa

P1Score P1Decks P2Score P2Decks NumGames
x Matchup

Total Num
Games

AggroScore Aggro Warlock
Net_AA_sm

Aggro 400 10000

AggroScore Aggro Warlock
Net_AA_lg

Aggro 400 10000

ControlScore Control Warlock
Net_CC_sm

Control 400 10000

ControlScore Control CvsNNC_2.0 Control 400 10000

ControlScore Control CvsNNC_
Large

Control 400 10000

Warlock
Net_AA_lg

Aggro CvsNNC_
Large

Control 400 10000

aThese are the configurations used for each of the matchups comparing SabberStone scoring
functions to ANNs heuristics.

4.2 Visualizing and Predicting Gameplay Strategies

After playing a number of games using different scoring functions, agents using

AggroScore or ControlScore should then also show a difference in the types of turns

they take throughout each game. As such, the statistics of player decisions for aggro

players should be different than those for control players. Using this assumption, given

any game statistics for a player using an unknown scoring function, a supervised

learning model should be able to classify the gameplay strategy used as aggro or

control. In addition, a projection of the players onto Cartesian space should show a

clear separation of aggro players and control players.
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4.2.1 Predicting Gameplay Strategies from Game Statistics

As seen in previous papers [8, 22, 57], supervised learning models perform differently

based on domain. By testing classification algorithms using scikit-learn [41], at least

one may correctly predict if a player is using an aggro or control gameplay strategy.

In addition, by using k-Fold Cross Validation, this algorithm can train a model and

find the split validation which produces the highest validation accuracy. Combined

with exhaustive grid search for hyperparameter selection [2, 4, 5], the models trained

via the input data should also show high values across different metrics [11, 14, 18].

All of the game features and their descriptions for the data sets used in this

workflow are listed in Table 3.3, while small samples of the data sets can be found

via Figures 3.10 and 3.11. The training and validation data sets consist of simulated

players using AggroScore and ControlScore scoring functions. Each observation has

15 independent attributes which correspond to the game statistics of the current

player. In addition, the dependent attributes are both labels for the current player

(1 or 2) and for the gameplay strategy (0 for aggro, 1 for control). For this particular

experiment, only the label for the gameplay strategy is considered.

Because the scoring functions evaluate states differently to execute different

decisions, supervised learning models can be trained on the data for players using

an aggro or control strategy. Five different supervised learning models are selected

for learning the patterns of the player data. The hyperparameters for both support

vector machine (classifier) and logistic regression include l1 and l2 regularization, as

well as the C coefficient (0.1, 1, 10, 100). Random forest is tested with 50, 100, and

200 estimators. A decision tree classifier is tested with search criterion (gini, entropy),

methods for determining splits (random, best), and max depth (4,5,6,7,8,9,10).

Finally, a stochastic gradient descent classifier is tested with four different loss

functions [hinge, log, perceptron and modified huber], l1 and l2 regularization, and

alpha (learning rate) values of 1, 0.1, 0.01, 0.001, and 0.0001.
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For testing each models’ ability to generalize aggro and control strategies,

players using ANNs as scoring functions for both aggro and control are used. The

goal with this experiment is to determine if supervised learning models can be trained

using two types of simulated players with their associated scoring function generalized

as aggro and control (the umbrella gameplay strategy used). This label can also be

assigned to players using a different scoring function evolved via CMA-ME, but still

generalized to aggro or control. The hypothesis is that at least one of the models will

be able to confidently score high across different classification metrics to correctly

identify if a player is using an aggro or control strategy.

4.2.2 Visualizing Gameplay Strategies via PCA

One of the problems of understanding high dimensional data sets is that it becomes

challenging to visualize as the number of dimensions grows [26]. Principal Component

Analysis is a feature extraction method [50] commonly used to reduce the number of

dimensions in a data set. If the number of Principal Components selected is small

(less than four), then the data can be plotted on a PCA score plot [15] in Cartesian

space to aid human perception of the data, which has seen success in other types of

data like genome sequences [44].

Scoring functions in SabberStone have been shown to evaluate states quite

differently. AggroScore for example, leads the agent towards game states that include

an attack against the opponent’s hero character. Meanwhile, ControlScore leads

the agent towards game states that maintain more minions on the board. If agents

continue with these types of decisions throughout their games, then their average turn

statistics would also appear to be different because the actions they took during each

turn would be different. The input data is first standardized such that the features

are all on the same scale. This standardized data is separated into a train/validation

set and a test set via 70/30 split validation. By fitting both sets onto the first two
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principal component axes, they can then be visualized in a two-dimensional Cartesian

plane.

Because the labels are known from the transformation, this can be molded into

a supervised learning problem [3, 42]. Given the expectation that aggro and control

players have different turn statistics, then when projected onto a lower dimension,

it’s possible that the points show a geometric separation as well. The support vector

classification (SVC) model uses a margin of separation to find the maximum spread

across sets of points from different classes. As such, the SVC model via Predicting

Gameplay Strategies from Game Statistics is re-trained on the projected data to find

an optimal separation in the principal component space of aggro players and control

players. When visualizing the input data on the projected axes, the clear separation

of aggro and control can become visually clear. In addition, the the model is tested

with players using ANNs as scoring functions. Because the projected data has a lower

number of columns, the model may also achieve a higher test accuracy. Using PCA,

there exists a visualization which separates aggro and control strategies in Cartesian

space. In addition, by training SVC on the reduced data, the model can achieve a

higher test accuracy than in the original feature space.
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CHAPTER 5

RESULTS

5.1 Experiment 1

Comparing across different matchups (more details in Appendices G and H), agents

using ControlScore do perform better than AggroScore when pit against each other.

In the mirror matches of aggro versus aggro and control versus control, both result

in win rates of approximately 50% as shown in Figures H.1 and H.2. This can be

expected because the random sample of games are played using players with the

same decks and the same scoring functions. Comparatively, the data shows that

when pitting aggro players against control players, the control players won with a

75% win rate shown in Figure H.2.

