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ABSTRACT 

RECOVERY OF VALUABLE METALS FROM SPENT LITHIUM-ION 
BATTERIES USING ORGANIC ACIDS: ASSESSMENT OF TECHNO-

ECONOMIC FEASIBILITY 

by 
Leqi Lin 

Lithium ion batteries (LIBs) are used in diverse electronic products with anticipated over 

500 thousand tonnes of the waste LIBs globally in 2020. To protect the environment and 

also recover valuable materials such as lithium (Li) and cobalt (Co), our research employed 

a hydrometallurgy method and demonstrated that exposure of spent LIBs to Organic Aqua 

Regia (OAR) could leach Li and Co without the pre-separation of cathode from Al foil 

using organic solvents such as Dimethylformamide (DMF) and N-Methyl-2-pyrrolidone 

(NMP). The leaching efficiency of 99% and 94% for Li and Co were obtained with a 

leaching rate of 0.021, 0.167 mg·mg-1·h-1 respectively. Furthermore, our life cycle 

assessment (LCA) indicates that OAR could reduce 65% greenhouse gas (GHG) emission 

compared to extraction from natural mines or reduce 26% GHG emission compared to 

pyrometallurgy and hydrometallurgy processes with sulfuric acid.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Lithium Ion Battery 

In 1800, Alessandro Volta invented the first battery was invented by stacked copper (Cu) 

and zinc (Zn) as anode and cathode. In 1836, the first rechargeable based on lead acid was 

invented by the French physician. For the pursuit of instability and maximum stored energy 

needed for the electronics markets (mobile phone and laptop computer), nickel-cadmium 

battery (NiCd) and nickel-metal hydride batteries which had longer life than NiCd were 

then invented successively around the early 20th. New battery technologies usually require 

higher energy capacity, higher power/energy density, longer storage life, low self-discharge 

rate and thermostable rechargeable batteries based on new advanced materials. The 

traditional rechargeable batteries (lead acid, NiCd and nickel-metal hydride) face 

limitations in their energy densities (80-300Wh·L-1).1 To increase the energy densities, the 

LiCoO2 (LCO) type of cathode materials was developed  by Goodenough et al. in 19792, 

followed by lithium-ion batteries (LIBs) that were commercialized by SONY in 1991.3 

Basically, LIBs are based on different redox-oxygen reactions between anode and cathode, 

which generate cell voltages typically in the 1.0 to 4.2 V range. Lithium (Li) is the most 

electropositive element allowing Li based batteries to have the higher energy density 

storage (250-693 Wh·L-1) with a transition metal, such as cobalt (Co), nickel (Ni), 
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manganese (Mn) and iron (Fe) to compensate for the charge when the Li-ion arrives or 

departs. 

LIBs owing to the unmatchable high energy and power density have been widely 

used in portable electronic products, such as mobile phones, laptops, automobiles, and 

cameras.4 The use of LIBs is expected to expand to meet the rising demand especially for 

energy storage devices such as solar and wind and for electric vehicles. However, there are 

limited countries that possess exploitable deposits of cobalt ( 65% in Congo, Canada, China 

and Russia),5 and the price of cobalt is about 4.7 times more expensive than nickel, 6.6 

times more expensive than titanium and 7 times more expensive than lithium.6 The global 

LIBs market size was valued at $37.4 billion in 2018, advancing at a 16.2% CAGR to at $ 

92.2 billion by 2024.7, 8In Middle East and Africa, the market of LIBs in 2016 was valued 

over $1 billion,9 where the China market will have a dramatic gain of over 13% by 2025 

with its strong economic growth along with ongoing expansion and development of 

automobile manufacturing. According to the GSMA real time intelligence data, there are 

5.17 billion people that have a mobile phone device, and is predicted to increase to 7.33 

billion by 2023.10 Furthermore, over 20% of vehicles in the United Stated will be replaced 

by electrical vehicles by 2030 that may use LIBs as fuel sources. As a result of the intensive 

use of LIBs, there is a predicted shortage of lithium and other transitional metals in LIBs 

due to the lack of effective recovery or recycling processes of LIBs.1112 The recovery of 
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spent-LIBs is thus beneficial to the environmental protection and also conservation of 

strategically important materials.13, 14  

Approximately 500 thousand tons of spent-LIBs will be produced globally in 2020 

from 25 billion units of spent-LIBs.15 The typical life span of LCO-type LIBs is around 1-

2 years (500-1000 cycles) depending on the usage condition and the quality of the battery. 

Among these spent LIBs, most of them are LCO type LIBs, and around 100,000 tonnes are 

available for recycling and recovery. The residues of spent-LIBs contain high metals 

concentration levels, which could result in environmental pollution if not properly 

managed.16 . Since 2016, the Department of Defense (DoD) released a climate change on 

military installations located around the world. The DoD released a $5.5 million funding 

opportunity announcement (FOA) to develop new technologies to profitably capture 90% 

of LIBs in the United States. Li as the medium-term critical materials due to the rapid 

increases in market penetration projected for electric vehicles using LIBs, which increases 

the importance of Li as clean energy. The United States needs to construct the dependence 

on the critical materials which mostly from foreign countries, thus the goal of FOA is to 

develop new innovative solutions to collecting, storing, and transporting spent-LIBs.  

Conventional recovery of cathode materials involves time-consuming, complicated 

pretreatment and high temperature calcination. Moreover, the use of inorganic acids such 

as sulfuric acid (H2SO4) 17, 18,hydrochloride acid (HCl) 19, 20 and nitric acid (HNO3) 21, 22 

may cause negative effects on the environment and human health due to the penetration of 
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leaching residue into the eco-system and toxic emissions such as Cl2, SO3 and NOx.17, 23 

Recently, many studies propose the use of green chemicals or regents, such as citric acid24, 

25, succinic acid26 and malic acid,27, 28 for the leaching process to dissolve cathode elements 

to be recovered. Nearly 99% Li and over 90% Co can be achieved using citric acid and 

DL-malic acid.25, 29 Golmohammadzadeh et al.16 reported the leaching efficiency between 

citric acid, DL-malic acid and acetic acid with ultrasonic agitation, an optimizing effect of 

99.80% of Li and 96.46% for Co can be recovered by citric acid at 5 hrs. M. Roshanfar et 

al.30 proposed 100% of Li and 97.36% of Co recovery efficiency under optimized leaching 

condition (Temperature of 79oC, 16.3 g·L-1 pulp density, 165 mM H2O2 with 1.52M lactic 

acid for 2 hrs.)  The limitation of hydrometallurgy method with organic acids originates 

from weak acid which referring to the lower ability to release hydrogen ion into solution 

when reacting. This causes a relatively lower pulp density which means a great amount of 

leaching solution input, and further increases the input of H2O2 and temperature than 

inorganic acid. Furthermore, conventional hydrometallurgy method is hindered by the 

complicated pretreatment processes. 

1.2 Components and Industrial Application for Lithium-Ion Batteries 

1.2.1 Principles and Classification of Lithium-Ion Batteries 

Figure 1.1 shows the major principle of charging and discharging processes of LIBs. 

During the discharging or electricity generation process, the lithiated graphite (LixC6) 



 

    5 

anode undergo an electrochemical reaction to release Li+ ions that migrate through the 

electrolyte to the delithiated cathode.31 During the charging process, the reverse process 

occurs by applying external power sources (e.g., a DC power) that electrons flow to anode 

to attract Li+ ions released from cathode and cause the formation of lithiatiation on anode 

material. 

 

Figure 1.1 The schematic of lithiation and delithiation inside the charged Lithium-ion 
batteries when discharging.  

LIBs can be first classified into different shapes as coin, cylindrical and prismatic 

according to the current manufacturing practices. The prismatic shape can be further 

divided into hard-case and pouch based on the housing stability.32 The cylindrical shape 

batteries are typically assigned five-digit numbers, where the first two digits are the 

approximate diameter in millimeters, followed by the last three digits indicating the 

approximate height in tenths of millimeters.33 For example, 18650 cylindrical shape 

batteries have typical capacity range from 1500-3600 mAh with a diameter in 18 mm and 

a length in 65 mm.  
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1.2.2 Components for Lithium-Ion Batteries 

LIBs consist of electrolyte for ion transfer, anode, cathode, and separators that prevent short 

circuiting as shown in Figure 1.2.34 Table 1.1 shows the average mass distribution of these 

components for LCO type LIBs with the total weight of 18.74 g for a single unit.4  

 

Figure 1.2 Typical structure of an 18650 LIB. 
 

Source:[35] 

 
Table 1.1 Average Material Content of Portable LCO Type LIBs 
Battery component Product data sheet in mass-% 
Casing 20-25 
Cathode material (LiCoO2) 25-30 
Anode 14-19 
Electrolyte 10-15 
Copper foil 5-9 
Aluminum 5-7 
Separator - 

 
Source:[36] 

1.2.2.1 Anode Materials 

 Currently, the two most common used anode materials are carbon (graphite) and lithium 

alloyed metals.37 Graphite consist of sheets packed in hexagonal (AB) or rhombohedral 
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(ABC) arrangements as shown in Figure 1.3 Due to the low cost of graphite manufacturing 

and favorable electrochemical characteristics, the carbon-based anodes are the key anode 

material in the development of LIBs. The use of a layered carbon-graphite anode can store 

Li ions between the carbon atoms (in a process called intercalation) during charging and 

release them during discharging, however the formation of dendrites causing the short-cut 

and instability for LIBs. The anode of all 18650 LIBs are basically the same in composition, 

containing carbon-silicon and graphite as the active material, PVDF binder, additives and 

conductor coating on copper foil.37   

Besides graphite, lithium alloy anodes such as lithium aluminum (Li-Al) and 

LiTiO2 are also important anode materials for LIBs.37 Li-Al is the first to be developed as 

anode for LIBs with a theoretical capacity of 2235 mAh·g-1, which is much larger than that 

of graphite (372 mAh·g-1).38 LiTiO2 is another anode material with excellent 

electrochemical cycling since it does not show any volumetric changes during lithiation 

and dilithiation processes.39, 40 The metals found in the graphite intercalation alloy protects 

the inserted Li, making it less reactive towards electrolytes. Moreover, great advantage for 

lithium titanium is its ability for the fast-charging application.41 
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Figure 1.3 Crystal structures of two modifications of (a) Hexagonal; (b) Rhombohedral 
graphite. 

1.2.2.2 Cathode Materials  

Table 1.2 shows the typical element compositions for cathode of LIBs. The cathode is 

usually composed of the active materials such as Lithium Cobalt Oxide (LiCoO2, LCO), 

Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2, NMC), Lithium Manganese 

Oxide (LiMn2O4, LMO), Lithium Iron Phosphate (LiFePO4, LFP) and Lithium Nickel 

Cobalt Aluminum Oxide (LiNiCoAlO2, NCA).4 Depending on the atomic arrangement or 

crystal structures , these five cathode materials can be categorized into layer LCO, LMO, 

NCA, spinel LMO and olivine LFP as shown in Figure 1.4. Table 1.3 compares the 

fundamental properties and applications between different cathode materials. 
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Table 1.2 Composition of LCO Type Active Cathode Material 
Cathode material  Mass percentage-% 
Co 45.1 
Li 6.3 
Al 0.67 
Mn 11.8 
Ni 0.3 

 
Source: [42] 

 

Table 1.3 Cathode Component of  Lithium Ion Batteries and Each Application 
Type LCO NMC LMO LFP NCA 

Voltages (V) 3.0-4.2 3.0-4.2 3.0-4.2 2.5-3.65 3.0-4.2 
Energy density 

(Wh．Kg-1) 
150-200 150-220 100-150 90-120 200-260 

Thermal  
Runaway (oC) 

150 210 250 270 150 

Cycle life 500-1000 1000-2000 300-700 1000-2000 500 
 

Application 
Portable 

electronics 
E-bikes, 
electrical 
vehicles 

Power tools, 
electrical 

powertrains 

high load 
currents and 
endurance 

Industrial 
electric 

powertrain 

 

(a) Lithium Cobalt Oxide (LCO)  

LCO, as the first and the most common used cathode material in LIBs, has a layer structure 

with oxygen in a cubic close-packed arrangement. Due to its high energy density, LCO has 

been used for portable electronic equipment (mobile phone, laptops and digital cameras). 

After removal of Li ions, the oxygen layers rearrange themselves to give hexagonal close 

packing of oxygen in CoO2. The drawback of LCO is the short-life span, low thermal 

stability and power density which cannot output large amounts of energy immediately.  

