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ABSTRACT

STATISTICAL MACHINE LEARNING METHODS FOR MINING
SPATIAL AND TEMPORAL DATA

by
Fei Tan

Spatial and temporal dependencies are ubiquitous properties of data in numerous

domains. The popularity of spatial and temporal data mining has thus grown with

the increasing prevalence of massive data. The presence of spatial and temporal

attributes not only provides complementary useful perspectives, but also poses new

challenges to the representation and integration into the learning procedure. In this

dissertation, the involved spatial and temporal dependencies are explored with three

genres: sample-wise, feature-wise, and target-wise. A family of novel methodologies

is developed accordingly for the dependency representation in respective scenarios.

First, dependencies among discrete, continuous and repeated observations are

studied using illustrative examples in urban computing and video clicks. Specifically,

discrete Markov random field and time-aware latent hierarchical models are developed

to capture the underlying spatiotemporal interactions among different spots. In

addition, an item-specific effect aware method is proposed to model consistent effects

involved in repeated observational records. Second, feature-wise spatiotemporal

interactions are investigated under the framework of deep learning with applications

to genomic sequences and audience logs. Regarding spatial dependency among

homogeneous features (e.g., genomic sequence), a customized convolutional neural

network is leveraged to capture underlying motifs formed by spatial interactions.



To advance the characterization of spatiotemporal interactions among heterogeneous

features, a blended learning scheme is established to keep track of the evolution

of involved patterns. For both feature-wise dependencies, a saliency maps based

context analysis protocol is introduced to interpret and visualize the manner how

spatial-temporal attributes are associated with target responses. Lastly, this disser-

tation covers the temporal dependence of response target variables with applications

to competing risks in financial loans. A hierarchical grading framework is proposed to

integrate two risks of loans both qualitatively and quantitatively based on temporal

constraints. The framework is then divided into multiple binary classification

sub-problems. All of the proposed methods are evaluated by systematic experiments

based on synthetic data and real-world data repositories in various scenarios. The

empirical results demonstrate the appealing performance in different regards.

Taken together, this dissertation elucidates spatiotemporal data from three

perspectives and is dedicated to developing desirable and feasible schemes for the

representation of spatial and temporal mechanisms.
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CHAPTER 1

BACKGROUND

Spatial and temporal data usually refer to data of space and time measurements. The

presence of spatial and temporal information enables the new paradigms for analyzing

data. The rich variety of problems with spatial and temporal dimensions cultivate

the field of spatiotemporal data mining [6]. It has been widely explored in different

applications including climate and environment (e.g., global change) [164], urban

computing (e.g., land-use classification) [174], epidemiology (e.g., monitoring and

predicting spread of disease) [112], criminology (e.g., crime hot spots) [29], mobile-

commerce (e.g., location-based services) [100]. In the analytics of traditional data

without spatial or temporal considerations, data are assumed to be independently

generated. This presumption, however, doesn’t hold true for spatial and temporal

data due to the complexity of the types and relationships of data samples, features

and target variables. Due to the interdisciplinary nature of spatiotemporal data

mining [143], this dissertation covers the spatiotemporal representations in the context

of involved application domains from three perspectives. They are sample-wise or

instance-wise, feature-wise and target-wise dependencies, respectively.

More specifically, sample-wise dependency refers to that data instances are

correlated with each other with varying properties in different spatial regions or

time periods. This is the most widely perceived spatiotemporal dependency. For

example, in urban computing, neighborhoods as a whole are likely to have some

dependence among different houses based on the geolocation. In this section, we
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mainly study school district identification, housing price and video click prediction.

They are confronted with heterogeneous information integration, the insufficiency

of historical data and sparsity of learning features, respectively. For school district

appraisal, the most commonly used methods are based on the relationships between

sales prices of houses and school quality [46, 74]. However, school quality is not

the sole determinant of the housing price, which is impacted by other housing

attributes as well. Disentangling the effect of school and then inferring the school

quality is a direction to correct for the bias caused by the sole relationship. In

addition, integrating the geographical dependence among different houses into the

multiple relationships is also a challenging task. For the housing price prediction,

the classical hedonic pricing approach works well when all housing characteristics

are available [118], which is not feasible in practice. To this end, Latent Manifold

Estimation models the overall external characteristics of a house as a static latent

variable by considering neighboring houses. However, no temporal interactions are

considered due to the insufficiency of sales [34]. Some repeat sales and autoregressive

models are also developed to track market trends by utilizing homes sold multiple

times [65, 120]. These methods are based on a assumption that no significant

housing features change between sales and the multiplicity of sales for same houses

exist. These two requirements are self-contradictory and thus definitely limit their

applications. For repeated video click records with sparse features, some regression

based methods are proposed to construct pairwise feature space to scale up the

predictive performance [129]. However, the performance gain of augmented features

are subject to the quality of sparse features themselves and independence of records
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are presumed as well. In practice, repeated click records on same videos have temporal

interactions to some degree, which is yet to explore to alleviate the feature sparsity.

The second section is the feature-wise dependency, which refers to spatial or

temporal interactions among different internal features within same data instances.

For example, subscribed users’ daily activities have some temporal interactions,

whereas different users have no explicit connections. We mainly explore two applied

domains: user intended action prediction and DNA methylation. They are faced

with heterogeneous feature integration and homogenous sequence representation,

respectively. Specifically, regarding user intended action prediction (e.g., attrition

forecasting), there are user activities logs, dynamic and static user profiles involved

in this problem. Classical modeling strategies approach this problem either by

concatenating all features directly without preserving the temporal constraints among

them [36,171] or by capturing the temporal correlations with handcrafted efforts [148].

The potential of temporal interactions on the forecasting goal is not taken advantage

of fully. Regarding DNA methylation prediction and interpretation, the spatial

dependency among homogenous nucleotides usually forms the gene regulatory motifs,

which are closely related to DNA methylation. The conventional machine learning

approaches [84, 93] to genomic sequence-based prediction are based on the human

handcrafted k-mer scheme1. However, they can only capture a limited spectrum of

flanking context sequences. For motif elucidation, conventional motif analysis assumes

simple independence and additive effects among regulatory bases [75]. It extracts less

1https://en.wikipedia.org/wiki/K-mer
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sophisticated regulatory patterns, which accounts for only a small proportion of all

methylated sites.

The last section is target-wise dependency. It means that dependent variables

of interest are correlated with each other spatially and temporally, whereas instances

have no explicit corresponding connections. For example, loans usually have different

survival time or payment lifespans. The target variable survival time is perceived

to be temporally correlated here. In this section, we focus on the competing risks

representation in peer-to-peer lending. The principal issue is the characterization

of both qualitative status and quantitative survival time for loans. The common

strategy is to categorize loans into two simple statuses without considering the survival

time [22, 183]. The classical survival analysis with competing risks focuses on the

way multiple risks shape survival time jointly [111]. This cannot care for investors’

concerns of both survival time and the underlying causing events fully.

In this dissertation, we study the above three genres and develop a set of

methodologies to address heterogeneous features integration, homogenous sequence

representation, the insufficiency of historical instances, the sparsity of features and

unified characterization of status and time involved in spatiotemporal data mining

for the aforementioned divergent domains. In the following part, we detail the

challenging issues of specific application domains and brief our approaches in the

order of sample-wise, feature-wise and target-wise dependencies. Overall, the proper

representation strategies make it possible to unleash the potential of spatiotemporal

interactions for the forecasting tasks and obtaining in-depth insights.
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1.1 Sample-wise Dependency

1.1.1 Modeling Real Estate for School District Identification

The importance of a desirable educational environment to the choice of neighborhoods

can never be overemphasized around the world. According to the “2010 Profile of

Home Buyers and Sellers” from the National Association of Realtors (NAR)2, more

than half of all homebuyers with children under 18 years of age rate the quality of the

local school district as a major factor influencing their choice of a neighborhood3. Such

an observation also holds true for Chinese homebuyers, which can be illustrated by one

of the most famous traditional Chinese idiomatic allusions, “Mencius’s mother, three

moves”. It refers to the legend that Mencius’s mother changed her residence three

times on account of her concern for Mencius’ education4. The school-district not only

is closely related to education service itself but also can be regarded as a worthwhile

investment. It’s reasonable for parents to secure a stellar education for their children

through buying homes associated with top schools. Even for the homebuyers who

want to invest on real estate, those houses at excellent school districts might protect

them from the market’s ups and downs5.

Inspired by these insights, the following interesting and practical question

emerges: how to identify neighborhoods with high-quality school services automat-

2http://www.mdrealtor.org/Portals/0/docs/ResearchandStatistics/PROFILE%20OF%20BUYERS-
SELLERS%202010.pdf
3a geographically localized community within a larger city, town, suburb or rural area.
In most urban areas of Mainland China, neighborhood usually refers to the residential
community or unit grouped by multiple families, and it is the direct sub-level of a subdistrict,
which is the direct sub-level of a district, which is the direct sub-level of a city.
4https://en.wikipedia.org/wiki/Mencius
5http://www.sfgate.com/education/article/BAY-AREA-NEW-MEANING-TO-API-
SCORES-HOME-2567517.php
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ically? This might be easy for American estate market due to both well-defined

association between neighborhoods and school districts6 and comprehensive school

ranking system7. However, it still remains a crucial missing chapter in the real

estate appraisal field for other countries with unbalanced education resources and poor

information disclosure. Taking China for instance, there are no official or systematic

ratings of primary schools. In this case, the decision-making procedure is actually

directed by either word-of-mouth information or online empirical comments. The

procedure, however, is highly time consuming due to numbers of factors involved.

Therefore, the issue of the school-district of a home is more complicated for this kind

of real estate market.

Before tackling this question, the challenging parts are elaborated as follows:

Firstly, how to disentangle the effect of the educational environment on local real

estate pricing without any prior knowledge about the quality of the school district. An

abundance of studies have reported the interplay between residential neighborhoods

and associated local school services [37, 63, 73, 80, 88]. The general point is that

educational services are widely believed to be a key determinant of housing prices

[37,88]. However, many other factors like housing type, building year and surrounding

traffic conditions impact the property value as well. Secondly, how to assess the

quality of school services based on raw textual comments. Besides the housing value,

some online textual comments on neighborhoods can provide us with clues to tell

excellent school districts from mediocre ones. Nonetheless, apart from education,

the reviews normally involve many other facets of the neighborhood. Thirdly, how

6http://schooldistrictfinder.com
7http://www.schooldigger.com
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to integrate geographical dependence between adjacent neighborhoods into previous

two explorations. Intuitively speaking, adjacent neighborhoods are more likely to

share similar educational service quality than remote ones. However, the degree of

similarity amongst nearby neighborhoods is latent and thus needs to be figured out.

To this end, we propose a geography-based latent variable hierarchical proba-

bilistic framework. The aforementioned challenges can thus get addressed in an

elegant manner. Regarding housing prices, a latent linear regression model is

developed to infer the impact of school districts. However, this is insufficient due

to the limited availability of attributes and complexity of price dynamics [159]. To

overcome this deficiency, we employ topic model [18] to extract education-related

topics from raw comments and then develop a multinomial mixture model. They are

combined together and learn mutually reinforced knowledge from both numerical data

and textual information to capture the intrinsic educational impact of neighborhoods.

Furthermore, geographical dependence among neighborhoods is modeled as a discrete

local Markov Random Field (MRF) and explicitly incorporated as a priori into the

hierarchical probabilistic framework.

1.1.2 Modeling and Elucidation of Housing Price

Many online real estate database companies such as Zillow, Realtor, Redfin and

Lianjia8 provide functions to estimate the market value of an individual home. An

appealing estimation performance can produce a good starting point in determining

house prices for homebuyers. The improvement of customers’ loyalty to the websites,

8http://bj.lianjia.com
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in turn, can bring about the increase of the potential revenue. Furthermore, housing

market dynamics are closely related to local economic prosperity. The evolution of

real estate values is capable of providing reasonable insights in this regard. Therefore,

the accurate prediction of house prices is informative and beneficial for homebuyers,

online platforms and even economic study.

Essentially, housing prices vary spatially from municipalities, local communities

to houses themselves and temporally from one transaction period to another one. The

variation can be attributed to geographical location based socioeconomic conditions

(e.g., environment, education, income levels, population density, and demographic

effects), internal housing characteristics (e.g., lot size, square footage, and number

of rooms), and temporal effects (e.g., governmental regularization policy, economic

development, and marketplace of demand and supply) [40]. Therefore, the task of

housing price prediction aims to estimate the future market value of houses, given

the precedent transaction records of houses (but not necessarily same houses). This

problem, however, is facing several challenges.

First, it is traditionally difficult to collect all housing characteristics on a

broad scale. Each house has a large number of attributes such as location, lot

size, square footage, number of bedrooms and living rooms and many other details.

The availability of housing characteristics depends on the extent to which they are

released by property agents and house owners. Second, it is tricky to quantify some

location-associated socioeconomic characteristics. For example, there are no unified

metrics to measure the overall quality of the environment and education resources.

However, those attributes might play a crucial role in the evolution of property value.
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Furthermore, those socioeconomic features are dynamic rather than constant. Third,

the real-world market value of a home can only be observed when the transaction

activity does occur. Different from a regular product, a house, however, is less likely

to be frequently sold within a short time span. Thus, the transaction records of same

houses are usually sparse within a typical study time span of interest.

Formally, house prices are assumed to be impacted by both individual housing

and common socioeconomic features in this dissertation. Obviously, individual

characteristics vary across different houses, which are typically internal features.

On the contrary, socioeconomic features are usually associated with location and

are shared by different houses within a neighborhood to some extent. They are

usually external features including but not limited to environment, education, transit

facilities, living facilities, income level. Put it another way, we roughly regard

individual housing and common socioeconomic features as internality and externality

respectively as detailed in Table 3.3. The aggregate effects of corresponding groups

on the housing price are called internal and external components, respectively.

Particularly, the higher the value of an external component is, the more desirable

the corresponding location is.

Following this perspective of the housing price and aforementioned challenges,

two questions are emerging accordingly. Is it possible to infer a surrogate of the

external component from historical transaction records by only leveraging location

information? What roles do the external and internal components play in housing

price dynamics, respectively (The answer will be given in Section 3.4.3)? Therefore,

we propose the concept of neighborhood value as the above surrogate, which is
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associated with a specific neighborhood. Although the neighborhood value is abstract

and latent, it has the underlying structural mechanism behind the observed house

prices. To be specific, in spatial dimension, neighborhood value doesn’t change

sharply among nearby neighborhoods in general. This assumption also applies to

the temporal dimension. That is to say, the value changes gradually from one time

period to the successive one [186]. Such spatial and temporal smoothness constraint

aids in the inference of latent neighborhood value. The sparsity of transaction records

of same houses during a short time period still exists, which is particularly faced by

repeat sales methods [10, 120]. To address this issue, we group different houses into

the same neighborhood based on the predetermined criterion. In our dataset, the

neighborhood is a residential unit or quarter of 100 to 600 families distributed in

several buildings9. Apparently, the selling prices of any houses within a neighborhood

can provide essential information for the inference of latent neighborhood value. Thus,

such a strategy obviates the requirement of the long time span of the transaction

data. The basic idea of neighborhood value inference is to assign a time-dependent

value to each neighborhood during different time periods when the training phase is

implemented. The value of one neighborhood is obtained by aggregating both the

weighted value of nearby neighborhoods and its precedent value. The time-aware

latent hierarchical model is thus proposed to capture how the latent neighborhood

value forms and evolves.

We conduct comprehensive experiments on a real-world real estate transaction

dataset. The proposed model is demonstrated to achieve better performance over

9https://en.wikipedia.org/wiki/neighborhood
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baseline algorithms. To explore the roles of both components in housing price

prediction, we further perform hierarchical feature analysis. It’s found that the

external component is dominant in house prices, whereas the internal one only impacts

them marginally. Furthermore, the inferred neighborhood value is experimentally

shown to be capable of approximating the external component properly. That is to

say, we can still achieve an appealing performance even if a large volume of location

associated features are unavailable.

1.1.3 Modeling Item-specific Effects for Video Click

Video click is a crucial concern for video content providers. High video click rate is

able to bring about more profits for video websites. Thus, to ensure as high a click

rate as possible is one of their important commercial goals. To this end, a wealth of

associated prediction schemes have been proposed in this regard.

These powerful strategies involve general-purpose algorithms [2, 31, 107, 129,

165] and specialized methods customized to videos [12, 30, 44, 61]. From the

perspective of feature representation, the aforementioned algorithms mainly focus on

exploring and modeling available features for prediction. Even though the existing

methods can provide powerful feature representation and achieve appealing prediction

performance, there are still room for further improvement. This is because it is very

hard and/or prohibitively expensive to collect or record all raw features involved in

click actions due to many practical difficulties and constraints. Put another way,

there are generally some hidden features (uncollected features instead of features

with missing value) for learning algorithms. In this case, we hypothesize there are
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some consistent effects in multiple click records of the same video. If hidden features

contain such effects, one promising direction is to bring them back in order to alleviate

the above issue.

To facilitate the understanding of the potential consistent effects, we here

present a classical example of student academic performance. Roughly speaking, the

academic performance of a student is dependent on a number of attributes including

students’ talent, parental support, school academic quality and so on. Specifically,

students within the same classroom seem more likely to receive similar teaching

and academic guidance than students in different classrooms. The classroom-level

consistency among students is supposed to exist in all features related to the classroom

irrespective of their availability and measurability. However, only partial features get

gleaned for study in practice. Those hidden features probably involve the consistent

effects associated with classrooms. There are two general approaches to rescue them.

A simple one is to apply one-hot encoding scheme directly10 to model classrooms as

a categorical feature. In this case, the number of unknown parameters increases with

the number of classrooms, which is inconsistent in parameter estimation [124]. A

compromised approach is to roughly group classrooms into coarse-grained categories

according to other available features. It yields consistent and effective parameter

estimation at the cost of losing important fine-grained classroom information. As a

matter of factor, the latter approach is implicitly adopted in the feature engineering

of many studies.

10https://en.wikipedia.org/wiki/One-hot
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Thus, in this dissertation, we introduce a tradeoff between these two alternatives

to characterize such speculated effects for clicking records. To simplify the elucidation

of the methodology, we take the regression-based algorithm [129, 165] as a basic

model for study. To be concrete, we introduce a simple yet effective variable into

the classical logistic regression to capture the hypothesized effects in hidden features.

A series of thorough simulation studies demonstrate that the intrinsic effects can

be rediscovered effectively if they indeed exist. Furthermore, the more salient such

effects are, the more the current models get boosted in terms of predictive power. In

addition, we conduct the comparison between the proposed algorithm and the existing

counterparts on click records of a real-world video platform. The empirical results

validate the existence of such grouped effects in clicking behaviors. Since the group of

click records are clustered on the item of video, we also call them item-specific effects.

1.2 Feature-wise Dependency

1.2.1 Blended Learning for Predicting User Intended Actions

Being able to predict user intended actions and elucidate underlying behavior patterns

are of significant value for the business development. Such intended actions include,

but not limited to, user conversion (e.g., purchase, signup), attrition (e.g., churn,

dropout), default (failure to pay credit cards or loans), etc. These user actions directly

lead to revenue gain or loss for companies. The capability of predicting user intended

actions may help companies to take proactive measures to optimize business outcome.

In this dissertation, we focus on predicting attrition, which is one of the

most representative user intended actions. Attrition, in a broad context, refers to

13



individuals or items moving out of a collective group over a specific time period11.

It can be specialized, as seen in broad applications in different fields. For example,

Massive Open Online Courses (MOOCs)12 can offer an affordable and flexible way

to deliver quality educational experiences on a new scale. However, the accompanied

high dropout rates are a major concern for educational investors [70]. In the

commercial context, the revenue growth of enterprises heavily relies on the acquisition

of new customers and retention of existing ones. Previous researches and reports have

shown that retaining valuable customers is cost effective and more rewarding than

acquiring new customers [162,169].

Accordingly, targeting at-risk attrited users in advance and taking intervention

measures proactively is crucial for improving students’ engagement and maintaining

customers’ retention. It helps to sustain the prosperity of MOOCs and enterprises.

There are, however, several inherent challenges confronted in predicting attrition

using user usage data. (1) User alignment is a tricky problem as the improper

alignment may incur intrinsic bias in the subsequent modeling; (2) Multi-view

heterogeneous data sources, ranging from user activity logs to dynamic and static

user profiles, pose a barrier to the effective interaction and amalgamation; (3) It is

not a trivial task to characterize primitive user activity logs, let alone integrating

them with the downstream predictive modeling effectively and seamlessly; (4) How

to keep track of the evolving intentions of observed historical records for improving

attrition within a target time period has yet to be explored fully; (5) It remains

11https://en.wikipedia.org/wiki/Churn rate, https://www.ngdata.com/what-is-attrition-
rate/

12http://mooc.org
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unclear how to quantify and visualize the importance of underlying activity patterns,

attrition and retention factors.

To address these challenges, we revisit the attrition problem from both

predictive modeling and underlying patterns representation sides. To be specific, we

first introduce an appropriate user alignment scheme based on the calendar timeline,

which can remove the bias as mentioned before. Under an unbiased framework, we

propose a Blended Learning Approach (BLA) to address related issues, which renders

an appealing predictive performance. BLA is mainly characterized as multi-path

learning, intention guidance and multi-snapshot mechanism. The multi-path learning

embeds heterogeneous user activity logs, dynamic and static user information into

an unified learning paradigm. The multi-snapshot mechanism integrates historical

user actions explicitly into the model learning for tracking the evolution of patterns,

which is further enhanced by the intention guidance and decay strategies. For

multi-snapshot mechanism, the summarization strategy is developed to bridge the

separation of the labor-intensive aggregation of user activities and model learning.

The model performance is evaluated on two public data repositories and one dataset

of Adobe Creative Cloud user subscriptions. Furthermore, a simple yet effective

visualization approach is introduced to discover underlying patterns and to identify

attrition and retention factors from user activities and profiles. This may be exploited

by the business or educational units to develop a personalized retention strategy for

retaining their users.
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1.2.2 Elucidation of DNA Methylation on N6-Adenine

DNA methylation is extensively involved in epigenetic settings and exerts different

regulatory roles in multiple species [78, 106, 176]. It is traditionally acknowledged

that 5-methylcytosine (5mC) presents a dominant modification in eukaryotes, while

N6-methyladenine (6mA) is mostly prevalent in prokaryotes [51]. Thanks to

the development of high-throughput sequencing (6mA-IP-seq) and single-molecule

real-time (SMRT) sequencing technology, the prevalence and significance of DNA

6mA in eukaryotes (e.g., A. thaliana and D. melanogaster) have been revealed

recently [60, 68, 102, 170, 179]. However, DNA 6mA is a dynamic process, which

can be developmental and tissue specific [106]. In addition, many 6mA sites may be

methylated at very low levels, making them very hard to be captured. Consequently,

current experimental approaches, although precise, are unable to provide a complete

catalog of all 6mA sites. It has been long recognized that 6mA plays a vital role

in discrimination of host genomic DNA from foreign pathogenic DNA in bacteria

[106, 178]. Recently, it has been demonstrated that 6mA may be involved in

gene activation or repression in eukaryotes [59, 178]. The underlying mechanism,

however, remains elusive. Methylation-associated gene regulatory motifs may shed

light on understanding the mechanism. Although conventional motif analysis of

6mA has revealed some interesting cis-regulatory patterns, they account for only

a small proportion of all methylated sites [75, 106]. Therefore, we hypothesize that

more sophisticated regulatory mechanisms yet to be explored may exist for 6mA

formulation. Lastly, the whole in vivo cataloguing procedure of 6mA is costly and

laborious. Thus, in silico prediction may be an attractive alternative if we can
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precisely predict 6mA sites at single-nucleotide resolution based on just genomic

sequence information.

1.3 Target-wise Dependency

1.3.1 Competing Risks Representation in Peer-to-Peer Lending

Peer-to-Peer (P2P) lending has become a fast-growing new channel of financing over

the past decade. Quite a few P2P platforms have been developed including Lending

Club13, Prosper14, Yirendai15 and Zopa16. Connecting borrowers with investors

directly using technology, those P2P platforms claim to operate at a lower cost than

traditional bank loan programs, passing the savings on to borrowers in the form of

lower rates and to investors in the form of solid returns. Such credit marketplaces

have thus attracted a lot of lenders (investors) and borrowers and result into a large

amount of investments. For example, as of June 30, 2018, the total loan issued by

Lending Club (the world’s largest P2P lending platform) has exceeded 38 billion US

Dollars17.

For P2P lending, three major participants are involved in the transaction

procedure: the lending platform, lenders and borrowers. Lenders and borrowers

interact with each other directly on the lending platform. Using Lending Club for

example, we briefly introduce the working mechanism of P2P lending. Other P2P

lending platforms are somewhat similar. In Lending Club, a borrower (sometimes with

13www.lendingclub.com
14www.prosper.com
15https://www.yirendai.com
16www.zopa.com
17https://www.lendingclub.com/info/statistics.action
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co-borrowers) is supposed to provide his or her detailed profile (e.g., annual income,

housing status) and loan information while creating a listing to solicit investments

from lenders. After receiving the listing, the platform verifies borrowers’ profile

(optional), evaluates their credit, and then assigns a certain grade or sub-grade to the

listed loan for lenders’ reference. If the listed loan gets fully funded by the expiration

date, it will be issued by the platform, or otherwise revoked. Afterwards, the investors

can secure interests and the platform charges service fees from borrowers’ monthly

payments. Like in most conventional bank loan programs, borrowers may prepay

their loans at any time, in whole or in part, without penalty; lenders will then receive

pro rata share of the payment. A loan can also become charged off when there is no

longer a reasonable expectation of further payments.

Several P2P lending platforms release their loan data to the public, which

has received much attention from academia [22, 43, 47, 101, 105, 182, 183]. The

existing works mainly involve simple binary classification between types of charge-off

and full-payment [22, 47], loan recommendation based on charge-off risk [183] and

multi-objective portfolio optimization [182]. With regards to loan risk modeling, the

common focus of previous works is on the overall charge-off risk.

However, the risk of prepayment (the settlement of entire balance of a loan

before its official due date) is often ignored in online P2P lending study although

prepayment has been well-studied in classical literature in other financial industries

like mortgage risks [33, 114, 138, 146]. As with charge-off, prepayment would also

terminate the repayment schedule. In this case, charge-off and prepayment are two

competing risks as they coexist in the same loan over the course of loan repayment.
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Classical survival analysis with competing risks can be naturally utilized to model

the risks of charge-off and prepayment for time-to-event loan data [111]. Nonetheless,

their focus is on how survival time as a dependent variable is shaped by multiple

risks jointly. This works well for many applications such as clinical trials and

insurances, in which the time to event is the major concern, but not the underlying

causes/risks. Different risks are just modeled as covariates simultaneously for a better

estimate of the survival time. For P2P lending, however, investors are concerned

with both survival time and the underlying causing events. There are three points

beyond the focus of classical survival analysis with competing risks. (1) Under many

circumstances, the latter might play a dominant role in investment performance.