In addition, this observation carries forward when using players with differing

scoring functions than the strategy for the deck they are using. After altering one

of the players in the aggro matchup to use the ControlScore function, the agents

using ControlScore with aggro decks won on average 77% against the agents using

AggroScore with aggro decks, as shown in Figure H.4. When comparing these results

with the control mirror matchup, agents using the ControlScore with control decks

won on average 64% against the players using AggroScore with control decks. Finally,

when analyzing the matchups where both sets of players used the opposite scoring

function compared to their decks, the agents using ControlScore with aggro decks

won on average 82% against the agents using AggroScore with control decks.

Agents using ControlScore are showing differences in their game features when

compared to agents using the AggroScore, especially when considering the Hero

Power. Control players are using their Hero Power to draw an additional card much

more than the aggro players (Figure B.12). The use of this Hero Power can lead

to having more cards in a control player’s hand, allowing for the potential to have
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increased board control. Even though the main goal behind an aggro deck is to

aggressively attack the opponent, the AggroScore function mainly incentivizes these

types of decisions, but does not take into account hand or board advantage. On

the contrary, while control players generally aren’t focused so much on attacking the

opponent, the ControlScore still shows a positive weight in game states where the

player’s Health points are higher than the opponent’s. As such, control players still

have the opportunity to play aggro decks well, however with the inclusion of the

directive on maintaining board control, the control players do not use their cards

as heavily in the early turns. This can lead to more wins for the agents using the

ControlScore.

5.2 Experiment 2

After using CMA-ME to evolve ANNs to evaluate game states, using agents in

matchups against agents using the SabberStone scoring functions show contradicting

results. When using the aggro mirror matchup as a baseline (average win rate of 50%

shown via Figure H.1), the aggro players using evolved ANNs comparatively win on

average 79% against aggro players, and when using a larger search space for ANNs,

win on average 82%. The data shows that evolved aggro ANN players are better at

using aggro-like strategies; for example, they play more minions per turn as shown

in Figure B.6, and they have more minion attacks per turn as shown in Figure B.4.

Both of these game features are shown to be more aggro-like, and given that evolved

ANN players utilize these features more (combined with their increased performance

against AggroScore players) shows that they are also stronger aggro players. This

shows that the ANNs evolved via CMA-ME are better game state evaluators than

the AggroScore scoring function for aggro players.

However, the results are not consistent when analyzing control players. In

the set of mirror matchups of agents using ControlScore, still the performance is
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roughly evenly distributed, where the ControlScore agent has an average win rate

of about 50% (shown in Figure H.6). When using a candidate ANN found via the

Warlock_Net_CC_sm setup, the agent using ControlScore won more than the agent

with the ANN, with an average of 66% win rate. This particular setup for CMA-ME

mimics that of the evolution for desired aggro players, as shown in Table 4.2. Not only

was the search space for candidate ANNs too small, but the behavior characteristics

configured a lower number of turns to win the game, and a lower average hand size,

which are typically indicative of aggro players. As such, when using ANNs found via

the CvsNNC_2.0 and CvsNNC_2.0_Large setups, there is a significant rise in the

win rate for the agents using ANN solutions, 65% and 66% respectively. The evolved

ANN solutions for control players also seem to be better at using game features which

are shown to be more control. For example, these agents are drawing more cards per

turn as shown in Figure B.1, likely due to the corresponding increase in the use of

the Warlock Hero Power as shown in Figure B.12. This would then lead the evolved

ANN control players to have more cards in their hand, which leads to more potential

to maintain board control based on a variety of cards in their hand.

To observe that control is better than aggro, the networks from theWarlock_Net

_AA_lg and CvsNNC_2.0 _Large setups were pit against each other to see if an

evolved aggro or evolved control player would win. In this case, the evolved control

player won with an average of 59% win rate, as shown in Figure H.12. When compared

to AggroScore vs ControlScore, the ControlScore agents won with an average win rate

of 75%. Although the players using ControlScore performed better against the players

using an evolved control ANN, the difference is likely in part due to the fact that the

opponent for the evolved control ANN players were evolved aggro ANN players, who

are shown to perform better than the AggroScore players. This plays a strong impact

on evolved ANN control players’ ability to win in this particular matchup.
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5.3 Experiment 3

Based on the results of exhaustive hyperparameter search with 5-fold cross validation,

each of the classification models were able to predict with 99% accuracy, among other

various other model metrics. This score was achieved on training and validation data

using AggroScore and ControlScore players. The results of the hyperparameter search

are below:

• Logistic Regression: l2 regularizer, C coefficient of 10

• Random Forest: 100 estimators

• Support Vector Classifier: l2 regularizer, C coefficient of 1

• Decision Tree Classifier: best splitters, max depth of 10, entropy criterion

• SGD CLassifier: modified huber loss, l2 regularizer, alpha 0.001

Table 5.1 Supervised Learning Model Comparison on Train Dataa

Model Accuracy Precision Recall F1 Score AUC

Logistic Regression 0.9986 0.9981 0.9992 0.9986 0.9986

Random Forest 0.9990 0.9988 0.9992 0.9990 0.9990

SVM 0.9987 0.9983 0.9992 0.9987 0.9987

Decision Tree 0.9981 0.9978 0.9983 0.9981 0.9981

SGD Classifier 0.9988 0.9985 0.9992 0.9988 0.9988

aThe models are trained on player game statistics for AggroScore and ControlScore, and the
goal is to predict aggro (positive) or control (negative).
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In practice, not many models can reliably predict with this high of a score.

The same models were also tested using different games’ data, notably samples where

the players were using evolved network scores. When testing these players’ data,

the models predicted significantly less. The decks used were kept the same, but the

samples used were based on players using the evolved ANNs for the scoring functions.

Using the same metrics from above, there is a significant dropoff in the performance of

the models as shown in Table 5.2. Likely there is bias in the data used that the model

can’t predict well on completely new samples. It seems like this model has overfit to

AggroScore and ControlScore players, but when exposed to simulated players using

evolved networks as input for the scoring functions, the models cannot predict as well.