(b) Lithium Iron Phosphate (LFP)   
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LFP has good electrochemical performances with low resistance and more tolerance 

against cell damage when charged fully if kept at high voltage for a specific time. As a 

trade-off, LFP has a lower nominal voltage of 3.2 V (normally 3.6V) compared with other 

cobalt-based LIBs. Normally, LFP is used to replace the lead acid battery in vehicles by 

using several cells in series to reach the similar voltage. 

(c) Lithium Manganese Oxide (LMO)  

LMO is one of the oldest cathode materials due to its accessibility, low cost, and high 

electrochemical properties. LMO has a three-dimensional spinel structure, which improves 

the ion conductivity and decreases the internal cell resistance and ohmic loss. Moreover,  

LMO spinel has high thermal stability, high rate capability (a measure of power generation), 

and low health and environmental impacts.37 

 (d) Lithium Manganese Nickel (NMC)  

NMC is one of the most successful cathode materials that is produced by blending LMO 

batteries with LiNiCoO2. Nickel-based systems have higher energy density, lower cost and 

longer cycle life relative to cobalt-based cells. NMC is also chosen to be the best batteries 

for electric vehicles and expected to replace other kinds of cathode materials in the years 

to come. 

(e) Lithium Nickel Cobalt Aluminium Oxide (NCA)  

NCA shares similarities with NMC with respect to high energy density, power density and 

long-life span. However, higher cost and safety problems (e.g., short circuit and capacity 
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fading) limit the market potential of NCA LIBs.43 Usually, NCA is used for special 

applications such as electric powertrain by Tesla44, 45, where aluminum empowers the 

battery system greater thermal stability.46 

 

 
Figure 1.4 Crystal structures of (a) layered LCO, NMC, and NCA , (b) spinel LMO and (c) 
olivine LFP. 
 
Source: [47] 

1.2.2.3 Electrolyte  

Electrolytes that have high dielectric constants are needed for ionic transportation and 

movement between electrodes. The electrolyte is an aqueous solvent made of organic 

solvent with dissolved salts, acids or alkalis. Normally, the dissolved salt solution of 

lithium hexafluorophosphate (LiPF6) with propylene carbonate (PC) and dimethoxyethane 

(DME) is the common used electrolyte.48 Besides LiPF6, other salts such as LiBF4, 

LiCF3SO3 and LiN(SO2CF3)2 are sometimes used depending on the specific considerations 
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such as high ion conductivity and pave the way for future publications on polymer gel 

electrolytes.49-51 

1.2.2.4 Separators  

The separators are used to physically separate the anodes and cathodes and prevent the 

battery from explosion due to the direct contact of the two electrodes without hampering 

the transportation of Li ions between the pair of electrodes.52 Typically, the separators 

account for 15-20% in cell component costs, whereas 20-25% accounts for cathodes and 

10-15% for anodes.53-55 Normally, the separators are made of porous polyolefin membranes 

such as polyethylene (PE), polypropylene (PP) or combination of PE and PP for liquid 

electrolyte batteries,56 as list in Table 1.4.  

Table 1.4 Major Separator Manufacturers 
Manufacturers Materials Separator Design 

Asahi Kasei Chemicals Polyolefin and ceramic-filled 
polyolefin 

Biaxially orientated 

Celgard LLC PE, PP, and PP/PE/PP Uniaxially orientated 
Entek membranes Ceramic-filled UHMWPE Biaxially orientated 
ExxonMobil/Tonen 
SK energy 
Ube industries 

PE and PE/PP mixtures 
PE 
PP/PE/PP 

Biaxially orientated 
Biaxially orientated 
Uniaxially orientated 

 
Source: [56] 

1.3 Importance and Challenge of Resource Recovery from Spent-LIBs 

1.3.1 Market Growth for LIBs 

The global LIBs market size was valued at USD 37.4 billion in 2018, advancing at a 16.2% 

CAGR to at USD 92.2 billion by 2024.7 In Middle East and Africa, the market of LIBs in 
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2016 was valued over USD 1 billion,9 where the China market will have a dramatic gain 

of over 13% by 2025 with its strong economic growth along with ongoing expansion and 

development of automobile manufacturing. According to consultancy Cairn Energy 

Research Advisors, the annual global production of LIBs grew from 100 gigawatt hours 

(GWh) in 2017 to almost 800 GWhs in 2027.57 The United States LIB market was also 

valued at over $ 6 billion in 2017 and is forecast to grow at a CAGR of more than 13% to 

surpass billion by 2023.58 The major companies operating in the global LIBs market are 

BYD Company (China), KAS Group (China), CALB (China), LG Chem (South Korea), 

Panasonic (Japan) , Samsung SDI(South Korea), GS Yuasa (Japan), Hitachi (Japan), 

VARTA Storage (Germany) and Farasis Energy (U.S.). 

1.3.2 Recovery Market Analysis   

In the years to come, over than 200,000 tonnes of LIBs have reached end-of-life from 

applications in electronics such as mobile phones, tablets, laptops, cameras, and other 

portable commercial technologies.59 As shown in Figure 1.5a, in 2018, 70% of spent LIBs 

of about 97,000 tones were processed in China for recovery or recycling and 19% of spent 

LIBs (about 23000 tonnes) was processed in South Korea. In Australia, only 2 percent of 

the country’s 3300 tonnes of lithium-ion waste was recycled. Most of spent LIBs ended up 

in landfill without proper disposal, which creating important market for material companies 

recycle and recover the LIBs59. Among these spent LIBs, most of them are LCO type LIBs, 
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and around 100,000 tonnes are available for recycling and recovery, as shown in Figure 

1.5b and Figure 1.5c. As demonstrated by its cycle life, LCO batteries are greatly limited 

with its low life span (around 1-2 years), which is not as long as batteries current used in 

vehicles or other industrial applications. Accordingly, the quantity and weight of discarded 

LIBs in 2020 can surpass 25 billion units with 500 thousand tonnes60, potentially causing 

environmental problems if not properly managed. Moreover, for countries that lack the key 

raw materials such cobalt in the Democratic Republic of the Congo5, recovery from spent 

LIBs is also an opportunity to reduce the import and dependence of raw materials from 

other countries. Since 2016, the Department of Defense (DoD) released a climate change 

on military installations located around the world. The DoD released a $5.5 million funding 

opportunity announcement (FOA) to develop new technologies to profitably capture 90% 

of LIBs in the United States. The United States needs to construct the dependence on the 

critical materials which mostly from foreign countries, thus the goal of FOA is to develop 

new innovative solutions to collecting, storing, and transporting spent-LIBs. In U.S., the 

company of American Manganese holds two patents with the ability to recover over 99% 

of valuable metals from NMC, LCO and NCA types of cathode materials. In Europe, 

Umicore claimed that their pyro-metallurgical combined with hydro-metallurgical process 

can use to recover mix-types of cathode materials with 80-100% recovery rate.61 There are 

recycling programs for LIBs in several countries, such as the U.S., Canada, South Korea, 

Japan and China, most of which exploit pyrometallurgical processes in metals recovery.  
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Figure 1.5 The recycling of LIBs from (a) countries, (b) available market share of ongoing 
different cathode materials and (c) varied applications when reaching end-of-life.  
 
Source:[ 59] 

1.3.3 Safety Consideration and Environmental Impact  

According to life cycle analysis (LCA)62 and material flow analysis (MFA),63 the life 

circulation for LIBs contains product life cycle (selling, storage, use, reuse, giving and 

export) and product end-of-life (recycling, landfilling and incineration).64 Though the 2010 

US Geological Survey report indicates that Li is not likely to cause serious environmental 

concerns Li is part of aquatic and terrestrial environments in low concentrations (100-200 

ppb),65 excessive Li pollution into waterbody and soil may cause damage to animals and 
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plants with over intake. Besides Li, Co in LIBs is beneficial for humans in lower 

concentrations because it stimulates the production of red blood cells. High concentrations 

of Co may compromise human health including vomiting and nausea, and vision and heart 

problems. The International Agency for Research on Cancer reported that cobalt is 

carcinogenic in high concentrations exposure (e.g., 0.3-3 mg·m-3).66  

The cost of metal recovery from spent LIBs could be compensated by the reduced 

health and environmental risks. For instance, to reclaim one ton of lithium, 28 tons of 

batteries to be recycled, much lower than the use of  1250 tons of earth that are needed.5 

Additionally, the mining process usually releases contaminants into soil, rivers and air 

contamination. For example, South American depletes 500,000 gallons of fresh water, 65% 

percent of the region’s water, to extract one ton of Li during the evaporation of the mineral-

rich brine every 12-18months.67 This intensive water consumption endangers the local 

farming activities, communities and sustainable development of economy. In China, 

Australia and North America, the traditional mining methods and chemical extraction are 

still used, which causing hundreds of died fish, animal and human health in the downstream 

from a Li processing operation. Thus, it is imperative to develop new policy and incentives 

mechanisms to foster the growth of technologies and economies of metal recovery from 

spent LIBs and recycling programs. 
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1.3.4 The Need for Green Chemistry  

Inorganic acids such as H2SO417, 68, 69 and HNO321, 22 are widely used in metal leaching of 

solid wastes including spent-LIBs due to the high leaching efficiency and low cost. 

However, inorganic acids are clearly corrosive and hazardous during handling and disposal. 

For instance, these strong acid leachant release toxic and corrosive gases during the 

leaching process. Considering the importance of source pollution reduction and pollution 

prevention, it is necessary to develop green chemical processes to recover metals present 

in the cathodes of spent-LIBs. In recent years, natural organic acids are increasingly used 

as leachant to avoid adverse environmental impacts. For instance, citric acid (C6H8O7) is 

the cheap and environmentally benign acid with excellent leaching ability.70-72 Succinic 

(C6H6O4) is also demonstrated as a leachant suitable for the sustainable recovery of Mn, 

Li, Co and Ni from spent-LIBs.26 Similary, malic (C4H6O5), aspartic (C4H7NO4), and 

ascorbic (C6H8O6) acids were also explored for metal recovery from spent-LIBs28, 70, 73 as 

summarized in Table 1.5. Most of the studies focused on the recovery of Co and Li from 

cathode. Compared with the inorganic acids, these organic acids could be recovered and 

reused with low secondary pollution. In addition, there are fewer toxic gases release and 

less waste acid (through reuse) with similar or higher leaching efficiencies of Li or Co. The 

development of cost-effective metal recovery methods is limited by many factors such as 

the compositions of cathodes in LIBs (often proprietary to the public). The variations on 
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the physiochemical properties of different acidic leaching solutions also affect the metal 

recovery efficiencies.74 

Table 1.5. Summary of the Reaction Conditions and Efficiency for Leaching Valuable 
Metals from Spent-LIBs 
Ref. Type of 

LIBs 
Acid Temp 

(oC) 
Pulp density 

(g∙L-1) 
Time 
(hr) 

Efficiency (%) 

19 LCO 4M HCl 80 - 2 Li: 97, Co:99 
20 NCA 4M HCl 90 50 18 Li, Ni, Co, Al: 

100 
21 LCO 1M HNO3 80 20 1 Li, Co: ~100 
22 LCO 1M HNO3 75 20 1 Li, Co: 95 
18 LCO 2M H2SO4 75 100 1 Li: 99, Co:70 
75 Mixed 1M H2SO4 95 50 4 Li: 93, Co: 66 
68 Mixed 2M H2SO4 95 20 4 Li: 97, Co: 92 
69 LFP 2.5M H2SO4 60 100 4 Li: 97, Fe:98 
24 LCO 1.5M Citric acid 90 30 2 Li:98, Co:96 
29 LCO 1.5M DL-malic 

acid 
90 20 0.67 Li:~100, Co:>90 

26 LCO 1.5M Succinic 
acid 

70 15 0.67 Li: >96, Co:~100 

76 LCO 1.5M Oxalic acid 80 50 2 Li, Co: >98 
77 LCO 1.25M Ascorbic 

acid 
70 25 0.5 Li: >98, Co: >95 

13 LCO 1.5M Aspartic 
acid 

90 10 2 Li, Co: >60 

77 NMC 1.5M TCA 60 50 0.5 Li: 99, Co: 92 

1.4 Pretreatment Process for the Cathode Materials 

To effectively leach metals from cathode materials, certain pretreatment must be performed 

on spent LIBs to expose cathode to leachant. The pretreatment generally include solvent 

dissolution24, 78-81, sodium hydroxide dissolution, thermal treatment, mechanical separation 

and ultrasonication separation which incorporates chemical, physical, thermal and 

mechanization agitation to break down the organic binder structure of LIBs that attach 

cathode to the aluminum (Al) foil.  
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1.4.1 Solvent Dissolution Method 

Solvent dissolution uses organic solvents to break the adhesion of the binder of cathode 

scraps to detach the cathode materials from the Al foil as shown in Figure 1.6.78-81 In 

general, N-methyl pyrrolidone (NMP) is usually chosen to dissolve the polyvinylidene 

fluoride (PVDF) binder. After discharge and dismantle of LIBs, the cathode scraps are 

submerged into the NMP solution at the temperature below 100 oC (The vapor point of 

NMP is 202 to 204 oC) for 1 hour.24 This process will separate cathode materials and 

graphite from the Al foil without changing the Al state. Zhou et al. chose 

dimethylformamide (DMF) to dissolve the PVDF binder using the ratio of cathode scrap 

and DMF of 1:1.5 (g．mL-1) in a water bath of 70 oC for stirring 2h with low cost, high 

solubility and reusability.82 DMF and NMP are sometimes less effective on other 

chemically resistant binders such as Polytetrafluoroethylene (PTFE). Zhang et al. 

successfully employed trifluoroacetate (TFA) to dissolve PTFE binders and separate the 

cathode materials from the Al foil under mild temperature conditions.83 The use of these 

organic solvents in pretreatment of spent LIBs not only increases the recovery cost but also 

cause other environmental concerns as these solvents or leachants may contain toxic and 

flammable substances requiring special disposal according to NJDEP regulation.    
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Figure 1.6. Illustration on the separation process of the cathode material and Al foil in the 
cathode scraps.   

