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ABSTRACT

BIO-INSPIRED LEARNING AND HARDWARE ACCELERATION
WITH EMERGING MEMORIES

by
Shruti R. Kulkarni

Machine Learning has permeated many aspects of engineering, ranging from the

Internet of Things (IoT) applications to big data analytics. While computing

resources available to implement these algorithms have become more powerful, both

in terms of the complexity of problems that can be solved and the overall computing

speed, the huge energy costs involved remains a significant challenge. The human

brain, which has evolved over millions of years, is widely accepted as the most

efficient control and cognitive processing platform. Neuro-biological studies have

established that information processing in the human brain relies on impulse like

signals emitted by neurons called action potentials. Motivated by these facts, the

Spiking Neural Networks (SNNs), which are a bio-plausible version of neural networks

have been proposed as an alternative computing paradigm where the timing of spikes

generated by artificial neurons is central to its learning and inference capabilities. This

dissertation demonstrates the computational power of the SNNs using conventional

CMOS and emerging nanoscale hardware platforms.

The first half of this dissertation presents an SNN architecture which is

trained using a supervised spike-based learning algorithm for the handwritten digit

classification problem. This network achieves an accuracy of 98.17% on the MNIST

test data-set, with about 4× fewer parameters compared to the state-of-the-art neural

networks achieving over 99% accuracy. In addition, a scheme for parallelizing and

speeding up the SNN simulation on a GPU platform is presented. The second

half of this dissertation presents an optimal hardware design for accelerating SNN

inference and training with SRAM (Static Random Access Memory) and nanoscale



non-volatile memory (NVM) crossbar arrays. Three prominent NVM devices are

studied for realizing hardware accelerators for SNNs: Phase Change Memory (PCM),

Spin Transfer Torque RAM (STT-RAM) and Resistive RAM (RRAM). The analysis

shows that a spike-based inference engine with crossbar arrays of STT-RAM bit-cells

is 2× and 5× more efficient compared to PCM and RRAM memories, respectively.

Furthermore, the STT-RAM design has nearly 6× higher throughput per unit Watt

per unit area than that of an equivalent SRAM-based (Static Random Access

Memory) design. A hardware accelerator with on-chip learning on an STT-RAM

memory array is also designed, requiring 16 bits of floating-point synaptic weight

precision to reach the baseline SNN algorithmic performance on the MNIST dataset.

The complete design with STT-RAM crossbar array achieves nearly 20× higher

throughput per unit Watt per unit mm2 than an equivalent design with SRAM

memory.

In summary, this work demonstrates the potential of spike-based neuromorphic

computing algorithms and its efficient realization in hardware based on conventional

CMOS as well as emerging technologies. The schemes presented here can be further

extended to design spike-based systems that can be ubiquitously deployed for energy

and memory constrained edge computing applications.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

Cognitive processing capabilities of the human brain are far superior than any

supercomputer till date. Apart from their processing ability, they are extremely

efficient in the number of operations being performed, with some neuro-biological

studies showing that the brain is able to carry out close to 100, 000 billion FLOPS per

unit of Watt, while today’s latest supercomputer can achieve only around 10 billion

FLOPS per unit Watt [1, 2]. The superior computational efficiency of biological

systems has inspired the quest to reverse engineer the brain in order to develop

intelligent computing platforms that can learn to execute a wide variety of data

analytics and inference tasks [3]. However, in spite of several decades of research,

the principles of information processing in the brain is not yet fully understood, and

efforts to mimic its power efficiency and fault-tolerance in computing systems remain

unfulfilled. The ongoing quest towards understanding the functioning of the brain

has propelled research towards reverse engineering the brain for various neurological

studies, through computational neuroscience techniques [4]. Additionally, the field

of artificial intelligence has also taken inspiration from the neural architecture of the

brain, with the result of Deep Learning framework emerging as the state-of-the-art

for various cognitive and data processing tasks. In particular, inspired by the

Nobel prize winning work of Hubel and Weisel on elucidating the mechanisms of

information representation in the visual cortex [5], multi-layer convolutional neural

networks have shown impressive performance for a wide variety of applications such

as image recognition, natural language processing, speech recognition and video

analytics [6–15].
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The field of neuromorphic engineering tries to mimic the key computational

aspects of biological computations in silicon circuits. Earliest works by Carver

Mead at Caltech describe sub-threshold VLSI circuit designs mimicking the neuron’s

membrane potential dynamics [16]. During the last decade, there have been a number

of demonstrations of sensory data acquisition systems inspired by the cochlea, retina,

etc. [17–20]. To make neural networks more biologically plausible, a new generation

of learning models have emerged called the spiking neural networks (SNNs). These

models mimic event based data processing and communication aspects of biological

neurons. Neuro-biological studies have also shown that the rate of spikes in the brain

is very small, 0.1 to 300Hz [21]. This low operational firing rate has been postulated

to be one of the reasons for the brain’s high energy efficiency.

Inspired by this brain-inspired asynchronous computing paradigm, several

neuromorphic hardware designs have been demonstrated with significant compu-

tational efficiency improvements [22–25]. These neuromorphic SNN accelerator

architectures closely integrate the memory and logic units in order to minimize

the cost of data transfers associated with conventional von Neumann architectures.

However, these digital hardware platforms make use of on-chip SRAM to store the

network parameters which has limited density. For running larger neural network

models, these platforms have to make use of larger density DRAMs (which are

primarily off-chip). Additionally, DRAMs are slower in access and consume more

power as they need to be refreshed periodically. For building efficient and compact

hardware accelerators, there is a need for memory technologies with smaller form

factor and faster accesses.

Research over the last decade has led to the development of several nanoscale

non-volatile memory devices such as phase change memory (PCM), spin-transfer

torque RAM (STT-RAM), and resistive RAMs (RRAM), ideally suited for in-memory

or near-memory computing with a crossbar based architecture. The conductance
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states of these devices could be used to represent synaptic weights of large neural

networks. Design studies suggest that memristive neural network accelerators

with analog memory storage can potentially achieve significantly higher throughput

compared to GPUs, provided several challenges typically associated with nanoscale

devices can be addressed [26–33]. In particular, the crucial challenges include the

variability and stochasticity associated with the device conductance, and the additive

noise from the peripheral circuitry such as Analog to Digital converters (ADCs) and

Digital to Analog Converters (DACs) [26, 34–36].

In this dissertation, we start by discussing the principles to encode and train

a system using just binary spikes, akin to the action potentials seen in the brain.

We explore two of the existing spike based supervised learning algorithms - Remote

Supervised Method (ReSuMe) and the Normalized Approximate Descent (NormAD),

in terms of optimizing them for efficient hardware realizations. As the NormAD

algorithm is shown be be faster at its convergence, we apply this rule to train an SNN

for solving the problem of handwritten digit classification [37]. We also show that

this spike based algorithm performs similar to an equivalent network with non-spiking

neurons (ANNs) in terms of its classification accuracy. We also discuss the various

insights from our network training and optimization studies for an eventual efficient

implementation. This part of the research was carried out by developing a CUDA

(Compute Unified Device Architecture) simulator to be run on a GP-GPU (General

Purpose Graphical Processing Unit) card.

Building better hardware for realizing SNNs has also been emphasized by the

research community, as is demonstrated by the chips of IBM, Intel, etc. [22,23,25]. In

this direction, we present the basic units of designing an ASIC (Application Specific

Integrated Circuit) for hardware acceleration of SNNs, which forms the second part

of this dissertation. The key studies and contributions of this work are as following:
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1. Network optimization in terms of spike based temporal features for a supervised
learning algorithm, and their comparison with existing class of networks.

2. Architectural framework using existing and emerging memory devices for
realizing spike based learning on hardware.

3. Development of mathematically well-posed compact models for non volatile
memory (NVM) devices with reliability features.

4. Hardware design and throughput comparison of STT-RAM based accelerator
for SNNs.

1.2 Organization of the Dissertation

The research work described in this dissertation is comprised of two parts. The first

part focuses on SNN algorithms and second part on the hardware design.

Chapter 2 presents a background on bio-inspired computing and the learning

mechanism observed in neuro-biological studies. We then present the SNN developed

for solving the handwritten digit classification problem in Chapter 3. We also present

CUDA based software acceleration of this SNN on a GP-GPU.

Chapter 4 presents the compact models for the NVM devices that we built

and use in our further architecture development and analysis. We also present the

process of introducing conductance variabilities and faults in the model simulation.

We discuss the design of three models: Phase Change Memory (PCM), Spin Transfer

Torque RAM (STT-RAM), and Resistive RAM (RRAM) devices.

In Chapter 5, we present the non-von Neumann architecture design for

accelerating neural networks, specifically the SNNs. Here, we discuss a CMOS

(Complementary Metal-Oxide Semiconductor)-based digital design for an SNN along

with the spike based Remote Supervised Method (ReSuMe) training rule [38]. We

then present the prospects of using an NVM crossbar array with near-memory

compute approach for accelerating SNNs. We explore the analog (multiple levels

in a single device) and digital (two levels within a device) storage arrays with NVM

devices. For the digital NVM array, we compare the design realization with PCM,
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RRAM, and STT-RAM memory arrays. Finally, we present the STT-RAM based

design for learning and inference, and also compare its inference performance with an

equivalent SRAM based design. Chapter 6 summarizes and concludes the dissertation.

We also present a discussion on the future trends in this area of research and the

challenges that need to be addressed.

Appendix A gives the details of the ReSuMe and NormAD algorithm parameters

and the simulation procedures. Appendix B lists the parameters used in developing

the compact models for the three NVM devices (PCM, STT-RAM, and RRAM)

discussed in this dissertation in Chapter 4.
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CHAPTER 2

BIO-INSPIRED COMPUTING AND HARDWARE DESIGN

Nature has always been a inspiration for various fields of engineering, ranging

from mechanical to computing [39]. Studies on the human visual cortex system

have inspired the development of deep convolution neural networks (CNNs) [5, 6].

The ground breaking work by Yann LeCun on training CNNs [6], followed by

the ILSVRC-2012 challenge winning CNN by Alex Krizhevksy [40] has led to the

development of many improved network architectures and training techniques to

develop deep networks with super-human level accuracy [7, 9–13,41].

Parallel to artificial neural networks, the third generation of neural networks

called Spiking Neural Networks (SNNs) have also been emerging as a potential

computing framework to solve machine learning problems. Similar to the time-based

information encoding using action potential transmitted by nerve cells, SNNs operate

by making use of precise timings of all-or-none spikes transmitted between neurons

[42, 43]. These networks, which are capable of employing the temporal dimension

through memory based neuronal dynamics and synaptic delays, have been successfully

shown to emulate the different spike-firing dynamics in the brain [44].

Throughout this dissertation, we use the term artificial neural networks (ANNs)

to denote the non-spiking networks. The background details of these two different

types of neural networks will be discussed in the following sections.

2.1 Artificial Neural Networks

The earliest work done towards devising neuron models for computing, abstractly

based on the functioning of the biological neural network was the McCulloch-Pitts

model of the neuron (also referred to as the first generation of neural networks) [45].

This model used a threshold gate (also called a perceptron) as a neuron, wherein
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the neuron had a high output if the weighted input sum exceeded the threshold.

This model was able to capture the all-or-none firing dynamics of the neuron based

on simple thresholding. With just digital inputs and binary outputs, they could be

inter-connected to realize any Boolean function. However, these models were limited

in their functionality as their activation function was non-differentiable and hence,

could not be trained autonomously. Recently, there has been an emergence of such

models of neurons as a potential low memory and compute foot-print networks [46],

through the use of straight-through estimator function [47]. More details on their

usage will be discussed in the following section and upcoming chapters.

1

y

Figure 2.1 Model of a neuron used in second generation ANNs. The neuron shown
above computes the weighted sum of all its inputs in s, which is then applied to an
activation function f to generate the final output. The neuron additionally has a bias
line (of weight w0) for which the input is kept at unity.

The second generation of neuron models and architectures supported continuous

valued inputs and outputs, and hence can act as universal function approximators.

The basic scheme of these neurons is as shown in Figure 2.1. A neuron consists

of N inputs, which are individually weighted and summed up; the result is then

passed to an activation function to generate the output. Activation functions f(),

such as sigmoid, tanh, softmax, ReLU (Rectified Linear Units), etc. have been used

in different implementations of the ANNs. The continuous and hence, differentiable

nature of the second generation of neural networks also led to the development of

various optimization techniques to get the desired outputs, through the application

of chain rule of derivatives, what is commonly called the back-propagation rule.
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These models of neurons have been widely used in various ANN architectures,

ranging from simple fully connected, convolution, and recurrent neural networks.

Amongst these, convolutional neural networks have established themselves as the

state-of-the-art in image classification, and object detection problems [41,48]. One of

the earliest CNNs, LeNet-5, which is a six layer deep network, with five convolution

layers, showed an error of 0.95% on the MNIST (Modified National Standards and

Technology database) test data-set (with 60, 000 training images and 10, 000 test

images of handwritten digits) [6, 49]. This architecture consists of two sets of

alternating layers of convolution and sub-sampling that extract the features and

perform an averaging to achieve translation invariance of the input. The last layer

which is the fully-connected layer is the classifier layer and predicts the label of

the input. This architecture has been the baseline for many of the current deep

CNNs which have improved over time with the incorporation of techniques such as

max-pooling instead of sub-sampling, dropout of connections between layers, etc.

The deep CNNs have also been successfully employed in various applications apart

from image, such as, Alpha Go game by Google’s Deep Mind [50], drug discovery by

AtomNet [51], speech recognition [10, 14], medical image analysis [52], etc.

2.2 Bio-inspired Computing

The neurons in the ANN discussed above, implement memoryless non-linear trans-

formation of the input signals to create real-valued output signals. This is vastly

different from the behavior of neurons in the brain, which encode information in the

time of issue of binary signals called action potentials (or spikes) based on the time of

arrival of incoming spike signals from upstream nodes in the network. SNNs have been

demonstrated to have a higher computational power owing to the time information

embedded in the spike signals [42,53–55]. The spikes transmitted by these neurons are

fixed amplitude signals occurring over a period of several time-steps. SNNs have also
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shown impressive performance in various applications such as automatic navigation

control [56–58], neuroprosthetic controllers [59], pattern recognition [60–62], etc. The

development of SNNs seems highly promising in terms of the energy efficiency. As

mentioned in the previous chapter, the brain is able to perform nearly 10, 000× more

operations per unit Watt than the fastest super-computer available today [1].

The basic computing units of the SNNs are the spiking neurons. There are

various types of spiking neuron model developed by various groups, where the

detailed description of the neuronal dynamics is based on the intricate interaction

of ion-channels on the cell membrane. In the following subsections we present the

basics of the operations of biological neurons and the various levels of abstractions in

mathematical models of these neurons and synapses.

2.2.1 Spiking Neuron Models

A biological neuron consists of the cell body (the nerve cell), synapses that act as

links between two neurons, axons which transmit the signal out of the neuron and

dendrites which are the inputs of the neurons [63]. At the cellular level, the dynamics

of different ion-specific channels on the neuron’s membrane causes them to open or

close, leading to inflow or outflow of certain ions. At rest, the concentration of these

ions in the intra-cellular and extra-cellular fluid maintains an equilibrium across the

neuron’s membrane, with the potential referred to as the Nernst potential [4]. When

the neuron receives incoming current from its synapse the ion channels of Sodium

(Na+) open and an influx of Na+ ions takes place, which can potentially set up a

positive feedback and rapidly raise the membrane potential value (depolarization).

This creates an action potential across the membrane. This process is followed by

closing of Na+ ion-channels and subsequent opening of K+ ion-channels causing the

potential to lower and become more negative (or hyper-polarized) for a short period of

time. The transient dynamics of these ion-channels also imposes a certain refractory
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period on the membrane potential, wherein it remains at its resting value (typically

around −70mV) for a certain period of time.

The above mentioned membrane potential dynamics is typically abstracted as an

integrated value of the incoming synaptic current which is reset to its resting potential

when this value exceeds a threshold, with an action potential being issued thereafter.

The transient rise and fall of the membrane are modeled by having a capacitance

and a resistance along with a leak path in the neuron membrane. There are several

mathematical models of biological neurons capturing various levels of details of their

electrical dynamics.

The earliest detailed model capturing the dynamics of different ion channels on

the neuron membrane was proposed by Hodgkin and Huxley in 1952 [64]. The basic

equation describing the membrane potential V dynamics is,

I = CM
dV

dt
+ Ii (2.1)

where I is the net membrane current, CM is the membrane’s capacitance, and Ii is

the ionic current density, which is a cumulative of all the ions flowing in and out of

the membrane (Na+, K+, Cl−, etc.). The generic form of the ionic current for each

of these ions i is given as,

Ii = gi(V − Vi) (2.2)

Here, Vi is the displacement of the respective ionic Equilibrium potentials (ENa, EK

and the leak potential El [43]) from the membrane’s resting value Er. The above

mathematical descriptions of spiking neuron were based on the observations from

various voltage clamp experiments for measuring the surface currents from a giant

nerve fiber. It was also observed that the ionic conductances gi, are also functions of

the membrane potential and continuously keep evolving over a period of time. The

10



Potassium (K+) conductance gK can be described as,

gK = ḡKn
4, (2.3)

dn

dt
= αn(1− n)− βnn, (2.4)

Similarly, the sodium channel conductance are given by,

gNa = m3hḡNa, (2.5)
dm

dt
= αm(1−m)− βmm, (2.6)

dh

dt
= αh(1− h)− βhh (2.7)

Here the respective αs and βs are time-dependent rate constants. n, m and h are

dimensionless state variables (denoted as x), where the first term (1 − x) represents

the proportion of activating ions on the outside of the membrane and x represents the

proportion inside the membrane [64]. The increase and decrease of each of these state

variables x recreates the membrane potential dynamics of issuing an action potential

(or spike) and also models the refractory period. Thus, the Hodgkin-Huxley’s neuron

model captures a detailed description of the neuronal dynamics from the different

intra- and extra-cellular ions.

While the above detailed Hodgkin-Huxley (HH) model uses four-dimensional

equation, there are several models which reduce the HH model to two-dimensional

form primarily to reduce the computational complexity while still being able to

capture the different spiking dynamics [43, 65]. This becomes important when

simulating large networks of spiking neurons. The reduction from the 4D HH model

is achieved by performing the phase plane analysis, which involves a projection of

the variables (m, n, and h) onto a 2D space [43]. Models such as the Morris-Lecar,

FitzHugh-Nagumo, Izhikevich, etc. describe the neuron using just two state variables,

the membrane potential v and a recovery variable u [66–68].
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The 2D spiking neuron model proposed by Izhikevich can be tuned to recreate

the observed dynamics of various cortical neurons [68]. The basic differential

equations of this model are:

v′ = 0.04v2 + 5v + 140− u+ I (2.8)

u′ = a(bv − u) (2.9)

Here v represents the membrane potential and u the membrane recovery variable. If

v ≥ 30mV, then v ← c and u ← u + d which models the resetting of the membrane

potential and the recovery variable after spike is issued. The parameters a, b, and c

control the time-scale and sensitivity of the variables u and v.

Another 2D model of spiking neuron developed from the electrophysiological

studies of a nerve fibre is the adaptive exponential integrate-and-fire (aEIF) model

[69]. This model incorporates an exponential adaptation for the membrane potential

to allow for a smooth spike initiation within the neuron. It consists of a membrane

potential variable V and an adaptation variable w, and the dynamics are given as:

C
dV

dt
= −gL(V − EL) + gL∆T exp

(
V − VT

∆T

)
− w + I (2.10)

τw
dw

dt
= a(V − EL)− w (2.11)

Here I is the input current, C the membrane capacitance, gL the leak conductance,

EL the leak reversal potential, VT the threshold, ∆T the slope factor determining the

sharpness of the spike, a the adaptation coupling parameter and δw is the adaptation

time constant. The membrane potential is artificially reset to its reset value Vr when

the potential V exceeds the threshold. The adaptation variable w is also changed by a

finite amount b when a spike is issued, i.e., w ← w+b. Similar to the Izhikevich model,

the aEIF model also captures the firing dynamics observed in the different types of

cortical neurons. However, the difference from the Izhikevich model is the inclusion

of exponential adaptation, which makes the rise of membrane potential rapid during
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a spike initiation (which is also observed in cortical neurons). Thus, the aEIF spiking

neuron model captures the behavior of a biological neuron more closely while still

being relatively simple in terms of computation requirements than the HH model.

The simplest and a highly abstracted model of a spiking neuron described by

just a one dimensional equation is the leaky-integrate-and-fire (LIF) model [70]. This

model captures the neuron dynamics by representing the membrane potential as a

voltage across a capacitor which is charged by incoming input currents, connected

in parallel with a leaky conductance path. A generalization of this LIF model is the

Spike Response Model (SRM), where all the model parameters are time-dependent

[71]. SRM is a 1D model of a spiking neuron, where the dynamics of the membrane

potential u is a summation of different kernels, η, ϵ and κ, each capturing the neuron’s

response to its own issued spike, incoming spike and incoming current, respectively.

The SRM model is given by the following equation [43],

ui(t) = η(t− t̂i)+
∑
j

wi,j

∑
f

ϵij(t− t̂i, t− t̂
(f)
j )+

∫ ∞

0

κ(t− t̂i, s).I
ext(t− s).ds (2.12)

In the above equation it is assumed that the neuron under consideration i, has spiked

at time t̂i. Here, wi,j represents the synaptic weight between pre-synaptic neuron j

and post-synaptic neuron i. The neuron’s threshold also varies with time which is

captured by the function η(). This model is also able to re-create the behaviors of

different types of neurons.

While the above described models are suitable for experiments trying to mimic

the cortical behavior, for most practical machine learning applications, the simplest

LIF model suffices while being used in Spiking Neural Networks. LIF model is a

special simplified case of the SRM model. We now present the LIF model used in

the experiments discussed in this dissertation. The membrane potential V (t) evolves

according to the following differential equation,

C
dV (t)

dt
= −gL(V (t)− EL) + Isyn(t) (2.13)
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The membrane potential is artificially reset to its resting value EL when V (t) ≥ VT ,

and a spike is issued to the downstream synapse. The incoming spikes (represented

Figure 2.2 A simple case of two neurons connected by a synapse of strength ‘w’. The
synapse transforms the incoming spike into an equivalent current, through a kernel,
which is presented as input to the post-synaptic neuron.

by a δ function) on a synapse, generate the post-synaptic current (Isyn(t)) as,

c(t) =
∑
i

δ(t− ti) ∗
(
e−(t−td)/τ1 − e−(t−td)/τ2

)
(2.14)

Isyn(t) = w × c(t) (2.15)

where ti are the time instants at which a spikes were issued. td represent the synaptic

transmission delay for the spikes. Here, the term c(t) is the synaptic kernel, which

performs filtering on the incoming spikes. Figure 2.2 shows a simple network of two

spiking neurons connected by a synapse with a double decaying exponential kernel.