Either the models need more players using different types of scoring functions, or the

models need players using different types of decks.

Table 5.2 Supervised Learning Model Comparisson on Test Dataa

Model Accuracy Precision Recall F1 Score AUC

Logistic Regression 0.6106 0.7390 0.3418 0.4675 0.6106

Random Forest 0.6623 0.8201 0.4157 0.5518 0.6623

SVM 0.6120 0.7408 0.3446 0.4704 0.6120

Decision Tree 0.6817 0.7854 0.4999 0.6109 0.6817

SGD Classifier 0.6245 0.7708 0.3543 0.4854 0.6245

aThe same models are tested on player data retrieved from agents using evolved scoring
functions, and the goal is to predict aggro (positive) or control (negative).
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5.4 Experiment 4

When analyzing the charts of the original data projected onto a smaller feature space,

it’s clear that Principal Component Analysis was able to successfully separate the

players based on AggroScore and ControlScore (thus aggro and control players).

Without using the knowledge of the labels, the points in the lower feature space

show a distinct clustering with a region separating the two (shown without color in

Figure 5.1). Because the labels of the training data are known, it’s shown in Figure

5.2 that red points represent AggroScore (aggro) players, and blue points represent

ControlScore (control) players. The separation isn’t perfect, and there does appear

to be a margin of error where some blue points are in the red cluster, and some red

points are in the blue cluster. Likely, those particular points represent players whose

turn by turn decisions somewhat overlapped with the opposite strategy of what they

were using. For example, if a game ended very quickly, it’s possible that a control

player had very similar gameplay statistics to that of a defeated aggro player in an

aggro mirror match.

Using a Biplot (Figure 5.3) to visualize how each of the input features load to

the principal components, each of the summarized game features are also plotted as

vectors which represent their load onto both of the principal component axes. Notably,

the features that are the farthest apart on the horizontal PC1 axis contribute to most

of the variability in the data. Some of these features include Number of Minion

Attacks (Per Turn), Spells Played (Per Game), and Hero Power Activations (Per

Game). This does make sense especially when looking at Figure B.4, Figure B.13,

and Figure B.12. These Boxplots make it easy to see that the statistics vary from

aggro to control, when comparing between AggroScore and ControlScore players.

Using support vector classification on the principal component decomposition of

the data showed results that improve classification via the original feature space. The

model was able to predict AggroScore and ControlScore players via Figure 5.4 with
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an accuracy of 98%, which mimics the high validation accuracy shown in Predicting

Gameplay Strategies from Game Statistics. Because this model was trained using

players of AggroScore and ControlScore, the model was also able to predict highly on

these players on validation data. However, when the model was tested using games

of agents with evolved ANNs transformed onto the Principal Component axes, it

could only predict with an accuracy of 74%. This shows an improvement to the test

accuracy in the original feature space, which was 61%. Likely, because the data has

been reduced to be represented as a linear combination of the features, the model did

not suffer from having to learn the patterns of high number of columns.
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Figure 5.1 Principal Component Analysis decomposition of AggroScore and
ControlScore players, shown without color.
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Figure 5.2 Principal Component Analysis decomposition of AggroScore (red) and
ControlScore (blue) players.

65



0.4 0.2 0.0 0.2 0.4

PC1: [41.89]

0.4

0.2

0.0

0.2

0.4

PC
2:

 [1
7.

58
]

MinionAttacks

OptionsPlayed

MinionsPlayed

CardsPlayed

MinionDeaths
MinionsKilled

ManaLeft

CardsDrawn

Healed

HeroPowerGame
SpellsPlayedGame

ManaUsed
ManaSpentGame

PCA Biplot of Averaged Game Stats per Turn

Aggro
Control

Figure 5.3 Principal Component Analysis Biplot of AggroScore and ControlScore
players.
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Figure 5.4 Principal Component Analysis Biplot of AggroScore and ControlScore
players, and predictions for the corresponding test data as well (predicted Aggro is
pink, predicted Control is green).
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Figure 5.5 Principal Component Analysis Biplot of AggroScore and ControlScore
players compared to the predictions of ANN scoring functions (predicted EvoAggro
is orange, predicted EvoControl is purple).
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CHAPTER 6

CONCLUSION

This thesis utilized several different analysis techniques to determine how separable

aggro players and control players are in Hearthstone (particularly SabberStone), and

even determined which players are better. In general, the notion from previous papers

that control players perform better than aggro players is still true, at least within the

Warlock hero class and the decks used in this paper. This notion is refined with the

condition that ControlScore is a better heuristic scoring function than AggroScore.

But, this also held true when using players with evolved ANNs, as the evolved ANN

control players had a higher win rate against evolved ANN aggro players.

Given the performance difference, there must be some underlying structural

differences between the games that can numerically separate aggro from control.

Several supervised learning models were used including support vector classifier,

logistic regression, and random forest. An exhaustive grid search was used to find

the optimal hyperparameters for each of the models, including 5-fold cross validation,

and each showed an average validation accuracy of 99%. This seems to be overfit

for the AggroScore and ControlScore functions, because when tested using games of

agents using evolved ANNs for game state evaluation, the test accuracies dropped to

about 65%. It’s possible the models were not built with enough data, and in order to

be more general, the input data would need to include games of agents using evolved

ANNs as well. But, this still goes to show that given a game’s worth a data, a model

can predict with relatively high accuracy whether the player is aggro or control.

In order to visualize the differences between aggro players and control players,

Principal Component Analysis was used to reduce the original input data into a

feature space which can be easily visualized. Using the players’ gameplay strategies

as labels, PCA can be used to visualize gameplay strategies, which can then be used as
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input for supervised learning models to predict whether a player is aggro or control.

Reducing the original feature space also showed a corresponding improvement on

test accuracy. This may be useful in player modeling in Hearthstone, which can be

used in other agents attempting to identify an opponent’s strategy during gameplay

execution.