1.4.2 Sodium Hydroxide Dissolution Method 

As shown in Figure 1.7, sodium hydroxide (NaOH) can also be used to separate the 

cathode materials from the aluminum foil.84-88 Nan et al. separates the LiCoO2 cathode 

materials from Al foil by adding 10 wt. % concentration of NaOH at the solid-liquid ratio 

of 100 g．L-1.88 After 5 hours of incubation under room temperature, the cathode materials 

were separated by filtering the NaOH solution with over 98% of the Al foil dissolved in 

the NaOH solution following the reactions in Eq. (1.1) and (1.2).86  The residues collected 

on filters are heated in a furnace with a heating temperature around 150 oC to evaporate the 

water to get the LCO powder.  D.A. Ferreira et al. found that NaOH can selectively dissolve 

Al without changing the integrity of LCO cathode or significantly inducing the dissolution 

of Li or Co.86 The temperature of the leaching solution does not show a significant effect 
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on the dissolution of Al with variations from 40%-60% as the temperature changes from 

30 to 70oC.84 

 (1.1) 

 (1.2) 

 
Figure 1.7 Illustration of a dissolution process using NaOH. 

1.4.3 Ultrasonication Separation Method 

Ultrasonication separates cathode materials from aluminum foil via a cavitation effect of 

the ultrasonic wave, which can generate localized pressures or heating to destroy insoluble 

substances as shown in Figure 1.8. Li et al. separated cathode materials (LCO) from the 

Al foil in a liquid container under ultrasonication of 40 Hz and 100 W, respectively.89  Li 

et al. investigated the Sonication-assisting solvent dissolution and established a positive 

relation of the peel-off efficiency at 60oC temperature.90 After filtration and drying with 

120oC for 24h, a heat treatment of the collected cathode under 500-700 oC is also needed 

to eliminate remaining carbon (i.e., graphene) and PVDF binder.  

2 3 2 42 3 2 [ ( ) ]Al O NaOH H O Na Al OH+ + ®

2 4 22 2 6 2 [ ( ) ] 3Al NaOH H O Na Al OH H+ + ® +
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Moreover, ultrasonication has been investigated to enhance the leaching efficiency 

of valuable metals from spent-LIBs.4, 89, 90 Ultrasonication causes cavitation in a liquid, 

where microbubbles are generated.91, 92 Li et al. separated the cathode materials from the 

Al foil in an ultrasonic washing container with agitation, with an ultrasonic frequency and 

electric power of 40 Hz and 100 W, respectively.89  

 
Figure 1.8. The schematic of ultrasonication in the separation of cathode materials from 
Al foil.  

1.4.4 Thermal Treatment Method 

Thermal treatment reduces the cohesion of the coated carbon black and the adhesion 

between cathode materials and the foil.93 As shown in Figure 1.9, cathode materials are 

heated 350-800 ℃ in furnace to decompose most organic binders. Toxic gases such as 

hydrofluoric acid (HF) are released and collected by air scrubber. A vacuum pyrolysis 

operating below 1kPa at a temperature around 600℃, depending on the type of binder, is 

also used to facilitate the evaporation of the organic binder.76, 93 Yang et al. adopted the 

furnace heating under high purity nitrogen gas (>99.999%) purging to completely remove 
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air, which also facilitated the removal of organic binders (e.g., PVDF and PTFE) compared 

to the vacuum pyrolysis.94   

 
Figure 1.9 The schematic of thermal treatment (reproduced from Ref. 85 with copyright 
permission).  
 
Source: [85] 

1.4.5 Mechanical Separation Method 

Mechanical separation replies on physical properties of materials (e.g., size, specific 

gravity, magnetism and electrostatic conduction) to accomplish the desired separation of 

components.95 Figure 1.10 shows the typical mechanical separation processes of crushing, 

removing, housing, skinning, shredding, shearing and sieving. Zhang et al. divided the 

crushed cathode materials into Aluminum-enriched fraction, Cobalt and Aluminum-

enriched fraction and Cobalt and Graphite-enriched fraction.96 Shin et al. demonstrated the 

commercial mechanical separation of crushing, sieving and magnetic separation in an 
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automated machine process to separate LIBs.97 Besides mechanical methods, forth 

flotation which can separate the materials based on the differences between particle 

hydrophobicity (e.g., hydrophobic graphite and  hydrophilic cathode materials) as shown 

in Fig.1.11.9899  Zhan et al. also proposed the traditional froth flotation with the feed of 

mixing materials in response to the various types of cathode materials for the separation of 

graphite and cathode materials.100 Though mechanical separation is simple to operate, the 

decomposition of LiPF6 generates HF and POF3 during the separation, which raises 

environmental concerns. 

 
Figure 1.10 Flowsheet for mechanical separation of recycling spent-LIBs. 
 
Source:[101] 
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Figure 1.11 Illustration of froth flotation flowchart. 
 
Source: [99] 

1.5 Current Practices and Recovery Methods 

1.5.1 Hydrometallurgy Method 

In hydrometallurgy processes, the leaching kinetic depends on varies leaching conditions, 

such as species of acids, the concentration of acids and reductants, reaction time, 

temperature and pulp density. Strong acids have strong ability to leach metals from LCO; 

Increasing the concentration of reductants such as hydrogen peroxide (H2O2)21, sodium 

bisulfite (NaHSO3)68 and succinic acid26 can enhance the reduction of Co(III) to Co(II),102 

which further improve the leaching efficiency. Recently, glucose is also being studied as a 
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reductant for increasing the efficiency in the leaching process due to its stability and low 

cost.103 

As shown in Figure 1.12, ultrasonication is often used in hydrometallurgy method 

to induce high localized temperatures, pressure, and shear forces to improve metal leaching 

efficiency.91, 92 For instance, cavitation effects and microbubble formation cause a series of 

physical and chemical changes to the structure of LCO cathode material, which enhanced 

the leaching efficiency of metals from spent LIBs while reducing the time.4, 89, 90 Martínez 

proposed that around 86% of Co and Ni recovery efficiencies was achieved with the 40 

KHz ultrasonication and 1.5 M citrate acid under a mild temperature (55oC).104 Jiang et al. 

also achieved 94% and 98% for Co and Li respectively by using 2 M H2SO4 and 360 W 

ultrasonic power at 30 minutes.105 By contrast, the same hydrometallurgy process without 

ultrasonication, 20 more minutes of the reaction time or 30oC higher of the temperature 

were needed to achieve same leaching efficiency.  
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Figure 1.12 The schematic of a hydrometallurgical method with ultrasonication. 

1.5.2 Pyrometallurgy Method 

Pyrometallurgy, widely used by industries such as Umicore, Accurec, Sony, Onto and 

Inmetco,106 involves the combustion of organic materials at high temperatures to reduce 

and smelt metals. Figure 1.13 shows the spent batteries are first pyrolyzed in a furnace at 

300-500 oC to evaporate the electrolyte and plastic housing.49 After this step, the pyrolyzed 

batteries are cooled down and re-melted in a second furnace with higher temperatures of 

1400-1700 oC where they are transformed to metal alloys.49 However, Li is usually lost in 

the form of slag residue and gaseous Li2O or Li2CO3 due to the high temperature (over 500 

oC). Thus, a hydrometallurgical process is combined with pyrometallurgy to recover the Li 

from LCO type of cathode materials. Thomas Tra ̈ger et al.107 reported a modified 
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pyrometallurgy with direct vacuum evaporation and selectively entraining gas evaporation 

at 1400-1650 oC for 2 hours to recover Li from mixed types of cathode material. Zhang et 

al.108 proposed a pyrolysis-enhanced flotation process to recover graphite and LCO at the 

temperature of 500oC, which resulted in a recovery efficiency of 98%. Hu et al.109 separated 

cathode materials from Al foil with 1.5 M NaOH, which was roasted 3 hours at a 

temperature of 650 oC with addition of lignite (as a carbon source) to produce Li2CO3.  

84.7% of Li and  99% of Co were ultimately recovered from the LCO type of cathode 

materials. Pyrometallurgy method has been commercially used to recover most of the 

current disposal LIBs, however, certain disadvantages including low efficiency, high 

energy consumption, involving risk and the secondary pollution are still existing and 

hampering the development of LIBs recovery.110 
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Figure 1.13 Schematic of pyro-metallurgy LIBs recycling process by UmicoreTM.  
 
Source: [111] 

1.5.3 Bioleaching Method  

Bioleaching (Biohydrometallurgy) is gradually being accepted as an effective method of 

metal recovery that involves naturally-occurring, acidophilic iron and sulfur oxidizing 

microoganisms for the facilitation of metal dissolution processes due to its low energy and 

mild reaction conditions as shown in Figure 1.14.112113-115 Bioleaching can be performed 

through the approach of one step and two step. In the one step, the LIBs powder and 

bacterial inocula are added immediately to the culture medium, whereas in the two step, 

the LIBs powder is added when the microorganism reached its maximum growth.116 Mishra 
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et al. first reported bioleaching process with the iron and sulfur oxidizing bacterium, 

Acidithiobacillus ferrooxidans, which achieved 7 and 41% recovery efficiencies for Li and 

Co respectively under the leaching condition of 5 g·L-1pulp density, pH= 2.5, 1% elemental 

sulfur and 3 g·L-1 Fe(II) solution.117 This microbe can produce a great number of reductants 

(e.g., Fe2+ and S2O32-) in the pyrite (FeS2) bio-oxidation through the thiosulfate pathway,118-

120 which facilitates the dissolution of cathode materials of LIBs and performs the 

feasibility when recover Li and Co from spent LIBs.121, 122  

Horeh et al. studied the application of fungal species, Aspergillus niger, on the 

recovery of  mixed type cathode and anode materials from LIBs, obtaining 95 and 45 %  

for Li and Co recovery efficiencies respectively in the presence of citric, malic, gluconic 

and oxalic acid.27 Niu. et al. utilized Alicyclobacillus sp., a sulfur-oxidizing bacteria (SOB) 

and Sulfobacillus sp., an iron-oxidizing bacteria (IOB), for bioleaching process, which 

yielded the extraction efficiency of 89 and 72 % for Li and Co.123 Ahmad Heydarian et al. 

investigated a mixed culture of chemolithoautotrophic mesophilic bacteria A. 

thiooxidans(A.f) and A. ferrooxidans(A.t) at a pulp density of 40 g·L-1 under optimized 

conditions (pH = 1.5; FeSO4 = 36.7 g·L−1; sulfur = 5.0 g·L−1), which yielded recovery 

efficiencies of 99.2 and 50.4% for Li and Co in the forms of LiSO4(aq) and CoSO4(aq).113 

Bioleaching for recovery valuable metals from spent-LIBs elicits low environment impact 

and low cost, but is usually time consuming with uncertainties in microbial cultures and 

their stablity.27, 110 In addition, bioleaching offers a slow leaching efficiency when the mass 
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transfer is inactive, thus, an effectively bioleaching technology is necessary to study for the 

future application. 

