
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

PREDICTIVE MODELING OF INFLUENZA IN NEW ENGLAND
USING A RECURRENT DEEP NEURAL NETWORK

by
Alfred Amendolara

Predicting seasonal variation in influenza epidemics is an ongoing challenge. To better

predict seasonal influenza and provide early warning of pandemics, a novel approach

to Influenza-Like-Illness (ILI) prediction was developed. This approach combined a

deep neural network with ILI, climate, and population data. A predictive model was

created using a deep neural network based on TensorFlow 2.0 Beta. The model used

Long-Short Term Memory (LSTM) nodes. Data was collected from the Center for

Disease Control, the National Center for Environmental Information (NCEI) and the

United States Census Bureau. These parameters were temperature, precipitation,

wind speed, population size, vaccination rate and vaccination efficacy. Temperature

was confirmed as the greatest predictor for ILI rates, with precipitation providing a

small increase in predictive power. After training, the model was able to predict ILI

rates 10 weeks out. As a result of this thesis, a framework was developed that may be

applied to weekly ILI tracking as well as early prediction of outlier pandemic years.
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CHAPTER 1

INTRODUCTION

Influenza virus is responsible for a recurrent, yearly epidemic in most temperate

regions of the world. According to the CDC, in the 2017-2018 season alone, influenza

virus was responsible for 79,000 deaths and nearly 1 million hospitalizations [4].

The disease burden of influenza is substantial. As a result of viral mutation, as

well as a variety of climate factors, seasonal trends can shift radically year to year.

This necessitates the development of a new vaccine for each season. Despite the

combined efforts of scientists around the world, vaccine efficacy is variable. In some

years effectiveness has been estimated as low as 20% [106, 10]. Additionally, severe

pandemics can occur with little warning. Most recently, the 2009 Swine Flu caused

an unusually long and deadly flu season [73]. Modeling and forecasting of influenza

is critical for predicting pandemics such as this.

This thesis will examine the structure, pathology, epidemiology, and evolution

of the influenza virus in order to apply machine learning techniques to produce

a forecasting model. First the structure of an individual influenza virus will

be discussed, followed by the genome, important protein components and viral

replication. Then the evolution of the virus. Next, the mechanisms of transmission

and infection, the clinical signs and the immune response will be examined. Finally,

this introduction will end with an overview of influenza epidemiology and applied

modeling.

The goal of this paper is to produce an effective predictive model that will shed

light on the factors that impact influenza seasonality as well as provide a functional

predictive model for real-time flu forecasting. Variables including temperature,

precipitation, wind speed, and vaccination rates were added to a deep recurrent neural
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network. The network was built on TensorFlow 2.0 Beta using the Keras API. An

effective architecture was developed that provided robust predictions 1 week, 2 weeks,

and 3 weeks out, as well as a framework for recurrent predictions that could continue

on past several months.
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CHAPTER 2

BACKGROUND

2.1 Structure and Replication

Since the discovery of the influenza virus, all the major components of the virus

have been examined. Given the seasonal nature of influenza and the potential for

major pandemics, there has been extensive research to elucidate viral structure and

proteins. This has allowed scientists to choose targets for antivirals. Additionally,

it has allowed epidemiologists to identify many viral subtypes. One example is the

H1N1 strain that was responsible for the 2009 Swine-Flu Pandemic.

This section will summarize the basic structure of an influenza virus, the

structure of the viral genome, the function of important proteins, and the replication

of the virus.

2.1.1 Morphology

Influenza belongs to the viral family Orthomyxoviridae. There are four subtypes of

influenza; A, B, C, and D. Influenza A is the most common type seen in humans and

will be the primary focus of this section as it accounts for the majority of seasonal

outbreaks and is more heavily studied. Influenza B is also regularly seen in humans,

but to a lesser extent than influenza A. Influenza C is rarely seen in humans and does

not generally contribute to seasonal influenza outbreaks. Influenza D does not occur

in humans and will be ignored completely [3, 63]. Unless otherwise noted, we will be

discussing influenza A.

Influenza is an enveloped, spherical negative-sense RNA virus approximately

100nm in diameter. It can also occasionally be filamentous. The influenza virus has

three major structural components: an envelope, a matrix directly beneath the lipid

bilayer, and ribonucleoproteins (RNP) in the center of the virus [63].
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Figure 2.1 Diagram of influenza virus.

The outer envelope is composed of a lipid bi-layer derived from the host cell

membrane. Lipid rafts containing neuraminidase (NA) float in a sea of hemagglutinin

(HA). Hemagglutinin, which makes up about 80% of membrane bound protein,

and neuraminidase, which makes up about 20%, are both important viral proteins

necessary for infection and replication [65, 59, 77]. M2, a viral proton pump, is also

embedded in small numbers in the envelope. The specifics of each of these proteins

will be discussed in more detail later. The next major structural component is the

matrix. The matrix exists directly beneath the envelope and serves to anchor NA,

HA, and RNP inside the virus. The matrix is also involved in viral budding. It is

made up of the matrix protein M1.

The inner most component of an influenza virus are the RNP. These are protein-

RNA complexes that contain the genetic material necessary for viral propagation as

well as various proteins. RNP are helical structures. In addition to the viral RNA,
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some nuclear export proteins (NEP) are present, as well as basic polymerase 1 (PB1),

basic polymerase 2(PB2), and acidic polymerase (PA) [65, 64, 77].

2.1.2 Genome

The genome of the influenza virus contains 8 segments of single stranded RNA.

Segment 1 encodes the various polymerase proteins and segments 2 and 3 encode

proteins involved in virulence modulation [101]. In influenza A viruses, the focus of

this section, segments 4, 5 and 6 code for hemagglutinin, nucleocapsid protein and

neuraminidase [101, 46]. Nucleocapsid proteins are bound to viral RNA and play a

role in viral genome replication [46]. Segments 7 and 8 code M2 along with nuclear

export protein and structural proteins [49]. These coding regions are flanked on both

5’ and 3’ ends by non-coding regions [46]

Figure 2.2 Genome of influenza A virus. This illustration shows the length of
each viral RNA segment in base pairs (BP) as well as the polypeptide product. The
genome of influenza B is similar in layout, but with different segment lengths [46].

The genome resides in the center of the virus particle. It is found in RNP

complexes with RNA polymerases and NP. Viral RNA (vRNA) is associated with NP
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in strands. The genome is replicated by polymerases PB1, PB2, and PA [46, 102].

First, the RNP complexes are into the cytoplasm of an infected cell. Then, within the

nucleus of the cell, viral polymerases replicate the vRNA [102]. This replication peaks

approximately two hours after infection and begins to decrease at approximately 3

hours after infection [75, 83]. After replication, vRNA joins with NP and forms RNP

complexes. These are transported out of the nucleus by viral NEP along with host

factors. They then move toward sites of budding where they will be incorporated into

new virus particles [69].

2.1.3 Hemagglutinin, Neuraminidase and M2

Hemagglutinin, Neuraminidase and M2 the the three surface proteins of the infleunza

virus. Hemagglutinin is the major surface protein of influenza viruses. It is primarily

responsible for binding sialic acid to allow entry into host cells [86]. It is a trimer

composed of triple stranded α-helices and anti-parallel β-sheets [100]. A highly

conserved region on the top of the HA molecule forms a depression where sialic acid

bonds to. Specifically, there are two major linkages to sialic acid that HA forms. These

are the α(2,3)-Gal and the α(2,6)-Gal linkages. Human viruses bind to α(2,6) while

avian viruses bind to α(2,3) [86]. Because of these differences in binding preference,

mutations must occur to allow inter-species transmission. Swine have both kinds of

receptors and provide a reservoir for these kinds of mutations. Generally antigenic

shift is prominent in the exterior, binding sections of HA, while distal sections tend

to be retained [99, 98]. In general, blocking HA using anti-HA antibodies effectively

neutralizes viral infectivity [99].

The other major surface protein found on influenza viruses is neuraminidase.

It is a tetramer composed of four identical sub-units [59, 94]. The main role of

neuraminidase is believed to cleavage sialic acid to release newly formed virus particles

from the cell surface after budding[58]. It also may allow the virus to escape capture
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in mucus through the same mechanism. Neuraminidase stalk length may play a role

in virulence as well, differing lengths have been shown to have differing levels of

infectious activity. This may be a result of occlusion of the active site if the stalk is

too short [66]. Additionally, neuraminidase ay be involved in infection of host cells.

Its active site is also highly conserved [7].