The evolution of the membrane potential with every incoming spike from pre-synaptic

neurons can be seen Figure 2.3.

Spikes from the pre-synaptic neuron are transformed into post-synaptic current

by the synaptic kernel as in Equation 2.15. Figure 2.3 show the evolution of post-

synaptic current and the membrane potential of the post-synaptic neuron.

There is a non-linear dependence between the time of issue of spikes of a neuron

and the incoming spike times, due to the weighted summation, integration and reset.

Figure 2.4 illustrates a particular non-linearity associated with the LIF neuron which

is excited by a DC current lasting 100ms – the output spike frequency in that interval

is a non-linear function of the excitation current. Typically, for the spiking neurons

on the input layer, the sensory signals can be directly applied as input currents.
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Figure 2.3 Spikes input to a neuron (top). Evolution of the synaptic current (middle)
and membrane potential (bottom). The membrane potential at point where the
threshold is crossed is artificially set to a higher value (40mV), for the sake of clarity.
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Figure 2.4 Spike frequency of an LIF neuron excited by a constant input current
exhibits a strong non-linear dependence.

While we use the above described LIF spiking neuron model to carry out the

spike based algorithmic studies, for realizing SNNs on hardware, there are several

works that further simplify the neuron model by eliminating its leak term, making it

an integrate and fire model (IF) [46, 62]. In the later part of this dissertation, where

we discuss the hardware design for accelerating SNNs, we make use of a similar IF

model called Binary Activation (BA) neuron [46]. This model is inspired by the
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Perceptron model of an artificial neuron which was proposed by Frank Rosenblatt in

1958 [72], with the neuron’s output being a ‘1’ or a ‘0’ depending on the value of the

accumulated weighted inputs. This model does not use a leak term and is suitable for

problems that do not require precisely timed spikes to be generated by the neuron.

The activation function of a neuron j at timestep t is given by:

aj(t) = yb

(
N∑
i=1

ai(t)wi,j + bj

)
, (2.16)

where yb is the threshold function, with yb(x) = 1 only if x > θ [46]. Here, θ is the

membrane potential threshold. The term within the brackets represents the spiking

neuron’s membrane potential v(t). The membrane potential is reset every time-step

and a new potential value is evaluated. The neuron j receives incoming spikes from

each of the pre-synaptic neurons i, with synaptic weights wi,j between pre-synaptic

neuron i and post-synaptic neuron j. Each neuron j also has a bias bj.

An extension of this neuron for time varying inputs is also presented in [46]. In

this model (also referred to as continuous integration model), the membrane potential

is an integrated value over several time-steps. On exceeding the threshold, the

membrane potential is reduced by an amount equal to θ and a spike a(t) is issued.

The model equations are as given below [46]:

vj(t) =
m∑
i

(ai(t)wi,j) + bkj + vj(t− 1), (2.17)

aj(t) = yb(vj(t
−)), (2.18)

vj(t) = vj(t
−)− θ.aj(t). (2.19)

It can be seen from the above expressions that the Binary Activation neuron’s

output ak(t) is discontinuous in nature. For using this model in SNNs that can be

trained using gradient descent for a particular task, the membrane potential vk(t),

is linearized near the region of the threshold by making use of a straight-through
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gradient estimator [47], given as,

gj(vj(t)) =


(1/2θ), (θ − 1) ≤ vj(n) ≤ (θ + 1)

0, otherwise
(2.20)

Further details on the use of this neuron model and the Binary Activation SNN

(BASNN) while designing neurosynaptic core will be discussed in Chapter 5.

Having seen the basics of the spiking neuron and inter-neuron communication,

we now discuss the learning rules for SNNs using the LIF neuron model and

exponentially decaying synaptic kernels. The learning rules discussed in this chapter

are for training the spiking neuron to create spikes at the desired times. The learning

rule for BASNN will be discussed in detail in Chapter 5.

2.2.2 Spike-based Learning Rules from Biology

Most of the learning rules that have been postulated from biology are based on the

firing activities of the neurons and the precise times of these neurons. One of the

most prominent learning rule from neuro-biological studies was proposed by Donald

O. Hebb, who postulated that the strength of the synaptic connection between two

neurons is dependent on their activities or spiking rates (νi) [73]. The Hebbian law

states that, “Neurons that fire together wire together”. Mathematically, the weight

change for a synapse between a pre-synaptic neuron i and post-synaptic neuron j is

given as,

∆w ∝ νiνj (2.21)

However, the drawback to this rule was that there was no mechanism to bound

the weights. Later, a modification to this rule was proposed, called Spike Timing

Dependent Plasticity (STDP) [74]. As per this rule, the weights are updated according

to the precise timings of the pre- (tpre) and post- (tpost) synaptic neurons, in a learning
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Figure 2.5 Weight modification in Spike Timing Dependent plasticity (STDP).

window as shown in Figure 2.5. Mathematically, the learning window is modeled

as [75],

W (s)STDP =

+A+ exp
(

−s
τ+

)
if s ≥ 0

−A− exp
(

s
τ−

)
if s < 0

(2.22)

where s = tpost− tpre. The STDP rule has been applied in SNNs solving the problem

of handwritten digit classification and also as a pre-processing step in deep SNNs

[61, 76–82].

2.2.3 Supervised Learning in SNNs

Though the above mentioned rules capture the key aspects of synaptic strength

modification based on spike timings, but they are not suitable for tasks such as

classification or recognition. The goal of supervised learning problem in SNNs is to

be able to transform a set of incoming spike trains to a desired set of spike train at

the output of a spiking neuron (Figure 2.6).

One of the earliest supervised learning rule in SNNs is the Remote Supervised

Method (ReSuMe) [38], that uses the local STDP rule for weight update [74]. Other

spike based learning algorithms that have been proposed include the SpikeProp
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Figure 2.6 Goal of supervised learning is to determine the set of weights w that
transform the incoming spike trains into the desired spike train shown.
Source: [37].

algorithm (restricted to single spike learning) [83], SPAN and PSD (which applied

the learning rule to the analog version of the spike trains) [84, 85]. A variant of

ReSuMe algorithm, called the Delay Learning (DL)-ReSuMe, in addition to the

synaptic weights, made use of the transmission delays of synapses interconnecting

the neurons as parameters to train the network [86]. This algorithm has been shown

to be superior in terms of accuracy and speed of convergence compared to the basic

ReSuMe algorithm. The accurate synaptic efficiency adjustment method is another

spike-error triggered supervised learning rule based on STDP, which optimizes a cost

function defined in terms of membrane potential differences [87]. This method has

been used to demonstrate excellent performance in several UCI datasets with few

training parameters. The Synaptic Kernel Inverse Method (SKIM) [88], evaluates the

weights analytically rather than learning them iteratively and has been applied to the

problem of speech based digit recognition in a small network with 50 neurons. Based

on the SKIM method, the convex optimized synaptic efficiencies (CONE) algorithm

was developed [89] and was used for the problem of gait detection. The generalization

capability of this algorithm and the noise tolerance of a variation of the algorithm

called CONE-R has also been demonstrated. There are other recent algorithms that

train the network with spike based rules, but do not consider the temporal dimension

while training [46, 90].
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Besides the above-mentioned approaches for designing learning algorithms for

SNNs that operate directly in the spike domain, several authors have proposed to

convert ANNs trained with the well-established backpropagation algorithm to SNNs

so that the latter can be used as inference engines [62,91,92]. ANN-to-SNN conversion

imposes that the firing rate of a spiking neuron in the SNN be proportional to the

activation output of a non-spiking neuron in the ANN. Various techniques such as

weight normalization, noise addition, lateral inhibition or spiking rate based pooling

masks, which is similar to max pooling operation, have been employed to this end.

Note that this approach is not suitable for implementing systems that can learn in

hardware and in real-time.

There are also several efforts directed towards developing architectures with

adaptive and evolving network structures [93–97]. SpikeTemp and SpikeComp are

algorithms where neurons are progressively added in the classifier layer as the training

algorithm approaches the optimal point [95, 96]. An SNN with evolving architecture

called NeuCube, directly inspired by the brain [93], incorporates weight adjustments

based on supervised and unsupervised rules and additionally, adds new network

neurons as per training requirements.

The normalized approximate gradient descent based method (NormAD) for

synaptic strength modification in SNNs has been proposed that casts learning as

an optimization problem for tuning the membrane potential to create spikes at

desired time instants [37]. Compared to the ReSuMe learning rule, at least 10x faster

convergence characteristics has been demonstrated using this algorithm for generating

arbitrary desired spike streams.

Following subsections discuss the ReSuMe and NormAD learning rules, which

have been studied for various network trade-offs for efficient hardware realizations.
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2.2.4 Remote Supervised Method (ReSuMe)

The ReSuMe algorithm, developed by Ponulak, [59], adjusts the synaptic weights of

the neuron to be trained depending on the desired spikes (Sd(t)) as well as based

on the spikes observed (So(t)) in the trainee neuron. It essentially increases the

magnitude of the weights at an instant when there is a desired spike and decreases

when there is a spike at an undesired time (Figure 2.7). The spike trains S(t) can be

represented as sequence of delta (δ) functions as,

S(t) =
∑
f

δ(t− tf ) (2.23)

where, tf is the time instant at which a spike occurs. The cost function can be defined

as a function of observed and desired spike trains as,

∆w ∝ f(Sd − So) (2.24)

The ReSuMe learning rule is similar to the STDP rule, in the sense that the weight

adjustment depends on precise timing of the input and the output spikes, and

additionally the desired spikes. By combining the above proportionality with the

STDP (or Hebb’s), which incorporates the input (Sin) as well, the weight change is

given by,

∆w ∝ (Sd − So)Sin, (2.25)

More formally, the weight update, as in Ponulak’s dissertation, is given by [59],

d

dt
w(t) = Sd(t)

[
ad +

∫ ∞

0

W d(sd).Sin(t− sd)dsd
]

(2.26)

+So(t)

[
ao +

∫ ∞

0

W o(so).Sin(t− so)dso
]

(2.27)
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Figure 2.7 Weight update process in ReSuMe follows from the timing principles of
the STDP rule, where, the weight update is proportional to the timing difference
between the pre- and post-synaptic spike times. However, unlike the unsupervised
STDP rule, here, the weight update happens only when there is a spike at the post-
synaptic neuron (desired or observed).
Source: [59]

where W (s) the learning window, as in for the STDP rule (Eq. 2.22), is given by,

W d(sd) =

+Ad
+exp

(
−sd

τ+

)
ifsd > 0

0 if sd ≤ 0
(2.28)

W o(so) =

−A
o
+exp

(
−so

τ−

)
ifso > 0

0 if so ≤ 0
(2.29)

Figure 2.8 shows a schematic representation of the architecture and training

process in ReSuMe. The neural-micro circuit (NMC) block, consists of neurons

arranged in a 3D manner, with stochastic connections amongst them and having

synaptic delays. The NMC network generates a reservoir of spike, that is applied

to the trainee neuron, which is to be trained to generate spikes at specific times.

The NMC has a connectivity similar to the connectivity of the neural network in the

human brain.

The inputs spike train with Poisson distributed spike times and average spiking

rate, λ = 20Hz, are applied to a fraction of the NMC neurons (∼ 30%), which

generates a rich spiking pattern of spikes (as seen in the NMC spike raster). At

the output, a fraction of connections from the NMC (∼ 70%) are passed to the

output neuron. The connections between the input and the NMC neurons and within
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Figure 2.8 ReSuMe network and training process. A single input spike train is
applied to an NMC block creating a rich set of spike trains. These spike trains are
then applied to the trainee neuron to create the desired set of spikes.

the NMC neurons are stochastic in nature, so as to create a generic architecture.

The output spike raster shows the spikes converging to the desired times within an

accuracy of 2.5ms, over different training epochs.

2.2.5 Normalized Approximate Descent (NormAD) Rule

Normalized Approximate Descent rule as discussed in [37], trains the synaptic weights

such that the spiking neuron creates spikes at desired time instants. Similar to

ReSuMe in the previous subsection, this rule updates the synaptic weights whenever

the observed and desired spikes do not match. The weight update follows the standard

ANN expression as,

w(n+ 1) = w(n) + ∆w. (2.30)

The weight update term, ∆w is calculated only when there is a discrepancy

between the spike times in the desired (Sd(t)) and observed (So(t)) spike trains,

e(t) = Sd(t)− So(t). As described in [37], this is achieved by defining a cost function

in terms of the error between the desired (Vdes(t)) and observed (V (w, t)) neuron
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membrane potentials as:

J(w) =
1

2

∫ T

0

|e(t)|(Vdes(t)− V (w, t))2dt (2.31)

Using gradient descent on the instantaneous cost, the weight update term can be

written as:

∆w(t) = k(t)∇wJ(w, t) (2.32)

with

∇wJ(w, t) = |e(t)|(Vdes(t)− V (w, t))∇wV (w, t) (2.33)

By normalizing and approximating the dependence of membrane potential on the

weights, it is possible to obtain a closed form relationship for the weight update as:

∆w = r

∫ T

0

e(t)
d̂(t)

∥d̂(t)∥
dt (2.34)

where,

d̂(t) = c(t) ∗ ĥ(t),with ĥ(t) = exp(−t/τL)u(t). (2.35)

Here, c(t) is the synaptic kernel (as in Equation 2.14) and ĥ(t) is the LIF neuron’s

impulse response function defined for the period till the neuron spikes. The constant

τL = 1ms represents the approximation for the neuronal time constant, during

training phase. Normalization helps in eliminating the dependency on Vdes(t), which

is an unknown term. The weight update depends only on the output spike error

e(t) and the incoming spike trains, captured in d̂(t). The constant r, having the

dimensions of synaptic conductance, is a function of the number of input neurons as

discussed in [37]. Figure 2.9 shows the spike raster plot during training. The weight

update in NormAD also shows similar trend as in the STDP rule (as presented in

Section 2.2). Considering the synaptic weights to be equivalent conductance values
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Figure 2.9 Demonstration of NormAD training over successive training iterations
(on y-axis). The solid red lines are the desired spikes (with inter-spike times Poisson
distributed), while the blue circles represent the trainee neuron’s spikes over a period
of 300ms. It can be seen that the algorithm converges in just 17 training iterations.

G, the synaptic or conductance change, ∆G depends on the relative timings of the

input and output spikes for a given synapse (see Figure 2.10).
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Figure 2.10 While the NormAD is an analytically derived rule, using the neuronal
and synaptic dynamics show that the synaptic weight update ∆G has a dependence
on ∆t similar to biological STDP. Here, ∆t = to−ti, where ti is the spike time from the
input neuron and to is the time of spike observed/expected from the output neuron.
The curve with blue circles represent synaptic potentiation, when a spike is expected
on the output neuron, while the red circles represent the synaptic depression.
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2.3 Summary

This chapter presented an introduction to the computationally simple Leaky integrate

and fire (LIF) spiking neuron models. We also presented a kernel-based model for

the synapse, that perform filtering on the incoming spikes to covert them into input

currents for the spiking neurons. Two supervised learning rules for SNN, ReSuMe

and NormAD were also discussed, which can be used to train the network to issue

spikes at desired instants of time.

In the next chapter, we discuss the application of the NormAD rule to the

problem of handwritten digit classification. The different network choices, and the

insights from several optimization studies will be explored in the next chapter.
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CHAPTER 3

HANDWRITTEN DIGIT RECOGNITION WITH SPIKING NEURAL

NETWORKS

This chapter discusses the application of SNNs to the problem of handwritten digit

classification. Our work focuses on applying a precise spike based supervised learning

algorithm to the MNIST (Modified National Institute of Standards and Technology

database) handwritten digit classification problem [49]. The designed SNN employs

spiking neurons operating at sparse biological spike rates below 300Hz and achieves

a classification accuracy of 98.17% on the MNIST test database with four times

fewer parameters compared to the state-of-the-art. We present several insights from

extensive numerical experiments regarding optimization of learning parameters and

network configuration to improve its accuracy. We also discuss the prospects of

employing precise timing of spikes output from the SNN to make robust predictions

on the input class. The methodology described in this chapter is as published in

the Neural Networks journal [98]. The later part of this chapter also presents a

methodology to accelerate the simulation of SNNs on a GP-GPU platform using the

CUDA framework. We also show a real time demonstration of this network to classify

users’ hand-drawn digits on a touch-pad (non-MNIST images) in real time.

Prior SNN based demonstration of handwritten digit recognition using spiking

version of backpropagation of errors has achieved 99.59% accuracy on the MNIST test

set using a convolution neural network [90], and another work fom INI Zurich reported

98.7% based on a fully connected 4−layer network and 99.31% with convolutional

spiking networks, but all of these had more than 4× higher number of trainable

synapses compared to our network [60]. The training algorithm employed in that work

has a cost function that is continuous in time defined in terms of the low pass filtered
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spike trains (both input and output). Compared to the state-of-the-art networks

which have shown over 99% accuracy, our SNN trained with NormAD shows an

accuracy of 98.17% on the test set of the MNIST database, with 4× fewer synaptic

learning parameters [6,7,13,60]. Furthermore, if the network architecture and number

of synaptic parameters are kept the same, we show that the accuracy and performance

of the NormAD trained SNN is comparable to that of an equivalent ANN trained

using backpropagation, and furthermore, for lower bit-precision representation of the

weights, the SNN shows a better accuracy. Very recently, after the work presented in

the dissertation was completed, a group from Purdue also published similar results

comparing the superiority of SNNs trained with spike based learning rules over other

approaches in terms of both accuracy and computations needed [90]. However, their

work does not make use of the spike timings in the network output, unlike our work.

Section 3.1 presents the SNN architecture, the input-output encoding and

decoding schemes. The network is trained with the NormAD supervised learning

rule. Section 3.2 describes several hyper-parameter tuning experiments and the

results achieved on the MNIST database. Section 3.3 discusses the optimization of the

network for implementation in energy and memory constrained hardware platforms

by approximating the neuronal dynamics and using low-precision bits for storing

the synaptic weights. The GPU based acceleration of the SNN simulation and the

computations needed are discussed in Section 3.4. This section also presents the

design of the user interface demonstration, where the SNN running on a laptop GPU

is able to infer the digits drawn by users in real time. The details described in this

section is also published in [99, 100]. Finally, Section 3.6 summarizes this work and

presents a discussion on our results.
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3.1 Network Architecture

As illustrated in Figure 3.1, we designed a simple 3-layer SNN for classification of

handwritten digits from the MNIST database. Since MNIST images are 28 × 28

pixels, our network’s input layer has 784 neurons and the output layer has 10 neurons,

each corresponding to a particular digit. The input layer neurons connect to 8112

hidden layer neurons through twelve a priori fixed 3× 3 sized convolutional kernels.

The synapses connecting this hidden layer to the output layer are trained using the

NormAD algorithm.

28x28 
Input Image

Input
Layer 

Input
Currents

Spike
Trains

Fully
connected

layer

Learning
synapses

Lateral
inhibitory

connections

12c3Convolution Layer:
Output layer

Figure 3.1 The proposed spiking neural network architecture for handwritten digit
classification. The spike trains from the input layer with 28×28 neurons are spatially
convolved with twelve filters (or convolution kernels) of size 3 × 3, resulting in the
twelve feature maps of size 26 × 26. The synapses connecting the 8112 convolution
layer neurons and the 10 output layer neurons are tuned during training. There is
a fixed winner-take-all (WTA) lateral inhibition between the neurons in the output
layer.
Source: [98].

3.1.1 Input Encoding

Biological sensory neurons employ complex transformations such as rate coding, time-

of-spike coding, population coding and phase coding to encode real-world information

in the spike domain [101]. Time-encoding machines that convert band-limited input

signals to the spike domain such that their perfect reconstruction is possible have been

proposed in [102]. There are also some recent works that use Gaussian receptive fields
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or Poisson encoding to directly translate real-valued inputs to spike times [61, 103].

As we are dealing with static images, we translate each gray-scale pixel value, in the

range [0, 255], to currents over a certain time-period, that can be applied as inputs

to the spiking neurons. Accordingly, each pixel value k is converted into a constant

input current for the LIF neuron as:

i(k) = I0 + (k × Ip) . (3.1)

Based on our empirical experiments, we use Ip = 101.2 pA as a scaling factor and

from the neuronal parameters we use I0 = 2700 pA which is the maximum constant

amplitude current that does not generate a spike in the LIF neuron in Equation 2.13.

As a result, LIF neuron in the input layer issues spikes that are uniformly spaced in

time, with a frequency that is sub-linearly proportional to the magnitude of its input

current [104].

3.1.2 Convolutional Feature Extraction

The convolution layer of our network uses a priori determined fixed weights for

the different feature maps and serves to detect the key features of the image. The

filter kernels are continuous curves as shown in Figure 3.2(a), and incorporate both

excitatory and inhibitory connections. Our kernels are only 3 × 3 pixels and were

inspired by biological studies that suggest that the first few layers of the visual cortex

consist of small-sized visual receptive fields [5].

The filter kernels are spatially convolved with 28×28 spike trains arriving from

the input layer neurons, over a simulation period T , with a stride of 1, resulting in

feature maps of size 26× 26. The weight kernels have an overall net higher inhibition

than excitation, as it helped to better suppress the spikes from unwanted edges of the

input digit image in the corresponding feature map. Fixed weights based on Gabor

filters have been used before as the first layer in a deep convolution neural network,
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Figure 3.2 (a). (left) Convolution filters used in our SNN are of size 3 × 3 pixels.
The blue pixels are the excitatory weights, while white pixels are inhibitory values.
The magnitude of the excitatory weight is 1.6 times that of the inhibitory weight. (b).
(right) The twelve spike count feature maps corresponding to these filters obtained
when an exemplary image of digit ‘9’ was presented to the network. The color
intensities in the 2D map depict the number of spikes generated by the neurons
of the hidden layer when the input was presented for T = 100ms.
Source: [98].

and have shown an improvement in the accuracy for the MNIST dataset compared to

the original LeNet-5 network [6,105]. We use relatively simpler edge detection filters

in the hidden layer of our network.

The spikes from the input layer neurons pass through these synaptic weight

kernels to generate currents to the hidden layer neurons. The magnitude of the

current entering the hidden layer neurons is scaled such that on an average their

output spike rate is limited to 10Hz. Figure 3.2(b) shows the 2D feature maps

depicting the number of spikes generated by the neurons in the hidden layer when

an exemplary image of digit 9 from the MNIST data-set is presented to the network

for T = 100ms. The different kernels are able to effectively encode the edges and

features of the input image in spike domain.