 
Figure 1.14 The schematic of bioleaching method using a bacteria species, Aspergillus 
niger. 
 
Source:[124] 
 

1.6 Applications of Organic Acids in Li/Co Recovery from Spent LIBs 

1.6.1 Organic Acids: Principles and Applications 

Many organic acids are increasingly used to dissolve cathode materials to recover Li/Co as 

they demonstrate equivalent or better leachability as inorganic acids but generate less toxic 

gases and secondary pollutants. Moreover, they could be produced naturally or with green 

chemistry. For example, citric acid is widely used leaching agent on the valuable metals 

recovery from spent-LIBs . Citric acid is a six-carbon tricarboxylic acid, which was first 
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isolated from the natural source, lemon juice. It is highly soluble in water as an excellent 

chelating agent which binds metals by making the metals soluble, and cheaper compared 

with other organic acids such as succinic acid, DL-malic acid and tartaric acid, as shown 

in Table 1.6. Golmohammadzadeh et al. recovered 92.53% and 81.50% of Li and Co from 

LCO respectively after 2 hours of immersion in 2 M citric acid at a pulp density of 30 g L-

1 under 60 oC with 42mM H2O2.16 Y. Fu et al. reported the highest recovery rates of 99.58% 

and 96.53% of Li and Co from LCO after 100 minutes using 0.75 M Benzenesulfonic acid  

at a pulp density of 15 g·L-1 under 90 oC with 100mM H2O2.125 P. Ning et al. explored DL-

malic acid for for the recovery of NMC type cathode materials and obtained the leaching 

efficiencies of the Ni, Co, Mn, and Li were 97.8%, 97.6%, 97.3%, and 98%, respectively 

after a leaching time of 30 min at a pulp density of 5 g L-1 under 80 oC with 140mM H2O2.126 

X. Chen et al. reported an over 98% and 97% leaching efficiencies for Li and Co 

respectively were achieved under the optimum leaching conditions of 0.6 M tartaric acid 

concentration, 100 mM H2O2, 30 g·L-1 pulp density and 80°C temperature for 30 

minutes.127 Musariri et al. indicated that the 95% and 97% leaching efficiencies of Li and 

Co were achieved at different concentrations of organic acids (1.5 M for citric acid and 1 

M DL-malic acid) under the same conditions of other factors.128 Generally, the 

concentration of citric acid has an effect on the leaching performance, with an increase in 

Li and Co leaching efficiency as the increasing concentration of citric acid from 1 to 1.5M. 

Nevertheless, this is not found in DL-malic acid. 
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The leaching kinetics has been described by different models including layer mass 

transfer control model, surface chemical reaction control model26, 129, residue layer 

diffusion model68, 75, 129 and Avrami equation77. Among these models, Avrami equation is 

originally developed for the kinetics of crystallization, in which each leaching condition is 

analyzed. In addition, Jha et al. investigated the leaching of Li and Co and focused on the 

determination of rate-limiting step and the corresponding activation energy, in which the 

leaching of Li and Co is controlled by either chemical reaction and diffusion through the 

ash respectively. 18  Zheng et al. reported the kinetic study of Co recovery from spent LIBs 

using citric acid at temperatures higher than 70 oC.72 The results showed that leaching of 

Co is controlled by chemical reaction. Li et al further to found out that Co and Li recovery 

using succinic acid was controlled by chemical reaction from 0–10 min and controlled by 

diffusion reaction from 20–40 min,26 which matched with the surface chemical reaction 

control and residue layer diffusion models respectively. A comparison of activation energy 

(Ea) from references were sorted out in Table 1.7. 
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Table 1.6 Comparison of the Hydrometallurgy on Leaching Performance for Valuable 
Metals from Spent-LIBs by Various Organic Acids 
Ref. Type 

of 
LIBs 

Acid Temp 
(oC) 

Pulp density 
(g∙L-1) 

Time 
(hr) 

Efficiency (%) 

24 LCO 1.5 M Citric acid 90 30 2 Li:98, Co:96 
29 LCO 1.5M DL-malic acid 90 20 0.67 Li:~100, Co:>90 
26 LCO 1.5M Succinic acid 70 15 0.67 Li: >96, Co:~100 
76 LCO 1.5M Oxalic acid 80 50 2 Li, Co: >98 
77 LCO 1.25M Ascorbic 

acid 
70 25 0.5 Li: >98, Co: >95 

13 LCO 1.5M Aspartic acid 90 10 2 Li, Co: >60 
77 NMC 1.5M TCA 60 50 0.5 Li: 99, Co: 92 

128 LCO 1.5 DL-malic acid 95 20 0.5 Li: 97, Co: 95 
16 LCO 2M Citric acid 60 30 2 Li: 92%, Co: 81% 

125 LCO 0.75M 
Benzenesulfonic 

acid 

90 15 1.67 Li: 99%, Co: 96% 

126 NMC 1M DL-malic acid 80 5 0.5 Li: 98%, Co: 97% 
127 LCO 1.5M Tartaric acid 80 30 0.5 Li: 98%, Co: 97% 
128 LCO 0.5 M glycine+ 

0.02M ascorbic acid 
80  6 Co: 95% 

 

Table 1.7 Comparison of Activation Energy (Ea) 
Ref.  Chemical reaction  Diffusion reaction  
  Li Co Li Co 
  Ea  R2 Ea R2 Ea R2 Ea  R2 
unit kJ·mol-1 
28 1.2M Malic acid 20.3 0.99 29.9 0.98 22.6 0.99 31.2 0.99 
129 3.5M Acetic acid 41.3 0.99 41.2 0.98 52.04 0.96 54.22 0.96 
128 1M Malic acid -- -- 45.9 0.98 -- -- 54.6 0.98 
128 1M Citric acid -- -- 41.4 0.99 -- -- 50.88 0.99 
25 1.5M Succinic acid 8.9 0.91 13.6 0.95 25.94 0.95 -- -- 
67 1M Sulfuric acid -- -- -- -- 20.1 0.99 26.8 0.99 
18 2 M Sulfuric acid 32.4 0.97 59.8 0.98 32.4 0.97 59.8 0.98 

1.6.2 Organic Aqua Regia (OAR): Principles and Applications 

Aqua regia is a mixture of hydrochloric acid (HCl) and nitric acid (HNO3) at a specific 

ratio of 3:1, which is widely used in dissolving and recovering noble metals(Ag, Pd, Au 

and Pt) especially for Au, from Wasted Electric and Electronic Equipment (WEEE). Aqua 
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regia are able to dissolve noble metals because each of its two component acids acts as a 

different function. HNO3 is a good oxidizing agent, and Cl- from the HCl from coordination 

complexes with the gold ions, removing them from solution. However, the nonselectivity 

of the inorganic acids results in the dissolution of other noble metals such as Ag, Au, and 

Pd at the same time as Pt which limits the quality of the recycled Pt. To address this issue, 

in 2010, Lin et al. discovered a new “organicus liquor regius’’ or Organic Aqua Regia (OAR) 

made by combining pyridine (Py) with SOCl2 (reagent grade, 97%) with the volume ratio 

of 3:1 (molar ratio of 4.1:1.2) in the cold water bath (5-10oC).130 OAR is formed with the 

sulfur atom in SOCl2 as an electron acceptor and the nitrogen (or phosphor) in Py as an 

electron donor, following this reaction: .131 This mixture 

is shown to dissolve noble metals (e.g., Ag, Au and Pt) rapidly under mild conditions (25-

40oC) due to the formation of donor-acceptor adducts between reagents.132 Compared with 

inorganic chemistry, organic chemistry provides precise control over chemical reactivity, 

and the ability to tailor organic reactions enables the selective dissolution of noble 

metals.131 Besides, the excess of SOCl2 after dissolution can be simply removed by purging 

the solution with nitrogen gas, and dilute OAR is relative safe to use. Thus, there are many 

potential applications of OAR such as metallurgy, metal etching for integrated circuit 

fabrication in electronics and especially for the recovery of noble metals. Figure 1.15 

summarizes the various materials that were reported to dissolve in the SOCl2/Py system 

with chemical structures for Py and potential structure for OAR.  

5 5 2 5 5ClC H N SOCl ClSONC H+ ®
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Figure 1.15 The chemical structure of (a) Py and potential structure for (b), (c) OAR and 
the reported materials that can be dissolved by OAR.   
 
Source: [131] 

1.7 Research Objective 

The purpose of this study is to investigate an ultrasonication assisted leaching process with 

an novel leaching reagent, OAR, to chemically recover Li and Co from LCO type spent-

LIBs. Besides, this study is aiming to simplify the recovering process and reducing the 

complicated and high energy consumption pretreatment process. OAR has demonstrated 

excellent chelating ability and potential to be reachable or reused like organic acids.131 LCA 

analysis was further conducted to compare CO2 emission potential from different 

hydrometallurgy processes using OAR, sulfuric acid and citric acid respectively to assist 

in understanding the environmental impacts and sustainable product or process design.  
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Therefore, the recovering process can be advanced beyond the laboratory scale to achieve 

industrial scale for spent-LIBs solid wastes. 

CHAPTER 2 

MATERIALS AND METHODS 

2.1 Materials and Pretreatment 

2.1.1 Reagents and Analytical Method  

Nitric acid (TraceMetalTM Grade) and hydrochloride acid (TraceMetalTM Grade) were 

purchased from fisher scientific. Citric acid (ACS certified), thionyl chloride (SOCl2) and 

Pyridine (Py) were purchased from Sigma Aldrich. Organicus liquor regius (OAR)130 was 

prepared with mixtures of SOCl2 and Py with the volume ratio of 3:1 in the cold water bath 

(5-10oC). All the solutions were prepared using de-ionized water. Spent-commercial 18650 

LIBs were taken from used laptop computers as shown in Figure 2.1 All of the collected 

batteries were LCO type LIBs from different manufacturers as shown in Figure 2.2.  
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Figure 2.1 (a) Undergraduate students presenting a campus campaign poster for the EPA 
P2 project and (b) Undergraduate students involved in dismantling the LIBs in  Dr. Zhang’s 
laboratory. (c) Commercial 18650 cylindrical lithium ion batteries (LIBs) collected from 
used laptop, and the tools to dismantle the laptop battery cell. 

 
Figure 2.2 Various collected LIBs with different brands or models of Samsung, LG, Sony, 
Sanyo and Panasonic. 

2.1.2 Pretreatment Process of Spent LIBs  

To avoid short-circuiting and self-ignition, the collected LIBs were immersed into a 10 wt. 

% NaCl solution for 48 hours in a chemical fume hood to discharge completely. LIBs were 

then washed by de-ionized water to remove rusty materials from the surface and air dried 

for 24 hours as shown in Figure 2.3. The plastic and metal cases were manually removed 
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with sharp-nosed pilers in the fume hood. As shown in Figure 2.4, LIBs have layers 

structure where anode/separator/cathode/separator in a repeating sequence. The anode, 

metal case and separators can readily be recycled or reused.133 Once uncurled and separated, 

the cathode material was dried at 60oC for 24 hours in crucibles in an oven to evaporize 

the electrolyte. The dried cathode material was cut into small pieces with scissors for 

characterization and leaching experiments. 

 
Figure 2.3 Discharge process (a) LIBs in 10 wt. % NaCl solution; (b): after 48 hours 
discharge; (c) air dried LIBs after washed with DI water. 
 

 

Figure 2.4 When opening the spent-LIBs, (a) and (b) inner structure is layer by layer rolling 
to a cylindrical shape. (c) the cathodes are dried at 60oC for 24 hours before leaching. 
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2.2 Characteristic Changes of Active Cathode Materials Before/After Leaching 

The crystallinity of LCO powder and residue after leaching was analyzed by X-ray 

diffraction (XRD, Rigaku, RXIII) on a D/MAX-2500 unit with Cu Ka radiation (k = 

1.54056 Å). Before the analysis, the samples were finely powdered in an agate mortar and 

then were scanned from 10o to 80o using 0.5o steps and a count time of 1 s.26 A UV-visible 

spectrophotometer (EVOLUTION 201, Thermo) was used to detect chemical constituents 

such as cobalt complexes in the leaching solutions. The surface morphology of LCO 

powder and residue after leaching were examined by a Scanning Electron Microscopy 

(SEM; JSM-5610LV, JEOL, Tokyo, Japan) with energy dispersive spectroscopy (EDS). 