Consider, for instance, a loan with survival time of 5 months, for which the event of

charged-off causes loss to investors, whereas the state of prepayment leads to positive

returns. It is thus necessary to distinguish different events properly. This also largely

explains why the previous research efforts focus on coarse-grained binary statuses.

(2) Meanwhile, the earlier the prepayment (charge-off) occurs, the less preferable

a loan would be. To put it another way, the discrete survival time of a loan is

inherently ordinal for the same risk. (3) What’s more, the eventual events cannot

co-occur, and the same event cannot occur multiple times for the same loan either.

They are actually exclusive with each other irrespective of events or the survival time.

Therefore, we propose to model the coarse-grained rivalry between different events,

fine-grained competition of survival time within the same event and underlying ordinal

constraints explicitly and simultaneously.
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To this end, we first propose a grading rule for each risk independently on the

basis of the survival time. We then transform the hierarchical ordinal regression

problem to multiple binary classification sub-problems [32, 95]. Under the newly

formulated framework, we further integrate censored loans without definite observed

events into the representation. A hierarchical fine-grained risk categories with ordinal

constraints can be generated accordingly. Simultaneously, we fuse loans of multiple

scheduled terms by introducing a masking layer. An architecture of deep neural

networks with multiple risk category outputs of multiple terms is finally proposed.
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CHAPTER 2

MODELING REAL ESTATE FOR SCHOOL DISTRICT

IDENTIFICATION

2.1 Introduction

Overall, real estate appraisal has been covered by a large volume of research from

various perspectives. The affiliated school district of a real estate property is often

a crucial concern, especially for those homebuyers with school-age children. How to

evaluate the quality of school districts properly and automate the identification of

residential homes located in a favorable educational environment, however, is largely

unexplored until now. The availability of heterogeneous estate-related data offers

great new opportunities for harnessing the power of diversified information correlated

with education for school district assessment. Nevertheless, it is such heterogeneity

that poses a significant challenge to their amalgamation for identification in a

unified fashion. To this end, we develop a geographical latent variable hierarchical

probabilistic model to integrate digital price, textual comments, and geographical

location information together to assess residential environment in terms of its affiliated

school- related services. The proposed approach is able to capture the in- depth

interaction among multi-type data greatly. Our framework is further examined

on the dataset of Beijing property market. The results justify the benefits of our

approach over baseline methods. The further comparison among different components

of the proposed model is also conducted and demonstrates their important role.
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Figure 2.1 Framework overview of the school district identification.

Moreover, the proposed model is flexible and can offer useful insights into modeling

heterogeneous data sources.

2.2 Related Work

Real estate appraisal: Previous research mainly focused on real estate appraisal

itself [55–57, 120]. Clustering and ranking are performed simultaneously to predict

estate investment values [57]. Fu et al. also conducted pairwise estate ranking by

capitalizing on mobility behaviors and features extracted from user comments [55].

They continued to augment the performance of real estate appraisal by taking diverse
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mixed land use into account [56]. There is also some work on the relationship between

sale prices and school quality, which is explored by building various indices and

models [46,74]. These efforts, however, concentrated on detailed attributes of schools.

In contrast, our goal is to identify quality school districts. To our best knowledge,

this makes the first attempt.

Urban computing: Our work also relates to some topics in urban computing

like POI recommendation [97, 173, 184]. For instance, Topic Model was applied to

discover regions of different functions based on POIs and human mobility records

[173]. They mainly examine the overall POI recommendation or functional region

discovery. However, we focus on the interaction between residential and educational

regions.

Hierarchical probability model: The proposed model is related to some classical

mixture models [17,18,115] and MRF-based approaches [16,67,96,168]. For example,

Blei et al. investigated different mixture models to boost the performance of image

caption [17], in which the Gaussian-Multinomial Mixture model is a simplified version

of latent regression analysis in this paper. These studies actually focused on the

coarse-grained topics. Our focus, however, is primarily on fine-grained category of a

specific topic.

2.3 School District Identification

2.3.1 Preliminary

If school quality is simply assumed to be good and ordinary, this problem can be

formulated to estimate the probability with which a neighborhood is associated with
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a good school district. Formally, let z = {z1, z2, . . . , zM} be a set of state of M

neighborhoods, each of which zd is 1 if it has a good one and 0 otherwise. Essentially,

our model is thus to estimate the probability of zd = 1 in a unified way. The

common symbolic notation rule is obeyed throughout this article: capital, lower-case

bold letters respectively denote matrices and column vectors while non-bold letters

represent scalars.

Regarding housing prices, (1) the collection of the unit housing price for

M neighborhoods is represented as y = {y1, y2, . . . , yM}; (2) The associated

feature space is denoted as X = {x1,x2, . . . ,xM}. The dth neighborhood has

xd = {zd, xd2, . . . , xdp}. Here xd1 is replaced with hidden variable zd to facilitate

the notation of school district. For comments, (1) a corpus of comments on all

neighborhoods is represented as D = {w1, w2, . . . , wM}; (2) words are supposed to

be drawn from vocabulary indexed by {1, ..., T} and document d associated with a

neighborhood is a collection of Nd words denoted by wd = {wd1, wd2, . . . , wdT} where

wdt is the number of the tth item of vocabulary, thus
∑T

t=1 wdt = Nd.

To facilitate the understanding of our framework, we build a set of increasingly

sophisticated models, culminating in the Geographical Latent Regression Multinomial

Mixture model.

2.3.2 Latent Regression-Multinomial Mixture

Model In this chapter, the quality of the affiliated school district is unknown, a

Latent Regression (LR) model is thus developed [158]. Concretely, the unit price yd
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can be formulated as follows:

yd = α0 + α1zd +

p∑
i=2

αixdi + εd, d = 1, 2, . . . ,M (2.1)

where error variable εd is assumed to be εd ∼ N (0, σ2) and independent of covariates.

The coefficients are denoted as α = {α0, α1, . . . , αp} for brevity. We rewrite Equation

2.1 as yd ∼ N (µd, σ
2) where µd = α0 + α1zd +

∑p
i=2 αixdi is the expectation and σ is

the standard deviation. We explicitly have

yd ∼


N (µd1, σ

2), if zd = 1

N (µd0, σ
2), otherwise

(2.2)

Figure 2.2 The graphical model representation of LRMM model. Shaded nodes are
observed random variables; unshaded nodes are latent random variables, particularly,
the blue unshaded node is the variable of interest.
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where µd1 = α0 + α1 +
∑p

i=2 αixdi and µd0 = α0 +
∑p

i=2 αixdi.

The semantic words are usually assumed to follow a multinomial distribution

[18] with parameter β, i.e., wd ∼ Mult(β). Likewise, the distribution can also be

explicitly described as

wd ∼


Mult(β1), if zd = 1

Mult(β0), otherwise

(2.3)

where βk is symbolized as βk = {βk1, βk2, . . . , βkT}, k ∈ {0, 1}. It is called

Multinomial Mixture (MM) model.

Latent Regression Multinomial Mixture (LRMM) model is formed by integrating

them together, as shown in Figure 2.2. We introduce θ = {π,α, σ,β} to

specify LRMM aggregately. The joint distribution of the hidden variable zd and

price/comments pair (yd,wd) parameterized by θ is defined by

p(zd, yd,wd|θ) = πkN (yd|µdk, σ)Mult(wd|βk) (2.4)

where πk = p(zd = k) is the mixing proportion and
∑

k πk = 1. The corresponding

marginal probability for (yd,wd) is

p(yd,wd|θ) =
∑
k

πkN (yd|µdk, σ)Mult(wd|βk) (2.5)

Parameter Estimation With the formulated marginal probability, parameters θ

can be optimized based on Expectation Maximization (EM) procedure [41], which is

commonly applied to the model with latent variables.
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The probability that (yd,wd) are generated from component k is p(zd =

k|yd,wd,θ). The posterior probability denoted as γk(zd) for simplicity can be inferred

based on Bayes’ rule as

γk(zd) =
πkN (yd|µdk, σ)Mult(wd|βk)∑
l πlN (yd|µdl, σ)Mult(wd|βl))

(2.6)

The latent θ can be derived based on sufficient statistics including observed

(y,D) and fixed γk(zd) by maximizing the corresponding log-likelihood:

L(θ;y,D) =
M∑
d=1

ln
∑
k

πkN (yd|µdk, σ)Mult(wd|βk) (2.7)

with respect to πk subject to constraint
∑

k πk = 1, α, σ2 and β subject to
∑T

t=1 βkt =

1.

Mixing Proportion π:

πk =
1

M

M∑
d=1

γk(zd) (2.8)

Regression parameters α:

α0 =
1

M

M∑
d=1

[
yd − γ1(zd)α1 −

p∑
i=2

αixdi
]

α1 =

∑M
d=1 γ1(zd)(yd − α0 −

∑p
i=2 αixdi)∑M

d=1 γ1(zd)

αi =

∑M
d=1 xdi

[
yd − α0 − γ1(zd)α1 −

∑
j /∈{0,1,i} αjxdj

]∑M
d=1 x

2
di

,

i = 2, 3, . . . , p

(2.9)
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Figure 2.3 Graphical model representation of G-LRMM model.

Variance σ2:

σ2 =
1

M

M∑
d=1

[
γ0(zd)(yd − α0 −

p∑
i=2

αixdi)
2

+ γ1(zd)(yd − α0 − α1 −
p∑
i=2

αixdi)
2
] (2.10)

Multinomial parameter β:

βkt =

∑M
d=1 γk(zd)wdt∑M
d=1 γk(zd)Nd

(2.11)

2.3.3 Discrete Local MRF Model
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Model The school district quality of different neighborhoods are actually not

independent. For instance, if a neighborhood is associated with a good school district,

the nearby neighborhoods are more likely to be located in favorable ones. To explicitly

consider such dependence, we construct an undirected network A with the nodes for

neighborhoods and edges for their connections. Here edges can be formulated by

setting a threshold for the distance amongst all neighborhoods of interest. For M

neighborhoods on the network, as stated earlier, z = {z1, z2, . . . , zM} is the vector

of unobserved school district quality. In this dissertation, the dependence of z is

thus modeled as an MRF with parameter Φ = (γ0, γ1, ζ). More specifically, the joint

probability of z is assumed to be

p(z|Φ) ∝ exp(γ0n0 + γ1n1 − ζn01) (2.12)

where n0 =
∑M

d (1 − zd) represents the number of neighborhoods at state 0, n1 =∑M
d zd denotes the number of neighborhoods at state 1 and n01 is the number of

edges connecting two neighborhoods with different states. Note we require parameter

ζ > 0 to discourage connected nearby neighborhoods to be in different states. For

a specific neighborhood d, the probability of zd = k conditional on all others can be

obtained by considering any two instances of all neighborhoods with different states

only at neighborhood d. Concretely, we have conditional probability as

pd(k|·) ∝ exp(γk − ζψd(1− k)) (2.13)

where ψd(1 − k) represents the number of neighbors of neighborhood d with state

(1− k), k = 0, 1. We estimate parameter Φ by maximizing the following conditional
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likelihood

L(Φ; z) =
M∏
d=1

p(zd|z∂d,Φ)

=
M∏
d=1

exp[(1− zd)(γ0 − ζψd(1)) + zd(γ1 − ζψd(0))]

exp[γ0 − ζψd(1)] + exp[γ1 − ζψd(0)]

(2.14)

where z∂d denotes the neighbors of neighborhood d.

We let η = (α, σ,β) be parameters for simplicity to specify the conditional

probability p(yd,wd|zd,α, σ,β) given state zd. The condition can be denoted as

p(yd,wd|zd,η) =
[
N (yd|µd1, σ)Mult(wd|β1)

]zd
×
[
N (y|µd0, σ)Mult(wd|β0)

]1−zd (2.15)

The log-likelihood of parameters η can be written as

L(η;y,D|z) =
M∑
d=1

lnp(yd,wd|zd,η) (2.16)

We place a geographical location-based MRF as a priori on LRMM and call

such an integrated model G-LRMM for short. The overview of G-LRMM is shown in

Figure 2.3.

Parameter Estimation The inference of true state z∗ for M neighborhoods and

parameter estimation must be carried out simultaneously. We propose the following

iterative procedure based on iterated conditional modes (ICM) [16] to estimate η and

Φ. The procedure is detailed in Algorithm 1.
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Algorithm 1: G-LRMM

Input : adjacency matrix A, covariate matrix X, price vector y,

education-related corpus D

Output: an updated state vector z

1 initialize states z(0) and η(0) = {α(0), σ(0),β(0)}; initialize Φ(0) = (1, 1, 1);

2 repeat

3 ## γ1(zd)← z
(t)
d , γ0(zd)← (1− z(t)

d );

4 α(t) ← Equation (2.9);

5 σ(t) ← Equation (2.10);

6 β(t) ← Equation (2.11);

7 ## implemented by L-BFGS-B optimizer [23];

8 Φ(t) = maximize
Φ

L(Φ; z(t)) # Equation 2.14;

9 for d ← 1, . . . , M do

10 P (z
(t+1)
d |yd,wd, z(t)

∂d ) ∝ p(yd,wd|z(t+1)
d ,η(t))pd(z

(t+1)
d |z(t)

∂d ,Φ
(t));

11 if P (z
(t+1)
d = 1|·) > P (z

(t+1)
d = 0|·) then

12 z
(t+1)
d = 1;

13 else

14 z
(t+1)
d = 0;

15 end

16 end

17 t = t + 1;

18 until Convergence;

19 return z;
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2.4 Experiment

In this section, we report empirical evaluation results of G-LRMM architecture on

the real-world property market dataset.

2.4.1 Experimental Data and Preprocessing

We crawled the dataset of Beijing resale market from Lianjia1 by September 18, 2015,

a Chinese online real estate platform similar to Zillow.com. There are 17916 individual

homes distributed among 1555 neighborhoods for sale in total, which received 48312

comments. In general, the eligibility of enrollment in specific elementary schools is

similar for homes within the same neighborhood. Therefore, the raw data will be

preprocessed at the neighborhood level.

Price Generally, housing prices are related to a large variety of characteristics. In

our work, neighborhood-level ones are selected for our research including house types,

transportation, administrative district, and building age. Transportation here refers

to the availability of subway station within 1 km. Administrative district2 refers to a

subdivision of a city, which is a government-controlled sub-city.

Comments We use topic model to extract education-related topics from raw

comments [18]. Specifically, we segment raw comments using Stanford Word

Segmenter based on the Chinese Penn Treebank standard3. These comments are thus

viewed as bags of terms (words) in vocabulary space. Then, LDA is applied to extract

1http://bj.lianjia.com
2https://en.wikipedia.org/wiki/District (China)
3http://nlp.stanford.edu/software/segmenter.shtml
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Figure 2.4 Performance comparison among G-LRMM model and clustering
algorithms.

the potential educational topics4. The corresponding vocabulary can be defined based

on top related terms. Finally, we construct a vector for each neighborhood.

Geographical Location We obtain geographical coordinate of each neighborhood5

and then calculate the geodesic distance between any two neighborhoods6, which

is denoted as distance matrix. It is finally converted to adjacency matrix with a

predefined distance threshold (500 meters (547 yards) as stated in Subsection 2.3.3

[97]).

4https://cran.r-project.org/web/packages/lda/index.html
5https://developers.google.com/
maps/documentation/geocoding/intro
6https://en.wikipedia.org/wiki/Haversine formula
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Ground Truth Data Since no systematic or official rankings for these elementary

schools are available, we conduct the following studies to generate the ground-truth

data. We collect the non-official partial ratings from different websites7. Those school

districts receiving exactly same ratings from them are labeled as the common rating

(good or ordinary). On the other hand, for school districts which receive different

ratings or are not available in all databases, we resort to local people who have been in

Beijing for over 7 years. Manually annotated labels are provided (good or ordinary).

2.4.2 Experimental Results

Evaluation Metrics The frequently used metrics are adopted: recall, precision,

F1 score, accuracy and Area Under ROC Curve (AUC). Additionally, Precision@L

and Recall@L are also used [56, 57, 97]. They are defined as Precision@L = |zL∩zP |
L

and Recall@L = |zL∩zP |
|zP |

, respectively. Here zP is a set of neighborhoods with good

schools and zL is a list of top L ones sorted in the descending order given probability.

Baselines As our model is performed without labels, classical unsupervised learning

algorithms are introduced as baseline schemes. (1) KM: K-means clustering based on

Lloyd’s algorithm (‘kmeans’ from R package ‘stats’ with parameter nstart = 100). (2)

KMD: K-medoids clustering (‘pam’ from R package ‘cluster’). (3) HC: Hierarchical

clustering based on ward method (‘hclust’ from R package ‘stats’). (4) SOM: Self-

organising map-based hierarchical clustering (‘somgrid’ and ‘som’ from R package

7These databases include but not limited to https://geohey.com/data/public/education school
http://esf.fang.com/school/ http://bj.centanet.com/ershoufang-xuexiao/
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‘kohonen’ with parameters xdim = 30, ydim = 30, rlen = 500). The input features

are bag of words and price. The parameters are almost optimal.

To justify the necessity of complexity of G-LRMM, we also compare it with

individual components. (1) LR: The latent regression model; (2) MM: Multinomial

mixture model; (3) LRMM: It combines LR and MM; (4) G-LR: LR with

geographical location dependence placed as the priori. (5) G-MM: MM with

geographical dependence considered simultaneously. The parameters of models (1),

(2) and (3) can be inferred via EM. Models (4) and (5) are optimized similarly to

Algorithm 1.

Overall Performance and Analysis Baselines— The comparison results are

shown in Figure 2.4. Overall, our model can present a significant performance gain

on baselines. For recall, G-LRMM is over twice more likely than others to identify

quality school districts. Such superiority of the proposed model is evident for both

precision and F1 score. Aside from previous three metrics focusing on good districts,

accuracy gives a bigger picture of the identification performance. As shown in Figure

2.4, the dominance still holds true for overall accuracy. Lastly, we calculate AUC to

capture performance of different methods when the discrimination threshold is varied.

The proposed model achieves the best performance.

Components— We explore the impact of different components of our method as

detailed in Table 2.1. There are some observations. The first observation is that all

methods with geographical information outplay the counterparts excluding locations

significantly. Another one is that LRMM can achieve better performance than models

LR and MM for almost all metrics. Such disparity between them mainly rises from
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Table 2.1 Performance for G-LRMM and Its Components

Model Recall Precision F1 Score Accuracy AUC

LR 0.0232 0.5806 0.0446 0.5035 0.6289

G-LR 0.5959 0.6325 0.6137 0.6251 0.6450

MM 0.4054 0.5422 0.4639 0.5318 0.5125

G-MM 0.5573 0.6766 0.6112 0.6457 0.6648

LRMM 0.5290 0.5948 0.5599 0.5846 0.5762

G-LRMM 0.6203 0.6549 0.6371 0.6469 0.6756
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Figure 2.5 Precision and recall over top L neighborhoods.

the complementary interaction between price and comments. Furthermore, G-LRMM

beats other two geography-based methods greatly. One exception is the slight edge
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of G-MM over G-LRMM in terms of precision. Hence, we continue to proceed with

precision and recall for top predicted neighborhoods.

Precision@L and Recall@L are shown in Figure 2.5. Model G-LRMM beats

other components for both metrics greatly. For instance, G-LRMM model can achieve

Precision@L of more than 0.75 in most cases. However, the Precision@L of alternative

models is under 0.75 for the most part.

Visualization and Case Study The inferred probability is visualized as shown

in Figure 2.6. Three different typical regions are also picked for case study research,

as detailed in Table 2.2. Specifically, region A is an area around Zhongguancun

(Chinese Silicon Valley), where many quality schools gather together. In contrast,

most neighborhoods in region C are assigned to mediocre schools. Furthermore, the

overall quality of region B lies between that of regions A and C. This area is actually

composed of neighborhoods of different levels. The left inset of Figure 2.6 provides

the comparison of price for three regions. For instance, region A has a higher median

price than that of regions B and C. This confirms the underlying assumption for

the impact of school districts on price to some extent. In a meanwhile, the subtle

difference between regions B and C calls for further considerations other than price

and necessitates the complexity of the proposed framework intuitively.

2.5 Discussion and Future Work

The proposed G-LRMM model is a general framework by integrating numerical

price, textual comments and geographical location into the hierarchical probabilistic

model. Since quality education resources might reduce the depreciation risk incurred
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Table 2.2 School Districts for Regions A, B and C

Region School district

A Zhongguancun No. 1 (Good), Zhongguancun No. 2 (Good)

B Zhanlan Road No. 1 (Good), Jinbu (Ordinary)

C Sigenbai (Ordinary), Yutaoyuan (Ordinary)

Figure 2.6 Distribution of school district quality.

by the real estate market’s ups and downs, an alternative to deriving the hidden

school district quality is based on the rate of return8, which mainly characterizes the

investment value of estate [55–57]. Thus, it remains our future focus to leverage the

housing transaction records.

8https://en.wikipedia.org/wiki/Rate of return
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Due to the limited accessibility of labeled data, our model is designed to infer

latent variables, which can be regarded as an unsupervised learning scenario. If partial

labeled data (training data) is available, the proposed model can also be revised to

be a supervised version just by estimating parameters based on labels without extra

complexity. Space constraints preclude a full discussion, but we also note that the

supervised version outperforms classical supervised algorithms. The study of distance

threshold and running time also justifies the robustness and feasibility of our model.

2.6 Conclusion

In this dissertation, we have developed real estate appraisal from the perspective of

school districts for the first time. Then a geographical latent variable hierarchical

probabilistic model is developed. The proposed G-LRMM model is able to capture

heterogenous characteristics of neighborhoods. The comprehensive experiments are

conducted on the real-world real estate market. The corresponding results show

that our model can deliver the best performance over alternative methods with high

feasibility. Besides, our work moves a step towards the modeling of heterogenous

datasets.
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CHAPTER 3

MODELING AND ELUCIDATION OF HOUSING PRICE

3.1 Introduction

It is widely acknowledged that the value of a house is the mixture of a large number

of characteristics. House price prediction thus presents a unique set of challenges in

practice. While a large body of works are dedicated to this task, their performance

and applications have been limited by the shortage of long time span of transaction

data, the absence of real-world settings and the insufficiency of housing features. To

this end, a time-aware latent hierarchical model is developed to capture underlying

spatiotemporal interactions behind the evolution of house prices. The hierarchical

perspective obviates the need for historical transaction data of exactly same houses

when temporal effects are considered. The proposed framework is examined on a

large-scale dataset of the property transaction in Beijing. The whole experimental

procedure strictly conforms to the real-world scenario. The empirical evaluation

results demonstrate the outperformance of our approach over alternative competitive

methods. We also group housing features into both external and internal clusters.

The further experiment unveils that external component shapes house prices much

more heavily than the internal one does. More interestingly, the inference of latent

neighborhood value in our model is empirically shown to be able to lessen the

dependence on the critical external cluster of features in house price prediction.
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3.2 Related Work

This chapter [153] is an extended study of our preliminary results [152]. We thereby

gave a brief introduction to the modeling of house prices and performed evaluation

on one-period-ahead prediction accordingly [152]. this chapter entails four major

extensions: (1) we perform long-span forecast research to further exhibit the feasibility

and effectiveness of the proposed model; (2) we further perform hierarchical feature

ablation analysis and elucidate dominant ingredients involved in the evolution of

house prices, which has not been discovered yet; (3) we perform the further study

on the way how the non-linear relationship among internal attributes shapes the

predictive performance and the importance of influencing factors; (4) some case

studies are presented to better the understanding of how the value of neighborhoods

are associated with their desirability.

There have been other studies conducted on real estate appraisal. These works

approached the problem from two perspectives roughly. One goes to the study of

house ranking regarding the investment value of real estate [55–57, 172, 188]. The

commonly used attributes are POIs [57,188], mobility behaviors [55,57,58], mixed land

use [56] and community safety [172], among others. Interestingly, these features are

closely associated with the desirability of the corresponding neighborhood [34]. They

are reported to aid in real estate ranking remarkably. The other direction is dedicated

to the modeling and prediction of property value itself [10, 27,28,65,120,144,159].

Research in house price prediction falls into three categories roughly.

(1) The most well-known approach is hedonic pricing model based on regression

analysis and its derivatives [66,118,159]. The methods of this kind simply incorporate
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all available housing characteristics and estimate their contributions, which are

relatively efficient in response to characteristics. The major limitation, however, is

that a large number of hedonic attributes are needed to guarantee the performance.

This is normally not the case in real-world situations. Thus, the performance is always

constrained by the availability of informative features. Artificial neural networks

(ANN) were also leveraged to model the complex nonlinearities among housing

features [130]. Essentially, the hedonic regression model is functionally equivalent

to a single layer ANN.

(2) The alternative strategy is to track market trends by utilizing homes sold

multiple times without considering detailed housing features. The approaches of

this sort are often called repeat sales methods. Since it was first proposed by [10],

such a methodology has been further extended in different ways [27, 28, 65, 144]. For

example, the well-known S&P/Case-Shiller Home Price Index1 is generated based

on the arithmetic average of the repeat sales [144]. Regarding these methods, two

prerequisites, however, have to be met. One is that no significant changes can

be made to houses between sales. The other is that a large amount of data for

each house is needed to fit the model. Here a short period can guarantee the first

prerequisite but rule out the possibility of multiple sales of the same house and vice

versa for the long period of time. These self-contradictory requirements definitely

limit their applications. Most importantly, new houses without historical sales cannot

be appropriately modeled in this manner.

1http://us.spindices.com/index-family/real-estate/sp-case-shiller
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(3) Apart from purely repeat sales, some methods resort to neighboring houses

and/or preceding sales by incorporating housing features simultaneously. Pioneering

works including spatial autoregression [24, 34], temporal autoregression [120], and

spatial-temporal autoregression [62, 127, 128, 147] were proposed. These studies

have different kinds of limitations. Some economics-oriented works focused more

on backward-looking index construction and parameter estimation without much

emphasis on forward-looking predictability (see Refs. [24, 62, 127], and related

references thereby). Some spatio-temporal lag algorithms [128, 147] were also

proposed to model housing price trends. Particularly, the granularity of spatio-

temporal correlation here is based on individual transactions of houses, where the

overall transaction price of neighboring and precedent houses are directly leveraged

for capturing the spatio-temporal correlation. An alternative modeling strategy is

to regard the external component of a house price as a latent variable, which can

be extracted by imposing spatial constraints on the corresponding “external” part of

neighboring houses [34]. Based on repeat sales, an autoregressive model was proposed

to construct home price index and then forecast the housing price [120], where random

effects of local communities were introduced to infer the inherent land desirability

implicitly. Random effects of this kind were also considered for estimating video-

specific desirability in our previous study [154]. Different from the aforementioned

methods, we model and track the land desirability of houses explicitly by imposing

spatial-temporal constraints on the level of local community/neighborhood instead

of individual houses. Regarding the experimental design, the scenarios of previous

studies are not fully representative of the real-world situation. Simple synthetic
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simulations based on artificial space-time process constructed on a square grid of

housing sites with just a few hundreds of samples were performed or a subregions

of a city with very limited samples and short transaction span were selected for

study [147]. The most commonly empirical evaluation scenario adopted in existing

spatiotemporal models is the random split of the whole dataset into training and

test parts [34, 120]. The resultant issue here is that some future transaction records

of houses are probably used to train the model and predict the market value of

previously sold houses. In contrast to the aforementioned research, we strictly

train the model based on historical transaction data and conduct the prediction

in terms of one-period and multi-period-ahead situations. To address the issues of

existing spatio-temporal models, we propose a new framework to leverage historical

transaction data. Furthermore, the roles of different components and neighborhood

value in the prediction of house prices are explored.

