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ABSTRACT

MAGNETIC FIELD EFFECTS
ON LITHIUM ION BATTERIES

by
Kevin Mahon

The Nobel Prize in Chemistry 2019 was just recently awarded to John B. Goodenough,

M. Stanley Whittingham, and Akira Yoshino for the development of lithium-ion batteries.

Lithium-ion batteries have seen use in many different industries and applications such as in

portable devices, power grids, and electric vehicles. As lithium-ion batteries become more

commonplace they will need to be modeled more extensively. The magnetic field effect on

lithium-ion batteries has not been studied significantly since they were first discovered.

Modeling these batteries is still difficult because of the many complexities of the

operation of a battery. Lithium-ion batteries are commonly modeled through equivalent

circuit models (ECM’s) in where experimental data is replicated through the use of parallel

and series resistors and capacitors. The values of these resistance and capacitances are

tuned to the experimental data. The other route for modeling lithium-ion batteries involves

looking at the fundamental electrochemistry that governs them. This involves solving the

differential equations for conservation of mass and conservation of charge. These equations

are very nonlinear, dependent on each other, and do not have closed-form solutions.

One-dimensional and two-dimensional batteries were modeled based on the under-

lying physics of a lithium-ion battery. Magnetic fields were injected into the batteries to see

the effect on their voltage and current charge/discharge characteristics. It was observed that

external magnetic fields result in reduced times during charging and discharing of lithium-

ion batteries due to the paramagnetic nature of lithium ions.
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CHAPTER 1

INTRODUCTION

1.1 Battery Applications

Batteries come in many shapes and sizes and see many different applications. In recent

years electrical storage has seen an increased interest due to the emergence of renewable

sources of energy. Across the world nations have made self-imposed requirements on their

fuel sources that power their electric grids. The issue with some of these renewable sources

of energy are that they are not as reliable as other forms of energy. While coal or natural

gas can be burned at any time of day, wind and solar only work when there is a breeze

or the sun is up. For most of the history of electric grids around the world supply meets

demand; electricity is supplied exactly when it is demanded. These two factors, reliability

and demand, cause the need for energy storage if the world is to want to rely on these forms

of energy. While the sun is up some of this energy can be supplied directly to the grid while

some may be used to fill battery banks.

Electric vehicles have also seen an increased area of research for higher energy

and more capacity batteries. Most people’s concern with electric vehicles is range and

charging times. If higher energy density batteries can be discovered, this would help to

solve both the range and the charging issues. Another application for energy storage is

that of smaller electronics or portable equipment such as phones, laptops, power tools, and

other instruments. Higher density batteries in this case provide a longer charge that allows

the user to charge their battery less frequently. If more capacity is the goal, a battery taking

up the same space could last longer. If weight is a concern, the same capacity can be seen
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while taking up less space.

1.2 Types of Batteries

Batteries come in two different types, primary and secondary. Primary batteries are non-

reversible single use batteries. These types of batteries see use in consumer electronics,

weapon systems, medical applications, aerospace applications, and more. They are typi-

cally used when the price of rechargeable batteries is not economically feasible or charging

is impractical because of their application. Typical primary batteries are the zinc-carbon

battery or the alkaline dry cell [1]. The zinc-carbon battery has zinc as the anode; a graphite

rod in the center, surrounded by a paste of manganese dioxide, ammonium and zinc chlo-

rides, and carbon black, is the cathode. The reaction that occurs at the anode is approxi-

mated by

Zn(s)→ Zn2+(aq) + 2e− (1.1)

The reaction that occurs at the cathode is approximated as

2NH+
4 (aq) + 2MnO2(s) + 2e− →Mn2O3(s) +H2O(l) + 2NH3(aq) (1.2)

An alkaline dry cell is similar to the zinc-carbon battery except potassium hydroxide

is used instead of ammonium chloride. At the anode the reaction is

Zn(s) + 2OH−(aq)→ Zn(OH)2(s) + 2e− (1.3)
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At the cathode the reaction is expressed as

2MnO2(s) +H2O(l) + 2e− →Mn2O3(s) + 2OH−(aq) (1.4)

A natural evolution of the primary cell was the secondary cell which made up for

its shortcoming of only being single use. The advantage of the secondary cell is that it is

rechargeable. Two types of secondary batteries are the lead storage cells and the nickel-

cadmium cells [1]. The lead storage cell consists of electrodes of lead alloy grids; one

electrode is packed with a spongy lead to form the anode, and the other electrode is packed

with lead (IV) oxide to form the cathode. The reaction that occurs at the anode is shown

below

Pb(s) +HSO−
4 (aq)→ PbSO4(s) +H+(aq) + 2e− (1.5)

and the reaction occurring at the cathode is

PbO2(s) + 3H+(aq) +HSO−
4 (aq) + 2e− → PbSO4(s) + 2H2O(l) (1.6)

In the nickel-cadmium cell the anode consists of cadmium and the cathode is hy-

drated nickel oxide (approximately NiOOH) on nickel; the electrolyte is potassium hydrox-

ide. The reaction that occurs at the anode is

Cd(s) + 2OH−(aq)→ Cd(OH)2(s) + 2e− (1.7)
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and the reaction occurring at the cathode is

NiOOH(s) +H2O(l) + e− → Ni(OH)2(s) +OH−(aq) (1.8)

1.3 Battery Operation

A typical battery is composed of three regions; the negative electrode, the separator, and

the positive electrode. These three regions are shown below in Figure 1.1.

Figure 1.1 Three regions of a battery.

All three regions are immersed in an electrolyte that allows positive and negative

ions to move between the two electrodes. Connected to the the positive electrode is the

positive current collector and connected to the negative electrode is the negative current

collector. When the battery is being charged an external voltage source is connected to the

negative current collector and the positive current collector. Pictured below in Figure 1.2 is

when the battery is being charged.
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Figure 1.2 Charge operation.

The negative electrode acts as the cathode where a reduction reaction occurs which

produces a positive ion and an electron. This relation shown below corresponds to the half

reaction of sodium chloride

2Na(s)→ 2Na+(s) + 2e− (1.9)

The positive electrode acts as the anode where an oxidation reaction occurs which

consumes the now free positive ion and electron. This relation shown below corresponds

to the half reaction of sodium chloride

Cl2(g) + 2e− → 2Cl−(s) (1.10)

Presenting half reactions allows more concentration into what each electrode mate-

rial is contributing. Shown below is the full reaction for sodium chloride

2Na(s) + Cl2(g)→ 2NaCl(s) (1.11)
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Electrons move from the anode to the positive current collector, from the positive

current collector to an external voltage source, from the external voltage source to the

negative current collector, and from the negative current collector to the cathode. For a

discharge operation much of the opposite occurs as shown in Figure 1.3.

Figure 1.3 Discharge operation.

When the battery is discharged the negative electrode is the anode, the oxidation

reaction that occurs for the case of sodium chloride is given by

2Na+(s) + 2e− → 2Na(s) (1.12)

For discharge the positive electrode acts as the cathode and the reduction reaction

that occurs for the case of sodium chloride is given as

2Cl−(s)→ Cl2(g) + 2e− (1.13)

Combining both of these half reactions produces the full reaction shown below as
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2NaCl(s)→ 2Na(s) + Cl2(g) (1.14)

Positive ions move from the anode to the cathode through the electrolyte and the

separator as negative ions move from the cathode to the anode. The cathode builds up

a positive charge during this exchange and the anode builds up a negative charge. This

creates a voltage difference between the anode and the cathode. In discharge, electrons

move from the anode to the negative current collector, from the negative current collector

to an external load, from the external load to the positive current collector, and from the

positive current collector to the cathode [2].

1.4 Lithium Ion Battery

Lithium has seen recent interest because of its desirable properties. Two of those properties

are its higher energy density compared to other comparable cells and its higher voltage.

Compared to NiMh you could create a battery with the same energy but it would be half

the size and half the weight. Typical NiMh and NiCd rechargeable cells operate about 1.2-

1.5V nominal, whereas lithium-ion cells typically operate between 3.2 and 3.8V nominal.

Having a high voltage is important in that it means that you need to connect fewer cells

together in series in order to achieve a desired pack voltage [3]. Shown below in Tables

1.1 - 1.3 are some of the more commonly used materials in lithium ion batteries for the

cathode, anode, and electrolyte respectively [4].

Considering lithium manganese oxide (LMO) batteries as an example, during charg-

ing the Li+ escapes from the LiMn2O4 at the cathode, under the electromotive force, the

Li+ passes through the electrolyte and embeds into the carbon interlayer of the graphite.
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Thus the lithium and carbon interlayer are combined internally. When discharging, the Li+

escapes from the carbon interlayer of the anode, through an opposite process under the

electromotive force, and embeds into the anode LiMn2O4 [5]. The reaction in the anode is

Li1−xMn2O4 + xLi+ + xe−
discharge−−−−−⇀↽−−−−−
charge

LiMn2O4 (1.15)

The reaction for the cathode is

LixC
discharge−−−−−⇀↽−−−−−
charge

C + xLi+ + xe− (1.16)

The overall reaction is shown below

Li1−xMn2O4 + LixC
discharge−−−−−⇀↽−−−−−
charge

LiMn2O4 + C (1.17)

Selection of an appropriate cathode depends on the particular application and de-

sired properties. For cathode materials that may be higher power capability, cost, safety,

energy density, nominal voltage, or stability.
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Table 1.1 Cathode Active Materials

Cathode Material Specific Midpoint Comments
Capacity Voltage
mAhg−1 Versus Li at

at C
20

LiCoO2 140-155 3.9 Prevalent in portable electronics,
cobalt is expensive

LiNi0.8Co0.15Al0.05O2 200 3.73 High end applications (satellites,
etc.), high capacity, safety

comparable to LiCoO2

LiNi1−x−yCoxMnyO2 140-180 -3.8 One of the prospective automotive
li-ion battery cathode candidates,

slightly safer than LiCoO2

LiMn2O4 100-120 4.05 Inexpensive, safer than LiCoO2,
poor cycling at elevated

temperatures due to manganese
(Mn2+) solubility in electrolytes

LiFePO4 160 3.45 Lower energy, safer alternative
to LiNi1−x−yCoxMnyO2

Source: [4]

Anodes are typically made of some form of carbon either graphite or soft or hard

carbons. Currently, the most common commercial anodes are carbons that possess rel-

atively low surface area and intercalate lithium ions into their layered structure without

forming metallic lithium under standard operating voltage, temperature, and current rate

conditions [4]. Intercalation is the process by which a molecule is inserted into a lattice.

It is also known as the reversible insertion of a guest species into a host lattice. Either

molecules or ions can get inserted and host materials can be inorganic. Intercalation reac-

tions are the basis of all Li-ion batteries.

9



Table 1.2 Anode Active Materials

Manufacturer Grade Type Reversible First Cycle
Capacity Efficiency %
mAhg−1

Osaka Gas MCMB Soft 295.3 92
6-28 Carbon,

MCMB Graphitized 326.9 92
10-28 at 2800 ◦C

MCMB 334.0 92
25-28

OMAC-15 Soft 364.9 96
OMAC-21 Carbon, 356.0 93

Hydro-Quebec SNG-12 Graphitizied 370 86
Superior LBG-1025 Natural 360 91
Graphite Graphite
Superior SLA-1020 Thermally 363 92
Graphite Purified

Natural
Graphite

Superior SLA-1015 Surface 352 92
Graphite Treated

Natural
Graphite

Source: [4]

Electrolytes for lithium ion batteries are typically chosen to meet certain criteria. It

should be completely dissolved and dissociated in the solvent mixture. The solvated lithium

cations should move within the media with high mobility. The anion should be inert to

electrolyte solvents. The salt anion should be stable against oxidative decomposition at the

cathode. Both the anion and the cation should remain inert toward all the cell components,

such as separator, electrode substrates, and cell packaging materials. And the anion should

be nontoxic and stable against thermally induced reactions with electrolyte solvents and

other cell components [4].
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Table 1.3 Electrolyte Materials

Solvent MW Tm ◦C Tb ◦C Tf ◦C η, cP Dipole d,
g mol−1 25 ◦C moment g cm−3

debye
Ethylene 88 36.4 248 160 1.90 4.61 1.321

Carbonate, (40 ◦C)
EC

Propylene 102 -48.8 242 132 2.53 4.81 1.200
Carbonate,

PC
Dimethyl 90 4.6 91 18 0.59 0.76 1.063

Carbonate, (40 ◦C)
DMC

Diethyl 118 -74.3 126 31 0.75 0.96 0.969
Carbonate

DEC
Ethyl 104 -53 110 23.9 0.65 0.89 1.006

Methyl
Carbonate,

EMC

Source: [4]
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CHAPTER 2

MODELING LITHIUM ION BATTERIES

Modeling lithium ion batteries is a difficult task because of the nature of the equations that

govern them. They are extremely nonlinear and they depend on each other. No close-

form solution exists for them, so the only way of solving them is employing numerical

methods as presented in [6] Some of the common methods for modeling lithium ion batter-

ies. They include empirical models, electrochemical engineering models, ohmic porous-

electrode models, pseudo-two dimensional models, multiphysics models, thermal models,

stack models, and molecular/atomistic models. From a system engineering perspective they

proposed ways of improving simulation time by reducing complexity of models. A molec-

ular model was utilized in [7] to study the effects of pulse current charging. Their model

involved 51 Li+ molecules, 51 TFSI− (bis(trifluoromethanesulfonyl)imide) molecules,

and 600 PC (propylene carbonate) molecules for a total of 8616 atoms to see the effect on

diffusion.

2.1 Physics Based Modeling

Physics based modeling uses fundamental conservation laws to describe the electrochemi-

cal interactions in the battery. The most common model is based on Newman’s model [8],

and is what COMSOL’s built-in one-dimensional model is based on [9]. There are typi-

cally four governing partial differential equations for the charge and mass conservation in

the electrolyte and electrodes.
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2.1.1 Continuity Equation

The continuity equation is used for mass or species conservation for both the electrolyte

and the electrodes and is shown below

∂ρ

∂t
= −∇ · (ρV ) (2.1)

where ρ is the mass density and V is the velocity. The continuity equation simply states

that the time evolution of the mass enclosed by a surface is equal to the mass that travels

through that surface.

2.1.2 Conservation of Charge

Charge conservation also comes from the continuity equation. Shown below is the conser-

vation of charge used for the electrolyte and the electrodes

∇ · j = −∂ρ
∂t

(2.2)

where j is the current density and ρ is the volumetric charge density.

2.1.3 Conservation of Mass in Electrolyte

Starting with the electrolyte is the conservation of mass, in this case the conservation of

lithium in all three regions as shown in Figure 1.1. Shown below is the governing equation

for the conservation of mass in the electrolyte phase

εe
∂Ce
∂t

= ∇ · (D eff
e ∇Ce) +

jli(1− t+)

F
(2.3)
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where εe is the volume fraction of electrolyte, Ce is the concentration in electrolyte, D eff
e

is the diffusion coefficient, t+ is the transference number, F is Faraday’s constant, and jli is

the pore-wall flux across the interface. Each region of the battery also has initial conditions

for the concentration of mass in the electrolyte phase. Also there are Neumann boundary

conditions such as zero flux on both the current collectors and continuity on the internal

boundaries of the interfaces of the negative, separator, and positive regions. There are

also Dirichlet boundary conditions on the internal boundaries of the interfaces to make the

concentrations equal at the boundaries. For a one dimensional domain the conditions are

shown as

−D eff
e

∂Ce
∂x

∣∣∣∣
x=0

= 0

−D eff
e

∂Ce
∂x

∣∣∣∣
x=L−

neg

= −D eff
e

∂Ce
∂x

∣∣∣∣
x=L+

neg

−D eff
e

∂Ce
∂x

∣∣∣∣
x=(Lneg+Lsep)−

= −D eff
e

∂Ce
∂x

∣∣∣∣
x=(Lneg+Lsep)+

−D eff
e

∂Ce
∂x

∣∣∣∣
x=Lneg+Lsep+Lpos

= 0

Ce(x, 0) = C init
e (x)

Ce(L
−
neg, t) = Ce(L

+
neg, t)

Ce((Lneg + Lsep)
−, t) = Ce((Lneg + Lsep)

+, t)

(2.4)

2.1.4 Conservation of Mass in Solid Phase

Conservation of mass with the solid phase is a little more complex. The solid electrodes

are modeled on the porous electrode theory which states that the solid phase particles are

uniformly distributed throughout the negative and positive electrodes and the electrolyte

flows between these particles. The concentration at any given point in the positive or neg-
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ative electrode in the battery is taken to be the concentration at the surface of an equivalent

spherical particle at that point. Lithium diffuses to the center of the particle according to

Fick’s Second Law which is shown below as

∂Cs
∂t

=
Ds

r2

∂

∂r

(
r2∂Cs
∂r

)
(2.5)

where Cs is the concentration in the solid phase and Ds is the diffusion coefficient. The

entire particle has initial conditions for the concentration of mass in the solid. Also there

are Neumann boundary conditions such as zero flux at the center of the particle and an

applied current density at the surface of the particle. These conditions are shown as

−Ds
∂Cs
∂r

∣∣∣∣
r=0

= 0

−Ds
∂Cs
∂r

∣∣∣∣
r=Rp

=
jli
asF

Cs(r, 0) = C init
s (r)

(2.6)

where jli is the pore-wall flux across the interface, F is Faraday’s constant, and as is the

surface area to volume ratio.

2.1.5 Conservation of Charge in Electrolyte

For conservation of charge in the electrolyte the conservation of charge shown in equation

(2.2) was modified. The partial differential equation for the electrolyte in all three regions

is shown below

−jli = ∇
(
κeff∇ϕe + κeffd ∇

∇Ce
Ce

)
(2.7)
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where jli is the pore-wall flux across the interface, κeff is the effectivve ionic conductivity,

ϕe is the electrolyte potential, κeffd is the effective diffusion coefficient, and Ce is the con-

centration of species in elecrolyte. Each region of the battery also has initial conditions for

the potential in the electrolyte. There are Neumann boundary conditions such as zero flux at

the electrode/current collector boundaries and continuity on the internal boundaries of the

interfaces of the negative separator, and positive regions. There are also Dirichlet boundary

conditions on the internal boundaries of the interfaces to make the potentials equal at the

boundaries. For a one dimensional domain the conditions are shown as

−
(
κeff

∂ϕe
∂x

+ κeffd

∂Ce
∂x

Ce

)∣∣∣∣
x=0

= 0

−
(
κeff

∂ϕe
∂x

+ κeffd

∂Ce
∂x

Ce

)∣∣∣∣
x=L−

neg

= −
(
κeff

∂ϕe
∂x

+ κeffd

∂Ce
∂x

Ce

)∣∣∣∣
x=L+

neg

−
(
κeff

∂ϕe
∂x

+ κeffd

∂Ce
∂x

Ce

)∣∣∣∣x=(Lneg+
Lsep)−

= −
(
κeff

∂ϕe
∂x

+ κeffd

∂Ce
∂x

Ce

)∣∣∣∣x=(Lneg+
Lsep)+

−
(
κeff

∂ϕe
∂x

+ κeffd

∂Ce
∂x

Ce

)∣∣∣∣x=Lneg+Lsep
+Lpos

= 0

ϕe(L
−
neg, t) = ϕe(L

+
neg, t)

ϕe((Lneg + Lsep)
−, t) = ϕe((Lneg + Lsep)

+, t)

ϕe(x, 0) = ϕ init
e (x)

(2.8)

2.1.6 Conservation of Charge in Solid Phase

Conservation of charge in the solid phase is similar to equation (2.2). The partial differential

equation for the solid phase in the negative and positive electrodes is

jli = ∇(σeff∇ϕs) (2.9)
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where jli is the pore-wall flux across the interface, σeff is the effective electrical conduc-

tivity, and ϕs is the solid potential. Each region of the battery also has initial conditions for

the potential in the solid phase. There are Neumann boundary conditions such as zero flux

at the electrode/separator boundaries and an applied current density at the electrode/current

collector boundaries. There is also a Dirichlet boundary condition on the negative elec-

trode/current collector grounding the potential at that point. For a one dimensional domain

conditions are shown below as

−σeff
∂ϕs
∂x

∣∣∣∣
x=0

= 0

−σeff
∂ϕs
∂x

∣∣∣∣
x=Lneg

= 0

−σeff
∂ϕs
∂x

∣∣∣∣
x=Lneg+Lsep

= 0

−σeff
∂ϕs
∂x

∣∣∣∣
x=Lneg+Lsep+Lpos

= −Iapp

ϕs(x, 0) = ϕ init
s (x)

ϕs(0, t) = 0

(2.10)

2.1.7 Butler-Volmer Kinetic Equation

Connecting all four of the previous partial differential equations is the expression for the

pore wall flux across the interface. This equation is shown below as

jli = asio

[
e
αaF
RT

(ϕs−ϕe−U) − e−
αcF
RT

(ϕs−ϕe−U)

]
(2.11)

where jli is the pore wall flux across the interface, as is the surface area to volume ratio,

i0 = FkoC
αa
e (Cs,max − Cs,surface)

αaCαc
s,surface, F is Faraday’s constant, ko is the kinetic

17



rate constant, Ce is the concentration in electrolyte, αa is the anodic transfer coefficient,

Cs,max is the maximum concentration in the solid phase, Cs,surface is the concentration at

the surface in the solid phase, αc is the cathodic transfer coefficient, R is the universal gas

constant, T is the temperature, ϕs is the potential in the solid phase, ϕe is the potential in

the electrolyte phase, and U is the equilbrium voltage.