The last of the surface proteins is M2, an ion channel. It is an integral membrane

protein formed by a di-sulfide linked homotetramer [51, 88]. It tends to be present

in very low quantities, only 15-20 molecules may be on the surface of any given

virus particle [104]. Despite its low concentration compared to neuraminidase and

hemagglutinin, it is essential for replication as it facilitates uncoating. It is also

responsible for adjusting pH in the Golgi during viral replication [50, 79]. M2 may

also inhibit P58, aiding in immune response evasion [32].

2.1.4 Viral Replication

Viral replication begins after a viron binds to the sialic acid receptors of a target cell.

HA in particular is responsible for the binding of sialic acid (2.3.1). This triggers

receptor mediated endocytosis and the viral particle enters the host cell. In this

stage, M2 proton channels are responsible for lowing the pH of the endosome to

induce conformational changes in HA. Lowering the pH also prompts the release

of vRNPs into the cell [78]. These vRNPs can then enter the nucleus and begin

replication (2.3.3).

The various proteins that make up a RNP each have nuclear localization signals

that allow them to make use of cellular mechanisms for entry into the nucleus. Once

the a RNP is transported into the nucleus, viral RNA makes use of many existing

cellular mechanisms for replication. The negative sense vRNA is replicated by viral

RNA dependant RNA polymerases [78].
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Once replicated, negative sense vRNA is exported through nuclear pores to

form completed RNPs. Proteins necessary to form the RNPs are produced in the

cytoplasm. Surface proteins are produced in the ER and Golgi (2.3.4). Influenza

makes use of the host cell membrane to form its envelope. Once completed surface

proteins have been transported to the host membrane, RNPs are localized and bud off

in newly formed viral particles (2.3.5) [63, 78]. From here, viral particles can continue

the cycle of infection.

Nucleus

Cytoplasm

Figure 2.3 Influenza virus replication.
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2.2 Evolution

Influenza has almost certainly existed through human history and the earliest cases

may have been recorded by Hippocrates [57]. The disease was certainly known.

However, it was not until the 1930’s that the virus was isolated in pigs [84]. Even

with the advent of modern medicine, we are subject to regular, seasonal epidemics and

even occasional worldwide pandemics. Despite the creation of vaccines that wiped

out diseases like small-pox and polio and the advent of antiviral medication, influenza

has remained a constant burden. Influenza’s rapid mutation is largely responsible for

its ability to elude eradication [17].

2.2.1 Mutation and Antigenic Drift

Influenza virus has a high mutation rate, approximately 1.5x10−5 mutations per

replication cycle. This high mutation rate causes significant variability in the surface

proteins, especially hemagglutinin [70]. Increased variability inevitably leads to novel

viral subtypes which are able to escape immune detection. This process is called

antigenic drift. This unusually high rate of mutation is due to vRNA polymerase’s

lack of proofreading mechanisms [82]. Animals also almost certainly act as reservoirs

for influenza [96]. Notably, animals with both α(2,3) and α(2,6) linkages may act as

a type of melting pot that allows virus to undergo re-assortment. Re-assortment is

the exchange of RNA segments between genetically unique viruses [96]. For example,

the 2009 Swine Flu pandemic was likely caused by a single amino acid substitution

in the protein PB1-F2 [19]. Rapid recombination and re-assortment can result in an

even more rapid phenomenon called antigenic shift. Antigenic shift gives influenza

its ability to quickly jump between species and create novel strains [35].
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2.2.2 Influenza in Animals

Influenza is able to rapidly mutate and form novel subtypes. This allows seasonal

epidemics in humans despite advances in vaccines and antiviral medications. However,

influenza infects other animals as well. Notably, waterfowl and other aquatic birds

are widely affected [33]. Swine are also prone to infection. Horses and some other

animals may be infected as well but these infections are generally not transmissible

to humans [96]. On the other hand, birds and pigs often transmit novel influenza

strains to humans and act as long term reservoirs for subtypes [33, 96].

Aquatic birds and waterfowl acting as regular reservoirs has serious implications

for human health. Domestic birds may also carry influenza. In many cases, all of

these birds are asymptomatic. Generally, the receptors for bird influenza strains exist

in the intestine. The virus may then be transmitted by fecal matter and in water.

Ducks, for example, shed the virus heavily. A large percentage of the populations

of waterfowl, especially juvenile birds, may be infected year round [97, 33, 96]. The

permanent reservoir which birds provide influenza allows inter-seasonal mutations

and the reemergence of viruses that had otherwise disappeared in humans.

Pigs may provide a similar environment for influenza virus. Pigs, uniquely, have

both avian and human receptors. As such, they are able to act as an effective bridge

between avian and human influenza [85]. In order for influenza to leap from birds to

humans, mutations must occur on the binding sites of hemagglutinin. However, since

swine can be infected with both human and avian strains, rapid antigenic shifts can

occur [96]. This can promote the formation of novel combinations of surface proteins.

This, by extension, can lead to pandemic strains of influenza since no prior immunity

exists in human populations.

Aside from birds and pigs other animals may become infected with influenza.

Generally they are not of concern to human populations. However, animals provide

useful models for studying influenza. Many of the studies examining influenza
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transmission, vaccines and pathogenesis use guinea pigs or ferrets as model organisms

[11].

2.3 Pathology

The pathology of influenza is well documented. The disease is an upper respiratory

infection that lasts several weeks and is not usually life threatening. Most cases are

clinically diagnosed, meaning they are made in the absence of laboratory testing.

A combination of the time course, context and symptoms are used by physicians

in outpatient settings to estimate influenza infections [61]. The CDC and WHO

suggest using masks, washing hands and regularly disinfecting surfaces [6, 5]. Non-

pharmaceutical interventions are also attractive and widely used since they cost less

than antivirals and take less time to distribute than targeted vaccines. However,

their efficacy is debated and not enough is known about the mechanisms of influenza

transmission to make absolute recommendations [43, 13].

2.3.1 Mechanisms of Transmission and Infection

The mechanism of influenza transmission between individuals is of great importance in

an epidemic or pandemic. The question of how best to prevent spreading of infection

is difficult to answer. There are three main ways by which influenza virus may be

transmitted. One, direct contact between an infected individual and a non-infected

individual. This may be through shaking hands or other direct touching. Secondary

contact via some surface such as a door knob may also play a role [47]. Two, large

droplets may carry influenza virus. These droplets can be expelled by an infected

person while coughing or talking. However, these large droplets generally fall out of

the air after about 1m [47, 43]. Three, small aerosol droplets, generally defined as

< 5µm, may be expelled by infected patients [16, 48, 47]. These small particles are
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likely the primary source of infection as they remain airborne for the longest time

and are able to reach the lower respiratory tract [47].

Large droplets and aerosols are not distinct categories, however. Classification

is based on size and droplets exist across a spectrum with distinctions between the

categories blurring towards the center. In fact, as liquid evaporates, large droplets

may become smaller aerosol particles mid-air. A significant number of infected

patients expel viable amounts of viral material when coughing or speaking [52].These

droplets can also be propelled across the room [48]. Mere proximity to an infected

individual does not guarantee transmission though. Both aerosol and large droplets

are important in transmission of virus, but they each face challenges entering the

body.

Airborne virus, whether in large droplets or small aerosol particles must reach

vulnerable tissue. Large droplets may contain more virus and that virus may be better

protected from the environment. However, large droplets generally do not pass the

upper respiratory tract. There, thicker mucus necessitates large amounts of viable

viral material to infect cells [47]. Aerosols, on the other hand, may not contain as

much viral material or be able to survive as long. They can infect lower respiratory

epithelium, though. Additionally, they may be able to travel several meters away and

remain suspended in the air for much longer [43, 47, 48, 92].

Once viable viral material reaches susceptible tissues in the respiratory tract,

it is able to replicate [103]. From there, the virus spreads and causes the mild to

moderate upper respiratory symptoms influenza is known for. In order to then infect

a new host, the virus must be transmitted in one of the ways discussed. An infected

patient sheds viral material for approximately 3 days. This shedding may begin prior

to onset of symptoms. Additionally, younger children shed significantly longer than

older children and adults [67].
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2.3.2 Clinical Signs and Symptoms

Once a patient is infected with influenza, some time may pass prior to displaying

symptoms [67, 103]. This is an important consideration when observing transmission

and incidence rates, as a patient may spread the virus prior to displaying clinical

symptoms and may delay seeing a doctor for several days after infection. Delayed

reporting can create a lag in observed incidence levels.

After the appearance of symptoms, the illness can last for several weeks.

Generally they are mild and not life threatening [5]. However, a large portion of

hospitalizations and deaths occur as a result of co-infection with bacterial illness

such as pneumonia [24]. In fact, many of the deaths during the 1918 Spanish Flu

were caused by bacterial co-infections [62]. Most cases of influenza do not require

hospitalization and are clinically diagnosed [5, 61]. Symptoms are variable and are

generally similar to other upper respiratory infections (Table 2.1). Thus, accurate

clinical diagnosis has an direct impact on ILI rates.