3.1.3 Learning Layer

The output layer of the network, where the 8112 neurons from the convolution feature

maps connect to the 10 output layer neurons in an all-to-all manner, is trained in a

supervised manner. We use the Normalized Approximate Descent Rule (NormAD)
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discussed in Chapter 2 to adjust the synaptic weights of this layer. The weight update

as discussed previously, is computed as:

∆w = r

∫ T

0

e(t)
d̂(t)

∥d̂(t)∥
dt (3.2)

For our network, the learning rate r is set to 200 pS after several empirical studies,

where each output neuron to be trained has 8112 synapses.

In our network, the desired signal Sd(t) for the label neuron is a uniform spike

train with a frequency of 285Hz, corresponding to a spike every 3.5ms, which is

slightly higher than the LIF refractory period of 3ms. There are no spikes in the

Sd(t) for all the other neurons.

3.1.4 Lateral Inhibition at the Output Layer

In addition to the feed-forward inputs from the convolution layer neurons, each

output layer neuron also receives lateral inhibitory inputs from the remaining 9 output

neurons, implementing a winner-take-all (WTA) dynamics, similar to [60]. When a

neuron spikes, its outgoing WTA synapses inject a negative current to other neurons,

thereby suppressing their spikes, as illustrated in Figure 3.3.

3.2 Hyper-parameter Tuning Experiments

We now discuss the results of various experiments that we conducted in our study

to optimize the performance of our network. We start with the baseline experiments

that were conducted to analyze network performance, and then discuss the sensitivity

of the network to signal encoding parameters such as image presentation duration,

learning rate schedules and the network size.
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Figure 3.3 Membrane potential of two output layer neurons ‘3’ and ‘5’, when an
input image of digit ‘5’ was presented to the network. (a) (left) Membrane potential
without lateral inhibition and (b) (right) with lateral inhibition. It can be seen that
lateral inhibition has suppressed the incorrect neuron ‘3’ from issuing a spike.
Source: [98].

3.2.1 Training Methodology

During training, each image is presented to the network for a duration T and all the

hidden layer weights are updated after every image, similar to a stochastic gradient

descent (SGD) rule. We divide the MNIST training set into two parts: 50, 000 for

training and remaining 10, 000 for validation. In each training epoch, all the 50, 000

images are presented once to the network. The validation set is used to tune the hyper-

parameters of the network such as the variation in the learning rate, optimal number

of convolution kernels and the presentation duration as discussed in the following

subsections. The network accuracy was determined on the MNIST test set consisting

of 10, 000 images.

The dynamics of the SNN is evaluated by numerical integration with a time-step

of ∆t = 0.1ms which is 10 times higher than the learning time constant, τL = 1ms

used in the NormAD algorithm (see Section 3.1.3). The network simulation was

carried out in a CUDA simulator developed by us, the details of which would be

presented in the next section.
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3.2.2 Accuracy Metrics in Spike Domain

We primarily used two metrics to measure the accuracy of our network – the first

based on the spike count and the second based on the correlation C, of the observed

spike trains with respect to a reference spike train. In the count metric, the network’s

output is decided based on the neuron having the highest spike count. The spike

correlation measure [106] between the output spike train So
i (t) for each neuron i in

the output layer and a reference spike train Sr(t) is defined as:

Ci =
⟨L[So

i (t)], L[S
r(t)]⟩

∥L[So
i (t)]∥ ∥L[Sr(t)]∥

(3.3)

where

L[S(t)] = S(t) ∗ exp(−t/τ)u(t). (3.4)

Here ⟨x,y⟩ represents the dot product of vectors x and y. The training signal with

a frequency fout = 285Hz is also used as the reference signal during inference. The

neuron with the highest value of C is declared the winner of the classification.
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Figure 3.4 (a). (left) The 3-layer SNN error on the MNIST test data-set based on
the count, correlation and first-spike-time metrics. It can be seen that the network
classification error in terms of first neuron to spike (in gray) during the presentation
interval T , is worse by almost 1% compared to either count (blue) or the correlation
metric (magenta). (b). (right) For a 2-layer SNN without the hidden layer, the error
saturates to about 8%, even at 40 epochs of training, illustrating the importance of
the hidden layer.
Source: [98].
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The SNN is trained on the MNIST training set for 20 epochs beyond which we

did not see any further improvement in the training/validation accuracy. It can be

seen from Figure 3.4(a) that precise timing of spikes measured using the correlation

metric gives a slightly higher accuracy for classification, though the spike count metric

is a simpler metric to evaluate. The classification accuracy of the network is reported

using the correlation metric for the succeeding subsections, with explicit mention of

the count metric whenever it is used. We also considered the classification accuracy

based on the output neuron that spiked first during the input presentation. However,

the accuracy based on this metric at the end of 20 epochs was only about 97.34%.

While there is a significant drop in accuracy compared to the correlation and spike

count metrics, the prediction can be made within 20ms of image presentation in

99% of input samples using the first-to-spike metric. This trade-off between latency

and accuracy may be especially attractive for low-power approximate computing

applications.

We also note the crucial role the convolutional hidden layer plays in improving

the network accuracy in a 2-layer network with the 784 input neurons connected

directly to the 10 output layers, the network’s error saturates around 8% (Figure 3.4(b)).

3.2.3 Learning Rate Schedule Optimization

As discussed in [37], the optimal learning rate for the NormAD algorithm depends on

the number of input neurons, Ninp and scales according to a N
−1/2
inp rule. We studied

several protocols (learning rate schedules) to decrease the learning rate during training

(Table 3.1), which resulted in lowering the network error by nearly 0.5% (Figure 3.5).

Epoch dependent learning rate schedules have shown accuracy improvement

in previous works for ANN training employing Stochastic Gradient Descent (SGD)

[6,26,60]; in our study, we experimented with these and several other schedules, shown
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in the Table 3.1. We use the schedule 5 which gave the best validation error after

convergence, for the rest of experiments.

Table 3.1 Learning Rate Schedules

Scheme Learning rate (pS)

Schedule 1 r0 = 200, constant over all epochs, n

Schedule 2 (1/n) decrease: r(n) = r0
(1+k×n)

Schedule 3 Exponential decrease: r(n) = r0 exp(−k × n)

Schedule 4 Step decrease by half every 5 epochs

Schedule 5 Step decrease by half every 3 epochs
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Figure 3.5 Network error on the validation set for five different rate schedules listed
in Table 3.1.
Source: [98].

3.2.4 Network Parameter Optimization

We also optimized the design parameters of the network such as the number of the

convolution kernels used in the hidden layer and the time period T used for presenting

each input image to the network. Larger values of T results in longer integration time

to learn the features of each image, as more spikes (or error points) are produced,
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Figure 3.6 (a). (left) Classification accuracy on the MNIST test set as a function
of the number of convolutional kernels; (b). (right) the presentation duration, T .
The network accuracy is optimized with 12 kernels and a presentation duration of
T = 100ms.
Source: [98].

resulting in a larger magnitude for the weight update. However, from the perspective

of improving the throughput for network performance and preventing over-fitting,

smaller values of T are more desirable. Figure 3.6 shows the network performance as

a function of the number of convolution kernels and the presentation duration T for

the images. The network accuracy is optimized with 12 kernels and a presentation

duration of T = 100ms. We used a constant inhibitory WTA synaptic strength of

1 nS for all connections in the output layer.

3.2.5 MNIST Accuracy Results

Having optimized the network hyper-parameters, we trained our SNN with the

complete MNIST training dataset (60, 000 images) for 20 epochs. The SNN achieved

an accuracy of 99.82% on the MNIST training set and 98.17% on the test set.

We also trained an equivalent ANN with the same architecture, i.e., the

same number of neurons and connectivity patterns (but without the lateral WTA

connection) as the SNN in Figure 3.1. We used the rectified linear unit (ReLU) as the

activation function of the neurons in this network. The weights of the fully-connected

layer were adjusted by the standard gradient descent rule by back-propagating the
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Figure 3.7 Comparison of the MNIST error for the 3-layer SNN and an equivalent
ANN with the same network structure during 20 epochs of training. The SNN
performance (0.18% error for training set and 1.83% error for test set at convergence)
is slightly better than that of the ANN (0.28% error for training set and 2.0% for test
set at convergence).
Source: [98].

network error. After fine-tuning the learning rate schedule, this ANN achieved an

accuracy of 98.0% on the MNIST test set, which is close to the best case accuracy

of around 98.50% reported on an equivalently sized three-layered ANN [107]. The

performance for training and test sets for the SNN and ANN networks for 20 epochs

of training is shown in Figure 3.7. This comparison shows that SNNs trained using

the NormAD algorithm can obtain performance similar to equivalent ANNs in large

benchmark classification problems.

Figure 3.8 shows the average of the trained weights of the synapses from the 12

feature maps to each of the 10 output neurons of SNN. When the network is trained

on the first 100 images, the weight maps closely resemble the images of the training

set digits, though the test set accuracy using these weights was only about 65.8%.

When the network is trained with all the 60, 000 images in the training set, the test

set accuracy rises to 98.17%, thanks to a more complex representation of the images

that are captured by the synaptic weights in the network.

38



-20

0

20

-500

0

500

Figure 3.8 Average of the trained weights (in pS) from the 12 kernels in the hidden
layer to the 10 neurons in the output layer is the effective internal representation of
the digits learned by the network. (Top) The average weights in the output layer of
the SNN after 100 images presented once for training (when the test set accuracy was
only 65.8%) and; (Bottom) average weights after training (i.e., with 98.17% accuracy).
Source: [98].

To benchmark the classification performances of our network, we compare the

accuracy and number of learning synapses in other state-of-the-art approaches for

MNIST handwritten digit classification (Table 3.2). We note that while the accuracy

of our approach is about 1.6% smaller than the best in class approach, our network

achieves this accuracy with nearly three to twenty times lesser number of trainable

synaptic weights.

Table 3.3 presents the confusion matrix for the SNN based classification of the

MNIST test data-sets into 10 classes. It can be seen that for all the digits, the true

positive rate is 97% and above, demonstrating the high selectivity of the classifier

layer, even though not easily discernible from the weight maps (Figure 3.8). Only

five images failed to create any spike at the output neurons.

3.3 Network Optimization

We now discuss the network optimization studies to translate the software design for

energy and memory constrained hardware platforms. The optimization can be carried
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Table 3.2 MNIST Classification Accuracy Comparison

Network and learning algorithm Number of Test set

(BP: back-propagation) learning synapses Accuracy

ANN (LeNet-5) [6] 331, 984 99.05%

GCNN (LeNet-5 + Gabor filters) [105] 331, 984 99.32%

MCDNN (Multi-column Deep NN) [7] 1, 574, 600 99.77%

DNN with DropConnect [108] 2, 508, 470 99.79%

SNN, with STDP [61] 5, 017, 600 95.0%

Fully connected SNN, with BP [60] 328, 984 98.77%

Convolution SNN with BP [60] 581, 520 99.31%

Spiking ConvNet [62] 1, 422, 848 99.11%

BASNN [46] 268, 800 98.17%

Spike based BP [90] (not event-driven) 331, 984 99.59%

SNN, with NormAD (this work) 81, 120 98.17%

ANN, with BP (this work) 81, 120 98.0%

out either by reducing the amount of parameter memory needed or by reducing the

number of operations while simulating the SNN.

3.3.1 Low Precision Weight Encoding

The ability of a network to maintain its accuracy even when the precision for storing

the network parameters is limited, is crucial for efficient hardware implementations.

It has been observed that accuracy degrades significantly when low-precision weights

are used for network emulation. For instance, a 5% drop in accuracy (with the MNIST

data-set) was observed even with 5-bits of fixed-point precision for the synaptic

weights in [109].
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Table 3.3 Confusion Matrix for the SNN’s Predicted Output

Actual / Predicted 0 1 2 3 4 5 6 7 8 9

0 973 0 3 0 2 2 9 1 4 4

1 0 1126 1 0 0 0 2 4 0 4

2 2 3 1015 4 1 1 0 9 1 1

3 0 2 0 996 0 7 1 1 6 4

4 0 1 2 0 964 0 1 1 5 7

5 0 1 0 6 0 876 3 0 1 3

6 2 1 1 0 5 3 940 0 1 0

7 1 1 6 2 0 1 0 1005 3 7

8 1 0 1 1 1 2 1 3 947 3

9 0 0 2 1 9 0 0 3 6 975

No spike 1 0 1 0 0 0 1 1 0 1

Total 980 1135 1032 1010 982 892 958 1028 974 1009

We test the ability of our SNN and ANN for test set inference with the limited

precision of trained weights. We train the weights of both these networks in the

double-precision representation and then test it by quantizing the values of these

weights, similar to the approach taken in [110] for designing a scalable hardware

solution. The histograms of the weights of our SNN and ANN after training

with NormAD and gradient descent, respectively, are observed to be log-normally

distributed. We observed that dividing the range of weights into linear bins, rather

than log-linear bins gives lesser degradation in performance. Figure 3.9 shows the

drop in accuracy for our ANN and SNN, as the number of levels for representing

the trained weights are reduced. It can be seen that even at 3-bit quantization, the

degradation in SNN accuracy is within 1.0% for T = 100ms compared to the floating

point baseline. Further, across all quantization values, the degradation in accuracy of
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Figure 3.9 Test accuracy as a function of the precision of the trained weights in
the SNN and ANN. Even at 2-bit precision, the SNN accuracy is only about 1%
lesser than the floating point baseline. Further, the SNN accuracy is better than the
corresponding ANN especially at low bit-precision.
Source: [98].

the ANN is slightly worse than that of the spiking network. It is also worth pointing

out that compared to previous reports such as [109], where the input spike rate was

as high as 1500Hz, the maximum firing rate in our SNN is restricted to 300Hz. These

results hence, demonstrate the robustness of the SNN architecture and its suitability

for memory constrained hardware platforms.

3.3.2 Approximating Neuronal Dynamics

We also study the SNN’s performance when the dynamics of the neurons is evaluated

with lower precision. As mentioned in the section 3.2.1, the time step for numerical

integration was chosen to be 0.1ms. While this is a requirement for learning, a smaller

number of time steps can be used when the network is used for inference, even though

there will be some error in the precise time of spike issue.

With ∆t = 1ms, the number of time-steps needed to compute the response of

a neuron are reduced by 10×, thereby speeding up the simulation. Figure 3.10 shows

the test accuracy as a function of bit-precision and presentation times for the 3-layer
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Figure 3.10 MNIST test accuracy (count metric) as a function of bit-precision of
weights and the presentation time T , when the neuronal dynamics is approximated
with a larger integration time step of 1ms. Even at 3-bits of precision and with
T = 50ms, the drop in accuracy is within 1% of the baseline.
Source: [98].

SNN. Here, we used the count metric to determine the test accuracy to simplify the

computation further. Using an integration time-step of 1ms at a bit-precision of

3-bits, we can infer the class of the digit in just 50ms or with 50 points of neuronal

integration, resulting in an accuracy of 97.31%. Hence, close to base-line accuracies

can be maintained in approximate network evaluation that permits higher throughput

for classification.

3.4 GPU Implementation of the SNN Training

The SNN is implemented on a GPU platform using the CUDA-C programming

framework. A GPU is divided into streaming multiprocessors (SM), each of which

consists of stream processors (SP) that are optimized to execute math operations.

The CUDA-C programming framework exploits the hardware parallelism of GPUs

and launches jobs on the GPU in a grid of blocks each mapped to an SM. The blocks

are further divided into multiple threads, each of which is scheduled to run on an

SP, also called a CUDA core. Since memory transfer between CPU and GPU local
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memory is one of the main bottlenecks, all network variables (i.e., neuron membrane

potentials and synaptic currents) are declared in the global GPU memory in our

implementation. The simulation Equations (2.13), (2.14) and (2.15) are evaluated

numerically in an iterative manner at each time step.

Figure 3.11 Diagram showing the different variables of the network being computed
each time step and how the signals flow across different layers. The dimensions within
the brackets are the sizes of those variables and their respective CUDA kernels.
Source: [99].

Figure 3.11 shows the forward pass and backward pass for weight update during

the training phase. Image pixels read into the GPU memory are passed as currents

to layer one neurons (grid size of 28 × 28) for the presentation duration, T . The

filtering process involves 2D convolution of the incoming spike kernels and the weight

matrix (3 × 3). The computation is parallelized across 12 CUDA kernels, each with

a grid size of 26× 26 threads. Each thread computes the current to the hidden layer

neurons, indexed as a 2D-array i, j, {0 ≤ i, j,≤ 25} at a time-step n, based on the

following spatial convolution relation:

Iin(i, j, n) =
2∑

a=0

2∑
b=0

wconv(a, b)× c(i+ a, j + b, n) (3.5)
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where c represents the synaptic kernel (Equation 2.14) calculated from the spike trains

of the 28×28 pixels and wconv(a, b) represents each of the weights from the 3×3 filter

matrix.

The membrane potential of an array of k LIF neurons, for applied current I(n)

(as described in Equation 2.13) is evaluated using the second order Runge-Kutta

method as:

k1 = [−gL(Vm(n)− EL) + I(n)]/C (3.6)

k2 = [−gL(Vm(n) + k1∆t− EL) + I(n)]/C (3.7)

Vm(n+ 1) = Vm(n) + [(k1 + k2)∆t/2] (3.8)

Each thread k independently checks if the membrane potential has exceeded the

threshold to artificially reset it.

If V k
m(n+ 1) ≥ VT ⇒ V k

m(n+ 1) = EL (3.9)

Refractory period is implemented by storing the latest spike issue time, nlast
k of each

neuron in a vector R; the membrane potential of a neuron is updated only when the

current time step n > nlast
k + (tref/∆t).

The synaptic current from neuron k in hidden layer to neuron l in output layer

as given in Equation 2.15 can be re-written to be evaluated in an iterative manner,

thereby avoiding the evaluation of expensive exponential of the difference between

the current time n and previous spike times ni
k. The synaptic current computation,

at time step n, for each of the (k, l) synapse is spawned in CUDA across 8112 × 10

kernels as:
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ak(n) = ak(n− 1)× exp(−∆t/τ1) + δ(n− ni
k) (3.10)

bk(n) = bk(n− 1)× exp(−∆t/τ2) + δ(n− ni
k) (3.11)

ck(n) = ak(n)− bk(n) (3.12)

Ik,l = wk,l × ck(n) (3.13)

where ak(n) and bk(n) represent the rising and falling regions of the double exponential

synaptic kernel. The strength of the synapses between the hidden and output layers

is initialized to zero during training. At every time step, the error function for each

output neuron is calculated based on the difference between the observed and desired

spikes. Next, d̂k (Equation 2.35) for the spikes originating from neuron k is computed

as:

d̂k(n) = d̂k(n− 1)e−∆t/τL + (ck(n)∆t)/C (3.14)

Once d̂k(n) is evaluated, we compute its norm across all k neurons and determine

the instantaneous ∆wk,l(n) for all the 81, 120 synapses in parallel, if there is a spike

error. At the end of presentation, the accumulated ∆wk,l is used to update the

synaptic weights in parallel. The evaluation of the total synaptic current and the

norm is performed using parallel reduction in CUDA [111]. During the inference or

testing phase, we calculate the synaptic currents and membrane potentials of neurons

in both layers to determine spike times, but do not evaluate the d̂ and the weight

update ∆w terms.

3.5 Real-time Inference on User Data

We used the CUDA based SNN described in the previous section, to design a user

interface that can capture and identify the images of digits written by users in real-

time from a touch-screen interface. The drawing application to capture the digit

46



drawn by the user is built using OpenCV, an image processing library [112]. The

captured image from the touch screen is pre-processed using standard methods similar

to that used to generate the MNIST dataset images [49]. We convert the user drawn

images to the required format which is a grayscale image of size 28× 28 pixels. The

network is implemented on the NVIDIA GTX 860M GPU which has 640 CUDA cores

and is typically used in laptops. The preprocessing phase takes about 15ms and this

image is then passed to the trained SNN for inference. The CUDA process takes

about 300ms to initialize the network in the GPU memory, after which the network

simulation time depends on the presentation time T and the time step interval ∆t.

(b).

Drawn Image Inverted Image Bounding 
boxed Image

Normalized and
center-massed
 28x28 Image

(a).

Figure 3.12 (a). Outline of the preprocessing steps used to convert the user input
to a 28× 28 image that is fed to the network, (b). Examples of user input (left) and
the pre-processed 28× 28 pixel images fed to the SNN (right).
Source: [99].

3.5.1 Image Preprocessing

Figure 3.12(a) shows the preprocessing steps used to create the input signal to the

SNN from the captured image and Figure 3.12(b) shows some sample pre-processed

images. The image captured from the user is first binarized by thresholding and

cropped to remove excess background. The image is resized to 20 pixels along its

longer dimension, while maintaining its aspect ratio. Thereafter, the resized image is

placed in a 28× 28 bounding box such that the image’s center of mass coincides with

the center of the bounding box. Finally, the image is passed through a blurring filter

to create gray-scale images similar to the ones in the MNIST dataset.
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3.5.2 Real-time Simulator

We used the network trained on the MNIST data-set which achieved an error of 0.2%

on the training set and 1.94% on the test set. The maximum spike count in the

output layer of the network was used as the decision making metric. The network

was simulated with a time-step of ∆t = 0.1ms for T = 100ms.

As we saw in section 3.3, that if the integration time step interval used during

inference is 1ms (i.e., approximating the neuronal integration) instead of 0.1ms, the

MNIST test error increases only by about 0.4% (see Figure 3.13(a)), but there is a

10× reduction in the processing time. Hence, for our touch screen based interface

system we simulate the SNN with ∆t of 1ms to infer the users’ digits. When each

digit is presented for T = 75ms, the network can be simulated in an average wall

clock time of 65ms, making real-time processing possible (Figure 3.13(b)). We tested
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Figure 3.13 (a). MNIST test-set accuracy as a function of presentation time and the
integration time step ∆t. (b) Various stages of classifying a user’s input: the image
pre-processing takes 15ms and the 75ms SNN emulation is completed in real-time.
Source: [99].

the network’s accuracy with ∆t = 1ms on a set of 500 handwritten digits collected

from various users through our user-interface system. At T = 75ms, we measure an

accuracy of 97.4% on our set of 500 captured images, while on the MNIST test-set

it was 97.68%. The slight loss in performance compared to the MNIST dataset is

attributed to the deviations from the statistical characteristics of the captured images

compared to the MNIST dataset.
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3.6 Summary

We presented a highly compact and efficient 3-layer spiking neural network for

identifying handwritten digits, that achieved an accuracy of 98.17% on the MNIST

data set using the NormAD learning algorithm. All information in the network is

encoded and processed in the spike domain at sparse biological spike rates. Our

studies show that using the precise time of spike issue for classification gives slightly

better accuracy compared to the simpler rate coding method. We have also presented

two techniques to co-optimize the network for hardware implementation, by reducing

the bit-precision of weights and approximating the neuronal dynamics with higher

integration time-step size.

