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ABSTRACT

AMYLOID PROTEINS AND FIBRILS STABILITY

by
Farbod Mahmoudinobar

Compared to globular proteins that have a stable native structure, intrinsically

disordered peptides (IDP) sample an ensemble of structures without folding into a

native conformation. One example of IDP is the amyloid-β (Aβ) protein which is the

main constituent of senile plaques in the brain of Alzheimer’s patients. Understanding

the process by which IDPs undergo structural changes to form oligomers that

eventually aggregate into senile plaques/amyloid fibrils may significantly advance the

development of novel therapeutic methods to treat neurodegenerative diseases, for

which there is no cure to date. This dissertation has two main objectives. The first

one is to investigate and identify structural conformations of Aβ monomer which

are precursor to aggregation. The second objective is to understand the underlying

mechanisms of amyloid fibril stability using atomistic molecular dynamics simulations

in explicit water.

The aggregation of Aβ peptides into amyloid fibrils in Alzheimer’s patients

depends on the spectrum of conformations adopted by monomers of this peptides.

These conformations are strongly affected by properties of the aqueous environment.

In the first part of this dissertation, conformations of Aβ in environments that

promote and inhibit fibril formation are studied. Micro-second Replica Exchange

Molecular Dynamics (REMD) simulations are performed for that purpose. A

comparative study of the set of conformations in each environment is performed

using contact maps, cluster analysis and by studying the network of the backbone

hydrogen bonds of Aβ. A specific in-register strand-loop-strand conformation is

found in the environment that promotes fibril formation, which is not observed in

environments that inhibit fibril formation. It is proposed here that this conformation



may act as intermediate structure in fibril formation. Inhibiting the formation of this

conformation might be helpful in developing drugs for Alzheimer’s disease.

In the second part of this dissertation, the molecular mechanisms of amyloid

fibril stability are investigated using a thermodynamic framework. Understanding the

atomic interactions responsible for fibril stability may be useful in designing novel

therapeutic methods to disrupt fibrils and plaques in neurodegenerative diseases.

However, despite numerous studies on amyloid fibrils, a thorough understanding of

fibril stability is still missing. A combination of enhanced sampling methods is used

to simulate all-atom models in explicit solvent in order to investigate the stability

of non-polar (Aβ16−21) and polar (IAPP28−33) amyloid fibrils. Umbrella sampling is

performed jointly with replica exchange molecular dynamics to determine the free

energy of peptide addition to a pre-formed amyloid fibril at different temperatures.

Results from these simulations show that the non-polar fibril becomes more stable

with increasing temperature and its stability is dominated by entropy. In contrast,

the polar fibril becomes less stable as temperature increases while it is stabilized by

enthalpy. These findings suggest that the stability of fibrils can be customized by the

choice of amino acid sequence in the dry core of the amyloid fibrils, e.g., proteins

can be modified to transition between fibril and monomer state at a designated

temperature. Such fine-tuned amyloid fibrils can be used as scaffolds for drug delivery

and other biomaterials.
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If civilization is to survive, we must cultivate the science
of human relationships - the ability of all peoples, of all
kinds, to live together, in the same world at peace.

Franklin D. Roosevelt
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CHAPTER 1

INTRODUCTION

Proteins are the second most abundant molecules in human body. Some proteins

(antibodies) bind to viruses to mark them for destruction, and others (enzymes)

function as catalysts of chemical reactions [5]. In order to perform these functions,

they need to fold into a specific native structure. As a result of weak non-covalent

bonds, proteins tend to fold into a stable three-dimensional conformation which

minimizes the free energy of the system [220]. Folding-misfolding process can,

however, be disrupted by mutations and other biological factors. This leads to protein

misfolding which may result in unwanted aggregation in the body.

The aggregates formed by some proteins are associated with neurodegenerative

diseases including Alzheimer’s, Parkinson’s and Huntington’s [13, 26, 55]. The

main constituents of the aforementioned fibrils are amyloid-β, α-synuclein and

polyglutamine proteins, which are a class of proteins called intrinsically disordered

peptides (IDP) which lack a native structure [13, 26, 55]. Because of their role in

neurodegenerative diseases, protein aggregation has been the subject of numerous

studies in recent years. Understanding the process in which IDPs undergo structural

changes, form oligomers and eventually result in fibril, is a topic of great interest to

the biophysical community. The main focus of this dissertation is to understand the

atomic forces responsible for the stability of amyloid fibrils as well as investigating

the effect of small molecules on conformations of amyloid proteins. This knowledge

will play a crucial role in designing and manufacturing new methods to inhibit or

cure amyloid diseases.

This dissertation is organized into three chapters and two Appendices. In

Chapter 1, an introduction to proteins structure, protein folding and thermodynamics,
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amyloid fibril formation and molecular dynamics simulations are discussed. Chapter

2 describes the effect of small compounds on the structure of Aβ42 monomers

and introduces a newly found intermediate structure which may be a precursor to

aggregation. Inhibiting the formation of this structure might be helpful in developing

drugs for Alzheimer’s disease. Chapter 3 provides a thermodynamical analysis of the

stability of amyloid fibrils in which we show that polar amyloid fibrils are stabilized

by enthalpy and non-polar amyloid fibrils are stabilized by entropic energy [154].

Chapter 4 provides a summary of this dissertation and proposes future research

direction. In Appendix A, the effect of side chain interactions on the formation

of protein secondary structures is investigated and length scales promoting α-helices

are determined. Appendix B describes an open-source C++ program which analyzes

the trajectory of a molecular dynamics simulation and determines the evolution of

water clathrates in the system. Clathrates are hydrogen bonded network of water

molecules that form in water solutions at low temperatures and high pressure and

have a critical role in designing and manufacturing anti-freeze proteins as well as some

applications in gas and oil industry.
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1.1 Proteins

Proteins are complex molecules made by amino acids connected to each other through

covalent bonds known as the peptide bond. There are 20 types of amino acids which

are made of four groups connected to a central Cα atom as shown in Figure 1.1a.

These groups are the amino group, carboxyl group, hydrogen atom and side chain.

The amino group, Cα and carboxyl group make the backbone of the protein. What

differentiates the amino acids from each other, is their side chain group which can

be hydrophobic, polar or charged. Figure 1.1b shows these amino acids connected to

each other through peptide bonds.

a) b)

**

Figure 1.1 Proteins and amino acids. (a) Chemical structure of an amino acid. (b)
Torsion angles φ and ψ in a polypeptide chain. Peptide bonds connecting the two
amino acids are marked with an asterisk.

Torsion angles of backbone atoms are commonly used to describe conformations

of the polypeptide chain. Rotations around N− Cα, Cα − C and C− N are known

as phi (φ), psi (ψ) and omega (ω), respectively as shown in Figure 1.1. The ω torsion

angle is fixed at 180 degrees due to the partial double-bond character of the peptide

bond. Hence, knowing the φ and ψ angles of all amino acids in a polypeptide chain

defines the three-dimensional structure of the backbone. Because of steric constraints,

only specific combinations of these angles are allowed in proteins [29, 220]. However,

folding of a protein is further constrained by many other interactions and noncovalent

bonds between peptide backbone and side chains which will be discussed in following
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sections. The angles φ and ψ can be plotted against each other in a diagram called

Ramachandran plot. Secondary structures of a protein appear in different regions of

the Ramachandran plot. For example, the (φ ∼ −100, ψ ∼ 140) region corresponds

to β strands and (φ ∼ −100, ψ ∼ −30) corresponds to α helices. An example of

Ramachandran plot is shown in Figure 1.2 illustrating the allowed values of φ and ψ

angles.

‐180 0 180‐phi +phi

180

0

‐180

‐psi

+psi

β‐sheet
Left‐handed
helix

α‐helix

Figure 1.2 Ramachandran plot showing allowed conformations of a Phenyl alanine
in a polypeptide. Red, blue and green areas correspond approximately to β sheets,
right-handed α helices and close to left-handed α helices.

1.1.1 Protein Structure

In biological studies, protein structure is divided into four levels: primary, secondary,

tertiary and quaternary structures. The sequence of amino acids comprising a protein
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Hydrogen 
bond
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β-sheet
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β-sheet

a) b)

~0.54 nm

Figure 1.3 Protein secondary structures. (a)α-helix and (b)β-sheet are the most
common secondary structures. N, C and O atoms are shown in blue, cyan and red
colors respectively. Dashed lines represent hydrogen bonds and hydrogen atoms are
removed for simplicity. α-helix and β-sheets are shown with tube and arrows.

molecule is the primary structure. The two most important secondary structures in

proteins are α-helices and β-sheets [220]. In an α-helix, the amino group of an amino

acid i forms a hydrogen bond with the carbonyl group of amino acid i+4. Structurally,

an α-helix has a pitch height of ∼ 0.54 nm which includes ∼ 3.6 residues in a complete

turn as shown in Figure 1.3a. The β-sheet is made of fully extended regions called

β-strands. Beta strands can hydrogen bond with each other in two ways to form a

sheet. The amino acids in the aligned β-strands can run in the same biochemical

direction (from N to C terminal), in which the sheet is called parallel, or the amino
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acids in successive strands can have alternating directions, in which the sheet is called

anti-parallel [29, 220] as shown in Figure 1.3.

The three-dimensional conformation of a protein is called tertiary structure and

if a particular protein molecule is formed by more than one chain, the whole complex

is called quaternary structure.

1.2 Molecular Interactions

Bonds between two particles can be defined by a pair potential, u(r), which describes

the energy as a function of distance (r) between the two particles. The derivative of

pair potential is the force, f(r), between two particles [67]:

f(r) = −du(r)

dr
(1.1)

In this section, a brief description of the important bonds in protein chemistry is

provided.

1.2.1 Covalent Bonds

Covalent bonds are formed when two atoms share electrons with each other. It can

be a single bond (two electrons are shared), double bond (two pairs of electrons are

shared) or a triple bond (three pairs of shared electron). Covalent bonds are 30-300

times stronger than non-covalent bonds. The energy to break them varies from ∼125

to over 800 kJ/mol [5, 88]. Since amino acids are made of covalently bonded atoms,

at normal body temperature (∼2.5 kBT) the amino acid sequence will not break up

due to thermal energy.

1.2.2 Non-Covalent Bonds

Hydrogen Bonds are important in stabilizing protein secondary structures. This

bond (8 − 30 kJ/mol) is formed when a hydrogen atom, which is covalently bonded
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to an electronegative atom, is close to a second electronegative atom [159]. Hydrogen

bonds in proteins are formed between Nitrogen and Oxygen atoms whereas in water

molecules, they are formed between Oxygen atoms of neighboring water molecules.

The latter is illustrated in Figure 1.4. Thermal energy can easily break up hydrogen

bonds. Changes in secondary structures of proteins happen as a result of this

phenomenon. Hydrogen bonds are directional and short-ranged as they can only

form at distances of ∼ 3.5 Å and over a restricted range of angles (< 30◦).

Figure 1.4 Hydrogen bond and hydrophobic effect. (a) Polarized water molecules
forming hydrogen bond and, (b) solvation of a hydrophobic protein in water. Water
molecules try to keep their hydrogen bonded network.

Electrostatic Bonds are due to interactions between charged particles. In

vacuum, the energy of such interaction between two particles with charges q1 and

q2 is:

ue(r) =
1

4πε0

q1q2

r
, (1.2)
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where ε0 is the permittivity of vacuum and r is the distance between two charges.

Electrostatic bonds are long-range interactions and their energy diminish with

distance between particles as r−1. In proteins the interaction between two oppositely

charged residues that are sufficiently close to each other to experience electrostatic

attraction, is called a salt bridge [27]. For example, in amyloid-β protein residues

Asp23 and Lys28 form a salt bridge which is believed to have significant influence on

the structural conformations of Aβ [207,255].

Van der Waals Bonds The basis of van der Waals interaction is that the

distribution of the electron cloud of an atom changes when two atoms are close to

each other. This phenomenon induces a transient dipole that leads to a net attraction

between these atoms. Energies associated with van der Waals interactions are small,

typically in the order of 2-4 kJ/mol. The attractive part of the Lennard-Jones

potential is used to describe the van der Waals interactions as a function of distance.

Hydrophobic Effect One of the most important driving forces in protein folding is

the hydrophobic effect (∼ 5-10 kJ/mol [29]), which loosely speaking, can be described

as the tendency of nonpolar residues to avoid water molecules and interact with

each other. This interaction emerges from the lower entropy of more ordered water

molecules surrounding a nonpolar molecule compared to the higher entropy of bulk

water. As a result, nonpolar molecules in water tend to aggregate in order to reduce

their exposure to water, thus, minimizing the number of ordered water molecules. The

hydrophobic effect in proteins makes the nonpolar residues to collapse and transition

from extended structures to a globular conformation as shown in Figure 1.5.
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cross section

Hydrophobic core

Figure 1.5 Part of the structure of the adaptor protein CIN85 (PDB:2N64) and its
nonpolar residues. CIN85 protein regulates signaling from a number of cell surface
receptors, including growth factor receptor and antigen receptors on lymphocytes.
Hydrophobic residues are shown in magenta using Licorice representation, and three
chains of the molecule are illustrated in blue, gray and red. Hydrophobic core of the
protein is shown by dashed lines.
source: [134]

1.3 Thermodynamics of Protein Folding

Proteins can adopt ordered structures known as folded (native) state or disordered

conformations called unfolded state. The folded state is more stable and has a lower

Gibbs free energy whereas the unfolded state has more extended structures and higher

free energy. Native and unfolded states exist in thermodynamic equilibrium at a given

temperature, wherein the dissociation constant K can be described by the the ratio

of the population of unfolded [U] and native [N] states [7]:

K =
[U ]

[N ]
. (1.1)
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K values greater than one imply that the equilibrium will favor the unfolded state and

values less than one imply that the equilibrium favors the native state. At equilibrium,

there is a relationship between the equilibrium constant and the change in free energy

which is given by the equation:

∆G = −RT lnK, (1.2)

where R is the universal gas constant and T is the absolute temperature in Kelvin.

To put it simply, the equation 1.2 describes the dissociation constant in terms of the

free energy. For example, if the dissociation constant is equal to one, the change in

free energy is zero and the population of unfolded and folded states are the same. If

dissociation constant is greater than one, the change in free energy is negative, the

unfolding process is favorable and it will be accomplished spontaneously. At a given

temperature (T) the Gibbs free energy between folded and unfolded states is given

by [67,97,199,245,280]:

∆G = ∆H − T∆S. (1.3)

The temperature dependence of ∆H and ∆S can be described in terms of their values

at the transition temperature (To). Whenever the change in heat capacity is constant

they become:

∆H(T ) = ∆Ho +

∫ T

To

∆Cop dT = ∆Ho + ∆Cop(T − To), (1.4)

∆S(T ) = ∆So +

∫ T

To

∆Cop(T )

T
dT = ∆So + ∆Cop ln

(
T

To

)
, (1.5)
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Figure 1.6 Thermodynamics of protein folding and unfolding transitions. (a)
Relation between changes in heat capacity of unfolding (∆Cp) and the number of
residues (Nres) of various globular protein. (b) Changes in Gibbs free energy (∆G),
enthalpy (∆H) and entropy (∆S) upon unfolding of metmyoglobin in 100 mM-glycine
buffer (pH 10.0) as a function of temperature. (c) Compensation of enthalpy and
entropy upon folding of various globular proteins.
source: [198, 213, 235]

where ∆Ho, ∆So and ∆Cop are changes in enthalpy, entropy and heat capacity at the

transition temperature To and constant pressure. Equations 1.3 to 1.5 lead to the

temperature dependence of the Gibbs free energy:

∆G(T ) = ∆Ho − T∆So + ∆Cop

[
(T − To)− T ln

(
T

To

)]
. (1.6)

The unfolding of globular proteins is characterized by a positive and large ∆Cop

which has been associated with the solvation of non-polar residues that are buried in

the native state and become exposed to the solvent upon unfolding [53,59,62,160,190].

Accordingly, the magnitude of ∆Cop was shown to increase with the number of non-

polar residues in the system (See Figure 1.6a) [213]. In globular proteins ∆G results

from the sum of large opposing enthalpic and entropic terms [235]. For example, above

the ambient temperature (T> 30◦C for metmyoglobin in Figure 1.6b) the entropic

energy (-T∆S) favors the unfolded state due mostly to configurational entropy while

the enthalpy (∆H) favors the native state. These opposing contributions differ only
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slightly in magnitude (See Figure 1.6c) which accounts for the marginal stability that

is characteristic of globular proteins, i.e., ∆G ∼ 40 kJ.mol−1 for metmyoglobin in

Figure 1.6b [198,199].

Although thermodynamics is commonly used to study protein folding, the

equilibrium thermodynamic quantities of amyloid fibrils are not easily accessible

experimentally and they remain mostly unknown. In chapter 3 of this dissertation, we

study the stability of amyloid fibrils using computer simulations and thermodynamic

methods similar to the ones used to study protein folding.

1.4 Proteins and Alzheimer’s Disease

Alzheimer’s disease (AD) accounts for %60-%80 of all dementia cases. It is the sixth

leading cause of death in the United States and it is estimated to cost over $1 trillion

by the year 2050 [274]. Currently, there are treatments for AD symptoms which

temporarily delay the progression of the disease, however, there is no cure for it. AD

is associated with the accumulation of a specific type of plaque, called amyloid plaques

which is mostly made up of a protein named amyloid-β (Aβ). This protein can vary

in length from 39-43 amino acids and is derived from cleavage of the transmembrane

amyloid precursor protein (APP) [95,230]. Due to the role of the 42-residue long Aβ

(Aβ42 ) and its fibrils in the pathology of Alzheimer’s disease, it has been the subject

of many studies aimed at unraveling the self assembly process of this peptide.

Notice that any protein sequence is expected to form amyloid fibrils under

appropriate conditions as a result of backbone interactions [79]. However a protein’s

ability to form amyloid structures can vary to a great extent depending on the

inherent chemical-physical properties of its sequence. The amino acid sequence

affects the propensity to form fibrils by favoring or hindering conformations along

the pathway of fibril formation. It is crucial to understand the initial stages of this

process in order to find structures which are prone to fibril formation and enhance
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fibril axis

Figure 1.7 Hypothetical aggregation mechanism involving Aβ β-hairpin. Arrows
represent β-strands, hydrophobic side chains are shown in orange and polar side chains
are in yellow.
source: [103]

the protein self assembly. However, because proteins involved in neurodegenerative

diseases, including amyloid-β, are inherently disordered and lack a stable structure,

they are often hard to study experimentally. For this reason, computer simulations

and all-atom molecular dynamics simulations have been employed in recent years to

enhance our understanding of protein self assembly and fibril formation.

Mutagenesis studies have provided important insights into the properties of the

amino acid sequences that are prone to from fibrils [16, 42]. This is important to

predict proteins that can cause amyloid diseases [35,258]. Increasing the hydrophobic

nature of protein sequences has been shown to increase the fibrillization rate.

Aromatic side chain groups were found to occur frequently in fibril forming peptides

but are not essential for aggregation [8,43,51,57,162]. Charge-charge interaction can

be the dominant force of stabilization in small peptides with opposite charges [17]

but they can also inhibit fibrillization in large sequences [225]. The length of the

amino acid sequence also affects fibril formation wherein the truncation of a single

residue from a fibril forming peptide was shown to prevent fibrillization [140]. In

addition to these general properties of fibril-prone sequences, specific amino acid
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patterns have also been investigated. In particular, alternating hydrophobic and

hydrophilic residues, called amphipathic peptides, are prone to self-assemble due to

burial of hydrophobic core and exposure of hydrophilic residues to the solvent [28,139].

Packing of side chains with complementary van der Waals volume plays a major

role in self-assembly of these amphipathic peptides [140]. Sequences containing FF

(Phe-Phe) or GxxxG (where x is a random amino acid) have been shown to promote

fibril formation in proteins by forming a series of ridges and grooves on peptide chains

which can dovetail into one another [4,148,158,205]. Short amyloid-inspired peptides

containing these and similar motifs have been investigated to gain more knowledge

about effects of protein sequence on aggregation [14,17,157,162,259].

Studies suggest that the mutation of fibrils has been shown to emerge from a

hydrophobic collapse during which the formation of turns plays a major structural

role [144]. Flexible turn sequences can be a key element inducing fibril formation

while a more rigid motif connecting two KFFE sequences has been shown to prevent

self-assembly [102]. Another structural feature that plays an important role in fibril

formation is β-hairpin (See Figure 1.7). It has been reported that forming a β-hairpin

in monomeric peptides can prevent amyloid fibril formation [102,103]. However, there

are other studies suggesting the opposite [17,139].