Physics based modeling was used in [10] to model a LiFePO4/Li half cell. Ver-

ification of the model was done through an impedance spectroscopy test. This modeling

technique was also used to develop a control-oriented fully observable/fully controllable

state variable model from an impedance representation of electrochemical kinetic, species

and carge conservation equations governing discharge/charge behaviors of a Li-ion cell

[11].

Being a physics based model means that other physics can be added to it to make

it a multiphysics model. Some industries are interested in the thermal properties of lithium

batteries As shown in [12] the thermal effects on the currents, voltages, and concentrations

can be seen. A detailed mathematical of the transport theory considering thermal effects

was shown in [13].

2.2 Equivalent Circuit Model

An equivalent circuit model takes the overall characteristics of the lithium ion battery and

estimates the output using dependent and independent current and voltage sources, capaci-

tances, resistances, and inductances.

In [10] they mentioned that most battery management systems utilize ECM to

protect the battery, predict, vehicle range, and update the range prediction depending on

the driving conditions. They also mentioned that ECM’s are commonly derived from
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impedance spectroscopy.

In [14] the physics based model is used as the foundation of the equivalent circuit

model. First using the Laplace transform of the solid phase concentration given in (2.5) and

the Laplace transform of the current density given in (2.9) to produce the equation shown

below

Cs(s)

J(s)
=

Rs

FDs

(
tanh(RS

√
s
Ds

)

tanh(RS

√
s
Ds

)−Rs

√
s
Ds

)
(2.12)

Then the Laplace transform of the relationship between the intercalation current

density and the overpotential shown below yields

N(s) =
RT

Fi0(αa + αc)
J(s) (2.13)

The Laplace transform of the electrolyte potential given in (2.7) is then calculated

and is shown below

Φ̃e(L, s) =
2RT (1− t0+)

Ce,oF
(Ce(L, s)− Ce(0, s))−

I(s)

2A

(
δ

κeff
+

2δsep

κeffsep

+
δ+

κeff+

)
(2.14)

The internal resistance of the battery is estimated using the relationship shown be-

low

Vf (s) = RfI(s) (2.15)
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With equations (2.12 - 2.15) a terminal voltage can be derived and this relationship

results in

Vcell(s) =

(
Up

(
Cs,pos(s)

cs,p,max

)
− Un

(
Cs,neg(s)

cs,n,max

))
−

(N+(s) +N−(s))− (Φe,+(s)− Φe,−(s))−RfI(s)

(2.16)

Then a 2nd order Thevinin model was created assuming that the diffusion and mi-

gration at the electrodes are assumed to be realized by paralleled resistance and capacitance

parts respectively, and an added resistance to compensate the changes of the electrolyte.

The equivalent model produced from this derivation is shown below in Figure 2.1.

Figure 2.1 Equivalent circuit model.

Source: [4]

To determine the values ofRp,Cp,Rn,Cn, andR0 the most commonly used method

is the Recursive Least Square (RLS) method which fits the parameters to some measured

data of the input current and output voltage. Instead electrochemical equation (2.16) is used

with the equivalent circuit model shown in Figure 2.1 to improve on the estimation of the

resistances and capacitances. In this proposed method is an improvement on the traditional

method of RLS as shown below in Figure 2.2.
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Figure 2.2 ECM simulation.

Source: [4]

2.3 Magnetic Field Effect

In [15] the magnetic field effect on a flowing electrolyte was studied extensively. They

proposed that as a consequence of the Lorentz forces acting on the charge components of

the electrolyte phase, a potential difference is induced in the electrolyte phase between two

titanium electrode. The induced potential difference would be described as shown below

∆φMAG = 2Bavm (2.17)

where ∆φMAG is teh induced potential, a is the inner radius of the pipe, vm is the average

flow velocity, and B is the applied magnetic flux density. Coupling of the magnetic field

into the model was done through the method employed by [16]. In the absence of a mag-

netic field Ohm’s Law gives the current density, J = σE. Considering the Hall Effect, the

modified expression for a general current density would be what is shown below
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J = σE +
σ2

ClF
(B× E) (2.18)

where J is the current density, σ is the conductivity, E is the elecric field intensity, Cl is

the concentration in electrolyte, F is Faraday’s constant, and B is the impressed (external)

magnetic flux density. This modified current density equation was then inserted into the

previously defined equations (2.7) and (2.9). The modified current density for the elec-

trolyte is shown below

−jli = ∇
(
κeff∇ϕe +

(κeff )2

CeF
(B×∇ϕe) + κeffd ∇

∇Ce
Ce

)
(2.19)

where jli is the pore-wall flux across the interface, κeff is the effective ionic conductivity,

Ce is the concentration of species in electrolyte, F is Faraday’s constant, B is the magnetic

flux density, ϕe is the electrolyte potential, and κeffd is the effective diffusion coefficient.

The modified current density for the solid phase is shown below

jli = ∇(σeff∇ϕs +
σ2
eff

CeF
(B×∇ϕs)) (2.20)

where jli is the pore-wall flux across the interface, σeff is the effective electrical conductiv-

ity, ϕs is the solid potential, Ce is the concentration of species in electrolyte, F is Faraday’s

constant, B is the magnetic flux density.

At least a two dimensional domain is needed to implement these equations. The

same authors of [16] showed a similar model in [17]. A similar phenomenon is used in
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detecting structural changes in electrode materials known as nuclear magnetic resonance

(NMR). This process provides information on different structural processes that can oc-

cur and on the mobility of the various species [18]. The magnetic field effect on lithium

batteries in electric vehicles was studied in [19]. Through the use of equivalent circuit mod-

els (ECM’s) they estimate the cross-coupling of the power inverters and converters to the

battery system. Migitation of these effects is done through common mode noise filtering,

differential mode noise filtering, EMI suppression filters, and electromagnetic shielding

[20].

Magnetic fields generated from lithium batteries themselves are also studied in [21].

Through the position of the tabs that come out of the batteries, they were able to see an

effect from the fields that were generated from the batteries. Their motivation for the study

was to see the effect in the context of the power drawn from the battery in cellphones under

traditional protocols such as the global system for mobile communications (GSM) and code

division multiple access (CDMA).

The effect of magnetic fields was also studied in [23] in the battery management

systems (BMS)for lithium-ion batteries. They discussed the different ways that electro-

magnetic interference (EMI) affects the BMS for the lithium ion battery packs.
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CHAPTER 3

RESEARCH

3.1 COMSOL Lithium Battery Interface

To compare the one dimensional domain to be created an understanding of COMSOL’s

existing lithium-ion battery interface is needed. There are many subtleties and nuisances

that are implemented in the battery interface that need to be transferred over to the proposed

model. The lithium-ion battery interface solves for the current balance in the electrolyte,

the current balances in the electrodes, the mass balance for the lithium salt, and the mass

balance of lithium in the batteries. The physics interface solves for five dependent variables;

φs the electric potential, φl the electrolyte potential, ∆φs,film the potential losses due to a

resistive film on the electrode particles, cs the concentration of lithium in the electrode

particles, and cl the electrolyte salt concentration.

The domain equations in the electrolyte are the conservation of current and the mass

balance for the salt shown in equations (3.1) and (3.2)

itot +Ql = ∇ ·

(
− σl∇φl +

2σlRT

F

(
1 +

∂lnf

∂lncl

)
(1− t+)∆lncl

)
(3.1)

where σl is the electrolyte conductivity, f is the activity coefficient, t+ is the transport

number for Li+, itot is the sum of all electrochemical current sources, Ql is the arbitrary

electrolyte current and

εl
δcl
δt
∇ · (−εlDl∇cl) = Rl −

(
itot +Ql

F

)
t+ (3.2)
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where εl is the electrolyte volume fraction, Dl is the electrolyte salt diffusivity, RL is the

total Li+ source term in the electrolyte. In the electrode, the current density, is is shown

below

is = −σs∇φs (3.3)

where σs is the electrical conductivity. The domain equation for the electrode is the

conservation of current shown below

∇ · is = −itot +Qs
(3.4)

where Qs is the arbitrary current source term. The electrochemical reactions in the

physics interface are assumed to be insertion reactions occurring at the surface of small

solid spherical particles of radius rp in the electrodes. The insertion reaction is shown

below

Li+ + e− + Θs ⇔ LiΘs
(3.5)

where Θs is the free reaction site, LiΘs is the occupied reaction site at the solid

particle surface. The concentration of Θs does not have to be solved for since the total

concentration of reaction sites, cs,max is assumed to be constant as

cΘs = cs,max − cs (3.6)
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The state of charge variable is related to the max concentration and the current

concentration. This relationship is shown below as

soc =
cs

cs,max
(3.7)

The electrode reaction occurs on the particle surface and lithium diffuses to and

from the surface in the particles. The mass balance of lithium is shown below

δcs
δt

= −∇ · (−Ds∇cs) (3.8)

where cs is the concentration of Li in the solid phase. This equation is solved locally by

the physics interface in a 1D pseudo dimension, with the solid phase concentrations at the

nodal points for the element discretization of the particle as the independent variables. The

gradient is calculated in cartesian, cylindrical, or spherical coordinates, depending on if

the particles are assumed to be best described as flakes, rods, or spheres, respectively. The

boundary conditions are shown below

δcs
δr

= 0

∣∣∣∣∣
r=0

−Ds
δcs
δr

= −RLiΘ

∣∣∣∣∣
r=rp

(3.9)

where RLiΘ is the molar flux of lithium at the particle surface. The stoichiometric

notations used in the physics interface are according to the general electrochemical reaction

as
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∑
ox

voxSox + ne−1 ⇔
∑
red

vredSred (3.10)

where vox is positive for products and vred is negative for reactants. The number of elec-

trons, n, in the electrode reaction can be calculated as

n = −
∑
i

zivi (3.11)

where zi is the charge of the species i. According to these relations, the lithium insertion

reaction has the following stoichiometric coefficients as shown below

vLi+ = −1

van− = 0

vLiΘs = 1

(3.12)

In the porous electrode, itot, denotes the sum of all charge transfer current density

contributions according to what is shown below

itot =
∑

Av,miloc,m (3.13)

where Av is the specific surface. The source term in the mass balance is calculated as

shown below

Rl,p = −
∑
m

Av,m
vLi+,miloc,m

nmF
(3.14)
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At the surface of the solid particles following relationship applies as seen below

RLiΘ = −
∑
m

vLi+,miloc,m
nmF

× Av,m
Nshapeεs

rp

(3.15)

The last factor in the previous equation is a scaling factor accounting for differences

between the surface area (Av,m) used to calculate the volumetric current density, and the

surface area of the particles in the solid lithium diffusion model. Nshape is 1 for cartesian,

2 for cylindrical, and 3 for spherical coordinates.

If the solid phase diffusion coefficient is very large or if the spatial concentration

gradients in the particle can be neglected, the solid phase concentration evolution in time

can be calculated as

δεscs
δt

= RvΘ
(3.16)

The molar source RvΘ at the positive and negative electrodes is given as

RvΘ = −
∑
m

vLiΘ,mAv,miloc,m
nmF

(3.17)

A resistive film (also called solid-electrolyte interface, SEI) might form on the solid

particles resulting in additional potential losses in the electrodes. To model a film resis-

tance, an extra solution variable for the potential variation over the film, ∆φs,film, is intro-

duced in the physics interface. This relationship is shown below
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∆φs,film = itotRfilm
(3.18)

where Rfilm is a generalized film resistance. The activation overpotentials, ηm, for all

electrode reactions in the electrode then receives an extra potential contribution shown

below

ηm = φs −∆φs,film − φl − Eeq,m (3.19)

3.2 COMSOL 1D Modeling

Another area of interest, which is the area concerned with this research, is that of identi-

fying the effect of magnetic fields on batteries. The physics based model that was derived

in Section 2.1 was utilized in COMSOL Multiphysics 5.4. A one dimensional domain was

created to represent a negative electrode, a separator, and and a positive electrode. Then a

two dimensional domain was created to represent the diffusion in the solid negative elec-

trode. Followed by an additional two dimensional domain to represent the diffusion in

the solid positive electrode. This was created to provide verification on a two dimensional

model that could experience the effects of a magnetic field.

3.2.1 Model Definition

Starting with the one dimensional domain are three line segments connected together. The

first line segment represents the negative electrode, the second line segment represents

the separator, and the final line segment represents the positive electrode. In the negative

electrode there are three partial differential equations; one for the charge balance in the
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solid negative electrode, one for the charge balance in the electrolyte in that region, and

one for the material balance in the electrolyte in that region. In the separator region there

are two partial differential equations; one for the charge balance in the electrolyte in that

region and one for the material balance in the electrolyte in that region. In the positive

electrode there are three partial differential equations; one for the charge balance in the

solid positive electrode, one for the charge balance in the electrolyte in that region, and one

for the material balance in the electrolyte in that region.

For the negative electrode there is a two dimensional domain representing the dif-

fusion. And for the positive electrode there is an additional two dimensional domain repre-

senting the diffusion. Shown below in Figure 3.1 is the model tree showing each aspect of

the model.

Figure 3.1 1D model, model tree.

Shown below in Figure 3.2 is a diagram of where each variable is solved and the

three domains.
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Figure 3.2 1D model, model diagram.

In the above figure the boundary on top ofCs,neg is extruded to the region containing

Ce,neg, ϕe,neg, and ϕs,neg. Similarly, Cs,pos is extruded to the region containingCe,pos, ϕe,pos,

and ϕs,pos

3.2.2 Global Definitions

Within the three previously described domains are common functions and parameters that

are used in each. The first function is the electrolyte conductivity from [22] which is a

function of the concentration of electrolyte at every point. This coefficient is used in the

effective ionic conductivity and effective diffusion coefficients described in equation (2.7).

Shown below in Figure 3.3 is the input/output relation for the electrolyte conductivity.
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Figure 3.3 Electrolyte conductivity.

This electrolyte conductivity is used within the model by having its input be the

electrolyte concentration divided by 1000. This relationship is shown below

κ(x) = u

(
Ce

1000

)
(3.20)

where κ is the electrolyte conductivity, u is the graph shown in Figure 3.3, and

Ce is the concentration in the electrolyte. From Figure 3.3 the electrolyte conductivity

ranges from 0.02 to 0.28. The input concentrations range from 0 to 3000. The second

function is that of the negative equilibrium voltage from [22] in the negative electrode.

This equilibrium voltage is used in the Butler-Volmer equation shown in Equation 2.11.

Shown below in Figure 3.4 is the relation for the negative equilibrium voltage.
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Figure 3.4 Negative equilibrium voltage.

This negative equilibrium voltage is used within the model by having its input be

the concentration of the solid phase in the negative electrode at the surface divided by the

max concentration allowed in the negative electrode. This relationship is shown below

Uneg(x) = u

(
Cs,neg,surf
cs,neg,max

)
(3.21)

where Uneg is the equilibrium voltage in the negative electrode, u is the relationship shown

in Figure 3.4, Cs,neg,surf is the concentration in the solid phase in the negative electrode at

the surface, and Cs,neg,max is the maximum concentration in the solid phase in the negative

electrode. From Figure 3.4 the negative equilibrium voltage ranges from 0 to 1. The input

concentrations range from a ratio of 0 and a ratio of 0.7.

The third function is that of the positive equilibrium voltage from [22] in the pos-

itive electrode. This equilibrium voltage is used in the Butler-Volmer equation shown in

equation (2.11). Shown below in Figure 3.5 is the relation for the positive equilibrium

voltage.
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Figure 3.5 Positive equilibrium voltage.

The positive equilibrium voltage is used within the model by having its input be the

concentration of the solid phase in the positive electrode at the surface divided by the max

concentration allowed in the positive electrode. This relationship is shown below

Upos(x) = u

(
Cs,pos,surf
cs,pos,max

)
(3.22)

where Upos is the equilibrium voltage in the negative electrode, u is the relationship shown

in Figure 3.5, Cs,pos,surf is the concentration in the solid phase in the negative electrode at

the surface, and Cs,pos,max is the maximum concentration in the solid phase in the negative

electrode.From Figure 3.5 the positive equilibrium voltage ranges from 3.6 to 4.3. The

input concentrations range from a ratio of 0.2 to a ratio of 1.

The fourth function is that of the pore-wall flux across the interface for the negative

electrode. This equation is shown below

jli,neg = as,negio,neg

[
e
αaF
RT

(ϕs,neg−ϕe,neg−Uneg) − e−
αcF
RT

(ϕs,neg−ϕe,neg−Uneg)

]
(3.23)
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where jli,neg is the pore-wall flux across the interface in the negative electrode, as,neg is

the surface to volume ratio in the negative electrode, io,neg = Fko,negC
αa
e,neg(Cs,neg,max −

Cs,neg,surf )
αaCαc

s,neg,surf , F is Faraday’s constant, ko,neg is the kinetic rate constant in the

negative electrode, Ce,neg is the concentration in the electrolyte in the negative electrode, αa

is the anodic transfer coefficient, Cs,neg,max is the maximum concentration in the negative

solid electrode, Cs,neg,max is the maximum concentration in the negative solid electrode, αc

is the cathodic transfer coefficient, R is the universal gas constant, T is the temperature,

ϕs,neg is the potential in the solid negative electrode, ϕe,neg is the potential in the electrolyte

in the negative electrode, and Uneg is the equilibrium in the negative electrode. The fifth

function is that of the pore-wall flux across the interface for the positive electrode. This

equation is shown below

jli,pos = as,posio,pos

[
e
αaF
RT

(ϕs,pos−ϕe,pos−Upos) − e−
αcF
RT

(ϕs,pos−ϕe,pos−Upos)
]

(3.24)

where jli,pos is the pore-wall flux across the interface in the positive electrode, as,neg is

the surface to volume ratio in the positive electrode, io,pos = Fko,posC
αa
e,pos(Cs,pos,max −

Cs,pos,surf )
αaCαc

s,pos,surf , F is Faraday’s constant, ko,pos is the kinetic rate constant in the

positive electrode, Ce,pos is the concentration in the electrolyte in the positive electrode, αa

is the anodic transfer coefficient, Cs,pos,max is the maximum concentration in the positive

solid electrode, Cs,pos,max is the maximum concentration in the positive solid electrode, αc

is the cathodic transfer coefficient, R is the universal gas constant, T is the temperature,

ϕs,pos is the potential in the solid positive electrode, ϕe,pos is the potential in the electrolyte

in the positive electrode, and Upos is the equilibrium in the positive electrode. The sixth
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function is a step function. This function is preprogrammed in COMSOL. Shown below in

Figure 3.6 is a plot of the step function.

Figure 3.6 Step function.

The user has control over the size of the transition zone. In this case it was set

to 10. To set the step function up properly a Variables subnode needs to be created in the

Definitions subnode for Component 1. The table needed for the variables subnode is shown

below in Table 3.1.