Briefly,  the sample was prepared by sprinkling LCO powder onto a carbon conductive tab 

covered aluminum stub. The loose, excess powder was blown off with an air gun. The loose, 

excess powder was blown off with an air gun.), and then sputter coated with 8-nm thick 

gold under vacuum. The SEM images were taken at various magnifications and sample 

locations. The specific surface area of the LCO powder is determined by Brunauer-

Emmett-Teller (BET) N2 adsorption in the relative pressure range of 0.05£ (p/p0)£0.30 

using an Autosorb iQ apparatus (Quantachrome Autosorb iQ-MP, Automated Gas Sorption 

Analyzer).134 Prior to the measurement, all samples were degassed under dynamic vacuum 

at 200oC for 12 hours at a rate of 10 °C·min-1 under vacuum. 
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2.3 Quality Control/ Quality Assurance 

2.3.1 Data Quality and Reporting Limits 

For ICP-MS analysis, several verification checks were performed after Initial Calibration 

Blank Validation (ICBV) and Initial Calibration Validation (ICV) every 15-20 samples and 

at the end of analysis. The proficiency of the ICP-MS analysis was determined by the 

observation of their QA/QC performance. This includes factors such as: stable spectra or 

any spectral interferences, the relative standard deviation (RSD) on replicates of unknown 

or repeatability of sample results with known concentrations.  

a. Precision: The precision of the analysis was examined using the relative percent 

different of duplicate samples, RSD, which is calculated by Eq. 2.1.135 

 (2.1) 

where X1 = First observation of sample result, X2 = Second observation of sample result 

and RSD values of 15% will be acceptable. If RSD > 15%, samples will be reanalyzed with 

adjustments such as sample pretreatment, purification, dilution or instrumental 

maintenances if needed.  

b. Accuracy: The accuracy of the measurements will be tested with a Continuing 

Calibration Verification (CCV) every 15-20 samples. In addition, blind standards run as 

samples with known concentrations were placed between samples as a secondary quality 

(X1-X2)RSD=100[ ]
X1
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control check for accuracy. We will consider the instrument is out of accuracy when the 

measured value is deviated of the standard deviation more than 20%.  

c. Representativeness: Each experiment had a specific sampling protocol prior to 

conducting any sampling, which were reviewed by the QA officer (i.e., faculty advisor), 

with the objective of ensuring the representativeness of the samples. The number of the 

collected sample and the sampling strategy will depend on the specific experiment duration 

and objective. Representativeness within the sample will be achieved by homogenization 

of each sample through thorough mixing before the analyses. 

d. Comparability: Comparability of the data was obtained by following the same 

operational procedure for sample collection, processing and analysis.  

e. Completeness: It is the responsibility of the project to ensure that: (1) all the samples 

required per the sampling protocol are collected; (2) that the samples are properly labeled 

and preserved; (3) that all the quality control checks are included; (4) that all the 

information required for sample preservation and preparation is completed; (5) that the 

samples are analyzed and the results are received within a reasonable amount of time; (6) 

that the analysis has passed all the quality control checks within 20% of error; (7) that if 

there is any problems with the analysis is recorded and communicated; (9) that the results 

generated from the analysis are stored and saved 
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2.3.2 Instrument Calibration and Frequency 

Inductively Coupled Plasma-Mass Spectrometry (ICP-MS, Agilent 7700, the USA), as 

shown in Figure 2.5, was calibrated prior to any analysis. The calibration curves had at 

least 5 points plus a blank in the curve, ranging from the lowest to the highest expected 

concentrations of the samples to be analyzed (based on historical knowledge of the area, 

research estimation). The calibration curves for Li and Co were obtained using the standard 

solutions of Li and Co (1000 ppm) to dilute into 8 different levels (1 ppb to 200 ppb) using 

2% (0.3 M) nitric acid. If the method requires validation (for new methods or high-priority 

samples), another calibration curve (standards as samples) may be repeated at the end of 

the analysis, for other measurements such as pH and conductivity, instruments are 

calibrated according to manufacturer’s instructions. In general, the calibration will be 

accepted if the squared correlation coefficient (R2) is > 0.99.   

According to the molecular formula of LCO (LiCoO2), the mass of Co accounted for 

approximately 59% and Li accounted for 7%, respectively. Since 10 grams of LCO 

powders were immersed in the leachant solution (333 mL of the OAR solution and 25 ml 

of H2O2), the maximum concentration for Co and Li, if fully dissolved, would be 16 and 

1.9 ppm, respectively. In the ICP-MS, the leachant samples were diluted for at least 105 

times to achieve sensitive detection by the ICP-MS.  
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Figure 2.5 The components and operation parameters of the ICP-MS. 

2.4 Leaching Efficiency and Kinetics Study 

2.4.1 Leaching Efficiency Study for OAR and other Acids 

2.4.1.1 Organic Aqua Regia (OAR) 

Figure 2.6 shows the schematics of OAR preparation, including three major steps: 

discharging and dismantle, leaching and analysis. The leaching experiments are carried out 

in 1000-mL PP bottles under 120-W ultrasonication (Fisher Scientific Sonic Dismembrator 

Model 500) as shown in Figure 2.7. The leaching experiments were conducted with 

various OAR concentration (0.015, 0.09, 0.03, and 150 µg·mL-1), temperature (45, 55, and 

65 oC), pulp density (30, 40, and 50 g·L-1), reaction time (0- 70 minutes) and H2O2 (0, 1, 

3, and 4% v/v). The leaching solution was vacuum filtered by Whatman filters (0.45 µm, 

47 mm in diameter) to remove the insoluble residue. A wine-red filtrate was obtained and 

then fully digested in Aqua Regia (1-mL Aqua regia: 10-mL filtrate) and filtered with the 
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Whatman membrane filter again before the ICP-MS analysis for the concentration 

determination of Co and Li. The concentrations of the recovered Li and Co were further 

used to calculate the leaching efficiency by Eq. (2.2). 

  
(2.2) 

where E(%) is the leaching efficiency, C1 is the concentration result directly reported from 

the ICP-MS, D is the dilution factor or dilution times, M1(g) is the initial mass of the 

cathode sample, M2 (g) is the mass of residue after filtration, M3 (%) is the percent of the 

metal of the total mass number in the LCO cathode material, W1(ml) is the weight of the 

leachant (leaching acid and reducing agent) with assumption that the density of leachant is 

close to water. 

 
Figure 2.6 The process when preparing and diluting the OAR in an ice water bath. 
 

1

1 2 13

(%) 100%
( )

C DE
M M M W

´
= ´

- ´ ´



 

    46 

 
Figure 2.7 The schematic of hydrometallurgy processes (e.g., spent LIB discharge, 
separation of cathode and anode, leaching experiment and analysis of leachant with ICP-
MS). 

2.4.1.2 Citric Acid and Nitric Acid    

Citric and nitric acids are two widely used leaching reagents on the valuable metals 

recovery from spent-LIBs which are used here as the representatives of organic and 

inorganic acid for the comparison purpose. By compare the leaching efficiencies of OAR, 

the same experiments were carried out with 1 M citric acid or nitric acid at a pulp density 

of 30 g·L-1 with 100 mM H2O2 under 65 oC and 120-W ultrasonication for 60 minutes. 
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2.4.2 Dissolution Kinetic Study and Release Rate Determination 

Dissolution rate study was conducted to determine the leaching kinetics of Li and Co at 

different solution temperatures (45, 55, and 65 oC) for leaching times (0-60 minutes). Other 

conditions remained the same as those described above (e.g., 100 mM H2O2, 148 mg·mL-

1 OAR, and a pulp density of 30 g·L-1). The leaching of LCO is a heterogeneous reaction 

and is mainly controlled by either chemical reaction or diffusion.28, 75, 136 The leaching 

reaction process is described as Eq. (2.3)26, 129 when leaching is controlled by chemical 

reactions, and is described with Eq. (2.4) when leaching is controlled by the diffusion 

through the boundary layer according to the shrinking-core model for the leaching kinetics 

of shrinking particles.26, 28 The relationship between dissolution reaction rate constant and 

temperature can be further described by the empirical Arrhenius law as Eq. (2.5). 

 (2.3) 

 (2.4) 

 (2.5) 

where x is the leaching efficiency (%); kc is the rate constant of chemical reaction (min-1); 

kd is the apparent diffusion constant (min-1); t is the leaching time (min); R is the universal 

gas constant (8.314472 J·mol-1K-1); A is the pre-exponential factor (1·min-1); Ea is the 

apparent activation energy (J·mol-1), and T(K) is the absolute temperature.  

 The average release rate for Li and Co are calculated from Eq. (2.6): 

 (2.6) 
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where  is the leaching release rate; C is the equilibrium concentration of Li or Co (mg·L-

1) in the leachant; V is the volume of the leachant (L); and M is the weight of the LCO 

scraps (mg). 

2.5 Life Cycle Assessment of Li and Co Recovery from Spent-LIBs  

2.5.1 Introduction to Life Cycle Assessment 

Life cycle assessment (LCA) is an environmental accounting and management technique 

that considers potential environmental benefits of a product and pollution releases 

associated with an industrial system from cradle to grave.137, 138 LCA can assist in 

identifying opportunities to improve the environmental aspect, product or process design 

and marketing as outlined in Figure 2.8.138 Conventionally, the concept of a product’s life 

cycle starts from its cradle, where raw materials are extracted from natural resource, 

through refinement, production, use then to its grave or end-life disposal.139 To start LCA, 

the goal and scope shall be defined clearly and consistent with the intended application. 

Figure 2.8 also illustrates the components of LCA including goal, scope, inventory analysis 

and interpretation of results. Life cycle inventory (LCI), for instance, includes compiling 

an inventory of environmentally relevant inputs and outputs related to the functionality of 

product. 

v
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Figure 2.8 The framework and component of LCA. 

2.5.2 Goal and Scope Definition 

In this work, a process-based LCA after end-of-use of current commercial pyrometallurgy 

recovery technology, large-scale hydrometallurgy processes with citric acid and sulfuric 

acid, and the self-report lab-scale hydrometallurgy process with OAR for spent LIBs (LCO 

type of cathode material) was conducted. The goal of the investigation is to assess the CO2 

emissions from different recovery processes of Li and Co from spent LCO cathode cells. 

We assessed the major recovery processes including collection (transportation), 

pretreatment (discharge and dismantle), heating and recovery processes (hydrometallurgy) 

as shown in Figure 2.9. Functional unit (F.U.) is chosen as the collection, pretreatment and 

recovery of 1 ton of LCO cathode cell. Accordingly, the LCI of environmental impacts are 

evaluated based on this F.U.  

Scenarios Description:  
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The LCA was carried out for hydrometallurgy method with OAR from our self-report 

process, and compared with the existing pyrometallurgy method and hydrometallurgy 

method with sulfuric acid and citric acid from GREET2 (2019 version), Argonne National 

Laboratory140 for the potential recovery process development in industrial scale. The 

system boundary and the unit function are defined to be modelled by the study. The process 

flow diagram with the unit processes and the interrelationships where the unit processes 

start in terms of input of raw materials or intermediate products then the operations and 

transformations that occurs during the unit process and ends with destination of the 

intermediate or final products.141 

Collection Points: 

The collection points of the spent LIBs from portable electronics including commercialized 

lithium-ion recycling companies where people can request specific recycling kits (U.S. 

DOT special permit) then send back to companies such as Call2Recycle and Earth911 or 

counties recycling centers, especially in NJ, where people can find the related sites in 

Recycling NJ web.142 The following retailers also have signed up to the batteries recycling 

scheme where spent-LIBs can be recycled from the people in these stores, such as AT&T, 

Best Buy, Home Depot, Staples, Sears, Target, Verizon Wireless, Black & Decker, DeWalt, 

Interstate All Battery Centers, Lowe’s, Milwaukee Electrical Tool, Office Depot, Orchard 

Supply, Porter Cable Service Centers, RadioShack, Remington Product Company and US 

Cellular.143 Disposing LIBs on neither these sites are considered as improper disposal 
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which will ended up in the landfill or incineration later. For the drop-off locations, a claim 

reports 87% of people living in the U.S. can recycle the batteries within 10 miles from the 

recycler,144 thus, we are assuming the collection of batteries take 0.1miles to 10 miles per 

50 pounds (no more than 66 pounds batteries can be shipped in the box according to the 

U.S. DOT regulations), with 5 miles per 50 pounds in average.  