6.1 Future Work

In the logs, there are actually more than 15 features captured from each agent. In

future tests of CMA-ME, it would be interesting to try and alter the topology of the

hidden layers to test different types of ANNs, and potentially add more observable

game features to the input layer. This may lead to more refined heuristic scoring

functions. In addition, there may be other ways to approach the supervised learning

problem of predicting an opponent’s gameplay strategy. First, the models as they

are currently implemented should be tested with more input data including players

using different decks, different scoring functions, and different hero characters. But,

if a game is instead looked at as a series of turns, then the question of predicting a

player’s gameplay strategy can be molded into a time series problem. For example,

at what turn in the game can a model best predict a players gameplay strategy? This

can have many use cases, for example developing an AI agent which can execute a

desired gameplay strategy in early turns, but then begin to optimize counters once it

has determined the opponent’s gameplay strategy.
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6.2 Final Statement

Although preliminary, this thesis helps quantify differences between aggro and control

players. It shows that games can be reduced to visualize the geometric distance

between the two gameplay strategies, and models can even be trained to predict a

player’s gameplay strategy. However, the study would like to grow such that it doesn’t

encompass the small subset of cards and decks used in this paper. Hearthstone is a

constantly changing game due to the rotating standard format, as well as with the

booster packs that are released. But with the continued application of AI methods,

gameplay strategies can be correctly identified for potential use during gameplay or

for post-game analysis and player modeling.
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APPENDIX A

HISTOGRAMS FOR THE NUMBER OF TURNS PER SCORING

MATCHUP

Figures A.1 to A.9 show the frequency of the number of turns per game over the

collections of all games for each matchup pairing all decks using the designated

heuristic scoring functions.
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Figure A.1 Distribution of the number of turns per game for AggroScore vs
AggroScore matchups.
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Figure A.2 Distribution of the number of turns per game for AggroScore vs
ControlScore matchups.
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Figure A.3 Distribution of the number of turns per game for ControlScore vs
ControlScore matchups.

7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Number of Turns

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

Number of Turns: AggroScoreVSEvoAggroScore_sm Matchups

Figure A.4 Distribution of the number of turns per game for AggroScore vs Evolved
ANN (aggro) matchups. This ANN was evolved using the Warlock_Net_AA_sm
setup.
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Figure A.5 Distribution of the number of turns per game for AggroScore vs Evolved
ANN (aggro) matchups. This ANN was evolved using the Warlock_Net_AA_lg
setup.
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Figure A.6 Distribution of the number of turns per game for ControlScore
vs Evolved ANN (control) matchups. This ANN was evolved using the
Warlock_Net_CC_sm setup.
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Figure A.7 Distribution of the number of turns per game for ControlScore vs
Evolved ANN (control) matchups. This ANN was evolved using the CvsNNC_2.0
setup.
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Figure A.8 Distribution of the number of turns per game for ControlScore vs
Evolved ANN (control) matchups. This ANN was evolved using the CvsNNC_Large
setup.
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Figure A.9 Distribution of the number of turns per game for Evolved ANN
(aggro) vs Evolved ANN (control) matchups. These ANNs were evolved using the
Warlock_Net_AA_lg and the Warlock_Net_CC_lg setups.
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APPENDIX B

BOXPLOTS FOR COLUMN DISTRIBUTIONS - GAME STATISTICS

Figures B.1 to B.15 show the distribution of values for the numerical features for

simulated agents using each scoring function. The statistics for players using evolved

aggro and evolved control ANN heuristics are retrieved using the ANNs from the

Warlock_Net_AA_lg and Warlock_Net_CC_lg configurations described in Section

4.1.
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Figure B.1 Boxplot comparing the distribution of number of cards drawn per turn
across four scoring functions. Sample size of 9644 players.
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Figure B.2 Boxplot comparing the distribution of number of cards played per turn
across four scoring functions. Sample size of 9644 players.
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Figure B.3 Boxplot comparing the distribution of options (tasks) played per turn
across four scoring functions. Sample size of 9644 players.
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Figure B.4 Boxplot comparing the distribution of number of friendly minions that
attacked per turn across four scoring functions. Sample size of 9644 players.
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Figure B.5 Boxplot comparing the distribution of number of friendly minion deaths
per turn across four scoring functions. Sample size of 9644 players.
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Figure B.6 Boxplot comparing the distribution of average amount of minions played
per turn across four scoring functions. Sample size of 9644 players.
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Figure B.7 Boxplot comparing the distribution of average number of opponent
minions killed per turn across four scoring functions. Sample size of 9644 players.
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Figure B.8 Boxplot comparing the distribution of average health healed per turn
across four scoring functions. Sample size of 9644 players.
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Figure B.9 Boxplot comparing the distribution of average amount of mana used
per turn across four scoring functions. Sample size of 9644 players.
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Figure B.10 Boxplot comparing the distribution of average amount of mana
remaining per turn across four scoring functions. Sample size of 9644 players.
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Figure B.11 Boxplot comparing the distribution of total amount of mana spent
per game across four scoring functions. Sample size of 9644 players.
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Figure B.12 Boxplot comparing the distribution of total number of Hero Power
activations used per game across four scoring functions. Sample size of 9644 players.
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Figure B.13 Boxplot comparing the distribution of total number of spells played
per game across four scoring functions. Sample size of 9644 players.
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Figure B.14 Boxplot comparing the distribution of average amount of hero attacks
per turn across four scoring functions. Sample size of 9644 games. (NOTE: None of
the decks for Experiments 1-3 have a weapon, so the hero cannot attack. This column
is removed.)
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Figure B.15 Boxplot comparing the distribution of average number of cards left
to draw across four scoring functions. Sample size of 9644 games. (NOTE: Because
this feature is never used, this column is also removed.)
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APPENDIX C