3.3 Price Modeling

3.3.1 Preliminary

The principal goal of our work is to model and predict house prices for the real-world

situations. The value of a home is a real-valued variable, which is impacted by large

numbers of characteristics [151]. Since house prices are dynamic and the real-world

market value can only be observed when the transaction happens, the key point is

the way historical transaction data are utilized. The overall framework is shown in
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Figure 3.1 Framework overview of housing price prediction.

Figure 3.1. To further clarify this, we denote transaction matrix R as follows:



i\t 1 2 3 ··· T T+1 T+2 ··· T+∆t

1 8 0 0 · · · 6 0 9 · · · 4

2 0 7 2 · · · 0 9 0 · · · 0

...
...

...
...

...
...

...
...

...
...

M 0 0 4 · · · 7 0 0 · · · 5

M+1 0 0 0 · · · 0 8 0 · · · 0

...
...

...
...

...
...

...
...

...
...

M+∆i 0 0 0 · · · 0 0 3 · · · 8


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where Rit is the number of sold houses within neighborhood i at time t. The

neighborhoods are ordered according to the time at which the first transaction

happened. If time T is picked as the cutoff period, we then get the whole dataset split

into four components. It is noted here that the bottom left component is composed

of all 0s for those neighborhoods without transaction records prior to time T. Based

on matrix R, we further derive one transaction indicator matrix S which is defined

as follows:

Sit =


1, Rit > 0

0, otherwise

(3.1)

In addition, another indicator matrix of missing value S̃ is denoted as

S̃it =


1, Rit = 0,

∑t−1
i=1 Rit > 0

0, otherwise

(3.2)

Obviously, S̃it = 1 denotes that there are no houses sold at time period t, but at least

one transaction happens prior to the current period (for example, R12).

With those matrices, we formally define the problem of house price prediction

as follows: given houses sold at each period (1 ≤ t ≤ T ), we aim to predict the price of

houses sold in the future. The common symbolic notation rule is obeyed throughout

this article: upper case bold letters denote matrices, lower case bold letters indicate

column vectors, and non-bold letters represent scalars.
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3.3.2 Methodology

Model The house prices are always dynamic and change over time. The home’s

value is regarded as a combination of impacts of locality/neighborhood-induced

attributes, and characteristics of an individual home. We introduce a time-varying

latent variable, which is assumed to represent the impacts of all neighborhood-induced

attributes on house value. The impact of time on the house itself is simply embedded

as a regular attribute into our model. Thus, this task can be formulated as the

following optimization problem. Mathematically speaking,

arg min
β,U

J1 =
M∑
i=1

T∑
t=1

Sit

Rit∑
k=1

(Yitk − βXitk − Uit)2 (3.3)

where Yitk is the value of home k in neighborhood i on time period t, i ∈ {1, 2, . . . ,M},

t ∈ {1, 2, . . . , T}, k ∈ {1, 2, . . . , Rit}. M is the number of neighborhoods, T is the

number of sampled periods, and Rit is the number of houses sold within neighborhood

i at time period t. β is a vector of coefficients for an array of all housing features.

More discussions in regards to the functional format of those features will be presented

in Section 3.5. In addition, Uit is the time-dependent desirability of neighborhood i

at time period t, which is assumed to be highly related to the aggregating effects

of external features in covariates X (we will validate this assumption in Section

3.4.3). The temporal evolution of U is thus the evolution of neighborhood value

(desirability) across different transaction periods. U is actually the surrogate of the

external component as mentioned in Section 3.1.

In real-world situations, the desirability of neighborhoods is generally constrained

to the spatial-temporal interactions. To be specific, geographically close neigh-
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borhoods usually share similar location-associated characteristics, and thus their

desirability is highly correlated. Meanwhile, the neighborhood value at time period t

are closely related to that on the previous time period t−1. The smooth assumption of

this kind is common in the temporal modeling [186]. To take into account both spatial

dependency over geographical closeness and temporal dependency over temporal

evolution, we design the following optimization procedure:

arg min
γ0,γ1,U

J2 =
M∑
i=1

Si1(Ui1 −Bi1)2

+
M∑
i=1

T∑
t=2

Sit(Uit − γ0Bit − γ1Uit−1)2

(3.4)

where parameters γ0 and γ1 are the coefficients associated with neighbors’ value Bit

and its own prior value Uit−1, respectively. It is noted that when t = 1, we only

have the spatial dependency. In particular, we have a time-dependent matrix B ⊆

RM×T , which is the aggregating value of adjacent neighborhoods. Thus, Bit is the

corresponding value of neighbours of neighborhood i at time period t. To be specific,

the weighted neighbors’ value Bit is defined as follows:

Bit =
M∑
j=1

AijtUjt (3.5)

where A ⊆ RM×M×T
≥0 denotes the interaction among different neighborhoods at

different time periods. Thus, Aijt is a weight to quantify the impact of neighborhood j

on neighborhood i. The diagonal elements are specified as 0 such that a neighborhood

itself is not involved. Regarding the weight Aijt, we adopt the widely-used exponential

48



kernel function based on the geodesic distance between neighborhood i and its

neighbors j:

Aijt =
Sjtexp{−qDp(i, j)}∑

l∈Nt(i)
Sltexp{−qDp(i, l)}

(3.6)

where p and q are nonnegative tunable hyper-parameters andD(i, j) is the geographical

distance between neighborhood i and j. The larger p and q are, the more important

the distance plays the role in weights. If p = 0, the formula degrades to the arithmetic

average. Nt(i) is the set of indices of K neighborhoods closest to i at time period

t according to the geographical distance. Hyper-parameter K is introduced here

to control the range of neighborhoods. Thus, Aijt is specified to be 0 for those

neighborhoods j /∈ Nt(i).

To keep the surface smooth over both space and time and prevents the

desirability from changing sharply, we also introduce an L2 regularizer.

J3 =
M∑
i=1

T∑
t=1

Sit(Uit)
2 (3.7)
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Considering all the above analysis, we obtain our model based on the following

optimization problem:

arg min
γ0,γ1,U,β

J =
1

2

M∑
i=1

T∑
t=1

Sit

Rit∑
k=1

(Yitk − βXitk − Uit)2

+
ξ0

2

M∑
i=1

Si1(Ui1 −Bi1)2

+
ξ0

2

M∑
i=1

T∑
t=2

Sit(Uit − γ0Bit − γ1Uit−1)2

+
ξ1

2

M∑
i=1

T∑
t=1

Sit(Uit)
2

(3.8)

where ξ0 and ξ1 are the regularization parameters. We can obtain latent matrix U,

coefficients β of housing features and spatial-temporal interaction coefficients γ0 and

γ1 by solving Equation (3.8).

Learning Algorithm The inference of neighborhood value Uit for M neigh-

borhoods across T time periods and parameter estimation must be carried out

simultaneously. We propose the following iterative learning algorithm based on

block-wise coordinate descent [20] to estimate latent variables and parameters. To be

specific, the procedure of optimizing objective function J with respect to γ0, γ1,U,β

can be broken into two phases. In the first phase, we keep γ0, γ1,U fixed and minimize

J with respect to β. The second phase minimizes J with respect to γ0, γ1,U while

keeping β fixed. The whole training procedure alternates between these two phases

iteratively until convergence.
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In regards to the first phase, as Uit is fixed, the estimation of coefficients β

proceeds by minimizing J1 with respect to β as in Equation (3.3). J1 can be regarded

as the least square error in regression analysis. Thus we leverage R software routine

package ‘lm’ to estimate β.

Regarding the second phase, we have the corresponding first derivatives of

γ0, γ1,U as follows:

∂J
∂γ0

=
M∑
i=1

T∑
t=2

Sit(Uit − γ0Bit − γ1Uit−1)(−Bit) (3.9)

∂J
∂γ1

=
M∑
i=1

T∑
t=2

Sit(Uit − γ0Bit − γ1Uit−1)(−Uit−1) (3.10)

if t = 1

∂J

∂Uit
= −Sit

Rit∑
k=1

(Yitk − βXitk − Uit)

− ξ0Sit+1(Uit+1 − γ0Bit+1 − γ1Uit)γ1

− ξ0

M∑
j=1

SjtAjit(Ujt −Bjt) + ξ0Sit(Uit −Bit)

(3.11)
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if t > 1

∂J

∂Uit
= −Sit

Rit∑
k=1

(Yitk − βXitk − Uit)

− Itξ0Sit+1(Uit+1 − γ0Bit+1 − γ1Uit)γ1

+ ξ0Sit(Uit − γ0Bit − γ1Uit−1) + ξ1SitUit

− ξ0

M∑
j=1

SjtAjit(Ujt − γ0Bjt − γ1Ujt−1)

(3.12)

where It = 0 if t = T , otherwise 1.

The update equations of γ0 and γ1 can be accordingly derived as

γ0 ←
∑M

i=1

∑T
t=2 Sit(Uit − γ1Uit−1)Bit∑M
i=1

∑T
t=2 SitB

2
it

(3.13)

γ1 ←
∑M

i=1

∑T
t=2 Sit(Uit − γ0Bit)Uit−1∑M
i=1

∑T
t=2 SitU

2
it−1

(3.14)

When t = 1, the update of Uit is given by

Uit ←
Sit
[∑Rit

k=1(Yitk − βXitk) + ξ0Bit

]
Sit(Rit + ξ0 + ξ1) + Sit+1ξ0γ2

1 + ξ0

∑M
j=1 SjtA

2
jit

+
Sit+1ξ0γ1(Uit+1 − γ0Bit+1) + ξ0

∑M
j=1 SjtAjit(Ujt −B

(−i)
jt )

Sit(Rit + ξ0 + ξ1) + Sit+1ξ0γ2
1 + ξ0

∑M
j=1 SjtA

2
jit

(3.15)

where B
(−i)
jt is the weighted neighbors’ value of neighborhood j with neighborhood i

being excluded at time period t.

52



For t > 1, we have the following update equation

Uit ←
Sit
[∑Rit

k=1(Yitk − βXitk) + ξ0(γ0Bit + γ1Uit−1)
]

Sit(Rit + ξ0 + ξ1) + ItSit+1ξ0γ2
1 + ξ0

∑M
j=1 Sjtγ

2
0A

2
jit

+
ItSit+1ξ0γ1(Uit+1 − γ0Bit+1)

Sit(Rit + ξ0 + ξ1) + ItSit+1ξ0γ2
1 + ξ0

∑M
j=1 Sjtγ

2
0A

2
jit

+
ξ0

∑M
j=1 Sjtγ0Ajit(Ujt − γ0B

(−i)
jt − γ1Ujt−1)

Sit(Rit + ξ0 + ξ1) + ItSit+1ξ0γ2
1 + ξ0

∑M
j=1 Sjtγ

2
0A

2
jit

(3.16)

where It = 0 if t = T , otherwise 1. It is also important to update neighbor’s value

matrix B along with the latent variable matrix U.

It is noted that the above two phases are only applicable for those neighborhoods

with houses traded at specific time periods (Sit = 1). For those neighborhoods

without records of traded houses (S̃it = 1), we predict them based on the following

strategy:

Uit = γ0Bit + γ1Uit−1 (3.17)

The main idea is to leverage the learned spatial-temporal integration coefficients

to update them adaptively. Such updates can, in turn, impact the optimization

procedure. In this manner, we can take full advantage of the spatial-temporal

interaction. For those neighborhoods with S̃it = 0 and Sit = 0, we ignore them

as they cannot provide any useful information.

The overall procedure is summarized in Algorithm 2, and we call it TLHM for

short. Also, we impose the nonlinearity on individual housing features. The revised

algorithm is called TLHM NL accordingly.
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Algorithm 2: Time-aware Latent Hierarchical Model

Input : distance matrix D, covariate matrix X, price vector y

Output: latent variable matrix U and parameters γ0, γ1,β

1 Initialize Uit ← 1
Rit

∑Nit

k=1 Yitk for each pair {(i, t) : Sit = 1};

2 Initialize (γ0, γ1)← (0.5, 0.5);

3 repeat

4 β ← Equation (3.3) ;

5 γ0 ← Equation (3.13), γ1 ← Equation (3.14) ;

6 for {(i,t): Sit = 1 or S̃it = 1} do

7 if Sit = 1 then

8 Uit ← Eqs. (3.15) and (3.16);

9 else

10 Uit ← Equation (3.17);

11 end

12 end

13 until convergence;

14 return updated U , γ0, γ1,β;
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Prediction Inference With the preceding estimated parameters β, γ0, γ1 and

hidden time-dependent variables U , which essentially uncovers both temporal and

spatial interaction of the hidden neighborhood value, we obtain the learned model

ready for prediction of a new house’s market price sold in the future.

Suppose a house located in neighborhood i is traded at time period t = T + ∆t

(∆t ∈ Z+), we have two scenarios to consider.

• SiT = 1 or S̃iT = 1 (top right component of matrix R), the updated formula

for neighborhood’s value is defined as follows:

Uit = γ0BiT + γ1Uit−1 (3.18)

• SiT = 0 and S̃iT = 0 (bottom right component of matrix R)

Uit = BiT (3.19)

It is worthwhile to note that time period T of BiT is fully representative of real-

world situations for prediction, and we have no future transaction data of neighbors

of neighborhoods. The overall prediction procedure is summarized in Algorithm 3.

3.4 Experiment and Elucidation

In this section, we describe our experimental procedure and report empirical

evaluation results of the proposed algorithm on the real estate dataset of Beijing

(DATASET AVAILABLE2).

2https://www.dropbox.com/s/isdw106x6hjwfkf/data House Price.csv?dl=0
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Algorithm 3: One/Multi-period-ahead predictive Inference

Input : matrix U and parameters γ0, γ1, β, feature vector x, time step

∆t between future period of interest and the latest training

period

Output: house price ŷ

1 if SiT = 1 or S̃iT = 1 then

2 for t = T+1, T+2, . . . , T+∆t do

3 Uit = γ0BiT + γ1Uit−1;

4 end

5 ŷ = Uit + βTx;

6 else

7 ŷ = BiT + βTx;

8 end

9 return ŷ;
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Table 3.1 Basic Statistics of Beijing Dataset

Items Statistics

# of transactions 200,122

# of neighborhoods 5,487

# of administrative districts 12

time periods of transactions 01/2011 - 06/2015

Table 3.2 Statistics of Transactions and Their Neighborhoods across Different
Quarters (Time Index Starts from t = 1 at 2011Q1 and Ends with t = 18 at 2015Q2)

Time period 2011Q1 2011Q2 2011Q3 2011Q4 2012Q1 2012Q2 2012Q3 2012Q4 2013Q1

# of Transactions 13 138 1,055 4,920 6,978 10,488 10,494 14,107 15,675

# of neighborhoods 13 126 767 2,002 2,357 2,783 2,887 3,217 3,318

Time period 2013Q2 2013Q3 2013Q4 2014Q1 2014Q2 2014Q3 2014Q4 2015Q1 2015Q2

# of Transactions 12,074 17,353 13,877 8,894 8,762 11,273 19,572 17,384 27,065

# of neighborhoods 2,986 3,469 3,310 2,848 2,745 3,004 3,605 3,585 4,145

3.4.1 Experimental Data and Preprocessing

We crawled historical real estate transaction data of Beijing. Few houses with

extremely high unit price are excluded from our dataset. The basic statistics of

our dataset are given in Table 3.1. Table 3.2 reports both number of transactions

and neighborhoods over different time periods in details. For the same neighborhood,

there are probably multiple transactions over different time periods. The prepro-

cessing procedure of raw data is mainly elaborated in terms of house prices and

detailed geographical location, respectively.
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House Prices Since total house prices are the product of the footage square and the

unit price for our dataset, the unit price is adopted as the prediction value of interest

if not otherwise specified, which can better capture the underlying mechanism behind

transaction data. Thus, terms “home’s value”, “house value”, “unit price”, “house

prices” are interchangeable throughout this dissertation. House value ranges from tens

of thousands CNY to hundreds of thousands CNY. Such a wide span results from a

large variety of housing characteristics. As mentioned earlier, all of these features

are categorized into two groups, namely, externality and internality, as described in

Table 3.3. In the context of this dissertation, an administrative district3 refers to a

subdivision of a city, which is a government-controlled sub-city. For example, there are

12 administrative districts in the dataset of Beijing. Additionally, to ensure adequate

data for each trading period, we divide entire time span into multiple three-month

intervals or quarters. Different trading periods are assumed to indicate the market

value of that period. It is worth noting that time effects might be confounded with

age effects of a house. Thus an independently computed depreciation factor of age is

also incorporated [26].

Geographical Location We convert the address of each neighborhood to the

geographical coordinate (longitude and latitude) by use of Google Map Geocoding

API4. Simultaneously, the cross-validation between the returned address and the

neighborhood are conducted to guarantee the correctness of geographic data. With

3https://en.wikipedia.org/wiki/District (China)
4https://developers.google.com/
maps/documentation/geocoding/intro
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Table 3.3 The Housing Features and Groups

Group Features

Externality

Administrative districts, Floor area ratio,

Landscaping ratio, #Building, Subway access,

Affiliated schools, Commercial environment

Internality

#Bedroom, #Living room, #House,

Floor level, Orientation, Building type,

Housing type, #Building floors, Age, Size

cleaned formatted geographical longitude/latitude coordination, we capitalize on

Haversine formula5, a formulation robust even for a small distance, to calculate the

geodesic distance among neighborhoods. Finally, a distance matrix is obtained, and

each entity represents the distance between any pair of neighborhoods.

3.4.2 Experimental Results

Evaluation Metrics In order to evaluate the performance of the proposed

predictive model, we adopt widely used metrics for real-valued prediction problem

[25,34,42,82]. They are defined as follows:

• mean absolute value percentage error (MAPE) [25,42],

MAPE =
1

N

N∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (3.20)

where ŷi is the predicted value and yi is the ground-truth value.

5https://en.wikipedia.org/wiki/Haversine formula
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• median absolute value percentage error (MdAPE) [82],

MdAPE = median(

∣∣∣∣ ŷi − yiyi

∣∣∣∣), i ∈ 1, 2, · · · , N (3.21)

MdAPE stays around where most of the data is and is thus more robust to

outliers compared to MAPE.

• percentage of houses with absolute value percent error less than a predetermined

threshold (PAPE@τ%) [34]. These metrics are exclusively introduced to

measure performance with the cut-off value in contrast to the above two overall

metrics. In this dissertation, the threshold τ is specified as 5 and 10 without

loss of generality.

Baseline Algorithms In this section, we introduce alternative representative

methods as baselines to justify the outperformance of the proposed model. (1) LR:

The classical linear regression (hedonic pricing model) [159] incorporates all features

listed in Table 3.3 plus transaction periods. The L2 penalty is placed on the objective

function. The parameter estimation is coordinated by standard linear regression with

elastic net penalty software routine glmnet in R language. (2) ANN: Artificial neural

networks [130] share the same input features with LR. It is implemented with loss

function of the mean squared error based on Keras6. (3) RAA: An arithmetic average

of the repeat sales [144] was proposed to estimate home’s value, which has been used

to generate home price index as mentioned before. No adequate repeat sales of an

individual home, however, are available given our dataset. Thus we adopt the revised

6https://keras.io
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arithmetic average of similar houses within the same neighborhood as the estimator.

If no historical sales with the neighborhood are provided, such an arithmetic average

is performed on similar houses of the nearest neighborhood. (4) KNN: The procedure

of predicting house prices involves two steps by considering both location information

of neighborhoods and internal features of houses. We search for K1 nearest ones

from training neighborhoods (row 1 to M in matrix R) based on geodesic distance.

Then within those selected nearest neighborhoods, we collect K2 most similar houses

according to Euclidean distance in input space of houses’ locality-oriented and internal

features. The house price is the average over that of K2 nearest houses. In the

neighborhood search step, neighborhoods are confined to those which have traded

houses during the latest time period (time period T in matrix R). Such a setting

ensures that locality, time period and internal features are considered as properly as

possible under the framework of KNN. (4) LME: Chopra et al. proposed a static

latent manifold estimation to capture unmeasurable desirability of neighborhoods [34].

In this dissertation, we incorporate the temporal effect as a discrete feature into LME

for the fair comparison. For prediction, the effect of the latest trading time period

is taken as future time effects. (6) AR: The autoregressive approach combines the

fixed time effect, random location effects, and an autoregressive component [120]. (7)

STLAG: The spatial-temporal lag model [127, 128, 147] considers spatial-temporal

effects and impose autocorrelation effects on residuals over time.

One-period-ahead Prediction We pick houses sold in the final 2 years (2013Q3

∼2015Q2) as benchmarks to evaluate the proposed method. Specifically, the

experiments are set up as shown in Table 3.4. The comparison of various alternative
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Table 3.4 Experiment Setting for One-period-ahead Prediction (∆t = 1)
Test Period 2013Q3 2013Q4 2014Q1 2014Q2 2014Q3 2014Q4 2015Q1 2015Q2

Training Period 2011Q1∼2013Q2 2011Q1∼2013Q3 2011Q1∼2013Q4 2011Q1∼2014Q1 2011Q1∼2014Q2 2011Q1∼2014Q3 2011Q4∼2014Q4 2011Q1∼2015Q1

M 4,638 4,804 4,915 4,991 5,047 5,104 5,184 5,272

T 10 11 12 13 14 15 16 17

Table 3.5 MAPE(MdAPE) and PAPE@5%(PAPE@10%) for One-period-ahead
Prediction

MAPE(MdAPE) 2013Q3 2013Q4 2014Q1 2014Q2 2014Q3 2014Q4 2015Q1 2015Q2

LR 0.1796(0.1679) 0.1708(0.1534) 0.1684(0.1392) 0.1556(0.1232) 0.1672(0.1281) 0.1589(0.1248) 0.1645(0.1302) 0.1641(0.1336)

ANN 0.1417(0.1171) 0.1364(0.1044) 0.1481(0.1065) 0.1614(0.1231) 0.1550(0.1139) 0.1419(0.1124) 0.1478(0.1163) 0.1503(0.1180)

RAA 0.2265(0.2313) 0.2188(0.2208) 0.1995(0.1947) 0.1398(0.1277) 0.1058(0.0883) 0.1077(0.0927) 0.1089(0.0933) 0.1175(0.1037)

KNN 0.1117(0.0870) 0.1085(0.0800) 0.1181(0.0752) 0.1484(0.1101) 0.1280(0.0899) 0.1047(0.0781) 0.1023(0.0729) 0.1054(0.0780)

LME 0.0950(0.0772) 0.0880(0.0655) 0.0935(0.0619) 0.1305(0.1019) 0.1080(0.0866) 0.0801(0.0621) 0.0824(0.0630) 0.0856(0.0658)

AR 0.0954 (0.0774) 0.0879(0.0654) 0.0942(0.0623) 0.1304(0.1019) 0.1080(0.0868) 0.0804(0.0620) 0.0822(0.0632) 0.0863(0.0662)

STLAG 0.1206(0.0823) 0.1142(0.0714) 0.1140(0.06538) 0.1398(0.0996) 0.1255(0.0815) 0.0972(0.0647) 0.0975(0.0604) 0.1450(0.0644)

TLHM 0.0904(0.0699) 0.0860(0.0623) 0.0926(0.0583) 0.1203(0.0912) 0.1018(0.0741) 0.0807(0.0590) 0.0782(0.0589) 0.0849(0.0613)

TLHM NL 0.0878(0.0686) 0.0847(0.0611) 0.0880(0.0570) 0.1820(0.0827) 0.0917(0.0681) 0.0781(0.0588) 0.0748(0.0568) 0.0787(0.05970)

PAPE@5%(PAPE@10%) 2013Q3 2013Q4 2014Q1 2014Q2 2014Q3 2014Q4 2015Q1 2015Q2

LR 0.1422(0.2950) 0.1527(0.3181) 0.1756(0.3575) 0.2164(0.4189) 0.2111(0.4066) 0.2088(0.4115) 0.1966(0.3944) 0.1960(0.3853)

ANN 0.2239(0.4309) 0.2480(0.4817) 0.2521(0.4740) 0.2268(0.4244) 0.2387(0.4482) 0.2296(0.4472) 0.2253(0.4382) 0.2268(0.4336)

RAA 0.0394(0.0976) 0.0461(0.1122) 0.07027(0.1636) 0.1875(0.3839) 0.2844(0.5572) 0.2741(0.5380) 0.2686(0.5329) 0.2316(0.4814)

KNN 0.2979(0.5653) 0.3234(0.6032) 0.3548(0.6194) 0.2405(0.4606) 0.2995(0.5432) 0.3370(0.6068) 0.3619(0.6328) 0.3383(0.6062)

LME 0.3312(0.6275) 0.3981(0.6874) 0.4157(0.7008) 0.2642(0.4940) 0.3002(0.5625) 0.4135(0.7160) 0.4115(0.7051) 0.3969(0.6846)

AR 0.3312 (0.6263) 0.4000(0.6885) 0.4169(0.6986) 0.2648(0.4935) 0.3012(0.5628) 0.4140(0.7164) 0.4129(0.7044) 0.3956(0.6818)

STLAG 0.3133(0.5891) 0.3583(0.6510) 0.3995(0.6752) 0.2808(0.5013) 0.3284(0.5812) 0.4040(0.6848) 0.4264(0.7160) 0.4021(0.6942)

TLHM 0.3660(0.6662) 0.4112(0.7126) 0.4394(0.7213) 0.2959(0.5371) 0.3540(0.6248) 0.4386(0.7227) 0.4330(0.7360) 0.4200(0.7132)

TLHM NL 0.3737(0.6804) 0.4176(0.7244) 0.4519(0.7381) 0.3244(0.5808) 0.3858(0.6634) 0.4337(0.7349) 0.4481(0.7544) 0.4310(0.7288)

algorithms across eight trading periods is shown in Table 3.5. We have the following

observations: First, the proposed method surpasses the alternative methods across

almost all metrics overall. Concretely, TLHM model can predict around 43% of houses

within an error margin of less than 5% and 74% of houses within an error margin of less

than 10% on 2015Q1. This demonstrates the effectiveness of time-dependent latent

value of neighborhoods. Second, nonlinear algorithms (e.g., ANN and TLHM NL)

achieve better performance than the linear counterparts (e.g., LR and TLHM) do

as the former methods are capable of modeling the complex relationships among
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related features. Third, even though temporal effects have been modeled as a fixed

feature into LME, TLHM still achieves performance gain over LME for all cases. To

be specific, time effects are fixed for all latent desirability during the same period

for LME, whereas they change across different neighborhoods. This indicates that

simply combining temporal effects and location information is not enough for yielding

an accurate prediction. Fourth, alternative spatio-temporal modeling algorithms

STLAG and AR are inferior to our methods according to our empirical experiments.