The best convolution networks in both spiking and non-spiking versions that

have achieved over 99% accuracy on the MNIST database use at least over 300, 000

adjustable synapses. The NormAD-trained SNN, on the other hand, has 4× fewer

learning parameters, making it amenable for implementation on custom neuromorphic

hardware with on-chip learning. Our studies also show that as low as 3-bits of weight

precision is sufficient to maintain close to baseline accuracies in the SNN when used

for inference. Compared to an equivalent ANN with similar network architecture, the

spike based training approach also shows better accuracy, especially at lower precision

for synaptic weight storage. In conclusion, we show that SNN based learning and

inference engines are ideally suited for efficient implementation in energy and memory

constrained hardware platforms.

We have also demonstrated a general framework for implementing spike based

neural networks and supervised learning with event-triggered weight update rules

on a GPU platform. At each time step, the neuronal spike transmission, synaptic

current computation and weight update calculation for the network are all executed

in parallel in this framework. Using this GPU implementation, we demonstrated a

touch-screen based platform for real-time classification of user-generated images. The
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trained network implemented on the CUDA parallel computing platform is also able

to successfully identify digits written by users in real-time, demonstrating its true

generalization capability.
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CHAPTER 4

COMPACT MODELS FOR NON-VOLATILE MEMORY DEVICES

The past decade has seen an increasing growth in the research efforts for developing

nanoscale non-volatile memory (NVM) devices [113]. Emerging NVM technologies

such as PCMs (Phase Change Memory), STT-RAMs (Spin Transfer Torque RAM),

and RRAMs (Resistive RAM) with a smaller footprint than CMOS-based SRAMs

(Static Random Access Memory) have shown great potential to replace existing

memory technologies. Moreover, there have been several demonstrations of these

NVM devices in designing efficient neural network hardware accelerators, which

make use of their analog resistance levels to store the network parameters. Such

architectures do not suffer from the von Neumann memory-processor bottleneck

and have the potential to realize area and power efficient designs [26, 31, 114]. In

this chapter we discuss the basic device physics of these three NVM devices. We

then discuss the development of compact and mathematically well-posed models in

Verilog-A which we designed for these technologies for faster architecture design and

analysis.

While PCM, STT-RAM, and RRAM have shown tremendous potential to

replace the existing SRAM and DRAM technologies, there are several reliability

related challenges associated with these devices that need to be considered while

using them in hardware designs, especially in large arrays with high integration

density [115]. Reliability is also an important consideration while realizing neural

network algorithms on memristive arrays with multi-bit storage per device [116].

Typically, faults can be either soft, which can be corrected with programming, or

hard, wherein the device is permanently stuck at high resistance state (HRS) or low

resistance state (LRS). These issues manifest in devices as read disturbance due to
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the programming of neighboring cells, hard faults where the device is permanently

in high or low resistance states irrespective of programming voltage applied across

it and the drift in resistance values over time [117–120]. It has also been reported

that hard faults, or stuck-at faults occur in at least 10% of the devices in a fabricated

chip [121]. The process of designing and analyzing such architectures requires the use

of compact models for these nanoscale devices, which is important while designing

peripheral read and write circuits, and performing the subsequent analysis of the

whole system.

In this chapter, we present our work on developing compact models for PCM,

STT-RAM, and RRAM devices in Verilog-A. Each of these models capture the high-

level switching dynamics and are mathematically well-posed and support the three

simulation modes - transient, DC, and AC [122, 123]. We also present schemes for

adding the reliability aspects of conductance variabilities and stuck-at faults to each

of the compact models discussed here. The details of the well posed PCM model

discussed in this chapter is as published in [124], and the details of other two models

including modeling the reliability aspects of all three devices are as published in [125].

The remainder of this chapter is organized as follows. Section 4.1 presents

the compact model for PCM, the process of creating a resistance distribution and

adding hard faults into the model. Section 4.2 discusses the basic well-posed STT-

RAM compact model. It presents the process of modeling the stochastic switching,

conductance variability and hard-faults in the model. Section 4.3 discusses RRAM

device model and its reliability aspects. Finally, Section 4.4 summarizes this chapter

and presents the the scopes for future research in this area.

4.1 Phase Change Memory

Phase change memory (PCM) is a non-volatile memory technology that is emerging

as a leading contender for storage class memories as well as in-memory computing
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applications based on crossbar array architectures with co-located memory and

processing units [126–128].

For designing neuromorphic and in-memory computing architectures using non-

volatile memory (NVM) devices, efficient compact models are required, capturing

their key operating characteristics. We present a well-posed model for phase change

memory (PCM) devices based on a Ge2Sb2Te5 (GST) chalcogenide material. Several

models for the GST based PCM device have been proposed earlier, capturing various

aspects of the device physics [129–139]. The hierarchical model in [129] incorporates

the device geometry and device physics, though it is computationally quite expensive.

Simpler models have also be developed using basic circuit elements such as controlled

voltage/current sources, resistances and capacitances to model the device behavior

[130, 131]. The model presented in [130] captures the binary switching of the device

from crystalline to amorphous state, and vice versa. The state switching is based on

the analysis of the quenching time once the device temperature exceeds the melting

point. A further enhancement of this model showed the capability of demonstrating

multiple resistance states within the device as a function of programming current and

quenching time [131]. A single equation was used to define the model’s I-V response,

describing both the off state (low field) and the on state (high field) behavior, with a

set of blending functions used to combine the two regimes.

Our model, based on the one discussed in [131], is developed in Verilog-A. It is

computationally simple as it uses basic circuit elements and successfully captures the

high level dynamics of resistance switching, including its dependence on programming

voltages, currents and pulse time-scales. Our results also show the capability of the

model to emulate multi-bit storage characteristics of PCM, with pulse-width and

pulse-quench based programming schemes. In addition, our model is well-posed and

supports different modes of simulation including transient, DC and AC, as per the
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guidelines discussed in [122, 123], which so far has not been addressed in previous

models.

4.1.1 Device Physics and Operation

Phase change memory (PCM) device consists of a chalcogenide alloy sandwiched

between two metal electrodes. Depending on the amplitude and timescales of the

programming pulses, the chalcogenide material can be heated and quenched to a high

resistive amorphous phase (also called the RESET state) or re-crystallized to a low

resistive poly-crystalline phase (also called the SET state) [126–128]. This transition

between the crystalline and amorphous regions through Joule heating is reversible

and allows the device to be used as a programmable resistor, and hence as a memory

storage device. Typically observed contrast in conductance (ON/OFF ratio) of PCM

devices is between 100− 1000. Furthermore, by controlling the amplitude and falling

rate of the programming pulse, it is also possible to gradually change the shape of the

amorphous volume in the critical current path of the device, enabling stable analog

changes in conductance, and multi-bit storage [128, 140].

Different structures for the PCM devices have been demonstrated such as the

mushroom, pore and bridge cell configurations [126]. The mushroom cell is more

widely used, where the bottom electrode, which also acts as the heater, is much

smaller in diameter (< 50 nm) compared to the top electrode dimension [126]. More

recently, confined PCM cells have been demonstrated, which enables strong control

of Joule heating even in the presence of voids [141, 142].

4.1.2 Compact Model

Building up on a previously published discontinuous model [131], we have developed

a well-posed Verilog-A model of the device (Figure 4.1), where the device resistance

is calculated based on a lumped parameter cx that represents the crystalline fraction

54



+
-

Rheater

Vpcm
Ipcm

VBL

VWL S(T-TM,s)S(T-TX,s)

C1
Rt1 Rt2

time

S(TX-T,s)
+

S(T-TM,s)

C2Rs1Rs2

cx

Figure 4.1 Schematic of the continuous compact Verilog-A model for the PCM
device. This model is inspired from the one in Ventrice, et al., 2007, and also satisfies
the guidelines for compact model development specified in Wang, et al. 2016.
Source: [122, 124, 131].

within the device. The current through the device is given as:
IPCM = Iα(VPCM , cx) + F (IPCM ; Ith).[−Iα(V 1, cx) + F (VPCM ;Vhold).ION(VPCM)]

(4.1)

where the OFF state current Iα and programming region current ION is:

Iα =
exp(n(cx).VPCM)− 1

n(cx).R(cx). exp
(

Ea(cx)
kB

(
1
T
− 1

Tref

)) (4.2)

ION =
VPCM − Vhold

RON

(4.3)

Ith represents the threshold current below which switching does not take place and Vh

is the hold voltage, which is the x-intercept of the linear region of the I-V curve (see

Figure 4.2). ION represents the current during the ON state or programming state

of the device, when the conductance of the device increases. Note that the device

resistance RON , when sufficiently large currents are passing through the device (such

that some portion of the chalcogenide alloy is in the molten phase), is significantly

lesser that the typical SET resistance of the device.

Based on the device current and voltage, the temperature (T ) rise in the material

is estimated using a lumped thermal resistance model, assuming a heating efficiency
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Figure 4.2 Typical experimental I-V characteristics of PCM device (reproduced from
Pirovano, et al., 2002).
Source: [143].

of η = 1% [144]. We also assume that in scaled PCM devices, the thermal time

constant is significantly smaller than typical SET and RESET pulse-widths.

The crystallization dynamics in the device is described using the Johnson-

Mehl-Avrami-Kolmogorov (JMAK) expression [145], giving the instantaneous crystal-

lization fraction cx within the device, which is then used to approximate the device

resistance using the following expressions:

cx = 1− exp (−t/τ(T )) (4.4)

R = RSET × cx +RRESET × (1− cx) (4.5)

where τ(T ) = A exp(Γa/kBT ) and the device resistance varies between the SET

(RSET = 10 kΩ) and RESET resistance (RRESET = 1MΩ). The functions F in

Equation 4.1 are the blending functions that combine the different regions of the

model’s I-V curve. We used a smooth step function S(x, s) to model temperature

controlled switches in the auxiliary circuits (Figure 4.1) [122]. Here, x is the

controlling signal and s decides the smoothness of the function. These blending
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functions are given by the following expressions:

F (x;xth) =
1

(1 + exp (−(x− xth)/α))
(4.6)

S(x, s) = 0.5

(
x√

x2 + s
+ 1

)
(4.7)

where, s is the smoothening parameter controlling the transition rate of the step

function S(x, s). The different parameters used in our model are listed in the

Appendix B in Table B.1.

We follow the guidelines listed by the NEEDS (Nano-Engineered Electronic

Device Simulation) initiative [123] to develop a mathematically well-posed model that

converges for different modes of simulations such as transient, AC and DC. For this

to be satisfied, the Verilog-A model should adhere to a set of coding guidelines. Some

of the key requirements include describing the model as a set of Differential Algebraic

Equations (DAE) and avoiding any abrupt bias dependent switching statements in

the Verilog-A code. The I-V expression for the PCM (Equation 4.1) as presented in

[131] is an algebraic expression. By employing smoothened step functions (Equation

4.7), we eliminate sharp temperature dependent switching in the auxiliary circuit

(which computes the quench time and crystalline fraction) of the model. Hence, our

continuous model is capable of operating in all the different modes of simulation.

4.1.3 Simulation Results

We simulated the switching behavior of the PCM device connected in series with an

NMOS access transistor from a commercial 65 nm CMOS technology. Our simulations

show that the model captures the essential features of typical I-V characteristics

(Figure 4.3) similar to what is seen in the experimental device data in Figure 4.2.

The simulations were conducted by applying a voltage ramp at the Word Line (WL)

for the two states of initialization (SET and RESET).
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Figure 4.3 (a). I-V response of the well-posed PCM Verilog-A model. The behavior
was captured by applying a voltage ramp at the Word Line (WL), i.e., the gate of the
access NMOS for the two states of initialization (SET and RESET). (b). DC behavior
of the PCM device from HSPICE simulations. From top to bottom: the waveforms of
the PCM voltage drop (V ), current (I), temperature (T ) and the crystalline fraction
(cx) as a function of VWL.
Source: [124].

The model also works in the DC mode; Figure 4.3(b) shows the steady state

response of the internal parameters, T and cx at different voltage values applied to

the gate of the access transistor (VWL).

(b).

Figure 4.4 (a). Experimental resistance vs. programming current characteristics of
a PCM device (reproduced from Pellizzer, et al., 2004). (b). The R-I curve obtained
using the model for programming pulse widths of 80 ns and 120 ns.
Source: [124, 146].

Next, we compared the dependence of the device resistance as a function of

the applied programming current. Typical experimental characteristics of a PCM
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device is shown in Figure 4.4. Starting from a high resistance state, the device

resistance can be reduced by applying low amplitude SET pulses; however, once the

applied pulse amplitude is sufficiently large to induce melting in the chalcogenide, the

device is programmed to its RESET state. The proposed model’s behavior shown in

Figure 4.4(b) closely matches this experimentally observed programming trend.
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Figure 4.5 (a). Simulated device parameters as a function of duration of the falling
edge of the input pulse. Application of each pulse initially resets the device and then
brings the final resistance to an intermediate value below Rreset depending on the
duration of the falling edge. From top to bottom: the waveforms of the PCM voltage
drop (V ), current (I), device temperature (T ), crystalline fraction (cx) and the device
resistance (R). (b). Final resistance of the PCM device as a function of falling edge
of input pulse, plotted from the resistance values as shown in Figure 4.5(a).
Source: [124].

We also studied the response of the device model to show multiple conductance

levels between RSET and RRESET using two approaches. Dependence of the device

resistance on quench time has been demonstrated in [147]. We also employed the

same scheme in the simulations by applying pulses having variable fall times in the

range of 50 ns to 300 ns. The last two panels in Figure 4.5 show the gradual change in

the crystalline fraction and the device resistance as the fall time of the programming

pulse is increased. Figure 4.5(b) shows the programmed resistance from the model as

a function of the fall time.

Another method of programming the device to various intermediate conductance

levels by applying partial SET pulses was demonstrated in [148]. We also simulated

the similar behavior using the model, by applying a sequence of short duration
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Figure 4.6 (a). Gradual conductance change by application of a series of low
amplitude partial SET pulses. From top to bottom: the waveforms of the PCM
voltage drop (V ), current (I), device temperature (T ), crystalline fraction (cx) and
the device resistance (R). (b). PCM resistance as a function of the number of partial
SET pulses, plotted from the resistance values as shown in (a).
Source: [124].

pulses, as shown in the waveforms in Figure 4.6(a). Each programming pulse has

a constant amplitude (VWL = 0.7V) and duration (20 ns). Figure 4.6(b) shows the

device resistance as a function of the number of programming pulses.

4.1.4 Reliability in PCM Devices

While the NVM devices of PCM, STT-RAM and RRAM have shown tremendous

potential to replace the existing SRAM and DRAM technologies, there are several

reliability related challenges associated with these devices that need to be considered

while using them in hardware designs [115]. Reliability of these devices is an

important factor to be considered when designing large arrays with high density

integration. These issues manifest in devices as read disturbance due to the

programming of neighboring cells, hard faults such as device permanently being in

high or low resistance states irrespective of programming voltage applied across it

and the drift in resistance values over time [117–120].

In a deterministic case, for every programming pulse amplitude results in a

unique resistance level. However, in practical cases, the programmed resistance state
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Figure 4.7 (a). Resistance distribution in the IBM’s PCM device for programming
current of Ip = 110µA and pulse width of 50 ns long programming pulses, as reported
in Nandakumar, et al., 2017. (b). PCM model showing intermediate resistance
states between the high and low resistance state, when applied with partial SET
programming pulses starting from a RESET state. The programming pulses were
applied to 100 instances with Ip = 290µA and pulse width of 20 ns.
Source: [148].

shows a distribution around the mean value across multiple devices [148]. We model

this phenomenon by adding a noise term to each of the RESET and SET resistance

values in Equation 4.5 as:

R = (RSET + nSET )× cx + (RRESET + nRESET )× (1− cx) (4.8)

where nSET and nRESET are the additive noise terms for introducing variabilities at

the SET and RESET resistance values, respectively.

Figure 4.7(a) shows a distribution of resistance values from an IBM PCM device,

at different partial SET pulses from [148]. Figure 4.7(b) shows the distribution

obtained by the simulation of the model using Equation 4.8.

Stuck-at faults (also known as hard-faults), wherein the device remains at either

at SET or RESET occur in PCM devices due to field induced migration of ions leading

to stuck-SET failures or the device being open circuited after a large number of

programming cycles (stuck-RESET failures) [117, 119]. Figures 4.8 (a) and (b) show

the model changes and the corresponding simulation waveforms for stuck-set faults.
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Figure 4.8 (a). PCM model modifications showing the incorporation of stuck-set
and stuck-reset faults. The fault variables set and reset are passed from the SPICE
netlist. (b). HSPICE simulation waveforms showing the stuck-SET and stuck-RESET
schemes. The first voltage pulse (top panel) is a SET programming pulse followed
by a RESET programming pulse. It can be seen in the second and third panels that
the current remains low and crystalline fraction at 0 indicating the device is stuck-at
RESET state. The last two panels show the case for stuck-SET fault.

When the model instance shows either of these faults, it behaves as a simple resistor

with value R = RRESET or R = RSET , with the model’s VCCS being bypassed. The

well-posed PCM model is designed in such a way that the initial value of the crystalline

fraction variable as determined by the dc analysis is 0. Hence, in Figure 4.8(b) once

the device is programmed to SET state, it does not change its state when the RESET

pulse is applied. The PCM model, while being instantiated in a array level netlist,

Figure 4.9 Device resistances in an array of 100 devices, with 60% showing stuck-at
RESET fault. Similar scheme can be applied to simulate stuck-at SET faults or both
versions of faults in a large array of PCM devices.
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takes in the parameters which indicate if the device is in Stuck-SET or Stuck-RESET

state and the probability of the devices in an array being at either of the two fault

states. Figure 4.9 shows the probability distribution of the resistances in an array

when devices show a 60% probability of being in stuck-SET or stuck-RESET.

The initialization of the control signals for mimicking stuck-at ‘1’ or stuck-at ‘0’

faults in the model instance are performed in the initial block of the Verilog-A code.

This is a generic scheme which we follow for all the three device models.

4.2 Spin Transfer Torque RAM

Spin Transfer Torque Magnetic RAM (STT-MRAM) is a two terminal memory device

that can store information magnetically but can be read and written electrically. It

consists of a Magnetic Tunnel Junction (MTJ), where two ferromagnetic layers are

separated by an insulating barrier (typically MgO). The magnetization (M⃗) of one

layer, called the pinned layer (PL) is fixed and aligned in a particular direction called

the easy axis, while the magnetization of the second layer called the free layer (FL),

is free to rotate and its orientation decides the overall resistance of the MTJ [149].

Compared to other nano-scale NVM devices, STT-RAM has a much higher endurance

and switching speed, making it suitable for designing high throughput accelerators

[150]. The resistance of the device is high (RAP ) when the relative directions of

magnetization in the two layers are aligned anti-parallel to each other, and low (RP )

when the two directions are parallel.

4.2.1 STT-RAM: Device Physics

The resistance of the STT-RAM device is high (RAP ) when the relative magnetization

directions of the two layers are aligned anti-parallel to each other, and low (RP ) when

the two magnetizations are parallel. The resistance change is denoted by a term called

the Tunnel Magnetic Ratio (TMR), given by TMR = (RAP−RP )/RP . There are two
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types of MTJ devices, one where magnetization of the ferromagnetic layers lies in the

plane of the layer is called in-plane MTJ (IPMTJ) and other where the magnetization

is perpendicular to the plane of the layer, is called perpendicular MTJ (PMTJ). So

far, most the devices that have been fabricated are with the IPMTJ and most of the

models in the literature are developed for this type of device. It has been observed

that PMTJ devices show a higher TMR than IPMTJ, and recently they are being

developed more widely, though very few models have been developed so far for this

type of MTJ device [151, 152].

Figure 4.10 Basic structure of a memory cell with an in-plane STT-MTJ device.
The alignment of magnetization in the free layer which is controlled by applying
appropriate programming currents decides the overall resistance (reproduced from
Kawahara, et al., 2012).
Source: [151].

The basic principle of operation of STT-RAM is the exchange of angular

momentum between spins of local magnetization of the layer and that of free electrons,

that cause the magnetic domain walls to change their direction [151, 153]. When

electrons flow from a PL to FL, only the electrons with same spin as the PL pass

through to the free layer and remaining ones get filtered out. In the free layer, the

spin polarized current exerts spin torque on the magnetization of the FL and causes

it to switch its orientation parallel to that of the PL if the amount of current exceeds

a certain threshold. Thus, the resistance of the device is lowered. For the reverse
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switching case, i.e., when the charge carrier electrons travel from free layer to the

PL, the electrons with opposite spin are reflected back to the FL, causing the FL

magnetization to align in anti-parallel direction with respect to the PL.

The overall resistance of the MTJ device depends of the oxide barrier thickness

(tox) and the interfacial effect between the oxide barrier and the ferromagnetic layers

[152]. The parallel state resistance is calculated as:

RP =
tox

F × ϕ̄1/2 × Area
× exp

(
1.025× tox × ϕ̄1/2

)
(4.9)

where, ϕ̄ = 0.4 is the potential barrier height of crystalline MgO, and the factor F

depends on the resistance-area product (R.A) value of the MTJ.

The dynamics of the magnetization vector (M) of the MTJ device is described

by the LLGS (Landau-Lifshitz-Gilbert-Slonczewski) equation [153, 154]. This incor-

porates the torque effect due to the Zeeman energy that causes rotation of M around

the magnetic field. Anisotropic torque is the result of interaction between individual

magnetic moments and local electric field. M⃗D is the damping torque that causes an

attenuation of the precession of the magnetization around the effective field (H⃗eff ).

