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ABSTRACT

EARLY DETECTION OF FAKE NEWS ON SOCIAL MEDIA

by
Yang Liu

The ever-increasing popularity and convenience of social media enable the rapid widespread

of fake news, which can cause a series of negative impacts both on individuals and society.

Early detection of fake news is essential to minimize its social harm. Existing machine

learning approaches are incapable of detecting a fake news story soon after it starts to

spread, because they require certain amounts of data to reach decent effectiveness which

take time to accumulate. To solve this problem, this research first analyzes and finds that,

on social media, the user characteristics of fake news spreaders distribute significantly

differently from those of the general user population. Based on this finding and also the

fact that news spreaders’ user profiles are usually readily available at the start of news

propagation, this research proposes three machine learning models to achieve the goal

of fake news early detection based on the user characteristics of its spreaders. The first

model named Propagation Path Classification (PPC) detects fake news by combining

recurrent neural networks with convolution neural networks to classify its propagation

path which is represented as a sequence of user feature vectors. The second model named

Social Media Content Classification (SMCC) improves the first model by adding 1) an

embedding layer and an integration layer to model news spreaders, and 2) a fake news

spreader likelihood score to model source users independently, which is particularly useful

when the propagation path is extremely short, i.e., only very few retweets. The third

model named Fake News Early Detection (FNED) further improves the first two models

by combining users’ text responses with their user characteristics as status-sensitive crowd

responses, which contain more information than text responses or user characteristics

alone. Two novel deep learning mechanisms are also proposed as key components in the

third model: 1) Position-aware attention mechanism to determine which status-sensitive



crowd responses are more discriminative; and 2) Multi-region mean-pooling to aggregate

intermediate features in multiple timeframes, which improves the performance when

very few retweets are available and thus needing zero-padding. The third model also

incorporates a PU-Learning (Learning from Positive and Unlabeled Examples) framework

to handle unlabeled and imbalanced data.

Comprehensive experiments were conducted to evaluate the proposed models on two

datasets collected from Twitter and Sina Weibo, respectively. The experimental results

demonstrate that the proposed models can detect fake news with over 90% accuracy

within five minutes after it starts to spread and before it is retweeted 50 times, which is

significantly faster than state-of-the-art baselines. Also, the third proposed model requires

only 10% labeled fake news samples to achieve this effectiveness under PU-Learning

settings. These advantages indicate a promising potential for the proposed models to be

implemented in real-world social media platforms for fake news detection.
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CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, as social media becomes indispensable, people consume news more often from

social media than from traditional news media. It was reported that in 2017, 67% of U.S.

adults consumed news mainly from social media1. Social media enables news to reach a

broad audience rapidly due to its inherent advantages over traditional news media: (i) It

is less expensive in terms of both time and money to consume news from social media;

(ii) It is easier to disseminate news via social media; (iii) News consumers become news

spreaders after sharing a news article to their online friends; (iv) It requires less content

censorship for a news article to be posted on social media. However, these advantages

in the meanwhile enable “fake news,” i.e., news carrying intentionally and verifiably false

information to spread widely and rapidly among social media users. Researchers found

that fake news spread significantly farther, faster, deeper, and more broadly than true news

(Vosoughi, Roy, & Aral, 2018). Two different studies conducted in 2016 found that 23%

of Americans say they have shared fake news stories 2.

The fast and massive spreading of fake news can cause inestimable social harm.

For example, fake news can manipulate the outcome of political events such as the

election. During the 2016 U.S. presidential election, the top 20 election-related fake news

stories, most of which had information favoring Donald Trump, received more Facebook

engagements than the top 20 legitimate mainstream news stories, most of which were

pro-Hillary Clinton3. Thus, some commentators had suggested that Donald Trump would

not have been elected president, were it not for the influence of fake news (Allcott &

1http://www.journalism.org/2017/09/07/news-use-across-social-media-platforms-2017/
2https://www.consumer-action.org/english/articles/fake news
3https://www.vox.com/new-money/2016/11/16/13659840/facebook-fake-news-chart
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(a) A fake news on Twitter (b) Its impact on the Dow

Figure 1.1 A fake news story on Twitter and its impact on the Dow.

Gentzkow, 2017). Other than political repercussions, fake news can also cause severe

damage to the economy by creating panic over the market rapidly. In 2013, a hacker’s

false Associated Press (AP) tweet claiming that an “explosion” had injured President

Obama (shown in Figure 1.1-(a)) caused stocks to briefly plunge shortly after the tweet was

released. Within 6 minutes, the Dow plunged over 140 points (shown in Figure 1.1-(b)), and

the estimated temporary loss of market cap in the S&P 500 alone totaled $136.5 billion4.

The prevalence of fake news on social media and its serious negative impacts have

become a primary concern of the general public. A 2017 survey found that that almost

three out of five Americans believe that fake news is a serious threat to their financial

decision-making5. The phrase “fake news” has been declared the official Collins Dictionary

Word of the Year for 20176. To mitigate the negative effects caused by fake news, it is

crucial to stop fake news before it reaches a broad audience. One of the key steps to

achieve this goal is early detection of fake news, i.e., detecting fake news shortly after it

starts to spread.

4https://www.cnbc.com/id/100646197
5https://www.aicpa.org/press/pressreleases/2017/fake-financial-news-is-a-real-threat-to-majority-
of-americans-new-aicpa-survey.html
6http://www.newsweek.com/fake-news-word-year-collins-dictionary-699740
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Human efforts have been involved in detecting and combatting fake news. Fact-

checking sites, e.g., Snopes7, Politifact8, Factcheck.org9, etc., rely on human experts to

investigate and judge potential fake news articles reported by online readers. The judging

results are then released to the public as a reference for fact-checking (shown in Figure

1.2). After the 2016 election, Google and Facebook also took steps to combat fake

news. Facebook enables users to mark news stories as fake10. The marked news stories

will then be subjected to a fact-checking process and will be attached with a warning

label below its link to discourage users from sharing it if the news story is confirmed as

fake news. Google enhanced its search function by displaying the fact-checking result

conducted by news publishers and fact-checking organizations under the snippet of news

stories11. Although manual fact-checking can indeed help readers identify fake news,

they are far from meeting the goal of fake news early detection because of the following

reasons. First, manual fact-checking often delivers a late response to fake news because it is

time-consuming. By the time a news article is announced as fake by manual fact-checking

sites or tools, it often has already reached a broad audience and caused social harm; Second,

manual fact-checking is not scalable to deal with the huge amount of potential fake news

articles published on the Internet every day. Under such a background, automatic detection

approaches are urgently necessitated to provide real-time detection of fake news from a

huge volume of news articles published every day.

1.2 Motivation

With the fast development of machine learning and deep learning (LeCun, Bengio, &

Hinton, 2015) techniques during recent years, machine learning (ML)-based automatic

7https://www.snopes.com/
8http://www.politifact.com/
9https://www.factcheck.org/

10https://www.facebook.com/help/572838089565953?helpref=faq content
11https://blog.google/products/search/fact-check-now-available-google-search-and-news-around-
world/
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Figure 1.2 Manual fact-checking on Snope.com.

detection approaches have become a major alternative to manual fact-checking and have

attracted significant attention both from the research communities and the industry. There

are plenty of existing studies focusing on automatic detection of fake news (Ma et al.,

2016; L. Wu, Li, Hu, & Liu, 2017; Kwon, Cha, & Jung, 2017; Ma, Gao, & Wong,

2017; Ruchansky, Seo, & Liu, 2017; Shu, Sliva, Wang, Tang, & Liu, 2017), as well as

closely-related topics, such as rumor detection (K. Wu, Yang, & Zhu, 2015; Sampson,

Morstatter, Wu, & Liu, 2016; L. Wu et al., 2017), misinformation detection (Qazvinian,

Rosengren, Radev, & Mei, 2011; H. Zhang, Alim, Li, Thai, & Nguyen, 2016; Jain, Sharma,

& Kaushal, 2016), and social spam detection (D. Wang, Irani, & Pu, 2011; Hu, Tang,

Zhang, & Liu, 2013; Markines, Cattuto, & Menczer, 2009; Li & Liu, 2017), etc. Most

ML-based detection approaches are based on the underlying premise that there exist some

latent patterns that can differentiate fake news from true news, and those patterns can be

recognized from a series of news-related features. From a data mining perspective, most

of the state-of-the-art machine learning-based detection approaches work in the following

4



routine: (i) Given a news article, relevant data required for detecting fake news is collected,

which can be broadly categorized into two groups, i.e., news content data and social context

data. News content includes the textual, visual, audio, and video content of a news article

(Note that many online news articles contain embedded photos or videos.) The social

context of a news story refers to the information related to how it spreads via social media,

e.g., the author’s and spreaders’ information, social interactions around the news story such

as comments, shares, and likes created by social media users, etc.; (ii) A set of features are

extracted from the relevant data to represent the news article. Different types of features

can be extracted from different kinds of relevant data. For instance, textual features such

as N-grams (Brown, Desouza, Mercer, Pietra, & Lai, 1992) can be extracted from the news

content. Graph theory-based features such as average in-degree and out-degree (Broder

et al., 2000) can be extracted from a propagation network constructed from user sharing

records; (iii) A machine learning model is then applied to predict the truthfulness of the

news article based on the extracted features. The type of machine learning model is usually

chosen or designed based on the feature representation of news articles.

During our literature review, we found one significant limitation of most existing

machine learning-based detection approaches. That is, they only focus on improving

the optimal detection effectiveness given sufficient data required to detect fake news.

Recent studies have made great strides in that regard. However, we found no research

focuses on early detection effectiveness when the required data is usually insufficient at

this stage. The main reason is that, in order to improve the optimal detection effectiveness,

many approaches extract features from an extensive amount of social context data from

social interactions observed over a long period of time after a news article has been

posted. Then, they apply complex machine learning models to recognize patterns from the

extracted features. However, the data required by those approaches is often unavailable

or insufficient at the early stage of news propagation. As a result, their effectiveness in

early detection tend to be low. With the lack of relevant data, a machine learning model
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is prone to overfitting. On the other hand, by the time those approaches can effectively

detect a fake news story, it usually has already spread among a large number of audiences

and has resulted in some form of social harm. Early detection effectiveness is critically

important because fake news usually causes social damages fast. If a detection approach

cannot effectively detect fake news shortly after it starts to spread, it will have marginal

usage in the real world, although they might perform well in experimental conditions.