AR implicitly models the land desirability as a static random effects and constructs

the temporal price index for individual housing features. STLAG is designed to

capture the land desirability based on the overall price of neighboring individual

houses. Lastly, both KNN and RAA beat the linear model remarkably for most cases

even though the former methods use much fewer housing features than the latter. The

commonality of KNN and RAA is to directly take advantage of location coordinates

while the linear regression just leverages external location-associated features. This

indicates that location information plays an important role in the predictive modeling

of house prices as compared with internal features of individual houses. Thus, LR

is more sensitive to housing features than the proposed model and KNN. The more

in-depth comparison will be given in Subsection 3.4.3. For the nonlinear scenario, the

comparison of this kind is also performed.

Multi-period-ahead Prediction We also present the comparison results of the

long-span scenario, with which we predict the house prices for the next five quarters

(i.e., ∆t = 5). The experiment settings are detailed in Table 3.6. The prediction

accuracy of different methods is reported in Table 3.7. The prediction performance
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Table 3.6 Experiment Setting for Multi-period-ahead Prediction (∆t = 5)

Test Period 2014Q3 2014Q4 2015Q1 2015Q2

Training Period 2011Q1∼2013Q2 2011Q1∼2013Q3 2011Q1∼2013Q4 2011Q1∼2014Q1

M 4,638 4,804 4,915 4,991

T 10 11 12 13

of all methods degrades compared to one-period-ahead prediction in Table 3.5. As

we use the predicted values from the past for future prediction, the problem of error

accumulation is inevitable as the time gap increases. The main conclusions drawn

from the one-period-ahead prediction still hold for multi-period-ahead cases.

It is noted that the performance gain is more salient in multi-period-ahead

scenario. We attribute this to the capacity of our model of capturing the evolution

of neighborhood value. This capacity becomes more obvious as the time span

keeps increasing. Overall, the external component plays a more important role in

shaping the housing price than the internal ones do as demonstrated in the following

comparison experiments.

The above comprehensive evaluations jointly illustrate and justify the effec-

tiveness of the proposed model.

Convergence Analysis and Parameter Tuning As shown in Figure 3.2, the

convergence of the coordinate descent based iterative algorithm is very fast. To

be specific, the proposed method tends to converge when the number of iteration

approaches 30. The property of fast convergence has been reported in many

algorithms related to coordinate descent [16, 42]. To tune hyper-parameters, we
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Table 3.7 MAPE(MdAPE) and PAPE@5%(PAPE@10%) for Multi-period-ahead
Prediction

MAPE(MdAPE) 2014Q3 2014Q4 2015Q1 2015Q2

LR 0.1574(0.1332) 0.1545(0.1262) 0.1636(0.1317) 0.1655(0.1351)

ANN 0.1491(0.1143) 0.1597(0.1229) 0.1783(0.1404) 0.1671(0.1287)

RAA 0.1736(0.1697) 0.1486(0.1407) 0.1365(0.1239) 0.1456(0.1319)

KNN 0.1218(0.0904) 0.1293(0.0981) 0.1552(0.121) 0.1529(0.1145)

LME 0.1026(0.0805) 0.1205(0.0970) 0.1421(0.1182) 0.1348(0.1071)

AR 0.1038(0.0815) 0.1213(0.0979) 0.1431(0.1200) 0.1337(0.1079)

STLAG 0.1440(0.0859) 0.1470(0.0918) 0.1659(0.1112) 0.2206(0.1016)

TLHM 0.1008(0.0766) 0.1184(0.0912) 0.1299(0.1052) 0.1125(0.0856)

TLHM-NL 0.1065(0.0786) 0.1173(0.0904) 0.1307(0.1025) 0.2237(0.0841)

PAPE@5%(PAPE@10%) 2014Q3 2014Q4 2015Q1 2015Q2

LR 0.2027(0.3903) 0.2082(0.4034) 0.195(0.3878) 0.1942(0.3781)

ANN 0.2327(0.4419) 0.2235(0.4235) 0.2002(0.3775) 0.2125(0.4008)

RAA 0.1012(0.2309) 0.1452(0.3277) 0.1857(0.3966) 0.1731(0.3662)

KNN 0.2973(0.5415) 0.2708(0.5086) 0.2162(0.4211) 0.2335(0.4454)

LME 0.3253(0.5984) 0.2679(0.5132) 0.2188(0.4302) 0.2420(0.4694)

AR 0.3204(0.5976) 0.2668(0.5098) 0.2158(0.4275) 0.2400(0.4696)

STLAG 0.3060(0.5683) 0.2971(0.5348) 0.2310(0.4567) 0.2644(0.4937)

TLHM 0.3457(0.6178) 0.2905(0.5389) 0.2437(0.4784) 0.3082(0.5675)

TLHM-NL 0.3370(0.6008) 0.2927(0.5425) 0.2518(0.4887) 0.3100(0.5729)
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pick the last time period of training periods for validation. For example, for

one-period-ahead prediction on 2014Q3, hyper-parameters are chosen based on the

performance of 2014Q2. The optimal hyper-parameters are set as p ∈ {0, 1},

q ∈ {1, 3}, K ∈ {5, 15}, ξ0 ∈ [0.5, 0.9] and ξ1 ∈ {0.01, 0.1, 0.5}.
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Figure 3.2 The evolution of objective value J over the number of iteration for
training periods from 2011Q1 to 2014Q1.

3.4.3 Elucidation

Hierarchical Feature Ablation Analysis Apart from the proposal of a powerful

predictive model, we also try to investigate roles of different components of housing

features in price prediction. The basic procedure is to remove each group of features in

turn from original models while preserving the remaining ones, then we compare the

predication performance of revised models with the original one. The discrepancy

among them can reflect the way those features impact house prices. Such an
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Figure 3.3 Performance comparison of different groups of features for LR and
TLHM.

exploration can potentially provide useful insights into the collection and modeling of

housing features. The linear regression is efficient in terms of the response to different

characteristics of houses although it is not a good estimator for housing prices.

Thus, we mainly compare different groups of available features between the

linear regression and the proposed TLHM model, as well as their corresponding

nonlinear counterparts.

As shown in Table 3.3, we have two groups of features, i.e., externality and

internality. To explore their impacts, we have the following settings: (1) EXT: the

relative change of performance after excluding the external group of features from
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Figure 3.4 Performance comparison of different groups of features for ANN and
TLHM-Nonlinear.

the original model; (2) INT: the relative change of performance after excluding the

internal group of features from the original model.

We conduct the experiment with LR and TLHM as well as ANN and TLHM NL

for one-period-ahead prediction on 2014Q3.

The performance is comprehensively compared in terms of four different

evaluation measures, as reported in Figure 3.3. For both LR and TLHM, it’s found

that different groups of features impact the prediction performance of house prices

unequally. More specifically, the MAPE rises dramatically by around 70% after

excluding an external group of features for LR. The impact of internal features,

however, is marginal as compared to the exclusion of external features. Similar
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observations are also reported by more fine-grained metrics PAPE@%5, PAPE@%10.

To some degree, it is revealed that external attributes are crucial components while

the roles of internal home-specific components are relatively limited in this regard.

As with LR, external features shape the performance of TLHM model more

heavily than internal ones do. The effect of external features on the proposed

model, however, is degraded dramatically as compared to LR. Here, the inferred

latent neighborhood value is able to capture external features partially since they

are closely associated with the location. Furthermore, the impact of internal features

are similar for both TLHM and LR. This might result from the limited role of the

internal features. The way location information is utilized is also very important to

the performance. The above analysis also holds true for the nonlinear scenario as

indicated by the comparison between ANN and TLHM NL in Figure 3.4.

Generally speaking, direct inference from geographical dependent information

is better than external features. The reason might be that available external location-

related features are always limited in real-world scenarios. This also partially shows

that both methods RAA and KNN directly based on location information outperform

LR and ANN with both internal and external location-related features when more

locations are covered by training samples. Similar conclusions can be drawn from

other time periods as well.

Altogether, the external component shapes the housing price more sharply than

internal one does. Such dominant effects on house prices, however, can be replaced

largely by the proposed surrogate neighborhood value under the framework of our

model. Thus, it is indeed possible to infer a surrogate of the external component.
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Figure 3.5 Circos plot of the evolution of the latent value of neighborhoods across
time periods. The districts are Xicheng (1), Dongcheng (2), Haidian (3), Changping
(4), Chaoyang (5), Shunyi (6), Tongzhou (7), Shijingshan (8), Fengtai (9) and Daxing
(10).

Implication of Neighborhood Value Our method presents a unique perspective

of house prices analytically by inferring time-varying neighborhood value. Figures

3.5 and 3.6 jointly illustrate the evolution of such inferred neighborhood value from

transaction data, which could contribute to a better understanding of its implications

conceptually. In Figure 3.5, we present the evolution of latent neighborhood value in
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ten main centric urban districts from 2012Q1 through 2015Q1 by using R circos plot

package [69]. Each entity is the difference between latent values of two successive

quarters. It can serve as a fluctuation index for house prices. Generally speaking, the

latent value of neighborhoods goes up from 2012Q1 through 2013Q1, and then slows

down from 2013Q2 to 2014Q1 which is followed by two declining quarters. Then

the whole fluctuation ends up with a slight rise. Such an observation is consistent

with real estate market trends in Beijing. To be specific, from December 2011 to

July 2012, Beijing government issued a series of favorable loan policies. The price

of houses rose faster than before accordingly. Afterwards, to suppress the property

bubble, the government issued the “five policies and measures to regulate real estate

market” on February 20137, which cooled down the acceleration of housing price. A

series of tightened policies were operated continuously from May 2014 to October 2014

for regulating the property marketplace. The housing price kept going down during

this regulating periods, which is then followed by the rise again after the end of the

regulation8. It’s noted that each neighborhood also has its own evolving pattern of

neighborhood value. The evolving dynamics are actually beyond the representation

of those fixed location associated features.

In Figure 3.6, the exact value of neighborhoods is geographically presented at

time periods 2012Q1, 2013Q1, 2014Q1 and 2015Q1 via heat maps. As with Figure

3.5, it is shown that real estate market is basically going up. Interestingly, some hot

spots are also found in the geographical heat maps. Here we pick areas A, B, and

C for case studies, which seem to be desirable throughout the whole time periods of

7http://wiki.china.org.cn/wiki/index.php/five policies and measures to regulate real estate market
8http://www.sohu.com/a/131420084 651271
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study. Area A is located in Zhongguancun (China’s Silicon Valley), where the demand

for houses is definitely large because this regional economic center offers many job

opportunities. B is an area from College Road to Tsinghua High-Tech Park, where a

couple of top-tier Chinese universities gather around. Furthermore, a lot of top school

districts (elementary schools) in Beijing are located in areas A and B. Therefore, the

population density is higher than surrounding regions. For area C, it stands out from

suburban districts 4, 7, 8, 9 and 10. This results from the fact that the convenient

transit facilities are available for residents to commute to the place of study/work in

Beijing.

The above study demonstrates that the latent neighborhood value can capture

location-oriented characteristics and reflects the prosperity of areas or even economic

situation to some extent.

3.5 Discussion and Future Work

At the core of the proposed method is the inference of time-dependent latent

neighborhood value at the granularity of the neighborhood. The prediction of

future house prices is based on smoothness assumption on both spatial and temporal

interactions. Admittedly, the real boundaries among different neighborhoods also

shape the performance of model particularly for irregularly shaped regions [99, 137],

which is beyond the scope of our work given our datasets. Furthermore, house prices

are also impacted by the monetary policy, economic factors to some degree [4, 40].

As these factors are usually highly related to governmental regularization policies,

they are less likely to follow the assumption of the spatiotemporal smoothness in our
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method. In this case, it is challenging to estimate their effects for future prediction just

from historical transaction records of houses. These factors might jointly contribute

to the difficulty of predicting house prices precisely. In turn, the proposed method

can be readily adapted, and likely further improved as additional house features are

provided. In addition, the potential connection among different neighborhoods can

be explored under the framework of link prediction [104,157].

The proposed framework is also very flexible. The regression component can

be easily replaced by other types of methods (e.g., TLHM NL in this dissertation)

for potential performance improvement. Analogously, relative house ranking is often

a concern for real estate investors. External characteristics are usually considered to

promote the ranking performance such as POIs, mobility behaviors and so on [55].

Actually, POIs [13] and mobility behaviors [86] are closely related to the desirability

of neighborhoods. So we raise an open question here: does the inferred desirability

value of neighborhoods still work in other tasks of urban computing in terms of

the replacement of external locality-associated features? This remains one avenue of

future interest to explore.

3.6 Conclusion

In this chapter, we study the problem of house price prediction in real-world

situations. A natural yet effective time-aware latent hierarchical model is proposed,

where each neighborhood is associated with a set of latent variables that capture

both spatial and temporal interactions among evolving house prices. The extensive

experimental results demonstrate that latent hierarchical modeling of house prices
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with time-dependent effects can provide a powerful prediction capability as compared

with alternative methods. It is also found that house prices are more sensitive to the

external cluster of housing features than to internal ones. Furthermore, the proposed

model can lessen the strong dependence on those crucial external characteristics

by inferring the latent value of neighborhoods to some extent. The time-varying

latent value is capable of capturing the desirability of neighborhoods on the price of

individual houses and provides useful insights into local fluctuations of the real estate

marketplace.
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Figure 3.6 Geographic heat maps of latent neighborhood value at time periods
2012Q1, 2013Q1, 2014Q1, and 2015Q1. Area A is located in Zhongguancun (China’s
Silicon Valley), surrounded by top universities in China and high-tech companies.
Area B is a region from College Road to Tsinghua High-Tech Park where a couple
of top-tier universities in China gather around. Area C has the convenient transit
facilities to downtown Beijing among residential neighborhoods in suburban districts.
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CHAPTER 4

MODELING ITEM-SPECIFIC EFFECTS FOR VIDEO CLICK

4.1 Introduction

Prediction is widely employed to improve the number of video clicks and views,

which are the key important indicators (KPIs) due to their contribution to revenue.

The available predictive features, however, are generally limited as compared to the

expected prediction capability from the algorithm side. Inspired by the intrinsic

dependence among multiple clicks for the same video, we hypothesize that there

exist some consistent effects involved in grouped click records. We then propose to

recover such effects from the associated hidden features, which are likely to alleviate

the insufficiency of features. The simulation studies are performed to elucidate

how the derived grouped effects empower a model with additional discriminating

capacity compared with the original one. The proposed methodology is further

examined on the repository of PPTV (a leading video service provider in China)

click records comprehensively. The results confirm the existence of the hypothesized

effects and demonstrate their critical role in the performance improvement of video

click prediction.

4.2 Related Work

Regression-based Scheme: There are a few approaches based on regression framework

[129, 165]. In order to scale up the predictive algorithm, Vucetic et al. focused on

a regression-related approach by considering relationships among items instead of
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similarities among users. Park et al. proposed a regression-based algorithm to avail

of all information of users and items to construct pairwise feature space to predict

item ratings for multiple cold-start cases. A regression-based latent factor model has

also been developed to tackle the cold-start problem [3].

Item-specific Framework: Item-specific effects models have been widely employed

to the longitudinal data analysis [175]. In contrast to such specific effects,

the population-averaged effects are usually estimated by Generalized Estimating

Equation (GEE) [71]. The latter integrates out individual effects to obtain average

effects, which are equivalent to individual effects in linear case [98]. The basic idea

of item-specific effects is also implicitly adopted by Koren’s “BellKor’s Pragmatic

Chaos” final solution for predicting movie ratings. The solution won the Netflix

grand prize [91] even though such effects were not explicitly claimed. However, our

dissertation explores such effects under the regression framework analytically. To the

best of our knowledge, this is the first attempt for video click prediction.

4.3 Methodology

4.3.1 Problem Statement

In this dissertation, our work is primarily focused on characterizing item-specific

impacts involved in multiple click records of videos. If each record is supposed to be

grouped into two categories, say, clicked and non-clicked, the problem can be cast as

the integration of item-specific effects into the probability estimation: how likely the

candidate videos get clicked.
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Figure 4.1 Schematic representation of variables.

4.3.2 Model

The logistic regression is commonly applied to the probability estimation of the binary

response. However, the underlying assumption is that all observations are mutually

independent, which also underpins many learning paradigms. This assumption does

not hold true when different observations are associated with the same item (video

in this dissertation) [85, 152]. Additionally, each video has some hidden attributes

beyond the collected hand-crafted features. To take such dependence and limitation
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Figure 4.2 The pipeline of the proposed method. Clicked and non-clicked
recommended records are labeled as 1 and 0, respectively.

into consideration, we introduce item-specific effects into logistic regression. As the

proposed method can be aware of such effects, we call it item-specific effects aware

model or ISEA for short.

More formally, as shown in Figure 4.1, we have click outcome variable yij, a

K×1 vector of features xij = (xij1, . . . , xijk, . . . , xijK), recorded at time j = 1, . . . , ni

for item i = 1, . . . ,M . Here M is the total number of videos and item i has ni

79



historical click records by multiple users, there are thus a total of N =
∑M

i=1 ni click

records. Feature vector xij includes video attributes, user features and interactive

features between a user and a video as illustrated in Figure 4.2 and Table 4.3. We

here further introduce γi to capture the item-specific effects.

Given γi, the two-state click variables yi1, . . . , yini
are independent and follow a

Bernoulli distribution

p(yij|γi) = µ
yij
ij (1− µij)1−yij (4.1)

Obviously,

p(yij = 1|γi) = µij (4.2)

In accordance with logistic regression and introduced item-specific effects, the logit1 of

underlying probability µij is assumed to be a linear function of both collected features

and item-specific terms

logit(µij) = log(
µij

1− µij
) = xTijβ + γi (4.3)

where β is a p× 1 vector of common regression coefficients. Furthermore, under the

framework of Generalized Linear Model [116,123], the conditional probability density

function can be written as

fy(yij|γi) = exp
{yij · ξij − b(ξij)

aij(φ)
+ cij(yij, φ)

}
(4.4)

where aij(φ) = 1, cij(yij, φ) = 0, ξij = logit(µij) and b(·) = log(1 + exp(·)).

1https://en.wikipedia.org/wiki/Logit

80



The model is intended to predict the click probability, thus, we can fit it based

on likelihood analysis. Given item-specific effects γi, repeated click records from

the same item are conditionally independent of one another. The probability density

function of item-specific effects is represented as fγ(·). Therefore, the joint probability

density function of observed records for item i can be denoted as

f(yi, γi) =

ni∏
j=1

f(yij, γi) =

ni∏
j=1

fy(yij|γi)fγ(γi) (4.5)

where yi = (yi1, . . . , yini
)T is used to denote a ni × 1 vector of click outcome values

of item i for brevity.

Essentially, item-specific effects γi serves as the impact of item i itself on

associated repeated click records. It is noted that if γi is treated as the fixed unknown

parameter, Maximum Likelihood Estimation might be inconsistent due to the fact

that the number of unknown parameters increases with the number of items [124].

Furthermore, sampled items are thought to represent a population of items. Thus,

item-specific effects γi is assumed to be drawn from a distribution. Because common

coefficients β are estimated directly, item-specific effects are modeled as deviations

from them, which have mean of zero. Thus, what is left to estimate is variance. In

this chapter, effects γi is assumed to be a Gaussian random vector with mean 0 and

variance σ2, i.e., γi ∼ N (0, σ2) without loss of generality [117].
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Since γi is latent, parameters β, σ2 are expected to be estimated by maximizing

the integrated likelihood over γi as

L(β, σ2) =
M∏
i=1

∫
f(yi, γi;β, σ

2)dγi

=
M∏
i=1

∫
fy(yi|γi;β)fγ(γi;σ

2)dγi

=
M∏
i=1

∫ ni∏
j=1

fy(yij|γi;β)fγ(γi;σ
2)dγi

(4.6)

4.3.3 Parameter Estimation

The likelihood typically does not have a closed-form expression. In this case, the

commonly used Laplace Approximation [9] is adopted to obtain an inexact form of

likelihood. Then the derived likelihood is maximized to estimate the parameters.

The integral evolves as

∫ ni∏
j=1

fy(yij|γi;β)fγ(γi;σ
2)dγi

∝
∫

exp
{ ni∑

j=1

[
yij · (xTijβ + γi)− b(xTijβ + γi)

]
− γ2

i

2σ2

}
dγi

=:

∫
exp{Q(γi)}dγi =: Ii

(4.7)

Suppose Q(γi) has a global maximum at γ̂i, then its first-order derivative vanishes at

γ̂i. In this case, Q(γi) can be approximated to quadratic order Taylor aproximation

Q(γi) ≈ Q(γ̂i) +
1

2
(γi − γ̂i)2Q′′(γ̂i) (4.8)
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where Q′′(γ̂i) is given by

Q′′(γ̂i) = − 1

σ2
−

ni∑
j=1

b′′(xTijβ + γ̂i) (4.9)

Substitute Equation 4.8 into Equation 4.7 and the normal density integrates to

1, then we have

Ii ≈ exp{Q(γ̂i)}
∫

exp{1

2
(γi − γ̂i)2Q′′(γ̂i)}dγi

= exp{Q(γ̂i)}(2π)
1
2 |−Q′′(γ̂i)|−

1
2

(4.10)

The likelihood can thus be described by

L(β, σ2) ≈
M∏
i=1

Ii =
M∏
i=1

exp{Q(γ̂i)}(2π)
1
2 |−Q′′(γ̂i)|−

1
2 (4.11)

Item-specific effects γ̂i depends on the unknown parameters β, σ2. The

numerical maximization of the likelihood will thus iterate between updating γi

and (β, σ2). This procedure is coordinated by Bound Optimization by Quadratic

Approximation (BOBYQA) [131], which seeks the least value of a nonlinear function

subject to bound constraints, without using derivatives of the likelihood. The

procedure is detailed in Algorithm 4.

4.3.4 Click Inference

With the foregoing estimated parameters β, σ2 and hidden variable γi, which

essentially capture both effects of available features and item-specific effects, we get

the learned model ready for click prediction of a new user-video interaction. To be
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Algorithm 4: ISEA

Input : feature vector xij, click outcome yij, i = 1, . . . ,M, j = 1, . . . , ni

Output: parameters β and σ2, and item-specific effects γi, i = 1, . . . ,M

1 initialize β by logistic regression;

2 initialize σ2 ← 1;

3 initialize γi by drawing from N (0, σ2) ;

4 L(β, σ2)← Equation 4.11;

5 update β, σ2 and γi by maximizing L(β, σ2) with BOBYQA;

6 return β, σ2, γi;

specific, the probability of video i clicked at times j is generated by aggregating

effects xTijβ and item-specific effects γi, where xij is a vector of collected features (for

example, features listed in Table 4.3).

4.4 Experiment

In this section, we first perform a series of simulation studies to elucidate the item-

specific effects of this kind on click prediction. The offline evaluation procedure is

then described and the empirical results of the proposed methodology on the PPTV

video click dataset are reported accordingly.
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4.4.1 Simulation Studies

We first present simulation results to demonstrate the proposed methodology. The

synthetic data are generated on the basis of the following simple formula:

p(yij = 1) =
1

1 + e−β0−x
T
ijβ

(4.12)

where yij = 1 if p(yij) ≥ p∗, yij = 0 otherwise. Here p∗ is the probability threshold.

To facilitate the understanding of simulation studies, we set ni as a constant

of N as mentioned in Section 4.3.2. We thus have a total of L = M × N samples

here. Put another way, we can image that M videos with N clicking labels per

one are recorded. We generate K = 100, 000 different clicking samples with M =

1, 000 and N = 100 independently where each predictive feature xijk is drawn from

a Gaussian distribution. To simulate the intrinsic item-specific effects involved in

clicking behaviors, we further impose such effects on the first two predictive features

xij1 and xij2. Then M item-specific effects are also drawn independently from a

Gaussian distribution for both features, respectively. Mathematically speaking, we

proceed with the following procedure:

1. For each clicking feature k, draw xijk ∼ N (0, 1)

2. For item-specific effects ηi1 and ηi2,

(a) ηi1 ∼ N (0, ρ)

(b) ηi2 ∼ N (0, ρ)

3. For clicking features xij1 and xij2,
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(a) xij1 = xij1 + ηi1

(b) xij2 = xij2 + ηi2

where ρ is referred to as the standard deviation. In this case, multiple click samples

share same effects of this kind via the introduced ηi1 and ηi2 if they are recorded from

the same video i.

Without loss of generality, the synthetic samples are assumed to be composed

of K = 5 features. Since the underlying Gaussian distributions are all with mean of 0,

we have the associated coefficients β be a vector of (4, -1, -3, -0.5, -2), and intercept

β0 = 2.5 such that their summation is equal to 0. Also, the probability threshold is set

to be p∗ = 0.5. In this case, it is expected to roughly generate balanced positive and

negative samples for this study. It is noted that ρ controls the strength of item-specific

effects. The higher ρ is, the stronger the resulting effects are. We generate data with

different ρ = {0, 0.2, 0.4, 0.6, 0.8, 1} under the constraint of being less than or equal

to 1. It avoids the possible exaggerated role of such effects via a setting akin to what

can be found in practice.

Table 4.1 Experiment Settings

Experiment E1 E2 E3 E4

Hidden Features xij1 xij2 xij1, xij2 xij3

We perform four different simulation experiments over varied standard deviation

ρ. We simulate different hidden features by excluding them alternately as detailed

in Table 4.1. Take E1 with xij1 being a hidden feature for example, we exclude xij1

and leverage the remaining 4 features to perform model estimation and inference.
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Figure 4.3 AUC@ROC of ISEA and LR across varied standard deviation ρ under
E1, E2, E3 and E4. The height is mean of 10 independent runs and the error bar is
the standard deviation of 10 replicates.

All simulations are repeated 10 times to assess the classical Area under ROC curve

(AUC@ROC). As a comparison, we also perform the analysis of standard logistic

regression (LR) on the simulated data, which doesn’t account for item-specific effects.

We present the comparison results over 10 replications as shown in Figure 4.3. For
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E1, E2 and E3, the proposed ISEA outperforms LR greatly. To be concrete, the

stronger the effects (standard deviation ρ) are, the higher the superiority of our

method is. Specifically, when ρ = 0, both models achieve exactly same results for

different experiments. In addition, as ρ progressively increases, item-specific effects

get increasingly large weights into the click status. Thus, ISEA becomes better along

with the capacity of recovering item-specific effects, whereas LR deteriorates due to

more weights are excluded. What’s more, the disparities among different experiments

for same models indicate that the deterioration of model predictive performance is

also associated with the increasing importance of hidden features. Regarding E4,

we observe identical predictive performance of both methods. This is natural as

xij3 involves no grouped effects. Therefore, the proposed methodology is able to

improve predictive performance provided that hidden features are indeed associated

with item-specific effects.

4.4.2 Real Data and Preprocessing

To prepare for the real-world evaluation, we generate the dataset with ground-truth

labels from PPTV video click repository as described in the following procedure.

When a user clicks one video in the playlist, the user and all videos including non-

clicked ones in the same playlist will be recorded along with features listed in Table 4.3.