CMA-ME HEATMAPS

Figures C.1 to C.12 show the candidate ANNs plotted on a grid (similar to MAP-

Elites), where the color hue represents win rate of the ANN across N games (specified

in each figure), and the axes correspond to two behavior characteristics designed for

the set of candidate solutions. This is explained further in Section 2.6.
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Figure C.1 Candidate solutions found via the Warlock_Net_CC_sm configu-
ration.
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Figure C.2 Candidate solutions found via the CvsNNC_2.0 configuration.
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Figure C.3 Candidate solutions found via the CvsNNC_Large configuration.
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Figure C.4 Candidate solutions found via the CvsNNC_Large configuration.
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Figure C.5 Candidate solutions found via the CvsNNC_Large configuration. This
run stopped short early, but should have evaluated 50000 ANNs.
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Figure C.6 Candidate solutions found via the Warlock_Net_AA_sm configu-
ration.
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Figure C.7 Candidate solutions found via the Warlock_Net_AA_lg configuration.
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Figure C.8 Candidate solutions found via the Warlock_Net_AA_lg configuration.
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Figure C.9 Candidate solutions found via the Warlock_Net_AA_lg configuration.
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Figure C.10 Candidate solutions found via the Warlock_Net_AA_lg configu-
ration.
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Figure C.11 Candidate solutions found via the Warlock_Net_AA_lg configu-
ration.
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Figure C.12 Candidate solutions found via the Warlock_Net_AA_lg configu-
ration.
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APPENDIX D

RISE OF SHADOWS DECKLISTS MANA CURVES

Figures D.1 to D.10 show the Mana Curves for the decklists used during the

experiments. Mana Curves are described more in Section 2.3.
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Figure D.1 Mana Curve for control deck 1 via Table E.1
.
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Figure D.2 Mana Curve for control deck 2 via Table E.2.
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Figure D.3 Mana Curve for control deck 3 via Table E.3.
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Figure D.4 Mana Curve for control deck 4 via Table E.4.
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Figure D.5 Mana Curve for control deck 5 via Table E.5.
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Figure D.6 Mana Curve for aggro deck 1 via Table E.6.
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Figure D.7 Mana Curve for aggro deck 2 via Table E.7.
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Figure D.8 Mana Curve for aggro deck 3 via Table E.8.
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Figure D.9 Mana Curve for aggro deck 4 via Table E.9.
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Figure D.10 Mana Curve for aggro deck 5 via Table E.10.
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APPENDIX E

RISE OF SHADOWS DECKLISTS DESCRIPTIONS

Tables E.1 to E.10 show the descriptions for the decklists used during the experiments.
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Table E.1 Decklist Control 01a

Card Name Quantity Mana Cost Type Class

Mortal Coil 2 1 Spell Warlock

Shriek 2 1 Spell Warlock

Curse of Weakness 2 2 Spell Warlock

Plot Twist 2 2 Spell Warlock

Reckless Diretroll 2 2 Minion Warlock

Doomsayer 2 2 Minion Neutral

Sense Demons 2 3 Spell Warlock

Augmented Elekk 1 3 Minion Neutral

Hellfire 2 4 Spell Warlock

High Priestess Jeklik 1 4 Minion Warlock

Zilliax 1 5 Minion Neutral

Rotten Applebaum 2 5 Minion Neutral

Soulwarden 2 6 Minion Warlock

Mossy Horror 1 6 Minion Neutral

Aranasi Broodmother 2 6 Minion Warlock

Lord Godfrey 1 7 Minion Warlock

Arch-Villain Rafaam 1 7 Minion Warlock

Fel Lord Betrug 1 8 Minion Warlock

Hakkar, the Soulflayer 1 10 Minion Neutral

aThis is the decklist corresponding to control deck 1. Received via https://www.
hearthstonetopdecks.com/decks/shadows-fatigue-warlock-ft-hakkar/
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Table E.2 Decklist Control 02a

Card Name Quantity Mana Cost Type Class

Mortal Coil 2 1 Spell Warlock

The Soularium 1 1 Spell Warlock

Plot Twist 2 2 Spell Warlock

Acidic Swamp Ooze 2 2 Minion Neutral

Doomsayer 2 2 Minion Neutral

Sense Demons 1 3 Spell Warlock

Shadow Bolt 1 3 Spell Warlock

Voodoo Doll 2 3 Minion Neutral

Hellfire 2 4 Spell Warlock

Zilliax 1 5 Minion Neutral

Rotten Applebaum 2 5 Minion Neutral

Aranasi Broodmother 2 6 Minion Warlock

Siphon Soul 2 6 Spell Warlock

Safeguard 1 6 Minion Neutral

Lord Godfrey 1 7 Minion Warlock

Arch-Villain Rafaam 1 7 Minion Warlock

Fel Lord Betrug 1 8 Minion Warlock

Deranged Doctor 1 8 Minion Neutral

Twisting Nether 2 8 Spell Warlock

Hakkar, the Soulflayer 1 10 Minion Neutral

aThis is the decklist corresponding to control deck 2. Received via https://www.
hearthstonetopdecks.com/decks/control-hakkar-warlock-rise-of-shadows-thijs/
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Table E.3 Decklist Control 03a

Card Name Quantity Mana Cost Type Class

Mortal Coil 2 1 Spell Warlock

Curse of Weakness 2 2 Spell Warlock

Doomsayer 2 2 Minion Neutral

Sense Demons 1 3 Spell Warlock

Shadow Bolt 2 3 Spell Warlock

Hellfire 1 4 Spell Warlock

Shadowflame 2 4 Spell Warlock

Twilight Drake 2 4 Minion Neutral

Omega Agent 2 5 Minion Warlock

Big Game Hunter 1 5 Minion Neutral

Barista Lynchen 1 5 Minion Neutral

Siphon Soul 2 6 Spell Warlock

Mossy Horror 2 6 Minion Neutral

Aranasi Broodmother 2 6 Minion Warlock

Lord Godfrey 1 7 Minion Warlock

Twisting Nether 2 8 Spell Warlock

Lord Jaraxxus 1 9 Minion Warlock

Mountain Giant 2 12 Minion Neutral

aThis is the decklist corresponding to control deck 3.
Received via https://www.hearthstonetopdecks.com/decks/
omega-control-warlock-shadows-post-nerf-top-500-legend-novamograph/
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Table E.4 Decklist Control 04a