Table 3.1 Variables Subnode

Name Expression
Iapp iapp ∗ dison − iapp ∗ chon

dison step1

(
(tdisch − t)

[
1

s

])

chon step1

(
(t− tdisch − tocp)

[
1

s

])
× step1

(
(tcharge + tdischarge + tocp − t)

[
1

s

])

To set up the model properly many constants and parameters were taken from [22]
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and COMSOL’s pre-built one-dimensional model. Some of the parameters are fixed and

well defined. However some are not and it becomes difficult to obtain accurate simulations

that can match experimental measurements based on constructed batteries. The constants

used for the negative electrode, the separator, and the positive electrode are shown on the

next page in Table 3.2. For parameters taken from [22] a 1 is used and for parameters taken

from COMSOL a 2 is used. Some values are not explicitly defined, but are derived from

other values. Shown below is the expression for the polymer phase volume fraction

εp,i = 1− εe,i − εf,i (3.25)

where i is the negative or positive electrode, εp is the polymer phase volume frac-

tion, εe is the electrolyte phase volume fraction, and εf is the conductive filler phase volume

fraction. Another derived value in Table 3.2 is that of the active interfacial surface area for

the negative and positive electrodes. Shown below is the expression for the active interfa-

cial surface area

ai,s =
3εp,i
Rs,i

(3.26)

where a is the active interfacial surface area, i is the positive or negative electrode, εp is the

polymer phase volume fraction, and Rs is the particle radius.
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Table 3.2 Constants and Parameters

Name Value Description
Rs,neg 12.5E-6 Particle Radius Negative1

Rs,pos 8E-6 Particle Radius Positive1

Lneg 100E-6 Negative Electrode Length1

Lsep 52E-6 Separator Length1

Lpos 183E-6 Positive Electrode Length2

F 96485 Faraday’s Constant
αa 0.5 Anodic Charge Transfer Coefficient2

αc 0.5 Cathodic Charge Transfer Coefficient2

t+ 0.363 Transfer Coefficient2

σneg 100 Electrical Conductivity in Negative Electrode1

σpos 3.8 Electrical Conductivity in Positive Electrode1

iapp 17.5 Applied Current Density1

brugg 3.3 Bruggeman Correction Coefficient1

Ds,neg 3.9E-14 Diffusion Coefficient in Solid Negative Electrode1

Ds,pos 1E-13 Diffusion Coefficient in Solid Positive Electrode1

De,neg 7.5E-11 Diffusion Coefficient in Electrolyte Negative Electrode2

De,sep 7.5E-11 Diffusion Coefficient in Electrolyte Separator Electrode2

De,pos 7.5E-11 Diffusion Coefficient in Electrolyte Positive Electrode2

εe,neg 0.503 Negative Electrolyte Phase Volume Fraction2

εe,sep 1 Separator Electrolyte Phase Volume Fraction2

εe,pos 0.63 Positive Electrolyte Phase Volume Fraction2

εf,neg 0.026 Negative Conductive Filler Volume Fraction1

εf,pos 0.073 Positive Conductive Filler Volume Fraction1

εp,neg 0.471 Negative Polymer Phase Volume Fraction
εp,pos 0.297 Positive Polymer Phase Volume Fraction
aneg,s 1.1304E5 Active Interfacial Negative Surface Area
apos,s 1.1138E5 Active Interfacial Positive Surface Area
kneg,o 4.4E-10 Negative Kinetic Constant2

kpos,o 4.8E-10 Positive Kinetic Constant2

cs,neg,max 26390 Maximum Concentration in Negative Electrode2

cs,pos,max 22860 Maximum Concentration in Positive Electrode2

R 8.314 Universal Gas Constant
T 298 Temperature

cs0,neg 14870 Initial Positive Solid Electrode1

cs0,pos 3900 Initial Negative Solid Electrode1

cl0 2000 Initial Electrolyte Concentration1

tdischarge 2000 Discharge Duration2

tocp 300 Open Circuit Duration2

tcharge 2000 Charge Duration2
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With the above parameters in real-life batteries it is not realistic to determine these

values. Knowing some of these parameters such as the initial concentrations, diffusion

coefficients, volume fractions, and conductivity is impossible to determine.

3.2.3 Geometries and Meshes

Shown below in Figure 3.7 are the three regions for the one dimensional domain represent-

ing the negative electrode, separator, and positive electrode.

Figure 3.7 1D model, 1d domain.

The numbering convention for points on the domain is shown below in Figure 3.8.

Figure 3.8 1D model, 1d points.

The distance between points 1 and 2 is Lneg, the distance between points 2 and 3 is

Lsep, and the distance between points 3 and 4 is Lpos. Different differential equations apply

to different regions of the geometry shown in Figure 3.7. Shown below in Figure 3.9 are

the three regions for the negative electrode, separator, and positive electrode.
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Figure 3.9 1D model, 1d domain regions.

Shown below in Figure 3.10 is the mesh used for the one dimensional domain.

Figure 3.10 1D model, 1d domain mesh.

The mesh used for the domain utilized the pre-built defined Element Size of Fine

which resulted in 20 domain elements. Shown below in Figure 3.11 is the two dimensional

domain used separately for the material balance in the negative electrode solid phase. An

exact copy of it was used for the material balance in the positive electrode solid phase.

Figure 3.11 1D model, 2d domain.

To apply different fluxes on the boundaries of the domain, the numbering conven-

tion shown in Figure 3.12 was used.
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Figure 3.12 1D model, 2d domain boundaries.

A point along Boundary 3 represents the surface of a spherical particle at that point.

A point along Boundary 2 represents the center of a spherical particle at that point. Shown

below in Figure 3.13 is the mesh used for the two dimensional domain.

Figure 3.13 1D model, 2d domain mesh.

The mesh used for the domain utilized the pre-built defined Element Size of Fine

which resulted in 928 domain elements and 76 boundary elements.

3.2.4 Charge Balance Solid Negative

The charge balance in the solid phase of the negative electrode (CBSN) was applied to

region 1 shown below in Figure 3.14.
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Figure 3.14 1D model, cbsn region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.9) to solve for ϕs,neg. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.27)

where f is the source term, ea is the mass coefficient, u is the dependent variable,

da is the damping or mass coefficient, ∇ = ∂
∂x

, and Γ is the conservative flux. Matching

like coefficients between equations (2.9) and (3.27), results in the relations shown below in

Table 3.3.

Table 3.3 1D Model, CBSN Parameters

General Form Value
f jli,neg
ea 0
da 0

Γ σeff,neg
∂

∂x
ϕs,neg

The effective electrical conductivity used in the conservative flux in equation (3.27),

σeff,neg, was set equal to σneg as in there was no Bruggeman correction used. Shown below

is this relationship
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σeff,neg = σneg (3.28)

where σeff,neg is the effective electrical conductivity, and σneg is the electrical conductivity.

Within the General Form PDE interface an Initial Value subnode was created. Within this

subnode, the region shown in Figure 3.14 was selected, and the initial value for ϕs,neg was

set to 0 as shown below

ϕs,neg(x, 0) = 0 (3.29)

where ϕs,neg is the potential in the solid negative electrode. Then within the interface

a Dirichlet Boundary Condition subnode was created. The leftmost boundary shown in

Figure 3.15 was selected and the value of ϕs,neg was set to 0 as shown below

Figure 3.15 1D model, cbsn zero value.

ϕs,neg(0, t) = 0 (3.30)

where ϕs,neg is the potential in the solid negative electrode. Finally the flux at the boundary

between the negative electrode and the separator shown in Figure 3.16 was set to 0. The

equation used for the Zero Flux subnode is shown below

43



Figure 3.16 1d model, cbsn zero flux boundary.

−n · Γ = 0 (3.31)

where n is the normal vector and Γ is the conservative flux.

3.2.5 Charge Balance Solid Positive

The charge balance in the solid phase of the positive electrode (CBSP) was applied to

region 3 shown below in Figure 3.17.

Figure 3.17 1D model, cbsp region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.9) to solve for ϕs,pos. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.32)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is
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the damping or mass coefficient, ∇ = ∂
∂x

, and Γ is the conservative flux. Matching like

coefficients between equations (2.9) and (3.32), results in the relations shown below in

Table 3.4.

Table 3.4 1D Model, CBSP Parameters

General Form Value
f jli,pos
ea 0
da 0

Γ σeff,pos
∂

∂x
ϕs,pos

The effective electrical conductivity used in the conservative flux in equation (3.32),

σeff,pos, was set equal to σpos as in there was no Bruggeman correction used. Shown below

is this relationship

σeff,pos = σpos (3.33)

where σeff,pos is the effective electrical conductivity and σpos is the electrical conductivity.

Within the General Form PDE interface an Initial Value subnode was created. Within this

subnode, the region shown in Figure 3.17 was selected, and the initial value for ϕs,pos

was set to the voltage difference between the equilibrium voltage at the positive electrode

and the equilibrium voltage at the negative electrode at the initial concentrations in each

respective electrode shown below

ϕs,pos(x, 0) = Upos

(
cs0,pos
cs,pos,max

)
− Uneg

(
cs0,neg
cs,neg,max

)
(3.34)
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where ϕs,pos is the potential in the solid positive electrode, Upos is the positive equilibrium

voltage, cs0,pos is the initial concentration in the solid positive electrode, cs,pos,max is the

maximuim concentration in the solid positive electrode, Uneg is the negative equilibrium

voltage, cs0,neg is the initial concentration in the solid negative electrode, and cs,neg,max is

the maximum concentration in the solid negative electrode. Next the flux at the boundary

between the positive electrode and the separator as shown in Figure 3.18 was set to 0. The

equation used for the Zero Flux subnode is shown below

Figure 3.18 1D model, cbsp zero flux boundary.

−n · Γ = 0 (3.35)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.36)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

the current density on the rightmost positive electrode boundary shown in Figure 3.19.
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Figure 3.19 1D model, cbsp applied current boundary.

Matching like coefficients between equations (2.8) and (3.36), results in the rela-

tions shown below in Table 3.5. With the convention that the negative of the normal vector

is pointing into the domain, a positive applied current means that the vector would be point-

ing into the domain and the current would be moving to the left.

Table 3.5 1D Model, CBSP Flux/Source

Flux/Source Value
g Iapp
q 0

3.2.6 Charge Balance Electrolyte Negative

The charge balance in the electrolyte phase of the negative electrode (CBEN) was applied

to region 1 shown below in Figure 3.20.

Figure 3.20 1D model, cben region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.7) to solve for ϕe,neg. The General

Form PDE equation is shown below
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f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.37)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x

, and Γ is the conservative flux. Matching like

coefficients between equations (2.7) and (3.37), results in the relations shown below in

Table 3.6.

Table 3.6 1D Model, CBEN Parameters

General Form Value
f −jli,neg
ea 0
da 0

Γ κeff,neg ∂
∂x
ϕe,neg + κeff,negd,neg

∂
∂x

∂Ce,neg
∂x

Ce,neg

The effective ionic conductivity used in the conservative flux in equation (3.37),

κeff,neg, was set equal to κneg(εe,neg)brugg as in there is Bruggeman correction used. Shown

below is this relationship

κeff,neg = κneg(εe,neg)
brugg (3.38)

where κeff,neg is the effective electrical ionic conductivity, κneg is the graph in Figure 3.3,

εe,neg is the negative electrolyte phase volume fraction, and brugg is the Bruggeman correc-

tion coefficient. The effective diffusion coefficient used in the conservative flux in Equation

3.37, κeff,negd,neg , was set equal to 2RT
F

(t+ − 1)κneg(εe,neg)
brugg as in there is Bruggeman cor-

rection used. Shown below is this relationship
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κeff,negd,neg =
2RT

F
(t+ − 1)κneg(εe,neg)

brugg (3.39)

where κeff,negd,neg is the effective diffusion coefficient, R is the universal gas constant, T is

temperature, F is Faraday’s constant, t+ is the transeference number, κneg is the graph

in Figure 3.3, εe,neg is the negative electrolyte phase volume fraction, and brugg is the

bruggeman correction coefficient. Within the General Form PDE interface an Initial Value

subnode was created. Within this subnode, the region shown in Figure 3.20 was selected,

and the initial value for ϕe,neg was set to −Uneg shown below

ϕe,neg(x, 0) = −Uneg
(

cs0,neg
cs,neg,max

)
(3.40)

where ϕs,neg is the potential in the electrolyte in the negative electrode, Uneg is the negative

equilibrium voltage, cs0,neg is the initial concentration in the solid negative electrode, and

cs,neg,max is the maximum concentration in the solid negative electrode. Then within the

interface a Dirichlet Boundary Condition subnode was created. The boundary between the

negative electrode and the separator shown in Figure 3.21 was selected and the value of

ϕe,neg was set equal to ϕe,sep as shown below to maintain continuity

Figure 3.21 1D model, cben dirichlet/flux boundary.
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ϕe,neg(Lneg, t) = ϕe,sep(Lneg, t) (3.41)

where ϕe,neg is the potential in the negative electrolyte and ϕe,sep is the potential in the

separator electrolyte. Next the flux at the leftmost boundary shown in Figure 3.22 was set

to 0. The equation used for the Zero Flux subnode is shown below as

Figure 3.22 1D model, cben zero flux boundary.

−n · Γ = 0 (3.42)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below in Equation 3.43.

−n · Γ = g − qu (3.43)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

continuity between the negative electrode and separator at the boundary shown in Figure

3.21. Matching like coefficients between equations (2.8) and (3.43), results in the relations
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shown below in Table 3.7. With the convention that the negative of the normal vector is

pointing into the domain, a negative flux means that the vector would be pointing out of the

domain and the potential would be moving to the right.

Table 3.7 1D Model, CBEN Flux/Source

Flux/Source Value

g −
(
κeff,sep ∂

∂x
ϕe,sep + κeff,sepd,sep

∂
∂x

∂Ce,sep
∂x

Ce,sep

)
q 0

3.2.7 Charge Balance Electrolyte Separator

The charge balance in the electrolyte phase of the separator (CBES) was applied to region

2 shown below in Figure 3.23.

Figure 3.23 1D model, cbes region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.7) to solve for ϕe,sep. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.44)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x

, and Γ is the conservative flux. Matching like
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coefficients between equations (2.7) and (3.44), results in the relations shown below in

Table 3.8.

Table 3.8 1D Model, CBES Parameters

General Form Value
f 0
ea 0
da 0

Γ κeff,sep ∂
∂x
ϕe,sep + κeff,sepd,sep

∂
∂x

∂Ce,sep
∂x

Ce,sep

The effective ionic conductivity used in the conservative flux in equation (3.44),

κeff,sep, was set equal to κsep(εe,sep)brugg as in there is Bruggeman correction used. Shown

below is this relationship

κeff,sep = κsep(εe,sep)
brugg (3.45)

where κeff,sep is the effective electrical ionic conductivity, κsep is the graph in Figure 3.3,

εe,sep is the separator electrolyte phase volume fraction, and brugg is the Bruggeman cor-

rection coefficient. The effective diffusion coefficient used in the conservative flux in equa-

tion (3.44), κeff,sepd,sep , was set equal to 2RT
F

(t+ − 1)κsep(εe,sep)
brugg as in there is Bruggeman

correction used. Shown below is this relationship

κeff,sepd,sep =
2RT

F
(t+ − 1)κsep(εe,sep)

brugg (3.46)

where κeff,sepd,sep is the effective diffusion coefficient, R is the universal gas constant, T is

temperature, F is Faraday’s constant, t+ is the transeference number, κsep is the graph
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in Figure 3.3, εe,neg is the separator electrolyte phase volume fraction, and brugg is the

Bruggeman correction coefficient. Within the General Form PDE interface an Initial Value

subnode was created. Within this subnode, the region shown in Figure 3.23 was selected,

and the initial value for ϕe,sep was set to −Uneg shown below

ϕe,sep(x, 0) = −Uneg
(

cs0,neg
cs,neg,max

)
(3.47)

where ϕs,sep is the potential in the electrolyte in the separator electrode, Uneg is the negative

equilibrium voltage, cs0,neg is the initial concentration in the solid negative electrode, and

cs,neg,max is the maximum concentration in the solid negative electrode. Then within the

interface a Dirichlet Boundary Condition subnode was created. The boundary between the

separator and the negative electrode shown in Figure 3.24 was selected and the value of

ϕe,sep was set equal to ϕe,neg to maintain continuity as shown below

Figure 3.24 1D model, cbes dirichlet/flux boundary 1.

ϕe,sep(Lneg, t) = ϕe,neg(Lneg, t) (3.48)

where ϕe,sep is the potential in the separator electrolyte and ϕe,neg is the potential in the

negative electrolyte. After that within the interface an additional Dirichlet Boundary Con-

dition subnode was created. The boundary between the separator and the positive electrode
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as shown in Figure 3.25 was selected and the value of ϕe,sep was set equal to ϕe,pos to

maintain continuity as shown below

Figure 3.25 1D model, cbes dirichlet/flux boundary 2.

ϕe,sep

(
(Lneg + Lsep), t

)
= ϕe,pos

(
(Lneg + Lsep), t

)
(3.49)

where ϕe,sep is the potential in the separator electrolyte and ϕe,pos is the potential in the

positive electrolyte. Next within the interface a Flux/Source subnode was created. The

equation used for the Flux/Source subnode is shown below as

−n · Γ = g − qu (3.50)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

continuity between the separator and negative electrode at the boundary as shown in Figure

3.24. Matching like coefficients between equations (2.8) and (3.50), results in the relations

shown below in Table 3.9. With the convention that the negative of the normal vector is

pointing into the domain, a positive flux means that the vector would be pointing into the

domain and the potential would be moving to the right.
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Table 3.9 1D Model, CBES Flux/Source 1

Flux/Source Value

g
(
κeff,neg ∂

∂x
ϕe,neg + κeff,negd,neg

∂
∂x

∂Ce,neg
∂x

Ce,neg

)
q 0

Finally within the interface an additional Flux/Source subnode was created. The

equation used for the Flux/Source subnode is shown below

−n · Γ = g − qu (3.51)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

continuity between the separator and positive electrode at the boundary as shown in Figure

3.25. Matching like coefficients between equations (2.8) and (3.51), results in the relations

shown below in Table 3.10. With the convention that the negative of the normal vector is

pointing into the domain, a negative flux means that the vector would be pointing out of the

domain and the potential would be moving to the right.

Table 3.10 1D Model, CBES Flux/Source 2

Flux/Source Value

g −
(
κeff,pos ∂

∂x
ϕe,pos + κeff,posd,pos

∂
∂x

∂Ce,pos
∂x

Ce,pos

)
q 0
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3.2.8 Charge Balance Electrolyte Positive

The charge balance in the electrolyte phase of the positive electrode (CBEP) was applied

to region 3 shown below in Figure 3.26.

Figure 3.26 1D model, cbep region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.7) to solve for ϕe,pos. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.52)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x

, and Γ is the conservative flux. Matching like

coefficients between equations (2.7) and (3.52), results in the relations shown below in

Table 3.11.

Table 3.11 1D Model, CBEP Parameters

General Form Value
f −jli,neg
ea 0
da 0

Γ κeff,pos ∂
∂x
ϕe,pos + κeff,posd,pos

∂
∂x

∂Ce,pos
∂x

Ce,pos
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The effective ionic conductivity used in the conservative flux in equation (3.52),

κeff,pos, was set equal to κpos(εe,pos)brugg as in there is Bruggeman correction used. Shown

below is this relationship

κeff,pos = κpos(εe,pos)
brugg (3.53)

where κeff,pos is the effective electrical ionic conductivity, κpos is the graph in Figure 3.3,

εe,pos is the positive electrolyte phase volume fraction, and brugg is the Bruggeman correc-

tion coefficient. The effective diffusion coefficient used in the conservative flux in equation

(3.52), κeff,posd,pos , was set equal to 2RT
F

(t+ − 1)κpos(εe,pos)
brugg as in there is Bruggeman

correction used. Shown below is this relationship

κeff,posd,pos =
2RT

F
(t+ − 1)κpos(εe,pos)

brugg (3.54)

where κeff,posd,pos is the effective diffusion coefficient,R is the universal gas constant, T is tem-

perature, F is Faraday’s constant, t+ is the transference number, κneg is the graph in Figure

3.3, εe,pos is the positive electrolyte phase volume fraction, and brugg is the bruggeman

correction coefficient. Within the General Form PDE interface an Initial Value subnode

was created. Within this subnode, the region shown in Figure 3.26 was selected, and the

initial value for ϕe,pos was set to −Uneg shown as

ϕe,pos(x, 0) = −Uneg
(

cs0,neg
cs,neg,max

)
(3.55)
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where ϕs,pos is the potential in the electrolyte in the positive electrode, Uneg is the negative

equilibrium voltage, cs0,neg is the initial concentration in the solid negative electrode, and

cs,neg,max is the maximum concentration in the solid negative electrode. Then within the

interface a Dirichlet Boundary Condition subnode was created. The boundary between the

positive electrode and the separator shown in Figure 3.27 was selected and the value of

ϕe,pos was set equal to ϕe,sep as shown below to maintain continuity

Figure 3.27 1D model, cbep dirichlet/flux boundary.