Table 4.2 Basic Statistics of PPTV Video Click Records

# of records # of videos # of users #negative #positive

69,284 3,718 55,806 52,989 16,295
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Table 4.3 Feature Profile of PPTV Video Click Records
Category Feature Format Remarks

User

Type Categorical VIP, registered, unregistered

Duration Numerical total duration of clicked videos before 10PM (unit: second)

#Watch Numerical total number of clicked videos before 10PM

#Search Numerical total number of searches before 10PM

#Click Numerical total number of clicks before 10PM

Video Group Categorical 26 categories: news, movie, animation, fashion, etc.

User-Video

Interactive

Device Categorical platform: iPhone, iPad, Android Phone

TimeSlot Categorical watching time slot: 10PM-11PM, 11PM-12PM

CtgDrt Numerical duration of videos at level of User-Device-Category-TimeSlot

#CtgClk Numerical number of clicks at level of User-Device-Category-TimeSlot

#Search Numerical number of searches at level of User-Device-TimeSlot

#RecClk Numerical click number of videos at level of User-Device-TimeSlot

#Comment Numerical number of comments at level of User-Device-TimeSlot

#BulletScr Numerical number of bullet screen at level of User-Device-TimeSlot

The combination of the clicked video, the user and the associated features is labeled as

a positive sample. To reduce position-induced bias, we pick those non-clicked videos

located at the top of the playlist as negative samples. After filtering out duplicated

records, we secure the refined samples. The basic statistics are listed in Table 4.2.

It is noted that each video is associated with about 18.6 users and each user has

only around 1.25 click records on average. As shown in Table 4.3, all features of the

dataset are grouped into three categories, say, user profile, video profile, user-video

interactive features. For videos, only coarse-grained categories are available.

4.4.3 Experimental Results

The whole sampled click records are randomly shuffled and split into training,

validation and test datasets with ratio of 8:1:1. Due to the imbalance between
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clicked positive records and non-clicked negative records, the splitting procedure is

conducted on positive and negative records separately. Then two kinds of records

are concatenated to form the stratified training, validation and test datasets. The

proposed model and baselines are all learned on training data. The validation data

are utilized to coordinate the fine-tuning of hyper parameters if applicable. The

corresponding evaluation metrics, baseline algorithms and the performance analysis

are detailed in the following subsections respectively.

Evaluation Metrics In order to evaluate the prediction performance of the

proposed methodology, we adopt AUC@ROC, AUC@PR (Precision-Recall curve) and

probability cutoff based recall, precision, F1 score, accuracy, Matthews correlation

coefficient (MCC) [113]. Two alternative metrics are also introduced, which focus on

the top predicted records instead of the overall records. Specifically, Precision@L and

Recall@L for top L predicted records are frequently used [140, 151]. Formally, given

top L predicted records RL sorted in the descending order of the predicted scores,

they are defined as

Precision@L =
|RL ∩ RC|

L

Recall@L =
|RL ∩ RC|
|RC|

(4.13)

where RC is a set of clicked positive records. Thus, Precision@L is actually an offline

approximation to overall click rate.

Baseline Algorithms In this section, we will introduce other algorithms as

baseline schemes to demonstrate the appealing role of item-specific effects. (1) LR: A
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predictive logistic regression model considers features listed in Table 4.3. (2) PLR: A

pairwise logistic regression is fitted by constructing joint feature space for user/video

pairs in addition to the features adopted by method LR. The regression coefficients

are optimized with elastic net regularization. Two hyper parameters have α = 0.9

and λ = 0.00013, respectively [129]. (3) GBM: Gradient boosting machine is proven

to be a very successful framework of gradient boosted decision trees for solving a

real-world ranking task [21]. The number of trees and learning rate are 389 and

0.043, respectively. All of these hyper parameters are obtained by grid search on

validation dataset. The focus of the real-world experiments is to demonstrate the

existence of item-specific effects in video click, which can boost the performance of

regression methods. We don’t aim to beat other powerful algorithms; however, this

chapter can be extended to improve them in a proper way.

Table 4.4 Cost Matrix

actual negative actual positive

predicted negative c00 c01

predicted positive c10 c11

Overall Performance and Analysis Since evaluation metrics: recall, precision,

f1 score, accuracy, mcc are based on specified cutoff probability, we have the following

threshold with Bayes minimum risk [48]. The cost matrix is given in Table 4.4 for

reference. Generally speaking, in an unbalanced dataset, false negative (missing a

potentially clicked video) is more costive than false positive (misclassifying a non-

clicked video as clicked one). For the correct prediction, the corresponding cost is zero
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naturally, c00 = c11 = 0. As we have no information about cost of misclassification

from the commercial side, we adopt a general strategy and let c01 = p(−), c10 = p(+),

where p(−) and p(+) are priors of negative and positive samples in training dataset,

respectively [38]. Within the framework of Bayes minimum risk, the optimal threshold

is given as follows:

p∗ =
c10 − c00

c10 − c00 + c01 − c11

= p(+) (4.14)

Since training and test datasets are drawn from the same population with stratified

sampling in our setting, the optimal threshold in test dataset holds same, which is

p∗ =
#(positive samples)

#(negative samples) + #(positive samples)
(4.15)

The comparison results amongst the proposed model and the baseline schemes

are examined in Table 4.5. Overall, we observe that our method significantly

dominates other baseline algorithms. First of all, even though our method achieves

no superiority in terms of recall, it still has a commanding lead regarding precision.

The precision of our method is more than 0.44, which is much better than both

regression based algorithms and GBM. The comprehensive metric F1 score further

supports the superiority of our method against counterpart ones. Another observation

is that the outperformance of the proposed method still holds true for accuracy and

MCC. Accuracy is sensitive to imbalance between positive and negative samples and

is likely to be misleading to some extent. In our dataset, the positive clicked records

only constitute less than 25% of the whole test dataset. As opposed to accuracy, MCC

is generally regarded as balanced measure, which makes our results more convincing.
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As shown in Figure 4.4, we also generate receiver operating characteristic (ROC)

curves discriminating clicked records against non-clicked ones on the test data. ISEA

performs significantly better than alternative methods, leading to more than 15%

improvement in the AUC@ROC relative to GBM. This suggests the importance

of accounting for item-specific effects involved in videos. An alternative metric to

evaluate the performance is Area under Precision-Recall Curve (AUC@PR) as given

by Figure 4.5 [39, 151]. Actually, the number of non-clicked samples dwarfs the

number of clicked ones here. AUC@PR is more sensitive to reflect the detection of

clicked samples than AUC@ROC is because neither precision nor recall considers true

negative samples [39]. As expected, the absolute improvement is over 20% and the

relative improvement is over 50% under the AUC@PR metric. Thus, it is reasonable to

say that the proposed scheme indeed enjoys the dramatic advance of click prediction.

Aside from the overall metric on dataset, the recall and precision for top

predicted records also play an important role in evaluation of click prediction. As

shown in Figure 4.6, the proposed model beats alternative methods by a significant

margin. It is capable of achieving precision of more than 0.6 at the minima. By

contrast, the Precision@L of other three models absent from item-specific effects is

less than 0.5 for most cases. Moreover, regular regression-based methods achieve

pretty similar performance here. It is hard to improve them by penalty and gradient

boosting. Finally, a decreasing trend of precision for the proposed model can be seen

as L keeps increasing. Usually for a fixed candidate list, negative records are much

more than positive ones. For a reasonable algorithm, the latter ones are more likely

to be ranked at top positions in terms of probabilities. Therefore, precision out of a
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Table 4.5 Performance for ISEA and Baselines

Model Recall Precision F1 Score Accuracy MCC

LR 0.72867 0.33296 0.45707 0.59296 0.23751

PLR 0.72437 0.33249 0.45577 0.59324 0.23527

GBM 0.68140 0.35294 0.46502 0.63135 0.25329

ISEA 0.72560 0.44453 0.55131 0.72229 0.38968

set of L samples (as defined in formula 4.13) is expected to decrease along with the

increment of set size L. As with Precision@L, similar dominance of method ISEA can

be observed on Recall@L as in Figure 4.7.

In summary, the above results along with simulation studies show that there

indeed exist some grouped effects in video click. The derived item-specific effects

can also be interpreted as a surrogate or recovery of uncollected profiles of videos or

video-user interactive characteristics to some extent.

4.5 Discussion and Future Work

In this dissertation, we propose to infer item-specific effects beyond limited features,

which would offer a unique perspective of video click prediction. Our work also

alleviates the problem caused by insufficient features and sparse interactions between

users and videos by deriving such effects, which is demonstrated and confirmed by

empirical studies clearly. For click prediction and ranking, there have been a number

of algorithms designed for different circumstances. For example, BPR-based method

is powerful given a reasonable user-item interaction matrix (for example, each user
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has at least 10 items, and each item has at least 10 users as stated in [132]). Our

model still outperforms BPR-based method by a significant margin for the dataset

used in this dissertation. That being said, the main goal of our work is to emphasize

the important role of item-specific effects in click prediction instead of beating other

schemes proposed for different scenarios. However, our research also raises an open

question: how to improve the existing algorithms by considering such effects? This

might be a promising research direction.
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As mentioned earlier, unlike the direct estimation of regression coefficients,

item-specific effects are assumed to be sampled from a normal distribution. Such

an assumption is reasonable since the effects are much less sensitive to distributional

assumptions. In other words, the effects are still close to the truth even though the

true distribution of the random effects is non-normal2.

2http://www.statistik.lmu.de/institut/ag/biostat/teaching/
lots2007/GLME2-4.pdf
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Figure 4.6 Precision over top L predicted records.

As the ultimate goal is to deploy the proposed model in the PPTV video

click forecasting platform, our future efforts will be dedicated to two aspects: (1)

Admittedly, item-specific effects can change across time. For example, there might

be some different viewing patterns between weekdays and weekends. In this case,

it is reasonable to construct the time-inhomogeneous item-specific effects. (2) The

current evaluation is an offline experiment. The corresponding collection of online

click prediction for users will be performed so as to validate and further adjust the

model accordingly.

The drawback of ISEA is that the insufficiency of observed click behavior for

each video will definitely undermine effects discovery. An extreme example is that it
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fails to estimate item-specific effects of newly added videos. Therefore, one feature

work is to further leverage linkage mining to capture the potential interaction among

newly added videos and known videos to approximate item-specific effects for new

ones [157].

4.6 Conclusion

In order to alleviate the issue caused by the insufficiency of features in video click,

we hypothesize the existence of the intrinsic item-specific effects in hidden features.

We then present a simple yet powerful ISEA model under the regression framework.

The thorough simulation studies are performed to explicate the property and role of
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the hypothesized effects. Experimental results of PPTV click logs further confirm

the existence of item-specific effects in hidden features. They also indicate that

the rescued effects can improve the prediction performance against the current

algorithms significantly. Our work might probably provide an alternative perspective

of rethinking current learning paradigms in terms of feature representation.
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CHAPTER 5

BLENDED LEARNING FOR PREDICTING USER INTENDED

ACTIONS

5.1 Introduction

User intended actions are widely seen in many areas. Forecasting these actions and

taking proactive measures to optimize business outcome is a crucial step towards

sustaining the steady business growth. In this chapter, we focus on attrition

prediction, which is one of typical user intended actions. Conventional attrition

predictive modeling strategies suffer a few inherent drawbacks. To overcome these

limitations, we propose a novel end-to-end learning scheme to keep track of the

evolution of attrition patterns for the predictive modeling. It integrates user activity

logs, dynamic and static user profiles based on multi-path learning. It exploits

historical user records by establishing a decaying multi-snapshot technique. And

finally it employs the precedent user intentions via guiding them to the subsequent

learning procedure. As a result, it addresses all disadvantages of conventional

methods. We evaluate our methodology on two public data repositories and one

private user usage dataset provided by Adobe Creative Cloud. The extensive

experiments demonstrate that it can offer the appealing performance in comparison

with several existing approaches as rated by different popular metrics. Furthermore,

we introduce an advanced interpretation and visualization strategy to effectively

characterize the periodicity of user activity logs. It can help to pinpoint important

factors that are critical to user attrition and retention and thus suggests actionable
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improvement targets for business practice. Our work will provide useful insights into

the prediction and elucidation of other user intended actions as well.

5.2 Related Work

In the past decade, the attrition modeling has been widely studied [161]. Numerous

works revolved around on binary classification algorithms. The main approach is to

build a set of features for users and then train a classifier for the task. Classical

data mining algorithms including logistic regression [125], support vector machine

(SVM) [36, 49] and random forest [36, 121, 171] are intensively studied for attrition

prediction. Among them, random forest is found to be able to achieve the best

performance in many fields like the newspaper subscription [36]. Actually, random

forest is also the modeling algorithm for customer behavior analysis including attrition

or retention behind predictive analytics startup Framed Data1 (acquired by Square)

[149]. Besides, some biologically inspired methods like genetic programming [83],

evolutionary learning algorithm [7] and vanilla deep neural networks (DNN) [119,

141, 160] were also proposed to search for attrition patterns. Amongst algorithms of

this kind, DNN becomes a rapidly growing research direction [141,149,160]. With the

growing popularity of deep learning, some advanced methods like convolutional neural

networks (CNN) [166] and recurrent neural networks (RNNs) [89] have been utilized

recently as well. These works, however, focus on the provided latest attrition status of

users. Essentially, they leave out the evolution of historical states inadvertently. The

1https://wefunder.com/framed,http://framed.io
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precedent statuses would probably be informative in the inference of future statuses

by coordinating the feature representation better.

There are sporadic works that have been proposed to exploit historical statuses

for attrition prediction [148, 167]. Although these works have tried to incorporate

historical statuses of users, they have two issues. First, the whole historical

observation periods are divided into multiple sub-periods for model training with

handcrafted efforts. In this case, the correlation across different sub-periods cannot be

fully explored. Second, the decaying impact of statuses within different sub-periods on

attrition prediction within the target time period is out of consideration. The survival

analysis framework has been proposed to capture the time-to-event of attrition [103].

It utilizes the initial information at the start of the user enrollment to perform model

learning for predicting survival time of subscriptions. Here the inherent problem is

that the evolving user activities are not incorporated into the attrition prediction,

which are crucial to the attrition modeling according to our experiments. Aside from

the above works purely based on attrition, profit-driven discussion and simulation

studies were also performed based on a potential intervention assumption (e.g., bonus,

discount) [119].

Compared with the intensive research on predictive modeling, little work focuses

on the interpretation of attrition prediction results in terms of at both individual and

class/group level. This is in part due to inherent challenges faced by non-interpretable

classifiers under the framework of traditional interpretation methods [121, 133].

Recently, advanced interpretation methods like saliency maps [145] and its follow-up

work Local Interpretable Model-Agnostic Explanations (LIME) [134] have been
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proposed in this regard. Our technical approach to distilling attrition insights is

inspired by saliency maps.

5.3 Modeling

5.3.1 Preliminary

Jan.  Feb.  Apr.  Mar.  Jun.  May  Sept. Aug. Jul.  Nov.  Oct.  Dec.  

Γ-T+1

Observed (T) Target (τ)

Γ Γ+τ

τ τ τ τ τ τ τ τ τ τ τ τ
y(C)y(C-1)y(1) y(2)

Figure 5.1 Schematic overview of different user statuses with varied types of
observed activity logs. There are C = T/τ snapshots. × and X denote attrition
and retention, respectively. y indicates that the ground-truth label of user activities
during snapshot t− 1 is the attrition status within future snapshot t, 2 ≤ t ≤ C.

In this section, we focus on formulating the attrition prediction problem. To

facilitate the problem formulation, we give a schematic illustration of user statuses

as shown in Figure 5.1.
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Suppose there are a set of N samples or users D = {(Xi, yi)}Ni=1, for which we

collect user data Xi from the historical time period [Γ-T+1, Γ] of length T, and we

aim to predict their statuses yi ∈ Y = {0, 1} in the future target time window [Γ+1,

Γ+τ ] of length τ 2.

The user data Xi are composed of three primitive heterogeneous sub-components:

activity logs on a basis of observed time granularity (e.g., day) Xia, dynamic user

information Xid, and static user profiles Xis, namely, Xi = (Xia,Xid,Xis) ∈ X . For

the activity logs component, we denote any events happening during the time span T

right prior to the target time window as Xia =
(
X

(Γ−T+1)
ia ,X

(Γ−T+2)
ia , . . . ,X

(Γ−1)
ia ,X

(Γ)
ia

)
.

The general goal is to search for a reasonable mapping rule from observed feature

space to attrition statuses R(·) : X → Y and subsequently apply R(·) to estimate

the statuses of samples in the future. The probability of sample i in attrition can be

denoted as

p(yi = 1|X) (5.1)

Practically speaking, the ground truth is relatively subject to the future target time

window [Γ+1, Γ+ τ ]. Specifically, if a user drops out of a course or is churned within

this window, it is then labeled as 1; if the user remains active, then it is labeled as 0.

It is worth noting that attrition labels are generated based on the overall statuses of

users during the target time window.

2Theoretically speaking, τ is flexible and can be any positive integer. In practice, it depends
on business scenarios, which can be weekly, biweekly, monthly or longer periods.
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Figure 5.2 Framework overview of Blended Learning Approach.

5.3.2 Methodology

Section 5.3.1 introduces the primitive problem formulation. We propose to extend

this formulation to incorporate multi-snapshot statuses according to the snapshot

window, which is equal to the pre-designated target time window size τ . Concretely,

sequential outputs are generated across sampled observed time period per τ units

based on the attrition definition. We then can generate C = T
τ

snapshot outputs. As

for users with the observed time span being less than T , we take zero-padding for the

computational convenience. The corresponding masking indicators are introduced to

disable their contributions to the loss as detailed in Equation 5.8. Accordingly, we
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obtain the final series of statuses of sample i as
(
y

(1)
i , y

(2)
i , . . . , y

(C)
i

)
where y

(C)
i is the

status within the target time period. In this case, the conditional probability that

sample i is in the state of attrition can be represented as

p
(
y

(t)
i = 1|X; y

(t−1)
i , . . . , y

(1)
i

)
, 2 ≤ t ≤ C (5.2)

Therefore, our learning rule can naturally evolve to be R(·) : (X ,Y t−1) → Y for

target time step t.

With the reformulation of this problem, we introduce different learning

layers/components of BLA and discuss how these components tackle the aforemen-

tioned issues faced by the attrition prediction.

Parallel Input Layer In accordance with reformulated mapping rule R(·), the

original feature space includes four different parts: activity logs, dynamic information,

static profiles and precedent statuses. In this case, we design multiple parallel input

layers for corresponding learning paths to solve the amalgamation problem associated

with these heterogeneous multi-view features as diagrammed in Figure 5.2.

Activity input layer– Three-dimensional users activity logs are fed into this

layer, along which are user samples, observation time span, and activity metrics.

Concretely, the granularity of primitive observation time can be, but not limited to,

every minute, hourly, daily, weekly, monthly, or any reasonable time duration. The

activities can be, but not limited to, students’ engagement for MOOCs, products

booting, usage of specific features within the products for software companies.
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Dynamic input layer– Three-dimensional dynamic layer is responsible for

the derivative of the user profile, products information or their interactive records

based on the snapshot window. This includes, but not limited to, subscription age,

payment settings (automatic renewal/cancellation), or any reasonable derivatives.

Static input layer– This layer takes static profiles of users or products, which

cover many details including but not limited to, gender, birthday, geographical

location, market segments, registration/enrollment method or any other unchanging

information. This layer is of the two-dimensional shape. Guided input layer–

The snapshotted statuses as a two-dimensional guided intention is embodied into the

attrition prediction through this layer.

Summarization Layer Closely following the activity input layer is the summa-

rization layer, which is developed for summarizing user activities. Due to the

homogeneity along the observed time and the heterogeneity across activity logs, we

utilize one-dimensional CNN to aggregate low-level activity logs over a fine-grained

time span (e.g., day) to generate high-level feature representation over a coarse-

grained one (e.g., week). Mathematically speaking, we have

f (t)
s (Xib) =

M−1∑
m=0

N−1∑
n=0

Ws
mnX

(t+m),(n)
ib (5.3)

where X is the input activity logs, t and s are the indices of output time step and

activity summarizer, respectively. Summarizer Ws is the M ×N weight matrix with

M and N being the window size of summarizing time span and sequence channel,

respectively. In particular, N of the first summarization layer is equal to the number
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of activity metrics. Activity logs can be summarized to be with different granularities

via setting kernel size M .

The designed summarization layer entails threefold benefits: (1) Learning rich

relations and bypassing labor-intensive handcrafted efforts in summarizing primitive

activity logs; (2) Upholding the interpretation track of primitive activity metrics

compared with hand-operated aggregation; (3) Accelerating the training procedure

of model thanks to the noise filtering and feature dimensionality reduction.

Intention Guided LSTM Layer with Multiple Snapshot Outputs In order

to capture the long-range interactive dependency of summarized activities and make

the most use of generated auxiliary statuses, we propose to introduce a variant of Long

Short-Term Memory Networks (LSTM) [79]. To simplify the following notations, we

omit sample indices here. The original formulation in the family of Recurrent Neural

Networks [136] (RNNs)3 is usually denoted as

h(t) = f
(
h(t−1), x(t)

)
(5.4)

where x(t) and h(t) are the input sequence of interest and the estimated hidden state

vector or output at time t, respectively. h(t−1) is the immediate precedent estimated

state vector. We here propose to embed the actual immediate precedent status y(t−1)

to guide the learning procedure as

h(t) = f
(
h(t−1), x(t), y(t−1)

)
(5.5)

3http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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As illustrated in Figure 5.3, the core equations are accordingly updated as follows:

ft = σ
(
Wf

[
h(t−1), x(t), y(t−1)

]
+ bf

)
it = σ

(
Wi

[
h(t−1), x(t), y(t−1)

]
+ bi

)
ot = σ

(
Wo

[
h(t−1), x(t), y(t−1)

]
+ bo

)
Ct = ft ◦ Ct−1 + it ◦ tanh

(
WC

[
h(t−1), x(t), y(t−1)

]
+ bC

)
ht = ot ◦ tanh(Ct)

(5.6)

where ◦ denotes the element-wise Hadamard product. σ and tanh are sigmoid and

hyperbolic tangent activation functions, respectively. ft, it, ot, Ct are forget, input,

output and cell states, which control the update dynamics of the cell and hidden

outputs jointly. It is noted that multiple snapshot outputs in the training phase can

keep track of the evolution of statuses sequentially and naturally. In the meantime,

the introduced auxiliary statuses are complementary to activity, dynamic and static

inputs in terms of capturing the intention progression. We call it IGMS as annotated

in Figure 5.2.

Temporal Neural Network Layer In order to guarantee the temporal order

preservation of feature representation, we introduce temporal neural networks:

a
(t)
l = σ(W

(t)
l a

(t)
l−1 + b

(t)
l ) (5.7)

where a
(t)
l−1 is a temporal slice of the output of layer l − 1.

This layer entails twofold roles: (1) Feature learning over different snapshot

periods in the dynamic path; (2) Fusion of feature representation in multiple paths.
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Figure 5.3 Illustration of the guided intention mechanism, where the precedent
actual intentions are also used for attrition estimation in next time step.

It is also noted that the activation function of the final temporal neural network layer

is sigmoid.

Decay Mechanism When multiple snapshot attrition statuses are incorporated

into our learning framework, their associated impacts need to be adjusted in the

training phase accordingly. This results from the fact that the underlying behavior

patterns might change over time in a certain way [152]. To this end, we have a

underlying assumption: the bigger the time gap between auxiliary snapshot statuses

and attrition status at target time period is, the less similar the underlying intention

patterns are. The temporal exponential decay is thus introduced to penalize weights

based on this assumption. Concretely, ζ(C−t) = k(C−t), where k ≤ 1 depends on

the expected speed of decay, as shown in Figure 5.4. Since the decay speed k is a

hyper-parameter, it is determined by the validation dataset.
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Figure 5.4 Examples of temporal decay of sample weights across different snapshot
time steps.

Objective Function With auxiliary snapshot statuses being incorporated into the

training phase as shown in Figures 5.2 and 5.3, we have the following loss function to

guide the learning procedure:

J = − 1

N

C∑
t=1

ζ(C−t)
N∑
i=1

η
(t)
i

[
y

(t)
i log p(ŷ

(t)
i = 1)

+ (1− y(t)
i )log p(ŷ

(t)
i = 0)

] (5.8)

where ζ(t) and η
(t)
i are temporal decay weight and sample-level binary masking

indicator, respectively. In particular, η
(t)
i can be used to mask invalid attrition

statuses of training samples in the snapshot time periods caused by the calendar

date alignment. For example, the registration dates of some users are later than the

beginning of observed time periods as shown in Figure 5.1.
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As shown in Figure 5.2. BLA mainly includes activity path, dynamic path

and static path. In the activity path, the time granularity of input is on a basis

of primitive observed time granularity (e.g., day), whereas output granularity is the

snapshot window (e.g., month). The dynamic path is composed of temporal neural

networks with both input and output being at the granularity of the snapshot span.

For the static path, the outputs are forked C times for further fusion with outputs

of activity and static paths, as shown in unrolled temporal neural networks of Figure

5.2.

Predictive Inference With the learning architecture and estimated parameters,

we obtain the learned model ready for predicting user-intended actions. As illustrated

in Figure 5.2, we have only one output at the Cth time period, which is the attrition

probability of the target time period in prediction phase (validation and test).

5.3.3 Feature Interpretation and Visualization

Saliency maps are one powerful technique to interpret and visualize feature repre-

sentation behind deep neural networks, which have been widely utilized to analyze

feature importance [145,155]. In this dissertation, we also construct saliency maps by

back-propagating features with the guidance of BLA to highlight how input features

impact the user attrition. First of all, a user is supposed to have feature vector x0 and

the associated attrition state, we aim to figure out how elements of x0 shape output

probability of state R(x0). Regarding BLA, the score R(x) is a highly non-linear

function of input x. R(x), however, can be approximated by a linear function in the
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closeness of x0 based on the first-order Taylor expansion:

R(x) ≈ wT (x− x0) +R(x0) (5.9)

where w is the first-order derivative of R(x) with respect to the feature vector x at

x0:

w =
∂R(x)

x

∣∣∣
x0

(5.10)

There are two points about the interpretation of this kind to consider: 1) The

magnitude of the derivative indicates the extent to which the change of the most

influential elements of feature vector on the probability of the attrition state; 2) The

direction of each element of the derivative shows whether such a change boosts or

decreases the probability of the attrition state. It is noted that the computation

of the user-specific saliency map is very fast due to the requirement of a single

back-propagation pass.

For dynamic and static inputs, we take average on saliency maps of all test

users and then obtain the overall saliency map. The overall one can help to identify

the underlying attrition and retention factors involved in the attrition directly. For

activity logs with different metrics, we concentrate on exploring the evolution patterns

of activity logs. Thus, we take the absolute value of saliency maps before averaging

over all test users. Finally, we take sum of all metrics along observed time periods.
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Table 5.1 Basic Statistics of MOOCs and KKBox. Observation Span T and
Snapshot Window Size τ are Detailed in Section 5.3.1. τ is Set Based on Business
Scenarios (e.g., Subscription Plan) Here.