Below is an example showing why an existing detection approach that is effective

given enough amount of relevant data, is ineffective in early detection when relevant data

is insufficient. A recent work (Ma et al., 2016) adopts recurrent neural networks (RNN) to

detect fake news by classifying the sequence of social media posts related to the news event.

According to their experimental results, the performance of their approach peaks after 24

hours after a news article starts to spread. However, the performance of their approach is

much lower when the detection deadline is less than 24 hours. The reason is as follows.

After we investigated their datasets, we found that the average number of posts per event at

24 hours after a news article starts to spread is around 500 in the Twitter dataset and 400 in

the Weibo dataset. That is to say, their approach requires around 400-500 relevant posts to

accurately detect fake news. Through our analysis of their experimental dataset, we found

that the average number of posts per event is less than 200 within the first hour after a news

article starts to spread and less than 50 in the first 15 minutes. When the number of relevant

posts observed is much less than required, their approach’s performance drops significantly.

Recall the fake tweet example we discussed in Section 1.1, fake news caused significant

damage to the stock market within five minutes. In such a scenario, an approach that can

only detect fake news after 24 hours after it starts to spread has marginal usefulness.

Another example of a similar case is as follows. Kwon et al. (2013) extract a

series of structural features from the propagation networks, e.g., median in-degree and

median out-degree, to detect fake news. Figure 1.3 shows the propagation network of a

fake news event named “Bigfoot” and a true news event named “Summize”, respectively.
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These two propagation networks are constructed from a large amount of propagation data.

According to the statistics of their datasets reported in their paper, the number of spreaders

and audience of the “Bigfoot” event is 462 and 1,731,926, respectively; The number of

spreaders and audience of the “Summize” event is 2054 and 4,367,672, respectively. In

such a condition, the two networks have significantly different structural features. Their

structural difference can be easily recognized by human eyes. Thus, it is easy for a machine

learning model to differentiate these two networks. However, when the two concerned

news articles just start to spread, only a small propagation network can be observed, which

is the center circle of the two large networks. Since it is unlikely to observe millions of

audiences within the first hour of the news’ propagation, in the very early stage of the

news propagation, the structural difference between the two small propagation networks

is no longer significant, and their respective structure looks identical via human eyes.

Thus, it might be difficult for a machine learning model to differentiate these two small

networks. Moreover, their paper only reported an overall detection effectiveness, not the

corresponding detection deadline. Thus, their approach’s performance on early detection

remains unknown.

Figure 1.3 Propagation network of a fake news article and a true news article, respectively.

With a lack of early detection capability, an ML-based detection approach will have

marginal usefulness because delayed responses to fake news cannot effectively reduce its

7



social harm. Early detection of fake news remains a challenging problem, but the research

community has not reported any significant success in this regard. Besides detection

efficiency, data quality is another issue. Existing studies only showed their results on

fully labeled and balanced distributed experimental datasets. However, real-world data

is expected to be mostly unlabeled and extremely imbalanced because verified fake news

consists of only a very small portion of the entire news stream. Unfortunately, despite some

laboratory results, no existing real-world fake news detection application can really solve

those issues. During Mark Zuckerberg’s congressional hearing in April 2018, the CEO of

Facebook stated that artificial intelligence would solve Facebook’s most vexing problems,

including fake news, but the outcome is expected to be seen in five to ten years12.

1.3 Overview of the Proposed Research

In this study, we define fake news as “news carrying intentionally and verifiably false

information”. Our research objective is to propose a machine learning model to detect

fake news on social media shortly after it starts to spread, and before it reaches a broad

audience. Our proposed research framework is summarized in Figure 1.4. To solve this

Figure 1.4 Overview of the proposed research framework.

research problem, we first analyzed the existing datasets and found that on social media,

12https://www.washingtonpost.com/news/the-switch/wp/2018/04/11/ai-will-solve-facebooks-most-
vexing-problems-mark-zuckerberg-says-just-dont-ask-when-or-how
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the user characteristics of fake news spreaders distribute significantly differently from those

of the general user population. For instance, fake news spreaders tend to have a shorter

registration age than normal users. Also, as a recent study (Shu, Wang, & Liu, 2018)

pointed out, there are specific users who are more likely to share fake news, and these

users possess different features from those who are not as likely to share fake news. These

findings laid the foundation of using user profiles for fake news detection.

Based on these findings, we built a machine learning model to predict whether a

user is likely to spread fake news through the utilization of his/her user characteristics.

It achieved a good prediction accuracy based on our experimental results. Since user

characteristics can reflect a user’s tendency to spread fake news, thus, it provides us with

a possibility to identify fake news based on its spreaders’ user characteristics. If a news

article is spread by many users who are very likely to be fake news spreaders, then it is very

likely to be fake news. Also, since at the early stage of news propagation, news spreaders’

user profiles are usually readily available compared to other types of data required by

existing approaches, detecting fake news based on spreaders’ user characteristics can be

potentially much more efficient than existing approaches that require complex features.

Based on these assumptions, in this study, we proposed three machine learning

models to detect fake news early. The first model named Propagation Path Classification

(PPC) combines recurrent neural networks with convolution neural networks to classify

news propagation paths. The second model named Social Media Content Classification

(SMCC) improves the first model by adding 1) an embedding layer and an integration

layer to model news spreaders, and 2) a fake news spreader likelihood score to model

source users independently, which is particularly useful when the propagation path is short,

i.e., only very few retweets. The third model named Fake News Early Detection (FNED)

further improves the first two models. It combines users’ text responses with their user

characteristics as status-sensitive crowd responses, which contain more information than

text responses or user characteristics alone.
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We also proposed two novel deep learning mechanisms as key components in the

third model, i.e., position-aware attention mechanism and multi-region mean-pooling.

Position-aware attention mechanism determines which status-sensitive crowd responses are

more discriminative, which need to be paid with more attention by the model. Multi-region

mean-pooling aggregates intermediate features in multiple timeframes, which improves

the performance of early detection when very few retweets are available and needing

zero-padding. The third model also incorporates a PU-Learning framework to handle

unlabeled and imbalanced data. We conducted comprehensive experiments to evaluate

the proposed models on two datasets collected from Twitter and Sina Weibo, respectively.

Experimental results demonstrate that our proposed models can detect fake news with over

90% accuracy within 5 minutes after it starts to spread and before it is retweeted 50 times,

which is significantly faster than state-of-the-art baselines. Also, our third model requires

only 10% labeled fake news samples to achieve this effectiveness under PU-Learning

settings. Those advantages indicate promising potential for our models to be implemented

in real-world social media platforms for fake news detection.

It is equally important to mention here that, since our approach does not analyze the

content of a news story itself, it is both content- and domain-independent. Thus, it also

implies that the formats of news (text, video, audio) are unimportant in our approach. We

should also make clear that our proposed approach is used to detect whether a news article

is potentially fake as a whole. It is not designed to pinpoint which part of the news article

is fake and why it is fake. In the real-world scenario, our proposed approach can be applied

on social media sites as a filter to label potential fake news articles automatically. This is

the first step in combating fake news, i.e., “fake news early detection”. Then, the labeled

articles can be sent to social media administrators who will perform content verification

and then decide how to handle them. This is the second step in combating fake news, i.e.,

“fake news verification”.
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1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows: Chapter 2 presents a theoretical

background of the fake news detection problem and an overview of existing detection

approaches in the literature. Chapter 3 presents a study on user characteristics and a

machine learning model to predict a user’s tendency to spread fake news. Chapter 4

introduces the Propagation Path Classification (PPC) model. Chapter 5 introduces the

Social Media Content Classification (SMCC) model that improves the first model. Chapter

6 introduces the Fake News Early Detection (FNED) model which further improves the first

two models. Chapter 7 provides limitations, discussions, contributions, future directions,

and a summary of this research.
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CHAPTER 2

LITERATURE REVIEW

This chapter presents a theoretical background of fake news detection and an overview

of existing detection approaches in the literature. Section 2.1 presents some theoretical

background of fake news and its relationship with social media, as well as why people tend

to believe fake news. Section 2.2 presents an overview of existing machine learning-based

automatic detection approaches. Section 2.3 summarizes our literature review.

2.1 Theoretical Background

2.1.1 What is “Fake News”

The problem of fake news has existed since news began to circulate widely after the printing

press was invented in 1439 (Biyani, Tsioutsiouliklis, & Blackmer, 2016). In recent years,

fake news has reached a broader audience with the help of social media and has caused

more serious social harm. Fake news detection has been widely studied by both academic

communities and the industry. However, there is still no agreement on the definition of

fake news among many existing studies. Therefore, we first discuss and compare several

definitions of fake news that are adopted in existing studies. Then, we give our definition

of fake news that will be adopted in the rest of this research.

Fake news was exclusively used in the satire context (Brewer, Young, & Morreale,

2013; Balmas, 2014; V. Rubin, Conroy, Chen, & Cornwell, 2016). Balmas et al. (2014)

found that fake news is meant to perceived as unrealistic, while traditional news content

is meant to be perceived as realistic. Cohen et al. (2017) provided a broad definition of

fake news, i.e., fake news is everything from malicious stories to political propaganda.

They pointed out that many articles are written by journalists who write articles using

web searches but with no actual verification. Willnat et al. (2014) found that 53.8% of

journalists use microblogs (ex. Twitter) to gather information and report from news stories.
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In a recent study of fake news in the 2016 election (Allcott & Gentzkow, 2017),

it is defined as a news article that is intentionally and verifiably false and could mislead

readers. This definition has been widely adopted in several existing studies (Conroy,

Rubin, & Chen, 2015; Klein & Wueller, 2017; Mustafaraj & Metaxas, 2017; Potthast,

Kiesel, Reinartz, Bevendorff, & Stein, 2017). Based on the two key features of fake news

under this definition, i.e., authenticity and intent, a recent survey paper on the topic of fake

news detection (Shu et al., 2017) provides a more concise definition of fake news, i.e.,

fake news is a news article that is intentionally and verifiably false. Under this definition,

fake news must include information that can be verified as false and must be intentionally

created to mislead readers. Nowadays, the fast development of social media and Web 2.0

enables fake news to be shared over millions of times and generates a huge amount of

advertising revenue. Considering this impact, Klein et al. (2017) define fake news as the

online publication of intentionally or knowingly false statements of fact. Several previous

studies regard fake news as a particular news article being intentionally deceptive (fake,

fabricated, staged news, or a hoax) (V. L. Rubin, Chen, & Conroy, 2015; V. L. Rubin,

2017). Since the scope of this study is detecting fake news on social media, based on the

definitions discussed above, we formally define fake news as follows,

Definition 2.1.1. (FAKE NEWS) Fake news is a news article that carries intentionally and

verifiably false information.