A number of computational studies have tried to characterize the structure

of amyloid proteins and unravel the link between structural properties of proteins

and aggregation pathways. Most of these studies have focused on the effect of the

amino acid sequence of short peptides in fibril formation. However, due to numerous

factors affecting the simulations of IDPs, including force field parameters, lack of

sampling and simulation properties(temperature, concentration, PH ...) there is not

a consensus on the effect of amino acid sequence on structure of Aβ monomers.

In Chapter 2 of this dissertation, we focus on effect of aqueous environments that

are either favorable or unfavorable to fibril formation on the structural changes of
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full-length Aβ42 monomers. Using micro-second long molecular dynamics simulation,

we found unique intermediate structures in the fibril formation pathway which might

be favorable to fibril formation.
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1.5 Molecular Dynamics Simulation

In this dissertation, we use computer simulations to discover Aβ structures that are

prone to aggregate and to understand the molecular interactions accounting for the

stability of amyloid fibrils. The main method used in this dissertation is molecular

dynamics (MD) simulation in which the trajectory of all the atoms in the system is

determined. Newton’s second law is used to understand how the net force on each

atom affects its motion as a function of time. This method is explained briefly in this

section.

1.5.1 Equation of Motion and Interactions

The equation of motion used in molecular dynamics simulations is Newton’s second

law:

mi ~̈ri = ~fi, (1.1)

in which mi, ~ri and ~fi are the mass, displacement and the net force on atom i. The

net force on atom i is determined from the sum of all the bonded (covalent) and

nonbonded (noncovalent) interactions between atom i and the rest of the system.

These interactions are described by the potential energy (u(r)). The derivative of the

potential energy gives the forces on each atom:

~f = −~∇u(r). (1.2)

At each time step of MD simulation, the net force is calculated from the potential

energy to determine the trajectory of all the atoms.

1.5.2 Force Fields

Force fields in molecular dynamics simulations are the set of equations (called the

potential functions) and their parameters which are used to describe the interactions
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between atoms of a system. There are two types of force fields:

i) all-atom, in which parameters are provided for every single atom in the system,

ii) united atom, in which several atoms are grouped into one bigger particle. This is

also known as coarse grained model.

For all-atom models, the force field incorporates a basic form of potential energy

functions:

u(r) =
∑
bonds

kb(b− bo)2 +
∑
angles

kθ(θ − θo)2 +
∑

torsions

kφ[cos(nφ+ δ) + 1]

+
∑

nonbonded
pairs

[
qiqj
rij

+
Aij
r12
ij

− Cij
r6
ij

]
.

(1.3)

Sums over bonds (b), angles (θ) and torsions (φ) in equation 1.3 describe

oscillations of a pair of covalently bonded atoms about the equilibrium bond length

(bo), oscillations of three covalently bonded atoms about an equilibrium bond

angle (θo) and torsional rotation of four covalently bonded atoms about a central

bond, respectively. Schematic of these potentials and their corresponding particle

conformations are shown in Figure 1.8. kb, kθ, kφ, n and δ are constants defining

these oscillations. The final summation which uses partial atomic charges qi and

qj, pair distance rij and constants Aij and Cij, describes non-bonded energy terms

(electrostatics and Lennard-Jones) between atom pairs. Depending on the force filed,

the terms as well as the constants used in equation 1.3 may vary. The combination

of potential energy functions (as in equation 1.3) and all the parameters used in it

(kb, bo, kθ, θo, etc.) constitutes a force field.

In this dissertation, AMBER99SB-ILDN [146] force field was chosen for

simulations involving amyloid-β protein because of its good agreement with NMR

structure data [146,196].
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Figure 1.8 Schematic of force field potential functions. (a) Spring potential between
pair of covalently bonded particles with equilibrium bond length b0, (b) spring
angle potential between three particles forming an equilibrium angle θ0, (c) dihedral
potential between four particles, (d) electrostatic potential between two charged
particles, and (e) van der Waals potentials between two particles.

1.5.3 Periodic Boundary Conditions

A problem with simulating finite systems, is the boundary effect. In small systems

particles have too many unwanted interactions with the boundaries of the system

and as a result, the trajectory of the system is influenced by the interactions between

particles and their boundaries. These interactions must be avoided if we intend to

model a bulk system. Applying periodic boundary condition is the way to the avoid

boundary effect in molecular dynamics simulations.
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Figure 1.9 Periodic boundary condition in two dimensions. The unit cell is
replicated infinitely in both directions.
source: [15]

To apply periodic boundary conditions, the simulation box is replicated in every

direction throughout the space to form an infinite lattice as shown in Figure 1.9.

During the simulation, as a particle in the original box moves, all of its periodic

images also move in their periodic box in exactly the same way. Whenever a particle

leaves the original box from one side, one of its images will enter the original box

through the opposite side. By implementing this method, particles no longer interact

with the boundaries and the problem is overcome [6]. Periodic boundary conditions

is implemented in molecular dynamics simulations throughout this dissertation.

1.6 Enhanced Sampling Methods in Computer Simulations

Free energy difference is the driving force of chemical reactions and its calculation is

an essential task in computational studies of proteins. Biological molecules are known

to have rough free energy landscapes with many local minima that are separated by

high energy barriers [187]. Due to these energy barriers, transitions between free
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Figure 1.10 Local minima on potential of mean force as a function of reaction
coordinate. The protein can get stuck in either of the two local free energy minima
(denoted as R or P) and slow down the sampling process. Umbrella sampling is an
efficient method to overcome such sampling obstacles.

energy minima may require a significant amount of simulation time. To avoid this

problem, a number of methods have been developed to accelerate the configuration

sampling in order to calculate the free energies [31, 249, 261]. Among these methods

are umbrella sampling, which forces the system to sample unstable conformations

that are along a reaction coordinate by introducing a bias potential. Another method

is replica exchange molecular dynamics (REMD), which speeds up the sampling by

exchanging conformations of a system with conformations of the exact system at a

different temperature. This method is especially beneficial for simulations in which

the conformations are separated by high energy barriers.

In this dissertation, we have employed umbrella sampling and replica exchange

molecular dynamics either individually or in combination with each other to further

enhance the sampling. To the best of our knowledge, employing both methods

together in an all-atom molecular dynamics simulation of amyloid fibrils with explicit

water solvent has never been performed before.
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Figure 1.11 Concept of umbrella sampling method in simulations. (a) Ideal
situation in which the biasing potential completely neutralizes the PMF and sampling
will be perfect. (b) Schematic of umbrella sampling in practice, in which we apply
a series of harmonic potential and force the system to sample the unfavorable
conformations.

1.6.1 Umbrella Sampling

The calculation of free energy differences is an important task in computational

biology. Umbrella sampling is one of the methods that provide the free energy along

a reaction coordinate. In this method, a reaction coordinate which distinguishes two

thermodynamic states of the system is chosen. Then a series of simulations (called

windows) are performed along this reaction coordinate with a bias potential applied

to them as shown in Figure 1.11. The bias potential forces each simulation to sample

a specific range of the reaction coordinate and ensures sufficient sampling at every

window.

The statistics of unbiased simulation can be obtained from the biased simulations

because the biasing potential is known. To study the interactions between two

proteins, umbrella sampling has been used to calculate the free energy as a function of

separation between proteins [72,122,170]. The formalism of recovering unbiased free

energy differences from biased simulations is discussed briefly in this section. The
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bias potential vi(r) at window i is an additional energy term that depends on the

configuration of the system defined by r. The potential energy of the biased system,

Eb(r), is:

Eb(r) = Eu(r) + vi(r), (1.1)

in which the superscript u denotes unbiased potential energy. In order to obtain the

unbiased free energy, we need the unbiased probability distribution of the system

which is:

P u
i (ξ) =

∫
exp[−βE(r)] δ[ξ(r)− ξ′]dNr∫

exp[−βE(r)]dNr
, (1.2)

where β = 1/(kBT ), kB being Boltzman constant, ξ(r) is the reaction coordinate of

the system for a given configuration defined by r, ξ′ is the reference reaction coordinate

and N denotes the number of degrees of freedom of the system. Umbrella sampling

simulation of the biased system provides the biased distribution along the reaction

coordinate. Assuming the simulation is ergodic, i.e., every point in the phase space is

sampled during the simulation, the biased distribution along the reaction coordinate

is:

P b
i (ξ) =

∫
exp{−β[E(r) + vi(ξ(r))]} δ[ξ(r)− ξ′]dNr∫

exp{−β[E(r) + vi(ξ(r))]}dNr
. (1.3)

Because the bias depends only on ξ and the integration in the enumerator is

performed over all degrees of freedom except ξ,

P b
i (ξ) = exp[−βvi(ξ′)] ×

∫
exp[−βE(r)] δ[ξ(r)− ξ′]dNr∫
exp{−β[E(r) + vi(ξ(r))]}dNr

. (1.4)

Using equation 1.2, we get,
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P u
i (ξ) = P b

i (ξ) exp[βvi(ξ
′)]×

∫
exp{−β[E(r) + vi(ξ(r))]}dNr∫

exp[−βE(r)]dNr

= P b
i (ξ) exp[βvi(ξ

′)] 〈exp[−βvi(ξ)]〉,
(1.5)

where 〈...〉 represents the expected value, P b
i (ξ) is obtained from umbrella sampling

using biased system and vi(ξ
′) is given analytically. By defining Fi = −(1/β)ln〈exp[−βvi(ξ)]〉

which is a constant, Gibb’s Free energy of the unbiased system at window i is:

Gu
i (ξ) = −(1/β) ln P u

i (ξ) = −(1/β) ln P b
i (ξ)− vi(ξ) + Fi. (1.6)

To ensure sampling in all regions of the reaction coordinate, the range of interest of ξ is

divided into a number of windows. A bias potential is applied to each window to keep

the system close to the reference point ξ′ of the respective window. Harmonic potential

with spring constant K is commonly used as bias potential in MD simulations:

vi(ξ) =
1

2
K(ξ − ξ′i)2. (1.7)

In Chapter 3 of this dissertation, we have used this harmonic potential functions

in order to calculate free energy of amyloid fibril dissociation and used equation 1.6

to determine the unbiased free energy from the biased one.

1.6.2 Replica Exchange Molecular Dynamics

Molecular dynamics simulations are generally carried out at a given temperature,

using a thermostat to keep the average temperature of the system constant. An

initial configuration of the system is chosen arbitrarily and is equilibrated for a short

time to avoid any steric clashes between the atoms. The simulation is then run for

a long time to calculate molecular properties of the system. However, the system of

interest may have many potential energy minima, which are separated by relatively
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high barriers and are difficult to cross at ambient temperatures during the simulation

time (See Figure 1.10). It means that results of a computer simulation are confounded

by the choice of initial conditions. This is the case for molecular dynamics simulation

of proteins in solutions which need mili seconds to form a specific conformation.

Several methods have been devised in the past to overcome this problem. A well

known method that produces efficient sampling in systems with slow equilibration is

known as replica exchange. In replica exchange simulation, multiple replicas of the

same system are simulated at different temperatures and exchanges between replicas

are attempted at regular intervals. The exchange between low and high temperatures

allows the lower temperature system, which may have been stuck in a free energy

minima, to escape the barrier and sample a broader range of phase space at a higher

temperature as seen in Figure 1.12. To have an efficient number of exchanges between

the systems, the neighboring replicas require sufficient overlap between their potential

energies. This results in a high number of replicas within the intended temperature

range which makes REMD computationally intensive for all-atom models [204].

In this dissertation we use the most commonly used replica exchange molecular

dynamics method of Sugita and Okamoto (1999). In this method, M replicas

S1, S2, ..., SM of a system, at different temperatures T1, T2, ..., TM and thermal energies

β1, β2, ..., βM are produced. At a given time, the ensemble of systems consists of M

configurations with potential energies E1, E2, ..., EM . The probability of finding the

system in this state is:

P ∝ exp[−(β1E1 + β2E2 + ...+ βMEM)]. (1.8)

Consider the exchange between systems Si at βi and Sj at βj. The probability

of finding these systems before the exchange is:

Pbefore ∝ exp[−(βiEi + βjEj)], (1.9)
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Figure 1.12 Exchanges between neighboring replicas at different temperatures.
Each replica starts at a specific temperature and after regular time intervals,
exchanges between neighboring replicas are attempted.
source: [173]

If the exchange is allowed between the systems, such that Si and Sj will be at βj and

βi respectively, the probability of the system after the exchange is:

Pafter ∝ exp[−(βjEi + βiEj)]. (1.10)

The ratio of the probabilities after and before the exchange will be:

Pafter
Pbefore

= e−∆, (1.11)

where

∆ = (βi − βj)(Ei − Ej). (1.12)

The transition probabilities p→ (transition from ”before” to ”after” the

exchange) and p← (transition from ”after” to ”before” the exchange) should fulfill
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the equilibrium criteria:

p→ Pbefore = p← Pafter. (1.13)

Thus it follows that

p→
p←

= e−∆. (1.14)

The probability of exchange between two states i and j is accomplished by the

Metropolis criteria:

Pi↔j = min (1, exp [(βi − βj)(Ei − Ej)]) , (1.15)

In order to ensure that REMD simulations are efficient, the set of temperatures

in replica exchange should be chosen in a way that sufficient exchanges between

the replicas occur over the trajectory. An acceptance ratio of 20% is considered

reasonable [18]. In Chapters 2 and 3 of this dissertation, we employed replica exchange

molecular dynamics to enhance the sampling in our systems.
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CHAPTER 2

EFFECTS OF SMALL COMPOUNDS ON STRUCTURE OF Aβ42

MONOMERS

2.1 Introduction

The amyloid beta (Aβ) protein is the main constituent of senile plaques in the

brain of Alzheimer’s patients. It is an intrinsically disordered protein with a

high propensity to aggregate into soluble oligomers that can nucleate into amyloid

fibrils. More than 15 point mutations in the Aβ sequence have been found to be

pathological accounting for autosomal dominant Alzheimer’s disease with an early

onset–see Figure 2.1. Most of these mutations enhance the aggregation rate of Aβ

compared to wild type. In contrast, point mutations that account for a slower

aggregation rate of Aβ have been found to have a protective effect delaying the

onset of the disease. This points to a relationship between Aβ aggregation and

Alzheimer’s which has been the subject of extensive studies. In particular, it has been

hypothesized that within the spectrum of structures adopted by Aβ monomers, some

conformations are more prone to aggregation than others. These aggregation-prone

conformations are expected to play an important role in determining the rate of Aβ

oligomerization and, thus, the progression of the disease. Inhibiting the formation of

these aggregation-prone structures could become part of a treatment to slow down

the progression of Alzheimer’s.

In the brain of healthy and Alzheimer’s individuals, Aβ emerges from cleavage

of the transmembrane “amyloid precursor protein”. This process can proceed through

different cleavage pathways accounting for Aβ proteins with lengths varying from 34

to 43 residues. The most abundant Aβ proteins are 40 and 42 residues long with the

latter (i.e., Aβ42) exhibiting a faster aggregation rate and increased toxicity. This

increased propensity of Aβ42 to aggregate has been related to the hydrophobic nature
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of its additional residues 41 and 42. Accordingly, the C-terminus and the central

region of Aβ are highly non-polar whereas the N-terminus of this peptide contains

negative and positive amino acids–see Figure 2.1. Notice that a similar segregation of

charged and non-polar residues is also observed in many antimicrobial peptides [241]

which may explains the antimicrobial activity of Aβ against various bacteria including

E. Coli and S. aureus.

The intrinsically disordered nature of Aβ implies that, at physiological condition,

monomers of this protein sample an ensemble of conformations without adopting a

stable native structure. Solution NMR has shown that this ensemble for Aβ42 consists

mainly of collapsed coil structures [215]. Measurements using backbone Hα, Cα, and

Cβ chemical shifts have reported [215, 216] a high propensity to form β-strands for

residues 17-21, 31-36, and 39-41 whereas residues 7-11 and residues 20-26 exhibit a

high propensity to form turns–see Figure 2.1. Consistent with these experiments, CD

measurements have reported an overall β content for Aβ40 monomers of 24% [215].

Using Fourier transform infrared (FTIR) spectroscopy, these β-strands were found to

form mostly anti-parallel β-sheets for monomeric and oligomeric states of Aβ [215].

Since amyloid fibrils are made of parallel β-sheets, a structural rearrangement has to

take place during the nucleation of oligomers into amyloid fibrils.

In addition to experiments, computer simulations are also providing insights into

the structure of Aβ monomers [234]. Earlier all-atom molecular dynamics simulations

in explicit solvent reported a significantly lower frequency of β-strands compared to

experiments. Recently, this discrepancies was shown to emerge in simulations where

the conformation of Aβ was not sampled sufficient. As a matter of fact, it was

shown that, in order to obtain an equilibrium structural ensembles of Aβ monomers,

extensive replica exchange molecular dynamics (REMD) simulations with over 400

ns of simulation times are necessary [216]. This requires substantial computational

resources which have only recently become available to the scientific community. In
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these equilibrium molecular dynamics ensembles of Aβ, β-strands are formed within

the same residues as experiments and with a frequency close to the one measured

experimentally. This result was reproduced using three force fields showing that

equilibrium Aβ ensembles are mostly robust against changes in the force field [216].

Changes in the latter was shown to affect mainly the flexibility of loop regions

as well as electrostatic interactions between charged side chains. This finding is

reassuring and suggests that, when simulations are performed long enough to produce

equilibrium ensembles, they can complement experiments by providing atomic level

insights.

Changes in the properties of the solution in which Aβ is immersed has a strong

effect on its aggregation rate and toxicity. These changes can be produced by adding

small molecules to the solution [248, 270]. Metal ions, which affect electrostatic

interaction in proteins, can significantly increase the rate of amyloid fibril formation

[129]. Similarly, amyloid fibrils can be formed 3-4 times faster when NaCl is added to

the solution at a concentration of 150 mM, i.e., at physiological conditions [2]. Small

molecules can also inhibit the formation of amyloid fibrils. Some of these molecules

contain aromatic rings, which is the case of 4-Aminophenol (4AP). The latter inhibit

Aβ42 oligomerization in a concentration dependent manner [56]. Inositol isomers,

which is a sugar molecule, also inhibits fibril formation by driving Aβ peptides into

an unstructured macroscopic aggregate [166, 167, 240]. It has been hypothesized

that changes in the aggregation rate of Aβ are produced by small biases in the

conformation sampled by its monomer either favoring or inhibiting aggregation-prone

structures [215].

Here, we perform REMD simulations to compute equilibrium ensembles of

Aβ conformations in pure water as well as in aqueous solutions containing small

inhibitors (i.e., 4AP and inositol) or promoters (i.e., NaCl) of amyloid fibril formation.

A comparative study of conformations in these different ensembles is performed
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to determine Aβ structures that are more frequently populated in the presence of

NaCl while inhibited in the presence of 4AP or inositol. We find that the content

of secondary structures does not change significantly in these different ensembles.

However, there are significant differences in how the different Aβ regions interact

with each other in the different environment. Using cluster analysis, we find a

specific strand-loop-strand conformation that is highly populated in aqueous solution

containing NaCl but is absent in solutions containing inhibitors. A structural analysis

of this conformation reveals the presence of a β-sheet between the C-terminus and

the hydrophobic-core region which provides the proper alignment for the formation

of amyloid fibrils determined using solid-state NMR, e.g., PDB ID: 2BEG [149]. In

this strand-loop-strand conformation, residues G38 and V40 of the C-terminus is

aligned with residues L17 and F19, which constitute the hydrophobic core of the

amyloid fibril structure. We propose that this strand-loop-strand conformation is

an aggregation-prone structure of Aβ and, thus, an intermediate structure in fibril

formation. Inhibiting its formation might slow down protein aggregation and reduce

toxicity and related to Alzheimer’s disease.

2.2 Methods

Conformations of Aβ42 monomers in pure water and aqueous solutions containing ∼

0.2 M of NaCl, inositol, or 4-Aminophenol (4AP) are studied. An helical conformation

of Aβ42 (PDBID: 1IYT) is used as its initial structure in the simulation [50]. For

simulations performed in pure water, the peptide is placed in a cubic box of 6

nm length containing 6,305 TIP3P water molecules. The net charge of the system

was neutralized by adding 3 Na ions. Details of the simulation setup in the other

aqueous solutions are summarized in Table 2.1. The AMBER99SB-ILDN force field

is used in all simulations because it provides reasonable agreement with NMR data

of small proteins [147,196]. The energy of the system is minimized and the system is
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Figure 2.1 Amino acid sequence of Aβ42 and some of its point mutations
associated with early onset Alzheimer’s. Mutations are typically named after the
geographic location in which they were first identified. Red and blue colors in the
sequence of Aβ42 is used to represent negatively and positively charged residues,
respectively.Experimentally identified turns and β-sheets are marked using curled
black lines and blue arrows, respectively. Residues comprising the hydrophobic core,
N- and C-terminus of Aβ42 are highlighted as well as the net charge of these regions.
source: [9, 39, 49, 99, 119, 182, 183, 217, 279]

equilibrated in the NPT ensemble (300 K and 1 atm) for 500 ps. The final structure of

this equilibriation period is used in our constant pressure Replica Exchange Molecular

Dynamics (REMD) simulations. In these simulations, the system was coupled to a

Velocity Rescaling thermostat (τT=0.1 ps) to maintain constant average temperature

and the pressure was fixed using Berendsen barostat (τP=0.1 ps). Periodic boundary

conditions were applied and the particle-mesh Ewald (PME) method was used to

treat long-range electrostatic interactions. A 1.0 nm cut-off distance was used for van

der Waals interactions. Covalent bonds were constrained using the LINCS algorithm,

and an integration time-step of 2 fs was used together with the leap-frog integrator.