2.4 Immune Response

The respiratory tract is the main point of entrance for influenza viruses. The

virus is able to infect upper and lower respiratory tissue, initiating innate and

adaptive immune responses. Dendritic cells are the primary innate immune mediator,

recognizing viral particles [12]. The adaptive immune response is handled by effector

T cells responding to viral antigens. These cells are responsible for balancing adaptive

responses as well as regulating the inflammatory response [12]. Both innate and

adaptive immune responses are important for viral clearance and provide immunity

to re-infection.

2.4.1 Innate Immunity

The first line of defense to influenza, and most other diseases, is the innate immune

system. Given that influenza is a respiratory illness in humans, our focus will be on
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Table 2.1 Common Influenza Symptoms and Their Clinical Frequency.
[61, 6]

Symptoms Clinical
Frequency

Description

(i) weakness 94% generalized fatigue and lack
of strength

(ii) myalgia 94% muscle pain or soreness

(iii) cough 93% usually a hacking, dry cough

(iv) nasal congestion 91% “runny nose” and clogged
sinuses

(v) subjective fever 90% feeling feverish without a
measurement of temperature

(vi) objective fever 68% measured temperature of
above 38 ◦C

(vii) loss of appetite 92% reduced desire to eat

(viii) headache 91% generalized pain to any region
of the head
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the barriers and responses present in the upper and lower respiratory tracts primarily.

Before infection can begin, influenza must travel into the body through the mouth

or nose. From there, it can move to the upper or lower respiratory tract and infect

epithelial cells. These cells are not defenseless though. The first barrier to infection is

the layer of mucus that constantly coats the respiratory tract. This mucus is rapidly

cleaned and replaced. It captures and flushes out influenza, along with other invaders,

sending them down the esophagus and into the stomach. Here strong stomach acid

destroys most bacteria and viruses [18]. However, as noted earlier, neuraminidase

may be responsible for helping viruses avoid becoming trapped in mucus layers.

Once cells are actually infected, vRNA may be recognized by pattern recognition

receptors or type 1 interferons which may promote cytokines and IFN-stimulated

genes [39]. Cytokines promote a variety of systematic and local immune responses,

including promoting inflammation. Additionally, cytokines recruit non-specific

immune cells such as macrophages and phagocytes to clear infected cells [39, 34].

IFN-stimulated genes produce a variety of proteins that aid in defense [39]. One

example is Myxovirus resistance protein 1 (MxA) which is the product of MX1

and may help prevent nuclear import of viral components [36]. Another example

is Interferon-induced transmembrane protein 3 (IFTM3) which inhibits viral release,

preventing new viruses from infecting more cells [14]. Finally, Tripartite motif-

containing 22 (TRIM22) protein targets viral nucleocapsids for degredation [22].

While the innate immune response plays an important role in preventing and

eventually eliminating infectious agents, it may have negative effects as well. Influenza

is noted to cause a variety of systematic symptoms [61]. However, influenza is not

a systematic illness. In extreme cases the immune response to viral infection can be

harmful. And in some cases, increased host response to infection can lead to increased

disease severity and mortality [72].
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2.4.2 Adaptive Immunity

While the innate immune system hinders the influenza infection, the adaptive

immunity is responsible for clearing the body and preventing reinfection. There are

two primary adaptive immune responses, the humoral and the cell response. Both

play an important role in fighting viral infection.

The humoral response to influenza is mediated by B-cells. These B-cells produce

antibodies that primarily target hemagglutinin and neuraminidase [45]. Anti-HA

antibodies bind to the active site of HA and prevent attachment to sialic acid. This

results in inhibition of viral attachment to host cells. Anti-neuraminidase antibodies

limit viral spread by preventing sialic acid cleavage by neuraminidase. There are also

M2 specific antibodies that have been shown to effect virulence [45].

The primary classes of anitbodies responsible for anti-influenza activity are

IgA, IgM and IgG. These are common mucosal and serum antibodies [91]. These

antibodies, and the B-cells responsible for producing them, are what allows seasonal

influenza vaccines to be effective. The cell mediated response relies on CD4, CD8 and

regulatory T-cells [91, 45]. Notably, cytotoxic T-lymphocytes eliminate infected cells

[12].

2.5 Epidemiology

Seasonal influenza is a constant concern despite modern advances in vaccines and

antiviral medications. Influenza tends to spread rapidly and it is especially potent

during the winter when people tend to be in close contact indoors. So, unsurprisingly,

seasonal epidemics occur in the late fall through early spring [5]. Patterns form year

to year and are of importance to healthcare professionals trying to develop vaccines

and prepare for potential pandemics.
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2.5.1 Seasonal Influenza

Seasonal influenza creates a regular, repeating pattern from year to year. Influenza

cases begin to rise in October, peak in January or February, and trail off into April.

A close-up of the 2013-2014 influenza season can be seen in Figure 2.4. The regular

Figure 2.4 Graph of 2013-2014 influenza season ILI reveals winter peak. 2013-2014
was a typical flu season. ILI incidence rises slowly through October and November,
tipping over the regional baseline at week 50 of 2014. The season peaks shortly after
and the dips below the baseline again in April at week 17 of 2015.

nature of influenza epidemics is only surface deep, though. While the general pattern

remains similar year-to-year, there exists substantial variation. This variation can

be clearly seen in Figure 2.5. Years differ in overall incidence, peak, onset, and

end. Notably, pandemic years such as the 2009 Swine Flu may be significantly

different from the norm. Pandemic years in general are characterized by increased

virulence, disproportionate effects on the young and elderly, and summer illnesses

[62]. Attempts to model the yearly variation have been met with varying success.
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Figure 2.5 Weekly ILI from 2003 to 2018 reveals regular, repeating outbreaks.
Peaks influenza incidence occurs each year during winter months. The exception is
the 2009 flu season, now known as the Swine Flu pandemic, which can be found
centered at approximately week 300. This pandemic season was unusual in that ILI
incidence remained elevated through the spring and summer.
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There is no firm consensus on what causes the seasonal variability, but temperature,

dry air, and host immune irregularities may play a role [89, 25, 54]. People generally

spend more time indoors during colder weather and are therefore in regular close

contact. School closures, for example, are correlated with reduced ILI incidence,

suggesting that close proximity of infected and susceptible individuals is a driver for

seasonal spikes in influenza incidence [40]. Additionally, despite prior exposure, novel

viruses emerge that can evade host immune responses. This further increases yearly

variability [54]. Ultimately, yearly variability may be due to very small changes in a

multitude of variables that are amplified by population dynamics [23]. Interestingly,

tropical regions do not show strong seasonality. Instead they have generally flat ILI

incidence that varies with rainy season [89, 90].

2.5.2 Pandemics

While seasonal influenza epidemics are relatively predictable in many aspects, the

threat of novel sub-types emerging is constant. Influenza’s rapid mutation rate,

combined with persistent infection in reservoir species such as waterfowl and swine,

allows it to outpace host immune response. Influenza pandemics caused by novel

viruses occur irregularly and are difficult to predict. Early prediction is critical

to preparation and vaccine development, though. A rapid response can drastically

reduce disease burden and prevent excessive mortality.

Most notable of these pandemics was the 1918 Spanish Flu. The exact origin of

the H1N1 influenza that caused this pandemic is not known, but it likely moved from

swine to humans [42]. This was an especially virulent disease that disproportionately

affected young, healthy individuals [62]. Its virulence was likely caused by a single

mutation of PB1-F2 [19]. Over the course of the pandemic, the Spanish Flu was

responsible for an estimated 40-50 million deaths worldwide. Most of these deaths

were probably a result of bacterial co-infection, though [30].
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Other pandemics of the 20th century include the 1957 H2N2 Asian Flu and the

1968 Hong Kong Flu [42]. Most recently, the 2009 pandemic emerged as a result of a

novel H1N1 virus. It was notable for increased virulence and disproportionate effects

on the elderly and children. The disease was generally mild but there was potential

for serious complications [73, 29]. A targeted vaccine was rushed out in record time

during the 2009 pandemic. The vaccine had a significant impact [31]. Additionally,

vaccines that contained the same H1N1 continued to be effective several years after

the pandemic [27]. These facts reinforce the need for early predictions of pandemics

and emphasize the effect a timely response can have.

2.5.3 Vaccines

Vaccination is a critical preventative measure that is useful during regular seasonal

flu seasons as well as during pandemics. Because of antigenic drift in the influenza

virus, new vaccines must be developed yearly [71]. These vaccines have effectiveness

rates that range from 10% to 60% [10, 93]. Vaccine effectiveness is extremely variable

and illustrates the difficulty in predicting relevant strains (Table 2.2).