ϕe,pos

(
(Lneg + Lsep), t) = ϕe,sep

(
(Lneg + Lsep), t

)
(3.56)

where ϕe.pos is the potential in the positive electrolyte and ϕe,sep is the potential in the

separator electrolyte.Next the flux at the rightmost boundary as shown in Figure 3.28 was

set to 0. The equation used for the Zero Flux subnode is shown below

Figure 3.28 1D model, cbep zero flux boundary.

−n · Γ = 0 (3.57)
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where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.58)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

continuity between the positive electrode and separator at the boundary shown in Figure

3.27. Matching like coefficients between equations (2.8) and (3.58), results in the relations

shown below in Table 3.12. With the convention that the negative of the normal vector is

pointing into the domain, a positive flux means that the vector would be pointing into the

domain and the potential would be moving to the right.

Table 3.12 1D Model, CBEP Flux/Source

Flux/Source Value

g
(
κeff,sep ∂

∂x
ϕe,sep + κeff,sepd,sep

∂
∂x

∂Ce,sep
∂x

Ce,sep

)
q 0

3.2.9 Material Balance Electrolyte Negative

The material balance in the electrolyte phase of the negative electrode (MBEN) was applied

to region 1 shown below in Figure 3.29.
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Figure 3.29 1D model, mben region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.3) to solve for Ce,neg. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.59)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x

, and Γ is the conservative flux. Matching like

coefficients between equations (2.3) and (3.59), results in the relations shown below in

Table 3.13.

Table 3.13 1D Model, MBEN Parameters

General Form Value
f jli,neg(1−t+)

F

ea 0
da εe,neg

Γ −D eff
e,neg

∂Ce,neg
∂x

The diffusion coefficient used in the conservative flux in equation (3.59), D eff
e,neg,

was set equal to De,neg(εe,neg)
brugg as in there is Bruggeman correction used. Shown below

is this relationship
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D eff
e,neg = De,neg(εe,neg)

brugg (3.60)

where D eff
e,neg is the effective diffusion coefficient, De,neg is the diffusion coefficient, εe,neg

is the negative electrolyte phase volume fraction, and brugg is the Bruggeman correction

coefficient. Within the General Form PDE interface an Initial Value subnode was created.

Within this subnode, the region shown in Figure 3.29 was selected, and the initial value for

Ce,neg was set to cl0 as shown below

Ce,neg(x, 0) = cl0
(3.61)

where Ce,neg is the concentration in the electrolyte in the negative electrode and cl0 is the

initial concentration. Then within the interface a Dirichlet Boundary Condition subnode

was created. The boundary between the negative electrode and the separator shown in

Figure 3.30 was selected and the value of Ce,neg was set equal to Ce,sep as shown below to

maintain continuity

Figure 3.30 1D model, mben dirichlet/flux boundary.

Ce,neg(Lneg, t) = Ce,sep(Lneg, t) (3.62)
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where Ce,neg is the concentration in the negative electrolyte and Ce,sep is the concentration

in the separator electrolyte. Next the flux at the leftmost boundary shown in Figure 3.31

was set to 0. The equation used for the Zero Flux subnode is shown below

Figure 3.31 1D model, mben zero flux boundary.

−n · Γ = 0 (3.63)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.64)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

continuity between the negative electrode and separator at the boundary shown in Figure

3.30. Matching like coefficients between equations (2.4) and (3.64), results in the relations

shown below in Table 3.14. With the convention that the negative of the normal vector is

pointing into the domain, a positive flux means that the vector would be pointing into the

domain and the flux would be moving to the left.
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Table 3.14 1D Model, MBEN Flux/Source

Flux/Source Value

g De,sep(εe,sep)
brugg ∂Ce,sep

∂x

q 0

3.2.10 Material Balance Electrolyte Separator

The material balance in the electrolyte phase of the separator (MBES) was applied to region

2 shown below in Figure 3.32.

Figure 3.32 1D model, mbes region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.3) to solve for Ce,sep. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.65)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x

, and Γ is the conservative flux. Matching like

coefficients between equations (2.3) and (3.65), results in the relations shown in Table 3.15.
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Table 3.15 1D Model, MBES Parameters

General Form Value
f 0
ea 0
da εe,sep

Γ −D eff
e,sep

∂Ce,sep
∂x

The diffusion coefficient used in the conservative flux in equation (3.65), D eff
e,sep,

was set equal to De,sep(εe,sep)
brugg as in there is Bruggeman correction used. Shown below

is this relationship

D eff
e,sep = De,sep(εe,sep)

brugg (3.66)

where D eff
e,sep is the effective diffusion coefficient, De,sep is the diffusion coefficient, εe,sep

is the separaotr electrolyte phase volume fraction, and brugg is the Bruggeman correction

coefficient. Within the General Form PDE interface an Initial Value subnode was created.

Within this subnode, the region shown in Figure 3.32 was selected, and the initial value for

Ce,sep was set to cl0 shown below

Ce,sep(x, 0) = cl0 (3.67)

where Ce,sep is the concentration in the electrolyte in the separator electrode and cl0 is the

initial concentration. Then within the interface a Dirichlet Boundary Condition subnode

was created. The boundary between the separator and the negative electrode shown in Fig-

ure 3.33 was selected and the value of Ce,sep was set equal to Ce,neg to maintain continuity
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as shown below

Figure 3.33 1D model, mbes dirichlet/flux boundary 1.

Ce,sep(Lneg, t) = Ce,neg(Lneg, t) (3.68)

where Ce,sep is the concentration in the separator electrolyte and Ce,neg is the concentration

in the negative electrolyte. Then an additional Dirichlet Boundary Condition subnode was

created. The boundary between the separator and the positive electrode as shown in Figure

3.34 was selected and the value of Ce,sep was set equal to Ce,pos to maintain continuity as

shown below

Figure 3.34 1D model, mbes dirichlet/flux boundary 2.

Ce,sep

(
(Lneg + Lsep), t

)
= Ce,pos

(
(Lneg + Lsep), t

)
(3.69)

where Ce,sep is the concentration in the separator electrolyte and Ce,pos is the concentration

in the positive electrolyte. Then within the interface a Flux/Source subnode was created.

The equation used for the Flux/Source subnode is shown as
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−n · Γ = g − qu (3.70)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q

is the boundary absorption/impedance term, and u is the dependent variable. This flux is

for continuity between the separator and the negative electrode at the boundary as shown

in Figure 3.33. Matching like coefficients between equations (2.4) and (3.70), results in the

relations shown below in Table 3.16. With the convention that the negative of the normal

vector is pointing into the domain, a negative flux means that the vector would be pointing

out of the domain and the flux would be moving to the left.

Table 3.16 1D Model, MBES Flux/Source 1

Flux/Source Value

g −De,neg(εe,neg)
brugg ∂Ce,neg

∂x

q 0

Finally within the interface an additional Flux/Source subnode was created. The

equation used for the Flux/Source subnode is shown below

−n · Γ = g − qu (3.71)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q

is the boundary absorption/impedance term, and u is the dependent variable. This flux is

for continuity between the separator and the positive electrode at the boundary as shown in

Figure 3.34. Matching like coefficients between equations (2.4) and (3.71), results in the
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relations shown below in Table 3.17. With the convention that the negative of the normal

vector is pointing into the domain, a positive flux means that the vector would be pointing

into the domain and the flux would be moving to the left.

Table 3.17 1D Model, MBES Flux/Source 2

Flux/Source Value

g De,pos(εe,pos)
brugg ∂Ce,pos

∂x

q 0

3.2.11 Material Balance Electrolyte Positive

The material balance in the electrolyte phase of the positive electrode (MBEP) was applied

to region 3 shown below in Figure 3.35.

Figure 3.35 1D model, mbep region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.3) to solve for Ce,pos. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.72)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x

, and Γ is the conservative flux. Matching like
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coefficients between equations (2.3) and (3.72), results in the relations shown below in

Table 3.18.

Table 3.18 1D Model, MBEP Parameters

General Form Value
f jli,pos(1−t+)

F

ea 0
da εe,pos

Γ −D eff
e,pos

∂Ce,pos
∂x

The diffusion coefficient used in the conservative flux in equation (3.72), D eff
e,pos,

was set equal to De,pos(εe,pos)
brugg as in there is Bruggeman correction used. Shown below

is this relationship

D eff
e,pos = De,pos(εe,pos)

brugg (3.73)

where D eff
e,pos is the effective diffusion coefficient, De,pos is the diffusion coefficient, εe,pos

is the positive electrolyte phase volume fraction, and brugg is the Bruggeman correction

coefficient. Within the General Form PDE interface an Initial Value subnode was created.

Within this subnode, the region shown in Figure 3.35 was selected, and the initial value for

Ce,pos was set to cl0 as shown below

Ce,pos(x, 0) = cl0 (3.74)

where Ce,pos is the concentration in the electrolyte in the positive electrode and cl0 is the

initial concentration. Then within the interface a Dirichlet Boundary Condition subnode
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was created. The boundary between the positive electrode and the separator shown in

Figure 3.36 was selected and the value of Ce,pos was set equal to Ce,sep as shown below to

maintain continuity.

Figure 3.36 1D model, mbep dirichlet/flux boundary.

Ce,pos

(
(Lneg + Lsep), t

)
= Ce,sep

(
(Lneg + Lsep), t

)
(3.75)

where Ce,pos is the concentration in the positive electrolyte and Ce,sep is the concentration

in the separator electrolyte. Next the flux at the rightmost boundary shown in Figure 3.37

was set to 0. The equation used for the Zero Flux subnode is shown below

Figure 3.37 1D model, mbep zero flux boundary.

−n · Γ = 0 (3.76)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below
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−n · Γ = g − qu (3.77)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

continuity between the positive electrode and separator at the boundary shown in Figure

3.36. Matching like coefficients between equations (2.4) and (3.77), results in the relations

shown below in Table 3.19. With the convention that the negative of the normal vector is

pointing into the domain, a negative flux means that the vector would be pointing out of the

domain and the flux would be moving to the left.

Table 3.19 1D Model, MBEP Flux/Source

Flux/Source Value

g −De,sep(εe,sep)
brugg ∂Ce,sep

∂x

q 0

3.2.12 Material Balance Solid Negative

The material balance in the solid phase of the negative electrode (MBSN) is calculated

in its own two dimensional domain. Shown below in Figure 3.38 is the two dimensional

domain.
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Figure 3.38 1D model, mbsn region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.5) to solve for Cs,neg. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.78)

where f is the source term, ea is the mass coefficient, u is the dependent variable,

da is the damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. The

top boundary shown in Figure 3.39 of the domain is the function that is mapped to the one

dimensional domain for the negative electrode. The y-dimension represents the radius of a

sphere at that x value. The top boundary is when y is equal to the radius of the spherical

particle (r = Rp). The bottom boundary is when y is equal to 0 which represents the center

of a spherical particle (r = 0).
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Figure 3.39 1D model, mbsn flux/top boundary.

To avoid division by zero when (r = 0), equation (2.5) is multiplied by r2. The

resulting partial differential equation is shown below

r2∂Cs
∂t

= Ds
∂

∂r

(
r2∂Cs
∂r

)
(3.79)

where Cs is the concentration in the solid phase and Ds is the diffusion coefficient. After

that the equation is scaled in reference to the particle radius. The scaling is done through

the relationship shown below

r̂ =
r

Rp

∂

∂r
=

1

Rp

∂

∂r̂

(3.80)

With these changes the new partial differential equation that describes the diffusion of

lithium in the solid phase is shown below as

r̂2∂Cs
∂t

= Ds
∂

∂r̂

(
r̂2

R 2
p

∂Cs
∂r̂

)
(3.81)
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where Cs is the concentration in the solid phase, Ds is the diffusion coefficient, and Rp is

the particle radius. Matching like coefficients between equations (3.81) and (3.78), results

in the relations shown below in Table 3.20.

Table 3.20 1D Model, MBSN Parameters

General Form Value
f 0
ea 0
da r2

Γx 0

Γy −Ds,neg
r2

(Rs,neg)2
∂Cs,neg
∂r

The flux at the surface of the particle would also need to change. Shown below is the

adjusted flux at the surface while the other two conditions in equation (2.6) are reiterated

−Ds
∂Cs
∂x

∣∣∣∣
r=0

= 0

−Ds
∂Cs
∂x

∣∣∣∣
r=Rp

=
r̂2

Rp

jli
asF

Cs(r, 0) = C init
s (r)

(3.82)

where Rp is the radius of the particle, jli is the pore-wall flux across the interface, F is

Faraday’s constant, and as is the surface area to volume ratio. Within the General Form

PDE interface an Initial Value subnode was created. Within this subnode, the region shown

in Figure 3.38 was selected, and the initial value forCs,neg was set to cs0,neg as shown below

Cs,neg(r, y, 0) = cs0,neg (3.83)
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where Cs,neg is the concentration in the solid negative electrode and cs0,neg is the initial

concentration in the solid phase. Next the flux at the boundaries labelled 1, 2, and 4 as

shown in Figure 3.40 were set to zero. The equation used for the Zero Flux subnode is

shown below

Figure 3.40 1D model, mbsn zero flux boundaries.

−n · Γ = 0 (3.84)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.85)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

pore-wall flux across the interface on the boundary shown in Figure 3.39. Matching like
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coefficients between equations (3.82) and (3.85), results in the relations shown below in

Table 3.21. With the convention that the negative of the normal vector is pointing into the

domain, a negative flux means that the vector would be pointing out of the domain and the

flux would be moving to the upwards.

Table 3.21 1D Model, MBSN Flux/Source

Flux/Source Value

g − r2

Rs,neg

jli,neg
as,negF

q 0

3.2.13 Material Balance Solid Positive

The material balance in the solid phase of the positive electrode (MBSP) is calculated in its

own two dimensional domain. Shown below in Figure 3.41 is the two dimensional domain.

Figure 3.41 1D model, mbsp region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (3.81) to solve forCs,pos. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.86)
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where f is the source term, ea is the mass coefficient, u is the dependent variable, da is the

damping or mass coefficient,∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. The top boundary

shown in Figure 3.42 of the domain is the function that is mapped to the one dimensional

domain for the positive electrode. The y-dimension represents the radius of a sphere at

that x value. The top boundary is when y is equal to the radius of the spherical particle

(r = Rp). The bottom boundary is when y is equal to 0 which represents the center of a

spherical particle (r = 0).

Figure 3.42 1D model, mbsp flux/top boundary.

Matching like coefficients between equations (3.81) and (3.86), results in the rela-

tions shown below in Table 3.22.

Table 3.22 1D Model, MBSP Parameters

General Form Value
f 0
ea 0
da r2

Γx 0

Γy −Ds,pos
r2

(Rs,pos)2
∂Cs,pos
∂r
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Within the General Form PDE interface an Initial Value subnode was created. Within

this subnode, the region shown in Figure 3.41 was selected, and the initial value for Cs,pos

was set to cs0,pos as shown below

Cs,pos(r, y, 0) = cs0,pos (3.87)

where Cs,pos is the concentration in the solid negative positive and cpos is the initial concen-

tration in the solid phase. Next the flux at the boundaries labelled 1, 2, and 4 as shown in

Figure 3.43 were set to zero. The equation used for the Zero Flux subnode is shown below

Figure 3.43 1D model, mbsp zero flux boundaries.

−n · Γ = 0 (3.88)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below
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−n · Γ = g − qu (3.89)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

pore-wall flux across the interface on the boundary shown in Figure 3.42. Matching like

coefficients between equations (3.82) and (3.89), results in the relations shown below in

Table 3.23. With the convention that the negative of the normal vector is pointing into the

domain, a negative flux means that the vector would be pointing out of the domain and the

flux would be moving to the upwards.

Table 3.23 1D Model, MBSP Flux/Source

Flux/Source Value

g − r2

Rs,pos

jli,pos
as,posF

q 0

3.2.14 Linear Extrusions

Because the model has three components to it; a one dimensional domain, a two dimen-

sional domain, and an additional two dimensional name, COMSOL does not directly allow

solved dependent variables to be cross coupled to other components. To accomplish this

there are multiple options. The the most abstract way is what COMSOL calls General Ex-

trusions. But in the case of this model a Linear Extrusion would suffice because in all three

cases a boundary is being mapped to a boundary.

For the component that consists of eight partial differential equations; CBSN, CBSP,

CBEN, CBES, CBEP, MBEN, MBES, and MBEP two linear extrusions are required. One
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linear extrusion is required to couple the variables to the material balance in the solid neg-

ative electrode (MBSN), and the second linear extrusion is required to couple the variables

to the material balance in the solid positive electrode (MBSP).

For the linear extrusion to the MBSN, the source domain would be the region shown

in Figures 3.14, 3.20, and 3.29. This region is again shown below in Figure 3.44. The

destination domain would be Geometry 2 which is the geometry for the MBSN shown in

the model tree in Figure 3.1 and shown below in Figure 3.45.

Figure 3.44 1D model, linear extrusion 1 source.

Figure 3.45 1D model, linear extrusion 1 destination.

Source vertex 1 would be point 1 in Figure 3.44 and source vertex 2 would be point

2 in Figure 3.44. Destination vertex 1 would be point 2 in Figure 3.45 and destination

vertex 2 would be point 4 in Figure 3.45.

For the linear extrusion to the MBSP, the source domain would be the region shown

in Figures 3.17, 3.26, and 3.35. This region is again shown below in Figure 3.46. The

destination domain would be Geometry 3 which is the geometry for the MBSP shown in
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the model tree in Figure 3.1 and shown below in Figure 3.47.

Figure 3.46 1D model, linear extrusion 2 source.

Figure 3.47 1D model, linear extrusion 2 destination.

Source vertex 1 would be point 3 in Figure 3.46 and source vertex 2 would be point

4 in Figure 3.46. Destination vertex 1 would be point 2 in Figure 3.47 and destination

vertex 2 would be point 4 in Figure 3.47.

For the component that consists of the partial differential equation for the material

balance in the solid negative electrode (MBSN), one linear extrusion is required. One is

only because it is only mapping to the component that has the CBSN, CBSP, CBEN, CBES,

CBEP, MBEN, MBES, and MBEP equations.

For the linear extrusion to the main component, the source domain would be region

shown below in Figure 3.48. The destination domain would be Geometry 1 which is the

geometry for the main component shown in the model tree in Figure 3.1, and the region

shown in Figures 3.14, 3.20, and 3.29. This region is again shown below in Figure 3.49.

Source vertex 1 would be point 2 in Figure 3.48 and source vertex 2 would be point
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Figure 3.48 1D model, linear extrusion 3 source.

Figure 3.49 1D model, linear extrusion 3 destination.

4 in Figure 3.48. Destination vertex 1 would be point 1 in Figure 3.49 and destination

vertex 2 would be point 2 in Figure 3.49.

For the component that consists of the partial differential equation for the material

balance in the solid positive electrode (MBSP), one linear extrusion is required. One is only

required because it is only mapping to the component that has the CBSN, CBSP, CBEN,

CBES, CBEP, MBEN, MBES, and MBEP equations.

For the linear extrusion to the main component, the source domain would be region

shown below in Figure 3.50. The destination domain would be Geometry 1 which is the

geometry for the main component shown in the model tree in Figure 3.1, and the region

shown in Figures 3.17, 3.26, and 3.35. This region is again shown below in Figure 3.51.

Source vertex 1 would be point 2 in Figure 3.50 and source vertex 2 would be point

4 in Figure 3.50. Destination vertex 1 would be point 3 in Figure 3.51 and destination

vertex 2 would be point 4 in Figure 3.51.
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Figure 3.50 1D model, linear extrusion 4 source.

Figure 3.51 1D model, linear extrusion 4 destination.

3.3 COMSOL 2D Modeling

Building on the one dimensional model developed in the previous section is a two dimen-

sional model that could experience the effects of a magnetic field. A two dimensional

domain was created to represent a negative electrode, a separator, and a positive electrode.

Then a three dimensional domain was created to represent the diffusion in the solid negative

electrode. Followed by an additional three dimensional domain to represent the diffusion

in the solid positive electrode.

3.3.1 Model Definition

Starting with a two dimensional domain are three rectangles connected together. The first

rectangle represents the negative electrode, the second rectangle represents the separator,

and the final rectangle represents the positive electrode. In the negative electrode are three

partial differential equations; one for the charge balance in the solid negative electrode, one

for the charge balance in the electroyte in that region, and one for the material balance in the
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electrolyte in that region. In the separator region there are two partial differential equations;

one for the charge balance in the electrolyte in that region and one for the material balance

in the electrolyte in that region. In the positive electrode there are three partial differential

equations; one for the charge balance in the solid positive electrode, one for the charge

balance in the electrolyte in that region, and one for the material balance in the electrolyte

in that region.