Simulations were performed using GROMACS version 5.1.
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REMD simulation details. We use a total of 64 replicas with temperatures

distributed exponentially in the 310-500 K range [191]. Swaps between replicas

were attempted every 4 ps which resulted in an average exchange probability of

approximately 20%. Each system was simulated for 700 ns/replica, with the exception

of simulations performed in pure water which converged faster and were simulated

for 600 ns/replica. Convergence of the simulations were assessed by computing the

secondary structure content of Aβ. We used the DSSP algorithm to determine

secondary structures of a given conformation. The overall secondary structure content

of Aβ averaged over windows of 50 ns is shown in Figure 2.2. Secondary structures

converge after 400 ns and 500 ns for simulations performed in pure water and the other

aqueous solutions, respectively. The last 200 ns of each ensemble at 320 K is used

for all analysis and this time window is referred to as production run. Fluctuations

in β-sheet content during the production run is less than %5–see Figure 2.2. Notice

that β-sheet is the slowest secondary structure to converge. Results in Figure 2.2

show the need of performing long REMD simulations.

Force field of Small Compounds. Parameters for inositol and 4AP were

obtained using AmberTools17 as follows: the electrostatic potential of inositol and

4AP are obtained at the HF/6-31G* level after a geometry optimization at the AM1

level of theory. Partial charges are derived by fitting the electrostatic potential using

the Bond-Charge Corrections (BCC) method, and other force field parameters of the

molecules are taken from the GAFF [269] parameter set. Parameters of NaCl force

field used in this study are based on the work of Joung et al. [118].

J-coupling calculation. Spin-spin splitting occurs between nonequivalent nuclei

which are connected by 1-3 covalent bonds. This splitting is is referred to as J-coupling

and it provides information about the conformation of the chemical groups in the

protein [218]. For example, the three-bond J-coupling constant, 3JHNHA, between

amide proton and the alpha proton depends on the φ dihedral angle in the peptide
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Figure 2.2 Convergence of REMD simulations at 320 K. Content of secondary
structures for each system as determined by DSSP over 50 ns/replica windows.
Dashed lines show the threshold where the convergence is achieved in ensembles.

and holds values >9 Hz for β-sheets and <4 Hz for α-helices. In order to assess

the validity of structures found in REMD simulations, we compare the experimental

and calculated values of the 3JHNHA coupling constant which is calculated using the

Karplus equation [218] from our MD simulations of Aβ42 in pure water:

3JHNHA = A cos2(φ− 60) +B cos(φ− 60) + C, (2.1)

where A, B and C constants are determined by different groups [215, 266] and φ is

the peptide dihedral angle. The two sets of Karplus constants used in this study are
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Table 2.1 Details of Simulations Performed in This Study

Aβ42

monomer

Time Number of water Number of Concentration of

per replica molecules solute molecules solute

Pure water 700 ns 6305 0 0 M

NaCl 700 ns 6305 23 0.196 M

Inositol 700 ns 6305 23 0.193 M

4AP 700 ns 6305 23 0.192 M

determined by Vuister et al. [266] and Rosenman et al. [215] and are shown in Table

2.2. Note that Vuister’s parameter set are determined by fitting to crystallographically

well-defined structures whereas Rosenman’s parameter are calculated to minimize the

difference between Aβ42 experimental and simulation-derived J-couplings. Production

run of Aβ42 in pure water ensemble was used to calculate the average value of

peptide dihedral angles and the results were compared with experimental 3JHNHA

values obtained by Garcia et al. [215,234].

Correlations of the MD-derived and experimental J-coupling values are examined

by the Pearson Correlation Coefficient (PCC) [215,234]:

PCC =
Σn
i=1[(xi − x)(yi − y)]

(n− 1)σxσy
, (2.2)

for data sets x and y with size n and standard deviations of σx and σy respectively.

PCC values range between -1 and 1 where PCC = 0 means no correlation and PCC =

±1 shows perfect correlation between data sets.

2.3 Results

Secondary Structures. To understand the structural differences in Aβ42 monomer

introduced by small compounds, in Figure 2.3 we calculated the (a) β-sheet and

(b) turn content of the four systems over all residues in the production run. All of
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Figure 2.3 Residue-wise secondary structure content at 320K for Aβ42 in Inositol,
NaCl, pure water and 4AP averaged over production run. The amino acid sequence
of Aβ42 and five regions forming highest amount of β-sheet are shown on the top as
well as (a) β-sheet and (b) turn content.

Aβ42 ensembles show a similar overall pattern with peaks at N-terminal (R1-R2),

central hydrophobic cluster (R3) and in C-terminal (R4-R5) and residues are mostly

found in β-sheet or turn conformation. Differences among ensembles arise mostly

in the region containing residues 22 to 30 (Turn Region) and C-terminal. In the

latter region, NaCl increases β-content whereas Inositol shows a significant decrease

in β-content. This decrease in β-strand at C-terminal has been observed in monomeric

structures of the Alzheimer’s protective mutation (A2T) [54]. In the turn region the

decrease in β-sheet in NaCl is compensated by an increase in turn as observed in
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Figure 2.4 Aβ42 interactions analyzed by hydrogen bonds and contact maps.
Change in average number of hydrogen bonds in systems with (a) NaCl, (b) Inositol
and (c) 4AP relative to pure water over the production run between regions introduced
in Fig2.3. Dashed, thin and thick lines represent trivial, moderate and significant
changes in hydrogen bonds respectively. Blue lines shows increase in hydrogen bonds
relative to pure water and red lines shows decrease in hydrogen bonds compared to
pure water. (d-e) Contact probability maps of Cα atoms over the production run for
each of the ensembles are illustrated. Two residues are in contact when their Cα-Cα

distance is less than 8 Å. Only non-sequential contacts (|i− j| > 3) are shown in the
maps. (f) Difference between contact probability maps of NaCl (upper corner) and
4AP (lower corner) from pure water ensemble. Blue and red colors represent increase
and decrease in contacts compared to pure water ensemble.

36



Table 2.2 Karplus Data Set Parameters Used to Compare Experiments with
Simulation Derived Couplings

Coupling A B C

Vuister et al [266] 3JHNHA 6.51 -1.76 1.60

Rosenman et al [215] 3JHNHA 6.88 -6.50 -3.53

Figure 2.3b. 4AP shows higher β-sheet propensity in turn region whereas Inositol

shows no significant difference with water. Another region with high β-content is

R2 region with more β-sheet structures in NaCl and 4AP compared with pure water

and Inositol. Consequently, a decrease in turn is observed for these systems in R2

region. The data presented in Figure 2.3 show the compensation of β-sheet and turn

content and indicate that small molecules have no significant effect on the secondary

structures of Aβ42 monomer, however interactions among the regions in Aβ42 are

significantly affected by these compounds as discussed in the following sections.

Hydrogen Bonding regions. To understand how the small compounds used in

this study affect the intra-peptide interactions of Aβ42, in Figure 2.4a-c we show

the difference in average number hydrogen bonds in each ensemble relative to pure

water between regions of Aβ42 monomer. These regions are introduced in Figure

2.3 and are chosen due to their higher β-sheet content. In Figure 2.4a-c, dashed,

thin and thick lines represent trivial, moderate and significant changes whereas blue

and red colors show increase or decrease in hydrogen bonds relative to pure water

respectively. For Aβ42 in NaCl, Figure 2.4a shows diminishing hydrogen bonds

between regions R2 and R3 but regions R3 and R5 form considerably higher number of

hydrogen bonds compared to water which can be explained by higher β-sheet content
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in these regions in NaCl solution. Inositol mainly disrupts hydrogen bonds between

Aβ42 residues and has the most effect on interactions between N and C-termini (R1-R5

and R2-R5 hydrogen bonds)-See Figure 2.4b. This behavior is inline with Inositol’s

lower β content in C-terminal resulting in lower overall hydrogen bonds. 4AP

enhances hydrogen bonds in C-terminal regions (R3-R4 and R4-R5) while disrupting

N-terminal interactions (R2-R3, R1-R4 and R1-R2) as shown in Figure2.4c. This can

be related to its slight increase of β-sheet in R4 and reduced β-sheet in R1 region,

however further information is needed to clearly understand the decline in hydrogen

bonds caused by 4AP.

Contact Probability Maps. To investigate the tertiary structures of Aβ42, contact

probability maps in the production run are computed for the four systems in Figure

2.4d,e. Two residues are assumed to be in contact when the distance between their Cα-

Cα atoms is less than 8 Å. To analyze these maps we use the five regions introduced

in Figure2.3. In pure water, Figure 2.4d-upper corner, four sets of contacts are

observed: I) the predominant anti-diagonal contacts between regions R3 and R4 which

is indicative of an anti-parallel β-hairpin, II) the anti-parallel N-terminal contacts of

R1 and R2, III) the C-terminal contacts between R4 and R5 region and IV) dispersed

N and C-terminal contacts that span the residues 1-13 and 31-42. Despite having

ample intra-peptide contacts, residues 20-30 show no contact with N and C-termini

due to their high turn propensity (See Figure2.3b) which connects two β-containing

regions existing in all ensembles. Figure 2.4d-lower corner illustrates the higher intra-

peptide interactions with higher anti-parallel N-terminal contacts between R1 and R2

regions in NaCl ensemble. Lower contacts in R3-R4 regions in NaCl is compensated

by a major peak in R3-R5 region, which together with its higher β-content and

hydrogen bonding is indicative of anti-parallel β-sheets. The dispersed N and C-

terminal interactions exist in NaCl as the value of hydrogen bonds between R1-R5 has

no significant change. Inositol exhibits roughly the same contacts in N-terminal region
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Table 2.3 PCC and RMSD between experimental and calculated J-coupling values

Parameter

Set

Vuister [266] Rosenman [215] Rosenman optimized

PCC RMSD PCC RMSD PCC RMSD

(Hz) (Hz) (Hz)

Water 0.76 1.00 0.78 1.06 0.78 0.02

as pure water, but disrupts the contacts in R3-R4 and C-terminal regions as shown

in Figure 2.4e-upper corner. The R1-R5 contacts are also diminished, aligned with

their significant decrease in hydrogen bonding and β-content. Contact probability

map of 4AP, Figure 2.4e-lower corner, show the anti-diagonal R3-R4 contacts are

more abundant than other ensembles which is due to their higher hydrogen bonds in

these regions. 4AP also illustrates higher interactions between R2-R5 which is less

observed in the other ensembles.

The contact difference map of NaCl and water, Figure 2.4f-upper corner, shows

a register shift toward C-terminal in anti-diagonal contacts of R3-R4 (manifesting as

red-blue stripes) and another shift in termini region representing further interactions

between R1-R5. The contact difference map of 4AP, 2.4f-lower corner, represents

the higher R2-R5 interactions with more prevalent blue areas in C-terminal region

and a reside shift in R3-R4 regions compared to pure water ensemble. The biggest

increase in hydrogen bonds observed among all ensembles is in R3-R5 region of NaCl

(black box on contact difference map) which is not observed in other ensembles. On

the other hand, the decline in the interactions between regions R3-R4 and R3-R5

has been reported in other computational studies of Aβ42 inhibitors and is associated

with decrease in Aβ42 dimerization and aggregation [54,281].

Cluster Analysis. To gain insights into the Aβ42 structures favored by each

molecule, representatives of the five highest-populated clusters are depicted in Figure

2.6. Cluster analysis was performed using gromos method with 3.5 Å RMSD cut-off
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over the backbone atoms. Inspection of clusters with different cut-off values, lead to

the choice of 3.5 Å cut-off which provides well-separated and highly diverse clusters

with least number of shared structures between neighboring clusters. Top 10 clusters

produced by this analysis, encompass 35-40% of the structures in the production run

of each ensemble, which shows the convergence of REMD simulations and diversity of

simulated ensembles. The Turn region (residues 22-30) shown in cyan in Figure 2.6,

mostly adopts coil or bend structure while the rest of the peptide forms β-strands

with occasional α-helices. Although the clusters are rich in β content, each cluster

shows unique characteristics.

In pure water, dominant interactions in cluster S1 are between N- and C-

terminal, more specifically, R1-R2-R5 regions which form a sheet of three anti-parallel

β-strands. The CHC region (R3) either interacts with R5, forming anti-parallel and

parallel β-hairpins or it is isolated by adopting an α-helix conformation. Aβ42 in pure

water forms mostly 3-stranded β-sheet conformations with exception of less collapsed

S5 in which R3 and turn region form a single hairpin.

In NaCl, anti-parallel β-hairpins between region R1-R5 are observed similar to

pure water but in separate hairpin conformations rather than 3-stranded ones (Figure

2.6) which is in agreement with higher β content observed in the R1 and R5 regions.

The CHC region is more active compared to pure water by forming anti-parallel β

strands with R5 and R4 regions due to higher hydrogen bonding propensity between

these parts. A characteristic feature of NaCl ensemble is double anti-parallel β-

hairpins as seen in S1 and S3. In cluster S1 a β-hairpin is observed between R3 and

R4 (red and purple arrows in Figure 2.6), corresponding to the strand-loop-strand

(SLS) structure which has been suggested to be an important intermediate structure

to fibril elongation [12, 21, 93, 94, 149, 195, 260]. In this conformation, residues 17-23

and 27 to 33 -the two strands- are connected by a loop region while hydrophobic

residues are buried inside the hairpin. Another interesting hairpin conformation that
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occurs in NaCl involves regions R3 and R5, depicted in clusters S3 and S4. These

structures which we call strand-loop-loop-strand (SLLS), involve residues 17-22 and

37-42 in β-strand and residues 23-36 in loop conformation. This structure happens

more frequently in NaCl ensemble rather than SLS.

Inositol adopts less ordered structures with β-hairpins forming between R3-R4

regions in most of the clusters. R1 and R2 regions interact closely with each other

and the peptide forms barrel-like conformations with a solvent accessible core. The

regions interact less with each other which is expected from the decrease in hydrogen

bonds and lower C-terminal secondary structures of the ensemble. SLS structures

in Inositol are not fully developed and are limited to only 2-3 residues in strand

conformation.

Despite having high β content, structures of 4AP clusters have a different

characteristic compared to other ensembles: they adopt ordered structures with only

anti-parallel conformations and mostly sequential β-hairpins (i.e., R1-R2, R2-R3,

R3-R4 or R4-R5) with the occasional hairpins between N- and C-terminal regions.

As observed in the clusters and in-line with changes in hydrogen bonding, the

N-terminal contacts, e.x., R1-R2 and R2-R3 regions, are less frequent -except for

S2- and interactions among residues are shifted toward the middle and C-terminal of

Aβ42 compared to other ensembles.

Comparison to Experiment. Identifying the ensemble of Aβ42 structures that

can promote the aggregation is beneficial in developing new drug molecules for AD.

In order to measure the validity of structures identified by REMD simulations, we

have calculated the J-coupling of pure water ensemble and compared our results

with experimental data obtained from NMR spectroscopy [215] in Figure 2.5. The

calculated J-couplings from simulations using Vuister parameters [266] show a good

match with the experimental values between residues 3-4, 18-19 and the C-terminal

as observed in Figure 2.5a. The higher β-content in central hydrophobic core (R3)
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Figure 2.5 Comparison of experimental and MD-derived 3JHNHA values over the
production run of pure water ensemble at 320 K. (a) MD-derived J-coupling values
calculated using Vuister parameters [266] (black) and experimental values (red)
obtained from ref. [215]. (b) MD-derived J-coupling values calculated using Rosenman
parameters (solid black), experimental data obtained from ref. [215] (red) and
optimized J-couplings calculated from simulations (dashed black) as explained in
the text.

is also reflected in these results as a peak at residues 17-20 which is consistent with

experimental data. The discrepancies between simulated and experimental values

observed at residues 20-30 may be due to the fact that Vuister parameters in Karplus

equation are not optimized for Aβ42 protein. Indeed, better agreement between

simulated and experimental results have been observed using a set of values for

A, B and C parameters in Equation 2.1 which are optimized for Aβ42 [215]. In

Figure 2.5b, we show the MD-derived 3JHNHA values for pure water ensemble using

parameters obtained by Rosenman et al. [215] in solid black line which provides a

better agreement between experimental and our simulated values. To better visualize

the consistency between experimental J-couplings and our MD-derived data using

Rosenman parameters, the optimized values which minimize the average difference

between the two data sets are shown in dashed black line in Figure 2.5b.

Table 2.3 shows the correlation and RMSD between the MD-derived J-couplings

and experimental values using different Karplus parameter sets. For both data set
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parameters, good agreement between experiment and simulation is achieved with

PCC values greater than 0.7 which shows a strong correlation between the two data

sets. Previous computational studies on Aβ42 using OPLS-AA and TIP3P water

model reported PCC values below 0.58 [215]. This provides further proof that

the combination of AMBER99SB-ILDN force field and TIP3P water describes the

experimental properties of Aβ42 better than the other combinations of force field and

water model. It is also observed that the RMSD between simulation and experiment

are significantly decreased with optimized values of the Rosenman parameters whereas

the PCC remains consistent.

2.4 Discussion

Decreasing the aggregation rate of Aβ plays an important role in treatment of

Alzheimer’s disease. This can be accomplished by inhibiting the aggregation-prone

conformations of Aβ. However, identifying such structures have proved to be a

difficult task due to numerous ways in which Aβ aggregates. Existence of different

aggregation pathways may be related to the monomeric state of this peptide which

forms an ensemble of structures instead of folding into a native conformation. Hence,

investigating the structures adopted by Aβ and determining the parameters that

affect the monomeric state of the peptide is critical in finding a cure for Alzheimer’s.

Here, we have studied the effect of aqueous solutions on monomeric structures of

Aβ42. Our results illustrate that the structures sampled by Aβ42 strongly depend on

the solution of the monomer. More specifically NaCl which increases the aggregation

rate of Aβ42, enhances the interactions between regions R3-R5 and disrupts the R3-R4

interactions (shown in Figure 2.4a-c), resulting in a unique conformation called iSLS.

The iSLS structure is not found in the five most populated clusters of the aggregation

inhibiting molecules, i.e., 4AP and Inositol, whereas the higher R3-R4 interactions in

these solutions favors the formation of SLS structure. We hypothesize that the iSLS
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Figure 2.6 Representative structures of the five most populated clusters from
gromos method cluster analysis using backbone RMSD cut-off of 0.35 nm. Arrows
correspond to residues in β-strand conformation. Residues are colored according to
regions introduced in Figure 2.3. Regions R1 through R5 are shown in colors as
follows: residues 2-6: yellow, residues 9-14: green, residues 17-23: red, residues 27-33:
purple, residues 37-42: blue and the rest are in cyan.
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conformation may be another intermediate structure to Aβ42 aggregation because: (i)

its formation is enhanced by NaCl which promotes Aβ42 aggregation while it does not

from in ensembles with aggregation inhibiting molecules and, (ii) visual analysis of

NMR-derived fibril structure of Aβ42 (PDBID: 2BEG [149]) suggests that side chain

of residues G38 and V40 (region R5) form a hydrophobic core with side chains of

residues L17 and F19 (region R3). This suggests that formation of iSLS structure

may facilitate the transition from monomers to more ordered aggregates since residues

that form hydrophobic core of the fibril are already closer to each other.