The term M⃗S represents the spin torque, calculated using the current flowing through

the device, with the efficiency η depending of the current direction [155]. The complete

LLGS equation is given as [154]:

dM⃗

dt
=
dMZ

dt
+

dM⃗A

dt
+

dM⃗D

dt
+

dM⃗S

dt
(4.10)

dM⃗

dt
=− γµ0M⃗ × H⃗eff − γ

2K

M2
s

(M⃗.µ⃗ea).(M⃗ × µ⃗ea) +
α

Ms

M⃗ × dM⃗

dt
+ η

µBI

eV
(4.11)

Here, γ is the gyromagnetic factor, K is the anisotropic constant, µ⃗ea is the unit

vector along the easy axis, α is the damping factor, µB is the Bohr magneton, Ms

is the saturation magnetization and V is the volume of the free layer. The effective

magnetic field H⃗eff is the sum of the intrinsic damping field H⃗ and the thermal
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fluctuation H⃗f . The thermal fluctuations within the MTJ cause stochastic switching

of the device state when presented with sub-critical programming input.

4.2.2 Previous Compact Models for STT RAM Devices

Different research groups have published models for the STT-RAM MTJ device,

capturing various aspects of the device physics [152, 155–161]. There are two

approaches followed by different groups to develop a compact model for STT-RAM

device. The first one involves modeling the device switching behaviorally based on the

magnitude of the programming current. The set of equations in this model define the

time needed for the device to switch its state depending on the region of the current

flowing through the device. Critical current needed to cause switching at absolute

zero temperature is [156]:

Ic0 =
2eαMsV. (HK ±Hext ± 2πMS)

hη
(4.12)

where, α is the damping factor, Ms is the saturation magnetization, HK is the

anisotropic field, Hext is the external field, h is the Planck’s constant and η is the

spin efficiency factor. When I < Ic0, switching that occurs is stochastic in nature

and the critical current needed at a pulse width of tp for switching as given by the

Neel-Brown model is [158, 159]:

Ic = Ic0.

(
1− 1

∆
ln

(
tp
τ0

))
(4.13)

where, τ0 is the minimum time needed for magnetic reversal, ∆ = Eb/kBT is the

thermal stability factor. The switching probability is then given as [158]:

Psw(tp, I) = 1− exp

((
−tp
τ0

)
exp

(
−∆

(
1− I

Ic0

)))
(4.14)

When the applied current exceeds the critical value, the precession of the

magnetization vector dominates over the thermal fluctuations and causes switching.
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Sun’s model defines the switching time for a given current I > Ic0 as [158]:

τ2 =
1

αµ0γMS

.
Ic0

I − Ic0
. ln

(
π

2θ0

)
(4.15)

Some groups have also followed this behavioral modeling approach and incorporated

thermal fluctuations as variations in the initial temperature T [152]. They use this

to model the switching stochasticity of the device.

The second approach that most groups have followed is modeling the dynamics

directly using the LLGS equation (Equation 4.11) [154, 155, 157, 160–162]. There

have been several demonstrations of building a model in SPICE or Verilog-A that

solves the stochastic LLGS (sLLGS) equation was described by [157, 160]. Their

model consists of the LLG solver and a thermal variation block that evaluate all the

three components of the magnetization vector (Mx, My, Mz). On introduction of

thermal noise Hf , the LLGS equation Equation 4.11 becomes a stochastic differential

equation (SDE). Methods such as implicit mid-point, Heun and Runge-Kutta4 (RK4)

have been used as methods to solve the sLLGS equation [163,164]. They also report

the limitation of SPICE based solvers in accurately solving the sLLGS equation.

Papers surveying the different MTJ modeling approaches report the different

merits and drawbacks of these methods [160,165,166]. In terms of speed, it is reported

that the behavioral modeling approach is faster while other survey reports state LLGS

based approach is faster when using the Cadence simulator [160,166]. However, [160]

reports that LLGS based dynamic models accurately represent the behavior of the

device and can be used to incorporate thermal effects for demonstrating stochastic

switching.

The model developed by [155], uses just one equation to describe the complete

dynamics of the magnetization, including threshold switching in the device. Their

model is developed for an in-plane STT MTJ device and there is no temperature

evaluation block in the model. The 3-dimensional LLGS equation (Equation 4.11)
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is simplified to one dimension after converting the Cartesian representation into

spherical coordinate representation. The spin torque and damping torque act in

the plane along the easy axis of the free layer, with an angle θ between the two.

Anisotropic (M⃗A) and Zeeman (M⃗Z) torque act in the plane perpendicular to the

easy axis, with an angle ϕ in between them. Thus, Equation 4.11 can be separated

into two planes as follows:

Ms
dϕ

dt
= −γ (µ0MsH sin θ + 2K sin θ cos θ) (4.16)

Ms
dθ

dt
= αMs

dϕ

dt
+ η

µBI

eV
(4.17)

Ms
dθ

dt
= −αγ (µ0MsH sin θ + 2K sin θ cos θ) + η

µBI

eV
(4.18)

Here, Equation 4.18 is the result of substituting Equation 4.16 in Equation 4.17. This

SPICE model, which uses Verilog-A components is computationally simple. Hence,

we chose this model as the starting point of our work.

4.2.3 Compact Model for STT-RAM Device

The compact SPICE model developed by [155] employ dependent sources and a

capacitance to model the transient behavior of the magnetization vector based on the

LLGS equation (Equations 4.11 and 4.18). The model is assumed to have the pinned

layer at the bottom electrode, connecting the drain of the access device and free layer

as the top electrode. Thus, a positive current flowing from the bit line (BL) to source

line (SL) would cause the device to enter the parallel state with a low resistance of

RP , while the other direction would cause switching to the anti-parallel state (RAP ).

As reported in [155], their model is validated with the experimental device data

from [167] for the critical current amplitude versus input pulse width. They also

validate the change in device resistance values as a function of programming current

with device data from [168,169]. The model results agree with the experimental values

for various oxide thickness and radii values of the MTJ device. We used the compact
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Mspin Mani

Vθ

Ms.dθ
dt

Iin
VWL

VSL

VBL

STT-MTJ
device

Figure 4.11 Compact model of the STT-RAM device, with bit cell connected in a
1T-1MTJ configuration. The magnetization angle θ of the device is calculated by the
auxiliary circuit and is used to evaluate the device’s final resistance R. This model is
adapted from the one described in Xu, et al., 2014.
Source: [170].

model of the MTJ STT-RAM device designed in Verilog-A as discussed in [170]. The

model is described by reducing the LLGS equation to its one-dimensional equivalent

form. The model in Figure 4.11 implements the different terms of the one-dimensional

LLGS equation (Equations 4.19 and 4.20) as dependent current sources in different

branches of an auxiliary circuit in the model. The dependent source Mspin computes

the contribution of the torque due to spin-polarized current IMTJ as:

Mspin = η
µBIMTJ

eV
, (4.19)

where η is the efficiency factor whose value depends on the direction of current and

V is the volume of the free layer [153]. The second current source Mani evaluates the

term corresponding to the Anisotropic, Damping, and Zeeman torques as:

Mani = −αγ (µ0MSH sin θ + 2K sin θ cos θ) , (4.20)

where α is the damping constant, γ is the gyromagnetic ratio, K is the anisotropic

constant, H is the intrinsic magnetic field, MS is the saturation magnetization and θ

is the magnetization angle. The model parameters tuned to match the experimentally

observed characteristics are listed in the appendix Table B.2. The base case value of
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the device resistance is calculated using the magnetization angle θ as:

R = 2RP
(1 + TMR)

(2 + TMR + TMR. cos(θ))
(4.21)

where, RP is the resistance of the device in the parallel state (Equation 4.9). The

TMR value is kept at 1 for all the simulations reported here.

We have modified the model to make it well-posed by making use of smooth

step functions (Fw), which prevent abrupt bias dependent switching [122, 123].

Fw(x) = 0.5
(
x/(
√
x2 + s) + 1

)
(4.22)

Figure 4.12 (a). Simulation waveforms when the input is above the critical point,
with VWL = 0.70V and tpw = 6 ns causing a deterministic switching from a high (RAP )
to low resistance (RP ) state. The signal dθ/dt is always less than zero. (b). Simulation
waveforms for input above the critical point, with VWL = 2.2V and tpw = 6 ns causing
a deterministic switching from a low (RP ) to high resistance (RAP ) state. The signal
dθ/dt is always greater than zero.

4.2.4 Simulation Results

Figures 4.12 (a) and (b) show the basic simulation waveforms for the two directions

of switching. The different panels in these figures show the waveforms of the applied

programming voltage (VWL), the voltage drop across the device (VMTJ), θ, derivative

of θ (dθ/dt) and the resistance (RMTJ) as a function of θ when the applied voltage and
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pulse width is greater than the critical value in each of the two switching cases. The

model is tuned for an MTJ device with a radius of 65 nm and an oxide thickness

of 1.2 nm. The parallel and anti-parallel state resistances are 677Ω (calculated

using Equation 4.9) and 1.35 kΩ (using Equation 4.21 for θ = π), respectively.

Figure 4.13(a) shows the steady state behavior of our well-posed compact model,

with two stable states (HRS and LRS) when simulated in the DC mode in HSPICE.

4.2.5 Stochastic Switching
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Figure 4.13 (a). Steady state response of the STT-RAM compact model obtained by
varying the bitline voltage. Under this condition, the state variable θ and the device
resistance remain at either high or low states when the applied voltage is negative or
positive, respectively. (b). Probability of stochastic switching in the compact model,
which varies with the applied input and pulse width.

The STT-RAM device shows inherent thermal fluctuations, which cause it to

switch its state stochastically for sub-critical inputs [171]. This particular feature

has been employed to model stochastic synapses in neuromorphic architectures [159,

172]. We have modeled this feature as an additive noise to the term Mani in the

expression 4.20 as, Hnoise = (rnd%2)×sin θ×Kn. Figure 4.13(b) shows the stochastic

switching behavior of our compact model when sub-critical programming input is

applied. Based on the amplitude of the applied voltage and its pulse width, we can

generate a random set of bits in an array of ‘N ’ such STT-RAM devices.
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4.2.6 Modeling Reliability in STT-RAM Devices

Similar to PCM model, we have also incorporated stuck-at faults and resistance

variability in the STT-RAM model. While STT-RAM device shows higher endurance

(∼ 1012 cycles) than the other two NVM devices, PCM and RRAM, reliability issues

affect this device due to process induced parameter variations or thermal noise [115].

Figure 4.14 Resistance distribution for the two states of the STT-RAM model, mean
high resistance at 1.35 kΩ and mean low resistance at 677Ω.

We model the resistance variation by introducing a scaling factor, which is

randomly set, in the resistance calculation expression of the model. The device

resistance in a deterministic case is given by [155]:

R = 2×Rr × (TMR0 + 1)/(TMR0 + 2 + TMR0× cos θ) (4.23)

For the purpose of demonstrating resistance variability, we can modify the resistance

expression as:

R = 2× (Rr/$rnd)× (TMR0 + 1)/(TMR0 + 2 + TMR0× cos θ) (4.24)

The model shows an On-OFF ratio of 2, with nominal value of low resistance state

(LRS) being 677Ω and that of high resistance state (HRS) being 1.35 kΩ. Figure 4.14

shows the resistance distributions for the two states.
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An STT-RAM memory cell also exhibits stuck-at faults when the resistive bridge

short circuits or the connection between the MTJ and the access transistor is tied

to either VDD (stuck-at 1) or ground (stuck-at 0) [115]. In our model, we introduce

these hard faults as parameters to the spin torque term of the 1D LLGS equation.

The spin-torque current is given as:

Mspin = Fw1×Fvw1×1.94×1018
(r0
r

)2
×Iin+Fw2×Fvw2×1.29×1018

(r0
r

)2
×Iin (4.25)

To incorporate stuck-at faults in the STT-RAM model, the flag variables StuckReset

Figure 4.15 (a). Stuck-at 0 (low) faults simulation in the STT-RAM model. The first
pulse is applied to change the initial state to HRS, and the subsequent pulse programs
the device in LRS. It can be seen that the model remains at LRS throughout the entire
simulation duration. (b). Stuck-at 1 (high) fault simulation in the STT-RAM model.
The first pulse is applied to change the initial state to HRS, and the subsequent pulse
programs the device in LRS. It can be seen that the model remains at HRS even after
the second pulse is applied.

and StuckSet are introduced in the above equation as follows:

(4.26)
Mspin = StuckReset× Fw1 × Fvw1 × 1.94× 1018

(r0
r

)2
× Iin

+ StuckSet× Fw2 × Fvw2 × 1.29× 1018
(r0
r

)2
× Iin

We model the stuck-at faults as being uniformly distributed in an array of N such

devices, hence the flags StuckSet and StuckReset are set to 0 randomly based on
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the probability passed from the top level netlist. If an instance of the model exhibits

either of the two stuck-at faults, the corresponding term in the equation 4.26 is turned

off, hence preventing the model from transitioning to the opposite state. Figures 4.15

(a) and (b) show the simulation waveforms when the model exhibits stuck-at 0 and

stuck-at 1 fault, respectively.

4.3 Resistive RAM

There have been multiple demonstrations of large storage memory arrays using

RRAM devices either as planar array [173, 174] or multi-layer 3D array that have

achieved high density and improved energy efficiency for computing [175, 176].

Moreover, the RRAM devices have also been demonstrated mimicking the biological

mechanisms of precise timing instant based synaptic weight updates, in a network

of biologically plausible neurons, also called the spiking neural networks (SNNs)

[177,178]. It was demonstrated that compared to the PCM based arrays, the RRAM

based array used in implementing an SNN, with 16, 000 synapses achieved close to

1000× reduction in energy consumption [177].

The resistive device used in RRAM arrays is a two terminal device which consists

of an oxide material sandwiched between two metal electrodes, called as the metal-

insulator-metal (MIM) structure [179]. The resistance of the structure is determined

based on the formation or dissolution of a conductive filament (CF) through the oxide

region between the two metallic electrodes [113] and this determines the state of the

memory device.

4.3.1 Previous Compact Models for RRAM Devices

Different research groups have developed models for the RRAM device, capturing

various characteristics of the device [122, 180–184]. Most of these models use two

standard equations to describe the physics of the RRAM device, one for current-
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voltage relation and second one for describing the gap growth dynamics. The models

reported by many research groups use these two set of equations to describe the device

[180–182] . The models in [181,183] also incorporate the stochastic switching behavior.

The one presented in [184] evaluates the temperature by solving the heat equation in

the conductive filament (CF). While these models capture the basic physics well and

also perform well in transient analysis, they however, suffer from discontinuities and

issues in their DC analysis [122].

In order for the model to be compliant to the requirements of NEEDS group

and represent the dynamics as a system of continuous Differential Algebraic Equations

(DAE) [123], we started by using the Stanford model [182]. This model incorporated

the basic device current and gap dynamics along with a simple linear expression

for temperature rise in the model. The model was further modified by the group

at Berkley to make it compliant to the DAE format [122]. However, the Berkeley

model does not incorporate temperature, and is assumed to be constant at the

room temperature (298K). So, we tuned this model to incorporate the temperature

calculation and also adjusted its internal parameters to meet the current levels of

an actual demonstrated device. To fit our compact model, we used the device

data reported in [185]. This fabricated device was demonstrated in a large array

having a size of 16Mb [173] and was further used in implementing a binary neural

network [186].

4.3.2 Model Design

Our compact Verilog-A model of the RRAM device is based on the model presented

in [182]. The basic physics of the device is captured by the following series of

differential and algebraic equations. When a voltage V is applied across the device,

the current flowing through the oxide layer, I is the tunneling current [180], which
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depends exponentially on the tunneling gap g as:

I = I0 exp

(
− g

g0

)
sinh

(
V

V0

)
(4.27)

Here, g0 and V0 are the fitting parameters. The tunneling gap, g which is the distance

between the tip of the CF and opposite electrode, is the internal state variable in the

device determining its resistance [182]. The dynamics of this variable is given by the

following differential equation:

dg

dt
= ν0. exp

(
−Ea

kT

)
sinh

(
γ.a0qV

toxkBT

)
(4.28)

where, γ is the local field enhancement factor dependent on g, the tunneling gap

variable, as:

γ = γ0 − βg3 (4.29)

The terms a0, Ea and tox in Equation 4.28 are the atomic spacing, activation energy

for vacancy generation and oxide thickness, respectively. β is the switching fitting

parameter as mentioned in [182]. The tunneling gap variable g is restricted to vary

only between the minimum (gmin) and maximum (gmax) values within the oxide

thickness. The temperature rise within the device is evaluated as [182]:

T = T0 + V × I ×Rth (4.30)

where Rth is the thermal resistance of the device and T0 is the room temperature. The

velocity of the gap variable, g exponentially depends on the temperature, as shown

in Equation 4.28.

We have modeled the RRAM device in Verilog-A and have modified it to

conform to the guidelines presented in [122, 123, 187]. These guidelines state that

the device physics should be represented by a set of continuous DAEs and be

mathematically well-posed. Such a model is defined for operation at all theoretically

76



possible voltage values. Additionally, the model must also give a valid output for a

constant DC input (i.e., must be valid during DC analysis) as the DC solutions are

the starting point for all kinds of analyses. For the purpose of aiding convergence for

the circuit simulators, the guidelines in [122] also recommends the use of GMIN in

the current expression. This ensures that the two terminals of the device are always

connected with a finite resistance, to prevent any singularity during circuit simulation.

The current voltage relation is modified as:

I = I0 exp

(
− g

g0

)
sinh

(
V

V0

)
+GMIN .V (4.31)

This methodology also ensures that the internal variables of the model, such

as tunneling gap, is always bounded within its physical boundaries of the CF length.

The gap dynamics as in Equation 4.28 represents the state of the device at each point

in time. The following subsection defines the functions that are used along with the

gap dynamics in order to make it smooth even at the boundaries (i.e., when g reaches

gmin or gmax). Figure 4.16 (a) shows the schematic of the model and Figure 4.16 (b)

shows the 1T1R configuration of using the model in a circuit used in our simulations.

4.3.3 Clipping Functions

We present the gap dynamics as in Equation 4.28 here again for reference by denoting

the derivative as f2:

f2 =
dg

dt
= ν0. exp

(
−Ea

kT

)
sinh

(
γ.a0qV

toxkBT

)
(4.32)

To account for the boundary limits on g, (g ∈ [gmin, gmax]), the function f2 is modified

as:

f ∗
2 (V, g) = f2(V, g) + F1(V, g) + F2(V, g) (4.33)
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Figure 4.16 (a). Detailed schematic of the Verilog-A model of a RRAM cell. The
model circuit is based on the one described in Wang, et al., 2016. The nodes nt and nb

represent the top and bottom terminals of the RRAM device. The node ng represents
the internal gap variable. (b). High level schematic of circuit used for simulating the
PCM model. We use the 65 nm NMOS transistor from the PTM library to simulate
the access device.
Source: [122].

where F1 and F2 are clipping functions given as:

F1(V, g) = (exp (Kclip.(gmin − g))− f2(V, g)) .Fw,1(g) (4.34)

F2(V, g) = (− exp (Kclip.(g − gmax))− f2(V, g)) .Fw,2(g) (4.35)

and the smooth step function Fw is given as:

Fw(x) = 0.5

(
x√

x2 + s
+ 1

)
(4.36)

where, s sets the level of smoothness. The smooth step functions are called with the

following parameters:

Fw,1(g) = Fw(gmin − g, s) (4.37)

Fw,2(g) = Fw(g − gmax, s) (4.38)

The desired steady state response of the variable g is (i.e., f2 = 0) shown in

Figure 4.17. The Equation 4.33 incorporates the clipping functions and provides

us the desired DC response for g.
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Figure 4.17 Desired steady state (DC analysis) response of the gap variable of the
model, as a function of the applied voltage across the RRAM device. (Reproduced
from Wang, et al., 2016.)
Source: [122].

4.3.4 Simulation Results

We simulated our model in the 1T1R configuration as shown in Figure 4.16(b), which

is based on the model presented in [182] and [122]. The model parameters are the

same as used in the Stanford model [182]. The access device is an NMOS transistor

from the Predictive Technology Model (PTM) 65 nm library. The width and length

of the transistor were set at 130 nm and 65 nm, respectively. The simulation is carried

out with bottom terminal of the model connected to the drain of the access NMOS

transistor. To program the model to the SET state, the word line (VWL) is held

at 2.5V and bitline, VBL is supplied with a certain amplitude programming pulse

while the source line is kept at 0V. For RESET programming, the voltages are

reversed, with bit line being grounded and source (VSL) line supplied with the required

amplitude programming pulse.

The fitting parameters of our model are modified to match the specifications

of the TaOx−HfO2 device [185]. The model is tuned to meet the current levels of

this device, which is in the order of few tens of micro-Amperes (see Figures 4.18 (a)

and (b) for the I-V curve for the experimental device and our model, respectively).
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Figure 4.18 (a). I-V characteristics of an experimental TaOx-HfOx RRAM device
used in a large memory array, as reported in Huang, et al., 2015. (b). I-V
characteristics of the RRAM model. It can be seen that the ON-OFF ratio of the
model is around 10, which matches that of the device data.
Source: [185].

The device has been demonstrated to have an endurance of 106 cycles. Typical

programming requirements for the device are reported as 1.75V/50 ns for SET and

1.9V/50 ns for RESET. The HfO2 layer thickness is kept at tox = 12 nm. We also

calculate the resistance during the RESET and SET states by applying a read voltage

of 0.1V (as was done in the model by [180]). The resistance in the RESET state was

about 500 kΩ and in the SET state was about 60 kΩ. The minimum and maximum

values for the gap variable as taken as 0.1 nm and 1.7 nm as given in the Stanford

model [182], representing the low and high resistance states, respectively. Figure 4.19

(a) shows the hysteresis in g when the applied voltage is slowly varied across the

device. Figure 4.19 (b) shows the steady state response of g as a function of the

voltage applied across the RRAM model. As explained in [122], the DC solution is

not completely flat at the minimum and maximum values of gap for negative and

positive voltage respectively, due to the smooth nature of the clipping functions as

described in the previous section.
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Figure 4.19 (a). Variation of gap, g, as a function of the applied voltage across the
device. The gap shows hysteresis, which is the basis of memory storage capability.
(b). DC analysis by varying the bitline voltage from -2V to 2V. The curve deviates
slightly from the ideal behavior as in Figure 4.17 at voltage values close to zero.

Figure 4.20 Transient simulation to programming for SET. A reset pulse is applied
to the source-line VSL for 100 ns and then the actual SET programming pulse of
duration 50 ns is applied to the bit line VBL. It can be seen that g switches from its
maximum value to minimum value within about 30 ns. (b). Transient simulation to
programming for RESET. A set pulse is applied to the bit-line VBL for 100 ns and
then the actual RESET programming pulse of duration 50 ns is applied to the source
line VSL. It can be seen that g switches from its minimum value to maximum value
within about 10 ns.