For the negative electrode there is a three dimensional domain representing the

diffusion. And for the positive electrode there is an additional three dimensional domain

representing the diffusion. Shown below in Figure 3.52 is the model tree showing each

aspect of the model.

Figure 3.52 2D model, model tree.

Shown below in Figure 3.53 is a diagram of where each variable is solved and the

three domains.

With the above figure the top face of Cs,neg is extruded to the region containing

Ce,neg, ϕe,neg, and ϕs,neg. Similarly Cs,pos is extruded to the region containing Ce,pos, ϕpos,
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Figure 3.53 2D model, model diagram.

and ϕs,pos.

3.3.2 Global Definitions

Within the previously described domains are common functions and parameters that are

used in each. The first function is the electrolyte conductivity which is a function of the

concentration of electrolyte at every point. This coefficient is used in the effective ionic

conductivity and effective diffusion coefficients described in equation (2.7). It was shown

previously in Figure 3.3. This electrolyte conductivity is used within the model by having

its input be the electrolyte concentration divided by 1000. This relationship was shown

previously in equation (3.20). From Figure 3.3 the electrolyte conductivity ranges from

0.02 to 0.28. The input concentrations range from 0 to 3000.

The second function is that of the negative equilibrium voltage in the negative elec-

trode. This equilibrium voltage is used in the Butler-Volmer equation shown in equation

(2.11). Shown previously in Figure 3.4 is the relation for the negative equilibrium volt-

age. This negative equilibrium voltage is used within the model by having its input be the

concentration of the solid phase in the negative electrode at the surface divided by the max
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concentration allowed in the negative electrode. This relationship was shown previously in

equation (3.21). From Figure 3.4 the negative equilibrium voltage ranges from 0 to 1. The

input concentrations range from a ratio of 0 and a ratio of 0.7.

The third function is that of the positive equilibrium voltage in the positive elec-

trode. This equilibrium voltage is used in the Butler-Volmer equation shown in equation

(2.11). Shown previously in Figure 3.5 is the relation for the positive equilibrium volt-

age. The positive equilibrium voltage is used within the model by having its input be the

concentration of the solid phase in the positive electrode at the surface divided by the max

concentration allowed in the positive electrode. This relationship was shown previously in

equation (3.22). From Figure 3.5 the positive equilibrium voltage ranges from 3.6 to 4.3.

The input concentrations range from a ratio of 0.2 to a ratio of 1.

The fourth function is that of the pore-wall flux across the interface for the negative

electrode. This equation was shown previously in equation (3.23). The fifth function is

that of the pore-wall flux across the interface for the positive electrode. This equation was

shown previously in equation (3.24).

The sixth function is that of the step function shown in Figure 3.6. The same Vari-

ables subnode was also used to properly implement the step function in the model. The

information for this subnode is found in Table 3.1.

To set up the model properly many constants and parameters were used. The same

constants used for the negative electrode, the separator, and the positive electrode in the

one dimensional model were used for the two dimensional model and are shown in Table

3.2. Additional parameters were needed for the increased dimensions and for the magnetic

field. The additional parameters are shown below in Table 3.24.

There is a derived value in Table 3.24 and it is that of the magnetic flux density Bz.
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Table 3.24 Constants and Parameters 2

Name Value Description
Lheight 40E-6 Height of Electrode
Bz 10E-3 Magnetic Flux Denisty
µ0 4π10E-7 Permeability of Free Space
Hz 795.775 Magnetic Field Strength

Shown below is the expression for the magnetic flux density.

Bz = µ0Hz
(3.90)

where Bz is the magnetic flux density, µ0 is the permeability of free space, and Hz is the

magnetic field strength.

3.3.3 Geometries and Meshes

Shown below in Figure 3.54 are the three regions for the two dimensional domain repre-

senting the negative electrode, separator, and positive electrode.

Figure 3.54 2D model, 2d domain.

The numbering convention for the points is shown below in Figure 3.55.

Figure 3.55 2D model, 2d points.
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The distance between points 1 and 3 is Lneg, the distance between points 3 and 5 is

Lsep, and the distance between points 5 and 7 is Lpos. The distance between points 1 and

2, 3 and 4, 5 and 6, and 7 and 8 is Lheight. Different partial differential equations apply

to different regions of the geometry shown in Figure 3.54. The numbering convention for

boundaries is shown below in Figure 3.56.

Figure 3.56 2D model, 2d domain boundaries.
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Shown below in Figure 3.57 are the three regions for the negative electrode, sepa-

rator, and positive electrode.

Figure 3.57 2D model, 2d domain regions.

Shown below in Figure 3.58 is the mesh used for the two dimensional domain.

Figure 3.58 2D model, 2d domain mesh.

The mesh used for the domain utilized the pre-built defined Element Size of Extra

fine which resulted in 824 domain elements and 126 boundary elements. Shown below in

Figure 3.59 is the three dimensional domain used separately for the material balance in the

negative electrode solid phase. An exact copy of it was used for the material balance in the

positive electrode solid phase.
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Figure 3.59 2D model, three dimensional domain.

To apply different fluxes on the boundaries of the domain, the numbering conven-

tion shown in Figure 3.60 was used.

Figure 3.60 2D model, 3d domain boundaries.

Face 1, 2, and 4 are shown. Face 3 is the bottom face, face 5 is opposite of face

2, and face 6 is opposite of face 1. A point on face 4 represents the surface of a spherical

particle at that point. A point on face 3 represents the center of a spherical particle at that

point. Shown below in Figure 3.61 is the mesh used for the three dimensional domain.
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Figure 3.61 2D model, 3d domain mesh.

The mesh used for the domain utilized the pre-built defined Element Size of Coarse

which resulted in 4893 domain elements, 744 boundary elements, and 84 edge elements.

3.3.4 Charge Balance Solid Negative

The charge balance in the solid phase of the negative electrode (CBSN) was applied to

region 1 shown below in Figure 3.62.

Figure 3.62 2D model, cbsn region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.9) to solve for ϕs,neg. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.91)
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where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. Matching

like coefficients between equations (2.9) and (3.91), results in the relations shown below in

Table 3.25.

Table 3.25 2D Model, CBSN Parameters

General Form Value
f jli,neg
ea 0
da 0

Γx σeff,neg
∂

∂x
ϕs,neg

Γy σeff,neg
∂

∂y
ϕs,neg

The effective electrical conductivity used in the conservative flux in equation (3.91),

σeff,neg, was set equal to σneg as in there was no Bruggeman correction used. Shown below

is this relationship

σeff,neg = σneg

where

σeff,neg = Effective electrical conductivity

σneg = Electrical conductivity

(3.92)

where σeff,neg is the effective electrical conductivity and σneg is the electrical conductivity.

Within the General Form PDE interface an Initial Value subnode was created. Within this

subnode, the region shown in Figure 3.62 was selected, and the initial value for ϕs,neg was

set to 0 as shown below
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ϕs,neg(x, y, 0) = 0 (3.93)

where ϕs,neg is the potential in the solid negative electrode. Then within the interface

a Dirichlet Boundary Condition subnode was created. The leftmost boundary shown in

Figure 3.63 was selected and the value of ϕs,neg was set to 0 as shown below

Figure 3.63 2D model, cbsn zero value boundary.

ϕs,neg(0, y, t) = 0 (3.94)

where ϕs,neg is the potential in the solid negative electrode. The flux at the boundary be-

tween the negative electrode and the separator shown in Figure 3.64, the boundary labeled

3, and the boundary labeled 2 was set to 0. The equation used for the Zero Flux subnode is

shown below

Figure 3.64 2d model, cbsn zero flux boundaries.
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−n · Γ = 0 (3.95)

where n is the normal vector and Γ is the conservative flux.

3.3.5 Charge Balance Solid Positive

The charge balance in the solid phase of the positive electrode (CBSP) was applied to

region 3 shown below in Figure 3.65.

Figure 3.65 2D model, cbsp region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.9) to solve for ϕs,pos. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.96)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. Matching

like coefficients between equations (2.9) and (3.96), results in the relations shown below in

Table 3.26.
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Table 3.26 2D Model, CBSP Parameters

General Form Value
f jli,pos
ea 0
da 0

Γx σeff,pos
∂

∂x
ϕs,pos

Γy σeff,pos
∂

∂y
ϕs,pos

The effective electrical conductivity used in the conservative flux in equation (3.96),

σeff,pos, was set equal to σpos as in there was no Bruggeman correction used. Shown below

is this relationship

σeff,pos = σpos (3.97)

σeff,pos is the effective electrical conductivity and σpos is the electrical conductivity.

Within the General Form PDE interface an Initial Value subnode was created. Within this

subnode, the region shown in Figure 3.65 was selected, and the initial value for ϕs,pos

was set to the voltage difference between the equilibrium voltage at the positive electrode

and the equilibrium voltage at the negative electrode at the initial concentrations in each

respective electrode shown below

ϕs,pos(x, y, 0) = Upos

(
cs0,pos
cs,pos,max

)
− Uneg

(
cs0,neg
cs,neg,max

)
(3.98)

where ϕs,pos is the potential in the solid positive electrode, Upos is the positive equilibrium

94



voltage, cs0,pos is the initial concentration in the solid positive electrode, cs,pos,max is the

maximuim concentration in the solid positive electrode, Uneg is the negative equilibrium

voltage, cs0,neg is the initial concentration in the solid negative electrode, and cs,neg,max is

the maximum concentration in the solid negative electrode. Next the flux at the boundary

between the positive electrode and the separator as shown in Figure 3.66, the boundary

labeled 8, and the boundary labeled 9 were set to 0. The equation used for the Zero Flux

subnode is shown below

Figure 3.66 2D model, cbsp zero flux boundaries.

−n · Γ = 0 (3.99)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.100)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

the current density on the rightmost positive electrode boundary shown in Figure 3.67.
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Figure 3.67 2D model, cbsp applied current boundary.

Matching like coefficients between equations (2.8) and (3.100), results in the re-

lations shown below in Table 3.27. With the convention that the negative of the normal

vector is pointing into the domain, a positive applied current means that the vector would

be pointing into the domain and the current would be moving to the left.

Table 3.27 2D Model, CBSP Flux/Source

Flux/Source Value
g Iapp
q 0

3.3.6 Charge Balance Electrolyte Negative

The charge balance in the electrolyte phase of the negative electrode (CBEN) was applied

to region 1 shown below in Figure 3.68.

Figure 3.68 2D model, cben region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.7) to solve for ϕe,neg. The General

Form PDE equation is shown below
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f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.101)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is the

damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. Matching like

coefficients between equations (2.7) and (3.101), results in the relations shown below in

Table 3.28.

Table 3.28 2D Model, CBEN Parameters

General Form Value
f −jli,neg
ea 0
da 0

Γx κeff,neg ∂
∂x
ϕe,neg + κeff,negd,neg

∂
∂x

∂Ce,neg
∂x

Ce,neg

Γy κeff,neg ∂
∂y
ϕe,neg + κeff,negd,neg

∂
∂y

∂Ce,neg
∂y

Ce,neg

The effective ionic conductivity used in the conservative flux in equation (3.101),

κeff,neg, was set equal to κneg(εe,neg)brugg as in there is Bruggeman correction used. Shown

below is this relationship

κeff,neg = κneg(εe,neg)
brugg (3.102)

where κeff,neg is the effective electrical ionic conductivity, κneg is the graph in Figure 3.3,

εe,neg is the negative electrolyte phase volume fraction, and brugg is the Bruggeman correc-

tion coefficient. The effective diffusion coefficient used in the conservative flux in equation
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(3.101), κeff,negd,neg , was set equal to 2RT
F

(t+ − 1)κneg(εe,neg)
brugg as in there is Bruggeman

correction used. Shown below is this relationship

κeff,negd,neg =
2RT

F
(t+ − 1)κneg(εe,neg)

brugg (3.103)

where κeff,negd,neg is the effective diffusion coefficient, R is the universal gas constant, T is

temperature, F is Faraday’s constant, t+ is the transference number, κneg is the graph in

3.3, εe,neg is the negative electrolyte phase volume fraction, and brugg is the bruggeman

correction coefficient. Within the General Form PDE interface an Initial Value subnode

was created. Within this subnode, the region shown in Figure 3.68 was selected, and the

initial value for ϕe,neg was set to −Uneg as shown below

ϕe,neg(x, y, 0) = −Uneg
(

cs0,neg
cs,neg,max

)
(3.104)

where ϕs,neg is the potential in the electrolyte in the negative electrode, Uneg is the negative

equilibrium voltage, cs0,neg is the initial concentration in the solid negative electrode, and

cs,neg,max is the maximum concentration in the solid negative electrode. Then within the

interface a Dirichlet Boundary Condition subnode was created. The boundary between the

negative electrode and the separator shown in Figure 3.69 was selected and the value of

ϕe,neg was set equal to ϕe,sep as shown below to maintain continuity

ϕe,neg(Lneg, y, t) = ϕe,sep(Lneg, y, t) (3.105)
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Figure 3.69 2D model, cben dirichlet/flux boundary.

where ϕe,neg is the potential in the negative electrode and ϕe,sep is the potential in the

separator electrolyte. Next the flux at the leftmost boundary shown in Figure 3.70, the

boundary labeled 2, and the boundary labeled 3 were set to 0. The equation used for the

Zero Flux subnode is shown below

Figure 3.70 2D model, cben zero flux boundaries.

−n · Γ = 0 (3.106)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.107)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source,
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q is the boundary absorption/impedance term, and u is the dependent variable. This flux

is for continuity between the negative electrode and separator at the boundary shown in

Figure 3.69. Matching like coefficients between equations (2.8) and (3.107), results in the

relations shown below in Table 3.29. With the convention that the negative of the normal

vector is pointing into the domain, a negative flux means that the vector would be pointing

out of the domain and the potential would be moving to the right.

Table 3.29 2D Model, CBEN Flux/Source

Flux/Source Value

g −
(
κeff,sep ∂

∂x
ϕe,sep + κeff,sepd,sep

∂
∂x

∂Ce,sep
∂x

Ce,sep

)
q 0

3.3.7 Charge Balance Electrolyte Separator

The charge balance in the electrolyte phase of the separator (CBES) was applied to region

2 shown below in Figure 3.71.

Figure 3.71 2D model, cbes region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.7) to solve for ϕe,sep. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.108)
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where f is the source term, ea is the mass coefficient, u is the dependent variable, da is the

damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. Matching like

coefficients between equations (2.7) and (3.108), results in the relations shown below in

Table 3.30.

Table 3.30 2D Model, CBES Parameters

General Form Value
f 0
ea 0
da 0

Γx κeff,sep ∂
∂x
ϕe,sep + κeff,sepd,sep

∂
∂x

∂Ce,sep
∂x

Ce,sep

Γy κeff,sep ∂
∂y
ϕe,sep + κeff,sepd,sep

∂
∂y

∂Ce,sep
∂y

Ce,sep

The effective ionic conductivity used in the conservative flux in equation (3.108),

κeff,sep, was set equal to κsep(εe,sep)brugg as in there is Bruggeman correction used. Shown

below is this relationship

κeff,sep = κsep(εe,sep)
brugg (3.109)

where κeff,sep is the effective electrical ionic conductivity, κsep is the graph in Figure 3.3,

εe,sep is the separator electrolyte phase volume fraction, and brugg is the Bruggeman cor-

rection coefficient. The effective diffusion coefficient used in the conservative flux in equa-

tion (3.108), κeff,sepd,sep , was set equal to 2RT
F

(t+−1)κsep(εe,sep)
brugg as in there is Bruggeman

correction used. Shown below is this relationship
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κeff,sepd,sep =
2RT

F
(t+ − 1)κsep(εe,sep)

brugg (3.110)

where κeff,sepd,sep is the effective diffusion coefficient, R is the universal gas constant, T is

temperature, F is Faraday’s constant, t+ is the transference number, κneg is the graph in

3.3, εe,sep is the separator electrolyte phase volume fraction, and brugg is the Bruggeman

correction coefficient. Within the General Form PDE interface an Initial Value subnode

was created. Within this subnode, the region shown in Figure 3.71 was selected, and the

initial value for ϕe,sep was set to −Uneg shown below

ϕe,sep(x, y, 0) = −Uneg
(

cs0,neg
cs,neg,max

)
(3.111)

where ϕsep is the potential in the electrolyte in the separator electrode, Uneg is the negative

equilibrium voltage, cs0,neg is the initial concentration in the solid negative electrode, and

cs,neg,max is the maximum concentration in the solid negative electrode. Then within the

interface a Dirichlet Boundary Condition subnode was created. The boundary between the

separator and the negative electrode shown in Figure 3.72 was selected and the value of

ϕe,sep was set equal to ϕe,neg to maintain continuity as shown below

Figure 3.72 2D model, cbes dirichlet/flux boundary 1.
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ϕe,sep(Lneg, y, t) = ϕe,neg(Lneg, y, t) (3.112)

where ϕe,sep is the potential in the separator electrolyte and ϕe,neg is the potential in the

negative electrolyte. After that within the interface an additional Dirichlet Boundary Con-

dition subnode was created. The boundary between the separator and the positive electrode

as shown in Figure 3.73 was selected and the value of ϕe,sep was set equal to ϕe,pos to

maintain continuity as shown below

Figure 3.73 2D model, cbes dirichlet/flux boundary 2.

ϕe,sep

(
(Lneg + Lsep), y, t

)
= ϕe,pos

(
(Lneg + Lsep), y, t

)
(3.113)

where ϕe,sep is the potential in the separator electrolyte and ϕe,pos is the potential in the

positive electrolyte. Next the flux at the boundaries shown in Figure 3.74 were set to 0.

The equation used for the Zero Flux subnode is shown below

Figure 3.74 2D model, cbes zero flux boundaries.
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−n · Γ = 0 (3.114)

where n is the normal vector and Γ is the conservative flux. Finally within the interface

a Flux/Source subnode was created.Next within the interface a Flux/Source subnode was

created. The equation used for the Flux/Source subnode is shown below

−n · Γ = g − qu (3.115)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q

is the boundary absorption/impedance term, and u is the dependent variable. This flux is

for continuity between the separator and negative electrode at the boundary as shown in

Figure 3.72. Matching like coefficients between equations (2.8) and (3.115), results in the

relations shown below in Table 3.31. With the convention that the negative of the normal

vector is pointing into the domain, a positive flux means that the vector would be pointing

into the domain and the potential would be moving to the right.

Table 3.31 2D Model, CBES Flux/Source 1

Flux/Source Value

g
(
κeff,neg ∂

∂x
ϕe,neg + κeff,negd,neg

∂
∂x

∂Ce,neg
∂x

Ce,neg

)
q 0

Finally within the interface an additional Flux/Source subnode was created. The

equation used for the Flux/Source subnode is shown below
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−n · Γ = g − qu (3.116)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/-

source, q is the boundary absorption/impedance term, and u is the dependent variable. This

flux is for continuity between the separator and positive electrode at the boundary as shown

in Figure 3.73. Matching like coefficients between equations (2.8) and (3.116), results

in the relations shown below in Table 3.32. With the convention that the negative of the

normal vector is pointing into the domain, a negative flux means that the vector would be

pointing out of the domain and the potential would be moving to the right.

Table 3.32 2D Model, CBES Flux/Source 2

Flux/Source Value

g −
(
κeff,pos ∂

∂x
ϕe,pos + κeff,posd,pos

∂
∂x

∂Ce,pos
∂x

Ce,pos

)
q 0

3.3.8 Charge Balance Electrolyte Positive

The charge balance in the electrolyte phase of the positive electrode (CBEP) was applied

to region 3 shown below in Figure 3.75.

Figure 3.75 2D model, cbep region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

105



the partial differential equation described in equation (2.7) to solve for ϕe,pos. The General

Form PDE equation is shown as

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.117)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is the

damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. Matching like

coefficients between equations (2.7) and (3.117), results in the relations shown below in

Table 3.33.