While we have identified the effect of various aqueous solutions on structure of

Aβ42 and identified a possible aggregation-prone conformation, limitations of this

study should also be mentioned. The results obtained by computer simulations

depend strongly on the accuracy of their force fields. Among the widely used

force fields for biomolecular simulations and various water models, we have chosen

AMBER99SB-ILDN and the TIP3P water model because it has been proven to

reproduce several structural quantities measured experimentally [147,196]. Accordingly,

we have validated structures obtained from our REMD simulations with experi-

mentally derived J-couplings (Figure 2.5) and found strong correlations (PCC > 0.75)

with experiments. However, further investigation with different sets of force fields

and water models are necessary to eliminate the bias of force field parameters

on the structures of Aβ. The extensive computational resources needed for that

purpose (more than∼ 45 µs per force field per aqueous solution) has stopped us from

accomplishing this task. It is also desirable to study a broader set of small compounds

to identify other possible structures that promote Aβ42 aggregation. In this study,

we have focused our attention to the three molecules for which experimental evidence

were available [2, 56,166,167,240].
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CHAPTER 3

THERMODYNAMIC STABILITY OF POLAR AND NON-POLAR
AMYLOID FIBRILS

3.1 Introduction

Peptide self-assembly into cross-β fibril structures has important implications for

plaque formation in amyloid diseases that include Alzheimer’s and Parkinson’s [41,69].

Accordingly, this phenomenon has been the subject of intensive studies to provide

insights into the critical interactions that need to be targeted by drugs to avoid

plaque formation. Interactions between backbone atoms, which are common to all

peptides, play an important role in accounting for the superior mechanical strength

of fibrils [127, 131] and they may explain the universal nature of fibrils that can

form from seemingly unrelated amino acid sequences given the right conditions [78,

80]. Side chain interactions modulate the rate of fibrillization which increases with

the hydrophobicity and the β-sheet propensity of the peptide sequence [42]. These

interactions may also play an important role in accounting for the thermodynamic

stability of cross-β structures as shown in alanine scanning mutagenesis experiments

[272]. In such experiments, the free-energy (∆G) to add an Aβ1−40 peptide to a fibril

changed by up to ∼2 kcal/mol when a single residue was mutated to alanine. It is

important to note that equivalent ∆G values can emerge from different combinations

of enthalpy (∆H) and entropic energy (-T∆S), i.e., ∆G = ∆H −T∆S. Knowledge of

∆H and −T∆S can provide insights into the stabilizing mechanisms of fibrils since

hydrophobic interactions of small non-polar side chains are mainly related to ∆S,

whereas ∆H emerges mainly from direct pairwise interactions, e.g., van der Waals and

electrostatic interactions [36, 136, 277]. Thus, thermodynamics provides a framework

to quantify fibril stability and the interactions accounting for it.

Albeit commonly used to study protein folding, equilibrium thermodynamic

quantities of mature amyloid fibrils are not easily accessible experimentally and they
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remain largely unknown [71,107,171]. Only recently have experiments shown that for

some protein sequences, fibrils grow to an equilibrium state in which they coexist

with dissolved proteins [186]. The threshold concentration of proteins dissolved

in solution below which fibril nucleation cannot occur [121] has been explored to

measure ∆G and to discover effects of individual amino acids on the stability of

fibrils [70, 232, 233, 271]. Studies of the temperature dependence of this equilibrium

can also be used to compute other thermodynamic quantities, e.g., ∆H, ∆S, and

changes in heat capacity ∆Cp [38, 107, 253, 262]. Studies of β-sheet association

provide evidence that the molecular mechanisms accounting for fibril stability depend

on the peptide sequence [133, 208, 256]. In particular, the enthalpically unfavorable

desolvation of preformed β-sheets made from polar peptides (Sup35) could be the rate

limiting process of their association, whereas entropic effects related to hydrophobic

interactions could favor the association of β-sheets made from non-polar peptides. It

is important to note that while effects of temperature on ∆G are not well understood,

higher temperatures have been shown to affect the kinetics of some amyloid fibrils by

significantly increasing their nucleation and growth rates [263].

The spontaneous addition of peptides to fibrils has been studied through

computer simulations. This process was shown to occur in at least two steps

wherein peptides dock into fibrils before locking into them via nonspecific hydrogen

bonds [33, 77, 86, 181, 206,226,252, 253]. To compute ∆G, different simulation setups

based on the dissociation of peptides from known fibril structures have been used

[141, 203, 215, 253]. Extensive sampling is required to account for equilibrium ∆G

where ∆G ≡ −∆Gdissociation = ∆Gassociation. Recently, ∆G values computed from

simulations have been shown to be in reasonable agreement with experiments for

the Aβ9−40 fibril [227]. These ∆G emerge from a favorable entropic contribution

and a small non-favorable enthalpy. Rationalization of these results require an
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understanding of how the amino acid sequence and fibril structure account for

equilibrium thermodynamic quantities.

In this dissertation, we compute potentials of mean force (PMF) to add

monomeric peptides to non-polar and polar fibrils. PMF(ξ) corresponds to the

free-energy to bring a peptide from non-interacting distances to a distance ξ

from the fibril. This quantity is computed at different temperatures in order to

provide estimates for ∆H and −T∆S. Simulations are performed by combining two

enhanced sampling methods, i.e., Replica Exchange Molecular Dynamics (REMD)

and Umbrella Sampling (US). REMD is used to improve sampling of the different

US windows, thus, providing equilibrium ensembles of peptide structures around the

fibril at different temperatures. The weighted histogram analysis method (WHAM)

is used to compute PMF(ξ) at different temperatures from the different ensembles.

We anticipate that the methodology used here will become popular as the intensive

computational resources required to perform the simulations are becoming more

widely available to researchers. The combination of REMD and umbrella sampling

presents the advantage of being easily generalized to other systems as it requires little

prior knowledge of the system being study, and it provides equilibrium conformational

ensembles at different temperatures.

We find that the non-polar fibril studied in this dissertation becomes more

stable with increasing temperature. At first sight, this result is counter-intuitive as

solid materials tend to become less stable with increasing temperature, and not the

opposite. We show that hydrophobic interactions in the core of non-polar fibrils

are responsible for this non-conventional dependence of stability on temperature. In

contrast, the polar fibril becomes less stable with increasing temperature. Thus, our

results suggest that the stability of fibrils can be tuned by carefully choosing the amino

acid sequence in the dry core of the fibril. Accordingly, one may envisage fibrils being

used as thermosensors that will fall apart whenever a given temperature Tc is reached.
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To the best of our knowledge, this is the first computational study to investigate the

effect of temperature on the thermodynamic stability of amyloid-like fibrils using

all-atom molecules and explicit solvent. Moreover, the combination of REMD and

US allows us to compute enthalpic and entropic energies with small uncertainties for

both non-polar and polar fibrils. We find that the former is stabilized by entropic

energy and the latter by enthalpy. This suggests, that similarly to the thermodynamic

theory of protein folding, it may be possible to develop a thermodynamic theory

for fibril growth wherein the addition of a peptide to a fibril accounts for specific

changes in enthalpy, entropic energy, and heat capacity. However, this will require

the study of other fibrils from different amino acid sequences as well as polymorphic

fibril structures. This study provides a proof of concept in that direction and shows

a new methodology that can be used for that purpose.

3.2 Methods

All simulations are performed using GROMACS 4.6 with AMBER99sb-ILDN force-

field and TIP3P water [101]. The initial structure of the non-polar Aβ16−21 fibril

(sequence KLVFFA) is based on the PDB entry 3OW9 which contains twelve anti-

parallel peptides [47]. To reduce the computational cost of the simulation while

allowing the free peptide to interact with the solvent accessible sides of the fibril, we

retain six of the twelve peptides in the simulation box–see Figure 3.3a. The polar

IAPP28−33 fibril (sequence SSTNVG) was constructed by extending the PDB entry

3DG1 [273] to account for a cross-β structure made of six chains with parallel β-sheets

as determined experimentally [175,273]–see Figure 3.3b. Simulation boxes of Aβ16−21

and IAPP28−33 fibrils are solvated with 7379 and 7300 water molecules and the net

charge of the Aβ16−21 system is neutralized by adding six Cl− ions. These initial

fibrils were relaxed for 2 ns at 300 K and 1 atm to remove unrealistic contacts.
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Figure 3.1 Histograms of replica exchange MD simulations for (a) Aβ16−21 and (b)
IAPP28−33 at 320 K showing reasonable overlap between neighboring replicas. Colors
represent individual replicas and y-axis shows the number of occurrence during the
last 25 ns of simulation.

Simulations in this work are performed using the leap-frog algorithm with a

time-step of 2 fs to integrate the equations of motion. The neighbor list is updated

every 10 steps and bonded interactions are constrained using the LINCS algorithm.

A Lennard-Jones cutoff of 1.4 nm is used. Electrostatics is treated using the Smooth

Particle Mesh Ewald method with a grid spacing of 0.12 nm and a 1.4 nm real-space

cutoff. Temperature is controlled using the velocity-rescale thermostat (τT=0.1 ps)

and the pressure is set to 1 atm using the Berendsen-coupling barostat (τP=1.0 ps).

Each of the restrained ξ-distances for Abeta16−21 and IAPP28−33 are sampled using

REMD for 75 ns. Thirty-two replicas are chosen in the temperature range 290 K

to 373 K such as to account for an average exchange rate of approximately 20 %.

Exchanges between neighboring replicas are attempted at every 750 steps. In Figure

3.1, we show the overlap between replicas for both ensembles as a function of ξ. Figure

3.2 illustrates the convergence of simulations by calculating the PMF over 10 ns time

intervals. Aβ16−21 and IAPP28−33 systems reach equilibrium after 30 ns and 40 ns of

simulation time.
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Figure 3.2 PMF at the global minimum averaged over time intervals of 10 ns for
(a) Aβ16−21 and (b) IAPP28−33 at 320 K. Dashed lines correspond to the average over
the last 25 ns, i.e., average over 50-75 ns. Notice that the PMF averaged over 40-50
ns is already very close to the dashed line.

A two step Umbrella Sampling protocol [141] combined with replica exchange

molecular dynamics is used to study fibril dissociation at different temperatures.

Notice that US (without REMD) is commonly used to study free-energies to add

peptides to a fixed-main chain fibril [108, 142, 203, 221, 227]. The combination of US

and REMD enhances sampling of the phase space and it provides estimates of the

PMF at different temperatures which we use to compute enthalpy and entropic energy.

In these simulations, heavy atoms of five chains of the initial fibril are restrained to

their initial positions by a spring with constant 1000 kJ mol−1 nm−2.

In the first US step, the Cα atom of the N-terminal of the “free” peptide is pulled

away from the center-of-mass of its closest three chains along the one-dimensional

direction of the fibril axis (ξz). From these 10 ns steered molecular dynamics

simulations, 20 and 19 configurations for Aβ16−21 and IAPP28−33, respectively, were

extracted along the dissociation pathway. The ξz distance between peptide and fibril

in these extracted configurations were in the range of 0.9–2.8 nm for Aβ16−21 and

0.94–2.74 nm for IAPP28−33 with 0.1 nm increments for both systems. The goal is to
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d)

Figure 3.3 Schematic representation of the simulation setup showing the reaction
coordinate ξ for (a) the anti-parallel Aβ16−21 fibril and free peptide overlapped on a
sphere with radius ξ, illustrating the three-dimensional surface (grey) on which the
free peptide can move, and (b) the parallel IAPP28−33 fibril with free peptide at three
different ξ values. The two β-sheets are shown in yellow and orange. Water molecules
are not shown for clarity. Top view and cross-section of (c) Aβ16−21 and (d) IAPP28−33

fibrils. Van der Waals surfaces of the fibril and free peptide are shown in blue and
red, respectively. Residues forming the dry core of Aβ16−21 (F and L) and IAPP28−33

(S and N) fibrils are highlighted.

use these structures as initial configurations to sample the system along the reaction

coordinate.

We define the distance ξ between the Cα atom of the N-terminal of the “free”

peptide and the three closest chains of the fibril as our reaction coordinate for the

second step of umbrella sampling–see SI. The selection of ξ in this way limits the

conformations of the free peptide to move on a sphere with radius ξ at each window–

see Figure 3.3c. To avoid potential biases introduced by the initial structure of the

“free” peptide, we removed all the water from the simulation box and performed a

manual random rotation of the peptide around its Cα atom of N-terminal residue,

avoiding steric collisions with the fibril. This rotation was performed once for each
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window of both systems while keeping the distance ξ fixed. Examples of rotations for

three ξ values are shown in Figure 3.3d. The configurations with rotated free peptide

were solvated and equilibrated for 2 ns with position restraints on heavy atoms.

In the second US step, a spring with constant of 4000 kJ mol−1 nm−2 is used

to restrain initial ξ distances of the 20 Aβ16−21 and 19 IAPP28−33 windows. These

systems are simulated using REMD [229] for 75 ns each. The last 25 ns of the

trajectories is used to compute PMF(ξ) at each of the 32-temperatures (ranging

from 290 K to 373 K) using the weighted histogram analysis method [135]. Details

of the simulation and analysis of the convergence of the PMF are provided in the

Supporting Information (SI). Notice that the PMF increases with −kbT log(ξ2) due

to the three-dimensional nature of ξ. We subtract this dependence of the PMF on ξ

and the PMF is shifted to zero at ξ = 2.7 nm.

3.3 Results

3.3.1 Reaction Coordinate and Cluster Analysis of Locked States

Different reaction coordinates ξ can be used to describe the pathway of peptide

dissociation from fibrils. A commonly used reaction coordinate is the distance ξz

along the fibril axis between center-of-mass of the fibril and center-of-mass of the

free-peptide. In simulations that make use of ξz, the peptide starts locked into the

fibril and it is pulled away from the fibril using steered molecular dynamics. From the

trajectory of this steered simulation, conformations along ξz are selected and used as

starting conformations for umbrella sampling. Because the initial structure in these

simulations is the locked state, this protocol may account for PMF that are biased

towards the fibril state.

In our simulations, initial conditions for each window are prepared to avoid

biases towards the fibril state. This was achieved by manually rotating peptide

conformations selected from the steered simulation-see discussion in main manuscript.
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from the fibril. In between these two states, e.g., at =1.80 nm, the peptide is found to 
interact significantly with the side chains of the fibrils that are exposed to the solvent—
see Fig. 4d of the manuscript. 

ξ=0.94 nm ξ=1.20 nm ξ=1.40 nm ξ=1.60 nm ξ=1.80 nm ξ=2.80 nm

  

 
Figure S3. Conformations sampled by the Aβ16-21 peptide at six different ξ values. 
Overlaid structures of the peptide are represented in red. The five peptides forming the 
fibril are represented in a cartoon representation. ξ corresponds to the distance between 
the center-of-mass of the three peptides of the fibril that are colored in orange and the Ca 
atom of the N-terminal of the free-peptide. 
 

 

Figure S4. Probability of the peptide to be in locked states for Aβ16-21 and IAPP28-33. In 
the locked state, the peptide can be incorporated into the β-sheet of the fibril made of 
three peptides (black lines) or into the β-sheet that contains two peptides (red lines). 
These locked conformations are represented in panels a and b for the Aβ16-21 and IAPP28-

33 peptides, respectively.  Cluster analysis (using a RMSD cutoff of 2.0 A for Cα atoms) 
was used to determine the probability of finding peptides in the two locked states. This 
analysis was performed for conformations at 320 K.  

Figure 3.4 Conformations sampled by the Aβ16−21 peptide at six different ξ values.
Overlaid structures of the free peptide are represented in red. The five peptides
forming the fibril are represented in a cartoon representation. ξ corresponds to the
distance between the center-of-mass of the three peptides of the fibril that are colored
in orange and the Ca atom of the N-terminal of the free-peptide.

This rotation was performed without changing significantly the value of the reaction

coordinate. Notice that, when using ξz as the reaction coordinate, it is not possible

to produce a significant rotation of the peptide without having it overlap with the

fibril. However, such a rotation is possible using other reaction coordinates. In our

simulations, we use the distance ξ between center-of-mass of the three closest chains

in the fibril and the Cα atom of the N-terminal of the free-peptide as our reaction

coordinate. Using this reaction coordinate, it is possible to rotate the peptide while

keeping ξ fixed. Moreover, independently of the initial structure, we find that the

peptide samples the locked state in simulations close to ξ=0.94 nm. Notice that an

alternative reaction coordinate is the distance ξ’ between center-of-mass of the three

closest peptides in the fibril and the Cα atom of the C-terminal of the free-peptide.
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from the fibril. In between these two states, e.g., at =1.80 nm, the peptide is found to 
interact significantly with the side chains of the fibrils that are exposed to the solvent—
see Fig. 4d of the manuscript. 

ξ=0.94 nm ξ=1.20 nm ξ=1.40 nm ξ=1.60 nm ξ=1.80 nm ξ=2.80 nm

  

 
Figure S3. Conformations sampled by the Aβ16-21 peptide at six different ξ values. 
Overlaid structures of the peptide are represented in red. The five peptides forming the 
fibril are represented in a cartoon representation. ξ corresponds to the distance between 
the center-of-mass of the three peptides of the fibril that are colored in orange and the Ca 
atom of the N-terminal of the free-peptide. 
 

 

Figure S4. Probability of the peptide to be in locked states for Aβ16-21 and IAPP28-33. In 
the locked state, the peptide can be incorporated into the β-sheet of the fibril made of 
three peptides (black lines) or into the β-sheet that contains two peptides (red lines). 
These locked conformations are represented in panels a and b for the Aβ16-21 and IAPP28-

33 peptides, respectively.  Cluster analysis (using a RMSD cutoff of 2.0 A for Cα atoms) 
was used to determine the probability of finding peptides in the two locked states. This 
analysis was performed for conformations at 320 K.  

Figure 3.5 Locked states of Aβ16−21 and IAPP28−33 fibrils. In the locked state, the
free peptide can be incorporated into the β-sheet of the fibril made of three peptides
(a-b, left), or into the β-sheet that contains two peptides (a-b, right). These locked
conformations are represented in panels (a) and (b) for the Aβ16−21 and IAPP28−33

peptides, respectively. The probability of peptide being in β-sheet made of three
peptides (black) and being in β-sheet containing two peptides (red) is shown in panels
(c-d). Cluster analysis (using a RMSD cutoff of 2.0 Å for Cα atoms) was used to
determine the probability of finding peptides in the two locked states. This analysis
was performed for conformations at 320 K.

Since our choice of ξ is not commonly used in the literature, we show in Figure

3.4 the configurational space of the peptide of Aβ16−21 at six different ξ values: At

ξ=0.94 nm, the peptide interacts only with the tip of the fibril. Moreover, in Figure

3.5 we show through cluster analysis that approximately 70% of the conformations

sampled by the peptide at ξ=0.94 nm correspond to locked states. As ξ increases

from 1.20 nm to 1.80 nm, the peptide interacts with the solvent exposed surface area

of the fibril.

At ξ=2.80 nm, the peptide is detached from the fibril. Thus, ξ describes a

pathway in which the peptide evolves from a state in which it is interacting with
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Figure 3.6 Structural properties of Aβ16−21 (red) and IAPP28−33 (black) along the
reaction coordinate at 320 K. Number of hydrogen bonds between (a) “free-peptide”-
water, (b) protein (i.e., all six peptides)-water and (c) main chain atoms of fibril (i.e.,
five peptides)- “free-peptide”. (d) Radius of gyration, i.e., Rg, and (e) end-to-end
distance, i.e., dee, of the “free-peptide”. (f) Solvent Accessible Surface Area (SASA)
of protein (i.e., all six peptides).

the tip of the fibril in a locked configuration to a state where it is detached from

the fibril. In between these two states, e.g., at ξ=1.80 nm, the peptide is found

to interact significantly with the side chains of the fibrils that are exposed to the

solvent–see Figure 4d of the manuscript.

3.3.2 Structural Quantities Upon Fibril Dissociation

Figure 3.15 shows that the molecular interactions stabilizing Aβ16−21 and IAPP28−33

fibrils are significantly different from each other. In particular, the former is stabilized

by entropic energy while the latter is stabilized by enthalpy. In Figure 3.6, we

show that structural quantities measured upon peptide dissociation from Aβ16−21
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compact upon dissociation due to the non-polar nature of its side chains. However, 
its Rg decreases by less than 0.03 nm upon dissociation. To provide some insights 
into this weak dependence of Rg and dee on , we performed two additional 100 ns 
simulations at 330 K consisting of a single Aβ16-21 peptide in pure water and a single 
IAPP28-33 peptide in pure water. The structure of peptides in these new simulations 
is studied in Fig. S6 through cluster analysis. This figure shows that structures of 
the five most popular clusters of Aβ16-21 or IAPP28-33 peptides in pure water are 
significantly extended. The small size of these peptides as well as the bulkiness of 
the side chains may explain their extended nature. Accordingly, the Aβ16-21 peptide, 
which has bulkier side chains than IAPP28-33, is more extended—see Fig. S6. 
  

   Cluster 1  Cluster 2  Cluster 3  Cluster 4  Cluster 5 

Aβ16‐21   

 

 

 

 

10.7 %  8.01 %  6.27 %  4.79 %  3.94 % 

Rg=0.64 nm  Rg=0.57 nm  Rg=0.60 nm  Rg=0.57 nm  Rg=0.53 nm 

IAPP28‐33 
 

 

 

 

 

15.3 %  13.01 %  9.53 %  7.67 %  6.97 % 

Rg=0.56 nm  Rg=0.45 nm  Rg=0.53 nm  Rg=0.46 nm  Rg=0.53 nm 

 

Figure S6. Five most populated clusters of single peptide simulations in explicit water 
for 100 ns.  