2.1.2 Related Terms

There has been a variety of existing studies that focus on topics related to fake news

detection, e.g., rumor detection (K. Wu et al., 2015; Sampson et al., 2016; L. Wu et al.,

2017), misinformation detection (Qazvinian et al., 2011; H. Zhang et al., 2016; Jain et al.,

2016), and spam detection (Hu et al., 2013; Markines et al., 2009; Li & Liu, 2017), etc.

In this section, we distinguish the concept of fake news from a variety of related concepts

such as rumor, misinformation, spam, etc., because of the following reasons. First, it is
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necessary to clarify the scope of this study, i.e., detecting fake news instead of rumors,

spam, etc. Second, many existing papers either do not give a clear definition of those terms

or have their own definition that conflict or overlap with either the definition of fake news

adopted in this study or the definition of other terms adopted in other papers. Third, many

existing studies focusing on those related concepts are closely relevant to our study since

their method can be directly or indirectly adopted for detecting fake news.

We adopted the definition of a series of key terms related to fake news from

previous research (L. Wu, Morstatter, Hu, & Liu, 2016), which introduces the concept

of misinformation and the 5 Key Terms. Figure 2.1 shows a concept map with the root

concept “misinformation” and a list of subconcepts. This article provides the following

Figure 2.1 Concepts related to fake news (L. Wu, Morstatter, Hu, and Liu, 2016)

definitions. Misinformation is fake or inaccurate information that is unintentionally spread.

Disinformation is fake or inaccurate information that is intentionally spread. A Rumor is

a story circulating from one person to another, of which the truth is unverified or doubtful.

An Urban Legend is a fictional story that contains themes related to local popular culture.

Spam is unsolicited messages sent to a large number of recipients, containing irrelevant or

inappropriate information, which is unwanted. A Troll is a user who posts messages that

are deliberately offensive or provocative, with the aim of upsetting other people.

Fake news is also different from alt-facts and journalism. Alt-facts are different

from fake news in that they have no basis in reality (Berghel, 2017); journalism
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“attempts at exercising reliability, selecting the important over the trivial while avoiding

sensationalism,” instead of intentionally creating false content. (Borden & Tew, 2007)

2.1.3 Fake News on Traditional News Media

Before online news and social media became popular, fake news has been spread via

traditional news media, i.e., newspaper and television, over time. We investigated several

psychological and social science theories that describe why people tend to believe and

spread fake news and the impact of fake news on both individuals and society.

Psychological Theories There are two major psychological and cognitive factors that

make people naturally vulnerable to fake news: (1) Naive Realism: people tend to believe

that their perceptions of reality are the only accurate views, while others who disagree

are regarded as uninformed, irrational, or biased (Reed, Turiel, & Brown, 2013); and (2)

Confirmation Bias: consumers prefer to receive information that confirms their existing

views (Nickerson, 1998). Due to these two cognitive biases, fake news is often perceived

as true news by some people. Moreover, people’s misperception of fake news is hard to

change once it is formed. Psychology studies show that factual information is not helpful

to correct false information (e.g., fake news), but sometimes can increase the misperception

(Nyhan & Reifler, 2010).

Social Science Theories Many social science theories explain why people tend to spread

fake news within their social circle. Prospect theory (Kahneman & Tversky, 2013; Tversky

& Kahneman, 1992) describes decision making as a process by which people make choices

to maximize the relative gains or minimize relative losses as compared to their current

state. According to social identity theory (Tajfel & Turner, 1979, 1986) and normative

influence theory (Asch & Guetzkow, 1951), social acceptance and affirmation are essential

to a person’s identity and self-esteem. Due to the above theories, when a fake news article
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is spreading among a social group, people in the group tend to spread it, because it is a

“socially safe” option and they think it can maximize their social gain.

2.1.4 Fake News on Social Media

In this subsection, we will discuss some unique characteristics of fake news on social

media, which make them spread more wildly and rapidly than in traditional news media.

Malicious Accounts on Social Media On social media, there are plenty of malicious

accounts that actively spread fake news. Some of them are controlled by robots instead of

real humans. A social bot refers to a social media account that is controlled by a computer

algorithm to automatically produce content and interact with humans (or other bot users)

on social media (Ferrara, Varol, Davis, Menczer, & Flammini, 2016). Due to the low cost

of creating social media accounts, a massive amount of social bots can be easily created

with the specific purpose of spreading fake news on social media. One study showed that

the 2016 U.S. presidential election was distorted by a massive amount of online social bots

(Bessi & Ferrara, 2016). About 19 million social bot accounts on Twitter posted tweets in

support of either Trump or Clinton in the single week before election day1. Besides social

bots, trolls, i.e., real human users who actively post biased or false information on social

media or online discussion forums in order to emotionally manipulate the online public,

are another group of users who tend to spread fake news. They are often paid so that they

have a strong incentive to spread fake news or other misinformation as widely as they can.

For instance, there was evidence that showed 1,000 paid Russian trolls spread fake news

on Hillary Clinton2. The effect of trolling is to trigger people’s inner negative emotions,

such as anger and fear, resulting in doubt, distrust, and irrational behavior (Shu et al.,

2017). Another type of malicious account is cyborg account. Cyborg accounts have mixed

functions of real human accounts and social bots. A cyborg account is usually registered

1http://comprop.oii.ox.ac.uk/2016/11/18/resource-for-understanding-political-bots/
2http://www.huffingtonpost.com/entry/russian-trolls-fake-news us 58dde6bae4b08194e3b8d5c4
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by a human but set an automated computer program that responds to human input quickly.

This type of accounts is also widely used in spreading fake news (Chu, Gianvecchio, Wang,

& Jajodia, 2012). To deal with malicious accounts, Twitter deleted tens of millions of

suspicious accounts in the cull, which up to 6 percent of all its registered accounts3.

Change of Roles Social media has changed people’s roles in consuming and dissem-

inating news. From a traditional communication theory’s point of view (Shannon &

Weaver, 1963), news is released by a source and goes through a media to reach its

consumers. However, the interactive property of social media brings a fundamental shift in

communication, i.e., receivers become the new “sources” (Sundar & Nass, 2001) (shown

in Figure 2.24). On social media, information consumers themselves become information

creators and distributors once they share the information with their friends or followers

(shown in Figure 2.35).

Figure 2.2 A fundamental shift in communication brought on by social media.

Echo Chamber Effect Recent findings showed that users on Facebook tend to select

the information that adheres to their system of beliefs and to form polarized groups, i.e.,

echo chambers (Del Vicario, Vivaldo, et al., 2016). Such a tendency dominates information

3https://www.independent.co.uk/life-style/gadgets-and-tech/news/twitter-fake-followers-lost-
delete-accounts-cull-a8444236.html
4https://john.cs.olemiss.edu/ñhassan/file/aaai2018tutorial.html
5https://john.cs.olemiss.edu/ñhassan/file/aaai2018tutorial.html

17



Figure 2.3 Information receivers become creators and distributors.

cascades and can affect public debates on socially relevant issues. The echo chamber effect

facilitates the spreading of fake news due to the two following psychological factors (Paul

& Matthews, 2016): (1) Social Credibility, people are more likely to perceive a piece of

information as credible if others perceive it as credible, especially when the credibility of

the concerned information is hard to assess due to lack of evidence; and (2) Frequency

Heuristic, people are more likely to perceive fake news as true if it is heard frequently.

Studies have shown that increased exposure to an idea is enough to generate a positive

opinion of it (Zajonc, 1968; Del Vicario, Bessi, et al., 2016), and in echo chambers,

users continue to share and consume the same information. As a consequence, this

echo chamber effect creates segmented, homogeneous communities with a very limited

information ecosystem, which becomes the primary driver of information diffusion that

further strengthens polarization (Del Vicario, Bessi, et al., 2016).

2.2 Existing Detection Approaches

As we described in Chapter 1, manual fact-checking cannot meet the requirement of fake

news early detection. Thus, in this section, we will present an overview of existing machine

learning-based automatic detection approaches.
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2.2.1 Categorization of ML-based Detection Approaches

With the fast development of machine learning and deep learning in recent years, there has

been plenty of automatic detection approaches proposed in the literature. Given an online

news article, a typical machine learning-based detection approach first extracts features

from either its text content or its social context data or both, then applies a machine learning

model/algorithm that predicts the truthfulness of the news based on the extracted features.

Therefore, in this section, we categorize existing ML-based detection approaches by the

following two dimensions: (1) features, and (2) machine learning model. Figure 2.46 shows

an example of categorization of existing detection approaches, where the x-axis represents

the feature type, and the y-axis represents the type of machine learning models.

Figure 2.4 Example of a categorization of existing detection approaches.

Since machine learning models are more diverse than features, we will first group

existing approached based on the features they adopt and then discuss their corresponding

machine learning models. Table 2.1 shows the categorization of the features adopted by

existing detection approaches.

6https://john.cs.olemiss.edu/ñhassan/file/aaai2018tutorial.html
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Table 2.1 Categorization of Features

Feature category Subcategory Data source

news content-based
textual-based headline, body text

visual based video, image

social context-based

user-based user profile, user post history

post-based user comments, retweets

network-based diffusion network, social network

2.2.2 Detecting Fake News via News Content-Based Features

Content-based features broadly include textual-based features and visual-based features.

Textual-Based Textual-based features can be extracted from the news headline and its

text content. An intuitive and straightforward approach adopted by many existing studies

is to detect fake news based on its text content. Castillo et al. (2011) adopt a list of

rudimentary content-based features, e.g., question marks, emoticon symbols, sentiment

positive/negative words, pronouns, etc., to gauge the information credibility on Twitter.

Popat et al. (Popat, 2017) found that the language style of an article plays a crucial role

in understanding its credibility. Thus, they adopt language stylistic features, e.g., assertive

verbs, factive verbs, implicatives, etc., to assess the credibility of web claims. Opinionated

and inflammatory language has been adopted as indicators of fake news (Y. Chen, Conroy,

& Rubin, 2015). Natural language processing (NLP) techniques (Chowdhury, 2003) have

also been adopted by existing studies to discover syntaxical or semantical patterns from

news content to detect fake news. Syntactic features such as n-grams and part-of-speech

(POS) tags have been explored in (Fürnkranz, 1998; Qazvinian et al., 2011). Zubiaga et al.