4.3.5 Transient Analysis

The initial state of the internal gap variable is decided by the results of the DC-

analysis at the beginning of transient analysis. Thus, in order to initialize the state of

the device prior to programming it for a particular state (SET/RESET), we applied

a pulse for the opposite state (RESET/SET, respectively). Figures 4.20 (a) and
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(b) show the different waveforms for SET and RESET programming starting from

a RESET and SET state, respectively. The different panels in the graphs show the

voltage across the device Vd, current Id, internal variable g and device temperature

T from top to bottom. We also studied the minimum pulse width required as a

Figure 4.21 Pulse width as a function of applied programming pulse amplitude.
It can be seen that there is an exponential dependence of the switching time as a
function of amplitude for both SET and RESET.

function of the programming pulse amplitude as shown in Figure 4.21 and adjusted

the switching speed to achieve a state transition within 50 ns for programming voltages

above 1.7V.

4.3.6 RRAM Reliability Modeling

Resistive memory (RRAMs) devices are increasingly being used in designing efficient

neuromorphic hardware, and have been demonstrated to mimic the pulse timing

based conductance programming, akin to spike timing based synaptic plasticity

modifications in biological neurons [188–190]. However, with increased need to scale

down the devices in high density arrays, different types of reliability issues occur

in the NVM devices. Typically, the resistance levels of RRAM devices show a

distribution of values at each level and have limited resolution [191]. Reliability is

also an important consideration while realizing neural network algorithms on RRAM

arrays, with multi-bit storage per device [116]. Typically faults can be either soft, i.e.,
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which can be corrected with programming, or hard, wherein the device is permanently

stuck at high or low resistance states. It has also been reported that hard faults, or

stuck-at faults occur in at least 10% of the devices in a fabricated chip [121].

Therefore, stuck-at fault is an important design consideration, especially for

devising strategies to design fault tolerant memory arrays as well as studying the

hardware fault tolerance of a learning algorithm. In an RRAM device, the excess of

oxygen vacancies leads to a stuck-at high fault and deficiency of these vacancies leads

to stuck-at low fault [115].

We introduce resistance variability in our model, by adding small random noise

terms to the bounds of the variable g as,

gmax = gmax + nmax (4.39)

gmin = gmin + nmin (4.40)

Here, nmax and nmin are the randomly generated noise terms added to the maximum

and minimum values the gap g variable, in each model instance. gmax and gmin are

the upper and lower bounds of g. A distribution of resistance values around the mean

HRS and LRS values can be created when simulating multiple instances of the model.

Similar to the scheme discussed for the PCM model (subsection 4.1.4), we model

the faulty state of the device as a constant value resistor between the top and bottom

electrodes at LRS or HRS values, with V (t) = I(t)/R, where the resistance R could

be RRESET or RSET depending on the type of fault incorporated in the particular

model instance. The faults are introduced in an array of RRAM model instances

stochastically based on the probability of stuck-at fault set at the top level netlist.

Figures 4.22 (a) and (b) show the simulation waveforms (voltage drop, current,

tunneling gap and resistance of the device), when the model has stuck-at ‘1’ and

stuck-at ‘0’ fault, respectively.
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Figure 4.22 (a). RRAM model permanently stuck at its high resistance state. We
apply an initial RESET programming pulse followed by a SET programming pulse.
However, it can be seen that even after the second pulse, the resistance of the model
remains at a high value (512 kΩ). (b). (Right) RRAM model permanently stuck at
its low resistance state. We apply an initial SET programming pulse followed by a
RESET programming pulse. However, it can be seen that even after the second pulse,
the resistance of the model remains at a low value (61 kΩ).

4.4 Summary and Future Scope

We have developed mathematically simple and well-posed Verilog-A compact models

for three emerging NVM devices – PCM, RRAM,s and STT-RAM. The models

accurately capture the essential aspects of experimentally observed memory switching

and reliability aspects of conductance variability and stuck-at faults. The PCM

model also shows multiple resistance states depending on the programming schemes

employed. The STT-RAM model also incorporates stochastic switching for sub-

critical inputs.

As mentioned in the introduction, there are other reliability issues such as

resistance drift, which would be an important factor in designing robust algorithms

and analyzing the hardware impacts. This could be a feature to be incorporated in the

presented compact models. The added reliability features could be modified as per the

experimental device data to get realistic design estimates. The stochastic switching

behavior of STT-RAM device could be used in realizing learning algorithms with

stochastic parameters, as a random number generator. The model work presented
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in this chapter could be used as a guideline in developing compact models for more

emerging nanoscale devices such as ferroelectric devices, carbon nano-materials, [192],

etc., to study their design prospects.
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CHAPTER 5
NON VON NEUMANN COGNITIVE HARDWARE FOR SPIKING

NEURAL NETWORKS

In this chapter we discuss the hardware design for SNNs. We start by presenting

a CMOS digital hardware for realizing the ReSuMe algorithm [38], which was

introduced in Chapter 2. We first present the results of our network optimization

study and use that to develop a methodology for designing a scalable architecture for

neuromorphic systems.

In the later part of this chapter, we discuss the NVM based designs for realizing

inference engines and learning hardware for SNNs. We discuss memristive arrays as

both analog and digital storage for synaptic weights in neural network accelerators.

We initially present our analysis on using analog memristive arrays to accelerate

the inference in convolutional networks (spiking and non-spiking), which is also

published in [36]. This section discusses different schemes for accelerating convolution

operation in crossbar arrays and the impact of memristive non-idealities to network’s

accuracy. We then present the design of a non volatile memory (NVM) based

neuro-synaptic core to implement a hardware accelerator for Spiking Neural Networks

(SNNs). The memory array makes use of only binary conductance levels of the NVM

devices. This helps in circumventing the challenges associated with these devices.

Thus, our crossbar array consists of n NVM bit cells to store each of the n-bits of

the network’s synaptic weights. The work on implementing an inference engine with

binary-storage STT-RAM arrays as discussed in the following sections has also been

published in the proceedings of the ICECS-2019 [193].

5.1 Network Architecture for ReSuMe Training

We design a hardware capable of performing spike based supervised learning based on

the Remote Supervised Method, that trains the synaptic weights of a spiking neuron
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to generate a desired set of spike trains [59]. The original work makes use of a neural

micron-circuit (NMC) network, to apply input spikes to a trainee neuron. The NMC

block consists of randomly connected network of spiking neurons with certain synaptic

delays, whose goal is to expand the dimension of the incoming spike train and present

a rich set of spikes to the trainee spiking neuron. We present a hardware design for

realizing the NMC, with the blocks needed to realize the ReSuMe algorithm on the

hardware.

We first discuss the various optimizations that could be performed on the

network so as to get a optimal implementation with acceptable level of training

accuracy. We studied the network’s training accuracy as the number of levels for

representing the synaptic weights are reduced. We also looked at the dynamic range

of values required by the synaptic weights, and devised the architecture based on the

results of our study. The work described in this section also appears in [110].

5.1.1 Network Optimization Analyses

The ReSuMe network was analyzed for its learning speed, in terms of the number of

synapses required by the output (Figure 5.1) to train for different duration of spike

trains. Also, for an efficient hardware implementation, we studied the algorithm’s

performance at limited on-off ratios (range of weight values) and then at restricted

bit representation for the weights. It was observed that just 5 bits (Figure 5.3) are

sufficient to represent the weights to get a good enough learning performance and

hence, a reduction in the hardware resources. Box chart plots in Figure 5.1 show that

the training performance (in terms of the number of iterations needed to converge)

for a particular duration of spike train, improves with increase in network size. This

is because as more the number of connections from the NMC, implies more rich set of

spikes at the input of the output neuron for it to train to generate the desired spike

trains.
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Figure 5.1 Training performance of ReSuMe at different network sizes and at varying
spike train durations.
Source: [110].

We studied the effect of reduced-bit precision on the training performance.

Gupta et. al, showed very less degradation on the network accuracy (with second

generation ANNs) and high energy efficiency of their implementation of deep networks

with just 16-bit fixed point representation [194]. We quantized the neuron dynamics

during simulation to study the effect of limited precision over a full double-precision

implementation. Writing the neuron differential equation (2.13) as a difference

equation for every time-step n,

V (n+ 1) = V (n) + (dt/C)(−gL(V (n)− EL) + Isyn(w, n)) (5.1)

Substituting the membrane potential, V (n) as,

Vq(n) =
V (n)− EL

VT − EL

(5.2)
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Synaptic weights are discretized as w = w0 × wq. So, the neuron dynamics, in the

discretized form can be written as,

Vq(n+ 1) = Vq(n) +Q(wq, Vq(n)) (5.3)

where,

Q(wq, Vq(n)) = (dt/C).

(
−gL.Vq(n) +

Isyn(wq, n)

(VT − EL)

)
(5.4)

is quantized within a precision of 1/220 following the implementation in [22]. The

Figure 5.2 shows the histograms of the trained synaptic weights for 100 runs, when

the network was trained with spike trains of duration 500ms. It can be seen that

the weights are log-normal distributed. It can be seen from the histograms that

though the range of the trained weights in the order of 105, significant fraction of the

weights lie only in the range 10−11 to 10−9. The excitatory synaptic weights, have

a mean of µ = −9.57 and a standard deviation of σ = 0.47. The inhibitory weights

have a mean of µ = −9.72 and a standard deviation of σ = 0.47 on the log10 scale.

Using this information, the training performance was studied at different on-off ratios

(a). (b).

Figure 5.2 Histograms of logarithm of absolute values of the weights (a). Excitatory
and (b). Inhibitory
Source: [110].

(Figure 5.3(a)), keeping the means same as the unconstrained case. The best training

convergences were obtained at ratios of 100 and 101.5. So the bit-precision experiments
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were carried out for different bit lengths at these two on-off ratios (Figure 5.3(b)).

At an on-off ratio of 100, and with just 5-bits of precision for the synaptic weights,

it can be seen that the ReSuMe’s training performance is good enough with 88% of

the samples converging.

(a). (b).

Figure 5.3 Training performance of ReSuMe at different on-off ratios and bit-
precisions of the synaptic weights
Source: [110].

5.1.2 Digital Architecture

Based on the analyses in the previous section, a digital architecture for on-chip

spike based learning is proposed, which is similar to the reported neuro-synaptic

architectures by IBM [22, 195] and Qualcomm [196]. These chips implement

programmable neuron and synaptic dynamics and use SRAM or DRAM cells to store

the synaptic weights. The synaptic state can be updated in an event driven manner,

depending on the instantaneous spike pattern. Most of these chips consist of large

arrays of cores or small blocks that can be connected to each other through routing

networks, enabling arbitrary connectivity between neurons.

Based on the results of the study in the previous section, we design a neuro-

synaptic architecture for implementing the ReSuMe algorithm and its NMC network.

We use the NMC network consisting of 800 neurons and each of the synaptic weights

require 5 bits of storage. To make the NMC block of the ReSuMe network realizable on

a crossbar architecture, we partition the block with 800 neurons into 256×256 blocks
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Figure 5.4 Partitioning of the NMC block on 256× 256 sized cores.
Source: [110].

(Figure 5.4). The connectivity in the NMC is such that neighboring neurons have

high probability of connection, as can be seen in Figure 5.4(b). The 3D network of the

NMC, is converted to a 2D map and divided into four partitions, each consisting of

200 neurons, as seen in Figure 5.4(c). Each neuron has a fan-out (outgoing synapses)

of ∼ 5 . The neurons positioned at the edge of each core, have connections with the

neurons in their immediate neighboring core. So, the maximum number of hops a

spike would have to go through the routing network while traveling to its destination

neuron in another core is just one.

The proposed design for the network of 800 NMC neurons, consists of three

major components (Figure 5.5). The input block, that applies the spike streams to

the network, has a mean fan-out of 240 and consists of a register file maintaining the

list of the addresses (10-bit) of the fan-out NMC neurons. The output block consists

of the output neuron (having a fan-in of 560), an array of registers storing the synaptic

weights, and a learning module, which computes changes in the conductance values

during training. The neuro-synaptic cores (inspired by [22, 195, 197] ) form the third

component of this architecture, housing the NMC, consist of the crossbar arrays

(as seen in Figure 5.4), with 6T SRAM cells as the storage units for the synaptic

weights, and the neuron circuitry. The synaptic connections within the NMC are

programmed only once. However, the weights of the synapses connecting the output

neuron get updated during the training. Each output synapse is associated with a 5-
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weight update for the output neuron.
Source: [110].

bit down-counter (as in [198]), which is initialized to Cset whenever the corresponding

pre-synaptic neuron spikes, and decremented by a fixed value Cdecay at each time step

to linearly approximate the exponentially decaying learning window (Figure 2.7) [199].

Whenever the output neuron spikes or there is a spike from the desired signal, the

synapses which received a recent spike, get incremented or decremented, depending

on the selector update block.

The basic blocks needed in the design are, the LIF block, the 5-bit STDP

counter for learning and the 6-T SRAM cells. These blocks have been simulated and

synthesized on 65 nm CMOS platform in order to get a first order estimates of power

and area of the complete design. These numbers are then used to compute the area

and power values for the entire design. For the futuristic 10 nm platform, the scaling

trends reported in [198] are scaled as per the design described here.

5.1.3 Power and Area Requirements

The design was analyzed for power consumption and area required. The power

consumed by the NMC cores during operation is comprised of two components – for
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communicating synaptic conductance values to neurons and for updating the neuronal

membrane potential, which included the neuron operation power and synaptic read

and write powers ( [197, 198]). The average spike rate within the NMC is close to

100Hz. Using a time step of 0.1ms, we get the probability of a spike issue for a neuron

(pspike) in any emulation time step to be ∼ 0.01. For the hardware implementation,

we accelerate the dynamics by a factor of 1000, so the power analysis is done by

assuming a hardware clock running at favg = 10MHz, i.e., updates happen at every

0.1µs. The power consumed during synaptic read and write operations for N neurons,

consuming E joules of energy is,

Pcore = E ×N × pspike × favg (5.5)

The power for inter core communication via the on-chip mesh network has three

components: spike communication between different NMC cores, from input block to

the NMC neurons and from the NMC neurons to the output neuron. It depends on the

number of hops (Nhops) a spike packet has to travel to reach destination neurons, the

number of cores (Ncores) a neuron communicates with and the hop distance (Lhops).

The number of hops, Bhops a spike has to travel from input to the NMC cores is 2,

while the number of cores, Ncores is 4, since the connections are uniformly distributed

across the NMC block. Same is the case when a spike from the NMC has to travel to

the output block. For the spikes traveling between different NMC cores, Nhops and

Ncores is 1, as the cores are connected with their adjacent ones itself. The power is

calculated as,

Pcomm = (10×Ncores ×Nhops × Lh × 0.2 fF/µm

×Vdd × Vswing × pspike × favg ×Ntot) (5.6)

For the 65 nm analysis, Vdd and Vswing is 1V, while for the 10 nm analysis, they

are taken as 0.25V, as reported in [198]. Tables 5.1 and 5.2 list the power consumed
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and area required, respectively, by the different blocks in the design, including the four

cores, at 65 nm scaled from our simulation results of a single LIF neuron (fixed-point

implementation), the STDP counter and a single 6T SRAM cell. The tables also list

the numbers for 10 nm, scaled as per the trends reported in [198].

Table 5.1 Power Estimates in µW for 65 nm and 10 nm

Technology node NMC cores Input Block Output Block Total

65 nm 24, 500 46 724 25, 270

10 nm 730 1.43 17.5 748.93

Table 5.2 Area Estimates (in µm2) for 65 nm and 10 nm

Technology node NMC cores Input Block Output Block Total

65 nm 1, 810, 000 1, 800 66, 700 1, 878, 500

10 nm 111, 000 200 3, 800 115, 000

Table 5.3 Communication Power in µW for 65 nm and 10 nm Node

Technology node NMC to NMC Input to NMC NMC to Output Total

65 nm 30 257 600 887

10 nm 0.5 4.0 9.5 14.0

5.1.4 Learning Capability of the Architecture

To quantify the learning capability of our design, the metric used is Synaptic Updates

Per Second (SUPS) per Watt from the relation,

SUPS/W =
Avg no. of weight updates per synapse× No. of synapses

Td × Power consumed (5.7)

The average number of synaptic updates for training Td = 500ms spike streams was

∼ 20. With 560 learning synapses, we estimate that the 65 nm CMOS implementation
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to be capable of 0.85 MSUPS/Watt and the corresponding projected value for the

10 nm node to scale to about 30 MSUPS/Watt.

We have shown the methodology to realize spike based learning on-chip. This

study was done using the ReSuMe algorithm, which is a local learning rule. The

architecture required just 0.6mW of power and 0.115 mm2 area to realize the

800 neuron network for ReSuMe. This study was targeted towards digital CMOS

implementation. Further, we will demonstrate the realizability of such spike based

learning rules on platforms with emerging nano-scale memory devices. We make

use of our developed compact models for PCM, STT-RAM, and RRAM devices for

implementing synapses in crossbar based architectures and evaluate the hardware

metrics over a pure CMOS implementation.

5.2 Accelerating Spiking Neural Networks with Memristive Hardware

In this section, we discuss the use of a generic NVM memristive crossbar array, wherein

the analog resistance levels are used to store the synaptic weights of a network. Part

of the network computation which involves multiply and accumulate can be carried

out within the memristor array. The work presented in this section is as published

in [36].

NVM devices, where device resistance stores the state, such as phase change

memories (PCMs), spin-transfer-torque (STT) RAMs and Resistive RAMs (RRAMs)

can be programmed to mimic conductivity modulation of biological synapses [113,

200–203]. Numerical estimates of NVM based implementations suggest more than

25× improvement in speed-up and up to 3000× reduction in power compared

to GPU based implementations [204]. NVM devices are particularly suited for

processing-in-memory architectures, for instance the PipeLayer accelerator based on

RRAMs for Convolution Neural Networks (CNNs) for training and testing showed

significant speedup and energy efficiency over GPUs [205]. Other memristor based
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crossbar implementations for CNNs showed that there is negligible loss in performance

if the device has at least 4-bit resolution when used as inference engines [206].

Similarly, an extremely parallel architecture for accelerating deep CNNs has been

proposed by leveraging the small size and high density of memristive devices [207].

Therefore, memristive devices offer one possible way to emulate brain’s connectivity in

hardware, if other non-ideal limitations of the devices can be mitigated. Good network

performance can be obtained if the synaptic devices have linear and symmetric

conductance response; but in reality, the device conductance is highly sensitive to

programming variability and typically has finite on-off ratio with limited resolution

[191]. It has been shown that conductance variability is a critical parameter that has

to be optimized to maintain the ideal performance achievable in software simulations

[116]. While the above mentioned efforts have studied the applicability of NVM

devices with limited resolution for neural network realization, our work explores the

impact of the programming variability of these devices on algorithmic performance.

We use a convolutional SNN for handwritten digit classification (which was

described in Chapter 3) and describe a methodology of accelerating such a network

on hardware using nanoscale memristive devices. We study the accuracy of this

network as an inference engine when its synapses are implemented using memristive

devices. We also benchmark the performance with respect to an equivalent second

generation artificial neural network (ANN), where the trained SNN’s accuracy is

close to that of the trained ANN. Our results show that even at a very high device

conductance variability, the accuracy for both the networks is within 1% of their

respective baselines. We also study the realization of the convolution layer in our

network as a complete parallel implementation by having a memristive device for

each synaptic connection as opposed to having a shared synaptic array, as is done in

the software and show that the parallel architecture helps in mitigating the effects of

conductance variability on network’s accuracy especially at higher variabilities. Thus,
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this work shows the high potential for realizing efficient inference engines based on

event-triggered spiking networks implemented using memristive devices.

5.2.1 Network Optimization for Hardware

We now discuss the network optimization strategies to translate the software design

for energy and area efficient neuromorphic hardware platforms. Typically, such

platforms have limited precision for weight storage. Previous efforts to study the

impact of low-precision weights in a digital realization have shown close to 5% drop

in accuracy with respect to the baseline even with 5-bits of precision for synaptic

weights [109].

Memristive devices can also be used as synaptic weights in crossbar neuro-

morphic platforms [208]. Even though the device conductance is an analog value, the

granularity to which a device can be programmed to a particular level is typically

limited, resulting in a finite number of levels within the dynamic range of the

device. In the following subsections we discuss our study on the impact of realizing

synaptic weights with memristive devices, with an on-off ratio of 10 and a resolution

of approximately 32 levels (or 5-bits). These characteristics are typical of several

experimental memristive devices today.

5.2.2 Restricting ON-OFF Ratios of Synaptic Weights

To study the impact of using memristive devices as synapses in our neural network,

we measure the inference accuracy by limiting the range of weight values that

were obtained after training the networks in software. The learned weight values

of the neural networks trained in software were limited to have an on-off ratio of

10. Figure 5.6 shows histogram of the software trained weights and the histogram

after clipping them to have an on-off ratio of 10. Table 5.4 shows the accuracy and

the number of non-zero connections in the feed-forward fully-connected layer of the
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SNN and ANN, before and after removing the insignificant weight values. It can be

seen that even after eliminating more than 50% of the trained weights from the two

networks, the drop in test accuracy is negligible, indicating that sparsely connected

networks are capable of delivering close to baseline accuracies.

Figure 5.6 Software trained weights (upper panel) having a large range of values,
are clipped such that the ratio of maximum value to minimum value (on-off ratio) of
the excitatory and inhibitory weights is restricted to 10. This range of values resulted
in the test accuracy to drop to 98.07% from the baseline value of 98.17% in the SNN.
For the ANN, there was no drop in the test accuracy.
Source: [36].

Table 5.4 Network Accuracy during Inference with Limited On-Off Ratio of 10

Network SNN ANN

Non-zero synapses in baseline network 75, 000 78, 000

Baseline accuracy on MNIST test set 98.17% 98.10%

Non-zero synapses in the new network 30, 000 27, 000

Inference accuracy in the new network 98.07% 98.10%
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5.2.3 Hardware Architecture

While the synapses between the fully-connected layers can be implemented using

a cross-bar array in a straight-forward manner [204], the implementation of the

convolution operation is the focus of our attention in this study. A convolution layer

in a neural network uses a weight matrix (also called convolution kernels), whose

element values are tuned to extract particular features from the input image. The

software implementation of the convolution sequentially repeats the matrix across

the entire input, and a dot-product of the input overlap with the weight matrix

is computed. Although this computation can be accelerated on a GPU (graphical

processing unit), by scheduling the computation of convolution for elements and

kernels in a concurrent manner, the limited number of computation cores always

limits the degree of parallelization possible, thereby limiting the overall speed.