Card Name Quantity Mana Cost Type Class

Mortal Coil 1 1 Spell Warlock

Sunfury Protector 2 2 Minion Neutral

Doomsayer 2 2 Minion Neutral

Ancient Watcher 2 2 Minion Neutral

Acidic Swamp Ooze 1 2 Minion Neutral

Plot Twist 2 2 Spell Warlock

Faceless Rager 2 3 Minion Neutral

Twilight Drake 2 4 Minion Neutral

Shadowflame 2 4 Spell Warlock

Hellfire 2 4 Spell Warlock

Proud Defender 2 4 Minion Neutral

Spellbreaker 2 4 Minion Neutral

Siphon Soul 2 6 Spell Warlock

Aranasi Broodmother 2 6 Minion Warlock

Arch-Villain Rafaam 1 7 Minion Warlock

Twisting Nether 1 8 Spell Warlock

Mountain Giant 2 12 Minion Neutral

aThis is the decklist corresponding to condtrol deck 4. Received via https://outof.cards/
hearthstone/decks/1132-control-warlock-old-type

103



Table E.5 Decklist Control 05a

Card Name Quantity Mana Cost Type Class

Doomsayer 2 2 Minion Neutral

Sunfury Protector 2 2 Minion Neutral

Acidic Swamp Ooze 2 2 Minion Neutral

Faceless Rager 2 3 Minion Neutral

Earthen Ring Farseer 2 3 Minion Neutral

Twilight Drake 2 4 Minion Neutral

Defender of Argus 2 4 Minion Neutral

Hellfire 2 4 Spell Warlock

Shadowflame 1 4 Spell Warlock

Omega Agent 2 5 Minion Warlock

Rotten Applebaum 2 5 Minion Neutral

Zilliax 1 5 Minion Neutral

Mossy Horror 1 6 Minion Neutral

Siphon Soul 1 6 Spell Warlock

Aranasi Broodmother 2 6 Minion Warlock

Lord Godfrey 1 7 Minion Warlock

Lord Jaraxxus 1 9 Minion Warlock

Mountain Giant 2 12 Minion Neutral

aThis is the decklist corresponding to control deck 5. Received via https:// www.
hearthstonetopdecks.com/decks/handlock-to-legend/
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Table E.6 Decklist Aggro 01a

Card Name Quantity Mana Cost Type Class

Flame Imp 2 1 Minion Warlock

Grim Rally 2 1 Spell Warlock

Soul Infusion 2 1 Spell Warlock

Soulfire 2 1 Spell Warlock

Voidwalker 2 1 Minion Warlock

Witchwood Imp 2 1 Minion Warlock

Abusive Sergeant 2 1 Minion Neutral

Argent Squire 2 1 Minion Neutral

Mecharoo 2 1 Minion Neutral

Saronite Taskmaster 2 1 Minion Neutral

Dire Wolf Alpha 2 2 Minion Neutral

Knife Juggler 2 2 Minion Neutral

Scarab Egg 2 2 Minion Neutral

Doubling Imp 2 3 Minion Warlock

Fiendish Circle 2 4 Spell Warlock

aThis is the decklist corresponding to aggro deck 1.
Received via https://www.hearthstonetopdecks.com/decks/
budget-zoo-warlock-deck-list-guide-rise-of-shadows/
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Table E.7 Decklist Aggro 02a

Card Name Quantity Mana Cost Type Class

Flame Imp 2 1 Minion Warlock

Grim Rally 2 1 Spell Warlock

The Soularium 1 1 Spell Warlock

Voidwalker 2 1 Minion Warlock

Witchwood Imp 2 1 Minion Warlock

Abusive Sergeant 2 1 Minion Neutral

Crystallizer 2 1 Minion Neutral

Mecharoo 2 1 Minion Neutral

Dire Wolf Alpha 2 2 Minion Neutral

Knife Juggler 2 2 Minion Neutral

Scarab Egg 2 2 Minion Neutral

Magic Carpet 2 3 Minion Neutral

Microtech Controller 2 3 Minion Neutral

Fiendish Circle 2 4 Spell Warlock

Defender of Argus 1 4 Minion Neutral

Sea Giant 2 10 Minion Neutral

aThis is the decklist corresponding to aggro deck 2. Received via https://www.
hearthstonetopdecks.com/decks/zoo-warlock-shadows-post-nerf-7-legend-viper/
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Table E.8 Decklist Aggro 03a

Card Name Quantity Mana Cost Type Class

Flame Imp 2 1 Minion Warlock

Grim Rally 2 1 Spell Warlock

The Soularium 1 1 Spell Warlock

Voidwalker 2 1 Minion Warlock

Witchwood Imp 2 1 Minion Warlock

Abusive Sergeant 2 1 Minion Neutral

Argent Squire 2 1 Minion Neutral

Crystallizer 2 1 Minion Neutral

Mecharoo 2 1 Minion Neutral

Dire Wolf Alpha 2 2 Minion Neutral

Knife Juggler 2 2 Minion Neutral

Scarab Egg 2 2 Minion Neutral

Magic Carpet 2 3 Minion Neutral

SN1P-SN4P 1 3 Minion Neutral

Fiendish Circle 2 4 Spell Warlock

Sea Giant 2 10 Minion Neutral

aThis is the decklist corresponding to aggro deck 3. Received via https://www.
hearthstonetopdecks.com/decks/zoo-warlock-shadows-post-buff-13-legend-pizza/
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Table E.9 Decklist Aggro 04a