(Zubiaga, Liakata, & Procter, 2017) adopt Word2Vec (Mikolov, Sutskever, Chen, Corrado,

& Dean, 2013) to create vector representations of words in tweets to detect rumors.
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There are several limitations of text-based detection approaches. First, these

approaches need enough text content to make a prediction. Thus, they cannot detect fake

news with very short or no text content. Second, the textual content of fake news is diverse

in terms of topic, style, and platform. Thus, content-based features that work well on one

particular fake news dataset may not work well on another (Shu et al., 2017).

Visual-Based Visual-based features extracted from visual elements (e.g., images and

videos) have been explored to detect fake news. Gupta et al. (2013) explored the influence

of fake images on Twitter during disasters and ways to detect them. Jin et al. (2017)

proposed novel visual and statistical image features for microblogs news verification.

Visual features include clarity score, coherence score, similarity distribution histogram,

diversity score, and clustering score. Statistical features include count, image ratio,

multi-image ratio, hot image ratio, long image ratio, etc.

One limitation of adopting visual-based features is the lack of training data.

Constructing a human-labeled fake news dataset is time-consuming and requires a lot

of manpower. Public fake news datasets usually do not contain more than 10,000 news

articles. Most of them do not include any image or video. Therefore, it is even harder

to construct a fake news dataset that contains enough images or videos to train a machine

learning model.

2.2.3 Detecting Fake News via Social Context-Based Features

The interactive attribute of social media enables a variety of social engagements surrounding

a news story. After a news article is released on social media, users can share, comment,

and discuss it with their neighborhood users within an online community. Those social

engagements form the social context of the news article. The abundant amount and

diversity of social context data can provide us with clues about the truthfulness of a

news story. Recently, with the fast development of machine learning and deep learning

techniques, advanced detection models have been developed to predict the truthfulness of
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online news stories based on a variety of social context-based features. We categorize

social context-based features into three broad categories: user-based, post-based, and

network-based.

Adopting Post-Based Features Post-based features can be extracted from a series

of posts, comments, or discussions around the concerned news article. Since user

engagements usually follow a sequence and their timestamps are recorded by social

media platforms, a variety of temporal-based features extracted from time series of social

engagements have been proposed to detect fake news. Ma et al. (2015) proposed

an SVM-based model called SVM-TS that detects fake news based on time-series of

aggregated news characteristics, e.g., percentage of microblogs with URL, percentage of

verified users, etc. However, this type of approach has the same limitation as aggregated

features and is often be unreliable for early detection. User comments are another type

of sequential data. Recent works adopt deep learning techniques such as recurrent neural

network (RNN) to extract temporal-linguistic patterns from sequences of user comments

(Ma et al., 2016; W. Chen, Zhang, Yeo, Lau, & Lee, 2017) to identify rumors. Ma et

al. (2016) proposed an RNN-based model called GRU that detects fake news based on

temporal-linguistic patterns recognized from sequences of user comments. However, user

comments can be very few at the early stage of a news story’s propagation process, which

can significantly degrade the performance of RNN models and easily cause them to overfit.

Adopting Network-Based Features Network-based features can be extracted from the

propagation network of a news article, whose nodes are users who spread the news, edges

are links between those users. Social media users are connected through either directed or

undirected links, such as following and friendship. Thus, when a news story spread through

these links, a propagation network can be observed. Existing studies have investigated

structural features extracted from propagation networks as another type of feature to detect

fake news. Jin et al. (2013) utilized epidemiological models to characterize information
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cascades in Twitter, resulting from both true news and fake news. Wu et al. (2015) proposed

a graph kernel-based SVM-based classifier that learns high-order propagation patterns to

detect fake news. Sampson et al. (2016) utilized implicit linkages between conversation

fragments about a news story to predict its truthfulness. Ma et al. (2017) proposed a graph

kernel-based SVM classifier named PTK that captures high-order patterns differentiating

different types of fake news by evaluating the similarities between their propagation tree

structures. Later, they proposed another deep network named RvNN ((Ma, Gao, &

Wong, 2018)) based on a top-down/bottom-up tree-structured neural networks for rumor

representation learning and classification. Wu et al. (2018) proposed a detection approach

named TraceMiner to represent and classify propagation pathways using LSTM-RNN.

However, detecting fake news based on propagation networks is inefficient because it

usually takes a long time to observe a propagation network large enough to extract useful

structural features.

Adopting User-Based Features User-based features include user characteristics that can

be extracted from user profiles. As a recent study (Shu, Wang, & Liu, 2018) pointed out,

there are some users who are more likely to share fake news, and these users possess

different features from those who are not as likely to share fake news. These findings laid

the foundation of using user profiles for fake news detection. Early studies adopt user-based

features extracted from the user profile of news spreaders to detect fake news. Castillo

et al. (2011) utilized a list of basic user-based features supported by most social media

platforms, e.g., followers count, friends count, registration age, etc., to gauge the credibility

of the information posted by its source user. Besides common user features, Yang et

al. (2012) added some platform-specific user features, e.g., gender, registration place,

etc., to detect rumor on Sina Weibo7, the largest social media site in China. User-based

features can also be categorized across the group level. Group level user-based features

7https://weibo.com
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depict the overall characteristics of a group of news spreaders. Group level features

can be constructed by aggregating individual-level features, e.g., ‘the average number of

followers’ and ‘percentage of varied users’ (Kwon et al., 2013; Ma et al., 2015). Castillo et

al. (2011) proposed a decision tree-based model called DTC to detect fake news based on

aggregated user characteristics, i.e., average registration age and average followers count,

of both source users and news spreaders.

Highly relying on user features of the source user to judge whether a news story is

fake has a significant limitation. That is, fake news producers can mix a few fake news

stories with a bunch of true news stories in order to increase the chance of their fake news

being trusted. When a detection model is trained based on user features of source users

alone, if in a particular training dataset, the news articles released by a particular user are

all true news, then the next time if this user releases a fake news story, the model will

label it as true. Thus, user-based features of source users alone cannot be reliably used

to determine whether a news story is fake. Group level features can discard the diversity

of individual-level features and lose information on individuals who engaged in spreading

fake news. Also, aggregated features become statistically significant only after a number

of news spreaders are observed. Thus, they are often unreliable for early detection.

Adopting Hybrid Features Recently, hybrid models that combine multiple types of

features have been proposed to enhance the performance of fake news detection. A

typical detection model that combines hybrid features is CSI (Ruchansky et al., 2017)

that detects fake news based on a combination of temporal-linguistic features extracted

from user comments and user-based features extracted from social network structure. CSI

consists of three modules, i.e., Capture, Score, and Integrate. The Capture module adopts

long short term memory networks (LSTM) (Gers, Schmidhuber, & Cummins, 1999) to

produce a vector representation of a sequence of user comments under a particular news

story. The Score module produces a credibility score for each user based on its user
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vector representation derived from singular value decomposition (SVD) (De Lathauwer,

De Moor, Vandewalle, & by Higher-Order, 1994) of the entire social network. Then, the

credibility scores of all users who engaged in spreading a news story will be reduced to

one single score that represents the overall credibility of all its spreaders. The Integrate

module integrates the vector representation of user comments and that of news spreaders

and then produce a class label via a neural network based on the integrated vector. Guo et

al. (Guo, Cao, Zhang, Guo, & Li, 2018) proposed a Hierarchical Social Attention Network

that injects social context features into the LSTM model for the retweet text via attention

mechanism. More hybrid detection approaches have been proposed in (Sun, Liu, He, & Du,

2013; Q. Zhang, Zhang, Dong, Xiong, & Cheng, 2015; Zhou et al., 2015; Zubiaga, Aker,

Bontcheva, Liakata, & Procter, 2018; Liang, Yang, & Xu, 2016; Z. Jin, Cao, Guo, Zhang,

& Luo, 2017; Nguyen, Li, & Niederée, 2017). Although these hybrid models achieved

higher detection effectiveness when sufficient data is observed, they are inefficient for early

detection, i.e., some key components are too complex and require long training time. For

instance, as of the second quarter of 2018, Facebook had 2.23 billion monthly active users.

In the CSI model, a real-time SVD of a social network consists of billions of users is

extremely time-consuming thus is not suitable for real-time early detection of fake news.

However, with proper adjustments, these hybrid models will likely produce better results

for fake news early detection.

2.3 Summary

In this chapter, we first present a theoretical background of fake news by discussing several

definitions of fake news proposed in previous studies and then give our own. Then we

differentiate fake news from a series of related terms. Next, we discuss some social science

theories that explain why some people tend to believe fake news on traditional news media

and how social media further enhances fake news spreading. In the second part of this

chapter, we present an overview of existing machine learning-based detection approaches.
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We group existing approaches based on the type of feature they adopt and discuss their

corresponding limitations, respectively. Based on the results of prior research and the scope

of our study, it seems that utilizing user characteristics that are readily available in the user

profiles might be further utilized to create new avenues for early detection of fake news on

social media. In the next chapter, we will report on our comparisons of user characteristics

between fake news spreaders and the rest of the user population.

26



CHAPTER 3

A STUDY ON USER CHARACTERISTICS AND A MACHINE LEARNING

MODEL TO PREDICT A USER’S TENDENCY TO SPREAD FAKE NEWS

User characteristics of news spreaders can be potentially useful in detecting fake news

because they are readily available at the early stage of news propagation. From our

literature review, some studies have adopted user features to detect fake news and yielded

different results. One study (Shu, Wang, & Liu, 2018) further investigates that there are

some specific users who are more likely to trust fake news than real news, and these users

possess different features from those who are more likely to trust real news. In their study, a

subset of user profile features are examined, and a statistical t-test shows that these features

distribute significantly differently between users who share the most real news pieces and

users who share the most fake news pieces in their experimental dataset. Although the

above-mentioned study yields convincing results, it has the following limitations: (1) It

only examines a subset of user profile features instead of a complete set; (2) It does not

differentiate source users, i.e., users who initially post a news piece, from news retweeters.

Due to these limitations in their research, we decided to conduct a more comprehensive

study, including all user characteristics that were available in our datasets and how they

might contribute to predicting users’ fake news spreading behavior.

To comprehensively examine whether user characteristics distribute differently

between fake news spreaders and normal users, in this chapter, we first present our user

study that shows how the user characteristics of fake news spreaders significantly differ

from those of the general user population on social media. Then, we propose a machine

learning model to predict a user’s tendency to spread fake news.
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3.1 Terminologies

In this section, we briefly introduce some basic terminologies used in the context of social

media shown in Table 3.1.