There have been some recent efforts to implement the convolution operation

using NVM based neuromorphic hardware [205–207, 209, 210]. Here, we study the

impact of using the analog conductance levels in memristors, with two devices in a

differential configuration per synaptic weight to realize the excitatory and inhibitory

weight connections [206, 208].

5.2.4 Synapses Using Memristive Devices

In order to represent positive and negative weights (w), we use two memristive devices

with conductances G+ and G− per synapse [208], such that

w = k(G+ −G−) (5.8)

Appropriate scaling factor (k) is used to translate the device conductances to the

range of software trained weights. Most memristive devices also exhibit gradual

conductance change in one direction; hence we assume a unidirectional programming

scheme [211]. The device is assumed to have an on-off ratio of 10 and roughly 32 levels
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of programming resolution for realizing the synaptic weights. In this scheme, either

G+ (G−) will be programmed to any of the allowed 32 conductance states, depending

on the sign of the software weights at every synapse. For the fully connected layer in

SNN and ANN, including the inhibitory weights of SNN, when the synaptic weights

are zeros, both G+ and G− are programmed to the minimum conductance in the

linear regime.
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Figure 5.7 (Left) Sequential convolution in memristive crossbar array with 9×12×2
devices to represent the 12 kernels used in the convolution layer, each having a 3× 3
sized weight matrix. These matrices are unrolled as vectors of size (9 × 1). The
inputs need to be presented in sections of 9 elements to obtain the output of the
convolution operation. (Right) Parallel convolution in memristive crossbar array with
784× 676× 2 devices. Each neuron in the convolution layer has 9 incoming synapses,
so every column in the array has only 9 active connections. The cross-points in gray
are inactive connections.
Source: [36].

5.2.5 Sequential and Parallel Convolution

We now discuss two hardware architectural schemes for implementing the convolution

layer using memristive cross-bar arrays and illustrate the architectures using a

convolution operation performed between an input image of size 28× 28 with a 3× 3

kernel, resulting in a output matrix with 26× 26 elements. In the first scheme, only

the 9 unique values in the convolution kernel are represented using 9× 2 memristive

devices [206, 209]. Figure 5.7 (left) shows the architecture of crossbar array, where

the 12 kernels are laid out in 12 columns, each of length 9. Here, the inputs xi need

to be presented to the array in batches of 9 elements at a time. The outputs yj, for
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each kernel are obtained sequentially, by the application of Kirchhoff’s law. A voltage

signal proportional to the input quantities xi are applied on the horizontal wires, and

the resulting current through the synapses are accumulated by the sense amplifiers

on the vertical wires. While this scheme uses only 9 × 12 × 2 = 216 devices for the

array, 676 sequential cycles are needed to complete the convolution across all kernels

for each MNIST image.

In the second scheme, a larger memristive array is used so that all the

convolution operations are completed in parallel. In this array, every connection

between the input and output has a synaptic device associated with it [207]. Figure 5.7

(right) shows the architecture of the crossbar array with 784×676 synapses for a single

convolution kernel output map. Such arrays need to be repeated for multiple kernel

output maps. This scheme requires 2 × 784 × 676 = 1, 059, 968 memristive synaptic

devices per convolution output map. However, since each neuron in the convolution

layer connects to only 9 inputs, the active number of connections in the network are

only 9×676 = 6084, resulting in a sparsity of ∼ 1%. With this scheme, we can achieve

a speedup of 676× over the sequential realization. The implications of using multiple

memristors, which are known to have conductance variabilities, for every synaptic

connection as opposed to having a shared array is discussed in the subsection 5.2.7.

5.2.6 Programming Variability

Memristive devices are non-ideal, exhibiting significant programming variability,

which may affect the network performance [116, 191]. The impact of programming

variability in the network performance is studied using the parameter σ/B, where σ

is the standard deviation and B is the bin-width of the conductance states obtained

during programming. In order to emulate the programming variability of the devices

in the simulation, a zero mean Gaussian noise of standard deviation σ is added to

the programmed device conductance. We study the network’s inference accuracy for
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different programming variability with σ/B = 0.5, 0.8, 1 and 1.5. The programming

variability used in this study is comparable with experimental reported values for

typical memristive devices [212]. As the programming variability parameter is

increased from σ/B = 0.5 to 1.5, the conductance spills over to the neighboring

bins, thereby potentially affecting the network’s inference accuracy.

In our simulations, this conductance variability is included in the synapses for

all the layers in the parallel and sequential convolution networks. Further, we assume

that the inactive devices in the convolution layers can be programmed to 0.1×Gmin

so as to minimize the effect of programming variability in the convolution kernel.

Also, the programming variability associated with these inactive devices is assumed

to be one-tenth of σ/B. These assumptions are based on the experimentally observed

characteristics of emerging memories, whose off-state conductance can be at least

10 times lower than the typical analog range used for neuromorphic weight storage

[212, 213].

5.2.7 Results

Our SNN and ANN are implemented in CUDA-C and C, respectively. The software

baseline response of SNN and ANN are at 98.07% and 98.10% inference accuracy,

respectively when the weights are clipped. On translating these clipped weights to

the allowed conductance states of the memristive device without any variability, the

inference response drops slightly to 97.99% for SNN while it remains the same for

ANN. These accuracies are used as the device baseline for analyzing the response for

different programming variability.

Sequential Convolution The response of sequential convolution architecture of

SNN and ANN after introducing programming variability to the memristive devices

is shown in Figure 5.8 (left). It can be seen that as the variability is increased,

ANN suffers slightly less degradation in accuracy when compared to SNN. The input
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Figure 5.8 Accuracy of the spiking and non-spiking networks for sequential (left) and
parallel (right) convolution as a function of the device conductance level variations,
defined as the ratio σ/B, where σ is the standard deviation of the zero mean Gaussian
noise and B is the bin-width of the conductance levels. In both the cases, the average
classification accuracy of the SNN is close to that of the ANN within 0.1%.
Source: [36].

currents corresponding to those images that were misclassified by SNN (σ/B = 1.5)

but correctly classified by ANN (σ/B = 1.5) and the device baseline networks of

SNN (σ/B = 0) and ANN (σ/B = 0) is analyzed in Figure 5.9. The neuronal input

Figure 5.9 The incoming currents to the output layer neurons of both SNN and
ANN for σ/B = 1.5. The x-axis corresponds to the baseline network without any
programming variability (σ/B = 0), while the y-axis represents the networks with
variability σ/B = 1.5. It can be seen that for SNN, input currents deviated more
from the baseline when compared to ANN, resulting in the slightly higher accuracy
drop.
Source: [36].

current in the SNN is obtained as an integrated value over a duration of T = 100ms,
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while for the ANN it is the instantaneous DC value of the weighted inputs to each

neurons. It can be seen that the deviation in the ANN from the baseline network

having no variability is lesser compared to that of the SNN, which explains the lesser

degradation in the accuracy of ANN (Figure 5.8).

Parallel Convolution High density packing of the memristive devices can be

leveraged to implement parallel convolution giving significant speed up in hardware

[207]. The convolution operation for the SNNs can also be implemented in parallel

using the network architecture in Figure 5.11 (right). Similar to the sequential

convolution implementation, even in the parallel network, the SNN’s accuracy was

close to that of the ANN within ∼ 0.1% (see Figure 5.8 (right)). As can be seen

from Figure 5.10, the inference accuracy of the two schemes (parallel and sequential)

is comparable, although the parallel implementation shows slightly better accuracies

at high device programming variability. The slightly better performance with the

parallel convolution architecture may be due to the averaging and compensating effect

of memristive devices in determining the output of the convolutional operation. In

Figure 5.10 Comparison of networks’ inference accuracy for sequential and parallel
convolution architectures with memristive arrays in SNNs (left) and ANNs (right).
Source: [36].

order to obtain this performance, it is important that the inactive devices in the array
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are programmed to low conductance values, below the normal dynamic range used

for synaptic weight representation.

5.3 Digital Cognitive Hardware Design with NVM Crossbar Arrays

As discussed in the previous section, there are several crucial challenges of variability

associated with the device conductance, and the additive noise from the peripheral

circuitry such as Analog to Digital converters (ADCs) and Digital to Analog

Converters (DACs) that need to be taken care of while designing these architectures

[26, 35, 36].

Next, we explore the scope of running inference and training in smaller bit-

precisions while designing the hardware. While a 32-bit single precision computation

is what is used by most computing platforms today, it has been shown that significant

energy and speed benefits can be achieved in the hardware if the computation can

be carried in lower bit-precisions [214]. Several works for DNNs have demonstrated

running inference engines in 1 to 8-bit fixed-point formats [215–217]. There have also

been several efforts in demonstrating algorithmic modifications to DNN training such

as transfer learning, stochastic rounding, etc. to achieve the 32-bit floating-point

accuracy while training in lower precisions [218–220]. Low-precision implementations

are beneficial especially for embedded and edge devices, which run with a limited

power budget and memory capacity.

Our computational neuro-synaptic core consists of a crossbar array of NVM

devices, read/write peripheral circuits, and digital logic for the spiking neurons.

Additionally for learning, blocks such as a multiply and accumulate unit, schedulers,

are needed to perform the error back-propagation and weight updates. Inter-core

communication is realized through on-chip networks by sending/receiving spike

packets. The design studies are conducted using the compact models that we

developed for the three NVM devices – Phase Change Memory (PCM), Resistive
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RAMs (RRAM), and Spin-Transfer Torque RAM (STT-RAM), which are tuned to

capture the state-of-the-art experimental results. We show that amongst all the three

for realizing inference engines, the STT-RAM memory based design outperforms the

other in terms of throughput per unit Watt. We further realize a large memory

array with 2048 × 2048 STT-RAM devices to implement SNN and compare the

same with an equivalent SRAM based design realized in [46]. Our binary storage

STT-RAM based design avoids the need for expensive ADCs and DACs, resulting in

a balanced array efficiency of 53%, and enabling instantiation of large NVM arrays

for our core. We show that this neuro-synaptic core designed in 28 nm technology

node has approximately 6× higher throughput per unit Watt and unit area than an

equivalent SRAM based design. Our design also achieves ∼2× higher performance

per Watt compared to other memristive neural network accelerator designs in the

literature. The later part of this section also discusses schemes to extend this design

to incorporate learning and compares its performance with respect to an equivalent

SRAM based design.

5.3.1 NVM array for SNN Inference Engines

We design an NVM array based inference engine to realize the Binary Activation

SNN (BASNN) model which was presented in Chapter 2 and was originally described

in [46]. This model employs gradient descent based learning rule to adjust the network

weights and is one of the simplest models to realize on the hardware. It has been

demonstrated to achieve close to the state-of-the-art SNN performance on the MNIST

dataset, with the best test-set accuracy being 99.4% with a convolutional network. We

present the equations of this neuron model again here for reference. The discontinuous

integration neuron model’s spike output (ak) located in layer k is given as:

ak(t) = yb

(
N∑
i=1

ak−1
i (t)wk

i,j + bkj

)
, (5.9)
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where yb is the threshold function, with yb(x) = 1 only if x > θ [46]. Here, θ

is the membrane potential threshold. The term within the brackets represents the

spiking neuron’s membrane potential. The use of a straight-through estimator makes

the neuronal function differentiable during training [47]. The neuron’s activation

derivative is:

ak ′(vk(t)) =


1
2θ
, 0 ≤ vk(t) ≤ 2θ

0, otherwise
(5.10)

With this weight update rule, SNN in a fully connected multi-layer perceptron (MLP)

achieved the MNIST classification accuracy of 98.7% in the single precision floating

point (FP32) representation. A digital design that implements the trained MLP

network as an inference engine using SRAM based synaptic weights was also presented

in [46]. Here, we explore the architectural design choices for implementing such

networks using emerging NVM arrays.

As was demonstrated in [46], the BASNN MLP network requires only 8-bit

signed fixed-point synaptic precision to achieve the floating-point baseline accuracy

of 98.7% for MNIST dataset. In our scalable design, we represent each synaptic

weight with signed 8-bit fixed-point precision, with upper 2 bits used for the sign and

the integer part, and remaining 6 bits for the fractional part. Each WL in the array

has 256 synaptic weights. The neuron block consists of an 8-bit fixed-point register to

store the read-in weights and biases, and a 16-bit accumulator to store the membrane

potential (v). The membrane potential is represented with signed 16-bit fixed-point

precision, where the three most significant bits represent the integer part (including

the sign bit). The remaining 13 bits represent the fractional part of the membrane

potential. The logic consists of a comparator which uses only the upper 3 bits of

the v register to compare with the threshold of θ = 1. Once all the synaptic weights

corresponding to the incoming spikes in a particular time-step and the biases for that
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layer are accumulated, the values of v of that layer are compared with θ, to check

whether to issue a spike or not. The generated spike is transmitted by the on-chip

router to its destination core (Figure 5.13).
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Figure 5.11 Neuro-synaptic crossbar array based hardware with 256 inputs lines, 32
output neurons and 8-bit synapses. Each output layer neuron on the post-synaptic
side of the array is connected to 8 bitlines and can access the associated devices for
the selected row (wordline).

For our study in evaluating the different NVM technologies, we consider a neuro-

synaptic core with 256 × 256 NVM bit cells in 1T-1R configuration as shown in

Figure 5.11. For bidirectional programming of the bipolar devices such as STT-

RAMs or RRAMs device, programming waveforms can also be applied to the source

lines (SLs). The input spikes, or pre-synaptic spikes, are presented to the wordlines

(horizontal) of the array, and the output neurons (or post-synaptic neurons) of a

particular layer are placed at the end of the bitlines (vertical) of the array. The

spiking neurons are implemented as digital blocks outside the array. The read and

write circuits are also placed at the post-synaptic end of the crossbar array connected

to the bitlines and source lines.
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Figure 5.12 Scheme for forward propagation of input signals through the STT-RAM
crossbar array. At any given time-step, a set of spikes from the layer k−1 arrive at the
core input (WL). Each of the wordlines are processed sequentially at the respective
output neurons, which read and accumulate the synaptic weights.

Figure 5.12 shows the process of propagating input spike trains (ak−1) through

the array for a given network’s simulation time-step, where k denotes the index of

a layer to be realized on the array. Each incoming spike activates its corresponding

wordline, triggering a read of the synaptic weights along that row. The weights (wk),

represented in 8-bit fixed point notation are read at the post-synaptic end of the array

and the neurons update their respective membrane potential values for the present

time-step If a neuron’s membrane potential exceeds the threshold, a spike is issued

for that time-step. The duration of time-step is determined based on the number of

hardware clock cycles required to read the weights corresponding to spiking inputs

and update the neuron membrane potentials. The spikes issued by the post-synaptic

neurons (ak = 1) are then transmitted by the on-chip router to the core realizing the

next layer of the network.

5.3.2 Memory Array Design

The NVM bit cell considered for this study has an area of 29F 2 in the 1T-1R

configuration [221–224]. We use a crossbar array of size 256 × 256 bit cells having
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a memory capacity of 64Kbit. For each of the NVM devices, our group designed

the peripheral memory access circuits for reading and writing, based on the designs

reported in [225–228]. The read sense amplifiers are designed as either in current

mode or voltage mode. In the case of voltage mode sensing, a voltage drop across

a pre-charged bitline indicates if the state is a ‘0’ or not. In the case of current

mode sensing, the current flowing through the device is compared with that flowing

through a reference resistance cell. For the STT-RAM device, as the On-Off ratio

is low (about 2), a current mode sensing is used. For the other two devices, which

have a higher On-Off ratio of ∼ 10, voltage mode sensing is adopted. The read

Table 5.5 Read and Write Circuits for NVM Devices Designed in 65 nm Node

Design parameters PCM STT-RAM RRAM

RSET Ω 10, 000 3000 60, 000

RRESET Ω 1000, 000 6000 500, 000

Read

Area (µm2) 21.18 41 21.18

HRS read power (µW) 2.95 1.42 2.34

LRS read power (µW) 3.07 1.51 2.67

Read latency (ns) 10 4 25

Write

Area (µm2) 134 324 134

HRS write power (µW) 777.2 1034 373.7

LRS write power (µW) 317.3 1027 382.98

Write latency (ns) 150 7 80

sense amplifiers and write drivers are placed along the bit lines of the array. Similar

to previous crossbar array based designs [22], the horizontal wordlines connect the

input (or pre-synaptic neurons) and the vertical bitlines (and SLs) connect the output
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(post-synaptic) neurons of the array via the read and write circuits. The read and

write parallelism of our crossbar design is 256 bits, i.e., there is one read sense amplifier

and write driver circuit for every vertical bitline/source-line of the array. Table 5.5

presents the area and power numbers for the read and write circuits for the different

NVM devices of PCM, STT-RAM and RRAM.

5.3.3 Design Evaluation Across NVM Devices

Table 5.6 Evaluation of Neurosynaptic Core Design Across Three Different NVMs

Parameters STT-RAM PC-RAM RRAM

Read latency (ns) 5 10 25

Memory clock frequency (MHz) 100 50 20

Memory access power (mW) 0.53 0.92 0.79

Digital logic power (mW) 1.46 1.46 1.46

Total power (mW) 1.98 2.38 2.25

Total bit cell area (8KB) (mm2) 0.02 0.02 0.02

Memory peripheral area (mm2) 0.095 0.040 0.040

Digital logic area (with 32 neurons) (mm2) 0.02 0.02 0.02

Total core area (mm2) 0.13 0.08 0.08

GSOPS 3.2 1.6 0.64

GSOPS/W 1610 673 285

GSOPS/mm2 24.62 20 8

GSOPS/W/mm2 12385 8412 3562

To evaluate the designs with these three NVM arrays, we choose the performance

metric of synaptic operations per sec (SOPS), or Giga SOPS (GSOPS) as introduced

in [22]. One synaptic operation involves reading of an 8-bit synaptic weight and

updating the respective post-synaptic neuronal membrane potential. For instance, if
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the memory clock rate is 100MHz, in the case when all the inputs spike, we can read

256/8 = 32 synaptic weights from each row of the the NVM array and correspondingly

update the membrane potentials every 10 ns, thus, giving us 3.2GSOPS. Table 5.6

lists the different design metrics for the three different crossbar-based designs.

We also present the normalized metrics with respect to power (GSOPS/W), area

(GSOPS/mm2), and both area and power (GSOPS/W/mm2). The metrics are

evaluated for a neuro-synaptic core designed with each of the memory cells at 65 nm

technology node.

As can be seen, the STT-RAM core has nearly 2× and 5× higher throughput

per unit Watt compared to PCM and RRAM based neuro-synaptic cores, respectively.

Hence, we designed a larger sized core with STT-RAM bit cells targeted to solve the

MNIST classification problem.

5.3.4 STT-RAM NVM Array for BASNN

The MLP SNN for the MNIST problem reported in [46], has four layers as -

784 × 256 × 256 × 10, which achieves a test accuracy of 98.0% with 8-bit fixed

precision representation. Their work also demonstrates a hardware design, with

SRAM memory, for this network. In our work, we demonstrate the STT-RAM

crossbar-based design for a single layer of this network with 256 neurons. The design

can be scaled up for deeper networks by tiling multiple cores as shown in Figure 5.13.

Our neuro-synaptic core for SNN inference consists of a memory array of 2048×2048

STT-RAM bit-cells with their corresponding read and write peripheral circuits. From

interconnect parameters for the 28 nm node [229], we estimate the resistance of bit-line

with 2048 bit cells as RBL = 4.1 kΩ and capacitance as CBL = 63 fF. Thus, the RC

wire delay of about 260 ps is considerably less than the pulse width needed to read

or write (2 to 10 ns) to a single STT-RAM device, making our large array design

feasible. Every computational core also comprises of an Address Event based spike
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decoder, the digital logic for binary activation spiking neuron and a spike router. The

on-chip routing network manages the communication of binary spike signals issued

by spiking neurons to their respective destination cores, similar to the spike routing

architecture in IBM’s TrueNorth processor [22].
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Figure 5.13 (a). Single neuro-synaptic core and its five main components.
(b). Multiple cores tiled together for realizing large SNNs. The on-chip router
communicates binary spikes to different cores of the chip. The address decoder
translates the received spike information into binary spikes for the corresponding
wordlines of the crossbar array.

We designed our STT-RAM array along with its the peripheral circuits and

digital logic in 28 nm CMOS technology node (with F = 50 nm). Table 5.7 lists the

post-synthesis area and power numbers for the memory and digital logic components

of the crossbar array. Using these numbers, we estimate the performance per Watt and

per mm2 for our neuro-synaptic core. Based on the read latency of our STT-RAM
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memory block, we use a clock frequency of 100MHz to read the synaptic weights

and biases from the array and operate the neuronal digital blocks. The area and

power of the on-chip router for our neuro-synaptic core are taken to be 10% of the

total neuronal area and power respectively based on some of the earlier reported

designs [22, 198, 230]. The array efficiency of our STT-RAM crossbar array is 53%,

with the read/write peripheral circuits taking up 0.27mm2 and the 4Mb of STT-RAM

bit-cell array requiring 0.3mm2 of the total memory area.

Table 5.7 Post-synthesis Numbers for the STT-RAM-based Neuro-synaptic Core

Blocks Area (mm2) Power (mW)

Digital Logic 0.04 2.82

STT-RAM array 0.57 8.58

Total 0.61 11.40

To benchmark the performance of the STT-RAM based neuro-synaptic core

with a full CMOS implementation, we study a slightly modified core with 256 neurons

and 1156×256 synapses, as was used in the first layer of the BASNN design reported

in [46]. We compare the two designs in terms of energy spent per time-step and

the area for realizing a single layer of BASNN in Figure 5.14. While the neuronal

energy is not very different in the two designs, the memory read energy for the

STT-RAM array is nearly 3× smaller than that of the SRAM memory. Thus, there is

a clear energy advantage in using STT-RAM memory over SRAM for neural network

inference engine designs, as has also been previously demonstrated for memory cache

designs [225]. The small difference in the digital neuronal energy can be attributed

to the extra glue and control logic in the SRAM design [46]. Our design does not

need the additional glue logic as every neuron in the layer is connected to the bitline

or source line of the STT-RAM core as seen in Figure 5.11. Overall, there is a

2.8× reduction in the energy consumption per time-step in our neurosynaptic core
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compared to that of the non-crossbar SRAM design (see Figure 5.14(a)). The area

advantage of STT-RAM can be seen in Figure 5.14 (b) where we see a 3× reduction

in the area for a single SNN layer between the two designs.
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Figure 5.14 Performance comparison between an SRAM based design and STT-
RAM based design for 256 neurons and 1156 × 256 synapses. (a). Comparison of
the neuronal and memory read energies for a time-step in the SRAM (described in
Yin et al., 2017) and STT-RAM designs. The additional glue logic in the SRAM
based design results in slightly higher power for the neurons, while such circuitry is
not required in the STT-RAM crossbar array, as the neurons directly connect to the
synaptic array as in Figure 5.11. (b). Comparison of the neuronal logic area and the
memory area between the two designs for a single layer of 256 neurons.