Targeted vaccines were effective during the 2009 Swine Flu pandemic in the

United states [31]. However, strain-specific vaccines are not a practical defense

against pandemics [71]. Generally pandemics are sudden and unexpected. Thus,

targeted vaccines need to be developed rapidly and may be released significantly

after a pandemic begins.

2.5.4 Climate and Other Driving Factors

Seasonal variations in influenza are difficult to predict. The driving factors for yearly

differences in incidence rates are not well understood [89]. No true consensus exists on

the effect of individual climate variables, or other non-climate variables [80]. However,

given years of research, there are several strong candidates for seasonal drivers of

influenza.
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Table 2.2 Vaccination Rate and Effectiveness Varies Considerably From 2003-2018.
Vaccination rates calculated from data available on CDC FluVaxView [1].

Influenza Season Vaccine Effectiveness (%) Vaccination Rate (%)

2017-2018 38 [76] 55.0

2016-2017 40 [26] 41.7

2015-2016 48 [41] 46.8

2014-2015 19 [106] 45.6

2013-2014 52 [27] 47.1

2012-2013 49 [60] 43.7

2011-2012 47 [68] 42.1

2010-2011 60 [93] 39.2

2009-2010 56 [31] 38.8

2008-2009 41 [1] 34.2

2007-2008 37 [9] 31.7

2006-2007 52 [10] 28.7

2005-2006 21 [10] 25.6

2004-2005 10 [10] 20.0

2003-2004 52 [2] 12.7
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The most strongly correlated climate variable in temperate regions is temperature

[56]. Lower temperatures in particular may drive behavior that can increase flu

transmission, such as close contact and recirculated air [56]. However, temperature

itself may contribute to increased viral survivability and prolonged shedding [55].

Humidity, which also may affect viral survivability, shows up as a consistently

good predictor in a variety of scenarios in both temperate and tropical regions [21, 81,

90]. Humidity combined with temperature may both be strong drivers as close contact

during winter, and other non-climate explanations, may not be sufficient. Close

contact during summer months does not produce influenza epidemics in temperate

regions [20]. Secondary to humidity is precipitation, which is a strong predictor in

tropical regions [21].

Additionally, low UV index may contribute to seasonal trends [38]. This may

be in large part due to the role of vitamin D in the immune system. Vitamin D is

produced via sun exposure and a lack of vitamin D may result in immune deficiencies.

UV index alone is a strong enough predictor to explain many variations in seasonal

epidemics [15].

Overall there are a large number of factors, more than have been covered in this

section, that contribute to seasonal epidemics. Variation from year to year is difficult

to predict as no consensus on the underlying mechanisms of seasonal influenza exist.

In all likelihood, variation in seasonal trends may be the result on minute changes in

one of many factors. Given previous research, temperature, humidity and UV index

provide the best predictors to influenza rates. However, the underlying mechanisms

that create these correlations are not understood at this time.

2.6 Modeling

Influenza is a seasonal disease and almost guaranteed to regularly affect millions.

Providing hospitals and public health professions ample time to prepare is critical
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to mitigating the impact of flu seasons. Given the complex nature of the variables

involved in yearly variation, and the poor understanding of the underlying mechanisms,

a wide variety of models have been produced. These models seek to forecast

everything from broad yearly trends to granular incidence data.

Notably, each year the CDC holds a competition to forecast influenza seasons.

The challenge involves predicting 4 weeks out from reported flu incidence, predicting

peak week, peak intensity and onset week. A variety of models have been submitted.

Models include classic mechanistic models based on SIR (susceptible, infected,

recovered) as well as statistical models based on machine learning. Many models use a

combined approach for predicting various portions of the challenge. In general, these

models predict one week better than the CDC historical average, but the predictive

effectiveness falls off towards four weeks [74].

2.6.1 Modeling Approaches

Two basic approaches exist for modeling diseases. A mechanistic approach seeks

to break disease transmission into discrete segments that can be manipulated and

combined to produce accurate reproductions of disease dynamics. In general, mecha-

nistic models are based on biological principles and explain underlying mechanisms

[74]. Some examples include a 2013 study that models flu trends in Israel. The

model is a modified SIRS (susceptible, infected, recovered, susceptible) model and

basic climate and viral evolution factors. It successfully models general trends [8].

Another model making use of a modified SIRS model was able to predict more

granular data out to 7 weeks [80]. Mechanistic models such as these can provide

insight into the mechanisms that drive a biological process. However, they struggle

to model phenomenon that are not well understood. As mentioned in the previous

section, there is no consensus on the driving factors affecting seasonal flu.
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The alternative approach, statistical modeling, is better able to handle underlying

uncertainty. Statistical approaches to modeling are based on observations and raw

data. Predictions are made based on statistical trends. In many cases, machine

learning is applied. This approach can allow the model to detect trends not readily

understood or view-able by the designers of the model. Unfortunately, statistical

models provide no explanation of the underlying mechanisms [74]. A variety of

techniques exist in this category. ARIMA (Auto-Regressive Moving Average) may

be applied to flu data, as was in a 2010 study that explored climate variables and

time-lag effects [87]. SARIMA, or seasonal ARIMA, was also a common technique in

the CDC challenge [74]. Machine learning can also be readily applied for predictions.

A 2019 study used Random Forest modeling to evaluate climate factors including UV

index [38].

2.6.2 LSTM and Neural Networks

One machine learning approach that has gained popularity in recent years is LSTM

or Long-Short-Term-Memory. This technique, when applied to influenza, performed

better than random forest regression, support vector machines and ARIMA [105].

LSTM based neural networks have been used to assess social media data for flu

prediction [95]. LSTM based neural network models are only beginning to be applied

to influenza trend prediction [53].

LSTM based neural networks provide some distinct advantages over other

types of neural networks, which themselves provide advantages over other predictive

techniques. Neural networks are structured as an interconnected network of nodes

called neurons. These neurons represent self-contained sets of algorithms that output

values based on their input. Neural networks allow models to learn vast amounts of

data and detect patterns that would be otherwise impossible to extract. Two main

types of neural networks exist, feed-forward and recurrent. In feed-forward networks,

24



the output of the previous node is feed into the next node. In recurrent networks,

time series data may be used, as results are fed back to previous nodes [44].

LSTM nodes were designed to allow for time-series forecasting. Specifically,

they seek to solve the problem of disappearing or exploding gradients that is common

in recurrent neural networks [28]. Gradients are an integral part of neural networks,

they affect the ”on/off” signals of the individual nodes. Depending on the data set and

hyper-parameters of the model, gradients can produce NA values. Essentially they

run out of bounds. LSTM nodes circumvent this problem by introducing a CEC or

constant error carousel [37]. The CEC allows for gradients to remain unchanged from

one node to the next. The more recent addition of a ”forget gate” allows the LSTM

node to reset, further reducing gradient runaway [28]. The basic structure of an LSTM

as implemented in Keras includes a forget gate, and input gate and an output gate

(2.6). LSTM based neural networks allow for complex time-series forecasts. They are

an ideal candidate for influenza prediction and provide a relatively novel foundation

for forecasting.
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Figure 2.6 LSTM solves the problem of disappearing gradients by implementing
a CEC and a forget gate. LSTM nodes contain a forget gate, an input gate and
an output gate. This architecture seeks to mitigate the effects of disappearing or
exploding gradients. σ denotes a hard sigmoid function, tanh denotes a hyperbolic
tangent function. X and + denote a multiplication and addition process, respectively.
Ct-1 is the memory from the previous LSTM node. Ht-1 is the output from the
previous node. Xt is the input.
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CHAPTER 3

MATERIALS AND METHODS

In this following two sections, the data acquisition process and the model building

process are detailed. Supplemental information on the data sets used is available in

the appendix. Additionally, select code segments are available for review. All code

related to the models may be found online. Data was processed in MiniTab and

R. Final data manipulation was done using Python. The models were designed and

constructed in Python using TensorFlow 2.0 BETA and the Keras API. TensorFlow

used GPU acceleration. The computer specs used to run the models are: Intel i7-3829

@ 3.60GHz, 64GB DDR3 RAM, RTX 2080 Ti 11GB.

3.1 Data Compilation

A source of data on influenza trends was identified. The Center for Disease Control

collects data from public health labs and private doctors offices. This provided the

most consistent data spanning 2 decades. The CDC posts weekly ILI rates and has

weekly records from 1998. This data is provided on a national level, in some cases a

state level and a regional level. In order to narrow the focus of this paper, the CDC

region 1 New England was chosen. It has distinct seasons, relatively uniform climate,

it is geographically continuous and climate data is readily available. Additionally,

it has continuous data from at least the 2003-2004 season. New England, for the

purposes of this paper, contains Maine, Connecticut, Rhode Island, New Hampshire,

Vermont and Massachusetts.