Table 3.33 2D Model, CBEP Parameters

General Form Value
f −jli,pos
ea 0
da 0

Γx κeff,pos ∂
∂x
ϕe,pos + κeff,posd,pos

∂
∂x

∂Ce,pos
∂x

Ce,pos

Γy κeff,pos ∂
∂y
ϕe,pos + κeff,posd,pos

∂
∂y

∂Ce,pos
∂y

Ce,pos

The effective ionic conductivity used in the conservative flux in equation (3.117),

κeff,pos, was set equal to κpos(εe,pos)brugg as in there is Bruggeman correction used. Shown

below is this relationship

κeff,pos = κpos(εe,pos)
brugg (3.118)

where κeff,pos is the effective electrical ionic conductivity, κpos is the graph in Figure 3.3,
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εe,pos is the positive electrolyte phase volume fraction, and brugg is the Bruggeman correc-

tion coefficient. The effective diffusion coefficient used in the conservative flux in equation

(3.117), κeff,posd,pos , was set equal to 2RT
F

(t+ − 1)κpos(εe,pos)
brugg as in there is Bruggeman

correction used. Shown below is this relationship

κeff,posd,pos =
2RT

F
(t+ − 1)κpos(εe,pos)

brugg (3.119)

where κeff,posd,pos is the effective diffusion coefficient, R is the universal gas constant, T is

temperature, F is Faraday’s constant, t+ is the transference number, κneg is the graph in

3.3, εe,pos is the positive electrolyte phase volume fraction, and brugg is the bruggeman

correction coefficient. Within the General Form PDE interface an Initial Value subnode

was created. Within this subnode, the region shown in Figure 3.75 was selected, and the

initial value for ϕe,pos was set to −Uneg shown below

ϕe,pos(x, y, 0) = −Uneg
(

cs0,neg
cs,neg,max

)
(3.120)

where ϕpos is the potential in the electrolyte in the positive electrode, Uneg is the negative

equilibrium voltage, cs0,neg is the initial concentration in the solid negative electrode, and

cs,neg,max is the maximum concentration in the solid negative electrode. Then within the

interface a Dirichlet Boundary Condition subnode was created. The boundary between the

positive electrode and the separator shown in Figure 3.76 was selected and the value of

ϕe,pos was set equal to ϕe,sep as shown below to maintain continuity
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Figure 3.76 2D model, cbep dirichlet/flux boundary.

ϕe,pos

(
(Lneg + Lsep), y, t

)
= ϕe,sep

(
(Lneg + Lsep), y, t

)
(3.121)

where ϕe,pos is the potential in the positive electrolyte and ϕe,neg is the potential in the

separator electrolyte. Next the flux at the rightmost boundary as shown in Figure 3.77, the

boundary labeled 8, and the boundary labeled 9 were set to 0. The equation used for the

Zero Flux subnode is shown as

Figure 3.77 2D model, cbep zero flux boundaries.

−n · Γ = 0 (3.122)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below
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−n · Γ = g − qu (3.123)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source,

q is the boundary absorption/impedance term, and u is the dependent variable. This flux

is for continuity between the positive electrode and separator at the boundary shown in

Figure 3.76. Matching like coefficients between equations (2.8) and (3.123), results in the

relations shown below in Table 3.34. With the convention that the negative of the normal

vector is pointing into the domain, a positive flux means that the vector would be pointing

into the domain and the potential would be moving to the right.

Table 3.34 2D Model, CBEP Flux/Source

Flux/Source Value

g
(
κeff,sep ∂

∂x
ϕe,sep + κeff,sepd,sep

∂
∂x

∂Ce,sep
∂x

Ce,sep

)
q 0

3.3.9 Material Balance Electrolyte Negative

The material balance in the electrolyte phase of the negative electrode (MBEN) was applied

to region 1 shown below in Figure 3.78.

Figure 3.78 2D model, mben region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement
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the partial differential equation described in equation (2.3) to solve for Ce,neg. The General

Form PDE equation is shown as

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.124)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is the

damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. Matching like

coefficients between equations (2.3) and (3.124), results in the relations shown below in

Table 3.35.

Table 3.35 2D Model, MBEN Parameters

General Form Value
f jli,neg(1−t+)

F

ea 0
da εe,neg

Γx −D eff
e,neg

∂Ce,neg
∂x

Γy −D eff
e,neg

∂Ce,neg
∂y

The diffusion coefficient used in the conservative flux in equation (3.124), D eff
e,neg,

was set equal to De,neg(εe,neg)
brugg as in there is Bruggeman correction used. Shown below

is this relationship

D eff
e,neg = De,neg(εe,neg)

brugg (3.125)

where D eff
e,neg is the effective diffusion coefficient, De,neg is the diffusion coefficient, εe,neg
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is the negative electrolyte phase volume fraction, and brugg is the Bruggeman correction

coefficient. Within the General Form PDE interface an Initial Value subnode was created.

Within this subnode, the region shown in Figure 3.78 was selected, and the initial value for

Ce,neg was set to cl0 as

Ce,neg(x, y, 0) = cl0 (3.126)

where Ce,neg is the concentration in the electrolyte in the negative electrode and cl0 is the

initial concentration. Then within the interface a Dirichlet Boundary Condition subnode

was created. The boundary between the negative electrode and the separator shown in

Figure 3.79 was selected and the value of Ce,neg was set equal to Ce,sep as shown below to

maintain continuity

Figure 3.79 2D model, mben dirichlet/flux boundary.

Ce,neg(Lneg, y, t) = Ce,sep(Lneg, y, t) (3.127)

where Ce,neg is the concentration in the negative electrolyte and Ce,sep is the concentration

in the separator electrolyte. Next the flux at the leftmost boundary shown in Figure 3.80,

the boundary labeled 2, and the boundary labeled 3 were set to 0. The equation used for

the Zero Flux subnode is shown below
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Figure 3.80 2D model, mben zero flux boundaries.

−n · Γ = 0 (3.128)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.129)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source,

q is the boundary absorption/impedance term, and u is the dependent variable. This flux

is for continuity between the negative electrode and separator at the boundary shown in

Figure 3.79. Matching like coefficients between equations (2.4) and (3.129), results in the

relations shown below in Table 3.36. With the convention that the negative of the normal

vector is pointing into the domain, a positive flux means that the vector would be pointing

into the domain and the flux would be moving to the left.
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Table 3.36 2D Model, MBEN Flux/Source

Flux/Source Value

g De,sep(εe,sep)
brugg ∂Ce,sep

∂x

q 0

3.3.10 Material Balance Electrolyte Separator

The material balance in the electrolyte phase of the separator (MBES) was applied to region

2 shown below in Figure 3.81.

Figure 3.81 2D model, mbes region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.3) to solve for Ce,sep. The General

Form PDE equation is shown as

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.130)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is the

damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. Matching like

coefficients between equations (2.3) and (3.130), results in the relations shown below in

Table 3.37.
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Table 3.37 2D Model, MBES Parameters

General Form Value
f 0
ea 0
da εe,sep

Γx −D eff
e,sep

∂Ce,sep
∂x

Γy −D eff
e,sep

∂Ce,sep
∂y

The diffusion coefficient used in the conservative flux in equation (3.130), D eff
e,sep,

was set equal to De,sep(εe,sep)
brugg as in there is Bruggeman correction used. Shown below

is this relationship

D eff
e,sep = De,sep(εe,sep)

brugg (3.131)

where D eff
e,sep is the effective diffusion coefficient, De,sep is the diffusion coefficient, εe,sep

is the separator electrolyte phase volume fraction, and brugg is the Bruggeman correction

coefficient. Within the General Form PDE interface an Initial Value subnode was created.

Within this subnode, the region shown in Figure 3.81 was selected, and the initial value for

Ce,sep was set to cl0 shown below

Ce,sep(x, y, 0) = cl0 (3.132)

where Ce,sep is the concentration in the electrolyte in the separator electrode and cl0 is the

initial concentration. Then within the interface a Dirichlet Boundary Condition subnode
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was created. The boundary between the separator and the negative electrode shown in Fig-

ure 3.82 was selected and the value of Ce,sep was set equal to Ce,neg to maintain continuity

as shown below

Figure 3.82 2D model, mbes dirichlet/flux boundary 1.

Ce,sep(Lneg, y, t) = Ce,neg(Lneg, y, t) (3.133)

where Ce,sep is the concentration in the separator electrolyte and Ce,neg is the concentration

in the negative electrolyte. Then an additional Dirichlet Boundary Condition subnode was

created. The boundary between the separator and the positive electrode as shown in Figure

3.83 was selected and the value of Ce,sep was set equal to Ce,pos to maintain continuity as

shown below

Figure 3.83 2D model, mbes dirichlet/flux boundary 2.

Ce,sep

(
(Lneg + Lsep), y, t

)
= Ce,pos

(
(Lneg + Lsep), y, t

)
(3.134)
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where Ce,sep is the concentration in the separator electrolyte and Ce,pos is the concentration

in the positive electrolyte. Next the flux at the boundaries shown in Figure 3.84 were set to

0. The equation used for the Zero Flux subnode is shown below

Figure 3.84 2D model, mbes zero flux boundaries.

−n · Γ = 0 (3.135)

where n is the normal vector and Γ is the conservative flux. Then within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.136)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

continuity between the separator and the negative electrode at the boundary as shown in

Figure 3.82. Matching like coefficients between equations (2.4 and (3.136), results in the

relations shown below in Table 3.38. With the convention that the negative of the normal

vector is pointing into the domain, a negative flux means that the vector would be pointing

out of the domain and the flux would be moving to the left.
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Table 3.38 2D Model, MBES Flux/Source 1

Flux/Source Value

g −De,neg(εe,neg)
brugg ∂Ce,neg

∂x

q 0

Finally within the interface an additional Flux/Source subnode was created. The

equation used for the Flux/Source subnode is shown below

−n · Γ = g − qu (3.137)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/-

source, q is the boundary absorption/impedance term, and u is the dependent variable. This

flux is for continuity between the separator and the positive electrode at the boundary as

shown in Figure 3.83. Matching like coefficients between equations (2.4) and (3.137,) re-

sults in the relations shown below in Table 3.39. With the convention that the negative of

the normal vector is pointing into the domain, a positive flux means that the vector would

be pointing into the domain and the flux would be moving to the left.

Table 3.39 2D Model, MBES Flux/Source 2

Flux/Source Value

g De,pos(εe,pos)
brugg ∂Ce,pos

∂x

q 0
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3.3.11 Material Balance Electrolyte Positive

The material balance in the electrolyte phase of the positive electrode (MBEP) was applied

to region 3 shown below in Figure 3.85.

Figure 3.85 2D model, mbep region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.3) to solve for Ce,pos. The General

Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.138)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is the

damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y

, and Γ is the conservative flux. Matching like

coefficients between equations (2.3) and (3.138), results in the relations shown below in

Table 3.40.
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Table 3.40 2D Model, MBEP Parameters

General Form Value
f jli,pos(1−t+)

F

ea 0
da εe,pos

Γx −D eff
e,pos

∂Ce,pos
∂x

Γy −D eff
e,pos

∂Ce,pos
∂y

The diffusion coefficient used in the conservative flux in equation (3.138), D eff
e,pos,

was set equal to De,pos(εe,pos)
brugg as in there is Bruggeman correction used. Shown below

is this relationship

D eff
e,pos = De,pos(εe,pos)

brugg (3.139)

where D eff
e,pos is the effective diffusion coefficient, De,pos is the diffusion coefficient, εe,pos

is the positive electrolyte phase volume fraction, and brugg is the Bruggeman correction

coefficient. Within the General Form PDE interface an Initial Value subnode was created.

Within this subnode, the region shown in Figure 3.85 was selected, and the initial value for

Ce,pos was set to cl0 as shown below

Ce,pos(x, y, 0) = cl0 (3.140)

where Ce,pos is the concentration in the electrolyte in the positive electrode and cl0 is the

initial concentration. Then within the interface a Dirichlet Boundary Condition subnode
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was created. The boundary between the positive electrode and the separator shown in

Figure 3.86 was selected and the value of Ce,pos was set equal to Ce,sep as shown below to

maintain continuity

Figure 3.86 2D model, mbep dirichlet/flux boundary.

Ce,pos

(
(Lneg + Lsep), y, t

)
= Ce,sep

(
(Lneg + Lsep), y, t

)
(3.141)

where Ce,pos is the concentration in the positive electrolyte and Ce,sep is the concentration

in the separator electrolyte. Next the flux at the rightmost boundary shown in Figure 3.87,

the boundary labeled 8, and the boundary labeled 9 were set to 0. The equation used for

the Zero Flux subnode is shown below

Figure 3.87 2D model, mbep zero flux boundaries.

−n · Γ = 0 (3.142)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a
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Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.143)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q

is the boundary absorption/impedance term, and u is the dependent variable. flux is for

continuity between the positive electrode and separator at the boundary shown in Figure

3.86. Matching like coefficients between equations (2.4) and (3.143), results in the relations

shown below in Table 3.41. With the convention that the negative of the normal vector is

pointing into the domain, a negative flux means that the vector would be pointing out of the

domain and the flux would be moving to the left.

Table 3.41 2D Model, MBEP Flux/Source

Flux/Source Value

g −De,sep(εe,sep)
brugg ∂Ce,sep

∂x

q 0

3.3.12 Material Balance Solid Negative

The material balance in the solid phase of the negative electrode (MBSN) is calculated in

its own three dimensional domain. Shown below in Figure 3.88 is the three dimensional

domain.
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Figure 3.88 2D model, mbsn region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (2.5) to solve for Cs,neg. The General

Form PDE equation is shown as

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.144)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y
, ∂
∂z

, and Γ is the conservative flux. The top

boundary shown in Figure 3.89 of the domain is the function that is mapped to the two

dimensional domain for the negative electrode. The z-dimension represents the radius of a

sphere at that (x,y) value. The top boundary is when z is equal to the radius of the spherical

particle (r = Rp). The bottom boundary is when z is equal to 0 which represents the center

of a spherical particle (r = 0).
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Figure 3.89 2D model, mbsn flux/top boundary.

To avoid division by zero when (r = 0), equation (2.5) is multiplied by r2. The

resulting differential equation is shown below

r2∂Cs
∂t

= Ds
∂

∂r

(
r2∂Cs
∂r

)
(3.145)

where Cs is the concentration in the solid phase and Ds is the diffusion coefficient. After

that the equation is scaled in reference to the particle radius. The scaling is done through

the relationship shown below

r̂ =
r

Rp

∂

∂r
=

1

Rp

∂

∂r̂

(3.146)

With these changes the new partial differential equation that describes the diffusion

of lithium in the solid phase is shown below
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r̂2∂Cs
∂t

= Ds
∂

∂r̂

(
r̂2

R 2
p

∂Cs
∂r̂

)
(3.147)

where Cs is the concentration in the solid phase, Ds is the diffusion coefficient, and Rp

is the particle radius. Matching like coefficients between equations (3.147) and (3.144),

results in the relations shown below in Table 3.42.

Table 3.42 2D Model, MBSN Parameters

General Form Value
f 0
ea 0
da r2

Γx 0
Γy 0

Γz −Ds,neg
r2

(Rs,neg)2
∂Cs,neg
∂r

The flux at the surface of the particle would also need to change. Shown below

is the adjusted flux at the surface while the other two conditions in equation (3.148) are

reiterated as

−Ds
∂Cs
∂x

∣∣∣∣
r=0

= 0

−Ds
∂Cs
∂x

∣∣∣∣
r=Rp

=
r̂2

Rp

jli
asF

Cs(x, y, r, 0) = C init
s (r)

(3.148)

where Rp is the radius of the particle, jli is the pore-wall flux across the interface, F is

Faraday’s constant, and as is the surface area to volume ratio. Within the General Form

PDE interface an Initial Value subnode was created. Within this subnode, the region sown
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in Figure 3.88 was selected, and the initial value forCs,neg was set to cs0,neg as shown below

Cs,neg(x, y, r, 0) = cs0,neg (3.149)

where Cs,neg is the concentration in the solid negative electrode and cs0,neg is the initial

concentration in the solid phase. Next the flux at the faces labelled 1, 2, 3, 5 and 6 as

shown in Figure 3.90 were set to zero. The equation used for the Zero Flux subnode is

shown below

Figure 3.90 2D model, mbsn zero flux boundaries.

−n · Γ = 0 (3.150)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below
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−n · Γ = g − qu (3.151)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

pore-wall flux across the interface on the boundary shown in Figure 3.89. Matching like

coefficients between equations (3.148) and (3.151), results in the relations shown below in

Table 3.43. With the convention that the negative of the normal vector is pointing into the

domain, a negative flux means that the vector would be pointing out of the domain and the

flux would be moving to the upwards.

Table 3.43 2D Model, MBSN Flux/Source

Flux/Source Value

g − r2

Rs,neg

jli,neg
as,negF

q 0

3.3.13 Material Balance Solid Positive

The material balance in the solid phase of the positive electrode (MBSP) is calculated in

its own three dimensional domain. Shown below in Figure 3.91 is the three dimensional

domain.
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Figure 3.91 2D model, mbsp region.

The General Form PDE in the Mathematics-PDE Interfaces was used to implement

the partial differential equation described in equation (3.147) to solve for Cs,pos. The Gen-

eral Form PDE equation is shown below

f = ea
∂2u

∂t2
+ da

∂u

∂t
+∇ · Γ (3.152)

where f is the source term, ea is the mass coefficient, u is the dependent variable, da is

the damping or mass coefficient, ∇ = ∂
∂x
, ∂
∂y
, ∂
∂z

, and Γ is the conservative flux. The top

boundary shown in Figure 3.92 of the domain is the function that is mapped to the two

dimensional domain for the positive electrode. The z-dimension represents the radius of a

sphere at that (x,y) value. The top boundary is when z is equal to the radius of the spherical

particle (r = Rp). The bottom boundary is when z is equal to 0 which represents the center

of a spherical particle (r = 0).
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Figure 3.92 2D model, mbsp flux/top boundary.

Matching like coefficients between equations (3.147) and (3.152), results in the

relations shown below in Table 3.44.

Table 3.44 2D Model, MBSP Parameters

General Form Value
f 0
ea 0
da r2

Γx 0
Γy 0

Γz −Ds,pos
r2

(Rs,pos)2
∂Cs,pos
∂r

Within the General Form PDE interface an Initial Value subnode was created. Within

this subnode, the region shown in Figure 3.91 was selected, and the initial value for Cs,pos

was set to cs0,pos as shown below

Cs,pos(x, y, r, 0) = cs0,pos (3.153)

where Cs,pos is the concentration in the solid positive electrode and cs0,pos is the initial
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concentration in the solid phase. Next the flux at the faces labelled 1, 2, 3, 5,and 6 as

shown in Figure 3.93 were set to zero. The equation used for the Zero Flux subnode is

shown below

Figure 3.93 2D model, mbsp zero flux boundaries.

−n · Γ = 0 (3.154)

where n is the normal vector and Γ is the conservative flux. Finally within the interface a

Flux/Source subnode was created. The equation used for the Flux/Source subnode is shown

below

−n · Γ = g − qu (3.155)

where n is the normal vector, Γ is the conservative flux, g is the boundary flux/source, q is

the boundary absorption/impedance term, and u is the dependent variable. This flux is for

pore-wall flux across the interface on the boundary shown in Figure 3.92. Matching like
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coefficients between equations (3.148) and (3.155), results in the relations shown below in

Table 3.45. With the convention that the negative of the normal vector is pointing into the

domain, a negative flux means that the vector would be pointing out of the domain and the

flux would be moving to the upwards.

Table 3.45 2D Model, MBSP Flux/Source

Flux/Source Value

g − r2

Rs,pos

jli,pos
as,posF

q 0

3.3.14 Linear Extrusions

Because the model has three components to it; a two dimensional domain, a three di-

mensional domain, and an additional three dimensional name, COMSOL does not directly

allow solved dependent variables to be cross coupled to other components. To accomplish

this there are multiple options. The the most abstract way is what COMSOL calls General

Extrusions. But in the case of this model a Linear Extrusion would suffice because in all

three cases a boundary is being mapped to a boundary.

For the component that consists of eight partial differential equations; CBSN, CBSP,

CBEN, CBES, CBEP, MBEN, MBES, and MBEP two linear extrusions are required. One

linear extrusion is required to couple the variables to the material balance in the solid neg-

ative electrode (MBSN), and the second linear extrusion is required to couple the variables

to the material balance in the solid positive electrode (MBSP).

For the linear extrusion to the MBSN, the source domain would be the region shown

in Figures 3.62, 3.68, and 3.78. This region is again shown below in Figure 3.94. The

destination domain would be Geometry 2 which is the geometry for the MBSN shown in
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the model tree in Figure 3.52 and shown below in Figure 3.95.

Figure 3.94 2D model, linear extrusion 1 source.

Figure 3.95 2D model, linear extrusion 1 destination.