# of user # of attrition # of persistence observation span T (day) snapshot window size τ (day) target time period

MOOCs 120,542 95,581 24,961 30 10 10 days after the end of observed days

KKBox
11,2118 19,415 92,703 720 30 02/01/2017 ∼ 02/28/2017

156,029 21,752 134,277 720 30 03/01/2017 ∼ 03/31/2017

5.4 Experiment

In this section, we first assess the performance of BLA on the customer attrition task

comparing with competitive baselines for two public datasets and one private dataset.

Then, we perform feature analysis to distill the evolving patterns of user activity logs,

attrition and retention factors.

5.4.1 Experimental Setup

We utilize python libraries Keras4 to build the architecture of our learning algorithm

and Tensorflow [1] to perform feature interpretation and visualization. NVIDIA Tesla

K80 GPU with memory of 12GB is used for model development. Microsoft Azure

with PySpark is adopted as the large-scale data processing platform.

Network Architecture. Along Activity Path are 1 one-dimensional CNN (14

kernels) and 2 intention-guided LSTM (30 and 15 kernels). Dynamic Path consists

of 1 two-layered temporal neural networks with 30 and 15 hidden nodes. Static Path

involves 1 two-layered neural networks with 30 and 15 hidden nodes. The fusion layer

includes 1 two-layered temporal neural networks with 30 and 15 hidden nodes.

4https://github.com/keras-team/keras
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Training. We initialize parameters in BLA with Glorot uniform distribution

[64]. The mini-batch size and the maximum number of epochs are set to be 128

and 500, respectively. The parameters are updated based on Adam optimization

algorithm [90] with learning rate of 0.001 and decay factor of 1e-3. Early stopping of 20

epochs is set to prevent the overfitting. Trainable parameters and hyper-parameters

are tuned based on the loss of attrition records in the validation dataset. As shown in

Figure 5.2, all historical records are incorporated into the loss function J in formula

(5.8).

Test. As shown in Figure 5.2, the prediction is conducted on customer attrition

records during the target time periods. With both the trained parameters and hyper-

parameters, we measure the performance of the model on the specified target periods.

Training and test parts are split based on the temporal logic and will be detailed

in the coming subsections accordingly.

5.4.2 Baseline Approaches

In this section, we will introduce alternative algorithms as baseline schemes to

demonstrate the effectiveness of the proposed BLA. User activity logs are manually

aggregated and then reshaped to be a vector. The one-month dynamic and static

information are directly reshaped and then fused with logs vector to generate the

learning features. The baselines are tuned based on the validation part and the

optimal parameters are reported accordingly.

1. LR: The classical Logistic Regression [125] is commonly used with good

interpretation capacity [121]. To facilitate the training with the large-scale
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dataset, we construct a simple neural network with one input layer and sigmoid

activation function with GPU acceleration. Adam [90] with learning rate of 0.01

and decay rate of 10−3 is adopted as the optimization algorithm for MOOCs

and KKBox.

2. DNN: Generally speaking, stacking computational units can represent any

probability distributions in a certain configured way [15]. Thus, vanilla deep

neural networks are widely utilized for attrition prediction in the academic

research [141, 160]. The network is with 2 hidden layers of 100, 10 nodes,

respectively. Adam [90] with learning rate of 0.01 for MOOCs and 0.001 for

KKBox, as well as decay rate of 10−3 for both datasets is adopted.

3. RF: Random Forest is frequently used in churn or dropout prediction [36,121,

171] and deployed in the industry (e.g., Framed Data), which usually shows

a good performance [149]. The RandomForest of Scikit-Learn with the tree

number of 20 and the maximum depth of 30 is employed for MOOCs and

KKBox.

4. NB: Naive Bayes [81,122,180] is also explored in the user attrition prediction.

We adopt the classical Gaussian Naive Bayes algorithm for the classification.

5. SVM: SVM is explored in this regard as well [36, 49]. To scale better to large

numbers of samples (the inherent problem in SVM training), we adopt liblinear

(LinearSVC) for linear kernel, the bagging classifier (BaggingClassifier + SVC)

for non-linear radial basis function (rbf) and polynomial (poly) kernels in Scikit-

Learn library. The settings are linear kernel with C = 0.001 for MOOCs and

rbf kernel with C = 0.001 for KKBox.
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6. CNN: Convolutional neural networks [166] include two layers of one-dimensional

convolutional neural networks with 14 and 7 kernels and the subsequent fully

connected neural networks 30 and 15 hidden nodes.

7. LSTM: Vanilla recurrent neural networks or long short-term memory networks

[50, 89] are also utilized here by aggregating activity logs with handcrafted

efforts. One two-layered LSTM with 30-dimensional and 15-dimensional output

nodes, followed by subsequent fully connected neural networks with 30 and 15

hidden nodes.

The variants of BLA are listed as follows: MSMP: a variant without intention

guidance; IGMP: a variant without multi-snapshot mechanism; IGMS-AD: a variant

only using activity path and dynamic path; IGMS-AS: a variant only using activity

path and static path; IGMS-DS: a variant only using dynamic path and static path.

5.4.3 Evaluation Metrics

To measure the prediction performance of the proposed methodology, we adopt

F1 Score, Matthews correlation coefficient (MCC) [113], the Area under Curves

of Receiver Operating Characteristic (AUC@ROC) [151, 154, 157] and Curves of

Precision-Recall (AUC@PR), respectively. As opposed to ROC curves, Precision-

Recall curves are more sensitive to capture the subtle and informative evolution of

algorithm’s performance. A more in-depth discussion is detailed in Ref. [39].
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5.4.4 Experimental Results

We perform attrition prediction on two public attrition repositories MOOCs (dropout

prediction)5 and KKBox (churn prediction)6 based on BLA against baseline approaches.

Furthermore, we apply the proposed method to users of Adobe Creative Cloud (CC)

and compare it with random forest and the currently deployed model.

MOOCs and KKBox Dropout in MOOCs and churn in subscription-based

commercial products or services are two typical scenarios associated with the attrition

problem. Dropout prediction focuses on the problem where we prioritize students

who are likely to persist or drop out of a course, which is usually characterized by

the highly skewed dominance of dropout over persistence. As opposed to dropout in

MOOCs, churned users are in tiny proportion compared with persistent ones. The

basic statistics of the MOOCs and KKBox datasets are described in Table 5.1 briefly.

Here attrition labels indicate the user status within the target time period. As the

given spans of the target time period are 10 days for MOOCs and one month for

KKBox7, we set snapshot span as τ = 10 and τ = 30 accordingly. Given observation

span T = 30 and T = 720, a total of C = 3 and C = 24 outputs are generated

simultaneously. The last one is the status to predict, and the precedent outputs are

auxiliary statuses for aiding in the model development. User activity logs, dynamic

and static features are given in Tables 5.2 and 5.3, respectively. For MOOCs, the

stratified data splitting is adopted since there are few overlapping time spans among

5https://biendata.com/competition/kddcup2015/
6https://www.kaggle.com/c/kkbox-churn-prediction-challenge
7τ is pre-specified in datasets here.
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different courses. Accordingly, the ratio of training, validation and testing datasets

is 6:2:2. For KKBox, user records on Feb 2017 and March 2017 are utilized as model

development and assessment, respectively. The development dataset is further split

into internally stratified training and validation parts with ratio 8:2.

The comparison results among BLA and baselines are examined in Tables 5.4

and 5.5. Overall, BLA is able to outperform other commonly used methods for

attrition prediction in terms of an array of metrics. In MOOCs, we report F1 score

and AUC@PR based on minor persistent users, which is sensitive to the improvement

of algorithms. It is noted that, as compared to baselines, the performance gain of

BLA is more obvious in KKBox than that in MOOCs. There are two underlying

causes: (1) Few dynamic and static user features are available for MOOCs, which

degrades the power of the multi-path learning as shown in Table 5.3; (2) The span

of historical records is limited for MOOCs, which will suppress the multi-snapshot

mechanism inevitably as shown in Table 5.1.

Ablation Analysis To explore the potential explanation for BLA’s performance,

a series of ablation experiments are conducted to study the role of key components of

BLA. We focus on KKBox here due to the limited observation time span of MOOCs.

First of all, we empirically study the decay mechanism. As shown in Figure 5.4,

k = 1 indicates all auxiliary statuses share equivalent weights in loss function, which

also means that no decay mechanism is considered here. Meanwhile, when k → 0,

it implies that auxiliary snapshot statuses are ignored and only the status of target

time period is considered. The quasi U-shaped curve of loss on validation dataset

demonstrates the existence of decay in attrition patterns over observed time steps
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Table 5.2 Student Engagement Logs of MOOCs and Customer Music Listening
Logs of KKBox.

Dataset Activity Remarks

MOOCs

problem working on course assignments

video watching course videos

access accessing other course objects except videos and assignments

wiki accessing the course wiki

discussion accessing the course forum

navigate navigating to another part of the course

page close closing the web page

source Event source (server or browser)

category the category of the course module

KKBox

num 25 # of songs played less than 25% of the song length

num 50 # of songs played between 25% to 50% of the song length

num 75 # of songs played between 50% to 75% of the song length

num 985 # of songs played between 75% to 98.5% of the song length

num 100 # of songs played over 98.5% of the song length

num unq # of unique songs played

total secs total seconds played

as presented in Figure 5.5. Furthermore, the evidence that the value of right side

is less than that of left side suggests the necessity of the proposed multi-snapshot

strategy. The performance of different variants of BLA is also reported in Figure 5.6.

Their performance disparity delivers useful points. To be specific, it is activity path
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Table 5.3 User Dynamic and Static Profile of MOOCs and KKBox.

Dataset Style Profile Remarks

MOOCs
dynamic — —

static course id course ID

KKBox

dynamic

membership the time to the initial registration

is auto renew whether subscription plan is renewed automatically

is cancel whether subscription plan is canceled

static

bd age when registered

city city when registration (21 anonymous categories)

gender gender (male and female)

registered via registration method (5 anonymous categories)

Table 5.4 Performance Comparison on MOOCs for Attrition Prediction

Method AUC@ROC MCC F1 Score AUC@PR

LR 0.8595 0.5477 0.6017 0.7003

RF 0.8693 0.5753 0.6430 0.7077

DNN 0.8718 0.5786 0.6509 0.7157

NB 0.8354 0.4976 0.5925 0.6562

SVM 0.8656 0.5440 0.5924 0.7049

CNN 0.8778 0.5851 0.6480 0.7324

LSTM 0.8746 0.5863 0.6528 0.7246

BLA 0.8842 0.5973 0.6569 0.7464
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Figure 5.5 The evolution of validation loss over decay speed k for the exponential
decay.

Table 5.5 Performance Comparison on KKBox for Attrition Prediction

Method AUC@ROC MCC F1 Score AUC@PR

LR 0.8292 0.6560 0.6986 0.7360

DNN 0.9016 0.6005 0.6552 0.5937

RF 0.9394 0.6961 0.7314 0.8085

NB 0.5061 0.0314 0.2467 0.5671

SVM 0.5960 0.2111 0.1091 0.4972

CNN 0.8963 0.5409 0.5974 0.5263

LSTM 0.9293 0.6786 0.7171 0.7779

BLA 0.9600 0.7280 0.7621 0.8436
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that has the highest impact, followed by dynamic path and finally static path. Both

intention guidance and multi-snapshot mechanisms shape BLA in different manners

as well.

0.70

0.75

0.80

0.85

BLA IGMP IGMS−AD IGMS−AS IGMS−DS MSMP

AU
C

@
PR

Figure 5.6 Performance comparison for different variants of BLA. Variants are
described in Section 5.4.2.

Attrition and Retention Factors After attrition prediction, the next step

typically is to identify underlying patterns/indicators or to explore feature importance.

Regarding user activity logs, the feature importance across different observed

time steps are visualized in Figure 5.7. Overall, the feature importance changes

periodically with the peak value in the vicinity of the intersection of two successive

snapshots. Furthermore, the peak increases roughly as observation moves onwards to

the target time period. The locality of peak values indicates user activities around

payments are informative and important compared with other time steps. The

evolution of peak values across different time periods shows that attrition within
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Figure 5.7 Heat map of feature importance of the MOOCs and KKBox datasets.

target time period is highly related to the proximate user activities, which is also

intuitively reasonable.
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When it comes to dynamic and static user information, we also do in-depth

analysis on KKBox. Among them, the most important features are is cancel, and

is auto renew from the dynamic side, and registered via from the static side. As

the registered method is provided anonymously, we cannot do any explanation. As

shown in the top of Figure 5.8, field is cancel indicates whether a user actively cancels

a subscription or not, which is proven to be positively correlated with attrition. It

might be due to the change of service plans or other reasons, though. Naturally,

feature is auto renew shows the intention of users to persist, which is also confirmed

by the negative saliency value.

is_auto_renew

is_cancel

0.00 0.02 0.04 0.06

Geo.AMER

Mkt.com

Mkt.gov

Geo.ASIA

Geo.EMEA

Geo.JPN

Sub.34

Mkt.edu

Sub.2

Sub.25

Sub.15

−0.05 0.00 0.05

Figure 5.8 Attrition and retention factors for KKBox (top) and Adobe CC
(bottom). Features are detailed in Table 5.7.
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Adobe Creative Cloud Adobe CC provides entire collection of desktop and

mobile applications for the brilliant design, which is characterized by low user attrition

rate. We apply the preliminary version of BLA (without decay mechanism or

guided intention) called pBLA8 to perform churn prediction and analysis on sampled

users, which are briefed in Table 5.6. Concretely, user activity, dynamic and static

information used in our model are described in Table 5.7. Regarding activity logs,

two daily metrics booting times and total session time for each application (e.g.,

Photoshop) are recorded. Besides, we conduct both monthly and annual discretization

of subscription age to capture two representative subscription types adopted by Adobe

CC.

In our experiments, we consider users with subscription age of within 3 years.

Due to confidentiality restrictions, we cannot disclose the volume of attrition and

retention users. The dataset with the target time period of May 2017 is used for

model development in which churned, and persistent users are sampled equivalently.

We then evaluate the predictive capacity of our algorithm in two scenarios. In the first

scenario, the test dataset includes sampled users with a ratio of 1:1 during target time

period of June 1 to June 30, 2017. We then compare pBLA with widely used random

8Decay mechanism was not considered into our model during the internship period yet.

Table 5.6 Basic Statistics of Adobe CC Users As of the Beginning of the Target
Time Period. Observation Span T (Day), Snapshot Window Size τ (Day)

sampling # of attrition
# of persistence

T τ target time period

yes 1 360 30 05/01/2017 ∼ 05/31/2017

yes 1 360 30 06/01/2017 ∼ 06/30/2017

no — 360 30 07/01/2017 ∼ 07/31/2017
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Table 5.7 Activity Logs of Applications, Dynamic and Static Information for Adobe
CC Users

Feature Remarks

Activity

Ps booting times and total session time of Photoshop

Ai booting times and total session time of Illustrator

Id booting times and total session time of InDesign

Pr booting times and total session time of PremierePro

Lr booting times and total session time of Lightroom

Ae booting times and total session time of AfterEffects

En booting times and total session time of MediaEncoder

Dynamic Sub the subscription age of Adobe CC

Static
Mkt market segment (education, government, and commercial)

Geo general geographical code (JPN, EMEA, ASIA, AMER)

forest in the industry (e.g., Framed Data) for attrition prediction [36, 149, 171]. The

results are reported in Figure 5.9. The significant performance gain can be gained

here. In the other scenario, we compare our model with currently deployed model9

on users who were still active at the end of June 2017 (without sampling). Our

proposed model beats the currently deployed model greatly as reported in Figure

5.1010. The superiority of our algorithm over other approaches is more evident in

9Features are created based on user profile and products usage logs. For the product usage
feature, we mainly utilized user usage records of 7 top Adobe CC products to generate
counts, rates, recency over different time windows for different types of events. We also
performed extensive feature engineering, such as imputation, capping, logarithm, binning,
interactions of two variables like ratios and products. Logistic regression based on multi-
snapshot data was trained with elastic net regularization. Model hyper-parameters are
tuned based on 5-fold cross-validation with the best of efforts.

10The attrition probability adjustment of the currently deployed model is based on all users
beyond the subscribed age of 3 years. We thus omit threshold based evaluation metrics.

127



Adobe CC than that in other datasets. This mainly results from the difference of the

subscription plans. Most subscriptions of Adobe CC are the type of annual plan while

other datasets experience a couple of months (e.g., 30 to 90 days for most KKBox

subscriptions). The evolution of intended actions across long subscription plan period

is amenable to our algorithm.

Likewise, the feature analysis implies that activity logs of users on applications

of Adobe CC are characterized by the explicit periodicity in terms of impacts on

attrition as shown in Figure 5.11. Due to the long subscription plan for Adobe CC as

mentioned before, the maximum of periodical peak values might be earlier than within

the last month. Additionally, as shown in the bottom of Figure 5.8, subscription age

plays a very import role, for example, 15th, 25th, 2nd, 34th month are the most risk

months since the beginning of subscription, which are all around the renewal dates

of annual subscription plan11. Regarding static information, Japan (JPN) is found

to be the most persistent area compared with other geographical areas. Also, it is

easy to expect churn in subscribed users for the educational purpose, followed by the

commercial and finally governmental purposes.

5.5 Discussion and Future Work

The introduced user alignment based on the calendar timeline enables an unbiased

modeling. The multi-path learning helps to fuse multi-view heterogeneous features,

and the summarization layer is introduced to aggregate and integrate primitive user

activity logs. In addition, we leverage IGMS with decay mechanism to track evolving

11Monthly installment payment is available for the annual membership of Adobe CC.
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Figure 5.9 Performance comparisons between pBLA and random forest.
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Figure 5.10 Performance comparisons of pBLA against the currently deployed
model.

intentions. Finally, saliency maps are introduced to elucidate the activity patterns,

attrition and retention factors. There are some interesting aspects to explore in
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Figure 5.11 Heat map of feature importance for Adobe CC user churn.

the future. First of all, from the perspective of the marketing campaign in the

industry, the cost of attrition and retention may not be equivalent under some

commercial circumstances. Thus, the probability threshold and corresponding loss

function can be adaptively adjusted to account for their business profitability. In

this case, some profit-driven strategies can be designed accordingly. Second, we

consider the commonly used exponential decay in a trial-and-see way to explore

the impacts of different time periods on the status of current time steps of interest.

The hyper-parameter k is determined by the validation dataset. It is desirable to

develop a principled and feasible way to tune k automatically and even discover

the underlying decay evolution involved in the attrition prediction without the

distribution assumption. This remains the topic of our future research.
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5.6 Conclusion

In this chapter, we explore the classical attrition prediction (dropout and churn)

problem and elucidate the underlying patterns. The proposed BLA is able to address

an array of inherent difficulties involved in traditional attrition prediction algorithms.

Particularly, the exploration of the decay mechanism further demonstrates the power

and flexibility of our BLA in terms of capturing the evolving intended actions of

users. The extensive experiments are conducted on two public real-world attrition

datasets and Adobe Creative cloud user dataset. The corresponding results show

that our model can deliver the best performance over alternative methods with high

feasibility. The feature analysis pipeline also provides useful insights into attrition.

Our work can also be applied to the attrition problem in related areas and other user

intended actions.
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CHAPTER 6

ELUCIDATION OF DNA METHYLATION ON N6-ADENINE

6.1 Introduction

We developed a deep learning-based algorithm to predict DNA N6-methyladenosine

(6mA) sites de novo from sequence at single-nucleotide resolution, with application

to three representative model organisms, A. thaliana, D. melanogaster and E. coli.

Extensive experiments demonstrate the accuracy of our algorithm and its superior

performance compared with conventional k-mer based approaches. Furthermore,

our saliency maps-based context analysis protocol reveals interesting cis-regulatory

patterns around the 6mA sites that are missed by conventional motif analysis. Our

findings will help to elucidate the regulatory mechanisms of 6mA and benefit to the

in-depth exploration of their functional effects. Lastly, we offer a complete catalog

of 6mA sites based on in silico whole-genome prediction. Enrichment analysis of this

complete catalog shows that 6mA is enriched in tRNA gene regions across different

organisms.

6.2 Results

It is worth noting that our proposed prediction is purely based on sequence

information where only cis-effect will be captured. Whether a candidate is 6mA site

or not will also depend on many other exogenous trans-effects. Therefore, what our

method predicts is the candidacy or potential for being a 6mA site. Since we dont aim

to make any developmental or tissue specific 6mA prediction, the methylation data
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Figure 6.1 The proposed network architecture of DeepM6A, a method for
predicting DNA modification on N6-Adenine.
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Figure 6.2 Performance comparison of DeepM6A against MLP (standard multi-
layer perceptron networks) for different lengths of flanking sequence 3, 4, 5, 6, 7, 8, 9,
10, 20, 30, 40, 50, 100, 150, 200 on A. thaliana, D. melanogaster and E. coli in terms
of AUC.

we used in our model were collected from a mixture of cells at different development

stages. Of our interest is to predict the candidacy or potential for being a 6mA
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Figure 6.3 Performance comparison of DeepM6A against MLP (standard multi-
layer perceptron networks) for different distance scales of methylated and non-
methylated cohorts in terms of AUC. The distance scales are set to be 200 and the
minimum (closest sites), respectively.
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Figure 6.4 Predicted probability versus the methylation fraction/level for A.
thaliana, D. melanogaster and E. coli, respectively. The whole 6mAs are separated
into 10 levels based on methylation fractions (1: 0 - 0.1; 2: 0.1 0.2; ... ; 9: 0.8 0.9;
10: 0.9 - 1). More than 99% methylated adenine sites locate in methylation level of
9 and 10 for E. coli.
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Figure 6.5 Performance comparison of DeepM6A across different perturbed regions
[-30, -13] (U3), [-12, -8] (U2), [-7, -3] (U1), [-2, +2] (M0), [+3, +7] (D1), [+8, +12]
(D2), [+13, +30](D3) in terms of MCC for A. thaliana, D. melanogaster and E. coli,
respectively. Region NULL represents that none of flanking sequences are perturbed.
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Figure 6.6 DeepM6A-based predictive probability of peak regions called by 6mA-
DNA-IP-SEquation.
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site, which implies a necessary condition but not a sufficient condition. Such 6mA

prediction is quite similar as gene prediction or gene finding in the early Bioinformatics

era, which refers to the process of identifying the regions of genomic DNA that encode

genes. Most gene prediction methods utilize DNA sequence information only, as our

method does.

To predict 6mA candidate sites, we first developed a deep convolutional neural

networks-based [5, 92] end-to-end algorithmic framework (Figure 6.1) to capture

sophisticated regulatory patterns for predicting 6mA sites de novo from genomic

sequences (DeepM6A). Machine learning methods have been employed for genomic

sequence-based prediction. Most of them reply on human handcrafted features,

e.g., k-mer for predicting mutation effect [93] and polyadenylation sites [84], among

many others. Compared with k-mer based methods, our proposed DeepM6A

have four major advantages: automating the sequence feature representation of

different granularities, hierarchically; integrating a broad spectrum of flanking context

sequences, effectively; enabling the potential visualization of inherent sequence motifs

for interpretation, naturally; and facilitating model development and prediction

in large-scale genomic data, seamlessly. The first two desirable properties jointly

contribute to the appealing predictive capacity of DeepM6A. Based on the third

property, we then introduced a novel learning protocol to decode the underlying

methylation patterns. Both cis-regulatory elements and regions are identified, which

will offer useful insights to the in-depth exploration of underlying formulating and

regulatory mechanisms of 6mA. Exploiting its accurate prediction, we performed

whole-genome scan using DeepM6A for cataloging all potential 6mA sites. Further
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enrichment analysis of the complete in silico 6mA catalogs revealed the enriched

distribution of 6mA in tRNA genomic regions. This 6mA-tRNA association lends

support to our recent hypothesis that the genomic region of tRNA may form a similar

secondary structure as tRNA, which then can be recognized and methylated by the

tRNA methyltransferase.

6.2.1 DeepM6A Accurately Predicts 6mA Candidate Sites

We tested DeepM6A in three representative model organisms, namely, A. thaliana

(eukaryote, plant), D. melanogaster (eukaryote) and E. coli (prokaryote). As a

benchmark, classical k-mer based logistic regression (LR) was also evaluated. The raw

SMRT-seq data of A. thaliana, D. melanogaster and E. coli were collected from the

PacBio public database. Base modification detection was done to generate an initial

set of 6mA sites following the automated data analysis workflows recommended by

PacBio. To reduce false positives, we further filtered out the following candidates:

(1) any sequence variance located between 10bp upstream and 5bp downstream of

the identified modification site; (2) the variation of estimated methylation level is

greater than 30%. As a result, we ended up with 19,632, 10,653 and 33,700 6mA

sites for A. thaliana, D. melanogaster and E. coli, respectively. These sites account

for 0.025696% (76,401,454), 0.013418% (79,393,495) and 1.475402% (2,284,124)

proportion of whole-genome adenine sites. The above 6mA sites were used as positive

samples in prediction models. To generate negative samples, we sampled the same

numbers of non-methylated adenine sites randomly from the whole-genome sequences.

At the same time, for the sampled negative non-methylated sites, we required that
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their distance to any positive methylated site be at least 200 bp away. Then, for

both positive and negative samples, contextual sequences around the adenine site at

each side were extracted as input for predictive models. We considered the lengths of

flanking sequences from 3 bp to 200 bp. We divided all positive and negative samples

into three sets for training, validation and testing, respectively, based on their genomic

locations. Specifically, for each chromosome of species, we split it into 10 equal

segments. We then randomly picked one segment and used the samples within that

segment for testing. The samples on the nearest half upstream and half downstream

segments were used for validation. The rest of all sites were used for training

purpose (Green). In this manner, we had a ratio of 8:1:1 among training, validation

and testing datasets, where training and testing parts are strictly non-overlapped.

Taking the +/- 30bp flanking sequences as input, DeepM6A is capable of accurately

predicting 6mA sites with average area under the receiver operating characteristic

curves (AUC) of 0.9564, 0.9637 and 0.9994 for A. thaliana, D. melanogaster and E.

coli, respectively (Figure 6.7a), as evaluated by the holdout testing genomic sequences

(Online Methods). The salient performance difference between three model organisms

implies the more challenging task of identifying 6mA sites and associated sophisticated

patterns in advanced eukaryotes than in primitive prokaryotes.

6.2.2 DeepM6A Effectively Exploits Signals from Contextual Sequences

We varied the contextual length of input sequence from 3bp to 200bp, to demonstrate

the capability of DeepM6A in exploiting signal information from contextual sequences.

With varied input sequence lengths, DeepM6A outperformed LR consistently (Figure
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6.7b). Specifically, the performance of DeepM6A keeps improving with the length

and reaches a plateau after 10bp for both A. thaliana and D. melanogaster. In

contrast, for LR, while increasing the length is beneficial initially, it has opposite

effects after 7bp. This finding confirms that the immediate up/down-stream 7-10bp

region of 6mA site is critical [185]. However, there may be additional subtle and/or

sophisticated signals beyond the 10bp position. This distant signal can be captured

by DeepM6A as indicated by its increased performance, whereas the extended region

proves deleterious for the k-mer based approach. We attribute the DeepM6A’s

superiority and robustness to its hierarchical representation of regulatory patterns

and accuse the k-mer based methods of their inherent drawbacks of handcrafted

feature extraction.