Once New England was selected, the initial data set from the CDC Flu View

was downloaded as a Comma-Separated-Values file. This set contained ILI percents,

total patients, and information on sub-typing. More information on this data, and a

sample can be found in the appendix. The data was imported into R. Data ranged
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from week 40 of the 2003-2004 flu season to the current 2018-2019 week. The data

was trimmed to include up to week 21 of the 2017-2018 season.

In addition to the raw data, the CDC calculates a regional base line for each year.

This baseline is calculated by taking the mean percent ILI for non-influenza weeks

from the three preceding seasons and adding two standard deviations. The CDC

defines a non-influenza week as periods of two or more consecutive weeks in which each

week accounted for less than 2% of the seasons total number of specimens that tested

positive for influenza in public health laboratories. This data was available from the

2007-2008 season onward. In order to fill in missing baselines for the previous several

seasons (from the 2003-2004 season to the 2006-2007 season) the CDC procedure was

followed as close as possible. Beginning with the 2003-2004 season, a 1 year baseline

was calculated since years prior to 2003 did not report off season ILI levels. Then the

next year had a 2 year baseline and so on until a full three year baseline was available.

The estimated baselines were adequate for the purposes of this model. All data was

weekly. A total of 816 weeks were used.

After acquiring flu data parameters were chosen. A set of climate, population,

and epidemiological factors had to be identified. An informal survey of recent papers

addressing the effect of climate on seasonal influenza trends was conducted. From this,

several promising climate variables were compiled. Temperature, humidity and UV

index were best correlated with influenza trends and were supported by a multitude

of studies. A 2016 study on influenza trends in the tropics further supported a link

between humidity and influenza outbreaks. El Nino years also showed higher than

usual influenza activity. A 2013 study conducted on data from Israel indicated that

along with climate, incorporating antigenic drift and immunity loss increased accuracy

of multi annual influence forecasting. From the available literature a list of potential

climate variables was compiled.
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In addition to climate factors, population density, travel patterns, and time

spent indoors were identified as potential drivers. Heating day and cooling day count

was used to represent time spent indoors. Heating days specifically is defined as any

day below a set temperature, usually 65 C. This is an industry measure to estimate

heating costs, but might also provide a proxy for cold days when people are more

likely to spend time indoors. Once these initial parameters were identified, dthe

climate data was accessed.

Climate data was taken from the National Oceanic and Atmospheric Administrations

Climate Data Online. In order to provide a sample representative of the region,

a single monitoring station was selected from each state for a total of 6 weather

stations. These stations include Hartford Bradley Airport, Connecticut; Boston,

Massachusetts; Augusta Airport, Maine; Mt. Washington, New Hampshire; Providence,

Rhode Island; Montpelier, Vermont. Most data was available as daily averages. Some

data was only available as monthly averages. All data was converted to weekly data

and trimmed to match the CDC data already collected. The mean of each weeks data

was then calculated to produce regional weekly data, which was included in the final

data set. The climate factors used were: average temperature, average wind speed

and precipitation.

In addition to the climate data, population data was taken from the U.S. Census

Bureau. This data included population totals and immigration data. This data was

added to the master sheet.

Finally, vaccination data was taken from the CDC. Vaccination rates were

collected on a regional bases from the CDC website. Estimated vaccine effectiveness

was extracted from the CDC website as well as scientific papers. See the appendix

for more details.

The final data set was limited to data that was available regionally on a

consistent basis. The only major missing climate data that was estimated was
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wind speed from Rhode Island. Missing data was filled in with average data from

the previous 10 years. The tail of the actual data set used is available to view in

the appendix. Due to availability constraints some promising parameters were not

included. These parameters were UV index, absolute humidity, El Nino, population

density and regional travel.

3.2 Building the Model

The master data set was then prepped for input into a model. Data originally

organized in a simple dataframe. However, in order to allow use of various node

types, the data was reshaped into a 3 dimensional array. The data was ultimately

broken into time-steps that represented 1 weeks data. Prior to reshaping, data was

standardized using the following equation:

(x−mean)

standard deviation

Once the data was reshaped and standardized, it was broken into training and testing

sets. In order to make the best use of limited data, several configurations were used.

The data was split into a variety of segments that were then used to train and test

the model in order to ensure generalizability. The data splits can be seen in Figures

3.1, 3.2 and 3.3.

Because of the time factor the data was not shuffled when training and testing.

However, separate models were trained and tested on shuffled data to determine a

random baseline and act as comparison. Select code segments can be found in the

appendix.

Once the data had been prepped, the actual model design began. In order to

develop a baseline for comparison, a simple deep neural network was constructed.

All specific model architectures used are explained in detail in the appendix. This

initial model predicted weekly ILI. Initially, the model was fed only influenza data.
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Figure 3.1 Data split into 270 week segments. The data was split into 2 sets of
270 weeks and one set of 266 weeks. The model was trained on 2 sets and tested on
1, with the training and testing sets rotated for each trial.
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Figure 3.2 Data split into 400 week training sets. The data was divided to allow a
400 week training set. The training set was then shifted to evaluate generalizability.
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Figure 3.3 Data split 700 week training sets. The data was divided to allow a 700
week training set. The training set was then shifted to evaluate generalizability.
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Other parameters were added individually to asses impact on accuracy. Mean square

error and mean absolute error were used as metrics to determine model accuracy and

control learning. In this first model, 3 dense layers using Rectifier linear unit (ReLU)

algorithms were implemented. The ReLU formula is defined as:

y = max(0, x)

By continually adding parameters, the most effective predictors could be identified.

A reduced data set was then compiled and a new model was designed.

The second iteration of the predictive model relied on time-series forecasting

to predict ILI rates one or more weeks in advance. In order to test features of the

model, only two layers were implemented to begin with. An input layer containing

a long-short term memory (LSTM) layer with 4 nodes and an output dense layer

with a single node was used. These nodes used the default hyperbolic tangent (tanh)

activation and hard sigmoid recurrent activation, shown below:

Hyperbolic Tangent : tanh(x) =
sinh(x)

cosh(x)

Hard Sigmoid : max(0,min(1, x ∗ 0.2 + 0.5))

From there, nodes and layers were added incrementally until gains slowed. Initially,

only 1 week was predicted. However, a function that looped predictions was written

to allow recurrent predictions to be made. Thus from this point on, the model was

able to predict further than 1 week into the future.

The final iteration of the model (3.5) was a recursive deep neural network made

up of a bidirectional LSTM input layer, two bidirectional LSTM hidden layers (3.4)

and a dense output layer with variable output nodes .

This model was tuned incrementally to achieve the best predictions. In order

to achieve the best performance.
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Figure 3.4 Bidirectional LSTM layer diagram.
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Input Layer Hidden Layers Output Layer

LSTM LSTM LSTM Dense
(270, 1, 13)* (5)**

500 500 500 5

Figure 3.5 Final model architecture. The final model contained 4 layers total. An
initial 500 node LSTM input layer with a variable shape, 2 hidden LSTM layers with
500 nodes each and a dense output layer with a variable output shape.

* the input shape varies with data shape

** output shape varies with label shape
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Once satisfactory base performance was achieved, comparisons were made

between training sets to confirm generalizability of the model, as well as identify

any potential data leaks. Then, a comparison of two different predictive methods

was made. One model predicted to out to 10 weeks automatically. The other model

predicted out to 1 week and recursively predicted the next 10 weeks using the function

mentioned early. Details of this function can be found in the Appendix. A comparison

of various time lags ranging from t - 1 to t - 52 was made.

Individual climate and population variables were also evaluated. After evaluation,

any variables found to negatively impact performance were removed from the data

set. The resulting data set will be referred to as the reduced data set as opposed to

the full data set that includes all data.

3.3 Predicting Outliers

Two models of identical architecture were trained on different data sets. The first

model, called Pincluded, was trained on the reduced data set containing all weeks from 0

- 540. The second model, Premoved, was trained on the same time span, except outlier

years were removed. Outlier years were chosen based on standardized percent ILI. Any

year with a standardized percent ILI above 4% was removed from the training date.

Both models were then tested on weeks 541 - 806. Divergence between predictions

was then used to extract a signal indicating an outlier year.
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CHAPTER 4

RESULTS

Predictions were made for tests sets of various lengths and frames. Baseline

performance was determined, then the most effective time lag was selected, and finally,

the data set was evaluated. Overall performance for each model was established using

absolute mean error (MAE), mean error, standard deviation, and visual analysis.