Card Name Quantity Mana Cost Type Class

Flame Imp 2 1 Minion Warlock

Mecharoo 2 1 Minion Neutral

Crystallizer 2 1 Minion Neutral

Abusive Sergeant 2 1 Minion Neutral

Witchwood Imp 1 1 Minion Warlock

Argent Squire 2 1 Minion Neutral

The Soularium 1 1 Spell Warlock

Soulfire 1 1 Spell Warlock

Grim Rally 2 1 Spell Warlock

Voidwalker 2 1 Minion Warlock

Dire Wolf Alpha 2 2 Minion Neutral

Knife Juggler 2 2 Minion Neutral

Scarab Egg 2 2 Minion Neutral

Magic Carpet 2 3 Minion Neutral

Fiendish Circle 2 4 Spell Warlock

Leeroy Jenkins 1 5 Minion Neutral

Sea Giant 2 10 Minion Neutral

aThis is the decklist corresponding to aggro deck 4. Received via
https://www.hearthstonetopdecks.com/decks/zoo-warlock-shadows-post-nerf-early-3-
legend-solegit/
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Table E.10 Decklist Aggro 05a

Card Name Quantity Mana Cost Type Class

Flame Imp 2 1 Minion Warlock

Grim Rally 2 1 Spell Warlock

The Soularium 1 1 Spell Warlock

Voidwalker 2 1 Minion Warlock

Abusive Sergeant 2 1 Minion Neutral

Mecharoo 2 1 Minion Neutral

Scarab Egg 2 2 Minion Neutral

Knife Juggler 2 2 Minion Neutral

Dire Wolf Alpha 2 2 Minion Neutral

Magic Carpet 2 3 Minion Neutral

SN1P-SN4P 1 3 Minion Neutral

Fiendish Circle 2 4 Spell Warlock

Explodinator 2 4 Minion Neutral

Omega Agent 2 5 Minion Warlock

Barista Lynchen 1 5 Minion Neutral

Wargear 2 5 Minion Neutral

Zilliax 1 5 Minion Neutral

aThis is the decklist corresponding to aggro deck 5. Received via https://www.
hearthstonetopdecks.com/decks/omega-zoo-shadows-hof-25-14-wabeka/
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APPENDIX F

COMMON CARDS BETWEEN EACH DECK
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Table F.1 Common Cards Across Decklistsa

C1 C2 C3 C4 C5 A1 A2 A3 A4 A5

C1 30 18 12 10 11 0 0 0 0 1

C2 18 30 14 14 13 0 1 1 1 2

C3 12 14 30 15 16 0 0 0 0 3

C4 10 14 15 30 17 0 0 0 0 0

C5 11 13 16 17 30 0 1 0 0 3

A1 0 0 0 0 0 30 20 22 22 18

A2 0 1 0 0 1 20 30 27 26 21

A3 0 1 0 0 0 22 27 30 28 22

A4 0 1 0 0 0 22 26 28 30 21

A5 1 2 3 0 3 18 21 22 21 30

aThis shows how many cards are shared across each of the pairs of decks, control decks 1-5
(C1-C5), and aggro decks 1-5 (A1-A5)
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APPENDIX G

HEATMAPS OF WIN RATES FOR DIFFERENT MATCHUPS

Figures G.1 to G.12 show the win rates for each pairing of decks described by the

experiments in Section 4.1.
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Figure G.1 Each of the five aggro decks were independently paired against each
other while playing with the AggroScore function. The lowest win rate is deck 5
against deck 2 at 36.25%, while the highest is deck 2 against deck 5 at 62.47%. The
average win rate is 49.29% with standard deviation 5.27.

control_01

control_02

control_03

control_04

control_05
P2 ControlScore Agents

aggro_01

aggro_02

aggro_03

aggro_04

aggro_05

P1
 A

gg
ro

Sc
or

e 
Ag

en
ts

5.91 12.85 22.62 13.11 8.74

20.05 24.16 30.33 30.08 18.77

14.65 25.45 25.19 35.48 18.51

15.68 20.82 23.14 26.48 16.20

36.76 45.76 53.21 52.96 31.62

Win Rate for AggroScore vs ControlScore

0

20

40

60

80

100

W
in

 R
at

e 
of

 P
1 

Ag
ai

ns
t P

2

Figure G.2 Each of the five aggro decks played using the AggroScore function
were independently paired against each of the control decks using the ControlScore
function. The lowest win rate is aggro deck 1 against control deck 1 at 5.91%, while
the highest is aggro deck 5 against control deck 3 at 53.21%. The average win rate is
25.14% with standard deviation 12.13.
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Figure G.3 Each of the five aggro decks played using the ControlScore function
were independently paired against each of the control decks using the AggroScore
function. The lowest win rate is aggro deck 1 against control deck 1 at 54.39%, while
the highest is aggro deck 5 against control deck 3 at 95.72%. The average win rate is
83.13% with standard deviation 10.48.
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Figure G.4 Each of the five aggro decks played using the AggroScore function were
independently paired against each of the aggro decks using the ControlScore function.
The lowest win rate is aggro deck 5 against aggro deck 2 at 11.34%, while the highest
is aggro deck 2 against aggro deck 5 at 45.88%. The average win rate is 22.58% with
standard deviation 9.54.
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Figure G.5 Each of the five control decks played using the ControlScore function
were independently paired against each of the control decks using the AggroScore
function. The lowest win rate is control deck 1 against control deck 3 at 44.22%,
while the highest is control deck 3 against control deck 1 at 78.93%. The average win
rate is 64.04% with standard deviation 9.78.
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Figure G.6 Each of the five control decks were independently paired against each
other while playing with the ControlScore function. The lowest win rate is deck 1
against deck 3 at 31.64%, while the highest is deck 3 against deck 4 at 66.91%. The
average win rate is 48.76% with standard deviation 10.18.
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Figure G.7 Each of the five aggro decks played using the AggroScore function were
independently paired against each of the aggro decks using an ANN evolved using
the Warlock_Net_AA_sm setup. The lowest win rate is deck 5 against deck 2 at
10.40%, while the highest is deck 2 against deck 5 at 36.72%. The average win rate
is 20.88% with standard deviation 6.60.
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Figure G.8 Each of the five aggro decks played using the AggroScore function were
independently paired against each of the aggro decks using an ANN evolved using the
Warlock_Net_AA_lg setup. The lowest win rate is deck 5 against deck 2 at 9.32%,
while the highest is deck 2 against deck 5 at 37.59%. The average win rate is 18.09%
with standard deviation 7.58.
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Figure G.9 Each of the five control decks played using the ControlScore function
were independently paired against each of the control decks using ANNs evolved using
the Warlock_Net_CC_sm setup. The lowest win rate is deck 4 against deck 5 at
47.45%, while the highest is deck 3 against deck 3 at 88.19%. The average win rate
is 65.83% with standard deviation 11.16.
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Figure G.10 Each of the five control decks played using the ControlScore function
were independently paired against each of the control decks using ANNs evolved using
the CvsNNC_2.0 setup. The lowest win rate is deck 1 against deck 3 at 14.65%, while
the highest is deck 3 against deck 3 at 64.50%. The average win rate is 34.69% with
standard deviation 13.20.
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Figure G.11 Each of the five control decks played using the ControlScore function
were independently paired against each of the control decks using ANNs evolved
using the CvsNNC_2.0_Large setup. The lowest win rate is deck 4 against deck 5 at
11.05%, while the highest is deck 3 against deck 2 at 61.30%. The average win rate
is 34.12% with standard deviation 13.07.
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Figure G.12 Each of the aggro decks using an ANN evolved using the
Warlock_Net_AA_lg setup were independently paired against each of the control
decks using ANNs evolved using the CvsNNC_2.0_Large setup. The lowest win rate
is aggro deck 1 against control deck 1 at 13.03%, while the highest is aggro deck
5 against control deck 3 at 66.83%. The average win rate is 41.29% with standard
deviation 11.96.
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APPENDIX H