6.2.3 DeepM6A Maintains Good Sensitivity at Single Nucleotide Resolution

The non-N6-methylated adenines in the control cohort are at least 200bp away from

any 6mA. To show the robustness of DeepM6A with single-nucleotide sensitivity,

for each 6mA site, we selected its closest non-N6-methylated adenine and built a new

control cohort (> 75% fall within 5bp of 6mA sites). At the contextual length of 30bp,

there is a substantial overlap between cases and the new controls, making separation of

6mA from control more challenging. We also re-evaluated previously trained models.

The performance of DeepM6A drops a little, but remains consistently high, while

the performance of LR deteriorates substantially (Figure 6.7c). This robustness of

DeepM6A advocates its application to 6mA prediction at single-nucleotide resolution.
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6.2.4 DeepM6A Outperforms Standard Deep Learning Approaches

In addition to the classical k-mer based LR, we also compared DeepM6A with a

standard multi-layer perceptron network [135] (MLP) that uses the same input as

our method for predicting N6-methyladenine sites. The input of MLP is also the

one-hot encoding of 61 nucleotides centered on the target adenine. The training,

validation and testing procedures exactly followed the way DeepM6A was optimized.

The predictive capacity under different contextual sequences and the robustness of

single nucleotide sensitivity are reported (Figures 6.2 and 6.3). DeepM6A outperforms

MLP particularly for longer flanking sequences. As with LR, the performance of MLP

keeps improving with the length initially but degrades slightly after 10bp (Figure

6.2). Regarding single nucleotide sensitivity, both DeepM6A and MLP share the

similar robustness. Overall, the one-hot encoding is a better feature representation by

preserving the primitive sequences in comparison with k-mer format. The hierarchical

feature extraction of DeepM6A is more powerful than that of MLP. We, therefore,

conclude that DeepM6A is both precise and robust in predicting 6mA. Its superiority

is at least in part attributed to its deep network structure, which uses several hidden

layers to learn a high-level representation of the DNA sequence hierarchically. To

elucidate the power of this hierarchical representation and learning, we visualize the

positive and negative samples using t-SNE [109] based on the features learned at

different network layers. The features become more and more discriminative along

the layer hierarchy, with methylated and non-methylated sites mixed at the input

layer, whereas a clear separation culminating in the output layer. Interestingly, with

higher methylation level, the better the separation, as observed in the last layer
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(Figure 6.8a-c). This is also consistent with the observed high correlation between

predicted probability and methylation level (Figure 6.4).

6.2.5 SM-CAP Can Reveal Advanced Cis-regulatory Patterns

After identifying 6mA, the next step typically is to search for regulatory sequences in

surrounding regions. Unlike conventional motif analysis [11, 45, 75], we developed

a saliency maps-based context analysis protocol (SM-CAP). SM-CAP works by

quantifying the contribution of a single base in the modeling context of all other

participating bases, such as the non-linear models DeepM6A employs. In contrast,

conventional motif analysis assumes simple independence and additive effects among

regulatory bases [75]. Our current knowledge suggested that genomic 6mA may not

be conserved. Such conservancy status is defined conventionally as traditional motif

dentition. Advanced nonlinear motif patterns can exist and exhibit unconventional

conservancy status. Take the following simulated data for example.

Suppose there is a 61-bp DNA segment with Adenine (A) in the center, and A,

C, G, and T distributed evenly at the rest loci. The central A will get methylated

if and only if a combination of A, C, G, T shows at four specific loci X1, X2, X3

and X4. The order A, C, G, and T does not matter, for example, ACGT, TCGA or

GATC, can all lead to the methylation of the central A. We can see that the motif

pattern at the four loci X1, X2, X3, X4 is not conserved, according to conventional

conservancy status definition. Conventional motif search algorithms would fail to

recognize this motif. As shown in the following figure, our proposed SM-CAP can
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successfully identify the four loci and assign appropriate importance scores for the

four bases, in comparison with other irrelevant loci.

Our SM-CAP can thus capture advanced patterns that are missed by traditional

analysis, as verified by the simulation studies (Online Methods).

6.2.6 Cis-regulatory Patterns of 6mA Revealed by SM-CAP

We used SM-CAP to analyze and visualize the contextual region of 6mA for the three

species (Figure 6.9a-c). We can see that the central region is the most critical and that

eukaryotes exhibit more sophisticated patterns than the prokaryote. Interestingly,

we observe asymmetrical contributions of the flanking contextual sequences, with

the downstream more predominant than the upstream sequences, in terms of both

strength and length. To further quantify and confirm their contributions, we perturb

nearby regions alternately and evaluate their impact on the prediction performance

(Figure 6.9d-f and Figure 6.5). We observed that the central M0 (+/- 2bp) and

downstream D1 [+3bp, +7bp] regions play the most important role in predicting

6mA across different species, which is in line with cis-regulatory patterns elucidated

by SM-CAP. We noticed some patterns are shared between the two eukaryotes, e.g.,

GAGG [-1bp, +2bp] as shown in Figure 6.9a and 6.9b. The normalized scoring

maps thus present a good summary of underlying conventional conserved motifs,

which might co-regulate 6mA. Further examination of the salient patterns revealed

by SM-CAP shows that these patterns are more discriminative, and account for more

than 45% of the 6mA sites with odds ratio of more than 20 for A. thaliana and D.

melanogaster, respectively. It is noted that conventional conserved motifs could be
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a special case of the patterns SM-CAP can capture. An example in point is the

well-known motif GATC [-1bp, +2bp] in E. coli [14], as identified successfully by

SM-CAP as well.

6.2.7 A Whole-genome 6mA Catalog Made by DeepM6A

Lastly, we use DeepM6A to make genome-wide 6mA prediction by scanning the whole

genomes (Supplementary Tables 1-3). To the best of our knowledge, this is the

first attempt for the systematic identification of 6mA de novo sites based upon just

sequence information. A substantial amount of novel 6mA candidate sites can be

mapped. We expect the catalog of these novel potential 6mA sites would be useful

for investigating the functional roles of 6mA. For instance, further enrichment analysis

using this in silico catalog reveals that 6mA is enriched in tRNA regions of A. thaliana

and D. melanogaster (6.10b and d). We experimentally confirm this novel association

by identifying a methyltransferase for m6A in tRNA (Gu et al., in preparation).

However, using just the in vivo validated 6mA sites reported to date leads to less or

no significant enrichment (Figure 6.10a and c).

6.3 Discussion

In conclusion, our novel DeepM6A method can predict 6mA sites with high accuracy

and reliability. It is noted that our prediction is purely based on sequence information.

In other words, only cis-effect has been captured. This means that what we predict

is the candidacy or potential for being a 6mA site. Whether a candidate is 6mA-ed

or not will also depend on many other exogenous trans-effects. Nevertheless, this in
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silico 6mA candidacy map helps to provide a global view of 6mA events. Our method

has uncovered many interesting regulatory patterns that are missed by conventional

motif analysis and as such is worth further investigation. Taken together, our work

helps to elucidate the regulatory mechanisms of 6mA and contributes new insights to

the in-depth exploration of their functional effects.
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Figure 6.7 The DeepM6A precisely predicts DNA 6mA sites from sequence with
single-nucleotide sensitivity for A. thaliana, D. melanogaster and E. coli. a Receiver
operating characteristic (ROC) curves for 10 independent experiments and average
area under ROC curves (AUC, mean S.D.). b Comparison of DeepM6A versus k-mer
based LR across varied contextual sequences. c Impact comparison of remote (200bp)
versus closest control cohorts of non-methylated adenines on predictive capacity of
DeepM6A and k-mer based LR. Model performance is measured with box plots of
AUC over for 10 independent experiments.
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Figure 6.8 t-SNE visualization of the last hidden layer representations of methy-
lations at different levels: lowly (0%-20%), intermediate (20%-80%), and highly
(80%-100%). a A. thaliana b D. melanogaster c For E. coli, almost all 6mA sites
lie in the highly methylated region.
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Figure 6.9 DNA motifs and loci revealed by SM-CAP. a-c cis-regulatory patterns
(6mA based in 0). d-f Evolution of predictive capacity of DeepM6A when perturbing
nearby regions. M0 and D1 are critical regions.
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Figure 6.10 Genomic landscape of 6mA. a c In vivo enrichment analysis. b d
In silico enrichment analysis. Two-tailed t-test are performed (*p < 0.05, ***p <
0.0005).
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CHAPTER 7

COMPETING RISKS REPRESENTATION IN PEER-TO-PEER

LENDING

7.1 Introduction

Online peer-to-peer lending is expected to benefit both investors and borrowers

due to their low transaction cost and the elimination of expensive intermediaries.

From lenders’ perspective, maximizing their return on investment is an ultimate

goal during their decision-making procedure. In this dissertation, we explore and

address a fundamental problem underlying such a goal: how to represent the two

competing risks, charge-off and prepayment, in funded loans. We propose to model

both potential risks simultaneously, which remains largely unexplored until now.

We first develop a hierarchical grading framework to integrate two risks of loans

both qualitatively and quantitatively. Afterwards, we introduce an end-to-end deep

learning approach to solve this problem by breaking it down into multiple binary

classification sub-problems, which are amenable to both feature representation and

risks learning. Particularly, we leverage deep neural networks to jointly solve these

sub-tasks, which leads to the in-depth exploration of the interaction involved in

these tasks. To our knowledge, this is the first attempt to characterize competing

risks for loans in peer-to-peer lending via deep neural networks. The comprehensive

experiments on real-world loan data show that our methodology is able to achieve an

appealing investment performance by modeling the competition within and between
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risks explicitly and properly. The feature analysis based on saliency maps provides

useful insights into payment dynamics of loans for potential investors intuitively.

7.2 Related Work

Some related studies are discussed as follows.

Peer-to-Peer Lending: In practice, lenders expect that their invested loans get

fully funded and issued successfully. Thus, the prediction of fully funded loans was

explored [77]. They are able to aid in loan evaluation in terms of investment efficiency.

Another important research direction in P2P lending is the risk assessment, which

can help lenders reduce the potential risk of investment. The common strategy is

to group loans into two categories based on the charge-off risk. Afterwards, large

numbers of classifiers are leveraged to conduct classification learning [22, 47, 183].

For example, some easy-to-interpret methods like logistic regression were proposed

to model the credits of loans and borrowers from an economic perspective [47, 183].

Byanjankar et al. also proposed a credit scoring model based on artificial neural

networks to detect potential charged-off loan applications [22]. More recently, Zhao

et al. considered fully-funded probability, charge-off risk and winning-bid probability

simultaneously to propose a multi-objective portfolio optimization approach [182].

These works concentrated on the overall charge-off risk yet ignored its fine-grained

survival time in terms of risk modeling. More importantly, the risk of prepayment is

in lack of exploration in the above researches.

Competing Risks Analysis:
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The popular methods are a cause-specific competing risks model [94] and a

proportional hazards model proposed by Fine and Gray [54]. Regarding competing

risks of charge-off and pre-payment in loan data, the above methods can be naturally

used for learning payment dynamics. Survival analysis, however, doesn’t emphasize

the competition within and between multiple risks. Our proposed framework can

integrate such consideration into the modeling effectively. Sirignano et al. proposed

to capture the evolution of mortgage statuses by modeling the transition probability

using deep learning [146]. Our model would be augmented by the consideration

of intermediate state transition context provided that intermediate statuses are

available. Unfortunately, in P2P lending, the trajectory of the loan state process

is not publicly accessible. The final status or a snapshot status of loans is only

available at the released time point. A cause-specific survival model [87] has been

utilized to capture competing nature of prepayment and default for mortgage risks

by introducing two position intensities [138]. The focus of the above work is on

obtaining a better understanding of economic factors associated with mortgage risks

via modeling survival time as discussed before [138]. Actually, a cause-specific survival

analysis is also used as a baseline in our study where lognormal and exponential

intensities are applied. Our preliminary work simply assumed that prepaid loans

are better than charged-off ones and considered only closed loans with the single

repayment term [156]. In this chapter, we propose the hierarchical grading and further

consider censored loans with multiple repayment terms comprehensively.

Ordinal Regression: Ordinal regression tries to solve an intermediate problem

between regression and classification [52,53,139]. The target variable is ordinal, and

151



the relative order between different values is emphasized in model learning1. Li et

al. proposed a general framework to systematically reduce the ordinal regression

to a series of binary classification [95]. It enables well-tuned binary classification

approaches to be readily transformed into appealing ordinal regression algorithms

with sound theoretical and empirical support. Under this framework, different ordinal

regression algorithms like perceptron-based and SVM-based methods [76, 142] are

proposed to solve related problems.

Different from classical ordinal regression problem, our work is the first attempt

to assess two competing risks of time-to-event loan data hierarchically. Besides, we

introduce masking layers to integrate censored data and multi-term loans into the

learning of deep neural networks.

7.3 Methodology

In this section, we describe the procedure of competing risks grading in P2P lending

and then present the representation learning approach of deep neural networks.

7.3.1 Hierarchical Grading of Competing Risks

Let D represent the original dataset of loans including N loans {(xi, si, ti)}Ni=1, where

xi ∈ X = Rd is the input feature vector, and si ∈ S = {1, 2, 0} is the status

of loans with 1, 2, and 0 being charged-off, fully-paid and censored, respectively.

ti ∈ T = {0, 1, . . . , T − 1, T} is the total received payment count, where T is the

official scheduled term of a loan. Charged-off and fully-paid loans are also called

closed loans here. In practice, few loans cannot receive any payment, we thus have

1https://en.wikipedia.org/wiki/Ordinal regression
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T = {1, . . . , T−1, T} for simplicity. It is noted that fully paid loans involve two types

of payments, i.e., prepayment and scheduled payment as illustrated in Figure 7.3. The

prepayment is thought of as that loans are paid off before the official due date, whereas

loans paid off strictly based on the schedule are the type of scheduled payment. As

with the risk of charge-off, prepayment is another risk existing in investments since

less interest can be secured compared with scheduled payment. Besides, the loans

without a definite status of charge-off or full-payment are referred to as censored

loans. As diagrammed in Figure 7.3, the maximum of total received payment counts

for charged-off and censored loans is T − 1 since T monthly payments are equivalent

to the status of scheduled full-payment.

To model both status and payment count of loans, we propose a risk grading

rule g : S × T → Y as follows:

yi =


dti , si = 1

pti , si = 2

cti , si = 0

(7.1)

where d, p and c stand for default (i.e., charge-off), full payment and censor,

respectively. si and ti are the status and survival time as mentioned before.

Consequently, we have the corresponding converted dataset O = {(xi, yi)}Ni=1, where

yi ∈ Y = {c1, c2, . . . , cT−1, d1, d2, . . . , dT−1, p1, p2, . . . , pT}. For closed loans, we have

definite final statuses. As per usual, we adopt ≺ as the grading relation. For closed

loans, risk grades follow d1 ≺ d2 ≺ . . . ≺ dT−2 ≺ dT−1, and p1 ≺ p2 ≺ . . . ≺ pT−1 ≺

pT . The philosophy behind such a grading strategy is straightforward: in regards to

loans of the same status, the more monthly payments are received, the more desirable
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loans are. Therefore, the identical loans receiving more payment times are assigned

higher grades accordingly. For censored loans, their categories are highly related to

the observation time point, which leads to the uncertainty of final payment status

and payment count. We thus don’t place grading on different categories here. In

Section 7.3.3, we will revisit this problem for embedding censored loans into the

unified representation of closed loans.

7.3.2 Methodology Framework Overview

Figure 7.1 is given to facilitate the understanding of our modeling pipeline. The

framework mainly consists of four components: (1) Generation of risk grades based

on loan status, survival time and loan term. (2) Conversion from the hierarchical

ordinal grades to multiple binary outputs of multiple terms. The developed network

architecture is reported in Figure 7.4. (3) Competing risks prediction and evaluation

for held-out loan data. (4) Model interpretation with respective to feature importance

visualization.

7.3.3 Deep Learning Approach

Mathematically speaking, the risk grading can be defined to search for a mapping

rule from input features to the grading category h(·) : X → Y such that

arg min
h

1

N

N∑
i=1

Cyi,h(xi) (7.2)

where C is a defined K×K cost matrix with Cyi,h(xi) that a sample (xi, yi) is predicted

as category h(xi). It is reasonably assumed that Cyi,h(xi) = 0 if yi = h(xi), otherwise,
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Cyi,h(xi) > 0 [95]. Naturally, the cost mechanisms should give more penalty to

erroneous prediction of the grading category. That is to say, Cyi,h(xi)−1 ≥ Cyi,h(xi)

if h(xi) ≤ yi and Cyi,h(xi) ≤ Cyi,h(xi)+1 if h(xi) ≥ yi. A popular choice is absolute cost

matrix defined by Cyi,h(xi) = |yi − h(xi)|.

For the purpose of competing risks learning and predictive inference, we detail

five procedures as follows.

Conversion from Closed Grading Categories to Multiple Binary Outputs

The loan data containing K grading categories can be converted to K binary

classification problems for each type of status. Concretely speaking, given hierarchical

grading dataset of closed loans Oclosed = {(xi, yi)}Nclosed
i=1 ⊂ O = {(xi, yi)}Ni=1 where

Nclosed is the number of closed loans, the specific training data for binary classifier k

is Bk = {(xi, yki , wki )}
Nclosed
i=1 where yki indicates whether the category of sample (xi, yi)

is larger than or equal to category k, and wki is the corresponding weight. Formally,

yki is defined as follows:

yki =


1, yi ≥ k

0, otherwise

(7.3)

To ensure that the original cost of risk grading is bounded by weighted zero-one loss

on converted examples [95], it is specified that wki = |Cyi,h(xi) − Cyi,h(xi)+1|. Since

absolute cost matrix is adopted here, wki = 1. Another equivalent interpretation is

that if the category of a sample is yi = k, it is grouped into lower-grading categories

{1, 2, . . . , k − 1} as well. In this case, the final target vector is z = (1, . . . , 1, 0, 0, 0),

where zi (1 ≤ i ≤ k) is set to be 1 and the remaining elements are zeros. It also implies
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that the loan has gone through the previous monthly payments. In this manner, the

final predicted probability vector is thus expected to share the following property:

ẑi(i ≤ k) approaches 1 and ẑi(i > k) is close to 0. For types of charge-off and full

payment, we have K = T−1 and T , respectively, as derived by Equation 7.1. We then

further propose to fuse multiple binary outputs of two statuses to generate a unified

representation (a vector of 2T−1 elements) with hierarchical grading constraints (e.g.,

charge-off and pre-payment of the loan with 60-month term as diagrammed in Figure

7.2). In this case, yi = dk and yi = pk can be represented as (1d1∼dk ,0dk+1∼dT−1
,0p1∼pT )

and (0d1∼dT−1
,1p1∼pk ,0pk+1∼pT , ), respectively.

Representation of Censored Loans For the dataset of censored loansOcensored =

{(xi, yi)}Ncensored
i=1 ⊂ O = {(xi, yi)}Ni=1 where Ncensored is the number of censored

loans, we embed yi = ck (1 ≤ k ≤ T − 1) into the representation scheme of

closed loans with z = (1d1∼dk ,0dk+1∼dT−1
,1p1∼pk ,0pk+1∼pT ). Here 1d1∼dk and 1p1∼pk

indicate that the status of charge-off or full-payment is possible and k monthly

payments have been received until the observation time point. However, the final

payment times remain unknown yet. Thus, 0dk+1∼dT−1
and 0pk+1∼pT here lead to

a biased representation. To correct this, we further introduce a masking vector

m = (0d1∼dk ,1dk+1∼dT−1
,0p1∼pk ,1pk+1∼pT ) where mi = 1 if element i is masked, mi = 0

otherwise. It can be utilized to exclude biased elements from the procedure of model

learning accordingly (e.g., censored loans of 60-month term as shown in Figure 7.2).

Fusing Multiple Terms with Padding In practice, loans in P2P lending

usually involve multiple scheduled terms. For example, two types of 36-month and
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60-month are observed in Lending Club. To integrate loans of multiple terms for

a unified representation, we propose to perform zero padding on representation

vector of short terms. Specifically, given L different scheduled terms, Tl ∈

{T1, . . . , TL}, we have the maximum term Tmax = max({T1, . . . , TL}). yi = dk

for loan i of term Tl can be zero-padded from (1d1∼dk ,0dk+1∼dTl−1
,0p1∼pTl ) to

(1d1∼dk ,0dk+1∼dTl−1
,0dTl∼dTmax−1

,0p1∼pTl ,0pTl+1∼pTmax
). As 0dTl∼dTmax−1

and 0pTl+1∼pTmax

are in no sense, we also introduce a masking vector (0d1∼dk ,0dk+1∼dTl−1
,1dTl∼dTmax−1

,0p1∼pTl ,1pTl+1∼pTmax
)

in the same manner, as mentioned in last section. Figure 7.2 illustrates this point by

loans of 36-month term.

Deep Neural Networks Armed with the above analysis, we leverage deep neural

networks to conduct a series of binary classification. As shown in Figure 7.4, the

designed networks consist of an input layer of d-dimension input feature nodes, fully

connected shared and parallel individual layers with masking outputs, and L parallel

output layers of 2Tmax− 1 nodes. Shared layers learn common feature representation

across multiple terms, whereas individual layers target specific patterns for loans

of the corresponding term. Different from traditional multi-class classification neural

networks with softmax activation function of the output layer, the sigmoid function is

adopted for the underlying architecture. The main idea is to enable output probability

of different classifiers to be estimated independently without constraints with each

other. The corresponding loss is the widely-used binary cross entropy function for

loans of term l:

Jl =− 1

Nl

Nl∑
i=1

∑
v∈V

(1−mv
li)
[
yvlilogf vl (xli)+

(1− yvli)log(1− f vl (xli))
] (7.4)
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where V = {d1, . . . , dTmax−1, p1, . . . , pTmax}. The probability of output node v ∈

{d1, . . . ,

dTmax−1, p1, . . . , pTmax} is denoted as f vl (·) ∈ [0, 1]. Since deep neural networks with

competing risks representation are developed here, we call it crDNN for brevity.

Finally, we can obtain the total loss function over different terms:

J =
L∑
l=1

Jl (7.5)

Predictive Inference Suppose a new loan xlj is given, we aim to estimate three

metrics: charge-off or default probability p(xlj), multi-class probability pv(xlj) and

the survival time s(xlj).

The estimation formula of p(xlj) can be naturally derived as follows:

p(xlj) =
fd1l (xlj)

fd1l (xlj) + fp1l (xlj)
(7.6)

When the binary classifiers f vl (·) are consistent, i.e., fd1l (xlj) ≥ . . . ≥ f
dTl−1

l (xlj)

and fp1l (xlj) ≥ . . . ≥ f
pTl
l (xlj), multi-class probability pv(xlj) can be estimated by

pv(xlj) =


f vl (xlj)− f v+1

l (xlj), v ∈ Vl, v /∈ {dTl−1, pTl}

f vl (xlj), v ∈ {dTl−1, pTl}
(7.7)

where Vl = {d1, . . . , dTl−1, p1, . . . , pTl}. Normalization on pv(xlj) is introduced to

ensure
∑

v∈Vl p
v(xlj) = 1.

The survival time probability distribution sk(xlj) can be estimated by

sk(xlj) =


f
pTl
l (xlj), k = Tl

fdkl (xlj) + fpkl (xlj), k ∈ {1, 2, . . . , Tl − 1}
(7.8)
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s(xlj) can be estimated by

s(xlj) = min{k : sk(xlj) < 0.5} (7.9)

The current modeling scheme, however, cannot explicitly ensure the strict consistency

among different binary classifiers theoretically. As in [95, 126], we apply the

above formula to prediction directly since the consistency can be observed well in

practical experiments. Furthermore, The theoretical consistency will bring about the

significant modeling complexity.

7.4 Experiment

In this section, we describe our experimental procedure and report empirical

evaluation results of the proposed framework on the dataset from Lending Club.

The whole evaluation procedure is composed of two aspects: 10-fold cross-validation

and moving-time window experiments.

7.4.1 Experimental Data and Preprocessing

We downloaded loan data as of Quarter 4, 20162 from Lending Club. There are

a total of 1, 321, 864 loan records, which involve types of 36-month and 60-month

regarding the scheduled term. Large numbers of loans were issued after the year of

2015. Particularly, more than 60% of loans are still in progress (Current in Lending

Club) among all issued loans, which are often called censored data in classical survival

analysis. In addition to censored loans, we also focus on closed loans, which mainly

2https://www.lendingclub.com/info/download-data.action
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include statuses of charge-off (Default and Charged Off in Lending Club) and full

payment. There are still a tiny proportion of other statuses such as in grace period,

late and so on, which are filtered out for simplicity.

Since released datasets are statistics of historical loans, they involve many

features unavailable in profiles of loans when they are listed for investment. In order

to simulate the real-world investment scenario to the maximum extent, we filter out

features of this kind for facilitating the payment dynamics prediction of loans based

on the learned model.

Then we group the related features of loans into numerical and categorical

clusters. Regarding numerical features (e.g., loan amount, FICO score), we conduct

standardization for training data to transform features to have zero mean and unit

variance. Such preprocessing is amenable to the acceleration of the optimization

procedure. With the aid of original center and scale of training features, we

standardize numerical features of both validation and test data accordingly. In

regards to categorical features (e.g., grade and purpose), we utilize one-hot encoding

for training, validation and testing data to represent different categories for the same

feature. Afterwards, we fuse numerical and categorical features together and generate

the final input feature set.

After data cleaning, we finally have a total of 1, 269, 019 loans for study as

detailed in Table 7.1. To tune hyper-parameters for the proposed framework and

proceed with the modeling evaluation, we conduct stratified 10-fold cross validation.

What’s more, we split the whole dataset with moving time cutoffs as detailed in Table

7.2.
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Table 7.1 Statistics of Loans of Interest

Charge off Full Payment Censor Total

36-month 58,085 (6.39%) 312,158 (34.33%) 538,981 (59.28%) 909,224

60-month 37,096 (10.31%) 78,642 (21.86%) 244,057 (67.83%) 359,795

Total 95,181 (7.5%) 390,800 (30.8%) 783,038 (61.7%) 1,269,019

Table 7.2 Statistics of Loans Issued after the Cutoff Time Point

07/01/14 09/01/14 11/01/14 01/01/15 03/01/15 05/01/15

Charge off 48,716 42,643 36,749 33,086 27,166 21,630

Full Payment 163,600 144,211 126,300 114,711 97,276 82,095

Censor 731,919 710,652 686,729 667,892 634,529 596,853

Total 944,235 897,506 849,778 815,689 758,971 700,578

7.4.2 Experimental Results

Evaluation Metrics We consider three-fold comparisons: (a) Regarding the binary

classification of charged-off and fully-paid loans, the classical area under receiving

operating curves (AUC@ROC) [151,154,157] and precision-recall curves (AUC@PR)

[39] are adopted.