Source vertex 1 would be point 2 in Figure 3.94, source vertex 2 would be point 4

in Figure 3.94, and source vertex 3 would be point 1 in Figure 3.94. Destination vertex 1

would be point 4 in Figure 3.95, destination vertex 2 would be point 8 in Figure 3.95, and

destination vertex 3 would be point 2 in Figure 3.95.

For the linear extrusion to the MBSP, the source domain would be the region shown

in Figures 3.65, 3.75, and 3.85. This region is again shown below in Figure 3.96. The

destination domain would be Geometry 3 which is the geometry for the MBSP shown in

the model tree in Figure 3.52 and shown below in Figure 3.97.

131



Figure 3.96 2D model, linear extrusion 2 source.

Figure 3.97 2D model, linear extrusion 2 destination.

Source vertex 1 would be point 2 in Figure 3.96, source vertex 2 would be point 4

in Figure 3.96, and source vertex 3 would be point 1 in Figure 3.96. Destination vertex 1

would be point 4 in Figure 3.97, destination vertex 2 would be point 8 in Figure 3.47, and

destination vertex 3 would be point 2 in Figure 3.97.

For the component that consists of the partial differential equation for the material

balance in the solid negative electrode (MBSN), one linear extrusion is required. One is

only because it is only mapping to the component that has the CBSN, CBSP, CBEN, CBES,

CBEP, MBEN, MBES, and MBEP equations.

For the linear extrusion to the main component, the source domain would be region

shown below in Figure 3.98. The destination domain would be Geometry 1 which is the

geometry for the main component shown in the model tree in Figure 3.52, and the region
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shown in Figures 3.62, 3.68, and 3.78. This region is again shown below in Figure 3.99.

Figure 3.98 2D model, linear extrusion 3 source.

Figure 3.99 2D model, linear extrusion 3 destination.

Source vertex 1 would be point 4 in Figure 3.98, source vertex 2 would be point 8

in Figure 3.98, and source vertex 3 would be point 2 in Figure 3.98. Destination vertex 1

would be point 2 in Figure 3.99, destination vertex 2 would be point 4 in Figure 3.99, and

destination vertex 3 would be point 1 in Figure 3.99.

For the component that consists of the partial differential equation for the material

balance in the solid positive electrode (MBSP), one linear extrusion is required. One is only

required because it is only mapping to the component that has the CBSN, CBSP, CBEN,

CBES, CBEP, MBEN, MBES, and MBEP equations.

For the linear extrusion to the main component, the source domain would be region

shown below in Figure 3.100. The destination domain would be Geometry 1 which is the
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geometry for the main component shown in the model tree in Figure 3.52, and the region

shown in Figures 3.65, 3.75, and 3.85. This region is again shown below in Figure 3.101.

Figure 3.100 2D model, linear extrusion 4 source.

Figure 3.101 2D model, linear extrusion 4 destination.

Source vertex 1 would be point 4 in Figure 3.100, source vertex 2 would be point 8

in Figure 3.100, and source vertex 3 would be point 2 in Figure 3.100. Destination vertex

1 would be point 2 in Figure 3.101, destination vertex 2 would be point 4 in Figure 3.101,

and destination vertex 3 would be point 1 in Figure 3.101.

3.4 Magnetic Field

The magnetic field was added to the two dimensional model in the following partial dif-

ferential equations; CBEN, CBES, CBEP, CBSN, and CBSP. If the applied magnetic field

were into the two dimensional battery or out of the two dimensional battery, not in the x

134



or y direction, then the resulting cross product with the current density in the x direction,

would be an addition in the y direction. This cross product is shown in Figure 3.53. For the

CBEN, Table 3.28 was modified accordingly as seen below in Table 3.46.

Table 3.46 2D Model, CBEN Magnetic Field Parameters

General Form Value
f −jli,neg
ea 0
da 0

Γx κeff,neg ∂
∂x
ϕe,neg + κeff,negd,neg

∂
∂x

∂Ce,neg
∂x

Ce,neg

Γy κeff,neg(
κeff,neg

Ce,negF
Bz + 1) ∂

∂y
ϕe,neg + κeff,negd,neg

∂
∂y

∂Ce,neg
∂y

Ce,neg

For the CBES, Table 3.30 was modified accordingly as seen below in Table 3.47.

Table 3.47 2D Model, CBES Magnetic Field Parameters

General Form Value
f 0
ea 0
da 0

Γx κeff,sep ∂
∂x
ϕe,sep + κeff,sepd,sep

∂
∂x

∂Ce,sep
∂x

Ce,sep

Γy κeff,sep(
κeff,sep

Ce,sepF
Bz + 1) ∂

∂y
ϕe,sep + κeff,sepd,sep

∂
∂y

∂Ce,sep
∂y

Ce,sep
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For the CBEP, Table 3.33 was modified accordingly as seen below in Table 3.48.

Table 3.48 2D Model, CBEP Magnetic Field Parameters

General Form Value
f −jli,pos
ea 0
da 0

Γx κeff,pos ∂
∂x
ϕe,pos + κeff,posd,pos

∂
∂x

∂Ce,pos
∂x

Ce,pos

Γy κeff,pos(
κeff,pos

Ce,posF
Bz + 1) ∂

∂y
ϕe,pos + κeff,posd,pos

∂
∂y

∂Ce,pos
∂y

Ce,pos

For the CBSN, Table 3.25 was modified accordingly as seen below in Table 3.49.

Table 3.49 2D Model, CBSN Magnetic Field Parameters

General Form Value
f jli,neg
ea 0
da 0

Γx σeff,neg
∂

∂x
ϕs,neg

Γy σeff,neg(
σeff,neg
Ce,negF

Bz + 1)
∂

∂y
ϕs,neg

For the CBSP, Table 3.26 was modified accordingly as seen below in Table 3.50.
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Table 3.50 2D Model, CBSP Magnetic Field Parameters

General Form Value
f jli,pos
ea 0
da 0

Γx σeff,pos
∂

∂x
ϕs,pos

Γy σeff,pos(
σeff,pos
Ce,posF

Bz + 1)
∂

∂y
ϕs,pos

3.5 Experiment Setup

Shown below in Figure 3.102 is a diagram of the charging circuit.

Figure 3.102 Experimental charging circuit.

Shown below in Figure 3.103 is a diagram of the discharging circuit.

Figure 3.103 Experimental discharging circuit.

The magnetic field was created through a 6.5 Ohm coil rated for 1200A. The coil

was enclosed, 9.5 mm tall, had an inner radius of 3 mm, and an outer radius of 9.5 mm.
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Shown below in Figure 3.104 is a picture of the coil.

Figure 3.104 Experimental coil.

The power source for the coil was a HP 6200B Dc Power Supply (0-40V 0.75A/0-

20V 1.5A). The voltmeter shown in Figure 3.102 and Figure 3.103 was a HP 34401 A

Multimeter. The ammeter shown in Figure 3.102 and Figure 3.103 was a Agilent 34411A

Multimeter. And the power source shown in Figure 3.102 was a HP 6200B DC Power

Supply.

Three lithium ion batteries were tested. Two of the batteries were 3.0-4.0V 5mA

batteries, and the other battery was a 3.0-4.0V 400mA battery. The small batteries (5mA)

each had a height of 4.5 mm, a width of 3.5 mm, and a thickness of 0.05 mm. The large

battery (400mA) had a height of 11 mm, a width of 5.5 mm, and a thickness of 0.3 mm.

Shown below in Figure 3.105 is a picture of all the batteries under test.
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Figure 3.105 Experimental batteries.

Each battery had a designation on them, but from now they will be referred to at

LTB1, LTB8, and FE19. They were each placed on top of the coil. Shown below in

Figure is the relative orientiation of the batteries. The magnetic field strength was recorded

using a Vernier Labpro interface with a Vernier Magnetif Field Sensor using Logger Lite

1.9.4. For the charge and discharge circuits for the smaller batteries , (LTB1 and LTB8),

the charging and discharging resistor were both a 476.71 Ω resistor. For the charge and

discharge circuits for the larger battery, (FE19), the charging and discharing resistor were

both a 15.92 Ω resistor. Limitations of the Gauss meter sensor is that it can only measure

(0-8)mT magnetic flux density B. Shown below in Figures 3.106 and 3.107 are the batteries

placed on the coil.
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Figure 3.106 Experimental small battery
on coil.

Figure 3.107 Experimental large battery on
coil.

From the above pictures it can be seen that the magnetic flux density impressed

on the small batteries is much more uniform than on the large battery due to their small

areas. The large battery only sees a localized magnetic flux density around the center of the

battery, but also due to its stacked nature the penetration is subjected to stronger attenuation.
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CHAPTER 4

SIMULATION RESULTS AND EXPERIMENTAL RESULTS

4.1 1D Model

The 1D model was constructed to validate the 2D model. The 1D model was compared

to plots from COMSOL’s pre-built one-dimensional model. Shown below in Figure 4.1

is the plot generated from COMSOL’s pre-built one-dimesional lithium battery simulation.

Shown below in Figure 4.2 is the charge and discharge curve for the one-dimensional model

created.

4.1.1 Discharge Charge Curves

Figure 4.1 COMSOL 1d model, discharge
charge curve.

Figure 4.2 1D model, discharge charge
curve.

From the above plots it can be seen that the constructed one-dimensional model agrees well

with COMSOL’s pre-built one-dimensional model. To achieve such agreeance, the meshes

of the domains were found to be very important. The wrong mesh would result data that

did not match with such accuracy.
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4.1.2 MBEN, MBES, MBEP

In this sections are the concentration along the one-dimensional domain. Shown in Figure

4.3 are the concentrations from 0 to 2000 seconds from COMSOL’s model. Shown in Fig-

ure 4.4 are the concentrations from 0 to 2000 seconds from the constructed one-dimensional

model.

Figure 4.3 COMSOL 1d model, electrolyte
concentration.

Figure 4.4 1D model, electrolyte concen-
tration.

With the above graphs it shows that concentrations of the constructed model match

well with COMSOL’s model. Shown in Figure 4.5 are the concentrations from 2000 to

4000 seconds from the constructed one-dimensional model. Shown in Figure 4.6 are the

concentrations from 4000 to 5000 seconds from the constructed one-dimensional model.
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Figure 4.5 1D model, electrolyte concen-
tration 2000s-4000s.

Figure 4.6 1D model, electrolyte concen-
tration 4000s-5000s.

In the above figures it can be seen what happens to the concentrations during a

charge cycle and during a rest period. In the charge cycle the concentrations in the nega-

tive electrode decrease while the concentrations in the positive electrode increase. In the

rest period the concentrations appear to be reaching a equilibrium state through passive

diffusion.

4.1.3 CBEN, CBES, CBEP

In this section are the potentials along the one-dimensional domain. Shown in Figure 4.7

are the potentials from 0 to 2000 seconds from COMSOL’s model. Shown in Figure 4.8

are the potentials from 0 to 2000 seconds from the constructed one-dimensional model.
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Figure 4.7 COMSOL 1d model, electrolyte
potential 0-2000s.

Figure 4.8 1D model, electrolyte potential
0-2000s.

With the above graphs it shows that potentials of the constructed model match well

with COMSOL’s model. Shown in Figure 4.9 are the potentials from 2000 to 4000 seconds

from the constructed one-dimensional model. Shown in Figure 4.10 are the potentials from

4000 to 5000 seconds from the constructed one-dimensional model.

Figure 4.9 1D model, electrolyte potential
2000s-4000s.

Figure 4.10 1D model, electrolyte potential
4000s-5000s.
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In the above figures it can be seen what happens to the potentials during a charge

cycle and during a rest period. In the charge cycle the potentials flip orientations along the

y-axis. In the rest period the potentials appear to be reaching a steady potential.

4.1.4 MBSN, MBSP

In this section are the concentrations in the solid phase in the two-dimensional domain.

Shown in Figure 4.11 are the concentrations from 0 to 1800 seconds from COMSOL’s

model. Shown in Figure 4.12 are the concentrations in the negative electrode from 0 to

1800 seconds from the constructed one-dimensional model. Shown in Figure 4.13 are the

concentrations in the positive electrode from 0 to 1800 seconds from the constructed one-

dimensional model.

Figure 4.11 COMSOL 1d model, solid concentration.
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Figure 4.12 1D model, solid negative phase
concentration.

Figure 4.13 1D model, solid positive phase
concentration.

With the above graphs it shows that concentrations of the constructed model match

well with COMSOL’s model. Shown in Figure 4.14 are the concentrations in the negative

electrode at 10 seconds from the constructed one-dimensional model. Shown in Figure

4.15 are the concentrations in the positive electrode at 10 seconds from the constructed

one-dimensional model.

Figure 4.14 1D model, mbsn surface plot
10s.

Figure 4.15 1D model, mbsp surface plot
10s.
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These results show the symmetry of the lithium leaving one electrode and entering

the other electrode. Shown in Figure 4.16 are the concentrations in the negative elec-

trode at 1200 seconds from the constructed one-dimensional model. Shown in Figure 4.17

are the concentrations in the positive electrode at 1200 seconds from the constructed one-

dimensional model.

Figure 4.16 1D model, mbsn surface plot
1200s.

Figure 4.17 1D model, mbsp surface plot
1200s.

These results show the symmetry of the lithium leaving one electrode and entering

the other electrode. Shown in Figure 4.18 are the concentrations in the negative elec-

trode at 1200 seconds from the constructed one-dimensional model. Shown in Figure 4.19

are the concentrations in the positive electrode at 1200 seconds from the constructed one-

dimensional model.
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Figure 4.18 1D model, mbsn surface plot
1800s.

Figure 4.19 1D model, mbsp surface plot
1800s.

The above plots show that the most diffusion of the lithium occurs near the separa-

tor.

4.1.5 CBSN

In this section are the potentials in the negative solid phase. Shown in Figure 4.20 is the po-

tential from 0 to 2000 seconds from the constructed one-dimensional model. Shown in Fig-

ure 4.21 is the potential from 2000 to 4000 seconds from the constructed one-dimensional

model. Shown in Figure 4.22 is the potential from 4000 to 5000 seconds from the con-

structed one-dimensional model.
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Figure 4.20 1D model, cbsn 0-2000s. Figure 4.21 1D model, cbsn 2000s-4000s.

Figure 4.22 COMSOL 1d model, cbsn 4000s-5000s.

149



As the battery is being discharge the potential in the negative electrode decreases,

as it is charged it becomes positive, and as it is left at rest it reaches an equilibrium state.

4.2 2D Model

The constructed two dimensional model had the parameter Bz adjusted to see the effect

on the discharge and charge rate. The three values tested for increasing the magnetic field

were 0mT, 0.5mT, and 1mT. The three values tested for decreasing the magnetic field and

changing its direction were -1mT, 0.75mT, and 1mT.

4.2.1 PMF Discharge Charge Curves

This section focuses on increasing the positive magnetic field (PMF) on the constructed

two-dimensional model. Shown below in Figure 4.23 are the charge and discharge curves

for the three positive values.

Figure 4.23 COMSOL 2d model, discharge charge curves.
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The above graph showed that the magnetic field has an effect on the charging, dis-

charging, and rest periods. As the magnetic field is increased, the battery discharges faster.

For charging it appears that the battery takes longer to charge. All respective batteries come

to rest at about the same rate.

4.2.2 PMF MBEN, MBES, MBEP

In this section are the concentrations of lithium in each region of the battery, the negative

electrode, the separator, and the positive electrode. Shown in Figure 4.25 are the concen-

trations in the electrolyte from 0 to 2000 seconds for 0mT. Shown in Figure 4.26 are the

concentrations in the electrolyte from 0 to 2000 seconds for 0.5mT.

Figure 4.24 2D model, 0mT electrolyte
concentration 0-2000s.

Figure 4.25 2D model, 0.5mT electrolyte
concentration 0-2000s.
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The above graphs show variation in the electrolyte concentrations during a dis-

charge cycle. Shown in Figure 4.26 are the concentrations in the electrolyte from 2000 to

4000 seconds for 0mT. Shown in Figure 4.27 are the concentrations in the electrolyte from

2000 to 4000 seconds for 0.5mT.

Figure 4.26 2D model, 0mT electrolyte
concentration 2000s-4000s.

Figure 4.27 2D model, 0.5mT electrolyte
concentration 2000s-4000s.

The above graphs show variation in the electrolyte concentrations during a charge

cycle. Shown in Figure 4.28 are the concentrations in the electrolyte from 4000 to 5000

seconds for 0mT. Shown in Figure 4.29 are the concentrations in the electrolyte from 4000

to 5000 seconds for 0.5mT.
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Figure 4.28 2D model, 0mT electrolyte
concentration 4000s-5000s.

Figure 4.29 2D model, 0.5mT electrolyte
concentration 4000s-5000s.

The above graphs show variation in the electrolyte concentrations during a rest

period.

4.2.3 PMF CBEN, CBES, and CBEP

In this section are the potentials of the electrolyte in each region of the battery, the negative

electrode, the separator, and the positive electrode. Shown in Figure 4.30 are the potentials

in the electrolyte from 0 to 2000 seconds for 0mT. Shown in Figure 4.31 are the potentials

in the electrolyte from 0 to 2000 seconds for 0.5mT.
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Figure 4.30 2D model, 0mT electrolyte po-
tential 0-2000s.

Figure 4.31 2D model, 0.5mT electrolyte
potential 0-2000s.

The above graphs show variation in the electrolyte potentials during a discharge

cycle. Shown in Figure 4.32 are the potentials in the electrolyte from 2000 to 4000 seconds

for 0mT. Shown in Figure 4.33 are the potentials in the electrolyte from 2000 to 4000

seconds for 0.5mT.

Figure 4.32 2D model, 0mT electrolyte po-
tential 2000s-4000s.

Figure 4.33 2D model, 0.5mT electrolyte
potential 2000s-4000s.

The above graphs show variation in the electrolyte potentials during a charge cycle.
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Shown in Figure 4.34 are the potentials in the electrolyte from 4000 to 5000 seconds for

0mT. Shown in Figure 4.35 are the potentials in the electrolyte from 4000 to 5000 seconds

for 0.5mT.

Figure 4.34 2D model, 0mT electrolyte po-
tential 4000s-5000s.

Figure 4.35 2D model, 0.5mT electrolyte
potential 4000s-5000s.

The above graphs show variation in the electrolyte potentials during a rest period.

4.2.4 PMF MBSN and MBSP

In this section are the concentrations in the solid electrode for both the positive and negative

electrodes. Shown in Figure 4.36 are the concentrations in the negative electrode at 10

seconds for 0mT. Shown in Figure 4.37 are the concentrations in the negative electrode at

10 seconds for 0.5mT.
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Figure 4.36 2D model, 0mT mbsn 10s. Figure 4.37 2D model, 0.5mT mbsn 10s.

The above graphs show variation in the concentration in the negative electrode dur-

ing a discharge cycle. Shown in Figure 4.38 are the concentrations at 500s in the negative

electrode for 0mT. Shown in Figure 4.39 are the concentrations at 500s in the negative

electrode for 0.5mT.

Figure 4.38 2D model, 0mT mbsn 500s. Figure 4.39 2D model, 0.5mT mbsn 500s.

The above graphs show variation in the concentration in the negative electrode dur-

ing a discharge cycle. Shown in Figure 4.40 are the concentrations at 10s in the positive
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electrode for 0mT. Shown in Figure 4.41 are the concentrations in the positive electrode at

10s in the negative electrode for 0.5mT.

Figure 4.40 2D model, 0mT mbsp 10s. Figure 4.41 2D model, 0.5mT mbsp 10s.

The above graphs show variation in the concentration in the negative electrode dur-

ing a discharge cycle. Shown in Figure 4.42 are the concentrations at 500s in the positive

electrode for 0mT. Shown in Figure 4.43 are the concentrations in the positive electrode at

500s in the negative electrode for 0.5mT.

Figure 4.42 2D model, 0mT mbsp 500s. Figure 4.43 2D model, 0.5mT mbsp 500s.
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A noticeable variation in the solid concentration at 500s is noticed in the solid pos-

itive electrode.

4.2.5 PMF CBSN

In this section is the potential in the solid negative electrode during a discharge, charge, and

rest period. Shown in Figure 4.44 is the potential from 0 to 2000s in the negative electrode

for 0mT. Shown in Figure 4.45 is the potential from 0 to 2000s in the negative electrode for

0.5mT

Figure 4.44 2D model, 0mT cbsn 0-2000s.
Figure 4.45 2D model, 0.5mT cbsn 0-
2000s.