PIE CHARTS OF WIN RATES FOR DIFFERENT MATCHUPS

Figures H.1 to H.12 show the win rates for each pairing of scoring functions described

by the experiments in Section 4.1.
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AggroScore&Deck 49% AggroScore&Deck51%

Win Rates for AggroScore&Deck
 vs AggroScore&Deck

Figure H.1 Each of the five aggro decks were independently paired against each
other while playing with the AggroScore function. This pie chart corresponds to the
heatmap found in Figure G.1.

AggroScore&Deck

25%

ControlScore&Deck

75%

Win Rates for AggroScore&Deck
 vs ControlScore&Deck

Figure H.2 Each of the five aggro decks played using the AggroScore function
were independently paired against each of the control decks using the ControlScore
function. This pie chart corresponds to the heatmap found in Figure G.2.
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ControlScoreAggroDeck

82%

AggroScoreControlDeck

18%

Win Rates for ControlScoreAggroDeck
 vs AggroScoreControlDeck

Figure H.3 Each of the five aggro decks played using the ControlScore function
were independently paired against each of the control decks using the AggroScore
function. This pie chart corresponds to the heatmap found in Figure G.3.

AggroScore&Deck

23%

ControlScoreAggroDeck

77%

Win Rates for AggroScore&Deck
 vs ControlScoreAggroDeck

Figure H.4 Each of the five aggro decks played using the AggroScore function were
independently paired against each of the aggro decks using the ControlScore function.
This pie chart corresponds to the heatmap found in Figure G.4.
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ControlScore&Deck
64%

AggroScoreControlDeck
36%

Win Rates for ControlScore&Deck
 vs AggroScoreControlDeck

Figure H.5 Each of the five control decks played using the ControlScore function
were independently paired against each of the control decks using the AggroScore
function. This pie chart corresponds to the heatmap found in Figure G.5.

ControlScore&Deck 49% ControlScore&Deck51%

Win Rates for ControlScore&Deck
 vs ControlScore&Deck

Figure H.6 Each of the five control decks were independently paired against each
other while playing with the ControlScore function. This pie chart corresponds to
the heatmap found in Figure G.6.
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AggroScore

21%

EvoAggroScore

79%

Win Rates for AggroScore
 vs EvoAggroScore

Figure H.7 Each of the five aggro decks played using the AggroScore function were
independently paired against each of the aggro decks using an ANN evolved using
the Warlock_Net_AA_sm setup. This pie chart corresponds to the heatmap found
in Figure G.7.
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82%

Win Rates for AggroScore
 vs EvoAggroScore

Figure H.8 Each of the five aggro decks played using the AggroScore function were
independently paired against each of the aggro decks using an ANN evolved using
the Warlock_Net_AA_lg setup. This pie chart corresponds to the heatmap found
in Figure G.8.
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ControlScore
66%

EvoControlScore
34%

Win Rates for ControlScore
 vs EvoControlScore

Figure H.9 Each of the five control decks played using the ControlScore function
were independently paired against each of the control decks using ANNs evolved using
the Warlock_Net_CC_sm setup. This pie chart corresponds to the heatmap found
in Figure G.9.

ControlScore
35%

EvoControlScore
65%

Win Rates for ControlScore
 vs EvoControlScore

Figure H.10 Each of the five control decks played using the ControlScore function
were independently paired against each of the control decks using ANNs evolved using
the CvsNNC_2.0 setup. This pie chart corresponds to the heatmap found in Figure
G.10.
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ControlScore
34%

EvoControlScore
66%

Win Rates for ControlScore
 vs EvoControlScore

Figure H.11 Each of the five control decks played using the ControlScore function
were independently paired against each of the control decks using ANNs evolved using
the CvsNNC_2.0_Large setup. This pie chart corresponds to the heatmap found in
Figure G.11.

EvoAggroScore
41%

EvoControlScore
59%

Win Rates for EvoAggroScore
 vs EvoControlScore

Figure H.12 Each of the aggro decks using an ANN evolved using the
Warlock_Net_AA_lg setup were independently paired against each of the control
decks using ANNs evolved using the CvsNNC_2.0_Large setup. This pie chart
corresponds to the heatmap found in Figure G.12.
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