 

 Fig. S7 provides a direct comparison of the structure of the Aβ16-21 peptide in pure 

water, in the locked state (i.e., =0.94 nm), and at =2.80 nm. Structures are 

shown for the three most populated clusters. In all three systems, the peptide is 
considerably extended. 

 

 

Figure 3.7 Five most populated clusters of single peptide simulations in explicit
water for 100 ns.

and IAPP28−33 fibrils do not provide much insight into these different molecular

interactions. This justifies the need to compute thermodynamic quantities in this

work.

It is interesting to notice the weak dependence of Rg and dee on ξ-see Figure

3.6(d-e). In particular, one would expect the Aβ16−21 peptide to become significantly

more compact upon dissociation due to the non-polar nature of its side chains.

However, its Rg decreases by less than 0.03 nm upon dissociation. To provide some

insights into this weak dependence of Rg and dee on ξ, we performed two additional

100 ns simulations at 330 K consisting of a single Aβ16−21 peptide in pure water

and a single IAPP28−33 peptide in pure water. The structure of peptides in these

new simulations is studied in Figure 3.7 through cluster analysis. This figure shows

that structures of the five most popular clusters of Aβ16−21 or IAPP28−33 peptides

in pure water are significantly extended. The small size of these peptides as well as

the bulkiness of the side chains may explain their extended nature. Accordingly, the

Aβ16−21 peptide, which has bulkier side chains than IAPP28−33, is more extended-see

Figure 3.7.
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ξ=0.94 nm 

(Locked State) 
ξ=2.80 nm 

Cluster 
1 
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2 
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Figure S7. Cluster analysis of the Aβ16-21 in pure water, free peptide in locked state and 
free peptide at =2.80 nm. Three most populated clusters for each system are shown and 
in all of them, the peptide is in an extended conformation. 

  

Figure 3.8 Cluster analysis of the Aβ16−21 in pure water, free peptide in locked
state and free peptide at ξ=2.80 nm. Three most populated clusters for each system
are shown and in all of them, the peptide is in an extended conformation.

Figure 3.8 provides a direct comparison of the structure of the Aβ16−21 peptide

in pure water, in the locked state (i.e., ξ=0.94 nm), and at ξ=2.80 nm. Structures

are shown for the three most populated clusters. In all three systems, the peptide is

considerably extended.

3.3.3 Effect of Temperature Range on Computing Thermodynamic Quantities

In Figure 3.15 we show the dependence of ∆H and -T∆S on the reference temperature

T0. These quantities were computed by fitting the temperature dependence of the

PMF to equation 3.1. Thirty-two PMF, computed in the temperature range 290 K

to 373 K, were used in these fits. In Tables 3.1 and 3.2, we show that the use of a

smaller temperature range already provides good estimates for ∆H and -T∆S. This

smaller temperature range resembles more closely to the range of temperatures used

experimentally, i.e., 273 K to 333 K, in references [107,128].
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Table 3.1 Effects of the Temperature Range in Computing ∆H, -T∆S, and ∆C for
Aβ16−21 at Physiological Conditions, i.e., 309.98 K.

S5 – Effect of temperature range on computing thermodynamic quantities 

In Fig. 3 of the main manuscript, we show the dependence of ∆H and –T∆S on the 
reference temperature To. These quantities were computed by fitting the temperature 
dependence of the PMF to Eq. 1.  Thirty-two PMF, computed in the temperature range 
290 K to 373 K, were used in these fits. In Table S1 and S2, we show that the use of a 
smaller temperature range already provides good estimates for ∆H and –T∆S. This 
smaller temperature range resembles more closely to the range of temperatures used 
experimentally, i.e., 273 K to 333 K, in references [12] and [64] of the main manuscript.  

Table S1. Effects of the temperature range in computing ∆H, –T∆S, and ∆C for Aβ16-21 at 
physiological conditions, i.e., 309.98 K. The use of a temperature range of 15 K provides 
a good estimate for ∆H and –T∆S. 

Aβ16-21

Temperature 
range (K) 

PMF 
kJ/mol 

∆H 
kJ/mol

-T∆S 
kJ/mol

∆C 
kJ/mol/K

309.98 ± 10 -9.52 18.10 ± 12.12 -27.62 ± 12.12 9.2522 ± 4.18
309.98 ± 15 -9.89 44.10 ± 8.94 -54.00 ± 8.94 3.16 ± 2.11
309.98 ± 20 -10.18 46.14 ± 5.78 -56.33 ± 5.78 0.66 ± 1.03
290—373 -10.57  43.65 ± 4.07 -54.22 ± 4.05 -0.85 ± 0.18

 

Table S2. Effects of the temperature range in computing ∆H, –T∆S, and ∆C for IAPP28-

33 at physiological conditions, i.e., 309.98 K. The use of a temperature range of 15 K 
provides a good estimate for ∆H and –T∆S. 

IAPP28-33

Temperature 
range (K) 

PMF 
kJ/mol 

∆H 
kJ/mol

-T∆S 
kJ/mol

∆C 
kJ/mol/K

309.98 ± 10 -18.51 4.69 ± 6.87 -23.20 ± 6.87 -0.94 ± 2.37
309.98 ± 15 -18.57 -14.20 ± 6.65 -4.37 ± 6.65 -2.71 ± 1.57
290—373 -18.45  -14.76 ± 3.58 -3.69 ± 3.56 -1.44 ± 0.16

  

Table 3.2 Effects of the Temperature Range in Computing ∆H, -T∆S, and ∆C for
IAPP28−33 at Physiological Conditions, i.e., 309.98 K.

S5 – Effect of temperature range on computing thermodynamic quantities 

In Fig. 3 of the main manuscript, we show the dependence of ∆H and –T∆S on the 
reference temperature To. These quantities were computed by fitting the temperature 
dependence of the PMF to Eq. 1.  Thirty-two PMF, computed in the temperature range 
290 K to 373 K, were used in these fits. In Table S1 and S2, we show that the use of a 
smaller temperature range already provides good estimates for ∆H and –T∆S. This 
smaller temperature range resembles more closely to the range of temperatures used 
experimentally, i.e., 273 K to 333 K, in references [12] and [64] of the main manuscript.  

Table S1. Effects of the temperature range in computing ∆H, –T∆S, and ∆C for Aβ16-21 at 
physiological conditions, i.e., 309.98 K. The use of a temperature range of 15 K provides 
a good estimate for ∆H and –T∆S. 

Aβ16-21

Temperature 
range (K) 

PMF 
kJ/mol 

∆H 
kJ/mol

-T∆S 
kJ/mol

∆C 
kJ/mol/K

309.98 ± 10 -9.52 18.10 ± 12.12 -27.62 ± 12.12 9.2522 ± 4.18
309.98 ± 15 -9.89 44.10 ± 8.94 -54.00 ± 8.94 3.16 ± 2.11
309.98 ± 20 -10.18 46.14 ± 5.78 -56.33 ± 5.78 0.66 ± 1.03
290—373 -10.57  43.65 ± 4.07 -54.22 ± 4.05 -0.85 ± 0.18

 

Table S2. Effects of the temperature range in computing ∆H, –T∆S, and ∆C for IAPP28-

33 at physiological conditions, i.e., 309.98 K. The use of a temperature range of 15 K 
provides a good estimate for ∆H and –T∆S. 

IAPP28-33

Temperature 
range (K) 

PMF 
kJ/mol 

∆H 
kJ/mol

-T∆S 
kJ/mol

∆C 
kJ/mol/K

309.98 ± 10 -18.51 4.69 ± 6.87 -23.20 ± 6.87 -0.94 ± 2.37
309.98 ± 15 -18.57 -14.20 ± 6.65 -4.37 ± 6.65 -2.71 ± 1.57
290—373 -18.45  -14.76 ± 3.58 -3.69 ± 3.56 -1.44 ± 0.16

  
Note: The Use of a Temperature Range of 15 K Provides a Reasonable Estimate for
∆H and -T∆S in Tables 3.1 and 3.2.

3.3.4 Umbrella Sampling of Aβ16−21 With and Without REMD

In Figure 3.9, we compare histograms and PMF of simulations performed using

Umbrella Sampling alone, i.e., US without REMD (left panels), and Umbrella

Sampling with REMD (right panels) at 330 K. Trajectories for US + REMD are

from simulations discussed in the main manuscript. To compute the PMF from

simulations using US alone, we used the same number of windows, spring constant,

simulation time (i.e., 75 ns), and initial conditions for each window as in our US

+ REMD simulations. Notice that in our simulations, initial conditions for each

window are prepared to avoid biases towards the fibril state whereas the free-peptide

in most studies in the literature is initially locked into the fibril. Panels (a-b) show

that there is enough overlap between neighboring histograms to allow the PMF to be

estimated using the weighted histogram analysis method (WHAM) for both US and

US+REMD. However, the PMF computed using US alone is far from being smooth
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Figure 3.9 Histograms of Umbrella Sampling simulation (a) without and (b) with
REMD. PMF computed from simulations performed (c) without and (d) with REMD.

and the ground state is not the locked state which occurs at ξ=1.0 nm. This suggests

sampling problems in simulations performed with US alone.

To provide further insight into how REMD improves sampling, we extended the

trajectory of the Umbrella Sampling simulation at ξ=1.80 nm to 300 ns. In the first

row of Figure 3.10, we show overlaid conformations of the free-peptide for different

time intervals. These conformations are compared with the ones from REMD in the

second row of Figure 3.10. This figure shows that the free-peptide samples a larger

phase space in 75 ns US + REMD simulation than in 300 ns of US (without REMD).

In the 75 ns simulation using US + REMD, the peptide samples the space of a

cylindrical shell around the fibril. In the 300 ns of US (without REMD) simulations,

the peptide samples approximately half of a cylindrical shell. Thus, the time required

to sample the whole cylindrical shell may be estimated to be 600 ns, i.e., 8 times more
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 To provide insight into how REMD improves sampling, we extended the trajectory 
of the Umbrella Sampling simulation at ξ=1.80 nm to 300 ns. In the first row of Fig. 
S9, we show overlaid conformations of the free-peptide for different time intervals. 
These conformations are compared with the ones from REMD in the second row 
of Fig. S9. This figure shows that the free-peptide samples a larger phase space 
in 75 ns US+REMD simulation than in 300 ns of US (without REMD).  
 

 In the 75 ns simulation using US + REMD, the peptide samples the space of a 
cylindrical shell around the fibril. In the 300 ns of US (without REMD) simulations, 
the peptide samples approximately half of a cylindrical shell. Thus, the time 
required to sample the whole cylindrical shell may be estimated to be 600 ns, i.e., 
~ 8 times more than the time require to sample the same space using US + REMD. 
This implies that using the computational resources required to estimate the PMF 
at 32 temperatures with US + REMD (see main manuscript), one would only be 
able to compute the PMF at 4 temperatures using US (without REMD).  

 

US (without 
REMD) 

   

50-100 ns 100-150 ns 150-200 ns 200-250 ns 250-300 ns 

US + REMD 
    

50-75 ns     
 

Figure S9. Sampling of normal MD simulation at different time intervals in a 300 ns 
simulation compared with REMD of 75 ns, both at ξ=1.80 nm and T=330K.  

   

Figure 3.10 Sampling of normal MD simulation at different time intervals in a 300
ns simulation compared with REMD of 75 ns, both at ξ=1.80 nm and T=330K.

than the time require to sample the same space using US + REMD. This implies that

using the computational resources required to estimate the PMF at 32 temperatures

with US + REMD, one would only be able to compute the PMF at 4 temperatures

using US (without REMD).

3.3.5 Error Analysis

In Figure 3.15 we computed ∆H and -T∆S by fitting the temperature dependence of

the PMF to equation 3.1 via a least mean square fit. Estimates of the error of these

fits are also provided. Here, we provide justification for the small errors reported

in Figure 3.15. Notice that PMFs computed at the 32 temperatures in Figure 3.14

e-f are subjected to errors. These errors of 0.7 kJ/mol have been estimated using

bootstrap analysis. To justify the small errors reported in Figure 3 for ∆H and -T∆S,

we added random numbers within ± 1Standard Deviation to the PMF(ξ0) at all 32

temperatures. For this new realization of the temperature dependence of the PMF,

we computed ∆H, -T∆S and ∆C using least mean square fit to equation 3.1. This

procedure was repeated 20 times which allowed us to compute the mean and standard

deviation of ∆H, -T∆S and ∆C. These quantities are reported in Table 3.3.
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Table 3.3 Mean and Standard Deviation of 20 Calculations After Adding a Random
Error to All PMF Values at ξ=ξ0 for Aβ and IAPP Fibrils.

S7 – Error analysis 

 In Fig. 3 of the main manuscript, we computed ∆H and -T∆S by fitting the 
temperature dependence of the PMF to Eq. 1 via a least mean square fit. Estimates 
of the error of these fits are also provided. Here, we provide justification for the 
small errors reported in Fig. 3 of the main manuscript.  
 

 Notice that PMFs computed at the 32 temperatures in Fig. 2 e-f are subjected to 
errors. These errors of ~0.7 kJ/mol have been estimated using bootstrap analysis. 
To justify the small errors reported in Fig. 3 for ∆H and -T∆S, we added random 
numbers within ± 1Standard Deviation to the PMF(ξo) at all 32 temperatures. For 
this new realization of the temperature dependence of the PMF, we computed ∆H, 
-T∆S and ∆C using least mean square fit to Eq. 1. This procedure was repeated 
20 times which allowed us to compute the mean and standard deviation of ∆H, -
T∆S and ∆C. These quantities are reported in Table S3.  
 

 The mean value of ∆H, -T∆S and ∆C should converge to the reported values in 
Fig. 3 when the number of repeats goes to infinity. For the 20 repeats performed 
here, mean values of ∆H, -T∆S and ∆C are already very close to the values 
reported in Fig. 3. Notice that the standard deviation of these quantities is smaller 
than the error estimates in Fig. 3.  
 

Table S3. Mean and standard deviation of 20 calculations after adding a random error 
to all PMF values at ξ=ξ0 for Aβ and IAPP fibrils. 

 Aβ16-21 IAPP28-33 

T0=309.98 K Mean SD Mean SD 

∆H (kJ/mol) 42.95 1.74 -14.57 2.00 

-T∆S (kJ/mol) -53.46 1.71 -3.91 1.96 

∆C (kJ/mol /K) -0.79 0.058 -1.47 0.069 

 

 

 

 

  

The mean value of ∆H, -T∆S and ∆C should converge to the reported values in

Figure 3.15 when the number of repeats goes to infinity. For the 20 repeats performed

here, mean values of ∆H, -T∆S and ∆C are already very close to the values reported

in Figure 3.15. Notice that the standard deviation of these quantities is smaller than

the error estimates in Figure 3.15.

3.3.6 Side Chain Analysis of Lysine in Aβ16−21

All the residues of Aβ16−21 are non-polar except for Lysine (K) which is positively

charged. This residue is made of non-polar and charged moieties-see inset of Figure

3.11. Characteristic conformations of the peptide indicate that the charged moiety

of Lysine is mostly exposed to the solvent while its non-polar moiety is closer to the

fibril allowing it to interact with exposed side chains of the fibril-see Figure 3.11. This

is quantified in Figure 3.12 and it suggests that despite being a charged residue, lysine

interacts with the fibril mainly via its non-polar moiety. This justifies our treatment

of Aβ16−21 as being a non-polar peptide in the main manuscript

3.3.7 Side Chain Analysis of Asparagine in IAPP28−33

Asparagine (N) is commonly found in peptides that are prone to form fibrils. In

Figure 3.13, we investigate how it contributes to fibril stability by computing the

fraction of hydrogen bonds between asparagine’s side chain of the free peptide and
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S8 – Side chain analysis of Lys in Aβ16-21 

 All the residues of Aβ16-21 are 
non-polar except for lysine (K) 
which is positively charged. 
This residue is made of non-
polar and charged moieties—
see inset of Fig. S11. 
Characteristic conformations 
of the peptide indicate that the 
charged moiety of lysine is 
mostly exposed to the solvent 
while its non-polar moiety is closer 
to the fibril allowing it to interact 
with exposed side chains of the 
fibril—see Fig. S10. This is 
quantified in Fig. S11 and it 
suggests that despite being a charged residue, lysine interacts with the fibril mainly 
via its non-polar moiety. This justifies our treatment of Aβ16-21 as being a non-polar 
peptide in the main manuscript. 

 

Figure S11.  Distance between COM of charged and hydrophobic groups of Lys and 
COM of fibril backbone. This graph shows that the hydrophobic group of Lys interacts 
more closely with the fibril, while the charged group of Lys (NH3) points away from fibril 
backbone, interacting with water molecules.  

 

ξ=1 nm ξ=1.2 nm

  

Figure S10. Characteristic conformation of the 
peptide-fibril system at ξ=1 nm and ξ=1.2 nm. Side 
chain atoms of lysine are shown in blue and red for 
its non-polar and charged moiety, respectively. 

Figure 3.11 Characteristic conformation of the peptide-fibril system at ξ=1 nm
and ξ=1.2 nm. Side chain atoms of lysine are shown in blue and red for its non-polar
and charged moiety, respectively.

Hydrophobic

Charged
Cα

Figure 3.12 Distance between COM of charged and hydrophobic groups of Lys
and COM of fibril backbone. This graph shows that the hydrophobic group of Lys
interacts more closely with the fibril, while the charged group of Lys (NH3) points
away from fibril backbone, interacting with water molecules.

side chains of different residues of the fibril. At short ξ distances, asparagine forms

hydrogen bonds mainly with serine at position 29 (S29) and asparagine. In panel
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S29

NNN

(a)
(b)

(c)

Figure 3.13 (a) Fraction of side chain hydrogen bond between Asn of the free
peptide and other amino acids of the fibril. (b) Inter-β-sheet hydrogen bonds
between N of the free peptide (peptide on top) and S29 (peptide at the bottom).
(c) Intra β-sheet hydrogen bonds involving N of neighboring peptides. The right
chain corresponds to the free peptide.

(b), we show that N-S29 hydrogen bonds are possible between peptides in opposing

beta-sheets. In panel (c), we show that N-N hydrogen bonds occur between peptides

within the same beta-sheet.
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In Figure 3.14c-d, we study the PMF of Aβ16−21 and IAPP28−33 fibrils along

the reaction coordinate ξ at temperatures 309K, 330K and 360K in black, red and

blue color respectively. Global minima of these PMF (dashed lines in Figure 3.14c-d)

correspond to configurations in which the free peptide is locked to the fibril, i.e.,

the free peptide adopts a β-strand structure that is hydrogen bonded to the fibril.

Cluster analysis (see Figure 3.5) shows that locked states are accounted for by two

main structures: one where β-sheets are made of four and two peptides (Figure

3.14a) and the other where both β-sheets of the fibril are made of three peptides each

(Figure 3.14b). The latter structure represents an “ideal fibril” where the peptide

is hydrogen bonded to one β-sheet of the fibril and its side chains interact with the

opposing β-sheet. Locked structures make up ∼70% of the conformations sampled

by the peptide at ξo = 0.94 nm for Aβ16−21 and ξo = 1.00 nm for IAPP28−33. At large

distances (ξ > 2.5 nm), the peptide does not interact with the fibril.

The temperature dependence of the PMF at ξo, i.e., the locked state, is shown

in panels e and f of Figure 3.14 for Aβ16−21 and IAPP28−33 fibrils, respectively. These

panels show that the non-polar fibril becomes more stable with increasing temperature

while the opposite is observed for the polar fibril. At first sight, the temperature

dependence of the Aβ16−21 fibril appears counterintuitive as thermal fluctuations

reduce the stability of conventional material. However, this behavior is consistent with

hydrophobic interactions becoming stronger with increasing temperature [66,123]. In

Figure 3.12, we discuss how the positively charged lysine in Aβ16−21 interacts with

the fibril. Further insights into the role of hydrophobic interactions can be obtained

by decomposing the PMF into enthalpy ∆Ho(ξ) and entropic energy −To∆So(ξ) at

the reference temperature To. These quantities, as well as the heat capacity ∆Cpo(ξ)

to add a peptide to a fibril can be obtained by fitting the temperature dependence of
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b)a)

Figure 3.14 Characteristic configurations of the peptide (in red) locked into (a)
Aβ16−21 and (b) IAPP28−33 fibrils. Backbone hydrogen bonds are shown in dotted
blue lines and β-sheet structures in the fibril are represented in yellow. PMF to add a
peptide to the fibril along the reaction coordinate ξ for (c) Aβ16−21 and (d) IAPP28−33

fibrils at 309K (black), 330K (red) and 360K (blue). Temperature dependence of the
PMF at locked state for (e) Aβ16−21 and (f) IAPP28−33 fibrils. Red lines correspond
to fits of the PMF at ξo to equation 3.1 and error bars were computed using bootstrap
analysis.

the PMF to [63,97,200,245,280]:

PMF(ξ, T ) = ∆Ho(ξ)− T∆So(ξ)

+ ∆Cpo(ξ)
[
(T − To)− T log

(
T
To

)]
.