Transportation to Recovery Industrial Factory:  

The LIBs after collection will be shipped to the recycling factory, Recycling Coordinator, 

Inc., which is located in Akron, OH and was funded in 1992. Currently, this is only one 

large-scale commercialized LIBs recycling factory has the cooperation with Call2Recycle 

in United States. We assuming that LIBs collected in the NJ will be shipped to here in 

priority in order to reduce the energy consumption from the transportation. Due to the 

complicated distribution of the collection centers and the chosen commercial trucks for 

shipping, the data be provided here are distance according to the google Map. The longest 

distance is 491, shortest distance is 391 mile and 441 mile in average from New Jersey 

several ancillary collection centers to recycling factory in Akron, OH with average carry 

capacity between 13,000 to 28,000 pounds per commercial truck according to the 

regulation of National Highway Traffic Safety Administration.145 A more precise carry 

capacity for trucks mostly depend on the axles, truck size and weight limit laws.  

Discharge and Dismantle:  
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As describing previously in this research, the process of discharging is to submerge around 

1-kg LIBs into 2-L 10% NaCl solution for 48 hours without any heating equipment. After 

48 hours, cleaning the LIBs with 2-L water to remove the robust and dirt. Normally, the 

dismantle process is crushing then sieving by means of several screens, and spent LIBs 

have above average selective crushing properties to accomplish the desired separation of 

components. In our lab-scale self-report process, we used the cutting machine to cut off the 

cap of LIBs and rip out the metal case with pliers, manually separating one LIB to one 

LCO cathode cell. It takes around 5-10 minutes to dismantle one LIB to one LCO cathode 

cell. The collected LCO cathode cells were sent into oven for vaporizing the organic solvent 

and electrolyte under 60 oC for 12 hours.  

Hydrometallurgy Recovery Process with OAR: 

Hydrometallurgy recovery process have the highest potential for industrial and 

commercialized scale. In comparison with this, pyrometallurgy is a kiln firing process 

following with leaching to recover slag and valuable metals.14 The collected battery scraps 

are directly put into the smelter without pretreatment, aim at providing a closed-loop 

recovery of Co and Ni to resynthesize LCO. Li and Al are lost during the melting, carbon 

is burned and used as reducing agents for some of the metals.36, 61, 111 To reduce the 

emissions, energy consumption and Li-lost problems during pyrometallurgy processes, 

more and more companies focused on the study of hydrometallurgy processes. 

Hydrometallurgy is chemical behavior with acid leaching process used to separate and 
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refine materials with the ability of exchanging both Co and Li.14 This process can be further 

categorized into organic acid based (mostly citric acid) and inorganic acid based (mostly 

sulfuric acid and nitric acid). OAR based hydrometallurgy process combining with 

ultrasonication (120W, 20 kHz) has comparable potentials with sulfuric and citric acid 

based hydrometallurgical recovery processes due to the reduction of complicated 

pretreatment process, lower temperature and strong chelating ability.   

 
Figure 2.9 Study scope for battery collection and recovering process. 

2.5.3 Framework of Life Cycle Inventory 

Inventory Analysis: 

Life cycle inventory (LCI) is a step to determine the mass flows, i.e. the raw materials, 

water, energy and emission releases to air, water and land and waste outputs associated 
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within the system boundary. The LCI was chosen as environmental analytical tool, include 

raw materials, electricity, emissions, transportation and recovering process. The 

contribution of this study is to quantify these benefits for LCO type LIBs recovery 

technologies with static modeling. 

Impact Assessment and Interpretation: 

To evaluate the life cycle impacts of hydrometallurgy method with OAR, LCIA results 

were obtained from corresponding environmental impacts with different emission 

categories according to the provided data from Material Safety Data Sheets (MSDS) and 

database from Argonne National Laboratory. The impact assessment may include elements 

such as assigning of inventory data to emission categories, modelling of the inventory data 

and possibly aggregating the results in specific and meaningful cases which provides the 

information for the LCI interpretation.138 LCIA is different from other environmental 

impact assessment or evaluation techniques as it is a relative way based on a functional 

unit.141 The interpretation is comprised with the evaluation of impact assessment results 

and a sensitivity analysis including assumptions, limitations and data quality assessment.  

2.6 Statistical Analysis 

The presented results are the mean values ± standard deviation (SD) from three 

independent experiments: (1) Leaching Efficiency; (2) Dissolution Kinetic Study and (3) 

Leaching Release Rate. The significant differences in the dissolution kinetic study and 
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leaching experiments under different factors were analyzed using variance analysis 

(ANOVA) at a significant level of p= 0.05. SEM images in Figure 3.2 are typical results 

selected from at least 5 different sample locations. The minimum, mean and maximum 

values of emission for each process of LCA are calculated and estimated from MSDS and 

power range from the instrument manual. 
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CHAPTER 3 

RESULTS AND DISCUSSIONS 

Work of this chapter is related to or has been published through following manuscript or 
presetations: 
 
Leqi Lin, Wen Zhang*, 2020 Leaching of valuable metals from spent-lithium-ion batteries 

(LIBs) using Organic Aqua Regia, Resources, Conservation and Recycling. (Paper 
under preparation) 

Leqi, Lin, Wen Zhang, Leaching of valuable metals from spent-lithium-ion batteries (LIBs) 
using Organic Aqua Regia, ACS American Chemical Society 259th National 
Meeting, Pennsylvania Philadelphia, March 23th, 2020. 

Leqi, Lin, Wen Zhang, Leaching of valuable metals from Lithium-ion batteries (LIBs) using 
green organic acids, Graduate Student Research Day, New Jersey Institute of 
Technology, NJ, 2019. 

Leqi, Lin, Wen Zhang, Leaching of valuable metals from Lithium-ion batteries (LIBs) using 
green organic acids, EAS The Eastern Analytical Symposium and Exposition, 
Princeton, NJ, Oct 15th, 2019.  

Leqi, Lin, Wen Zhang, Green chemical process to recovery Li and Co from spent Lithium-
ion batteries, WEA NJ annual conference student poster contest, Atlantic City, May 
7th, 2019. 

3.1 Characteristic Changes of Active Cathode Materials Before/After Leaching 

3.1.1 Crystallinity Analysis 

XRD is a characterization technique for the crystalline structure, lattice parameters, planar 

spacing and crystalline size. Figure 3.1 compares the XRD patterns for LIBs before and 

after acid leaching processes. The spectral peaks at (003), (101), (104) as well as weak 

peaks at (015), (017) and (018) indicate the presence of crystalline phases of LCO. Other 

weak peaks (006), (012), (110) and (113) are characteristic peaks for the impurities (e.g. 

CoO and C).23, 24, 71, 73 After leaching, the intensities of all the peaks become weaker, 
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suggesting the leachant (OAR and H2O2) disrupted the crystallinity of LCO, which was 

also observed in a previous study using formic acid as leachant.146 

 
Figure 3.1 XRD patterns of (a) the raw material of LCO before leaching and (b) the cathode 
residue after leaching for 60 minutes by OAR acid with the following conditions [OAR]= 
148 mg·mL-1, temperature=65oC, [H2O2] = 100 mM, pulp density = 30 g·L-1 and 
ultrasonication= 120 W. 

3.1.2 Morphological and Chemical Mapping 

SEM images illustrate the morphological changes of LCO during acid leaching from 0-60 

minutes. Figure 3.2a indicates the LCO particles had the element distribution of 3%, 62% 

and 17% for C, Co and O respectively. Due to the low atomic weight, Li element is out of 

the detected range under current SEM-EDS system. Figure 3.2b-d reveals that lamellar 

crystals of LCO particles have a diameter of 8.5 ± 3.5 μm, which is consistent with other 

literature.23 After 20 and 60-minutes of leaching, the significant changes in particle shape 

and size indicate the dissolution of Li and Co by OAR. Similar observations of 

morphological changes were obtained with other acids such as nitrate and citric acids. 
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Figure 3.2 Morphological and chemical mapping by SEM-EDS (a) element distribution 
and mapping of elements from active cathode materials (LCO). SEM figures show the 
difference of LCO particles (b) before leaching (c) after 20 minutes and (d) after 60 minutes 
of the leaching process. 

3.1.3 Leaching Mechanism with UV-Visible 

Figure 3.3a demonstrates the UV-Visible spectra of the leaching solution from 20 to 100 

minutes using OAR as leachant under conditions specified in the caption. The absorbance 

peak at around 290 nm is ascribed to the formation of Co(II) complex. There is a relatively 

weak absorbance peak at around 500 nm that is ascribed to the d-d transition in the Co(III) 

complex.71, 73 The absorbance intensity at 290 nm increased with the increasing time, which 

indicates the reducing agent (H2O2) effectively reduced Co(III) to Co(II). The absorbance 

around 500 nm also slightly increased with time due to the concentration increase of the 
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leached Co(III). Figure 3.3b compares the absorbance peaks for the leaching solutions 

using three different acids after 60 min. The absorbance peak for OAR was higher than 

those of nitric and citric acid, suggesting that OAR yielded a higher leaching efficiency 

under the same leaching conditions. 

 
Figure 3.3. UV-visible spectra of the leaching solutions. (a) The absorbance peaks for the 
leaching solutions using OAR as leachant under the leaching condition (OAR: 148 mg·mL-

1, 100 mM, 65oC and a pulp density of 30 g·L-1). (b) UV-visible results of three leachant 
proved that OAR has better ability than the other two acids. 

3.2 ICP-MS Analysis 

Figure 3.4 shows the calibration curves of Li and Co with the squared correlation 

coefficients (R2) over 0.99. The RSD was 5% or less. The limits of detection (LOD) for Li 

and Co were 1.2 µg L-1 and 0.38 µg L-1, respectively, which was estimated by depending 

on the system sensitivity using the following equation: 

 (3.1) LOD bS k
m
´

=
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where k is a factor with the value of 3, Sb is the standard deviation of the blank and m is the 

slope of the calibration graph in the linear range.  

 
Figure 3.4 Calibration curves for (a) Li and (b) Co established with ICP-MS. 

3.3 Leaching Efficiency Kinetics 

3.3.1 Leaching Efficiency Comparison for OAR, Citric and Nitric Acid 

Table 3.1 compares the reported leaching efficiencies for various LIBs using different 

organic acids as leachants. The common leaching temperatures are 60-95oC with pulp 

densities of 5-30 g∙L-1 and leaching times of 0.5-6 h. As discussed above, high leaching 

temperatures promote more H+ presenting in the solutions from the acid and accelerate the 

leaching reaction rate. Pulp densities affect leaching behavior as high pulp density means 

less leachant input to the LCO particle which is not sufficient to leach the LCO particle. 

This may attribute to low leaching efficiency. Clearly, the different organic acids achieved 

similar levels of leaching efficiencies of Li and Co over 90%. Some organic acids were 

claimed to be recoverable and reused for additional leaching processes. For example, citric  
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acid was regenerated by 0.5 M oxalic acid (H2C2O4) and 0.5 M phosphoric acid (H3PO4), 

and was reused successfully without compromise in the leaching efficiency for 5 cycles.24, 

147  

Table 3.1 Comparison of the Hydrometallurgy on Leaching Performance for Valuable 
Metals from Spent-LIBs by Various Organic Acids 

Ref. Type 
of 

LIBs 

Organic Acids H2O2 
(mM) 

Temp 
(oC) 

Pulp 
density 
(g∙L-1) 

Time 
(hr) 

Efficiency (%) 

This 
study LCO 148 mg·mL-1 

OAR 
140 65 30 1 Li:99, Co:94 

24 LCO 1.5 M Citric acid 10 90 30 2 Li:98, Co:96 
29 LCO 1.5 M DL-malic 

acid 
67 90 20 0.67 Li:~100, 

Co:>90 
26 LCO 1.5 M Succinic 

acid 
140 70 15 0.67 Li: >96, 

Co:~100 
76 LCO 1.5 M Oxalic 

acid 
500 80 50 2 Li, Co: >98 

77 LCO 1.25 M Ascorbic 
acid 

140 70 25 0.5 Li: >98, Co: 
>95 

77 NMC 1.5 M TCA 140 60 50 0.5 Li: 99, Co: 92 
128 LCO 1.5 DL-malic 

acid 
57 95 20 0.5 Li: 97, Co: 95 

16 LCO 2 M Citric acid 42 60 30 2 Li: 92%, Co: 
81% 

125 LCO 0.75 M 
Benzenesulfonic 

acid 

100 90 15 1.67 Li: 99%, Co: 
96% 

126 NMC 1 M DL-malic 
acid 

140 80 5 0.5 Li: 98%, Co: 
97% 

127 LCO 1.5 M Tartaric 
acid 

100 80 30 0.5 Li: 98%, Co: 
97% 

128 LCO 0.5 M glycine+ 
0.02 M ascorbic 

acid 

67 80 -- 6 Co: 95% 

We evaluated the leaching efficiency using OAR (148 mg·mL-1) as a leachant under 

the condition of a g·L-1 pulp density, 65oC, 100 mM H2O2 and 120 W ultrasonication. 

