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ABSTRACT

MAGNETIC FIELD EFFECTS
ON LITHIUM ION BATTERIES

by
Kevin Mahon

The Nobel Prize in Chemistry 2019 was just recently awarded to John B. Goodenough,
M. Stanley Whittingham, and Akira Yoshino for the development of lithium-ion batteries.
Lithium-ion batteries have seen use in many different industries and applications such as in
portable devices, power grids, and electric vehicles. As lithium-ion batteries become more
commonplace they will need to be modeled more extensively. The magnetic field effect on
lithium-ion batteries has not been studied significantly since they were first discovered.

Modeling these batteries is still difficult because of the many complexities of the
operation of a battery. Lithium-ion batteries are commonly modeled through equivalent
circuit models (ECM’s) in where experimental data is replicated through the use of parallel
and series resistors and capacitors. The values of these resistance and capacitances are
tuned to the experimental data. The other route for modeling lithium-ion batteries involves
looking at the fundamental electrochemistry that governs them. This involves solving the
differential equations for conservation of mass and conservation of charge. These equations
are very nonlinear, dependent on each other, and do not have closed-form solutions.

One-dimensional and two-dimensional batteries were modeled based on the under-
lying physics of a lithium-ion battery. Magnetic fields were injected into the batteries to see
the effect on their voltage and current charge/discharge characteristics. It was observed that
external magnetic fields result in reduced times during charging and discharing of lithium-

ion batteries due to the paramagnetic nature of lithium ions.
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CHAPTER 1

INTRODUCTION

1.1 Battery Applications

Batteries come in many shapes and sizes and see many different applications. In recent
years electrical storage has seen an increased interest due to the emergence of renewable
sources of energy. Across the world nations have made self-imposed requirements on their
fuel sources that power their electric grids. The issue with some of these renewable sources
of energy are that they are not as reliable as other forms of energy. While coal or natural
gas can be burned at any time of day, wind and solar only work when there is a breeze
or the sun is up. For most of the history of electric grids around the world supply meets
demand; electricity is supplied exactly when it is demanded. These two factors, reliability
and demand, cause the need for energy storage if the world is to want to rely on these forms
of energy. While the sun is up some of this energy can be supplied directly to the grid while
some may be used to fill battery banks.

Electric vehicles have also seen an increased area of research for higher energy
and more capacity batteries. Most people’s concern with electric vehicles is range and
charging times. If higher energy density batteries can be discovered, this would help to
solve both the range and the charging issues. Another application for energy storage is
that of smaller electronics or portable equipment such as phones, laptops, power tools, and
other instruments. Higher density batteries in this case provide a longer charge that allows
the user to charge their battery less frequently. If more capacity is the goal, a battery taking

up the same space could last longer. If weight is a concern, the same capacity can be seen



while taking up less space.

1.2 Types of Batteries
Batteries come in two different types, primary and secondary. Primary batteries are non-
reversible single use batteries. These types of batteries see use in consumer electronics,
weapon systems, medical applications, aerospace applications, and more. They are typi-
cally used when the price of rechargeable batteries is not economically feasible or charging
is impractical because of their application. Typical primary batteries are the zinc-carbon
battery or the alkaline dry cell [1]. The zinc-carbon battery has zinc as the anode; a graphite
rod in the center, surrounded by a paste of manganese dioxide, ammonium and zinc chlo-
rides, and carbon black, is the cathode. The reaction that occurs at the anode is approxi-

mated by

Zn(s) — Zn*"(aq) + 2e~ (1.1)

The reaction that occurs at the cathode is approximated as

2N Hj (aq) + 2MnOs(s) + 2¢~ — Mny03(s) + HyO(l) + 2N Hs(aq) (1.2)

An alkaline dry cell is similar to the zinc-carbon battery except potassium hydroxide

1s used instead of ammonium chloride. At the anode the reaction is

Zn(s) +20H (aq) — Zn(OH)y(s) + 2e~ (1.3)



At the cathode the reaction is expressed as

2MnOs(s) + HyO(l) + 2¢~ — MnyOs(s) +20H ™ (aq) (1.4)