(3.1)

Lines in Figure 3.14e-f correspond to fits of the PMF at ξo to equation 3.1. These

fits provide a good description of our simulation data as well as numerical estimates

for ∆Ho(ξo), −T∆So(ξo), and ∆Cpo(ξo). The temperature dependence of ∆Ho(ξo)

and −To∆So(ξo) are shown in Figure 3.15 and show that for the Aβ16−21 fibril,

−To∆So(ξo) favors the fibrillar state while ∆Ho(ξo) opposes it at all temperatures,
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Figure 3.15 Temperature dependence of the enthalpy ∆Ho and entropic energy
−To∆So for (a) Aβ16−21 and (b) IAPP28−33 fibrils computed at ξo. These quantities
were obtained by fitting the PMF to equation 3.1 at different reference temperature
To. Error bars were obtained from fits to equation 3.1.

including physiological conditions, i.e., 310 K. The dominant -To∆So arises from

hydrophobic interactions in the core of Aβ16−21. [36, 65, 81, 174] These interactions

emerge because water in the vicinity of non-polar residues are released into the bulk

solution with increased entropy when non-polar molecules approach each other. The

stability of the IAPP28−33 fibril is favored by enthalpy while it is opposed by entropy at

temperatures above 306 K. Direct interactions involving atoms of peptide, fibril, and

water molecules can rationalize this enthalpic stabilization [36]. The configurational

entropy of the peptide which becomes smaller when it binds to the fibril may explain

the unfavorable entropic energy of binding of IAPP28−33. At physiological conditions,

the entropic component is negligible and the stability of IAPP28−33 is dominated by

enthalpy.

∆Cpo measures the curvature of the temperature dependence of the PMF—see

equation 3.1. For protein folding, this quantity is invariably negative and it has been

related to the burial of non-polar residues away from water [73,123,213]. Accordingly,

∆Cpo for protein folding is often written as the sum of negative and positive terms

accounting for the desolvation of non-polar ∆Cnonpolar
po and polar ∆Cpolar

po residues,

respectively [213]. In contrast to this decomposition, a recent study reported ∆Cpolar
po

to be negative for a large class of polar compounds [228] while experimental studies
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have called for a reevaluation of the additive interpretation of ∆Cpo [32,155]. Amyloid

fibrils may constitute ideal systems to study these questions as the hydropathy of their

dry core can be tuned by varying the peptide sequence. In our simulations, we find

that ∆Cpo is negative for both Aβ16−21 (∆Cpo = −0.85 kJ/mol/K) and IAPP28−33

(-1.44 kJ/mol/K) fibrils. This suggests that the burial into the fibril core of both

non-polar side chains of Aβ16−21 and polar side chains of IAPP28−33 account for a

negative change in heat capacity. Simulations of other polar fibrils are needed to

validate these results.

The lowest temperature probed by our simulations is 290 K. However, equation 3.1

can be used to extrapolate PMF(ξo) to lower temperatures. In particular, the

extrapolated PMF(ξo) at 265.4 K for Aβ16−21 and 227.1 K for IAPP28−33 is zero

implying that fibrils become unstable at these temperatures. We anticipate that

experimental studies of amyloid fibrils at high pressure and/or in solutions containing

cosolvents may be used to explore the dissociation of non-polar fibrils at temperatures

below 273 K. Pressure and cosolvents account for a reduction in the freezing point of

water, enabling studies at temperatures below 273 K [245]. Experimental evidence

that fibrils can dissociate at low temperatures has been provided for α-synuclein

[106,128,168].

Figure 3.16 depicts thermodynamic quantities computed along the reaction

coordinate, ξ, for Aβ16−21 and IAPP28−33 fibrils at 310 K and 320 K. Panel (a) in

Figure 3.16 shows that the first and second minima of the PMF of the Aβ16−21 fibril

are favored by entropy and enthalpy, respectively. At the first minimum, non-polar

surfaces of L17 and F19 side chains are buried in the fibril core (see Figure 3.3c)

accounting for the release of shell water into the bulk and the dominant entropic

component of the free-energy. At the second minimum, the peptide interacts with

the side of the fibril, maximizing the number of van der Waals and electrostatic

interactions, thus explaining the dominance of the enthalpic component. Accordingly,
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Figure 3.16 Changes in enthalpy ∆H and entropic energy -T∆S as a function of
ξ for (a) Aβ16−21 and (b) IAPP28−33 fibrils at 310 K (full lines) and 320 K (dashed
lines). Error bars in these figures are obtained from fits to equation 3.1. (c) Fraction
of contacts between phenylalanine residues of the free-peptide and the fibril at 310 K
(full line) and 320 K (dashed line). Residues are considered to be in contact whenever
their atoms are at a distance smaller than 0.25 nm from each other. (d) Characteristic
configuration of fibril (cyan) and peptide (red) at ξ = 1.8 nm.

Figure 3.16c shows that the number of contacts between phenylalanine side chains

of the peptide and the fibril is a maximum at the second minimum. A sample

conformation in which phenylalanine side chains of the peptide and the fibril are

in contact is shown in Figure 3.16d. In contrast, the dry core of IAPP28−33 at locked

states is made of polar residues (see Figure 3.3d) that form electrostatic, van der

Waals, and hydrogen bonds with the fibril, accounting for the enthalpically dominant

component of the PMF. Accordingly, in Figure 3.13 we show that residue N31 of the

peptide forms hydrogen bonds with residues N31 and S29 of the fibril contributing to

intra and inter β-sheet stability. Notice that the magnitudes of ∆H(ξ) and −T∆S(ξ)
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in Figure 3.16a-b are 2–4 times larger than the magnitude of the PMF(ξ). However,

since one of these quantities is negative and the other is positive, i.e., enthalpy and

entropic energy compensate each other, the magnitude of the PMF is only of the

order of 15-20 kJ.mol−1. [235]

3.4 Conclusion and Discussion

In summary, our results support the idea that the molecular mechanisms stabilizing

cross-β structures are strongly related to the amino acids that are buried in the

fibril core. This is in line with scanning mutagenesis experiments in which ∆G is

shown to depend significantly on individual residues that are being mutated [141,272],

bioinformatics estimates of ∆G based on structural complementarity of side chains

forming the β-sheet [257], thermodynamic efforts to design new amino acid sequences

that form fibrils [70, 232, 233], and thermodynamic studies of coarse-grained models

[209, 211]. We find that non-polar fibrils are stabilized by entropy and destabilized

by enthalpy while the opposite trend is observed for polar fibrils. This suggests that

non-polar fibrils are stabilized by hydrophobic interactions, which are characterized

by an increase in the entropy of water molecules, whereas the stability of polar fibrils

emerges from van der Waals and electrostatic bonds including hydrogen bonds. Notice

that in implicit water simulations, enthalpy and entropy were found to contribute

equally to the free-energy of a non-polar fibril [184] suggesting that an explicit

treatment of water may be required to account for thermodynamic properties.

Limitations of the present work should also be noted. In particular, our

simulations are based on fibril models with fixed main-chains. They provide a

template that corresponds to a deep free-energy minimum of the system as the peptide

is found locked to the fibril in approximately 70% of the time for small ξ distances.

However, more relaxed conformational restrictions of the fibril will be necessary to

explore, for example, conformational fluctuations at the fibril end and how it affects
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transient states leading to the locked state [108]. Also, it is desirable to reproduce

results from this work with different force-fields. The extensive computational

resources required to simulate 48 µs for Aβ16−21 and 45.6 µs for IAPP28−33 in boxes

containing ∼ 7,300 water molecules has so far prevented us from doing so. However,

strengthening of hydrophobic interactions and weakening of direct interactions with

increasing temperature, which gives rise to the entropic and enthalpic stability of

non-polar and polar fibrils, is robustly reproduced by different force-fields. This

provides evidence that qualitative results from this work are independent of the

force-field.
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CHAPTER 4

SUMMARY AND FUTURE WORK

4.1 Conclusion

In this dissertation, we addressed two major problems related to the aggregation

of amyloid proteins using molecular dynamics simulations. First, we studied effects

of aqueous solutions on the conformations of Aβ monomer and identified a potential

precursor structure to fibril formation. Understanding the aggregation of intrinsically

disordered peptides are a fundamental step towards finding a cure for amyloid

diseases including Alzheimer’s. Second, we determined the molecular interactions that

stabilize amyloid fibril fragments in water. This knowledge is important to develop

novel methods to disrupt the structure of fibrils in amyloid diseases. To address these

problems, we performed all atom molecular dynamics simulations with explicit water

model using state of the art force fields to accurately model the systems. Further,

to ensure that our simulations have adequately sampled the free energy landscape,

we have enhanced the sampling of our models through the combination of replica

exchange molecular dynamics and umbrella sampling. Employing both methods

together, significantly improves the accuracy of determining protein interactions.

In Chapter 2 of this dissertation, we studied the effects of an aggregation

prone molecule and two aggregation inhibitor compounds on the conformations of

the Aβ42 monomer. The sampling in the simulations are enhanced using REMD

with 64 replicas in temperatures ranging between 310 K and 500 K. Our results

show that the set of structures sampled by Aβ42 is strongly dependent on its aqueous

solution. Despite small changes in secondary structures, the intrapeptide interactions

are completely distinct in the four systems. Among other differences, our simulations

demonstrate that the aggregation prone molecule promotes a unique structure which
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does not exist in the other Aβ42 systems. We propose that such unique conformations

are intermediate structures in the fibril formation pathway. Thus inhibiting the

formation of this structure, might be beneficial in developing drugs for Alzheimer’s

disease.

In Chapter 3 of this dissertation, we investigated the molecular interactions that

stabilize amyloid fibrils. Two fibrils made from the nonpolar protein Aβ16−21 and the

polar protein IAPP28−33 were studied. To understand the underlying mechanisms of

their stability, we determined the free energy of peptide addition to the fibril using

umbrella sampling at different temperatures. To further enhance our sampling, at

each window of umbrella sampling we performed replica exchange molecular dynamics

with 32 replicas in temperatures ranging from 290 K to 373 K. Potential of mean

force is calculated for each system at different temperatures to provide estimates

for enthalpy and entropy. We find that the nonpolar fibril becomes more stable

with increasing temperatures and is stabilized by entropic energy. In contrast, the

polar fibril becomes less stable with increasing temperatures and is stabilized by

enthalpy. Our results show that thee nature of side chains in the dry core of amyloid

fibrils plays a dominant role in accounting for their thermodynamic stability. These

findings suggest that the stability of fibrils can be customized by the choice of amino

acid sequence in the dry core of the amyloid fibrils. Such fine-tuned amyloid fibrils

can be used as scaffolds for drug delivery and other biomaterials.

In Appendix A, we studied the role of side chain interactions on the formation of

α-helices using all-atom molecular dynamics simulations of polyalanine-like peptides.

We modified both the equilibrium Lennard-Jones distance, σ, and the well-depth, ε.

In addition, we computed potentials of mean force for the interaction of methane–like

molecules that represent side-chain group of alanine and identified the values of the

Lennard-Jones parameters that promote α-helix formation in polyalanine peptides.

These findings highlight the limitations of two-bead coarse-grained models to account

73



for side chain interactions in α-helices and they are important in development of

coarse-grained models.

In Appendix B of this dissertation, we describe a C++ program that identifies

clathrate hydrate structures in a molecular dynamics simulation. These structures are

commonly found in natural gases and they are relevant to understand anti-freezing

proteins as well as the hydrophobic effect. As shown in Chapter 3 of this dissertation,

the hydrophobic effect can be an important force accounting for fibril formation. The

program identifies 512, 62512 and 64512 cages as well as the four-body order parameter

(F4). The program also generates three-dimensional structure of clathrates which

can be easily visualized using software such as VMD (Visual Molecular Dynamics).

These are main quantities used to quantify clathrate formation in molecular dynamics

simulations. To the best of our knowledge, there is no open-source code to analyze

the aforementioned parameters in all-atom molecular dynamics simulations. We

anticipate that the freely available source code will enable research groups to easily

analyze their simulation results. The code can also be modified to allow the

investigation of other order parameters to quantify water structures.

74



4.2 Proposed Future Work

The aggregation of the 42-residue Aβ protein (Aβ42) into larger deposits and

plaques has been associated with Alzheimer’s diseases (AD). Along its aggregation

pathway, low molecular weight oligomers of Aβ has been identified to be the primary

toxic aggregates [164, 231]. Understanding the molecular mechanisms of how these

oligomers from is critical in finding a cure for Alzheimer’s disease. Several aspects of

Aβ aggregation has been investigated in recent years, e.g., its nucleation dependent

aggregation which starts with a lag phase prior to fibril growth and the number of

monomers associated in the nucleus (nucleation number, n∗) [85, 96, 112]. However,

a thorough understanding of the pre-nucleation phase that affects the aggregation

pathway of Aβ are still missing.

In this dissertation, we studied the effects of different molecules on the structure

of Aβ42 monomer which is among the earliest steps in the aggregation pathway.

We found a unique structure that is enhanced by the aggregation prone molecule.

Further research can be performed using other aggregation prone compounds in

order to find an ensemble of intermediate structures along the pathway of fibril

formation. Knowledge of an ensemble of intermediate structures can provide a

more clear understanding of the underlying molecular interactions that promote

Aβ42 aggregation [45]. Another extension to our current research is to assess the

propensity of these unique structures to form fibrils. This can provide proof for the

estimates of the nucleation number, n∗, of Aβ which has been predicted to range

between 6 and 14 [85,265].

In Chapter 3, we provided insights on the stability of two amyloid fibril

fragments and determined the thermodynamic parameters that stabilize polar and

nonpolar fibrils. However, developing a thermodynamic theory for fibril growth,

similar to the thermodynamic theory of protein folding, requires the study of other

fibrils from different amino acid sequences. Results in this study are based on fibril
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models with fixed main chains. For future work, it is proposed to employ more relaxed

conformational restrictions of the fibril in order to explore conformational fluctuations

at the fibril ends and how it affects transient states leading to the locked state.
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APPENDIX A

ROLE OF SIDE CHAIN INTERACTIONS ON THE FORMATION OF
α-HELICES IN MODEL PEPTIDES

A.1 Introduction

α-helices and β-sheets are the main building blocks of protein structures serving as

a template for almost 50% of all residues [29]. These motifs are also present in

the structure of intrinsically disordered and amyloid peptides in which stacking of

β-sheets has been related to diseases like Alzheimer’s and Parkinson’s [111,149,223].

Due to their ubiquitous presence, α-helices and β-sheets have been the subject of

numerous studies aiming to understand the molecular forces driving their formation.

However, this remains a topic of debate as intra-backbone hydrogen bonds (which

were initially thought to account for α-helices and β-sheets [192–194]) were not found

to be significantly favorable to drive this process in aqueous solution because they

require the unfavorable breakage of backbone-water hydrogen bonds [66, 115, 124,

174, 224, 247]. As a results, most algorithms designed to predict the propensity of

secondary structures are knowledge-based [44]. The aim of the current research is to

provide insights into the forces driving the formation of α-helices and, in particular,

the role played by the effective interactions between the side-chains.

Since the seminal work of Kauzmann, hydrophobic interactions are believed to

be the main ingredients determining native protein structures [66, 124, 143]. They

emerge because non-polar regions of proteins or peptides tend to minimize their

solvent exposed area accounting for the globular shape that characterizes the native

state. The importance of these hydrophobic interactions can be inferred from the

positive curvature of the Gibbs free-energy of unfolding with respect to temperature

[10,124,199]. This is typical of non-polar solvation [73,189,236,237] and it rationalizes

cold denaturation of proteins [60, 62, 199]. Also, the diversity of native structures
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can only be encoded in the amino acid sequence (not in the backbone), suggesting

that side-chain properties and, in particular, the burial of non-polar residues in

the dry protein core is responsible for folding. Accordingly, after the first protein

structure was resolved experimentally, its dry core was observed to be made mostly

of non-polar residues [125, 126]. Secondary structures form during folding because

the polar backbone is also buried in the dry protein core accounting for an enthalpic

penalty that can be minimized through the formation intra-backbone hydrogen bonds.

This favors internal organizations within the collapsed state such that α-helices and

β-sheets emerge in proteins to avoid the enthalpic penalty of burying the backbone

in the dry core. In contrast to this process, peptide structures do not exhibit a dry

core suggesting that the mechanism for forming secondary structures could differ

from the one in globular proteins. This is supported by experiments showing that

destabilization of α-helices by co-solvents that form hydrogen bonds correlate with the

strength of these bonds for peptides but not for proteins [66]. In addition, very small

concentrations of surfactants is sufficient to unfold proteins efficiently [254] whereas

they do not destabilize helices [151]. Despite these insights, it is still not clear what

drives α-helices and β-sheets in peptides.

Propensities to form α-helices were first attributed to the restriction of the

configurational entropy of side-chains upon folding [185, 188]. However, a poor

correlation between the reduction in the side-chain entropy and helix propensity

was found [25] putting into question the validity of this argument [156]. The

possibility that helix propensities are modulated by energy was first proposed by

Luo and Baldwin who used thermal unfolding curves of five nonpolar amino-acids in

water/trifluoroethanol mixtures [150]. This was then extended by Makhatadze and

coworkers who used calorimetric measurements of folding a model host peptide in

which the helix formation is induced by metal binding [156, 210]. This concept has

been further developed in the prediction of the helical behavior of peptides. Here,
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experimental data was used to parameterize empirically a set of energy contributions

for every side-chain [172]. In fact, modulating side-chain interactions has been

exploited in designing very short helical peptides in solution such as in the 5-mer

peptide WAAAH+ where strong cation-π interaction are established between i− i+4

neighbors [145]. In a computational study, side-chain interactions were reported to

play an important role in transitions from α-helix to β-sheet in a short polyleucine

peptide [46]. Furthermore, in the AGADIR algorithm to predict α-helix content [172],

the inclusion of side-chain interactions was particularly relevant since, without them,

natural amino-acid sequences tend to lack measurable helix content in water [11].

It should be noted that when taking into account side-chain contributions

in promoting secondary structures, the important quantity to consider is the

effective interaction of the side-chain with the other groups of the peptide. This

is particularly relevant in aqueous solutions where water increases the complexity of

energy landscapes of molecular interactions. For example, the interaction between

methane molecules in water (which are often used as a model for the interaction

of non-polar side-chains [37, 40, 104, 202]) is characterized by a global and a local

minimum at short (∼ 3.8 Å) and intermediate (∼ 7 Å) distances, respectively,

separated by an energy barrier related to desolvation effects (at ∼ 5.7 Å) [197].

These features affect short range structures in proteins and peptides. For example,

in peptides made from aliphatic amino-acids it was shown that distances between

Cβ − Cβ atoms of residues i − i + 3 and i − i + 4 coincide with the position of

desolvation barriers while Cβ −Cβ distances of residues i− i+ 2 in β-sheets coincide

with the local minimum [60,65,176,177]. This was shown to play an important role in

the propensity of secondary structures studied computationally with implicit water

models [65].

In the current dissertation, we study how the effective potential between side-

chains affects the probability to form α-helices using all-atom molecular dynamics
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simulations in explicit water. To that purpose we use poly-alanine–like peptides

described by the OPLS-AA force-field where the Lennard-Jones interactions between

Cβ atoms is modified. We change both the equilibrium Lennard-Jones distance,

σ, and the well-depth, ε. In addition, we also compute potentials of mean force

for the interaction of methane–like molecules that represent side-chain groups in the

poly-alanine simulation. We find a good correlation between the propensity to induce

α-helical conformations in peptides and the effective interactions between the side-

chains (computed using PMF(s) of methane-like molecules). In particular, greater

propensities are observed when PMF(s) of methane–like molecules exhibit minimum

at distances corresponding to Cβ distances in α-helices.

A.2 Methods

We model 9- and 12-residue homogeneous (uncharged) peptides deprotonated at

the N-terminal and protonated at the C- terminal using the OPLS-AA force field.