Table 3.1 Terminologies Used in the Context of Social Media

Terminology Explanation

User A person or a computer program who registers on a social media platform.

Follower Another user who follows the concerned user and will automatically receive his/her posts

Friend Another user who is followed by the concerned user.

Post A social media object posted by a user, e.g., a text block, a photo, an video, etc.

Retweet The action of reposting or forwarding a message posted by another user.

User Characteristics A series of features/attributes that describe a user, e.g., the number of followers, the number of friends, etc.

Status A social media post plus the user characteristics of its source user.

Source user A user who initially post a news article on social media.

Spreader Users who retweet a news article.

3.2 Datasets

In this section, we introduce the two experimental datasets we used in our study. To

evaluate the effectiveness of the proposed fake news detection framework, we conducted

comprehensive experiments on two real-world datasets constructed from Twitter and Sina

Weibo, respectively. We directly adopt a public Weibo dataset (Ma et al., 2016), which

consists of 2,351 true news and 2,313 fake news collected during 2015-2016, since it

provides all the information we need, especially user characteristics. We name this dataset

as Weibo16 in this study. We also found a public Twitter dataset (Ma et al., 2017). It

consists of two parts, i.e., Twitter15 and Twitter16, which are constructed based on two

reference datasets collected in 2015 (X. Liu, Nourbakhsh, Li, Fang, & Shah, 2015) and

2016 (Ma et al., 2016), respectively. We slightly modified this Twitter dataset by the

following steps and finally regenerated our own: (1) We removed the tweets labeled as

“unverified” or “true rumor” since they are beyond our research interest; (2) We removed
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the tweets that are no longer accessible now, since we needed to collect their corresponding

features which were not available in the original dataset, for model training; (3) We

eventually discarded the original Twitter16 dataset, because the number of remaining

tweets was too small (309), and we think it is inappropriate to mix tweets collected in 2015

and those collected in 2016 together since they were collected by different approaches

according to the original papers; (4) We developed a crawler to acquire corresponding

user profiles for each of the remaining retweets; (5) We augmented the resultant dataset

which consists of 353 true news and 327 fake news with user features extracted from the

corresponding crawled user profiles and made it publicly-accessible.1 We use the name

Twitter15 to refer to the augmented dataset in this study. Table 3.2 shows some basic

statistics of the two datasets. In addition, we will use these two datasets to evaluate our

proposed fake news detection models in later chapters.

Table 3.2 Statistics of the Experimental Datasets

Statistic Twitter15 Weibo16

# news articles 680 4664

# true news 353 2351

# fake news 327 2313

# source users 277 2309

# retweeters 215,691 2,818,002

3.3 User Characteristics

In this section, we briefly introduce the set of user characteristics that are included in

Twitter and Weibo platforms. Since the Weibo16 dataset already includes user charac-

teristics, we directly adopt a full list of them to construct user features. Those features

include username length, screenname length, personal description length, followers count,

1https://github.com/yl558/Twitter15
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friends count, listed count, attitudes count, favorites count, statuses count, registration

age, “is account verified”, “is GEO enabled”, and gender. We also extract a full list of

user characteristics from Twitter user profiles, most of them also appear in Weibo user

profiles. Thus, here we only list those that are not included in Weibo user profiles, including

favorites count, “has location info.”, “has personal URL”, “are tweets protected” (protected

tweets are privately accessible), “is language English”, “has profile background tile”, “has

profile background image”, and “has default profile”. The detailed explanation of each

user characteristic can be found in the corresponding social media API documents. We

apply log scale (log of 10) on several numerical features entitled with “X counts,” since

those features have a near log-normal distribution. Registration age is measured in hours

and is calculated using the time when a tweet/retweet was posted minus the time when

the corresponding user was registered. Features entitled with “X length” are measured in

character’s level. Boolean features such as “is account verified” are directly transformed

to 0 or 1. Tables 3.3 and 3.4 show a list of user characteristics in Twitter15 and Weibo16

dataset, respectively.

3.4 User Categorization

As a recent study (Shu, Wang, & Liu, 2018) pointed out, there are some users who are

more likely to share fake news, and these users possess different features from those who

are not as likely to share fake news. To examine whether this assumption also holds in

our experimental datasets, we first categorize all the users included in the datasets into

the following categories: (1) Source users are users who initially posted news articles on

social media; (2) Fraudulent source users are source users who have initially posted one

or more fake news articles; (3) Legitimate source users are source users who have never

posted any fake news articles; (4) Retweeters are users who retweeted news articles on

social media; (5) Fraudulent retweeters are retweeters who have retweeted one or more

fake news articles; (6) Legitimate retweeters are retweeters who have never retweeted
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Table 3.3 List of User Characteristics Extracted from Twitter15 User Profiles

No. Feature Type

1 Username length Integer

2 Screenname length Integer

3 Personal description length Integer

4 Followers count Float

5 Friends count Float

6 Listed count Float

7 Favorites count Float

8 Statuses count Float

9 Has location info. Binary

10 Has personal URL Binary

11 Are tweets protected Binary

12 Is account verified Binary

13 Is GEO enabled Binary

14 Is language English Binary

15 Is Contributors Enabled Binary

16 Has profile background tile Binary

17 Has profile background image Binary

18 Has default profile Binary

19 Has default profile image Binary

20 Registration age Integer
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Table 3.4 List of User Characteristics Extracted from Weibo16 User Profiles

No. Feature Type

1 Username length Integer

2 Screenname length Integer

3 Personal description length Integer

4 Followers count Float

5 Friends count Float

6 Attitudes count Float

7 Favorites count Float

8 Statuses count Float

9 Registration age Integer

10 Is account verified Binary

11 Is GEO enabled Binary

12 Gender Binary

13 Has location info. Binary
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any fake news articles. Table 3.5 shows the distribution of these two groups of users in the

two experimental datasets. We also divide all users included in our datasets into two broad

groups: fake news spreaders who had tweeted or retweeted at least one fake news articles,

including fraudulent source users and fraudulent retweeters; fake news ignorants who had

never tweeted or retweeted any fake news article, including legitimate source users and

legitimate retweeters.

Table 3.5 Distribution of User Groups

Twitter15 Weibo16

# Source user 277 2309

# Fraudulent source user 232 1809

# Legitimate source user 45 470

# Retweeter 215,463 2,818,002

# Fraudulent retweeter 81,302 1,622,424

# Legitimate retweeter 134,164 1,195,578

3.5 Hypothesis Testing on the Distribution of User Characteristics

In this section, we conducted hypothesis tests to investigate whether there is a significant

difference between the distribution of each user feature in one specific user group, e.g.,

fake news spreaders or ignorants and that in the entire user population. We categorize all

the social media users into six groups:

Based on the above categorization, fake news spreaders include fraudulent source

users and fraudulent retweeters, fake news ignorants include legitimate source users and

legitimate retweeters. Fake news spreaders and fake news ignorants can be regarded as two

sets of samples taken from the entire user population.

For user features carrying continuous values, we conducted Z-tests. For one

particular user feature, the null hypothesis is that there is no significant difference
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between the mean of this user feature for fake news spreaders (fraudulent source users

and retweeters) / or fake news ignorants (legitimate source users and retweeters) and that

for the entire user population. Z-score is calculated by the following formula:

z =
M − µ
σ/
√
n
, (3.1)

where M is the sample mean, i.e., the mean of one feature among fake news spreaders (or

fake news ignorants), µ is the population mean, i.e., the mean of one feature for the entire

user population, σ is the population variance, n is the sample size. A z-score larger than 1.5

(critical threshold based on a p-value of 0.05) will reject the null hypothesis, i.e., indicating

that there is a significant difference between the mean of the concerned user feature for

fake news spreaders (or ignorants) and those for the entire user population.

Tables 3.6-3.9 shows the results of Z tests. From these tables, we can find that there

is a significant difference between the mean of most user features for fake news spreaders

(or ignorants) and those for the entire user population in both two datasets.

Table 3.6 Results of Z-Test (Twitter15, Source Users)

Feature
Source users Fraudulent source users Legitimate source users

Mean Std. Mean z-score Mean z-score

Username length 12.13 4.93 12.21 0.25 11.71 -0.57

Screenname length 9.94 3.21 10.12 0.82 9.04 -1.88

Personal description length 96.22 45.81 96.74 0.17 93.57 -0.38

Followers count 5.41 1.18 5.23 -2.33 6.35 5.03

Friends count 2.99 0.90 3.01 0.03 2.90 -0.69

Listed count 3.41 0.99 3.23 -2.80 4.36 6.37

Favorites count 3.10 1.06 3.16 0.91 2.77 -2.08

Statuses count 4.65 0.68 4.61 -0.84 4.84 1.91

Registration age 1846.82 869.99 1646.61 -3.50 2879.01 7.95

For user features carrying binary values, we conducted Chi-Square Goodness of Fit

Tests. For one particular user feature, the null hypothesis is that there is no significant
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Table 3.7 Results of Z-Test (Twitter15, Retweeters)

Feature
Retweeters Fraudulent retweeters Legitimate retweeters

Mean Std. Mean z-score Mean z-score

Username length 10.91 5.29 10.64 -14.58 11.08 11.37

Screenname length 10.81 2.59 10.72 -9.99 10.86 7.79

Personal description length 63.27 53.96 62.18 -5.55 63.93 4.48

Followers count 2.63 0.66 2.69 25.33 2.59 -19.75

Friends count 2.69 0.53 2.70 4.53 2.60 -3.53

Listed count 1.39 0.43 1.38 -6.89 1.40 5.37

Favorites count 3.42 0.93 3.36 -15.90 3.45 12.40

Statuses count 3.92 0.82 4.02 36.16 3.85 -28.20

Registration age 1287.63 775.10 1111.68 -64.62 1394.26 50.38

Table 3.8 Results of Z-Test (Weibo16, Source Users)

Feature
Source users Fraudulent source users Legitimate source users

Mean Std. Mean z-score Mean z-score

Username length 5.52 2.36 5.58 0.60 5.39 -1.2

Screenname length 5.52 2.36 5.58 0.60 5.39 -1.2

Personal description length 37.09 29.38 35.66 -2.06 42.66 4.11

Followers count 4.83 1.30 4.55 -8.95 5.90 17.86

Friends count 2.69 0.56 2.73 3.31 2.52 -6.62

Attitudes count 1.45 0.64 1.32 -8.21 1.93 16.37

Favorites count 1.79 0.74 1.77 -1.18 1.87 2.36

Statuses count 3.72 0.78 3.65 -3.77 3.99 7.52

Registration age 724.49 440.36 652.61 -6.94 1005.78 13.84
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Table 3.9 Results of Z-Test (Weibo16, Retweeters)