A natural evolution of the primary cell was the secondary cell which made up for
its shortcoming of only being single use. The advantage of the secondary cell is that it is
rechargeable. Two types of secondary batteries are the lead storage cells and the nickel-
cadmium cells [1]. The lead storage cell consists of electrodes of lead alloy grids; one
electrode is packed with a spongy lead to form the anode, and the other electrode is packed
with lead (IV) oxide to form the cathode. The reaction that occurs at the anode is shown

below

Pb(s) + HSO; (aq) — PbSO4(s) + H" (aq) + 2¢~ (1.5)

and the reaction occurring at the cathode is

PbOs(s) + 3H (aq) + HSO; (aq) + 2¢~ — PbSO4(s) + 2H,0(l) (1.6)

In the nickel-cadmium cell the anode consists of cadmium and the cathode is hy-
drated nickel oxide (approximately NiOOH) on nickel; the electrolyte is potassium hydrox-

ide. The reaction that occurs at the anode is

Cd(s) +20H (aq) — Cd(OH)a(s) + 2¢~ (1.7)



and the reaction occurring at the cathode is

NiOOH (s) + HyO(l) + e~ — Ni(OH)s(s) + OH (aq) (1.8)

1.3 Battery Operation
A typical battery is composed of three regions; the negative electrode, the separator, and

the positive electrode. These three regions are shown below in Figure 1.1.

Negative Separator Positive
Electrode Electrode
| Il 11

Positive Current Collector

10}99j09) JuaLNg annebap

Figure 1.1 Three regions of a battery.

All three regions are immersed in an electrolyte that allows positive and negative
ions to move between the two electrodes. Connected to the the positive electrode is the
positive current collector and connected to the negative electrode is the negative current
collector. When the battery is being charged an external voltage source is connected to the
negative current collector and the positive current collector. Pictured below in Figure 1.2 is

when the battery is being charged.
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Figure 1.2 Charge operation.

The negative electrode acts as the cathode where a reduction reaction occurs which
produces a positive ion and an electron. This relation shown below corresponds to the half

reaction of sodium chloride

2Na(s) = 2Na™(s) + 2e~ (1.9)
The positive electrode acts as the anode where an oxidation reaction occurs which

consumes the now free positive ion and electron. This relation shown below corresponds

to the half reaction of sodium chloride

Cla(g) + 2~ — 2C1(s) (1.10)

Presenting half reactions allows more concentration into what each electrode mate-

rial is contributing. Shown below is the full reaction for sodium chloride

2Na(s) + Cla(g) — 2NaCl(s) (1.11)



Electrons move from the anode to the positive current collector, from the positive
current collector to an external voltage source, from the external voltage source to the
negative current collector, and from the negative current collector to the cathode. For a

discharge operation much of the opposite occurs as shown in Figure 1.3.
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Figure 1.3 Discharge operation.

When the battery is discharged the negative electrode is the anode, the oxidation

reaction that occurs for the case of sodium chloride is given by

2Na™(s) +2e~ — 2Na(s) (1.12)

For discharge the positive electrode acts as the cathode and the reduction reaction

that occurs for the case of sodium chloride is given as

201 (s) = Cly(g) + 2e (1.13)

Combining both of these half reactions produces the full reaction shown below as



2NaCl(s) — 2Na(s) + Cla(g) (1.14)

Positive ions move from the anode to the cathode through the electrolyte and the
separator as negative ions move from the cathode to the anode. The cathode builds up
a positive charge during this exchange and the anode builds up a negative charge. This
creates a voltage difference between the anode and the cathode. In discharge, electrons
move from the anode to the negative current collector, from the negative current collector
to an external load, from the external load to the positive current collector, and from the

positive current collector to the cathode [2].

1.4 Lithium Ion Battery

Lithium has seen recent interest because of its desirable properties. Two of those properties
are its higher energy density compared to other comparable cells and its higher voltage.
Compared to NiMh you could create a battery with the same energy but it would be half
the size and half the weight. Typical NiMh and NiCd rechargeable cells operate about 1.2-
1.5V nominal, whereas lithium-ion cells typically operate between 3.2 and 3.8V nominal.
Having a high voltage is important in that it means that you need to connect fewer cells
together in series in order to achieve a desired pack voltage [3]. Shown below in Tables
1.1 - 1.3 are some of the more commonly used materials in lithium ion batteries for the
cathode, anode, and electrolyte respectively [4].