(b) The concordance index (C-index), which quantifies the quality of rankings

with censored data being considered, is a standard performance measure for model

assessment in survival analysis [72]. (c) In Subsection 7.4.2, the return on investment

(ROI) are analyzed comparatively in terms of the proper modeling of competing risks.

161



Baseline Algorithms We compare our proposed framework with the following

schemes: (1) Lending Club (LC) has its own grading and evaluation system. Each

issued loan is assigned a grade from A to G (five sub-grades per grade) with a matched

interest rate. Generally speaking, the higher the interest rate is, the riskier the

corresponding loan is. (2) Logistic regression (LR) is frequently utilized for risk

evaluation in general purpose credit scoring and P2P lending study [47,183]. In order

to facilitate the training with the large-scale dataset, we construct a simple neural

network with one input layer and sigmoid activation function with GPU acceleration.

Stochastic gradient descent [19] with Nesterov momentum of 0.9, learning rate of

0.01 and decay rate of 10−6 and modern anti-overfitting technique dropout [150] are

adopted. (3) To explore the role of hierarchical grading regularization, we also design

a multi-class deep neural network without grading constraints (mcDNN), which has

the same architecture and hyper-parameter settings (detailed in next section) with

crDNN. The multinomial cross-entropy is adopted as loss function for model learning.

The activation function of the output layer is the softmax function. (4) Competing

risks based survival analysis (CRSA) [8,94] is recently applied to credit scoring [111,

177]. There are cause-specific model [87, 138] and alternative proportional hazards

model proposed by Fine and Gray [54]. The lognormal and exponential distributions

are observed for risks of charge-off and pre-payment, respectively. In observance

of specific well-studied probability distributions, the parametric modeling of risks

(e.g., cause-specific) is more powerful to capture the payment dynamics than non-

parametric or semi-parametric (e.g., proportional hazards model) modeling strategies

are. Thus, we adopt the former cause-specific model. The basic R routine package
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‘CFC’ [110] is employed to implement the learning procedure. The maximum number

of subdivisions Nmax = 400 and the threshold for relative integration error rel.tol =

1e− 04.

Experimental Setting and Hyper-Parameter Tuning We utilize python

libraries TensorFlow 1.0.0 and Keras 2.0.9 to build the architecture of deep neural

networks. NVIDIA Tesla K80 GPU with the memory of 12GB is used for model

training. There are a total of 4 fully connected hidden shared layers with 200 nodes in

each one. Leaky rectified linear unit with gradient α = 0.001 for negative inputs [108]

is adopted as activation function of hidden layers. The dropout rates of 4 hidden

layers are 0.5, 0.5, 0.4, 0.4, respectively. Individual layers share the same architecture

across different terms, which are composed of 2 layers with 200 nodes. The batch size

is 128. The maximum of epochs is 500 with early stopping of patience of 50 epochs.

Table 7.3 Overall Performance for the Proposed Methodology and Baselines: Mean
(Standard Deviation)

Model AUC@ROC AUC@PR C-index

LC 0.6784 (0.0036) 0.3212 (0.0029) –

LR 0.7152 (0.0031) 0.3731 (0.0038) –

mcDNN 0.7088 (0.0028) 0.3516 (0.0029) 0.5101 (0.0022)

CRSA 0.6930 (0.0044) 0.2904 (0.0063) 0.5638 (0.0015)

crDNN 0.7255 (0.0032) 0.3914 (0.0040) 0.5797 (0.0021)
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Table 7.4 Matched One-tailed T-test If the Mean of Metrics for crDNN is Greater
than Baselines

AUC@ROC AUC@PR C-index

LC 2.20E-16 2.20E-16 –

LR 4.30E-07 2.00E-09 –

mcDNN 2.00E-10 5.40E-15 7.90E-24

CRSA 8.13E-13 2.20E-16 3.94E-13

Performance and Analysis We randomly split the whole dataset into 10

partitions and then do 10-fold cross-validation experiments. This data splitting

strategy can at least help to evaluate the extent to which the model captures the

underlying payment patterns behind historical loan data. For closed loans, the

comparison results are shown in Tables 7.3 and 7.4. Overall, our model can present a

sound performance gain on baseline algorithms. For AUC@ROC, crDNN seems to be

slightly better than others in terms of discriminating charged-off loans from fully-paid

ones. In this case, the comparison on AUC@PR is also reported, which is more

amenable to the modeling evaluation for class imbalance [39]. The observed AUC@PR

of around 0.4 for the proposed method is appealing given the class imbalance ratio

of 1:4 between charge-off and full payment. It is demonstrated that such superiority

of the proposed model is more evident against baseline methods. Either AUC@ROC

or AUC@PR, however, focuses on the binary class decision, which cannot assess the

fine-grained payment dynamics. Therefore, C-index is further introduced to quantify

the ranking quality of the proposed method. It is noted that neither LR nor LC is

capable of rendering the time-to-event prediction. Thus, we mainly compare crDNN
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with its variant mcDNN and CRSA. The tremendous dominance of crDNN over

mcDNN can be observed when the hierarchical ordinal regularization is taken into

account. The evident superiority still holds true for the comparison with CRSA.

The difference in performance of the proposed method and baselines is also

evidenced by the statistical significance test as detailed in Table 7.4. Altogether,

the proposed method is able to discriminate different loan statuses and predict the

time-to-event of loans more accurately as compared with baselines.

Return on Investment under Naive Selection Strategy Apart from the

aforementioned comparisons purely based on the risk probability, we further perform

in-depth exploration in ROI for this sub-section. ROI is of high concern to investors,

which is closely correlated with competing risks in funded loans.

Equated monthly installment (EMI) is commonly adopted as a payment scheme

for P2P lending3. Formally, the monthly installment is given by A = P r(1+r)T

(1+r)T−1
where

P is the principal (funded amount in Lending Club) and r is the monthly interest

rate. T is the total number of monthly installments, which is also the scheduled term

of loans. The annual interest rate in this dataset should be transformed to monthly

interest rate by being divided by 12. Essentially, a larger proportion of each payment

is set aside for interest at the beginning of the amortization schedule compared with

the end of the schedule. For ease of notation, we omit some subscriptions but retain

unambiguity in the following formulas.

3http://www.investopedia.com/terms/e/equated monthly installment.asp
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The monthly paid interest Ik can be calculated mathematically as

Ik =


P × r, k = 1[
P (1 + r)k−1 − A

∑k−2
j=0(1 + r)j

]
r, 2 ≤ k ≤ T

(7.10)

Now given a loan x, the probability of risk category v to which it belongs is pv(x) as

derived in Equation 7.7, where v ∈ {d1, . . . , dT−1, p1, . . . , pT}.

Afterwards, the estimated ROI for loan x can be formulated as follows4:

R̂OI = 1
P

{
A
∑T−1

k=1 p
dk(x) +

∑T
k=1 p

pk(x)
[
P + Ik

]
− P

}
(7.11)

Equation (7.11) can also be applied to estimate the expected ROI provided by mcDNN

and CRSA. Regarding mcDNN, pv(x) can be replaced by output probability of the

corresponding class. For CRSA, the cumulative incidence of hazard can be converted

to monthly hazard rate since it is discrete. To be specific, we have charge-off and

pre-payment hazard rates rt1(x) and rt2(x) for loan x on monthly payment t. Since

they are conditional probabilities, the corresponding pv(x) for CRSA can be derived

as follows:

pv(x) =



r11(x), v = d1

r12(x), v = p1

rk1(x)
∏k−1

t=1

[
1− rt1(x)− rt2(x)

]
, v = dk

rk2(x)
∏k−1

t=1

[
1− rt1(x)− rt2(x)

]
, v = pk

rT2(x)
∏T−1

t=1

[
1− rt1(x)− rt2(x)

]
, v = pT

(7.12)

where k ∈ {1, . . . , T − 1}.

4Standard net present value (NPV) calculation approach is not adopted here as no records
of cash flow are available in the dataset.
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With the help of Equation (7.11), we utilize a naive selection strategy to compare

the ground-truth ROI of selected loans based on crDNN against that of mcDNN and

CRSA. In regards to the grading system of Lending Club and logistic regression,

we make use of the estimated probability of charge-off to select loans since they are

unable to provide the corresponding categorical probability for the estimation of ROI.

Basically, the naive strategy is to set up a parameter topRate to control the number

of selected loans, and then choose loans from all candidates based on given scores

(R̂OI or full-payment probability).

We conduct monthly selection on loans and monitor two metrics: 1) The

proportion of months with monthly ROI of selected loans being larger than that

of all loans on the same months. The monthly ROI on calendar month i is defined

by Equation (7.13). We call months of this kind good months for short. 2) The

aggregated ROI across different calendar months is also given by Equation (7.13)

accordingly.

ROIi =

∑Ri
j=1 Ωij −Ψij∑Ri

j=1 Ψij

ROI =

∑M
i=1

∑Ri
j=1 Ωij −Ψij∑M

i=1

∑Ri
j=1 Ψij

Ri = Ni × topRate

(7.13)

where Ωij and Ψij are the corresponding total received payments and funded

amount of loan j on month i, respectively. Ri and Ni are the number of selected

loans and all loans on month i, respectively.
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As shown in Figure 7.5, mcDNN, CRSA and crDNN perform better than

both LR and LC over different topRates. Such disparity mainly results from the

involvement of more fine-grained category of loans in risks modeling. Multifaceted

modeling of competing risks is thus more amenable to estimating the real-world ROIs.

Particularly, crDNN achieves the highest proportion of good months and the aggregate

ROI over different topRates. The superiority of the proposed method against CRSA

and mcDNN justifies the necessity of the simultaneous and explicit modeling of both

the competition among multiple risks and underlying ordinal constraints. It’s noted

that CRSA has a better performance than mcDNN in terms of C-index in Table

7.3, whereas this relationship is reversed in Figure 7.5. This is because survival

analysis focuses more on the estimate of survival time, whereas mcDNN doesn’t

impose any grading regularization effects on different fine-grained risk categories from

the survival time end. However, mcDNN is able to model the inherent competition

among fine-grained risk categories explicitly as mentioned in Section 7.1. To be

concrete, the gap between crDNN and CRSA demonstrates that the explicit modeling

of the competition within and between multiple risks is beneficial for improving ROI.

The disparate performance between crDNN and mcDNN indicates that the internal

grading constraint (time-to-event) involved in competing risks modeling coordinates

the learning procedure of deep neural networks better. Furthermore, the ROI-topRate

curves seem to be relatively steady across different topRates for LC and LR, whereas

they exhibit the decreasing trend with the growth of topRate for other three methods.

The proportion of good months for LC and LR is around 0.5 over different topRates.

This indicates that the selection of loans based on the lowest interest rate or charge-off
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probability is not a good solution. That is to say, they have the limited guidance

towards loan selection in terms of ROI.

Table 7.5 Performance Comparison: AUC@PR (C-index) for Moving-time Window

Type 07/01/14 09/01/14 11/01/14 01/01/15 03/01/15 05/01/15

LC 0.3661 (-) 0.3647 (-) 0.3593 (-) 0.3565 (-) 0.3477 (-) 0.3353 (-)

LR 0.3896 (-) 0.3926 (-) 0.3846 (-) 0.3837 (-) 0.3849 (-) 0.3728 (-)

mcDNN 0.3651 (0.5187) 0.3636 (0.5128) 0.3577 (0.5116) 0.3549 (0.5081) 0.3493 (0.5129) 0.3418 (0.5094)

CRSA 0.3343 (0.5739) 0.3368 (0.5739) 0.3362 (0.5736) 0.3381 (0.5731) 0.3402 (0.5737) 0.3333 (0.5721)

crDNN 0.3918 (0.5882) 0.3935 (0.5834) 0.3932 (0.5927) 0.3919 (0.5948) 0.3853 (0.5998) 0.3789 (0.6028)

Moving-time Window In addition to the overall 10-fold cross-validation, we

proceed to perform evaluation with a moving-time window of test data. Such

a preferable test scenario can simulate the real-world situations better. To be

specific, loans issued before the cutoff date are used for model development, while

those remaining loans are grouped into test dataset for empirical evaluation. The

distribution of the number of issued loans, however, is highly skewed to recent

years. The high concentration of loans towards the end of time period will lead

to unevenly distribution of survival time for those closed loans compared with the

overall real-world distribution. In this case, ROI analysis based on survival time of

only closed loans will introduce heavy bias into the model evaluation. Thus, we utilize

AUC@PR to evaluate the overall status of closed loans and C-Index to evaluate the

survival time of all loans including censored loans. More discussions about evaluation

metrics are detailed in Section 7.5.

The cutoff dates and the statistics of associated loans are reported in Table 7.2.

The overall empirical evaluation results for different time windows are provided in
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Table 7.5. In practice, Lending Club issues new loans regularly four times per day5,

whereas the issued dates of loans in our dataset are provided monthly. Additionally,

the time limit of issued loans for being fully funded is one month. Thus, we conduct

more in-depth comparisons on the monthly basis. Such kind of comparison is designed

to simulate the real-world issue of loans even though there is still a slight difference.

As C-index can incorporate all loans including censored loans, which is an unbiased

metric. Thus, we mainly apply C-index to different issued months for fine-grained

evaluation as shown in Figure 7.6. Both overall and fine-grained results show that

our method is able to outperform baselines.

Therefore, the proposed method is practically appealing based on empirical

repeated cross-validation and moving-time window experiments.

Table 7.6 The Most Salient Features Contributing to the Full-payment of Loans

Feature Type Feature Name

Numerical annual inc, total acc, fico range high

Categorical sub grade (A4, A5, B4, A3, B5), addr state (CO, DC,

NH, OR, MT, UT), purpose (wedding, credit card, debt

consolidation)

Saliency Maps based Feature Analysis After capturing competing risks, the

next step typically is to explore how input features shape the payment dynamics of

peer-to-peer loans. Modern saliency maps were proposed originally for visualizing

5http://blog.lendingclub.com/investor-updates-and-enhancements

170



Table 7.7 The Most Salient Features Contributing to the Charge-off of Loans

Feature Type Feature Name

Numerical dti, int rate, installment

Categorical grade (D, E, F), purpose (small business, medical,

moving, other, vacation), sub grade (G3, E5, D5,

E4, D2), addr state (MS, NY, LA, OK, IN, NE),

home ownership (RENT, OWN)

the way how deep convolutional neural networks can be queried regarding the spatial

support of a particular class given a specific image [145]. In this study, we extend

saliency maps [145] from convolutional neural networks to the proposed learning

architecture for quantifying the contribution of each loan feature in the modeling

context of all other features. For a loan with feature vector x0 and a risk category

of interest v, the main task is to figure out how elements of x0 shape output

probability f vl (x0) of category v. For the proposed learning method, the score f vl (x)

is a highly non-linear function of input x. f vl (x), however, can be approximated

by a linear function in the closeness of x0 based on the first-order Taylor expansion

f vl (x) ≈ wT (x−x0)+f vl (x0) where w is the first-order derivative of f vl (x) with respect

to the feature vector x at x0 as w =
∂fvl (x)

x

∣∣∣
x0

. We call w saliency value, which has two

points to deliver: 1) the magnitude of the derivative indicates the extent to which

the change of the most influential elements of feature vector on probability of output
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node v; 2) the direction of each element of the derivative shows whether such a change

improves or degrades the probability of output node v.

In this sub-section, we pick output v = p1 for the interpretation study. As per

our proposed representation scheme and learning architecture, the output probability

is corresponding to whether the given loan is fully paid or charged off. We compute

the saliency maps for all loans and then average them. It is observed that different

features contribute to the category of p1 in different manners. To be specific, some

features of loans are highly correlated to the type of full payment, whereas others are

closely related to the type of charge-off as shown in Tables 7.6 and 7.7. For instance,

a few salient features involve annual income, sub-grade, grade and purpose. It is

found that the higher borrowers’ annual incomes are, the more they are prone to

pay off their loans. Regarding the grade and sub-grades reported by Lending Club,

grades A, B and some of their sub-grades contribute to the full payment of loans,

while grades D, E, F lead to charged-off loans to some extent. In addition, different

borrowing purposes also exhibit different payment preference. Particularly, loans with

the purpose of small business and medical issues might be charged off with higher

possibility as opposed to those loans with the wedding, debit consolidation and the

payment of credit cards.

7.5 Discussion

In this chapter, we model the competing risks of time-to-event loans in P2P lending.

The proposed framework of their hierarchical ordinal grading takes into account both

the loan status and the time of event. Then deep neural networks are leveraged as the
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vital classification engine to train the overall framework. Essentially, multi-class deep

neural networks can be also viewed as a simple version of our method without prior

ordinal constraints. Such regularizing effects are largely in line with ROI and work

well for model learning in practice if fixed payment plans EMI is applied as discussed

in Section 7.4.2. It is worthy noting that the correlation between the survival time

based grading categories and ROI might be degraded when variable payment plans

are adopted. Concretely, when a borrower is able to pay higher payment amounts at

his/her discretion over the course of payment periods, the investment performance

of loans cannot be arranged on their survival time strictly. The variable payment

scheme remains the topic of future research.

In addition, the intermediate state transition has been recently incorporated to

capture the evolution of mortgage risks [146]. Our framework doesn’t take it into

account due to two concerns, i.e., the focus of this study and data availability. The

final goal of this chapter is to prioritize listed loans prior to their issue for investors.

The intermediate statuses after the issued date cannot be utilized in this scenario.

Lack of trajectory of loan state process in the released historical loans also prevents us

from modeling transition probability among different statuses. The concept of status

transition probability can be used in the trading of notes in the secondary market

of P2P platform. This is a very promising research topic to explore in the future,

which might provide the up-to-date trading suggestions for investors over the course

of payment periods [152].

The proposed framework can be thought of as an alternative approach to

modeling competing risks and incorporating explicit competition among different
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categories as compared with classical survival analysis. Hopefully, It aids in

unleashing the power of machine learning algorithms for modeling time-to-event loan

data beyond online P2P lending. Concretely, the proposed methodology is rather

flexible and other classifiers like denoising neural networks [163], support vector

machine [35], and ensemble learning [181,187] can be applied naturally.

In Subsection 7.4.2, we adopt a naive strategy to select loans and compare

their corresponding ROIs. It demonstrates the appealing investment performance of

crDNN as compared with other methods. In particular, the superior results for crDNN

over mcDNN can be observed. In the scenario of moving-time window experiments,

the widely used metric towards accrued return with progressively censored loans being

included is the net annualized return (NAR) or its variant6, which can quantify

the performance unbiasedly. As we have no access to actual payment trajectory

in the dataset, NAR cannot be calculated here. Fortunately, our internal real-time

investment test based on the preliminary version of the proposed method delivers an

appealing NAR performance indicated by adjusted NAR of Lending Club so far as

it goes. Besides, the portfolio optimization or selection is an important research

direction, which also has received certain attention in P2P lending study [182].

However, only charge-off is considered in the risk assessment. Our work can be

leveraged for the further study of portfolio optimization in online lending [151].

6https://www.lendingclub.com/public/lendersPerformanceHelpPop.action
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Figure 7.1 Framework overview of the proposed methodology.
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Figure 7.2 Illustrative overview of the final representation of charge-off, full
payment, and censor for loans with 36-month and 60-month terms. Cross (×)
indicates the masking position.

Payment Count0 T1 T-1

Charge-Off

Full-Payment

Scheduled Payment

Pre-Payment

Pre-Payment

Censor

Figure 7.3 Schematic overview of peer-to-peer loan statuses including charge-off,
full payment, and censor.
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Figure 7.4 The schematic architecture of deep neural networks.
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Figure 7.5 Comparisons on the good month and the aggregate ROI for different
methods. Each point is averaged over 10-fold cross-validation results.
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Figure 7.6 The C-index comparisons between crDNN and baselines for loans issued
on same months. Each point indicates a monthly comparison.
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CHAPTER 8

CONCLUSIONS

This dissertation is dedicated to developing statistical machine learning methodologies

for the representation of three genres of spatial and temporal mechanisms with

applications to divergent domains. The principal contributions are highlighted as

follows.

First of all, in sample-wise dependency, a novel and feasible geographical latent

hierarchical probabilistic architecture is proposed to integrate heterogeneous data

sources including numerical price, textual comments and geographical location for

school district identification. The proposed discrete Markov random field is of vital

importance to the performance gain. We also develop a time-aware latent hierarchical

model to infer both external and internal components of housing price. The in-

depth hierarchical feature ablation analysis is performed to elucidate the critical role

of external features in shaping the housing price. For repeated observations, we

introduce an item-specific aware model to characterize the involved effects. It works

well especially for scenarios with sparse features.

Second, for the feature-wise spatiotemporal interaction, a blended learning

scheme is developed to capture the evolution of user activities for intended actions

forecasting. A customized convolutional neural networks is also developed to model

spatial interactions among neighboring nucleotides for DNA methylation prediction.

In addition, a saliency maps based visualization strategy is introduced. It helps
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to discover retention factors and users’ behavior periodicity as well as to visualize

regulatory patterns.

Lastly, we propose a framework to represent inherent competition within and

between competing risks in time-to-event loan data by modeling the underlying

temporal constraints. The work illustrates the general procedure of constructing

classifiers for time-to-event loan data, which opens a door towards an alternative to

modeling competing risks involved in many problems of practical relevance.
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S Sénési, Sophie Valcke, I Beau, A Alias, M Chevallier, et al. The cnrm-cm5.
1 global climate model: description and basic evaluation. Climate Dynamics,
40(9-10):2091–2121, 2013.

[165] Slobodan Vucetic and Zoran Obradovic. A regression-based approach for scaling-up
personalized recommender systems in e-commerce. WEBKDD00, 2000.

[166] Artit Wangperawong, Cyrille Brun, Olav Laudy, and Rujikorn Pavasuthipaisit. Churn
analysis using deep convolutional neural networks and autoencoders. arXiv
preprint arXiv:1604.05377, 2016.

[167] Chih-Ping Wei and I-Tang Chiu. Turning telecommunications call details to churn
prediction: a data mining approach. Expert Systems with Applications,
23(2):103–112, 2002.

[168] Zhi Wei and Hongzhe Li. A markov random field model for network-based analysis
of genomic data. Bioinformatics, 23(12):1537–1544, 2007.

196



[169] Robert B Woodruff. Customer value: the next source for competitive advantage.
Journal of the Academy of Marketing Science, 25(2):139–153, 1997.

[170] Tao P Wu, Tao Wang, Matthew G Seetin, Yongquan Lai, Shijia Zhu, Kaixuan Lin,
Yifei Liu, Stephanie D Byrum, Samuel G Mackintosh, Mei Zhong, et al.
Dna methylation on n6-adenine in mammalian embryonic stem cells. Nature,
532(7599):329–333, 2016.

[171] Yaya Xie, Xiu Li, EWT Ngai, and Weiyun Ying. Customer churn prediction
using improved balanced random forests. Expert Systems with Applications,
36(3):5445–5449, 2009.

[172] Zijun Yao, Yanjie Fu, Bin Liu, and Hui Xiong. The impact of community safety on
house ranking. In Proceedings of the 2016 SIAM International Conference on
Data Mining, pages 459–467. SIAM, 2016.

[173] Jing Yuan, Yu Zheng, and Xing Xie. Discovering regions of different functions in a
city using human mobility and pois. In SIGKDD on Knowledge Discovery and
Data Mining, pages 186–194. ACM, 2012.

[174] Nicholas Jing Yuan, Yu Zheng, Xing Xie, Yingzi Wang, Kai Zheng, and Hui Xiong.
Discovering urban functional zones using latent activity trajectories. IEEE
Transactions on Knowledge and Data Engineering, 27(3):712–725, 2015.

[175] Scott L Zeger, Kung-Yee Liang, and Paul S Albert. Models for longitudinal data: a
generalized estimating equation approach. Biometrics, pages 1049–1060, 1988.

[176] Haoyang Zeng and David K Gifford. Predicting the impact of non-coding variants on
dna methylation. Nucleic Acids Research, 2017.

[177] Aijun Zhang. Statistical Methods in Credit Risk Modeling. PhD thesis, The University
of Michigan, 2009.

[178] Guoqiang Zhang, Hua Huang, Di Liu, Ying Cheng, Xiaoling Liu, Wenxin Zhang,
Ruichuan Yin, Dapeng Zhang, Peng Zhang, Jianzhao Liu, et al. N
6-methyladenine dna modification in drosophila. Cell, 161(4):893–906, 2015.

[179] Guoqiang Zhang, Hua Huang, Di Liu, Ying Cheng, Xiaoling Liu, Wenxin Zhang,
Ruichuan Yin, Dapeng Zhang, Peng Zhang, Jianzhao Liu, et al. N6-
methyladenine dna modification in drosophila. Cell, 161(4):893–906, 2015.

197



[180] Harry Zhang. The optimality of naive bayes. American Association for Artificial
Intelligence, 1(2):3, 2004.

[181] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms.
IEEE Transactions on Knowledge and Data Engineering, 26(8):1819–1837,
2014.

[182] Hongke Zhao, Qi Liu, Guifeng Wang, Yong Ge, and Enhong Chen. Portfolio selections
in p2p lending: A multi-objective perspective. In Proceedings of the 22nd
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 2075–2084. ACM, 2016.

[183] Hongke Zhao, Le Wu, Qi Liu, Yong Ge, and Enhong Chen. Investment recommen-
dation in p2p lending: A portfolio perspective with risk management. In 2014
IEEE International Conference on Data Mining, pages 1109–1114. IEEE, 2014.

[184] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing: concepts,
methodologies, and applications. ACM Transactions on Intelligent Systems
and Technology, 5(3):38, 2014.

[185] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with
deep learning–based sequence model. Nature Methods, 12(10):931, 2015.

[186] Jiayu Zhou, Fei Wang, Jianying Hu, and Jieping Ye. From micro to macro: data
driven phenotyping by densification of longitudinal electronic medical records.
In Proceedings of the 20th SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 135–144. ACM, 2014.

[187] Zhi-Hua Zhou and Ji Feng. Deep forest: Towards an alternative to deep neural
networks. arXiv preprint arXiv:1702.08835, 2017.

[188] Hengshu Zhu, Hui Xiong, Fangshuang Tang, Qi Liu, Yong Ge, Enhong Chen, and
Yanjie Fu. Days on market: Measuring liquidity in real estate markets.
In Proceedings of the 22nd SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 393–402. ACM, 2016.

198


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 3)
	Biographical Sketch (2 of 3)
	Biographical Sketch (3 of 3)

	Dedication Page
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Background
	Chapter 2: Modeling Real Estate for School District Identification
	Chapter 3: Modeling and Elucidation of Housing Prices
	Chapter 4: Modeling Item-Specific Effects for Video Click
	Chapter 5: Blended Learning for Predicting User Intended Actions
	Chapter 6: Elucidation of DNA Methylation on N^6-Adenine
	Chapter 7: Competing Risks Representation in Peer-to-Peer Lending
	Chapter 8: Conclusions
	Bibliography

	List of Tables (1 of 2)
	List of Tables (2 of 2)

	List of Figures (1 of 4)
	List of Figures (2 of 4)
	List of Figures (3 of 4)
	List of Figures (4 of 4)