Peptides are poly-alanine chains in which the σ parameter of the Lennard-Jones (LJ)

potential between Cβ atoms is varied systematically from 0.27 nm to 0.57 nm in

steps of 0.10 nm in the different simulations. Since the original LJ parametrization

of poly-alanine is σ=0.35 nm and ε=0.276144 kJ/mol, we also perform simulations

using these values as well as σ=0.45 nm and ε=0.276144 kJ/mol. All other atoms of

the peptides were represented by the OPLS-AA force field [117, 120, 165, 212]. The

interaction between Cβ and any other atom in the system (excluding other Cβ’s)

corresponds to that of poly-alanine.

The simulation box consists of a 9-mer or a 12-mer peptide solvated in 1535

or 1681 TIP4P water molecules [116], respectively. Bond distances and angles

within water molecules are constrained using the SETTLE algorithm [169] whereas

covalent bonds within the peptide are constrained using the LINCS algorithm [100].

Starting with fully extended poly-alanine configurations (generated using the program
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WHATIF [264]), the system is relaxed by a 100 ps molecular dynamics simulations

(with εCβ−Cβ=0.0 kJ/mol) yielding extended random coil conformations. These

structures are used as starting configurations in our simulations. Within each peptide

length, we use the same starting configurations for simulations with the different σ

and ε parameters.

Each trajectory was propagated for 400 ns whereas results for ε=0.47 nm and

ε = 1 kJ/mol were taken from a previous study [278]. Atomic positions of the

peptide were saved every 10 ps and they were used in all analyses. Note that a recent

computational study of hepta-alanine modeled using the OPLS-AA force-field and

compared with NMR-derived J-coupling constants reported convergence of the value

of χ2 within the first 250 ns of the trajectory [84].

The molecular dynamics package GROMACS version 4.5.4 [101] was used to

perform all simulations using a time step of 2 fs. Electrostatic forces were evaluated

using the Particle-Mesh Ewald method [52] (real-space cut-off of 1.2 nm, grid spacing

of 0.12 nm, and quadratic interpolation) while a cutoff of 1.2 nm was used for LJ

forces (with long range dispersion correction for the energy and pressure). The entire

system was maintained at a constant temperature of 300 K using the velocity rescaling

thermostat [30] and a coupling time of 0.1 ps. Pressure was kept fixed at 1.0 bar using

the Berendsen thermostat [19] with a compressibility of 5·10−5 1/bar and a coupling

time of 1.0 ps.

To estimate the effective interactions between two Cβ atoms within the peptide

chain we calculated the potential of mean force (PMF) between methane-like

molecules in solution. PMF(s) were computed using the λ-coupling approach with a

series of 51 λ-points from 0.00 to 1.00. At every λ-point the distance between carbon

atoms of the two methane-like molecules was constrained to a specified value and

the system simulated for 4.0 ns. The average force (over 3.5 ns data collection step)

needed satisfy this constraint, thus, 〈∂H/∂λ〉, was then integrated as a function of λ
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to obtain the PMF. As the PMF represents only relative values, the resulting curve

was shifted such that the value at λ=1.00 was equal to zero. In these free energy

simulations, the carbon-hydrogen bonds were described by harmonic potential, and

therefore, the time step of the simulations was reduced to 0.001 ps. Because, each

OPLS-AA hydrogen carried a charge of +0.06 e the carbon atom of the methane-like

molecule was assigned a charge of -0.24 e.

A.3 Results

A.3.1 Side-Chain Interactions

In Figure A.1 we study how the σ parameter of the LJ interaction between Cβ atoms

affects the formation of secondary structures using fixed ε = 1 kJ/mol. For all values

of σ, residues of the peptide spend most of their time in coil conformations. This is

particularly striking for σ = 0.57 nm (Figure A.1d) in which case ordered structures

(α-helix and β-sheet) are not observed in the timeframe of the simulation and the

peptide spends 94 % of the time in coil conformations. Ordered secondary structures,

mostly α-helices and turns, are only observed for σ values smaller than 0.57 nm.

From Figure A.1, it seems that turns are more prominent for σ = 0.37 nm (panel

b), whereas, populations of α-helix seem to occur more frequently for σ = 0.47 nm

(panel c). These observations are quantified in Figure A.2 where we show the average

content of secondary structures as a function of σ for different ε values. It confirms

that the largest content of turn occurs for σ = 0.37 nm, whereas, α-helix content

peaks at σ = 0.47 nm. In our simulations, the formation of β-sheet structures is

negligible with a maximum content of ∼ 1 % occurring at σ = 0.37 nm.

However, the lack of β-sheet content observed in this study is expected because

the size of our peptides are relatively short rendering the penalty for loop formation

large relative to the stabilization obtained from the interaction between the strands.

Moreover, to induce β-sheet (β-hairpin) structures in short peptides, segments with
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Figure A.1 Time evolution of secondary structure content for ε = 1 kJ/mol, N = 9,
and σ values of (a) 0.27 nm, (b) 0.37 nm, (c) 0.47 nm, and (d) 0.57 nm. Nresidue is the
number of residues assuming coil (black), β-sheet (red), turn (yellow), and α-helix
(blue) structures.

specific sequences can be incorporated in the middle of the chain (for example,

sequences containing proline) in order to promote a loop structure [246].

In Figure A.2 we also study how the strength of the ε parameter of the LJ

interaction affects secondary structure formation. For σ values smaller than 0.57 nm,

we observe an increase in α-helix content with increasing ε. This is in agreement with

previous studies showing that interactions between side-chains can modulate α-helix

formation [150, 156, 210, 278]. The population of turns has a more complex behavior

in the parameter space we are exploring. At fixed σ = 0.37 nm, the content of turns

increases with increasing ε, whereas, at fixed σ = 0.47 nm the percentage of turn

structures drops drastically from ∼ 10 % at ε = 1 kJ/mol to zero at ε = 2 kJ/mol.

This abrupt reduction in the content of turns coincides with a large increase (∼ 15 %)

in the population of α-helices suggesting that increasing ε from 1 kJ/mol to 2 kJ/mol
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Figure A.2 Content of secondary structure elements as a function of σ for several
values of ε. All plots are for the 9-residue long peptides (N=9) averaged over the
entire 400 ns trajectory.

at fixed σ = 0.47 nm could trigger a turn-to-helix transition. Note that according to

DSSP definitions, a residue is assigned to a turn whenever the CO– group of residue

i forms a hydrogen bond with the NH– group of residue i+n where n=3,4, or 5 while

a residue is assigned to an α-helix whenever two (or more) consecutive residues form

turns with n=4. Thus, a structure determined as a turn according to the definitions

of DSSP might not be too different from an α-helix, and thus, an increase in ε at

fixed σ = 0.47 nm (which is a length-scale that favors Cβ–Cβ interactions in α-helix)

could indeed trigger turn-to-helix transitions.

A.3.2 Peptide Length

Experimentally, the formation of secondary structures in poly-alanine has been shown

to depend on peptide length. In particular, α-helix content was reported to increase
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with peptide length up to N = 19 whereas larger chains (19 > N > 25) were shown

to aggregate into oligomers [20]. End effects in α-helices, involving the first and last

three residues (in addition to capping groups at the N– and C– termini), contribute

to this dependence because only one intra-backbone hydrogen bond is formed in these

residues as opposed to two for residues in the middle of the helix. Similarly, side-chain

atoms form less interactions in these residues compared to the ones in middle of the

helix. Thus, end effects are more pronounced in short compared to long peptides

accounting for 2/3 and 1/2 of the residues in 9- and 12-mer chains, respectively.

To test how changes in side-chain interactions affect peptides of different lengths,

we perform a set of simulations using peptides made of 12 residues (N=12). In

Table A.1, they are compared with the 9-mer simulations performed in the previous

section. Turn content is not strongly affected by peptide length: changing peptide

Table A.1 Secondary Structure Content Averaged over 400 ns Using ε = 1.0 kJ/mol

σ = 0.37 nm σ = 0.47 nm

N % helix % turn % coil % helix % turn % coil

9 5 11 63 10 8 65

12 7 11 56 44 9 38

length from 9 to 12 residues increases the percentage of turn by 0 % for σ = 0.37 nm

and by 12 % for σ = 0.47 nm. In contrast, α-helix content is strongly dependent on

peptide length; for σ = 0.37 nm, the percentage of α-helical structures increases by

40 % with increasing N and for σ = 0.47 nm it increases by 340 %.

Time dependence of assigned secondary structures based on DSSP to residues

along the amino acid sequence is shown in Figure A.3. For σ = 0.37 nm (panel

a), five α-helix nucleating events involving at least four residues are observed within

the simulation time. For σ = 0.47 nm (panel b), there is only one main α-helix
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(a)

(b)

Figure A.3 Time evolution of secondary structure content along the amino acid
sequence (y-axis) for ε = 1 kJ/mol. Panels (a) and (b) correspond to σ = 0.37 nm
and 0.47 nm, respectively.

nucleating event with a life-time of ∼ 300 ns, albeit several structural transitions

involving a complete and partial α-helices are observed.

Notice that in an α-helix, the number and the energy of intra-backbone

interactions change by the same amount when the peptide length increase from 9 to

12 residues for both σ = 0.37 nm and 0.47 nm. The number of side-chain interactions

also increases by the same amount for σ = 0.37 nm and 0.47 nm but not the energy

of these interactions. Thus, in our simulations (see Table A.1) the 40 % increase in

α-helix content (when the length of the peptide increases from 9 to 12 residues) for

σ = 0.37 nm compared to the 340 % increase for σ = 0.47 nm can only be accounted

for by studying the interaction between side-chains. This is the purpose of the next

section.
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A.3.3 Methane-Like Dimers

In order to explain the propensity of α-helix formation in our simulations, we note

that for a fixed ε, simulations differ in the σ parameter of the Cβ–Cβ LJ potential.

This accounts for different effective potentials between side-chains of the peptide.

Here, we assume that the effective interaction between side-chains (–CH3 groups)

can be approximated by the PMF between two methane-like (CH4) molecules in

solution. Main contributions to this PMF are the direct LJ interactions between Cβ

atoms and entropic contributions of surrounding water molecules. LJ interactions

between carbon atoms are favorable over a wide range of distances (see Figure A.4)

whereas the effective PMF between methane molecules is negative only for well

defined positions corresponding to “contact minimum” (CM) and “solvent separated

minimum” (SSM)—see Figure A.4. As a consequence, the effective potential between

side-chains can promote a particular secondary structure only if CM and SSM

distances are consistent with side-chain distances of this particular structure.

In Figure A.6a we show PMF(s) for the interaction of methane-like molecules

that mimic side-chains in our poly-alanine simulations. To understand how CM and

SSM affect α-helix formation, we show in Figure A.6b distributions of Cβ − Cβ

distances when peptides are in an helical conformation for our 9-mer and 12-mer

simulations 1. Two prominent peaks emerge at 0.54 nm and 0.72 nm. The first peak

in Figure A.6b at r=0.54 nm is the result of interactions between residues i − i + 1

(0.529 nm for a perfect α-helix) and i − i + 3 (0.548 nm for a perfect α-helix)—see

Figure A.5. These two inter-neighbor distances appear as a single peak due to thermal

fluctuations.

1Peptides are defined to be in an α-helical conformation whenever the root-mean-square
deviation (RMSD) of backbone atoms relative to an ideal α-helix is smaller than 0.13 nm
and 0.12 nm for 9-mer and 12-mer peptides, respectively. These cut-off values for the RMSD
correspond to the minimum separating the α-helical peak in the RMSD distribution from
other conformations. A similar criteria was used in a previous study [278].
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Figure A.4 Potential of mean force between methane-like particles and Cβ-Cβ LJ
interaction using ε = 1.0 kJ/mol and σ = 0.47 nm.

The distance corresponding to the first peak is projected onto the different

PMF(s) using a dotted line in Figure A.6a. It indicates that for most of the LJ

parameters studied here, side-chain interactions between i−i+1 and i−i+3 contribute

positively to the energy of α-helix formation. The exception being σ = 0.47 nm where

the first peak distance is close to the global minimum of the PMF. Accordingly,

simulations using σ=0.47 nm show the largest α-helical content—see Figure A.2 and

Table A.1. For σ=0.27 nm and σ=0.37 nm, the first peak in the distribution of

the Cβ − Cβ distances falls within the desolvation barrier. As a result, i − i + 1

and i − i + 3 neighbors contribute unfavorably to α-helices which could explain the

low helical content in the corresponding simulations in Figure A.2. Furthermore, for

σ=0.57 nm the position of the first peak in Figure A.6b corresponds to hard-core
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Figure A.5 Representation of an ideal α-helical structure viewed from (a) the side,
(b) C-terminal, and (c) N-terminal (c).

repulsion in the PMF. This steric clash is very important because in this case the

formation of any helical structure is completely destroyed.

The distribution of Cβ–Cβ distances shown in Figure A.6b also displays a

shoulder (or a small maximum) at r=0.63 nm, due to i−i+4 neighbors. For σ < 0.57

nm, intensities of the different PMF(s) at r=0.63 nm fall within the desolvation barrier

and thus i−i+4 neighbors are not likely to contribute favorably to α-helix formation.

For σ=0.57 nm, i−i+4 neighbors contribute favorably to α-helix formation. However,

as mentioned previously, this value of σ can not accommodate i− i+ 3 and i− i+ 1

neighbors in an α-helix because of its hard-core repulsion.

The distribution of Cβ–Cβ distances exhibits a third peak at r=0.72 nm due to

i− i+ 2 neighbors. PMF(s) of methane-like molecules (Figure A.6a) at this distance

correspond to SSM and, therefore, they contribute favorably to the formation of

α-helices. However, PMF(s) of methane-like particles in pure water (as the ones

computed in Figure A.6a) are not good models to describe interactions between i −

i + 2 neighbors because these two residues are at opposites sides of an α-helix (see

Figure A.5) and, thus, are not separated by water. We speculate that i − i + 2

neighbors are not likely to contribute significantly to α-helix formation since direct
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LJ and electrostatic interactions between these two residues at 0.72 nm are small—see

Figure A.6.

To provide a quantitative framework for the observed correlation between the

formation of α-helix and PMF(s) between methane-like molecules, we compute the

average energy of side-chain interactions in our eight simulations. Mathematically,

we define side-chain energies as:

Esidechain =
1

N

∑
k

∑
i,j

PMF(ξij), (1.1)

where the first sum is over the N helical frames in the trajectory and the second sum

is over all residue pairs i− j in one frame taken without double counting. Figure A.7

shows that LJ parameters that increase the attractive energy between the side-chains

when the peptide assumes an α-helix conformation correlate with a larger population

of this secondary structure. This is valid for both peptide lengths studied here.
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Figure A.6 (a) The potential of mean force between two methane-like molecules
with different values of the Cβ − Cβ LJ σ parameter (εCβ−Cβ=1.0 kJ/mol), solvated
in aqueous solution, as a function of the distance between these two central atoms.
(b) The normalized distribution of the distance between the Cβ atoms in α-helical
conformations in 9-mer (σ=0.47 nm and ε=2.0 kJ/mol) and 12-mer (σ=0.47 nm and
ε=1.0 kJ/mol) peptides. The frames of the trajectories in an α helical conformation
were determined by a RMSD (with respect to a perfect helix) cutoff value of 0.12 nm
which corresponds to the location of the first minimum of the RMSD histogram.
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A.4 Conclusion

To study the role of side-chain interactions in α-helix formation, we performed

extensive all-atom molecular dynamics simulations of modified poly-alanine peptides

in explicit water. We varied the distance and depth of the Cβ − Cβ LJ interaction

and we identified length-scales that promote α-helices. Previous studies on the role

of side-chain interactions in secondary structure formation were either limited to

implicit water model [65, 68, 179, 180], restrained peptide simulations [60] or they

did not take into account effects due to different length-scales [278]. To rationalize

variations in α-helix content observed in our simulations we computed effective

interactions, i.e., PMF(s), between methane-like particles that mimic side-chains

in our modified poly-alanine peptides. Contact-minimum, desolvation barrier, and

solvent-separated-minimum of computed PMF(s) when superposed to distances

between i− i+ 1, i− i+ 3, and i− i+ 4 neighbors provided a qualitative explanation

for the observed α-helix content in our simulations.
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Figure A.7 Correlation between side-chain–side-chain (SC-SC) energy and the
fraction of α-helix for 9-mer and 12-mer peptides. Lines are a guide to the eye.
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One implication of our findings is for the development of coarse-grained models.

We show the importance of using potentials for side-chain interactions that have

solvent effects embedded into them, e.g., desovation barriers. Our results also

highlight limitations of two-beads coarse-grained models to account for side-chain

interactions in α-helices. In these structures, beads representing side-chain atoms

can only form favorable contact if their size is defined by σ = 0.47 nm. This restricts

the variety of amino acids that can be studied with these type of models.

Based on the PMF analysis between methane-like particles, side-chain inter-

actions in poly-alanine (which is defined by σ = 0.35 nm) are unfavorable to

α-helices due to the formation of desolvation configuration between side-chains. This

result is consistent with the finding from an early explicit-water simulation of the

interaction between water and an alanine-based α-helix that water does not penetrate

much between spatially adjacent Cβ groups along the helix axis [82]. Nevertheless,

alanine has one of the highest helix-forming tendency among natural amino acids.

If side-chain interactions were to play a role in alanine’s helix-forming tendency, it

would imply that side-chain interactions in unfolded conformations of alanine would

be even more unfavorable than in α-helix conformations. However, for this small

amino acid it is likely that side-chain interactions are not an important factor in

helix formation [161]. In contrast side-chain interactions for amino acids defined by

σ = 0.47 nm (this could mimic leucine), are favorable to α-helices since i − i + 3

and i − i + 1 neighbors are in close contact (contact minimum in the PMF). Thus,

side-chain interactions could play a multifaceted role which can either promote or

penalize α-helices. Notice that applied pressure and temperature can change the

PMF affecting the stability of side-chain interactions and thereby the propensity

for secondary-structure formation [60]. In particular, we can speculate that since

applied pressure increases the desolvation barrier, it might penalize α-helices. Further

investigation are, however, needed to unravel the effect of pressure and temperature.
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APPENDIX B

GRADE: A CODE TO DETERMINE CLATHRATE HYDRATE
STRUCTURES

B.1 Introduction

Gas clathrates are solid compounds formed by natural gas molecules trapped within

solid cage-like water structure [242]. These structures are found on the seabed, and

in ocean/lake sediments where conditions of high pressure and low temperature are

favorable to their formation [74,87,132,243,250]. As the extraction of gas clathrates

is becoming economically viable, these natural deposits are expected to account for

an important fraction of the world’s energy supply [48, 219]. However, the existence

of these natural deposits is also a source of concern as the release of large quantities

of methane during earthquakes and tsunamis could contribute significantly to global

climate. Moreover, methane clathrate represents a dangerous problem for the gas

industry due to potential plug formation in pipelines [34, 242, 244]. Accordingly,

extensive efforts are being dedicated to understand the formation, stability, and

inhibition of gas clathrates [76,275].

Nucleation of gas clathrates occurs at nanometer length scale and micro-second

timescale, which are not easily accessible experimentally but can be probed using

all-atom computer simulations [58]. The latter is providing insights into the sequence

of molecular events leading to the nucleation of clathrate structures [22, 89, 109, 130,

267, 268]. In particular, simulations have shown that an isolated water cage hosting

a gas molecule in aqueous solution is short-lived [91,92,201] and clathrate nucleation

requires local concentration of guest molecules at supersaturated conditions, known

as “blobs” [137,201,276] The formation of these blobs in water is the rate limiting step

of clathrate nucleation which prompts water molecules to freeze into cages hosting

gas molecules. Initially, cages are stacked together in an amorphous manner before
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relaxing into the crystalline clathrate phase [110]. This sequence of events, i.e., blobs

→ amorphous cages → clathrate phase, is known as the multistep hypothesis (MSH)

of clathrate formation.

The formation of water clathrates also plays a role in biological systems.

In particular, water molecules around non-polar side chains in proteins are more

structured than in the bulk solution with a tendency to form incomplete cage-like

structures [60, 62, 63, 81, 239]. In antifreeze proteins, e.g., the Antarctic bacterial

antifreeze protein, the more structured water molecules around non-polar side chains

mediate binding of ice surfaces to the protein inhibiting ice propagation [83]. Also,

semi-clathrate water structures have been shown to contribute to the stabilization

of antifreeze protein folds [251]. Thus, understanding the formation of clathrates

in biological systems is important to understand protein structure formation and to

discover new antifreezing mechanisms.