Feature
Retweeters Fraudulent retweeters Legitimate retweeters

Mean Std. Mean z-score Mean z-score

Username length 6.98 3.07 6.86 -63.19 7.14 73.62

Screenname length 6.98 3.07 6.86 -63.19 7.14 73.62

Personal description length 12.74 18.15 12.73 -0.58 12.76 0.68

Followers count 2.26 0.61 2.40 142.86 2.06 -166.43

Friends count 2.33 0.40 2.38 104.27 2.27 -121.47

Attitudes count 1.00 0.02 1.002 -3.89 1.005 4.53

Favorites count 1.62 0.66 1.66 70.47 1.56 -82.09

Statuses count 2.99 0.67 3.12 222.11 2.80 -258.47

Registration age 776.22 538.75 616.45 -462.13 993.03 534.04

difference between the distribution of this user feature among fake news spreaders (or

ignorants) and that for the entire user population. χ2 score is calculated by the following

formula:

χ2 = Σi
(Ei −Oi)

2

Ei
, (3.2)

where Ei, Oi are the expected counts and observed counts of users in one particular

category. For each binary feature, users can be divided into two categories based on their

feature values. A χ2 score larger than 3.84 (critical threshold based on a p-value of 0.05)

will reject the null hypothesis, i.e., indicating that there is a significant difference between

the distribution of the concerned user feature for fake news spreaders (or ignorants) and

that for the entire user population.

Tables 3.10-3.13 show the results of the Chi-Square Goodness of Fit Tests. From

these tables, we can find that several binary user features distribute significantly differently

between fraudulent source users and the entire source user population, legitimate source

users and the entire source user population. However, most of the binary user features
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distribute significantly differently between fraudulent retweeters and the entire retweeter

population, legitimate retweeters and the entire retweeter population.

Table 3.10 Results of Chi-Square Goodness of Fit Test (Twitter15, Source Users)

Feature
Source users Fraudulent source users Legitimate source users

O1 O2 O1 O2 χ2 O1 O2 χ2

Has location info. 214 63 176 56 0.25 38 7 1.32

Has personal URL 224 53 179 53 2.06 45 0 10.64

Are tweets protected 2 275 2 230 0.06 0 45 0.32

Is account verified 186 91 143 89 3.19 43 2 16.46

Is GEO enabled 141 136 121 111 0.14 20 25 0.75

Is language English 272 5 227 5 0.16 45 0 0.82

Is Contributors Enabled 0 277 0 232 NA 0 45 NA

Has profile background tile 97 180 80 152 0.03 17 28 0.15

Has profile background image 214 63 181 51 0.07 33 12 0.19

Has default profile 30 247 29 203 0.66 1 44 3.45

Has default profile image 0 277 0 232 NA 0 45 NA

From the results of our user feature study, we found that most user features distribute

significantly different across fake news spreaders and the entire user population, as well

as across fake news ignorants and the entire user population. These results indicate that

whether a social media user is a fake news spreader or fake news ignorants can be reflected

from his/her user characteristics. In the next section, we built a machine learning model to

predict whether a user is a fake news spreader based on his/her user characteristics.

3.6 A Machine Learning Model to Predict a User’s Tendency to Spread Fake News

Since we found that most user characteristics distribute significantly differently across fake

news spreaders and fake news ignorants, we then built a machine learning model (a simple

neural network with one hidden layer) to predict whether a user is a fake news spreader

based on his/her user characteristics. Figure 3.1 shows its architecture.
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Table 3.11 Results of Chi-Square Goodness of Fit Test (Twitter15, Retweeters)

Feature
Source users Fraudulent source users Legitimate source users

O1 O2 O1 O2 χ2 O1 O2 χ2

Has location info. 151366 64097 58216 23086 71.22 93150 41014 43.32

Has personal URL 62303 153160 24783 56519 97.09 37520 96644 58.91

Are tweets protected 12244 203219 4882 76420 15.74 7362 126802 9.55

Is account verified 2907 212556 1049 80253 2.12 1858 132306 1.28

Is GEO enabled 121878 93585 48062 33240 215.13 73816 60348 130.58

Is language English 189132 26331 73024 8278 315.05 116108 18056 191.52

Is Contributors Enabled 0 215463 0 81302 NA 0 134164 NA

Has profile background tile 61692 163771 29169 52133 2088.46 32523 101641 1265.95

Has profile background image 184857 30606 71462 9840 294.68 113395 20769 179.11

Has default profile 81423 134040 24026 57276 2347.11 57397 76767 1421.84

Has default profile image 3509 211954 820 80482 195.07 2689 131475 118.19

Table 3.12 Results of Chi-Square Goodness of Fit Test (Weibo16, Source Users)

Feature
Retweeters Fraudulent retweeters Legitimate retweeters

O1 O2 O1 O2 χ2 O1 O2 χ2

Is account verified 999 1310 687 1152 26.15 312 158 102.32

Is GEO enabled 1601 708 1304 535 0.45 297 173 8.35

Gender 828 1481 635 1204 0.32 193 277 5.53

Has location info. 2309 0 1839 0 0 470 0 NA

Table 3.13 Results of Chi-Square Goodness of Fit Test (Weibo16, Retweeters)

Feature
Retweeters Fraudulent retweeters Legitimate retweeters

O1 O2 O1 O2 χ2 O1 O2 χ2

Is account verified 101680 2716322 60559 1561865 72.18 41121 1154457 97.95

Is GEO enabled 2554957 263045 1465097 157327 252.02 1089860 105718 342.007

Gender 1535478 1282524 786947 835477 23425.52 748531 447047 31788.92

Has location info. 2818002 0 1622424 0 NA 1195578 0 NA
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Figure 3.1 A two-layer neural network to predict a user’s tendency to spread fake news.

The proposed model can be formulated as follows:

ŷi = σ
(
W2Relu(W1 · xi + b1) + b2

)
,

where σ(·) is the Sigmoid activation function, Relu(·) is the ReLU activation function,

W1,b1 are the weights and bias of the feature input layer, W2,b2 are the weights and bias

of the hidden layer, xi is the input user feature vector. In this model, we adopt all the

user features in the user profiles that are included in our datasets because of the following

two reasons: (1) Most user features distribute significantly differently across fake news

spreaders and fake news ignorants. Therefore, they are highly discriminative; (2) Our

neural network model can learn to select important features; (3) We have performed manual

feature selection based on the results of hypothesis testing, but it could not improve the

model’s effectiveness compared with using all features. The parameters of our model are

optimized to minimize the training loss.

Table 3.14 shows the performance of the proposed user classification model. From

this table, we can find that our user classification model can predict whether a user is

likely to be a fake news spreader with high accuracy in the three user groups except for

retweeters in the Twitter15 dataset. We think that the main reason for the low classification

effectiveness on retweeters in the Twitter15 dataset is because of the size of this dataset.

Twitter15 dataset includes much fewer retweeters (roughly 10%) than Weibo16 does.
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Table 3.14 Performance of the Proposed User Classification Model

User Group Accuracy Precision Recall F1 score

Source user (Twitter15) 0.91 0.91 0.99 0.95

Retweeter (Twitter15) 0.72 0.68 0.51 0.58

Source user (Weibo16) 0.87 0.88 0.97 0.92

Retweeter (Weibo16) 0.82 0.83 0.87 0.85

3.7 Discussion

The performances of our machine learning model to predict whether a user is likely

to spread fake news are acceptable except for the performance for detecting fake news

retweeters in the Twitter15 dataset. The low performance of the user classification on the

retweeters in the Twitter15 dataset is likely due to the small size of this dataset.

Overall, these results give us several implications on how to build a fake news

detection model that utilizes user characteristics of news spreaders to detect fake news

early:

(1) User characteristics of news spreaders can be potentially useful for fake news

early detection since they are readily available at the early stage of news propagation.

On the contrary, other social context data, such as user comments can be very few at the

early stage of news propagation because users can retweet a news article without posting

any comments. In this case, those detection approaches’ effectiveness will be affected.

However, for those users who retweet a news article without any comments, their user

profiles and user characteristics are already available, which provide an important source

of data for early detection.

(2) The combination of user characteristics with other social context data, e.g., user

comments, might give us more insight into whether a news article is fake than a single

source of social context data alone. For example, a user comment “I believe this is true”

posted by a user who has never spread fake news and the same comment posted by another
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user who has spread some fake news pieces might give us an entirely different clue about

whether the concerned news is fake. Although using user characteristics to predict an

individual user’s tendency to spread fake news did not achieve high effectiveness in all

four user groups in our experiments reported in Section 3.6., we believe that our user

classification model’s performance can be further improved given a larger experimental

dataset. Since fake news is often intentionally spread by a group of malicious users, their

user profiles need to be paid with additional attention in the process of fake news detection

by some approach similar to our user classification model.

(3) User characteristics are harder to be manipulated, thus more reliable for detecting

fake news compared with other social context features. For instance, it is more expensive

for fake news producers to buy a lot of social media accounts with user profiles similar

to normal users’ to spread fake news than simply creating a lot of new accounts to post

comments to their fake news.

Based on these implications, we build several detection models which will be

discussed in the next few chapters.

3.8 Summary

In this chapter, we first explored what user characteristics are included in Twitter and

Weibo platforms. We then investigated their distribution among different user groups and

found that many user characteristics distribute significantly differently across fake news

spreaders and fake news ignorants. Thus, these results gave us an implication that the user

characteristics of the source user and the retweeters of a news article might be used to

predict whether it is fake news, which led to our proposed fake news detection models.
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CHAPTER 4

EARLY DETECTION OF FAKE NEWS ON SOCIAL MEDIA THROUGH

PROPAGATION PATH CLASSIFICATION

From Chapter 3, we know that user characteristics distribute significantly differently among

fake news spreaders and normal users, which provides us a theoretical foundation for

utilizing user characteristics to detect fake news early. Starting in this chapter, we build

fake news detection models that rely on user characteristics of news spreaders. This

chapter introduces the first proposed deep learning-based model named Propagation Path

Classification (PPC). The PPC model combines a recurrent and a convolutional network to

classify propagation paths formed by sequences of news spreaders. The details of the PPC

model will be presented in the remainder of this chapter.