Figure 3.5a. For the first 10 minutes, the efficiency is only 80% for Li and 62% for Co, 
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after that, an increase of efficiency to 99% for Li and 86% for Co when the time gets to 60 

minutes. In order to leach Co from (CoO2)-, a reducing agent (H2O2) is necessary during 

the process, thus, for the first 10 minutes, Co has a low dissolubility then increases 

dramatically after 10 minutes. Co also has a relative slow leaching progress than Li during 

10 minutes to 50 minutes, which may be caused by the diffusion reaction for the leachant 

reacting with residue surface. At 60 minutes, almost 99% for Li and 86% for Co which 

represent a proper leaching time for the next experimental approach and study.  

The leaching process for both metals is usually an endothermic reaction148, thus, 

the high leaching temperature is favorable for the leaching process. According to the 

references as shown in Table 3.1, the optimum temperature should be less than 90oC to 

show its potentiality on commercial scale. Thus, the effect of temperature on the leaching 

efficiency is investigated from 45, 55 and 65 oC under the condition of 148 mg·mL-1 OAR, 

100 mM H2O2, 30 g·L-1 pulp density and 120 W ultrasonication for 60 minutes, and the 

result is shown in Figure 3.5b. The leaching efficiency of Li and Co increases as the 

increasing temperature due to temperature provides the energy to the molecule and 

increases the progress of reaction. When the temperature is at 55 oC, leaching efficiency of 

47% for Co and 79% for Li are achieved at 60 minutes, this represents that OAR has a 

strong leaching ability even under mild temperature. When the temperature approaches to 

65oC, 99% for Li and 86% for Co can be observed. Considering the energy consumption 
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and leaching efficiency, therefore, a fixing temperature of 65oC is proper for the rest 

investigations. 

H2O2 has been widely used during the leaching process which provides one-valence 

oxygen atoms to convert Co (III) to Co (II) and strengthens the dissolution of Co(II).126, 149 

The effect of H2O2 concentration on the leaching efficiency is investigated and the result 

is shown in Figure 3.5c. The H2O2 dosage is varied from 0, 33, 100 and 140 mM under the 

condition of 148 mg·mL-1 OAR, 65oC temperature, 30 g·L-1 pulp density and 120 W 

ultrasonication for 60 minutes. H2O2, as a reducing agent, is unstable under high 

temperature and can be decomposed according to Eq. (3.1).150  

 

 (3.1) 

 

The reduction reaction changes the radius of cobalt ions which breaking the 

chemical bonds between Co and O and achieving leaching behavior further promoting the 

dissolution of Li.151 Without the adding of reducing agent, around 45% for Co and 70% fo 

Li recovery efficiency can be achieved by OAR, showing that Li can dissolve in acid more 

easier than Co due to the weak interaction of Li within the layered LCO lattice,152 and the 

strong leaching ability of OAR. As the concentration of H2O2 increases from 0 to 140 mM, 

the leaching efficiency increases from 45% to 94% for Co and 70% to 99% for Li 

respectively. H2O2 undergoes strong reaction under high temperature combining with 

2 2 2 22H O (aq) 2H O(aq)+O (g)®
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ultrasonication, which might lead to an unexpectable sever reaction such as the acid 

solution might split out causing safety issue, therefore, a dosage of 140 mM H2O2 is proper 

for the rest investigation. 

The effect of the OAR concentration on the leaching efficiency is investigated from 

148 , 90, 30 and 15 mg·mL-1 under the condition of 140 mM H2O2, 65oC temperature, 30 

g·L-1 pulp density and 120 W ultrasonication, and the result is shown in Figure 3.5d. A 

leaching efficiency of 99% for Li and 94% for Co is achieved when the concentration of 

OAR is 148 mg·mL-1 in 60 minutes. As the concentration decreases from 148 to 15 mg·mL-

1, a drastically decline from over 90% to under 10% for both Li and Co are observed in 60 

minutes. This represents the leaching ability of OAR is weak, and almost lost the 

dissolution ability when the concentration is lower than 30 mg·mL-1. This may ascribe to 

the mechanism of OAR is worked by the principle of charge transfer in which the sulfur 

atom in SOCl2 act as an electron acceptor, and the nitrogen in Py act as an electron donor.131 

This reaction release great energy to break the binding between Co and O when reacting 

with LCO, however, the excessive adding of H2O will weaken this ability and break the 

OAR structures before the leaching experiment. Thus, to minimize the amount of input 

acid and to ensure the OAR works for the leaching experiment, we use 148 mg·mL-1 of 

OAR for the upcoming investigation. 

Pulp density is the ratio of input OAR solution to the LCO, in which lower pulp 

density provides higher amount of OAR consumption to react with the LCO. The effect of 
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pulp density on the leaching efficiency is investigated from 30, 40 and 50 g·L-1 under the 

condition of 148 mg·mL-1  OAR, 65oC, 140 mM of H2O2 and 120 W ultrasonication for 60 

minutes, and the result is shown in Figure 3.5e. The leaching efficiencies are increased 

from 52 to 99% for Li and 30 to 94% for Co while the pulp density decreasing from 50 to 

30 g·L-1. This is due to less acid solution is reacted with the particles under high pulp 

density (40 and 50 g·L-1). Considering the lower OAR solution consumption and relatively 

better leaching efficiency, the optimal pulp density condition for Li and Co is 30 g·L-1. 
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Figure 3.5 Leaching factors assessments for (a) effect of reaction on leaching efficiency 
([H2O2]= 100mM,  [OAR]= 148 mg·mL-1, ultrasonication = 120W, T=65oC, 60 minutes) ); 
(b) effect of temperature on leaching efficiency ([H2O2]= 100 mM,  [OAR]= 148 mg·mL-

1, ultrasonication = 120W, pulp density= 30 g·L-1, 60 minutes); (c) effect of H2O2 
concentration on leaching efficiency. ([OAR]= 148 mg·mL-1, T=65oC, ultrasonication = 
120W, pulp density= 30 g·L-1, 60 minutes); ); (d) effect of concentration of OAR on 
leaching efficiency ([H2O2]= 140 mM,  T=65oC, ultrasonication = 120 W, pulp density= 30 
g·L-1, 60 minutes); (e) effect of pulp density on leaching efficiency ([H2O2]= 140 mM, 
[OAR]= 148 mg·mL-1, ultrasonication = 120W, T=65oC, 60 minutes). 
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3.3.1.2 Citric Acid and Nitric Acid  

The results show that the leaching efficiencies are 95% for Li and 80% for Co of 1M citric 

acid, and 99% for Li and 80% for Co of 1M nitric acid under the same conditions of 100 

mM H2O2, 65oC temperature, pulp density of 30g．L-1 for 60 minutes reaction time. In the 

Figure 3.6, a comparison of three acids in the study shows that OAR has the similar 

leaching efficiency with nitric acid, and a higher leaching efficiency than citric acid. 

 
Figure 3.6 The comparison for three acids (1 M nitric acid, 1 M citric acid and 148 mg·mL-

1  OAR) under the same condition ([H2O2]= 100 mM, T=65oC, ultrasonication = 120 W, 
pulp density= 30 g·L-1 for 60 minutes). 

3.3.2 Dissolution Kinetic Study and Release Rate Determination 

The dissolution kinetic study of Li and Co are studied with varied temperatures (45, 55, 65 

oC) and leaching times (0-60 minutes) with 148 mg·mL-1 OAR. In Figure 3.7, the kinetic 

study of Li and Co both fit satisfactorily (R2>0.92) to the chemical reaction model from 0 

to 10 minutes, and fit satisfactorily (R2>0.92) to the diffusion reaction model from 20 to 

60 minutes. This provides the information that the progress is chemical control at the 
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beginning (0-10 minutes) due to high concentration of acid input under temperatures (45, 

55, 65 oC)28. As the leaching progresses (20-60 minutes), the acid molecules have to diffuse 

through the layer to reach the reaction surface, which becomes diffusion control.128 

Based on the dissolution rates provided in Table 3.2, the evolution of lnk with 

respect to the reverse of temperature, 1/T, the Ea values for leaching of Li and Co can be 

calculated from the slopes of the fitting lines. The values of the Ea for Li and Co are 12.3, 

12.7 kJ·mol-1 for chemical reaction control, and 22.2 and 32.1 kJ·mol-1 for diffusion 

reaction control respectively, as shown in Figure 3.8. It is observed that both of the Ea 

values for Li are lower than Co, and Ea values for chemical reaction control are lower than 

for diffusion reaction control. In other words, leaching of Li is easier than leaching of Co146 

which is consistent with the experimental results represented in Figure 3.5. The relatively 

low Ea values for the chemical reaction control are indicative of the presence of H2O2 and 

good chelating ability of OAR which accelerate the leaching speed to transform the 

leaching behavior into surface chemical reaction control from 0 to 10 minutes. The reason 

may be ascribed that the leaching of Li is independent of any redox reaction process 

according to the literature.129 Compared with other reported results from the literatures as 

shown in Table 3.3,28, 129 the OAR shows relatively low Ea values of Li and Co for both 

chemical control and diffusion control, which may ascribe to the strong formation of donor-

acceptor adducts inside OAR than other organic acids. 132 
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Experimental release rate is calculated from the Li and Co leaching results which 

provides intuitional metals leaching release amount obtained from the leaching process as 

shown in Figure 3.9. The relatively high leaching release rate of 0.021, 0.167 mg·mg-1·h-

1 for Li and Co than other reported data from the references which proves the distributed 

condition of Ea values in Table 3.2. The leaching behavior with OAR performs high release 

rate under the optimum experiment condition than others which can acts as potential 

candidates on the recovery of valuable metals from spent-LIBs and further mitigate the 

potential damage generated from the hydrometallurgy method by inorganic acids. 

 
Figure 3.7 Plots of 1-(1-X)1/3 versus leaching time at temperature (45-65oC) by 148 
mg·mL-1 for chemical reaction control (kc): (a) Li and (b) Co; Plots of 1-(1-2X/3)-(1-X)2/3 
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versus leaching time at temperature (45-65oC) by 148 mg·mL-1 for dissolution reaction 
control (kd): (c) Li and (d) Co. 
 

 
Figure 3.8 Arrhenius plot for Li and Co leaching for (a) under chemical reaction control 
(0-10 minutes) and (b) under diffusion reaction control (10-60 minutes). 
 

 
Figure 3.9 Leaching release rate bar graph of (a) Li and (b) Co by OAR in comparison 
with other reported results. 
 
Table 3.2 Parameters of Dissolution Rate Constants for OAR Leachant 
T 
(oC) 

Chemical reaction control Diffusion reaction control 

 Li  Co  Li  Co  
 k(min-1) R2 k(min-1) R2 k(min-1) R2 k(min-1) R2 
45 0.0365 0.92 0.0308 0.93 0.0014 0.92 0.0009 0.95 
55 0.0417 0.91 0.0362 0.94 0.0019 0.95 0.0012 0.96 
65 0.0471 0.92 0.0401 0.93 0.0021 0.96 0.0017 0.94 
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Table 3.3 Comparison of Ea Values 
Ref.  Chemical reaction  Diffusion reaction  
  Li Co Li Co 
  Ea  R2 Ea R2 Ea R2 Ea  R2 
unit kJ·mol-1 
This 
study 

OAR 11.1 0.99 11.4 0.96 20.1 0.96 28.9 0.99 

28 1.2M Malic acid 20.3 0.99 29.9 0.98 22.6 0.99 31.2 0.99 
129 3.5M Acetic acid 41.3 0.99 41.2 0.98 52.04 0.96 54.22 0.96 
128 1M Malic acid -- -- 45.9 0.98 -- -- 54.6 0.98 
128 1M Citric acid -- -- 41.4 0.99 -- -- 50.88 0.99 
25 1.5M Succinic acid 8.9 0.91 13.6 0.95 25.94 0.95 -- -- 
67 1M Sulfuric acid -- -- -- -- 20.1 0.99 26.8 0.99 
18 2 M Sulfuric acid 32.4 0.97 59.8 0.98 32.4 0.97 59.8 0.98 

 

3.4 Life Cycle Assessment of Li and Co Recovery from Spent-LIBs 

3.4.1 Life Cycle Assessment Emission Results 

LCA emission results of 1 ton of LCO materials for the different recovery processes 

including Hydro-1 (sulfuric acid), Hydro-2 (citric acid), Hydro-3 (OAR), Pyro 

(pyrometallurgy method) and Virgin (total emission for the production of virgin CoSO4). 