Week 1 predictions were the most accurate. Predicting further than 5 weeks was

influenced heavily by time lag, modeling method, and data selection. The most

significant increases in performance were achieved by tuning the time lag and by

using the recursive prediction function. The model was applied to outlier prediction

by combining the outputs of two identical models trained on differing data sets. This

multi-model approach was able to detect a weak signal preceding an outlier year.

4.1 Determining Baseline Performance

Once a functional model was created, baseline performance and generalizability were

evaluated. Using the complete data set and a time lag of one week, nine different

training sets were used to train models. These training sets were divided into three

groups of 400 week training sets, 540 week training sets and 700 week training sets.

MAE was used to determine relative performance along with visual interpretation of

predictions. MAE was recorded for weeks 1, 5 and 10 (4.1). The best performance

was achieved when predicting one week in advance. Both MAE and the standard

deviation of the error rose substantially by week 10. Two sample t-tests were used

to determine significant differences between week 1 predictions from each training

set. There was significant difference between different frame shifts within all three

training-set-length groups. The mean increase in MAE from week 1 to week 10 was

0.412. There was no significant difference between the 540 and 700 week training sets,
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although the 400 week training set performed significantly worse. Moving forward,

540 week training sets were used for testing as they provided sufficient predictive

ability and were easier to manipulate.

In general, model performance degraded as prediction week increased. Additionally,

the model consistently under-predicted values at weeks 5 and 10 (4.1). As true percent

ILI values tended towards high values, the model also consistently under-predicted.

The presence of extreme outliers in the test set, notably the 2009 Swine Flu pandemic,

reduced predictive performance and resulted in under-prediction.
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C.

A. B.

Figure 4.1 Prediction accuracy degrades as prediction time increases as well as
in the presence of outliers. 1 week predictions have the highest accuracy. When
predicting out to 5 and 10 weeks, predictions are worse, especially at extreme values.
Predicting an set containing the major outlier year, 2009 Swine Flu, accuracy degrades
(C). The recursive model with a 4 week time lag was used. Three versions were trained
on weeks 0–540, 270–806 and 0–270 and 540–806 weeks. A, B and C depict predicted
vs true percent ILI for each training set, respectively. Panel C shows predictions from
the test set containing the 2009 Swine Flu pandemic. All values are percent weighted
ILI.

4.2 Evaluating Variables

To fine tune the model and obtain the best predictions possible, climate and

population variables were evaluated. Prior to this, the complete data set was used

to make predictions. In order to determine how the variables may be effecting
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Table 4.1 Mean Absolute Error of Various Training Sets Is Significantly Different
Within and Between Training Sets. 400 week training sets provided the worst
performance. There was no significant difference between using 540 week and 700
week training sets. There was significant differences between training sets that
included the 2009 pandemic and those that did not.

Training Set
Prediction Error (MAE)

Week 1 Week 5 Week 10

Weeks 100 - 500 0.6630 0.6637 0.6664

400 Weeks Weeks 200 - 600 0.5370 0.5274 0.5394

Weeks 300 - 700 0.3374 0.6682 0.6440

0.5124 0.6197 0.6166

Weeks 0 - 540 0.3103 0.4678 0.5792

540 Weeks Weeks 0 - 270 & 540 - 806 0.3860 0.5399 0.5563

Weeks 270 - 806 0.3130 0.3609 0.3878

0.3364 0.4562 0.5077

Weeks 0 -700 0.5227 0.5806 0.7309

700 Weeks Weeks 53 - 753 0.3086 0.6008 0.6094

Weeks 106 - 806 0.4263 0.6601 0.5861

0.4192 0.6138 0.6421
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predictions, they were removed one by one. The data set became progressively smaller

until only data columns ’percent ILI’, ’Week’ and ’Year’ remained. Temperature was

the most important variable for predicting Week 1. Precipitation also had a significant

effect when removed. Removing either of these variables reduced performance of week

1 predictions. Removing population and vaccination data appears to have improved

predictive power substantially. Removing temperature and monthly precipitation,

weekly precipitation and weekly temperature decreased predictive performance. The

best predictions were obtained with a data set containing only precipitation and

average temperature (4.2).

Table 4.2 Temperature Is the Strongest Predictor for ILI. Parameters were removed
one by one in descending order. Models were trained on weeks 0–540 and tested on
weeks 541–806.

Parameter Prediction Error (MAE)

Base Model 0.213

Average Wind Speed - Monthly 0.182

Precipitation - Monthly 0.218

Average Temperature - Monthly 0.204

Population 0.195

Vaccine Effectiveness 0.195

Vaccination Rate 0.187

Average Wind Speed - Weekly 0.163

Precipitation - Weekly 0.185

Average Temperature - Weekly 0.231

4.3 Comparing Standard and Recursive Predictions

Once baseline performance was established, standard predictions could be compared

to recursive predictions. Predictions using the standard model and a time lag of one

week was used as a baseline for evaluation. Time lags of 4, 12, 16 and 52 weeks using

the standard model were compared to baseline. A time lag of 4 weeks provided an

42



average decrease of 0.1400 percent ILI error across weeks 1, 5 and 10. The greatest

improvement was seen in week 10 predictions. Week predictive performance degraded

as the time lag increased past 4 weeks (4.3).

A. B.

C.

Figure 4.2 ILI predictions accuracy varies with time lag and prediction method.
Using a recursive function with a 4 week time lag provided the most balanced
predictions. Week 1 predictions compare well with label data. The predictive
accuracy drops off as predictions range further out, however they remain better than
alternative methods (A). Reducing time lag using recursive predictions causes under
prediction across the entire prediction range (B). The baseline model using a 1 week
time lag produces good 1 week predictions that rapidly degrade over the range of
predictions (C). All predictions were made using a model trained on weeks 0–540 and
tested on weeks 541–806. Predicted values are percent weighted ILI. Data plotted here
has been standardized resulting in negative values on the y-axis. NOTE: Predicted
values are offset due to plotting based on prediction start week, thus peaks for week
10 predictions appear slightly delayed.
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Table 4.3 A 4 Week Time Lag Provides Best Predictive Performance. Increasing
time lag degraded week 1 prediction performance using the standard model but
improved week 5 prediction performance. Using a 4 week time lag increased overall
performance of the recursive model vs. baseline

Time Lag
Prediction Error (MAE)

Week 1 Week 5 Week 10

Baseline 0.3412 0.4485 0.4963

t-4 0.2903 0.2882 0.2876

t-12 0.4000 0.4867 0.4709

t-16 0.3831 0.4592 0.4496

t-52 0.4838 0.5127 0.4868

4.4 Predicting Outlier Years

When outliers were removed from training data, predictive power was reduced

in a regular way. The Premoved model was unable to predict outlier years with

the same accuracy as the Pincluded model. Notably, there was an extremely large

discrepancy when predicting the 2003-2004 flu season (4.4). Further testing to

identify outlier signals showed that there may be consistently reduced performance.

10 week predictions provided the largest divergence in predictions.When two models

were compared on the test data set containing weeks 540 - 806, a small signal was

evident(4.3). However, the signal is very noisy.
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Figure 4.3 Two models trained on different data sets may provide a usable signal for
identifying outlier flu years. Measuring divergence between two alternatively trained
models provides a weak signal indicting possible outlier years. Week 10 predictions
contained the largest error but also contained the largest systematic divergence,
despite noise. Models trained on weeks 0 - 540 (approximate due to outlier removal)
and tested on remaining weeks. Predicted values are weighted percent ILI. Data
plotted has been standardized resulting in negative values on the y-axis.
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Figure 4.4 Removing outliers from training data set produces large prediction
error in test outlier years. When trained on weeks 270 to 806 (approximately) models
produce large prediction errors compared to models trained on complete data sets.
Models trained on weeks 270 - 806 with and without outlier years. Predicted values
are weighted percent ILI. Data plotted has been standardized resulting in negative
values on the y-axis.
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CHAPTER 5

DISCUSSION

Influenza produces seasonal outbreaks that have large economic and human costs.

Currently, our best defense against seasonal outbreaks is widespread vaccination.

However, despite advances in virology, epidemiology and immunology, a perfect

influenza vaccine has eluded researchers. Additionally, major pandemic seasons can

occur unexpectedly. As a result, predicting when and how any given flu season

progresses is of the utmost importance. Early warning can allow development of

targeted vaccines and health service preparation. To that end, a model predicting

weekly percent ILI was developed.

The model made use of an LSTM-based neural network. By treating flu data

available from the CDC as a time series, useful predictions were made. To increase

predictive performance, climate and population data was added to the training set.

By manipulating training sets and training variables, we were able to draw several

conclusions.