4.1 Problem Statement

Let A = {a1, a2, . . . , a|A|} be a set of news stories, U = {u1, u2, . . . , u|U|} be a set of

social media users. Each user uj ∈ U is associated with a user vector xj ∈ Rd, which

represents the characteristics of the user. We define the propagation path of a given news

object ai as a variable-length multivariate time series P(ai) = 〈. . . , (xj, t), . . . 〉, in which

each tuple (xj, t) denotes that user uj tweets/retweets the news object ai at time t. In this

chapter, we set the time of a source tweet being posted to 0. Thus, t > 0 refers to the

time of a retweet being posted. Each news object ai is associated with a label L(ai) that

reflects its truthfulness. Each label L(ai) ∈ {0, 1}r. When r = 1, L(ai) = 0 denotes the

news object ai is true, and L(ai) = 1 denotes ai is fake. When r > 1, the label L(ai) is

a categorical variable that reflects multiple levels of the truthfulness of the news object ai,

e.g., true, fake, or unverified, etc. Our goal is to design a model f that can predict the label

of a given news object ai based on its propagation path P(ai), i.e., L̂(ai) = f
(
P(ai)

)
.
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Figure 4.1 Architecture of the proposed fake news detection model.

Since we aim to detect fake news as early as possible after it starts to spread, our

model should be able to make predictions based on only a partial propagation path observed

in the early stage of news propagation. We define the partial propagation path of a given

news object ai as P(ai, T ) = 〈(xj, t < T )〉, where T is a detection deadline after which all

the observed data cannot be used in detecting fake news. We call the task of predicting the

truthfulness of news stories given partial propagation paths as early detection of fake news.

In this case, we aim to design a model fT that predicts the label of a given news object ai

based on its partial propagation path, i.e., L̂(ai) = fT
(
P(ai, T )

)
.

4.2 The Proposed Model

The proposed fake news detection model consists of four major components, i.e., propa-

gation path construction and transformation, RNN-based propagation path representation,

CNN-based propagation path representation, and propagation path classification, which

are integrated together to detect fake news at the early stage of its propagation. Figure 4.1

shows the architecture of the proposed model. Next, we will introduce each of the major

components in detail.

4.2.1 Propagation Path Construction and Transformation

Given a news object propagating on social media, we first construct its propagation path

by first identifying the users who engaged in propagating the news. Then, its propagation
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path denoted as a variable-length multivariate time series P(ai) = 〈. . . , (xj, t), . . . 〉 is

constructed by extracting user characteristics from relevant user profiles. After P(ai) is

obtained, we transform it into a fixed-length multivariate sequence, denoted as S(ai) =

〈x1, . . . ,xn〉, where n is the length of the sequence. If there are more than n tuples inP(ai),

then P(ai) will be truncated so that only the first n tuples will appear in S(ai); If P(ai)

contains less than n tuples, then we randomly oversample tuples in P(ai) to ensure the final

length of S(ai) equals n. Figure 4.2 shows the algorithm of transforming a variable-length

multivariate time series into a fixed-length multivariate sequence.

Figure 4.2 Algorithm for transforming a variable-length time series into a fixed-length
sequence
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4.2.2 RNN-Based Propagation Path Representation

We utilize a variant of RNN called Gated Recurrent Unit (GRU) (Chung, Gulcehre, Cho,

& Bengio, 2014) to learn a vector representation for each transformed propagation path,

i.e., S(ai). For the tth user vector in S(ai), i.e., xt, a GRU unit takes as input xt,ht−1 and

produces ht as output according to the following formulas:

zt = σ(Uzxt +Wzht−1)

rt = σ(Urxt +Wrht−1)

h̃t = tanh(Uhxt + ht−1 �Whrt)

ht = (1− zt)� ht−1 + zt � h̃t

(4.1)

where Uz, Ur, Uh ∈ Rm×d,Wz,Wr,Wh ∈ Rm×m are weight matrices, d is the dimension of

the user vector xt, and m is the output dimension of the GRU units. The symbols σ(·) and

tanh(·) denote the element-wise sigmoid and hyperbolic tangent functions, respectively, �

denotes the element-wise vector multiplication operation. h0 = 0. We then apply mean

pooling to reduce the sequence of output vectors 〈h1, . . . ,hn〉 produced by GRU units

into a single vector sR = 1
n

∑n
t=1 ht, which is the final vector representation of S(ai) that

encodes the global variation of user characteristics.

4.2.3 CNN-Based Propagation Path Representation

We also use convolutional networks (CNN) to learn another vector representation for each

S(ai). We first apply a 1-D convolution on h consecutive user vectors, i.e., 〈xt, . . . ,xt+h−1〉

with a filter Wf ∈ Rh×m of height h, to produce a scalar feature ct ∈ R according to the

following formula:

ct = ReLU(Wf ·Xt:t+h−1 + bf ) (4.2)

where Xt:t+h−1 ∈ Rh×m is the matrix whose ith row is xi and bf ∈ R is a bias. The symbol

ReLU(·) refer to the element-wise rectified linear unit function. We perform the same
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convolution operation with k filters to produce a multivariate feature vector ct ∈ Rk. By

repeating the same convolution operations for each window of h consecutive user vectors,

we obtain a sequence of multivariate feature vectors, i.e., 〈c1, . . . , cn−h+1〉. Then, we apply

mean pooling to produce a final vector representation of S(ai), i.e., sC = 1
n

∑n−h+1
t=1 ct that

encodes the local variation of user characteristics.

4.2.4 Propagation Path Classification

After sR ∈ Rm, sC ∈ Rk are obtained through RNNs and CNNs, they are concatenated

into a single vector that represents the transformed propagation path, i.e. s ∈ Rm+k by the

following formula:

s = Concatenate(sR, sC) (4.3)

which is then fed into a multi-layer feedforward neural network that finally predicts the

class label for the corresponding propagation path by the following formulas:

lj = ReLU(Wjlj−1 + bj), ∀j ∈ [q]

z = Softmax(lq)

(4.4)

where q is the number of hidden layers, lj ∈ Rvj is the output of the jth hidden layer

(l0 = s), vj is the output dimension for the jth hidden layer, Wj ∈ Rvj×vj−1 ,bj ∈ Rvj

are the weight matrix and bias for the jth hidden layer, and z ∈ Rr is the final output

that represents the probability distribution over the set of r classes for the corresponding

propagation path. We adopt both RNN and CNN to extract different aspects of latent

features from a propagation path and then combine those features by concatenating the two

intermediate feature vectors produced by them, respectively. This idea is also implemented

in a previous study (Lee & Dernoncourt, 2016) that combines RNN and CNN to classify

short sentences.
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4.3 Experiments

4.3.1 Datasets

We used the same datasets described in Chapter 3 to evaluate our model and the baselines.

However, in this chapter, we also show the results conducted on the Twitter16 dataset

mentioned in Chapter 3.

4.3.2 Baseline Models

We compare our model with a series of baseline fake news detection models as follows:

• DTC (Castillo et al., 2011) A decision-tree-based model that utilizes a combination

of news characteristics.

• SVM-RBF (Yang et al., 2012) An SVM model with RBF kernel that utilize a

combination of news characteristics.

• SVM-TS (Ma et al., 2015) An SVM model that utilizes time-series to model the

variation of news characteristics.

• DTR (Zhao, Resnick, & Mei, 2015) A decision-tree-based ranking method for

detecting fake news through enquiry phrases.

• GRU (Ma et al., 2016) An RNN-based model that learns temporal-linguistic patterns

from user comments.

• RFC (Kwon et al., 2017) A random forest classifier that utilizes user, linguistic and

structure characteristics.

• PTK (Ma et al., 2017) An SVM classifier with a propagation tree kernel that detects

fake news by learning temporal-structure patterns from propagation trees.

We denote our proposed model as “PPC” (Propagation Path Classification), also as

“PPC RNN+CNN”. We also implement two reduced version of the proposed model which

only utilizes RNNs or CNNs alone, denoted as “PPC RNN” and “PPC CNN”, respectively.
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Table 4.1 Model Configuration

Hyperparameter Choice Experimental Range

GRU output dim 32 8 - 64

CNN # filters 32 8 - 64

CNN filter height 3 1 - 10

Dropout rate 0.5 0 - 1

4.3.3 Model Configuration

We implemented our proposed model by using Keras1. The model is trained to minimize

the binary/categorical loss function of predicting the class label of news stories in the

training set. The weights and biases are updated using stochastic gradient descent with the

Adadelta update rule (Zeiler, 2012). Dropout (Srivastava, Hinton, Krizhevsky, Sutskever,

& Salakhutdinov, 2014) is applied to hidden layers above the concatenation layer to avoid

overfitting. We set the number of training epochs to be 200. Early stop is applied when the

validation loss peaks for ten epochs. The network structure and hyperparameters are set

based on the performance of our model on the validation set, which is shown in Table 4.1.

Note that the sequence length n used in Algorithm 1, which is also the number of

source tweets plus the number of retweets we need to observe in a news propagation path

to detect fake news, is explored to investigate both a) the overall optimal effectiveness

and b) effectiveness of early detection of fake news. A longer sequence length might

improve the overall optimal effectiveness of fake news detection since more data will be

observed. However, early detection efficiency will be affected since it requires a longer time

to observe a longer propagation path than a shorter one. On the other hand, a framework

that requires only shorter sequence length improves the efficiency of early detection of

fake news, since it means less amount of data, and thus time too, required to make a

prediction. However, the effectiveness might be affected in this case. Therefore, we

1https://keras.io/
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(a) propagation speed (b) detection speed

Figure 4.3 News propagation speed and fake news detection speed

need to balance the trade-off between optimal detection effectiveness and early detection

effectiveness by choosing the most appropriate sequence length. Figure 4.3 shows the speed

of news propagation on social media and the speed of fake news detection conducted by our

proposed model with both recurrent and convolutional networks. Figure 4.3-(b) shows that

the accuracy of our proposed model in detecting fake news peaks when the required number

of retweets, i.e., the sequence length, is above 40 in the Twitter15 and Twitter16 datasets,

and above 30 in the Weibo dataset, respectively. Figure 4.3-(a) shows that it requires about

5 minutes to observe 40 retweets in the Twitter15 and Twitter16 datasets and 30 retweets

in the Weibo dataset. Therefore, when we observe more than 40 retweets on Twitter and

more than 30 retweets on Weibo, our proposed model can detect fake news with accuracy

around 85% and 92% on Twitter and Weibo, respectively, within five minutes after it starts

to spread. This detection speed is significantly faster than manual fact-checking.