For the 0.5mT curve the potentials seem to be changing faster. Shown in Figure

4.46 is the potential from 2000 to 4000 seconds in the negative electrode for 0mT. Shown

in Figure 4.47 is the potential from 2000 to 4000 seconds in the negative electrode for

0.5mT.
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Figure 4.46 2D model, 0mT cbsn 2000s-
4000s.

Figure 4.47 2D model, 0.5mT cbsn 2000s-
4000s.

There appears to be more variation in the potentials in the 0.5mT curve than the

0mT curve. Shown in Figure 4.48 is the potential from 4000 to 5000 seconds in the negative

electrode for 0mT. Shown in Figure 4.49 is the potential from 4000 to 5000 seconds in the

negative electrode for 0.5mT.

Figure 4.48 2D model, 0mT cbsn 4000s-
5000s.

Figure 4.49 2D model, 0.5mT cbsn 4000s-
5000s.

Not a significant difference is seen during the rest period for both field magnitudes.
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4.2.6 NMF Discharge Charge Curves

This section focuses on changing the direction of the magnetic field to see the effect of a

negative magnetic field (NMF) on the constructed two-dimensional model.

Figure 4.50 2D model, nmf discharge charge curves.

The negative magnetic field appears to charge faster than the positive magnetic field

and the absence of the magnetic field.

4.2.7 NMF MBEN, MBES, MBEP

In this section are the concentrations of lithium in each region of the battery, the negative

electrode, the separator, and the positive electrode. Shown in Figure 4.51 are the concen-

trations in the electrolyte from 0 to 2000 seconds for 0.75mT. Shown in Figure 4.52 are the

concentrations in the electrolyte from 0 to 2000 seconds for -1mT.
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Figure 4.51 2D model, 0.75mT electrolyte
concentration 0-2000s.

Figure 4.52 2D model, -1mT electrolyte
concentration 0-2000s.

There is much variation seen for the electrolyte concentrations from 0 to 2000 sec-

onds from the plots. Shown in Figure 4.53 are the concentrations in the electrolyte from

2000 to 4000 seconds for 0.75mT. Shown in Figure 4.54 are the concentrations in the elec-

trolyte from 2000 to 4000 seconds for -1mT.

Figure 4.53 2D model, 0.75mT electrolyte
concentration 2000s-4000s.

Figure 4.54 2D model, -1mT electrolyte
concentration 2000s-4000s.
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In the above graphs there is only a slight variation at 2800 seconds seen. Shown in

Figure 4.55 are the concentrations in the electrolyte from 4000 to 5000 seconds for 0.75mT.

Shown in Figure 4.56 are the concentrations in the electrolyte from 4000 to 5000 seconds

for -1mT.

Figure 4.55 2D model, 0.75mT electrolyte
concentration 4000s-5000s.

Figure 4.56 2D model, -1mT electrolyte
concentration 4000s-5000s.

In the above graphs there is a slightly noticeable variation in the potentials at the

various times.

4.2.8 NMF CBEN, CBES, and CBEP

In this section are the potentials of the electrolyte in each region of the battery; the negative

electrode, the separator, and the positive electrode. Shown in Figure 4.57 are the potentials

in the electrolyte from 0 to 2000s for 0.75mT. Shown in Figure 4.58 are the potentials in

the electrolyte from 0 to 2000 seconds for -1mT.
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Figure 4.57 2D model, 0.75mT electrolyte
potential 0-2000s.

Figure 4.58 2D model, -1mT electrolyte
potential 0-2000s.

In the above plots there is not much of a variation in the potentials. Shown in Figure

4.59 are the potentials in the electrolyte from 2000 to 4000s for 0.75mT. Shown in Figure

4.60 are the potentials in the electrolyte from 2000 to 4000 seconds for -1mT.

Figure 4.59 2D model, 0.75mT electrolyte
potential 2000s-4000s.

Figure 4.60 2D model, -1mT electrolyte
potential 2000s-4000s.

In the above plots there is a slight variation at 2400 seconds. Shown in Figure 4.61

are the potentials in the electrolyte from 2000 to 4000s for 0.75mT. Shown in Figure 4.62
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are the potentials in the electrolyte from 2000 to 4000 seconds for -1mT.

Figure 4.61 2D model, 0.75mT electrolyte
potential 4000s-5000s.

Figure 4.62 2D model, -1mT electrolyte
potential 4000s-5000s.

In Figure 4.62 at 4200 seconds the potential is higher than in Figure 4.61.

4.2.9 NMF MBSN and MBSP

In this section are the concentrations in the solid electrode for both the positive and negative

electrodes. Shown in Figure 4.63 are the concentrations in the negative electrode at 10

seconds for 0.75mT. Shown in Figure 4.64 are the concentrations in the negative electrode

at 10 seconds for -1mT.
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Figure 4.63 2D model, 0.75mT mbsn 10s. Figure 4.64 2D model, -1mT mbsn 10s.

In the above plots there not a noticeable difference in concentrations. Shown in

Figure 4.65 are the concentrations in the solid negative electrode at 500 seconds for 0.75mT.

Shown in Figure 4.66 are the concentrations in the solid negative electrode at 500 seconds

for -1mT.

Figure 4.65 2D model, 0.75mT mbsn 500s. Figure 4.66 2D model, -1mT mbsn 500s.
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With the above plots there does not seem to be difference in the concentrations at

500 seconds. Shown in Figure 4.67 are the concentrations in the solid positive electrode at

10 seconds for 0.75mT. Shown in Figure 4.68 are the concentrations in the solid positive

electrode at 10 seconds for -1mT.

Figure 4.67 2D model, 0.75mT mbsp 10s. Figure 4.68 2D model, -1mT mbsp 10s.

With the above plots there does not seem to be difference in the concentrations at

10 seconds. Shown in Figure 4.69 are the concentrations in the solid positive electrode at

2500 seconds for 0.75mT. Shown in Figure 4.69 are the concentrations in the solid positive

electrode at 2500 seconds for -1mT.
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Figure 4.69 2D model, 0.75mT mbsp 500s. Figure 4.70 2D model, -1mT mbsp 500s.

There a noticeable difference in the concentrations in the positive electrode at 2500

seconds.

4.2.10 PMF CBSN

In this section is the potential in the solid negative electrode during a discharge, charge, and

rest period. Shown in Figure 4.71 is the potential from 0 to 2000 seconds in the negative

electrode for 0.75mT. Shown in Figure 4.72 is the potential from 0 to 2000 seconds in the

negative electrode for -1mT.
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Figure 4.71 2D model, 0.75mT cbsn 0-
2000s.

Figure 4.72 2D model, -1mT cbsn 0-2000s.

There is a noticeable difference at 2000 seconds for the potential in the negative

electrode. Shown in Figure 4.73 is the potential from 2000 to 4000 seconds in the negative

electrode for 0.75mT. Shown in Figure 4.74 is the potential from 0 to 2000 seconds in the

negative electrode for -1mT.

Figure 4.73 2D model, 0.75mT cbsn
2000s-4000s.

Figure 4.74 2D model, -1mT cbsn 2000s-
4000s.

There is a noticeable difference at 2800 seconds for the potential in the negative
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electrode. Shown in Figure 4.73 is the potential from 4000 to 5000 seconds in the negative

electrode for 0.75mT. Shown in Figure 4.74 is the potential from 4000 to 5000 seconds in

the negative electrode for -1mT.

Figure 4.75 2D model, 0.75mT cbsn
4000s-5000s.

Figure 4.76 2D model, -1mT cbsn 4000s-
5000s.

There seems to be a slight variation between 4000 seconds and 4200 seconds. There

is more variation in the potential in the negative electrode with -1mT.

4.3 Experimental Measurements

4.3.1 Magnetic Fields Generated from Coil

Shown below in Figure 4.77 is when the magnetic field sensor was 2mm into the top of coil

at various currents into the coil. Shown below in Figure 4.78 is when the magnetic field

sensor was 0mm into the top of the coil at various currents into the coil.
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Figure 4.77 Magnetic fields 2mm into top
of coil.

Figure 4.78 Magnetic fields 0mm into top
of coil.

In Figure 4.77, 0-10 seconds is when there was 100mA into the coil, 15-30 seconds

is when there was 200mA into the coil, 30-35 seconds is when there was 300mA into the

coil, 35-40 seconds is when there was 400mA into the coil, and 40-45 seconds is when

there was 500mA into the coil.

In Figure 4.78, 0-20 seconds is when there was 100mA into the coil, 20-30 seconds

is when there was 200mA into the coil, 40-50 seconds is when there was 300mA into the

coil, 50-70 seconds is when there 400mA into the coil, 70-90 seconds is when there was

500mA into the coil, 90-110 seconds is when there was 600mA into the coil, 130-150

seconds is when there was 700mA into the coil, and 150-170 is when there was 800mA

into the coil.

Shown below in Figure 4.79 is when the magnetic field sensor was 2mm into the

bottom of coil at various currents into the coil. Shown below in Figure 4.80 is when the

magnetic field sensor was 0mm into the bottom of the coil at various currents into the coil.
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Figure 4.79 Magnetic fields 2mm into bot-
tom of coil.

Figure 4.80 Magnetic fields 0mm into bot-
tom of coil.

In Figure 4.79, 0-10 seconds is when there was 100mA into the coil, 15-25 seconds

is when there was 200mA into the coil, 25-35 seconds is when there was 300mA into the

coil, and 35-40 seconds is when there was 400mA into the coil

In Figure 4.80, 0-10 seconds is when there was 100mA into the coil, 10-30 seconds

is when there was 200mA into the coil, 30-40 seconds is when there was 300mA into the

coil, 40-60 seconds is when there 400mA into the coil, 60-80 seconds is when there was

500mA into the coil, 90-110 seconds is when there was 600mA into the coil, 120-140

seconds is when there was 700mA into the coil, and 150-170 is when there was 800mA

into the coil.

4.3.2 Small Battery LTB8

Shown below Figure 4.81 are the charge currents in the absence of a magnetic field (No

Field), the field generated at the top with 800mA in the coil (Field Top 800mA), the field

generated at the bottom with 800mA in the coil (Field Bottom), and the field generated

at the top with 300mA in the coil (Field Top 300mA). Shown below Figure 4.82 are the

charge voltages in the absence of a magnetic field (No Field), the field generated at the top
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with 800mA in the coil (Field Top 800mA), the field generated at the bottom with 800mA

in the coil (Field Bottom), and the field generated at the top with 300mA in the coil (Field

Top 300mA).

Figure 4.81 Small battery LTB8 charge
current.

Figure 4.82 Small battery LTB8 charge
voltage.

The voltages in Figure 4.82 are to be viewed with caution as of the loading effect of

the charge circuit. The battery was charged from 3.45V to 4V in the specified conditions.

The currents into the battery were all in the same relative range to keep the same charge

rate. Looking at Figure 4.82 the presence of the magnetic field affected the charging time

for the battery. Instead of taking 10000 seconds to charge, the magnetic field reduced the

time to 3000 seconds. Changing the direction of the magnetic field also had a noticeable

effect on the charge times. Decreasing the current into the coil also had effect seen in the

reduction of the charge time. Shown below in Figure 4.83 is a plot of the magnetic flux

densities versus charging time.
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Figure 4.83 Small battery LTB8 optimal.

As can be seen in the above plot, there appears to be an optimal charging magnetic

flux density. This plot is a projection based on the three data points for this charge curve;

0mT, 3mT, and 6mT. This optimal solution corresponds to the shortest charging time for

when the battery was charged from 3.5V to 4.0V.

Shown below Figure 4.84 are the discharge currents in the absence of a magnetic

field (No Field), the field generated at the top with 800mA in the coil (Field Top 800mA),

the field generated at the bottom with 800mA in the coil (Field Bottom), and the field

generated at the top with 300mA in the coil (Field Top 300mA). Shown below Figure 4.85

are the discharge voltages in the absence of a magnetic field (No Field), the field generated

at the top with 800mA in the coil (Field Top 800mA), the field generated at the bottom with

800mA in the coil (Field Bottom), and the field generated at the top with 300mA in the coil

(Field Top 300mA).
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Figure 4.84 Small battery LTB8 discharge
current.

Figure 4.85 Small battery LTB8 discharge
voltage.

The voltages in Figure 4.85 are to be viewed with caution as of the loading effect

of the discharge circuit. The battery was discharged from 3.45V to 3V in the specified

conditions. The currents into the battery were all in the same relative range to keep the

same discharge rate. Looking at Figure 4.85 the presence of the magnetic field affected the

discharging time for the battery. Instead of taking 3000 seconds to discharge, the magnetic

field reduced the time to 2000 seconds. Changing the direction of the magnetic field also

had a noticeable effect on the discharge times. The magnitude of the field increased the

discharge time for the case of (Field Top 800mA) and decreased the discharge time in the

case of (Field Top 300mA). The direction of the magnetic field also had a noticeable effect.

4.3.3 Small Battery LTB1

Shown below Figure 4.86 are the charge currents in the absence of a magnetic field (No

Field), the field generated at the top with 800mA in the coil (Field Top 800mA), the field

generated at the bottom with 800mA in the coil (Field Bottom), and the field generated

at the top with 300mA in the coil (Field Top 300mA). Shown below Figure 4.87 are the

charge voltages in the absence of a magnetic field (No Field), the field generated at the top
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with 800mA in the coil (Field Top 800mA), the field generated at the bottom with 800mA

in the coil (Field Bottom), and the field generated at the top with 300mA in the coil (Field

Top 300mA).

Figure 4.86 Small battery LTB1 charge
current.

Figure 4.87 Small battery LTB1 charge
voltage.

The voltages in Figure 4.87 are to be viewed with caution as of the loading effect of

the charge circuit. The battery was charged from 3.6V to 3.9V in the specified conditions.

The currents into the battery were all in the same relative range to keep the same charge

rate. Looking at Figure 4.87 the presence of the magnetic field affected the charging time

for the battery. Instead of taking 3500 seconds to charge, the magnetic field reduced the

time to 1500 seconds. Changing the direction of the magnetic field also had a noticeable

effect on the charge times. Decreasing the current into the coil also had effect seen in the

reduction of the charge time. Shown below in Figure 4.88 is a plot of the magnetic flux

densities versus charging time.
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Figure 4.88 Small battery LTB1 optimal.

As can be seen in the above plot, there appears to be an optimal charging magnetic

flux density. This plot is a projection based on the three data points for this charge curve;

0mT, 3mT, and 6mT. This optimal solution corresponds to the shortest charging time for

when the battery was charged from 3.6V to 3.9V.

Shown below Figure 4.89 are the discharge currents in the absence of a magnetic

field (No Field), the field generated at the top with 800mA in the coil (Field Top 800mA),

the field generated at the bottom with 800mA in the coil (Field Bottom), and the field

generated at the top with 300mA in the coil (Field Top 300mA). Shown below Figure 4.90

are the discharge voltages in the absence of a magnetic field (No Field), the field generated

at the top with 800mA in the coil (Field Top 800mA), the field generated at the bottom with

800mA in the coil (Field Bottom), and the field generated at the top with 300mA in the coil

(Field Top 300mA).
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Figure 4.89 Small battery LTB1 discharge
current.

Figure 4.90 Small battery LTB1 discharge
voltage.

The voltages in Figure 4.90 are to be viewed with caution as of the loading effect

of the discharge circuit. The battery was discharged from 3.43V to 3V in the specified

conditions. The currents into the battery were all in the same relative range to keep the

same discharge rate. Looking at Figure 4.90 the presence of the magnetic field affected the

discharging time for the battery. Instead of taking 3000 seconds to discharge, the magnetic

field reduced the time to 2000 seconds. Changing the direction of the magnetic field also

had a noticeable effect on the discharge times. The magnitude of the field decreased the

discharge time for the case of (Field Top 800mA) and decreased the discharge time in the

case of (Field Top 300mA). The direction of the magnetic field also had a noticeable effect.

4.3.4 Big Battery FE19

Shown below Figure 4.91 are the charge currents in the absence of a magnetic field (No

Field), the field generated at the top with 800mA in the coil (Field Top 800mA), the field

generated at the bottom with 800mA in the coil (Field Bottom), and the field generated

at the top with 300mA in the coil (Field Top 300mA). Shown below Figure 4.92 are the

charge voltages in the absence of a magnetic field (No Field), the field generated at the top
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with 800mA in the coil (Field Top 800mA), the field generated at the bottom with 800mA

in the coil (Field Bottom), and the field generated at the top with 300mA in the coil (Field

Top 300mA).

Figure 4.91 Big battery FE19 charge cur-
rent.

Figure 4.92 Big battery FE19 charge volt-
age.

The voltages in Figure 4.92 are to be viewed with caution as of the loading effect of

the charge circuit. The battery was charged from 3.4V to 3.65V in the specified conditions.

The currents into the battery were all in the same relative range to keep the same charge

rate. Looking at Figure 4.87 the presence of the magnetic field affected the charging time

for the battery slightly. Instead of taking 1000 seconds to charge, the magnetic field reduced

the time to 900 seconds. Changing the direction of the magnetic field also had a slightly

noticeable effect on the charge times. Decreasing the current into the coil slightly increased

the charge time. At the same time, this battery consits of a stacked number of cells which

prevent equal penetration of the magnetic field into each individual cell.

Shown below Figure 4.93 are the discharge currents in the absence of a magnetic

field (No Field), the field generated at the top with 800mA in the coil (Field Top 800mA),

the field generated at the bottom with 800mA in the coil (Field Bottom), and the field

generated at the top with 300mA in the coil (Field Top 300mA). Shown below Figure 4.94
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are the discharge voltages in the absence of a magnetic field (No Field), the field generated

at the top with 800mA in the coil (Field Top 800mA), the field generated at the bottom with

800mA in the coil (Field Bottom), and the field generated at the top with 300mA in the coil

(Field Top 300mA).

Figure 4.93 Big battery FE19 discharge
current.

Figure 4.94 Big battery FE19 discharge
voltage.

The voltages in Figure 4.94 are to be viewed with caution as of the loading effect

of the discharge circuit. The battery was discharged from 3.4V to 0.5V in the specified

conditions. The currents into the battery were all in the same relative range to keep the

same discharge rate. Looking at Figure 4.94 the presence of the magnetic field affected

the discharging time for the battery. Instead of taking 5000 seconds to discharge, the mag-

netic field reduced the time to 3500 seconds. Changing the direction of the magnetic field

also had a noticeable effect on the discharge times. The magnitude of the field slightly

decreased the discharge time for the case of (Field Top 800mA) and noticeably decreased

the discharge time in the case of (Field Top 300mA). The direction of the magnetic field

also had a noticeable effect.
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CHAPTER 5

CONCLUSION

Starting with the one-dimensional model it was found that it matched very closely with

COMSOL’s pre-built one-dimensional model. With that foundation, a two-dimensional

model was constructed that would allow the affects of a magnetic field influence its char-

acteristics. Two dimensions were needed because of the cross-product in the Lorentz force

and Hall effect. With various impressed external magnetic field intensities an effect was

noticed on the charge and discharge curves as well as the charge and mass concentrations

within the batteries. With the two-dimensional model starting from 0mT and going to 1mT

had the effect of discharging the battery faster and charging the battery faster. With the

two-dimensional model starting from 1mT and going to -1mT had the effect of charging

the battery faster. In either case an effect on the various characteristics of the battery were

studied.

With the experiments conducted on the two types of batteries the effect was more

profound than subtle. Discharge times were twice as fast and charge times were equally

affected. With the smaller batteries they all generally charged faster under the presence of

a magnetic field due to more uniform penetration. In the presence of the field they also

discharged faster. The larger batteries would not see the same uniform penetration because

only a small area of the battery sees the center of the coil it is placed on. Decreasing

the magnetic field had the effect of increasing the charging time implying a parabola-like

relationship. This would mean that an optimal magnetic field would result in an optimal

charging time. For the larger battery the battery generally discharged faster in the presence
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of the magnetic field, but did not have an equally as great of a change in charging speed.

Looking at the simulations and experimental results they do not agree with each

other completely. This is due to the fact that the model constructed is based on materials

and parameters from COMSOL. To build a more accurate model, the initial concentrations

in both electrodes, the conductivity, the diffusion coefficients, the equilibrium potentials,

and the exact lengths and widths of the batteries would be needed. Measuring these pa-

rameters and constants is pretty difficult almost impossible in real-life batteries. Both the

simulation and the experimental results show the general trend that magnetic fields can

have an observable effect on the discharge and charge cycles of lithium ion batteries.
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