5.1 Climate, Especially Temperature is an Important Predictor in

Temperate Regions

Temperature was the strongest climate predictor that was used. Removing temperature

data resulted in a sharp decline in predictive performance. This model suggests that

there is at least a correlation between temperature and ILI rates. However, it provides

no insight as to why this correlation exists. Precipitation was also a significant

predictor, although to a lesser degree. This may be a result of precipitation’s

correlation with humidity. So, in this case, precipitation may be acting as a partial

proxy for humidity data. Although the actual effect of relative humidity on influenza

virus transmission has been contested, its usefulness as a predictor in modeling
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remains unchanged. Thus, the use of precipitation in place of less uniform humidity

data may be of some benefit for future models. Notably, adding future climate data

to the model greatly improves predictive performance. With unlimited future climate

data, predictions may be pushed much further past the 10 week limit seen in this

thesis. However,this is likely not realistic given current meteorological predictions.

Including climate data in influenza models provides a measurable increase in

predictive power. However, climate data can be difficult to gather. In this case, select

weather stations were used and the data averaged to create regional approximations.

It is possible that if the model was applied to a smaller geographical area with

more uniform weather, the predictive effect of climate data may be even greater.

Future effort may be dedicated to collecting higher quality climate data from other

sources. More granular data seemed to have a larger effect than less granular data.

Weekly averages derived from daily data had a larger impact than weekly averages

derived from monthly data. However, monthly data may be sufficient in some cases.

Investigating the relationship between weekly influenza rates and the time-step of

climate data may provide an insight into how and why climate effects influenza.

5.2 Population and Vaccination Data May Not Be Relevant to

Modeling Using LSTM-Based Models

Removing population and vaccination data had no effect and increased performance,

respectively. While this may indicate that these factors are not useful predictors,

it is more likely that the data available was not sufficient. The data structure may

have been inadequate to reveal underlying patterns. The population data used in

this thesis was limited to regional total populations and the vaccination data was

limited to national data. If more specific, granular data could be collected, it may be

extremely useful in predicting influenza. However, due to the variability in flu vaccine

effectiveness it is unlikely to be a useful predictive tool. Yearly effectiveness can only

be calculated retrospectively. Despite the the lack of impact of population data, it
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would likely be much more valuable when adding a spacial dimension to the model,

although that is outside of the scope of this thesis.

5.3 Training Sets Matter

Depending on the training set, the ability to predict changed. To an extent, more

data provides better predictions. However, in a similarly tuned model, the optimal

training set seemed to be about 10 years or about 540 weeks. This translates to about

two-thirds of the total data set. Due to the time scale of yearly trends, some patterns

may not be apparent in the limited data set. Whether or not the model is able to

identify these hidden patterns is difficult to know. This is a potential downside of

using a machine learning approach. For the most part, the model is very opaque.

Without the ability to understand exactly what the model is learning, the best way

to test generalizability is to rotate training data, taking different windows of data.

The inclusion or exclusion of certain years certainly affects the predictive power.

This may indicate an underlying pattern that is better represented in some years

rather than others. It may also indicate patterns that are better represented by sets

of years, implying that the large sequence of years is as important as the granular data.

Unfortunately, as mentioned previously, limited data prevents further investigation

of this problem.

A specific example of variability in training data is the exclusion of the 2009

pandemic year. Models including this year in training data were able to better predict

testing data than those without. This may indicate a robust pattern that emerges

when the 2009 season is included. More data is needed to expand the scope of the

model and understand more about the driving factors. Unfortunately, older CDC

data is incomplete and more difficult to manage. Thus, previous pandemic years

are not readily available for inclusion. A specific effort to collect and complete the

data would be needed before it could be applied to this model. Of course data is
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continuously added as time advances. As subsequent years can be collected, patterns

may emerge and the model can be reevaluated. However, observing the difference

between models trained with and without outlier years may provide a useful tool for

alternative approaches to prediction.

5.4 Outlier Years May Be Identified Using Prediction Divergence

Given the limits in predicting the myriad of variables that influence influenza

trends, combined with the fact that many drivers of seasonal influenza are not well

understood, accurate weekly predictions further than several weeks seems unlikely.

Using the difference in predictive performance between models trained with and

without outlier years may significantly extend the usefulness of this model. When

compared to other forecasting techniques, such as those entered in the annual CDC

Flu-Casting competition, this model performs well. However, no direct quantitative

comparison was made in the course of this thesis.

The model put forth by this thesis is easily implemented and extendable to

a variety of experiments. So training two parallel models is quick and requires only

minor data modification. When comparing the results of alternatively trained models,

systematic differences in predictive ability are observed. Specifically, years with

unusually high percent ILI, when removed, cause poor prediction of high incidence

years.

Limited examples of outlier years exist in the current data set. This limits

further exploration of this phenomenon. Additionally, definition of outlier years was

arbitrary. A peak standardized ILI of 4% was chosen. Years that fell slightly below

this threshold may include useful data. With more data, trends may be more clear

and categories may be easier to select. Another potential pitfall is the time-series

nature of the data. Removing individual years may have unknown affects on training.

However, given that the Premoved model predicted all years except outlier years were

50



predicted equally as well as the Pincluded, this is unlikely. Again, only a larger data

set could answer this definitively. Despite these problems, the main advantage of this

outlier detection approach is that is can function with the limited data available and

make use of predictions that may be too inaccurate for direct use.

5.5 LSTM-Based Models Provide a Useful Tool for Influenza Prediction

Applying machine learning to biological and epidemiological questions is a relatively

new approach. There has been limited examination of LSTM neural networks as

the basis for influenza tracking models. Good one week predictions show that this

approach is practical for so called now-casting. Also, using a variety of techniques,

including recursive predictions, models can be stretched to predict to an indefinite

point in the future. However, predictive performance plateaus between 5 and 10

weeks out and so is limited.

The primary advantage of this model is the straightforward architecture. It is

small and does not require a vast amount of computational power, although it is much

faster when GPU accelerated. Once the model has been designed and implemented,

new data can be continuously fed. This model could be set up to automatically extract

climate and influenza data in real time from various sources. A simple pre-processing

pipeline would allow the data to be added seamlessly. This would allow relatively

low effort predictions. Additionally, this architecture may be applied to a variety

of locals. Further testing would be needed to confirm generalizability, though. If

the model proves generalizable, it could provide a useful tool for modeling influenza

for smaller organizations with limited resources. This model also provides a solid

framework for future research. Training and prediction time is short, which allows

rapid testing and on the fly modifications.

Overall, the effectiveness of LSTM-based models as a predictive tool is

supported by the results of this thesis. While machine learning may act as a ”black
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box” with opaque inner workings, continuing to apply it to biological questions can

provide a useful practical tool as well as reveal previously unknown patterns in a

system. Prediction of ILI trends using machine learning may have wider implications

for epidemiology. This model and these techniques could be effectively applied to

almost any infectious disease that acts in a time-dependant fashion. With minor

modifications to data processing, the model may be applied to smaller time-scale

outbreaks as long as previous data exists.

Diverging predictions can also provide a novel approach to compensating for

limited data sets. The overall predictive accuracy does not need to be especially

high. Instead, models must vary in predictive performance in a regular way. In cases

where this holds true, this approach may provide a low-bar-of-entry approach for

determining specific outbreak severity well in advance of other modeling techniques.

5.6 Future Research

Moving forward, this model can be further tuned. By manipulating the model, a

better understanding of the underlying mechanisms may be had. The model may

be simplified and studied in depth. Or the model may be used as a base for further

expansion. For example, this model may be readily applied to an automatically

updated web-based system. While this would not provide insight into the driving

factors of influenza trends, it would provide a continuous stream of current data and

updated models. Over the next several years, patterns may become more apparent.

Greater amounts of data are not always useful for increasing model accuracy,

but better data could provide a measurable improvement. Climate data, especially,

provides a large amount of room for improvement. Potentially using more stations,

or better selected stations may provide better correlated data. Looking at areas with

more uniform weather patterns could alleviate this issue. So, a future experiment
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may look at a single state, county or even city. Narrowing the area of interest may

allow for better climate data.

Improving population data also provides room for further exploration. A study

using the lessons learned from this model could add a spacial dimension to forecasting.

By adding another dimension to the analysis, trends that were previously hidden

may become apparent. Specifically, with the advent of effective image recognition,

integration of heat-map type images could allow for straightforward addition of

population density data as well as travel and immigration data. This type of modeling

could be applied to almost any other transmissible disease.

In addition to better integrating population data to provide spacial under-

standing, flu sub-typing data may also be included. In this thesis, sub-type data

was not included because data collection was sporadic and inconsistent year to year.

More complete sub-typing data may lead to useful discoveries. Evaluation of this

is outside the scope of this thesis. The model produced here does provide a usable

framework for such an evaluation, though. Additionally, age data was not evaluated

using this model, although the data was available and the architecture would allow

for inclusion.