The aim of this dissertation is to present an open source computer code that

analyzes atomic positions of oxygen atoms of water to compute the number of cages

and account for their three-dimensional structures. The latter can be used for visual

inspection using software such as VMD (Visual Molecular Dynamics) [105]. We

named the code GRADE which stands for “cage” in Portuguese. The number of

cages is commonly used as an order parameter to estimate the level of clathrate

structures that have been formed in a simulation. Moreover, visual inspection of the

time evolution of these structures is essential to provide insights into the sequence of

molecular events leading to clathrate formation. Codes to analyze water structures

have been developed by other labs including Molinero’s group who developed CHILL+

to compute different order parameters that distinguishes between hydrates, cubic ice,

hexagonal ice, and liquid water [178], as well as a cage analysis code [109]. Bi et

al. [22], Rodger et al. [98], Walsh et al. [268] and Guo et al. [90] have also written codes

to identify water structures. Here we introduce an open-source C++ code, called
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GRADE, which employs a hierarchical algorithm to identify the evolution of rings,

cups and cages in molecular dynamics simulations of water molecules and computes

the four-body order parameter F4. This code is freely available on GitHub [152] and

we anticipate that GRADE will serve as a C++ template code by the community

which can be modified by research groups to account for their specific needs. Also,

users that have significantly improved GRADE and would like to see their changes

appended to new versions of the code are encouraged to contact the authors of this

manuscript.

B.2 Methods

The aim of GRADE is to identify water structures, known as cages, that are the

building blocks of gas clathrates. The current version of GRADE identifies 512,

62512 and 64512 cages that are made of 20, 24 and 28 water molecules, respectively.

GRADE uses a hierarchical algorithm in which first-neighbors of all water molecules

are identified followed by rings, cups, and cages. It computes all rings made of five

and six first-neighbor water molecules [163]. Cups, i.e., half cages, are computed

based on the connectivity of these rings to one another and cages are computed

based on how cups are bound to each other. This approach was also used by other

codes to identify water cages in solution [109] as well as to define order parameters to

enable the development of new algorithm to simulate hydrate nucleation rates [22,23].

Hierarchical based algorithms have also been developed to identify polymorphic

clathrate structures by Lauricella et al. [138]. Notice that the number of operations

required to compute cages is very large and, thus, it can be very time consuming,

specially for large systems and/or long trajectories. One advantage of GRADE is

that it has built up schemes to speed up the calculation of cages. Below, we describe

in detail how different quantities are computed within GRADE as well as the speed

up schemes.
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Table B.1 Molecular Dynamics Simulations Performed in This Work.

Number of Temperature Pressure Number Number of

Simulations (K) (bar) of water methane

A 1 298 1 500 0

B 4 270 500 3300 200

Two molecular dynamics setups are used to illustrate the different quantities

computed by GRADE: one where water is in equilibrium in the liquid state and the

other where water initially in the liquid state evolves towards forming 512, 62512 and

64512 cages around methane molecules in solution. Details of these setups are given in

Table B.1. Simulations were performed using the open source software GROMACS [3]

version 5.1 with the leap-frog algorithm to integrate the equation of motion in the

NPT ensemble. Temperature was controlled using the v-rescale thermostat (τT =

1 ps), and pressure was kept constant using the Parrinello-Rahman barostat (τP =

0.1 ps). Periodic boundary conditions were applied in all directions. A cutoff of

1.0 nm was used to account for short-range nonbonded interactions. Long-range

electrostatics were calculated using the Particle Mesh Ewald (PME) algorithm with

grid spacing of 0.16 nm and 1.0 nm real-space cutoff. The TIP4P-ice model [1] was

used to mimic water, and methane molecules were modeled using a united atom

representation with 6–12 Lennard-Jones interactions (σ = 0.373 nm and ε =1.234

kJ/mol) [222]. Simulations A and B described in Table B.1 lasted for 5 ns and 1 µs

each, respectively.

B.2.1 First-Neighbors

In Figure B.1, we show the oxygen-oxygen radial distribution function (RDF) of liquid

water computed from simulation A in Table B.1. First and second peaks of this RDF
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Figure B.1 Oxygen-Oxygen radial distribution function (RDF) of TIP4P/ice at
298 K and 1 atm. The minimum between first and second peaks of the RDF, i.e.,
Rcutoff , is used to define first neighbors of water molecules.

are located at distances R1=0.28 nm and R2=0.44 nm, respectively. The minimum

between these peaks, i.e., Rcutoff , is commonly used as the cut-off radius to define first-

neighbors. In other words, if the distance between oxygen atoms of water molecules

i and j is smaller than Rcutoff , then these two water molecules are considered to be

first-neighbors of each other. The default distance cut-off of GRADE is Rcutoff = 0.35

nm. This quantity can, however, be controlled using the flag ’-r’ to define alternative

Rcutoff values, e.g., to compute cages in simulations of coarse-grained models where

bond-lengths are given in normalized units [24,61,64,153].

B.2.2 Rings

Rings are closed structures obtained by connecting first-neighbor water molecules to

each other. For example, molecules i, j, k, l,m form a ring if: j is first-neighbor of

i and k, l is a first-neighbor of k and m, and m is first-neighbor of i. The size of

a ring corresponds to the number of water molecules in the loop. Thus, the size of
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the ring formed by molecules i, j, k, l, and m is 5. Using a depth-first algorithm,

GRADE searches for all five- and six-folded rings in the simulation box. The

algorithm starts at one water molecule and explores as far as possible along each of the

branches formed by first-neighbor water molecules before backtracking. An example

is shown in Figure B.2a where the five-folded ring shown in red is found starting

from molecule label 1. The branch formed by molecules 1 and 2 do not lead to the

formation of a ring and, thus, the system is backtracked to explore the branch 1,3,4.

Similarly, the latter branch does not lead to the formation of rings and the system

goes on to explore branch 1,3,5,6 and so on. All the iterations required to find the

five-folded ring are shown in panel b of Figure B.2. When using these rings to identify

cups, GRADE spends a significant amount of time on loops going over all five- and

six-folded rings. To reduce this performance bottleneck, GRADE ignores deformed

rings that cannot account for stable cups or cages. In particular, GRADE identifies

two types of deformations related to the convexity and planarity of ring structures.

Non-convexity. Five- and six-folded loop structures that are non-convex are

excluded from the list of rings identified by GRADE. For a five-folded ring to be

non-convex, the distance between vertices i and i + 2 has to be smaller than d5 =

1.6 × a, where a is the distance between neighboring vertices and d5 is the distance

between vertices i and i + 2 in a regular pentagon–see Figure B.3a. Thus, to flag

non-convex five-folded loops, we impose that distances between oxygen atoms of water

molecules i and i+ 2 have to be greater than (1.6× Rcutoff)− δ1, where δ1 > 0 is an

adjustable parameter determining the degree of convexity to be tolerated. Similarly,

we impose that distances between vertices i and i+3 in six-folded rings have to be

greater than (2×Rcutoff)− δ2, with δ2 > 0–see Figure B.3b.

In Figs. B.3c, we show the dependence of the number of five- and six- folded

rings on δ1 and δ2. As rings are allowed to exhibit more deformations, i.e., with

increasing δ1 and/or δ2, the number of rings increase. To find reasonable values for δ1
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iteration 1:   1,2 û
iteration 2:   1,3,4 û
iteration 3:   1,3,5,6 û
iteration 4:   1,3,5,7 û
iteration 5:   1,3,5,8,9 û
iteration 6:   1,3,5,8,11 ü
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7
811

10 9

a) b)

Figure B.2 Schematic representation of the depth-first search algorithm to find
rings. (a) Eleven water molecules are represented by nodes and first-neighbor nodes
are connected to each other by dashed lines. Red arrows are used to depict first-
neighbor nodes that are forming a five-folded ring. (b) The six iterations required to
find the five-folded ring in panel a starting from node 1 are listed. It is important
to note that the same ring can be found by moving in a counter-clockwise direction
from node ”1” or starting from any other node in the ring.

and δ2 to be used by GRADE, the dependence of the number of cages (defined later in

the text) on these parameters is shown in Figure B.3d. In this figure, the number of

62512 and 64512 cages are computed by fixing δ1 to its maximum (0.7) and by varying

δ2. The number of cages increases sharply with increasing δ1 and δ2 before reaching a

plateau at δ1 = 0.18 nm and δ2 = 0.26 nm. Notice that the plateau is reached while

the number of rings in Figure B.3c is still increasing. This implies that many rings

found by GRADE when using δ1 > 0.18 nm and δ2 > 0.26 nm do not contribute

to the formation of rings as they are too deformed. These rings can, therefore, be

ignored and GRADE uses δ1 = 0.18 nm and δ2 = 0.26 nm as a default. Values of δ1

and δ2 can be modified using input flag option ’-d1’ and ’-d2’.

Non-planarity. Some convex five- and six- folded rings in the simulation still

exhibit high levels of deformity with some water molecules abnormally projected

out of the plane formed by the other water molecules. Figure B.4 shows examples of
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Figure B.3 Non-convexity condition and its effect on identified rings and cages.
(a-b) Distance between vertices i and i+n (n=2, 3) for five- and six-folded rings
calculated to exclude convex loops. Licorice representation is used to depict water
molecules and hydrogen bonds are illustrated by dashed lines. (c-d) Number of loops
and cages identified by GRADE as a function of δ1 and δ2. Black and red dashed
lines show the recommended default values for δ1 and δ2, respectively.
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deformed (panels a and b) and non-deformed (panels c and d, top) five- and six-folded

rings. Since stable cages cannot be constructed with highly deformed rings, they

do not need to be included in the list of identified rings. GRADE identifies this

type of deformity by dividing five- and six- folded rings into three and four planes,

respectively, as shown in Figure B.4c,d (bottom). Angles between these planes (i.e.,

θP1−P2, θP2−P3 and θP3−P4) are computed and are required to be smaller than a

given cutoff value, i.e., θcutoff . In Figure B.5a, we show that the number of five- and

six-folded rings increases with increasing θcutoff as rings found by GRADE are allowed

to be more deformed. In Figure B.5b, we show the dependence of the number of

cages (defined using δ1 = 0.18 nm and δ2 = 0.26 nm) on θcutoff . The number of cages

increases with θcutoff up to 45◦ where it reaches a plateau. This implies that there are

many rings defined by a cutoff angle greater than 45◦ but these deformed rings do

not contribute to the formation of cages. Based on this analysis, GRADE uses 45◦

as its default cut-off angle as this value of θcutoff reduces significantly the number of

rings without affecting the number of cages found. However, the default cutoff angle

can be modified using the input flag option ’-theta’.

In Figure B.5c, we show that a large fraction of the rings found by GRADE are

either non-convex (15% and 27% for five- and six-folded rings, respectively) or

exhibit deformities related to planarity (7% and 16% for five- and six-folded rings,

respectively). By ignoring these rings the run time of GRADE can be reduced by

more than 80%. However, we recommend for users to test the effect of δ1, δ2, and

θcutoff on their particular systems.

B.2.3 Cups

To define cups and cages, it is convenient to introduce a few new concepts. Two rings

are considered neighbors to each other if they have two vertices (one edge) in common.

The number of neighboring rings of a reference ring i is known as the coordination
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Figure B.4 Non-planar ring deformity in five- and six-folded rings. (a-b) Examples
of deformities due to non-planarity of vertices in five and six folded rings. (c-d) Side
view of five and six folded rings, showing their planar and boat conformation. (e-f)
Division of pentagon and hexagon structure into three and four planes in order to
determine out of plane vertices.
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number of i. Thus, a ring is fully-coordinated if it has the same number of neighbor

rings as its size. Rings that are neighbors of a fully-coordinated ring are called lateral

rings.

The set of water molecules comprising fully-coordinated and lateral rings form

a cup when each of the lateral rings are neighbors to two other lateral rings. To

illustrate this definition, Figure B.6 depicts cups with their fully-coordinated five and

six-folded rings in red and their lateral rings in black. Using five and six folded rings,

the two most common types of cups that can be formed are:

• 56 cup in which the size of the fully coordinated and lateral rings are five. The
upper index 6 stands for the number of five-folded rings.

• 6156 cup in which the fully coordinated ring is a six-folded ring and the lateral
rings are five-folded. Upper indices stand for the number of six- and five-folded
rings.

GRADE finds shared edges between pentagon-pentagon and pentagon-hexagon rings

to determine 56 and 6156 cups. All cups are found and assigned a unique identifying

number to avoid double counting.

B.2.4 Cages

The set of molecules comprised by two cups forms a 512 or 62512 cage when each

lateral ring of one cup is neighbor to two lateral rings of the other cup as depicted

in Figure B.6a-b. A 64512 cage is formed by the set of molecules in four 6156 cups in

which each pair of these cups shares two five-folded rings with each other. The three

types of cages that GRADE detects are:

• 512 cages, formed by two 56 cups and comprising 20 water molecules.

• 62512 cages, formed by two 6156 cups and containing 24 water molecules.

• 64512 cages, formed by four 6156 cups and containing 28 water molecules.
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Figure B.5 Effects of deformities on identified structures. (a-b) dependence of θcutoff

on loops and cages. Dashed line shows the recommended default value for θcutoff . (c)
Percentage of excluded loops by imposing non-convexity and planarity condition.

To avoid double counting, GRADE assigns a unique identifier number to each

cage. In addition to water molecules, GRADE can also process two types of solute

with arbitrary names in the input gro file. Distances between center of mass of each

cage and atoms of solutes are calculated and if these distances are smaller than 0.2

nm, the solutes are considered trapped inside the cage. A summary file containing the

number of filled and empty cages is provided as output file. Identifying less common

types of cages, e.g., 63512 cages [113], is planned for the next version of GRADE.

B.2.5 Order Parameter F4

In addition to cages, another quantity that is often used to characterize the state

of water molecules is the four-body order parameter F4 = 〈cos 3φ〉, where φ is the

torsion angle of the configuration H-O· · ·O-H formed with the outermost hydrogen

atoms of two neighboring water molecules. This quantity can be used to distinguish

between different tetrahedral networks adopted by water. The flag ’-f4’ can be used

to compute the F4 order parameter averaged over all pairs of water molecules in the

simulation box.
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B.2.6 Program Structure

Source Files GRADE is written in C++ and is made up of a main program file

and two supporting resource files:

• GRADE.cpp – main program file which reads input files, writes output files, and
calls several functions;

• Functions.hpp – header file, includes function prototypes;

• Functions.cpp – resource file, includes functions needed to find rings, cups and
cages.

Files contain original source code written by the authors and they can be

compiled using common C++ compilers. A complete list of input and output options

of GRADE can be printed using ’-h’ flag.

Input and Output File GRADE reads the three-dimensional position of atoms in

a periodic box provided in gro format. Several software packages, including pdb2gmx

which is part of the GROMACS [3] suite and InterMol [238] can be used to convert pdb

or trajectory files to gro format. The name of the input file including the extension

(.gro) should follow the ’-i’ flag. The frequency with which frames in the input file

are read can be controlled with the flag ’-fr’.

Four output files are produced by default. One of these files has extension

“.xvg”, and it contains eight columns which are the frame number, simulation time

(if time is provided in the input file), the total number and the number of filled

512, 62512 and 64512 cages, respectively. Filled cages are cages that host a solute

molecule, i.e., residue name other than SOL in the input file. Three files with “.gro”

extension are also produced by GRADE. One file for each type of cages which contain

positions of water molecules forming the cages, all solute molecules, followed by solute

molecules trapped inside cages. The molecule name of the latter is “CBX”. This

allows trapped solutes to be visualized independently from other solutes using VMD
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Figure B.6 Structure of cups and cages identified by GRADE. a) Five-folded ring
(pentagon), two 56 cups and 512 cage, b) six-folded ring (hexagon), two 6156 cups and
62512 cage, c) four 6156 cups and 64512 cage. Fully-coordinated and lateral rings are
shown in red and black, respectively.
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or other atomic visualization software. By default, names of these output files are

formed by concatenating the input name with “ cage512 i.gro”, “ cage62512 i.gro”

and “ cage64512 i.gro”, where i stands for the frame number. Alternative output

names can be provided using the ’-o’ flag. The frequency with which output files are

written can be controlled with the ’-dt’ flag. By default ’-dt’ and ’-fr’ are set to

one.

B.3 Results

As an example of how GRADE can be used to study clathrate formation, we now

analyze the four simulations B defined in Table B.1. First, GRADE needs to be

compiled using, e.g., the GNU compiler collection (or any C++ compiler):

g++ GRADE.cpp Functions.cpp -o GRADE

A Makefile provided with the source files compiles the executable and ensures that

the minimum GNU version requirement is met. If trajectory of water and solute

molecules are provided in a file named ”trajectory.gro”, GRADE can be executed

using the command line:

./GRADE -i trajectory.gro -f4 yes

This generates five output files: ”trajectory.xvg”, ”trajectory cage512 frame.gro”,

”trajectory cage62512 frame.gro”, ”trajectory cage64512 frame.gro” and ”F4.gro”.

A separate gro-file is generated for each analyzed frame or as specified in the command

line using the ’-dt’ flag. Figure B.7a-d shows the time-evolution of the number of 512

(in red), 62512 (blue) and 64512 (green) cages of the four simulations in setup B, defined

in Table B.1. This time evolution is provided in the output file “trajectory.xvg”.
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Initially, there are no cages in the simulation box as the system is in the liquid state.

After an induction time that varies from ∼ 100− 250 ns for the four systems studied,

the number of cages increases abruptly to approximately 10-15. This is consistent

with theories of blob formation [75] in which the spontaneous nucleation of cages from

the liquid state requires the formation of a critical nucleus. After the formation of

this nucleus, the number of cages increase in a non-continuous manner whereby short

periods of annihilation are followed by regrowth.

Figure B.7e shows snapshots of cages and methane molecules at four points of

one of the trajectories (see panel b). Snapshot I corresponds to the first 512 cage

that is filled with a methane molecule in the simulation (time = 110 ns). This cage

is, however, unstable and it disappears in snapshot II (time =180 ns) which shows

the first stable cluster made of eight 512 (in red) and six 62512 cages (in blue). This

cluster grows through the addition of newly formed cages as depicted in snapshots

III (time 250 ns) and IV (time = 580 ns).

The four-body order parameter, F4 = 〈cos 3φ〉, is plotted for the four

simulations in Figure B.8. This parameter is provided in the output file F4.xvg.

F4 takes values of 0.7, 0 and -0.4 for SI hydrate, liquid water and ice, respectively to

distinguish different phases of water [114,214]. In our simulations, F4 initially starts

from values close to zero, which represents the liquid state, and it increases abruptly

as water molecules evolve into clathrate structures.

B.4 Conclusion

In this dissertation, we present a computer code to analyze water structures related to

the formation of gas clathrate. The code identifies 512, 62512 and 64512 cages as well as

the four-body order parameter (F4) given the atomic coordinates of water molecules.

These are main quantities used to quantify clathrate formation in molecular dynamics

simulations. We anticipate that this open-source code will serve as a template by
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Figure B.7 Cage formation over time. (a-d) Number of 512, 62512 and 64512

cages found by GRADE in four simulations of 3300 TIP4P/ice water molecules
and 200 methane molecules. (e) Visualization of different cages at various points
during growth phase specified in panel (b). Water molecules are shown in Licorice
representation and Carbon atom of Methane molecules are shown in cyan. Hydrogen
bonds are depicted by red, blue and green dashed lines in cages respectively.
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Figure B.8 Time evolution of F4 order parameter of the four individual simulations
at T=270 K and 500 bar.

the community which should be of interest to researchers studying not only natural

gases but also antifreezing proteins and hydrophobic interactions. First, the method

used to analyze rings in order to compute cages is presented followed by a brief

discussion of the computer code. Second, an example of how the code can be used to

study the spontaneous nucleation of methane clathrates is presented. We anticipate

that the freely available source code will enable research groups to easily analyze

their simulation results. Also, the code can be modified to allow the investigation of

other order parameters to quantify water structures. It should be mentioned that we

have implemented restrictions on the conditions required by water molecules to be

considered part of five- and six-folded rings, however, these restrictions have no effect

on the number of cages found by the code and they account for a significant speed

up of the computer code. Further speed up of GRADE can be provided through

parallelization which is planned for a future version of the code.
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through the Convergence of Ensemble Properties among Simulations with
Multiple Force Fields. The Journal of Physical Chemistry B, 120(2):259–277,
2016.

[217] G. Rossi, G. Giaccone, R. Maletta, M. Morbin, R. Capobianco, M. Mangieri,
A. Giovagnoli, A. Bizzi, C. Tomaino, M. Perri, et al. A family with alzheimer
disease and strokes associated with a713t mutation of the app gene. Neurology,
63(5):910–912, 2004.

[218] G. S. Rule and T. K. Hitchens. Fundamentals of protein NMR spectroscopy, volume 5.
Springer Science & Business Media, 2006.

[219] C. D. Ruppel. The us geological survey’s gas hydrates project: Us geological survey
fact sheet 2017-3079, 4p. Technical report, US Geological Survey, 2018.

[220] P. J. Russell. iGenetics: A Molecular Approach (3rd Edition). Pearson, 2009.
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