In our design, one synaptic operation is the access of an 8-bit synaptic weight

from the memory and updating the membrane potential, when an input spike is

received. Table 5.8 shows the different performance metrics for our neuro-synaptic

core with the SRAM-based design in [46]. Each spike in the input layer of the core

results in accessing 2048 bits of synapses from the array (or accessing 256 synaptic

weights) and further performing 256 neuronal updates. Hence, at a clock rate of

100MHz, our design achieves 25.6 GSOPS.

The SRAM based BASNN design realizes a four-layer MLP network and

operates at 163MHz [46]. Using the spike statistics through the complete network,

the design achieved 77.5 GSOPS. As discussed in the previous section, the energy of a

single layer of the network per time-step is almost two times smaller for the STT-RAM

core (Figure 5.14). On normalizing the total operations per second in each of the two
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designs with respect to the total power required per time-step, we see close to 2×

improvement in the GSOPS/W for the STT-RAM core (Table 5.8). It was also seen

in the previous section that the core area was smaller by a factor of 3 with respect

to the SRAM design. Similarly, normalizing the designs’ throughput with respect to

the total power and area, the GSOPS/W/mm2 metric for the STT-RAM design is

higher by approximately 6× compared to the SRAM based design.

Table 5.8 Performance Comparison Between SRAM and STT-RAM Architectures

Hardware accelerators GSOPS/W GSOPS/W/mm2

SRAM [46] 28 nm 1020 627.5

STT-RAM crossbar (this work) 28 nm 2245 3680

With the assumed dimensions of the memory cell, the STT-RAM design

has a density of approximately 0.8MB/mm2. At 28 nm node (F=50 nm), the

highest memory density achievable using conventional lithography for a 1-bit per cell

cross-point technology is 12.5MB/mm2. Recent work on memristor based inference

engines which has reported 800GSOPS/Watt and 580 GSOPS/mm2 assumes a 3D

memory technology that has a density of 130MB/mm2 at 32 nm node [31]. Similarly,

the inference engine based on RRAM which has reported 1060GSOPS/Watt and

820GSOPS/mm2 assumes a memory technology that has a density of 54MB/mm2 at

32 nm node [28]. Our design is competitive with these studies in terms of performance

per Watt.

While the designs reported in the literature [28, 30, 31, 205] make use of

memristors’ analog conductance states for storing the data, they require the use

of ADCs and DACs, bringing down the area efficiency. Our design, on the other

hand, uses binary STT-RAM states and avoids the use of ADCs and DACs, giving a

balanced memory area efficiency of 53%.
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5.3.5 Learning on NVM Array

We extended the above described NVM array to support on-chip spike based learning.

As described in the original work, the BASNN training problem is cast into the

same gradient based back-propagation framework as that exists for ANNs [46]. The

straight through estimator linearizes the sharp jump in the activation output near

the threshold to compute the membrane potential’s (evaluated as in Equation 5.9)

gradient with respect to the synaptic weights. The activation gradient gk(n) for the

kth layer is given as,

ak ′(vk(n)) = gk(n) =


(1/2θ), (θ − 1) ≤ vk(n) ≤ (θ + 1)

0, otherwise
(5.11)

The gradient based back-propagation requires evaluating the gradients of the loss

function (L(w)) with respect to the network parameters (w and b) using the chain

rule for derivatives. Finally, the weight update term which is proportional to the

loss gradient (η∂L/∂wk) is added to the current set of weights for each layer. The

amount of weight update is decided by the learning rate, η. This process involves the

following set of expressions to be evaluated. The loss function L adopted for training

is the squared hinge loss [46]. Weight update for each layer k, is given as,

∆wk = ηδk × (ak−1)T (5.12)

Here, ak−1 is the vector of spikes output from the previous layer k − 1. The error

gradient is represented by the term δk, which is iteratively calculated for each layer

starting from the last layer L = k + 1, as,

δk =
(
(wk+1)Tδk+1

)
◦ ak ′ (5.13)

For the last layer, L, the gradient term is evaluated as,

δL = L′ ◦ (−Sd) (5.14)

117



Here, Sd is the desired set of spike trains at the output layer of the network.

While we used a 8-bit fixed precision representation for network parameters and

forward pass computation for inference, training requires all the network variables to

have a larger dynamic range varying over 5 to 6 orders of magnitude [219, 220].

Our studies on the dynamic range of weights and gradients while training the

BASNN showed that the values ranged between 10−5 to 1 making the floating point

representation is an ideal choice to represent variables with such large dynamic

range [219].

The network we carried out our studies is the same as described in the previous

section, which has an MLP configuration. The input layer with 784 pixels connects

in an all-to-all manner with hidden layer of 256 neurons. There are two hidden layers

each with 256 neurons and finally the output layer has 10 neurons. We trained this

network with a batch-size of 1 and stochastic gradient descent (SGD) optimizer.

For the baseline results, we used the single precision representation of 32-bit

floating point (also referred to as FP-32). This representation uses 8-bit for exponent,

23-bits for mantissa and 1-bit for the sign [231]. The four-layered SNN was trained for

500 epochs on the MNIST dataset and achieved an accuracy of 97.25% on the test set,

and 98.0% on the training set. We also introduced a dropout of 0.1 in the input layer

and 0.2 in the hidden layers. Note that here, we employed the stochastic gradient

descent with a batch size of 1 to avoid the need to store the intermediate variables

of the size of the network parameters outside of the array. The original work on this

algorithm with a 4 layered network and with hidden layers of size 1024 in the FP-32

representation reports a test accuracy of 98.7% [46] which was carried out by making

use of the Adam optimizer and using a batch size of 100. To emulate the reduced

precision on the hardware we carried out the training in half precision floating-point

format (also referred to as binary16 or FP-16) in MATLAB. This representation uses

IEEE-754 2008 format with 5-bits for exponent and 10-bits for the mantissa and can
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provide a dynamic range of 105 for the representation [232]. The network emulated

with FP-16 representation for the variables and computations (and the same training

scheme with batch of 1 and SGD), achieved an MNIST test accuracy of 97.18% and

training accuracy of 97.8%. Hence, there was no significant drop in the algorithmic

performance going to lower precisions.
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Figure 5.15 Scheme for performing back-propagation of error gradients and weight
update.

Figure 5.15 shows the scheme for realizing the learning computations on the

crossbar array. It involves two phases, one for evaluating the gradients δ and second

for performing the weight updates. The forward pass evaluates the neuronal spike

(ak), membrane potentials (vk) and the activation gradients (gk). For each pre-

synaptic neuron i, which has issued a spike at time-step n, synaptic weights on the ith

row of the crossbar are read and stored in local registers of the post-synaptic neurons.

If the pre-synaptic gradient is non-zero (or if vk1i ∈ [0, 2θ]), we then compute the δs

as the output of a MAC (multiply and accumulate) unit as,

δk−1
i =

1

2θ

∑
j

wk
j,i.δ

k
j (5.15)
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The weight update term ∆w is evaluated only if there is a pre-synaptic spike,

i.e., if ak−1
i ̸= 0. We use the wj,is that were read in the previous phase (or read again,

if they were not read earlier) and add the update term to each of the synaptic weights.

wj,i(n+ 1) = wj,i(n) + ∆wj,i (5.16)

The bits flipped from the read weight values and the newly updated values are

compared by performing a bit-wise XOR as, wflip = w(n+1)⊕w(n). The two steps

of weight update and evaluating δs are repeated sequentially over all the wordlines

which have received an input spike.

While the array design for inference had 8-bits to represent the synaptic weights,

we used 16-bits for training. Figure 5.16 shows the modified configuration for the

2048×2048 sized NVM array. The array now directly interfaces with 128 post-synaptic

neurons at a time, thus giving a fan-out of 128 for every input. For larger fan-outs,

a single input spike can be used to activate multiple wordlines in a time-multiplexed

manner. The digital logic blocks at the array periphery consists of 16-bit floating

point adder, FP-16 MAC unit, and an XOR block to identify the flipped bits in the

weights and biases. Additionally, it also includes a set of schedulers to select the

different wordlines for a given input spike.

We designed the digital logic with FP-16 compute units in Verilog and

synthesized them using the Synopsys Design Compiler tool to get the area and power

estimates of each of these blocks at 65 nm node. The memory array design remains

the same as in Section 5.3.4 with 2048 × 2048 bit cells with a memory capacity of

512KB. Each synapse is represented with 16 bit-cells, which also implies every read

cycle we can access 128 synaptic weights on a row. Table 5.9 presents the synthesized

area and power estimates for the different digital logic blocks (FP-16 neuron, MAC

unit, spike decoder, router and controller). The area and power for the spike router

is taken as 10% of that the neuronal design based on previous published works [230].
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Figure 5.16 A 2048 × 2048 crossbar array supporting access to 2048 inputs and
128 outputs at a time. Each synaptic weight is represented by 16 devices on a
row. The peripheral digital logic consists of blocks to update the neuron membrane
potential, the error derivative δ and the weight update terms ∆w. Similar to the
design for inference (Figure 5.13), when multiple cores are tiled together, the inter-core
spike communication takes place through the routers and spikes are presented to the
memory array via address decoders. To support fan-out larger than 128, multiple
wordlines can be accessed in a time-multiplexed manner for every batch of 128
post-synaptic neuron.

We compare our design with an SRAM memory block of the same capacity as the

STT-RAM array of 512KB. The DESTINY tool is used to get the estimates for the

SRAM memory block [233]. Similar to the SRAM cell used in the inference design,

we use a bit cell of size 150F2 in DESTINY. Table 5.10 presents the read and write

peripheral power for the two memory technologies of SRAM and STT-RAM. Based

on the maximum latency of SRAM access and bandwidth reported by DESTINY, we

set the memory operating clock frequency at 250MHz. The STT-RAM array that we

designed can operate at 100MHz based on the timing requirements of its peripheral
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circuits. The total area of the STT-RAM design is 1.83mm2 and that of the SRAM

design is 7.27mm2.

Table 5.9 Post-synthesis Numbers for Floating-Point Digital Logic Blocks

Blocks Area (mm2) Power (mW)

Neuron Logic (Forward pass) 0.358 20.49

Spike Router 0.036 2.05

Controller and decoder 0.11 6.15

MAC and weight update blocks 0.039 18.21

Total 0.543 46.9

Table 5.10 Comparison of SRAM and STT-RAM Architectures for Training

Design Parameters SRAM (DESTINY) STT-RAM

Operating Frequency (MHz) 270 100

Read Power (mW) 529.5 27.29

Write Power (mW) 555.25 760.19

Memory bit-cell area (mm2) 6.29 1.22

Peripheral area (mm2) 0.44 0.17

Our digital logic blocks synthesized with 65 nm library cells can operate at

500MHz, without incurring any timing violation. The arrival of a spike on the input

wordline enables the read of all the bit cells on a row in the memory array. For the

STT-RAM array, the logic (running at 500MHz) operates 5× faster than the memory

(operating at 100MHz), while for the SRAM memory (operating at 250MHz), the

logic clock is 2× faster than memory. The neuronal updates, as well as the evaluations

of δ and ∆w values take place in the digital logic. The back-propagation modules used

for computing δs perform multiplication of δki and wk
i,j across all the output neurons i,

of layer k, and hence need more clock cycles than the memory read/write per row j.
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The total cycles needed for writing to the weights through write drivers and computing

error back-propagation δk−1 is decided based on the maximum of the cycles needed to

write to the memory array and to perform the MAC operation as the two stages can be

parallelized. For the STT-RAM array, we make use of only two write drivers per 16-bit

synapse, to limit the STT-RAM write driver power requirement and hence, each write

in the STT-RAM array requires 8 memory clock cycles. To measure the performance,

we compute the synaptic operations during the forward pass, back-propagation, and

weight update, based on the spike and gradient statistics collected while training the

network in software emulation with half-precision representation. Our neurosynaptic

core can be used to realize one layer of the SNN with maximum of 128 neurons. For

realizing layers with 256 neurons, two of such cores can be interfaced to the previous

layer output.

We measure the performance of a single core, by measuring the time required

to perform the synaptic reads for neuronal potential update (forward pass), synaptic

reads for evaluating the MAC (for δ) and finally the synaptic reads and writes during

the weight update stage (using ∆w). Table 5.11 lists the average number of synaptic

operations during different stages of learning in the neurosynaptic core. Using the

listed statistics we estimate the GSOPS (Giga Synaptic Operations per second) for

the neurosynaptic core. Table 5.12 presents the performance comparison of the SRAM

and STT-RAM designs. While the SRAM can be operated at a higher frequency than

the STT-RAM, the overall throughput is limited by the MAC logic which takes more

cycles per memory access, hence, we do not see a significant difference in the GSOPS

in the two designs. As we have accounted for the network activity during training, the

number of synaptic writes is significantly smaller than the number of synaptic reads

(in this example, we have 1, 180 writes compared to 8, 224 reads in both forward and

backward passes per image). This translates to smaller overall energy requirement

for the STT-RAM core, as STT-RAM memory read energy is significantly less than
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Table 5.11 Average Spike Statistics per Layer per Core in the SNN during Training

Network Statistics SRAM (250MHz) STT-RAM (100MHz)

Incoming Spikes ak−1 20 20

Incoming gradients gk−1 95 95

Forward Pass

No. of synaptic reads 2560 2560

Cycles for read 20 20

Back-propagation

No. of synaptic reads 5664 5664

Cycles for MAC 2833 1152

Weight Update

No. of writes 1180 1180

Cycles for write 20 160

Overall GSOPS

Synaptic Operations (SOPs) 9404 9404

Total cycles 2853 1172

Cycle time (us) 0.004 0.01

GSOPS 0.82 0.80

that of the SRAM memory (by ∼7×). Hence, considering the total power in the

design for the forward and backward passes, the STT-RAM core has ∼5× higher

GSOPS/W compared to that of the SRAM core. Normalizing the performance with

respect to the core area, it can be seen that STT-RAM core has nearly 20× higher

GSOPS/W/mm2 than SRAM core.
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Table 5.12 Performance Comparison Between SRAM and STT-RAM Designs

Design GSOPS GSOPS/W GSOPS/W/mm2

SRAM design 0.82 0.71 0.09

STT-RAM 0.80 3.5 1.93

5.4 Summary and Discussion

We have presented a an scalable CMOS architecture which could be extended in

designing larger spike based learning systems. The supervised learning algorithm

ReSuMe has been analyzed in terms of its learning speed and the network size

required. The results presented here give an indication of the size of the network

to be used for longer spike streams. It was seen that an on-off ratio of just 100 is

sufficient to represent the weights, with a precision of 5 bits. Based on this analysis,

we have presented a high level scalable architecture for on-chip learning, inspired

by the recently demonstrated SNN implementations. At an acceleration of 1000 our

design is projected to scale to support 30 MSUPS/Watt at 10 nm node.

We also presented a convolutional neural network in both spiking (SNN)

and non-spiking (ANN) versions, realized using memristive cross-bar arrays. The

networks are trained in software in the full-precision mode and their synaptic weights

are then optimized for designing an inference engine using memristive devices.

Our simulations suggest that optimization strategies such as weight clipping and

realization of the convolution operation in parallel using memristive arrays can result

in implementations with close-to-baseline accuracies. As our SNN performs nearly as

well as the reference ANN on memristive hardware with conductance variability, it

shows potential for realizing energy efficient neuromorphic platforms using SNNs.

We have also presented a scalable crossbar based design for accelerating SNNs,

using binary storage NVM arrays. We compared the designs for SNN inference across

three prominent NVM technologies, STT-RAM, RRAM and PCM. With the STT-
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RAM array showing a higher throughput compared to the other two, we designed a

2048× 2048 sized array to realize the BASNN model. This design is able to achieve

nearly twice the performance per Watt as compared to a full CMOS design with

SRAM memory. Comparing the performance per unit area and per unit Watt metric

(GSOPS/W/mm2), our neurosynaptic core for inference is almost six times better

than SRAM based CMOS design.

We extended the proposed crossbar architecture to incorporate learning on the

hardware. We have also evaluated the BASNN training algorithm under reduced

bit-precision, with less than 1% drop in the accuracy from the 32-bit floating point

baseline. Overall, the STT-RAM core performs nearly 20× better than the equivalent

SRAM core, in terms of GSOPS/W/mm2, due to its lower read energy and smaller

bit-cell area, when considering the network statistics for training with the MNIST

dataset. Our design’s throughput is limited by the number of cycles required by the

MAC unit. Introducing more parallelization in the MAC logic can improve the overall

performance of the design, which could be a future direction to this work.

Going forward, the network training under further low bit-precisions (≤ 8 bits)

could be studied and hardware-aware optimization strategies during training to get

the best accuracy could be explored. Another aspect that is worth exploring is

a comparison between other emerging nanoscale memory devices such as PCMO,

FeRAM, etc. and some of the existing CMOS based NVMs such as Flash memory

technology, for designing efficient neural network accelerators.
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CHAPTER 6

CONCLUSION AND FUTURE OUTLOOK

We have explored the algorithmic and hardware aspects of bio-inspired computing

with SNNs in this dissertation. On the algorithms front, we have explored the spike-

based supervised rules of ReSuMe and NormAD, which are capable of training spiking

neural networks to generate spikes at desired instants of time. A more hardware-

friendly algorithm with integrate and fire neuron model, called the binary activation

SNN is also explored and a non-von Neumann design is presented for SNN inference

and supervised learning.

We have developed a network for handwritten digit classification trained using

the spike based supervised learning algorithm NormAD. The two-layered network,

achieves a classification accuracy of 98.17% on the standard data-sets of handwritten

digits, the MNIST database. We achieve this accuracy with less than 4× fewer

parameters than the state of the art networks, with just ∼ 2% drop in accuracy. These

include optimizing the two layer network discussed in this work, in terms of number

of learning synapses, bit-precision and other algorithmic improvements for efficient

hardware implementation without any reduction in the classification accuracy. All

of our NormAD SNN simulations are carried out on the GPU and we have also

extended this to demonstrate real-time prediction on the users’ hand-drawn digits on

a touch-screen.

Devices such as PCMs, STT-RAMs, and RRAMs have shown potential to

be incorporated in neuromorphic computing hardware architectures [113, 198]. We

have developed an efficient hardware architecture that is capable of executing online

on-chip learning for different cognitive tasks. The system is designed using the

emerging NVM devices to store the synaptic weights and CMOS circuits for neuronal
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computation. We also developed computationally efficient models of three nanoscale

devices which capture the basic features of memory switching and incorporate the

reliability aspects as well. These modeling scheme presented could be extended

to more emerging devices or fine-tuned based on further improvements in device

engineering techniques, especially at advanced nodes.

We have shown memristive hardware for SNN acceleration with both analog and

digital storage arrays. While analog memory arrays are area efficient and also provide

potentially higher throughput, there are several reliability challenges, which need to

be addressed either at the algorithmic or architecture level. We have also presented

an NVM based architecture for realizing SNN inference and performing training on

the hardware. We have shown that the STT-RAM technology performs better than

conventional SRAM memory which is typically used in on-chip caches and registers.

Overall, the non-volatility combined with smaller footprint of the NVM devices could

potentially replace the conventional volatile memories in edge devices which may be

having intermittent supply of power.

Going forward, we consider time-series based problems where SNNs have the

potential to perform better than other neural network models, as an application

domain worth further research due to their inherent temporal processing capability

[234–236]. Another aspect is the study on scalability and generalizability of such

non-von Neumann architecture to larger class of problems. This is essential to identify

the scale of applications whose computations can be performed entirely within these

NVM based accelerators without the dependence on communicating with the cloud

servers.
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APPENDIX A

SIMULATION PARAMETERS

The simulation parameters for the spike based learning algorithm NormAD used in

Chapter 3 are listed in Table A.1. Table A.2 lists the simulation parameters and

configurations for the Remote Supervised Method (ReSuMe) that were used in the

CMOS digital hardware design detailed in Chapter 5.

Table A.1 Simulation Parameters for

NormAD

Parameters Values

time step ∆t 0.1ms

Membrane conductance, gL 30 nS

Resting potential, EL −70mV

Threshold potential, VT 20mV

Learning rate (12 kernels), r 26 pS

Learning rate (8 kernels), r 31 pS
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Table A.2 Simulation Parameters for ReSuMe

Parameters Values

Common parameters

time step ∆t 0.1ms

Membrane conductance, gL 1µ S

Resting potential, EL −62mV

Threshold potential, Vth −55mV

Learning window, amplitude A+ 1× 10−10

Learning window, time constant, τ+ 20ms

Non-Hebbain term, a0, ad 0

NMC neurons

Membrane capacitance, C 0.2µF

Synaptic time constant, τ 6ms

Synaptic weight multiplier, w0, 5× 10−8

Output neuron

Membrane capacitance, C 1 nF

Synaptic time constant, τ 1.5ms

Synaptic weight multiplier, w0, 1× 10−9.5

Network parameters

No. of NMC neurons 800 (typical case)

Input connectivity to NMC 30%

NMC neurons to output connectivity 70%

Excitatory to inhibitory neurons in NMC 80 : 20
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APPENDIX B

NVM DEVICE MODEL PARAMETERS

The parameters used in the compact Verilog-A models of PCM, STT-RAM and

RRAM are listed here that were discussed in Chapter 4.

Table B.1 Parameters used in the PCM Compact Model

Parameter Value Parameter Value

Rth 65MK/W Rs1 1µΩ

C1 1 nF Rs2 1Ω

Rt1 1GΩ Rheater 410Ω

Rt2 1µΩ Ea (in eV) 0.27− 0.25cx

TX 200◦C Γa 2.3 eV

TM 600◦C A 1.06× 10−23 ns

C2 20 nF Vh 0.5V

RON 1000Ω Ith 40µA

Table B.2 Parameters used in the STT-RAM Compact Model

Parameter Value Parameter Value

RP 3 kΩ H 1.5× 105 A/m

RAP 6 kΩ γ 1.76× 1011 rad/s.T

Iwrite 150µA MS 4.65× 105 A/m

α 0.02 K 1.15× 105 T.A/m

η1 (HRS) 0.42 η2 (LRS) 0.17
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Table B.3 Parameters used in the RRAM Compact Model

Parameter Value Parameter Value

RP 60 kΩ γ0 16

RAP 500 kΩ Ea 0.60

g0 0.75 tox 12 nm

α 0.02 gmax 1.7 nm

V0 0.75 gmin 0.1 nm
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