Considering lithium manganese oxide (LMO) batteries as an example, during charg-
ing the Li* escapes from the LiMn,O, at the cathode, under the electromotive force, the

Li" passes through the electrolyte and embeds into the carbon interlayer of the graphite.
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Thus the lithium and carbon interlayer are combined internally. When discharging, the Li™
escapes from the carbon interlayer of the anode, through an opposite process under the

electromotive force, and embeds into the anode LiMn,O, [5]. The reaction in the anode is

discharge
I

Liy_MnoOy + xLit + ze™ o LiMn,O, (1.15)
The reaction for the cathode is
Li,C dhhg“’ O+ wLi* + ze” (1.16)
The overall reaction is shown below
Liy_oMny0y + Li,C dhhgg LiMn,O4 + C (1.17)

Selection of an appropriate cathode depends on the particular application and de-
sired properties. For cathode materials that may be higher power capability, cost, safety,

energy density, nominal voltage, or stability.



Table 1.1 Cathode Active Materials

Cathode Material Specific Midpoint Comments
Capacity Voltage
mAhg~1 | Versus Li at
at <
LiCoOq 140-155 39 Prevalent in portable electronics,
cobalt is expensive
LiNiggCog15Aly.0502 200 3.73 High end applications (satellites,
etc.), high capacity, safety
comparable to LiC'0oOy
LiNiy_y—yCoyMn,Oy | 140-180 -3.8 One of the prospective automotive
li-ion battery cathode candidates,
slightly safer than LiC'0oOs
LiMnoOy 100-120 4.05 Inexpensive, safer than LiC'0O,
poor cycling at elevated
temperatures due to manganese
(Mns. ) solubility in electrolytes
LiFePO, 160 3.45 Lower energy, safer alternative
to LiNiy_z_yCoy Mn,Os
Source: [4]

Anodes are typically made of some form of carbon either graphite or soft or hard

carbons. Currently, the most common commercial anodes are carbons that possess rel-

atively low surface area and intercalate lithium ions into their layered structure without

forming metallic lithium under standard operating voltage, temperature, and current rate

conditions [4]. Intercalation is the process by which a molecule is inserted into a lattice.

It is also known as the reversible insertion of a guest species into a host lattice. Either

molecules or ions can get inserted and host materials can be inorganic. Intercalation reac-

tions are the basis of all Li-ion batteries.




Table 1.2 Anode Active Materials

Manufacturer Grade Type Reversible | First Cycle
Capacity | Efficiency %
mAhg~1

Osaka Gas MCMB Soft 295.3 92
6-28 Carbon,
MCMB Graphitized 326.9 92
10-28 at 2800 °C
MCMB 334.0 92
25-28
OMAC-15 Soft 364.9 96
OMAC-21 Carbon, 356.0 93
Hydro-Quebec | SNG-12 | Graphitizied 370 86
Superior LBG-1025 Natural 360 91
Graphite Graphite
Superior SLA-1020 | Thermally 363 92
Graphite Purified
Natural
Graphite
Superior SLA-1015 Surface 352 92
Graphite Treated
Natural
Graphite
Source: [4]

Electrolytes for lithium ion batteries are typically chosen to meet certain criteria. It
should be completely dissolved and dissociated in the solvent mixture. The solvated lithium
cations should move within the media with high mobility. The anion should be inert to
electrolyte solvents. The salt anion should be stable against oxidative decomposition at the
cathode. Both the anion and the cation should remain inert toward all the cell components,
such as separator, electrode substrates, and cell packaging materials. And the anion should
be nontoxic and stable against thermally induced reactions with electrolyte solvents and

other cell components [4].
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Table 1.3 Electrolyte Materials

Solvent MW Tm°C | Tb°C | Tf°C | n,cP Dipole d,
g mol ™! 25°C | moment | g cm ™3
debye
Ethylene 88 36.4 248 160 1.90 4.61 1.321
Carbonate, (40 °C)
EC
Propylene 102 -48.8 242 132 2.53 4.81 1.200
Carbonate,
PC
Dimethyl 90 4.6 91 18 0.59 0.76 1.063
Carbonate, 40 °C)
DMC
Diethyl 118 -74.3 126 31 0.75 0.96 0.969
Carbonate
DEC
Ethyl 104 -53 110 23.9 0.65 0.89 1.006
Methyl
Carbonate,
EMC
Source: [4]
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