In Fig. 3.10a shows the result that recycling and recovering Li and Co from the spent-LIBs 

with Pyro and Hydro-1 save more than 50% GHG emission to produce a new LCO cathode 

materials for LIBs. This is better for the preservation of natural resources than extracting 

new virgin materials from mines because of  the avoids of the significant SOx emissions 

and save the energy consumption of CO2 emission.153 International Institute for Sustainable 

Development reported that the consumption of 500,000 gallons water resource and 31 to 

89 MJ·kg-1 energy input154, 155 when extracting 1 ton of virgin Li materials from Li-mine; 

consumption of 516,33 gallons water resource and 4.69 kWh energy (electricity, medium 
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voltage) when extracting 1 ton of virgin Co materials from Co mines.156 However, the 

existing pyrometallurgy process cannot recover Li due to the high heating process from the 

smelter, and the hydrometallurgy method with inorganic acid has adverse impacts on both 

environment and human health. Currently, Hydrometallurgy methods with organic acids 

are uprising as an alternative way to recover Li and Co from spent-LIBs. Fig. 3.10a also 

indicates that Hydro-2 and Hydro-3 have over 60% of GHG emission reduction than 

extracting virgin materials from mines. 

Furthermore, when comparing the energy consumption and emissions based on the 

four different recovery processes with quantification as shown in Figure 3.10b. The result 

shows Hydro-2 and Hydro-3 save 45% of GHG emission reduction than Pyro and Hydro-

1. Hydrometallurgy with organic acids achieve greater energy savings, especially in 

electricity demand due to lack of slag process and long calcination duration in the 

pyrometallurgy process.157 Hydro-2 and Hydro-3 based processes have similar emissions 

and air pollutant and GHG emissions are also less than Pyro and Hydro-1 due to organic 

acid utility. Among the emission factors, CO2 emission is the most significant contributor 

for the environmental burden, and SOx emission is the sub-contributor for the 

environmental burden. Detailed quantification information is listed in Table 3.4 for the 

whole output emissions.  
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Figure 3.10 Comparison of main contribution emission proportion under different group 
base: (a) five different process including Hydro-1 (sulfuric acid), Hydro-2 (citric acid), 
Hydro-3 (OAR), Pyro (pyrometallurgy process) and Virgin (total emission for the 
production of virgin CoSO4), (b) between four different recovery processes Hydro-1, 
Hydro-2, Hydro-3 and Pyro. 
 
Table 3.4 Total Emission of Recovery Process 
Ref. 140 140 140 This study 140 
kg per ton of 
LCO Pyro Hydro-1 Hydro-2 Hydro-3 Virgin Co 

SOx 14.9 22.3 13.3 17.7 73.8 
NOx 2.1 2.7 1.1 1.4 20.0 
CH4 2.4 4.3 1.1 1.5 30.5 
CO2 2277.7 2044.7 720.2 886.2 13035.1 
GHG 2357.1 2185.9 763.0 906.7 13175.3 

3.4.2 Life Cycle Assessment Emission Sensitivity Analysis 

In order to quantify the influences brought about by input parameters, a sensitivity analysis 

is conducted.158 The results of sensitivity analysis of hydrometallurgy process with OAR 

after the end-of-use GHG emissions are presented in Figure 3.11. The horizonal bars 

describe the variation in the kg GHG emission per ton of LCO for each experiment process. 

From Figure 3.11, variations in discharge and dismantle and heating system have 

significant attributions to the GHG emissions. Obviously, increasing the time of heating 
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system can lead to higher GHG emissions which is ascribed to the great CO2 emission 

during the heating as a high-power instrument. However, this is a research-based lab-scale 

recovering process, large variations in heating system and discharge and dismantle might 

result from each part of the process has not being optimized as the industrial scale. 

Therefore, this lab-scale process results in a high emission estimation on both two stages 

mentioned previously. Simulation methods are further used to investigate the influence of 

uncertain parameters on sustainability indicators introduced above. To achieve this, Monte 

Carlo Simulations are conducted using the Oracle Crystal Ball add-in for excel. Each 

simulation consists of 100,000 Monte Carlo runs where for each run, Crystal Ball randomly 

selects input parameters based on predefined probability distributions, used to develop 

GHG emissions probability distributions. Input parameters are listed in Table 3.5. 

Figure 3.12 shows that probability distributions have 90% confident intervals, 

besides, GHG emissions with the highest bars representing the values of the highest 

probabilities. The profile of log-distribution results from the nonlinear relationship between 

the input parameters and the lower probabilities of upper bound GHG emissions. Moreover, 

GHG emission significantly changes following with the variation of input parameters. 

Therefore, to apply optimizing and simple recovering process including the heating system 

can lead to more environmentally sustainable development. The information related to 

recovering process including discharge and dismantle, heating system, leaching solution, 

transportation and ultrasonication system. A potential future direction of this research is to 



 

    75 

investigate ultrasonication assisted hydrometallurgy process with organic acids including 

OAR, citric acid under large industrial scale with specific defined experiment framework.  

 
Figure 3.11 Emissions Variation of Hydrometallurgy process with OAR after the end of 
the use. The ranges for each input parameter are presented on the figure while the bars 
represent the variations in GHG emissions as input parameters are varied from their mean 
values. 
 
Table 3.5 Ranges, Mean Values, and Sources of Input Parameters from the Self-report 
OAR Hydrometallurgy Process 
Input Parameter Lower bound Mean Value Upper Bound 

Unit kg GHG per ton of LCO 
Discharge and Dismantle 310.691 414.633 500.207 
Heating System 223.632 243.964 264.295 
Leaching Solution 14.148 18.580 36.528 
Transportation 64.722 69.574 80.901 
Ultrasonication System 48.792 51.232 58.551 
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Figure 3.12 Emission distribution of process-based GHG emissions for LCO type LIBs 
OAR hydrometallurgy method. The 90% confident region is shown as the blue part. 

3.4.3 The Social Cost of Carbon Pollution 

Greenhouse gases emissions (GHG) such as SO2, NO2 and CO2 have been recognized as 

the main attributions to the global climate change, which has received significant attention. 

Global climate change causes many devastating problems such as extreme weather events, 

the spread of disease and increased food insecurity. They bring a lot of cost toward the 

individual, families, businesses and governments. Among GHG, CO2 is considered as the 

prominent gas which plays an important role on the impacts of environmental policy and 

research interest. A lot of attempts for researchers to identify and implement carbon 

mitigation and reduction strategies. Emissions are a negative externality from the harmful 

side effect of fuels burning. Without a price for each emission gas, emitters are not charged 

for releasing them into the atmosphere and have no incentive to reduce emissions. 159 Also, 

the earth’s atmosphere we are living in is a public good, both non-rivalrous and non-

excludable. The social cost of carbon (SCC) is the marginal cost of the impacts, in dollars, 
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of the economic damages that would result from emitting one extra ton of greenhouse gases 

into the atmosphere at any point in time160, which is currently used by local, state, and 

federal governments to inform policy and investment decisions in the United States and 

abroad.  

Figure 3.13 represent the estimation of social cost used in Federal regulatory 

analyses to value emissions changes occurring in certain years. The SCC increases over 

time because future emissions are expected to produce larger incremental damages as 

physical and economic systems become more stressed in response to greater climatic 

change. 161 The discount rate used in estimating the SCC incorporates both empirical 

evidence and value judgements. Under the base of Figure 3.13, we further adapt three 

different ways to get Li and Co materials, as listed in Table 3.4. To give an insight between 

cost and benefit when the company choose to replace current used pyrometallurgy to 

hydrometallurgy and even to an ultrasonication assisted hydrometallurgy method. Besides, 

this provides us strong incentive to recover Li and Co from the spent-LIBs rather than 

extract them from mining industry. Finally, in the Figure 3.14, we can use the SCC to 

calculate costs and benefits of changing emissions, and to compare the total economic 

benefits of a proposed policy to its total economic costs. The calculated results show that 

high benefit of $318.32 is achieved when complementing policy D to replace the original 

one. The benefit and cost according to the SCC may varied with the optimization of the 

system such as novel technology, better source generation when compared with existing 
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coal generation or from different calculated models with different factors(populations, 

economics growth, health, sea level rise and so on).  

 
Figure 3.13 Social Cost of CO2, 2010 – 2050 (per ton of CO2 in 2007 dollars). 
 
[161] 
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Figure 3.14 The costs and benefits of changing emissions by using SCC in 2020. 
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CONCLUSION 

Lithium ion batteries (LIBs) are used in diverse electronic products with the market growth 

from $37.4 billion in 2018 to $58.8 billion by 2024. Accordingly, the quantity and weight 

of discarded waste LIBs in 2020 can surpass 25 billion units and 500 thousand tonnes, 

which release metals and toxic organic solvents and may negatively affect the environment 

and human health. To protect the environment and also recover valuable materials such as 

Li and Co that are categorized as strategically important materials by the US DoD, many 

chemical and material recovery programs, businesses, and research are booming up 

globally. Particularly, Li and Co recovery has been extensively studied through different 

processes such as pyrometallurgy, bio-hydrometallurgy and hydrometallurgy. Our research 

employed hydrometallurgy method using inorganic and organic acids (e.g., citric acids and 

nitric acid) and systematically compared the recovery efficiencies.  

The results show that exposure of spent LIBs to 148 mg·mL-1 OAR and 140 mM 

H2O2 under 65oC temperature, at a pulp density of 30 g·L-1 with the assistance of 

ultrasonication (120 W) could leach Li and Co without the pre-separation of cathode from 

Al foil using organic solvents such as Dimethylformamide (DMF) and N-Methyl-2-

pyrrolidone (NMP). The leaching efficiency of 99% and 94% for Li and Co were obtained 

with a leaching rate of 0.021, 0.167 mg·mg-1·h-1 respectively. These data provide intuitional 

metals leaching release amount obtained from the whole hydrometallurgy process. OAR 

was significantly effective because of its strong chelating ability and high solubility in 
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water. The H2O2 concentration are approved to have significantly influence on the Li and 

Co recovery.  

 Dissolution rate constant analysis reveals that leaching processes is dominated by 

the chemical reaction in 10 minutes with the Ea value of 11.1 and 11.4 kJ·mol-1 for Li and 

Co, respectively. However, the leaching processes is dominated by the diffusion reaction 

at 20-60 minutes with the Ea value of 20.1 and 28.9 kJ·mol-1 for Li and Co, respectively. 

Compared with other reported results from the literatures, the OAR shows relatively low 

Ea values of Li and Co for both chemical control and diffusion control, which may ascribe 

to the strong formation of donor-acceptor adducts inside OAR reagent132 than other organic 

acids. The process may promise an effective and environmentally friendly pathway for the 

recovery of valuable metals from spent-LIBs. 

 Finally, an LCA analysis is conducted for the emission and cost during the 

hydrometallurgy process with OAR. The LCA result of OAR show a reduction of 65% 

GHG emission than extraction from mine, a reduction of around 45% GHG emission than 

pyrometallurgy process and hydrometallurgy process with sulfuric acid and almost the 

same GHG emission condition as hydrometallurgy process with citric acid. The results of 

sensitivity analysis of hydrometallurgy process with OAR showing that variations in 

recovering process and heating consumption have significant attributions to the GHG 

emissions. Therefore, to apply optimizing and simple recovering process including the 

heating consumption can lead to more environmentally sustainable development.  
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This research aimed at improving the recovery processes of LIBs by reducing 

processing time, the use of hazardous pretreatment solvents and inorganic acid and 

prevention of pollution production or disposal (e.g., corrosive acid vapors). Moreover, our 

results provided new insight into the alternative organic acidic leaching with potential of 

acid recovery and reuse.  
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