5.7 Final Thoughts

In conclusion, this thesis has shown that an LSTM-based model for predicting ILI

trends is practical. The model produces usable results out to 10 weeks, further than

required by the CDC competition on flu forecasting. Predictions past 10 weeks

were not viable and so, by extending time of predictions, this model may reveal

an outer limit for forecasting. Also, by expanding the data set, climate data has

been confirmed as being a useful predictor. Specifically, this is the first LSTM-based

model to incorporate climate, population and vaccination data. Furthermore, by

manipulating the training data, systematic variations in predictions may be seen.
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Using this, a simple system for identifying potential outlier flu years can be created.

The work done for this thesis lays the foundation for a potentially novel approach to

influenza forecasting.
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APPENDIX A

SUPPLEMENTAL DATA, SAMPLE CODE & NETWORK

ARCHITECTURES

This appendix contains select code, model architecture and links to complete data

sets. The complete supplemental material can be found online.

A.1 Data

Complete data used is available online.

CDC influenza data: https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

NOAA climate data: https://www.ncdc.noaa.gov/data-access/land-based-station-

data/land-based-datasets US Census population data: https://www.census.gov/data.html

A.2 Code Samples

This sample code contains the final model architecture used. The model was build

using a Keras sequential model. The model is then wrapped in a simple function to

compile and output the model for training. This model function is flexible enough

to accept several data and label structures and so does not require modification to

adjust time-step, output or other data structure changes. Code for previous iterations

of this model is available online.

1000

#de f i n e wrapper func t i on f o r model c r e a t i on

1002 de f bui ld modelE ( data , l a b e l s ) :

# data and l a b e l s must be pre−formatted as 3−D arrays with

even

1004 # time−s t ep s . Time s t ep s corre spond ing to one week

# one were chosen

1006
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# take sample s i z e f o r input . cu r r en t l y s e t to one

1008 # samples = data . shape [ 0 ]

# time s t ep s and f e a t u r e s taken from data shape to

1010 # s imp l i f y bu i l d i ng model

# t ime s t ep s = data . shape [ 1 ]

1012 # f e a t u r e s = data . shape [ 2 ]

#output shape based on provided l a b e l data

1014 i f l en ( l a b e l s . shape ) == 2 :

l ab e l s hape = l a b e l s . shape [ 1 ]

1016 e l s e :

l ab e l s hape = 1

1018

# main model

1020 model = keras . Sequent i a l ( [

keras . l a y e r s . B i d i r e c t i o n a l ( l a y e r s .LSTM(500 ,

1022 r e tu rn s equence s=True ,

batch input shape=(( samples ,

1024 t ime s teps , f e a t u r e s ) ) ) ,

merge mode=’ concat ’ ) ,

1026 keras . l a y e r s . B i d i r e c t i o n a l ( l a y e r s .LSTM(500 ,

dropout =.3 ,

1028 r e tu rn s equence s=True ) ,

merge mode=’ concat ’ ) ,

1030 keras . l a y e r s . B i d i r e c t i o n a l ( l a y e r s .LSTM(500 ,

dropout =.3) ,

1032 merge mode=’ concat ’ ) ,

keras . l a y e r s . Dense ( l ab e l s hape )

1034 ] )
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1036 #uses mean abso lu t e e r r o r as l o s s func t i on

model . compi le ( l o s s=’mse ’ ,

1038 opt imize r=t f . keras . op t im i z e r s .Adam( ) ,

met r i c s=[ ’mae ’ , ’mse ’ , R square ] )

1040 re turn model

Listing A.1 Final model architecture.

The code section below contains the function that allows for 10 week predictions

with a 4 week time lag. This was one of the main functions used to evaluate the

models. Complete code, including wrapper functions for other prediction strategies,

is available online.

1000

#

1002 de f p r e d i c t f u t u r e t 4 (model , data ) :

# r e c u r s i v e p r ed i c t i on by week with 4 week lag

1004

# model − t r a in ed model to be used to make p r e d i c t i o n s .

Should

1006 # pred i c t 1 week forward and conta in 4 week time lag

1008 # data − t e s t i n g data . This data should be pre−formatted in

the same

# way as the t r a i n i n g data

1010

1012 # i n i t i a l i z e numpy array to hold p r e d i c t i o n s

# f u l l p r e d i c t i o n s = np . empty ( ( data . shape [ 0 ] , 1 0 ) )

1014

# main loop o f p r ed i c t i on
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1016 # loops p r e d i c t i o n s over each time step ( in t h i s case each

week )

f o r j in range (0 , data . shape [ 0 ] ) :

1018

1020 # i n i t i a l i z e a numpy array o f z e r o s to

# s t o r e p r e d i c t i o n s

1022 p r ed i c t i o n s = np . z e ro s ( ( 10 , 1 ) )

1024 # copy data to ed i t

ed i t da t a = data . copy ( )

1026

# secondary loop that p r ed i c t s 10 weeks out from each

time

1028 # step

f o r i in range ( j , j +10) :

1030 #s t a r t with a 2 week s l i c e o f data

#grow as more i s p r ed i c t ed

1032 base week = ed i t da t a [ : i +1]

1034 #generate p r ed i c t i on on data

pred i c t week = model . p r ed i c t ( base week )

1036

#loop p r e d i c t i o n s back in to data

1038 #[ row , 3 rd dimension == 0 , column ]

1040 #t−1

i f i+1<data . shape [ 0 ] :

1042 ed i t da t a [ i +1 ,0 ,41]= pred i c t week [−1]
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#t−2

1044 i f i+2<data . shape [ 0 ] & i−j>=1:

ed i t da t a [ i +2 ,0 ,28]= pred i c t week [−1]

1046 #t−3

i f i+3<data . shape [ 0 ] & i−j>=2:

1048 ed i t da t a [ i +3 ,0 ,15]= pred i c t week [−1]

#t−4

1050 i f i+4<data . shape [ 0 ] & i−j>=3:

ed i t da t a [ i +4 ,0 ,2]= pred i c t week [−1]

1052

#add p r ed i c t i on to p r ed i c t i o n l i s t

1054 p r ed i c t i o n s [ i−j , ] = pred i c t week [−1 , ]

1056 p r ed i c t i o n s = p r ed i c t i o n s . f l a t t e n ( )

p r e d i c t i o n s = np . reshape ( p r ed i c t i on s , (1 , 10 ) )

1058

# simple add−on to p r in t s t a tu s o f p r e d i c t i o n s

1060 j number = j+1

pr in t ( ”{ j num}/{number}” . format ( j num=j number ,

1062 number=data . shape [ 0 ] ) ,

end= ” ” , f l u s h=True )

1064 f u l l p r e d i c t i o n s [ j , ] = p r ed i c t i o n s [ 0 , ]

1066 re turn f u l l p r e d i c t i o n s

Listing A.2 Select code for recursive and standard predictive functions.

A.3 Model Architecture

1000
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de f bui ld modelE ( data , l a b e l s ) :

1002 #take sample s i z e f o r input . cu r r en t l y s e t to one

samples = data . shape [ 0 ]

1004 # time s t ep s and f e a t u r e s taken from data shape to s imp l i f y

# bu i l d ing model

1006 t ime s t ep s = data . shape [ 1 ]

f e a t u r e s = data . shape [ 2 ]

1008 #output shape

i f l en ( l a b e l s . shape ) == 2 :

1010 l a b e l s hape = l a b e l s . shape [ 1 ]

e l s e :

1012 l a b e l s hape = 1

1014

model = keras . Sequent i a l ( [

1016 keras . l a y e r s . B i d i r e c t i o n a l ( l a y e r s .LSTM(500 ,

r e tu rn s equence s=True ,

1018 batch input shape=(( samples , t ime s teps ,

f e a t u r e s ) ) ) ,

merge mode=’ concat ’ ) ,

1020 keras . l a y e r s . B i d i r e c t i o n a l ( l a y e r s .LSTM(500 ,

dropout =.25 , r e tu rn s equence s=True ) ,

1022 merge mode=’ concat ’ ) ,

keras . l a y e r s . B i d i r e c t i o n a l ( l a y e r s .LSTM(500 ,

1024 dropout =.25) ,merge mode=’ concat ’ ) ,

keras . l a y e r s . Dense ( l ab e l s hape )

1026 ] )

1028
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#uses mean abso lu t e e r r o r as l o s s func t i on

1030 model . compi le ( l o s s=’mse ’ ,

opt imize r=t f . keras . op t im i z e r s .Adam( ) ,

1032 metr i c s=[ ’mae ’ , ’mse ’ , R square ] )

r e turn model

Listing A.3 Code for final model architecture.
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