4.3.4 Results

Tables 4.2, 4.3, and 4.4 show the performance of the proposed model and that of the

baseline models in the task of fake news detection on Twitter15, Twitter16, and Weibo

dataset, respectively. For most of the baseline models, their performance peaks when

the detection deadline is above 24 hours. Therefore, to make a fair comparison, we set
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the detection deadline to 24 hours here. We can find that the proposed models, i.e.,

PPC RNN, PPC CNN, and PPC RNN+CNN outperform the baseline models. Among

them, PPC RNN+CNN performs the best. It achieves 84.2%, 86.3%, 92.1% accuracy

on Twitter15, Twitter16, and Weibo dataset, respectively. Based on these results, we

can find that when observing relatively complete propagation paths, the proposed model

outperforms the baseline models slightly in terms of optimal effectiveness.

In the previous studies that introduce the peer models, a detection deadline of 24

hours is considered to be early. However, we aim to detect fake news as early as possible

so that its harmful effects can be minimized. Therefore, we carefully investigate the

performance of all the models in detecting fake news in less than 24 hours after it starts

to spread. Figure 4.4 shows the results of early detection of fake news. Among all the

baseline models, we select three recent ones that have reported results on early detection

of fake news, namely, DTR, GRU, and PTK. DTR and GRU rely on linguistic features

extracted from user comments, while PTK relies on both linguistic and structural features

extracted from propagation trees. We can find that when the detection deadline is less

than 24 hours, the performance of the baseline models decreases significantly, while the

performance of the proposed model is not affected since it only requires the first five

minutes’ data to make accurate predictions. Among the three baseline models, DTR yields

the worst performance, because the number of inquiry posts is usually very small in the

early stage of news propagation. PTK yields better performance than GRU because it

utilizes temporal-structural features besides of temporal-linguistic features.
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Table 4.2 Detection Performances on Twitter15 Dataset When the Detection Deadline is
24 hours (“T”: True News; “F”: Fake News; “U”: Unverified News; “D”: Debunking of
Fake News)

Method Acc.
T F U D

F1 F1 F1 F1

DTC 0.454 0.733 0.355 0.317 0.415

SVM-RBF 0.318 0.455 0.037 0.218 0.225

SVM-TS 0.544 0.796 0.472 0.404 0.483

DTR 0.409 0.501 0.311 0.364 0.473

GRU 0.646 0.792 0.574 0.608 0.592

RFC 0.565 0.810 0.422 0.401 0.543

PTK 0.750 0.804 0.698 0.765 0.733

PPC RNN 0.811 0.759 0.842 0.765 0.787

PPC CNN 0.803 0.737 0.835 0.751 0.775

PPC

RNN+CNN
0.842 0.811 0.875 0.790 0.818
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Table 4.3 Detection Performances on Twitter16 Dataset When the Detection Deadline is
24 hours (“T”: True News; “F”: Fake News; “U”: Unverified News; “D”: Debunking of
Fake News)

Method Acc.
T F U D

F1 F1 F1 F1

DTC 0.465 0.643 0.393 0.419 0.403

SVM-RBF 0.321 0.423 0.085 0.419 0.037

SVM-TS 0.574 0.755 0.420 0.571 0.526

DTR 0.414 0.394 0.273 0.630 0.344

GRU 0.633 0.772 0.489 0.686 0.593

RFC 0.585 0.752 0.415 0.547 0.563

PTK 0.732 0.740 0.709 0.836 0.686

PPC RNN 0.842 0.809 0.865 0.836 0.839

PPC CNN 0.847 0.812 0.871 0.833 0.841

PPC

RNN+CNN
0.863 0.820 0.898 0.837 0.843
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Table 4.4 Detection Performances on Weibo Dataset when the Detection Deadline is 24
hours (“F”: Fake News; “T”: True News)

Method Class Acc. Precision Recall F1

DTC
F

0.831
0.847 0.815 0.831

T 0.815 0.847 0.830

SVM-RBF
F

0.818
0.822 0.812 0.817

T 0.815 0.824 0.819

SVM-TS
F

0.857
0.839 0.885 0.861

T 0.878 0.830 0.857

DTR
F

0.732
0.738 0.715 0.726

T 0.726 0.749 0.737

GRU
F

0.910
0.876 0.956 0.914

T 0.952 0.864 0.906

RFC
F

0.849
0.786 0.959 0.864

T 0.947 0.739 0.830

PPC RNN
F

0.912
0.878 0.958 0.916

T 0.944 0.866 0.908

PPC CNN
F

0.919
0.889 0.958 0.922

T 0.946 0.880 0.916

PPC

RNN+CNN

F
0.921

0.896 0.962 0.923

T 0.949 0.889 0.918

4.3.5 Discussion

As pointed out by a recent study (Kwon et al., 2017), structural and temporal features are

useful for detecting fake news after observing propagation data over a certain amount of

time. However, they are less useful for early detection, since the propagation data is often
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(a) Twitter15 (b) Twitter16 (c) Weibo

Figure 4.4 Results of early detection of fake news.

insufficient in the early stage of news propagation. From the results of our user feature

studies in Chapter 3, we found that user features can, to some extent, indicate whether a

user is a fake news spreader. By contrast, linguistic features are less available than user

characteristics at the very beginning of news propagation, e.g., in the first five minutes.

This is because there are often very few user comments that can be observed shortly after

a news object is posted. Therefore, we assume that our model is more effective on early

detection of fake news than baseline models since it only relies on user characteristics.

Experimental results on three real-world datasets demonstrate that the proposed model

can significantly improve early detection effectiveness while slightly improving optimal

detection effectiveness given sufficient data. We also find that the two reduced models that

only incorporate RNNs or CNNs yield similar accuracy results, which are still higher than

those of baseline models but lower than the accuracy of the complete proposed model

that combines RNNs and CNNs. This demonstrates that both recurrent networks and

convolutional networks can capture the global and local variations of user characteristics,

respectively. However, it is better to combine them to capture both the global and local

variations of user characteristics to achieve the best performance of early detection.

Although the PPC model performs well on early detection, it can be potentially

further improved from the following aspect. When the observed news propagation path
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is extremely short, i.e., very few retweeters are observed, the sequential information

will not be very discriminative in differentiating fake news from true news. In this

case, we can utilize the source users’ characteristics more since, in Chapter 3, our user

classification model performs particularly well on the group of source users. Therefore,

we then proposed an improved deep learning-based model named Social Media Content

Classification (SMCC). The SMCC model incorporates a fake news spreader likelihood

score that models the probability of a source user to spread fake news. This mechanism

significantly improves the early detection performance when very few retweeters are

observed. We will introduce our improved model in the next chapter.

4.4 Summary

In this study, we proposed a novel model for early detection of fake news on social

media through classifying news propagation paths with both recurrent and convolutional

networks. After modeling the new propagation paths as multivariate time series of user

characteristics, we apply recurrent and convolutional networks to capture both global

and local variations of user characteristics along propagation paths to detect fake news.

Experimental results on three real-world datasets demonstrate that our proposed model

outperforms state-of-the-art fake news detection approaches in terms of both effectiveness

and efficiency. Since our model only relies on common user characteristics which are

more available, reliable and robust than complex features such as linguistic or structural

features that are widely used in state-of-the-art baseline approaches, it can detect fake news

significantly faster than state-of-the-art baselines, e.g., in five minutes after the fake news

starts to spread.
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CHAPTER 5

A NOVEL DEEP LEARNING MODEL NAMED SOCIAL MEDIA CONTENT

CLASSIFICATION (SMCC) AND ITS USAGE IN FAKE NEWS EARLY

DETECTION

Compared with common retweeters, source users, i.e., users who initially post a news

article on social media, often play a more critical role in fake news propagation. In

Chapter 3, our user classification model performs particularly well on the group of source

users. Therefore, source users’ user characteristics contain more information about the

truthfulness of a news article than common retweeters’ user characteristics, thus need to be

paid with additional attention in a fake news detection model. In this chapter, we present

the details of the second and improved proposed deep learning model named Social Media

Content Classification (SMCC), which incorporates a fake news spreader likelihood score

to highlight the source user in a news propagation path.

5.1 Preliminaries and Problem Statement

In this section, we first introduce some preliminaries used in this chapter and then revise

the definition of the problem of fake news detection to make it more suitable in the context

of this chapter. We adopt some terminologies on Twitter, such as “tweet” and “retweet”,

to discuss the context of our problem. We use italic lowercase characters (a) for scalar

variables, italic uppercase characters (S) for sets and functions, bold lowercase characters

(x) for vectors, and bold uppercase characters (X) for matrices.

Let A = {a1, a2, . . . , a|A|} be a set of news objects, U = {u1, u2, . . . , u|U |} be a set

of social media users. Each news object ai is first tweeted by a source user S(ai) ∈ U ,

and then be retweeted by a set of retweeters R(ai) = {uj ∈ U} by a certain time point

which we call the “detection deadline”. Each news object ai is associated with a label

L(ai) ∈ {0, 1}, where L(ai) = 0 when ai is true news, and L(ai) = 1 when it is fake news.
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Each user ui is associated with a feature vector xi, which represents the characteristics of

that user. The feature vectors of all users form a feature matrix X. The task of fake news

detection is to predict a label L̂(ai) ∈ {0, 1} for each news object ai ∈ A. To achieve this

goal, we propose a novel tweet classification model called SMCC to detect fake news based

on user characteristics of its source user and retweeters, which is formulated as:

L̂(ai) = F
(
S(ai), R(ai),X

)
.

5.2 The Proposed Model

In this section, we present the details of the proposed SMCC model that is shown in Figure

5.1.

Figure 5.1 Architecture of the proposed SMCC model.

We design this model based on neural networks and deep learning (LeCun et al.,

2015). Note that the SMCC model is not restricted within the domain of fake news

detection. It also provides a general framework of classifying user-generated content on

social media. SMCC is a neural network with four groups of layers, i.e., Input, Embedding,

Integration, and Classification.
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5.2.1 Input

The Input layer group has only one layer that is the input of SMCC, which consists of a

certain number of the vector representations of news spreaders. Given a news object ai, we

first identify its source user S(ai) = us, and its retweetersR(ai) = {u1, u2, . . . , un}. Then,

we represent each user uj ∈ S(ai) ∪ R(ai) as a feature vector xj . The above two steps

can be easily implemented via social media APIs, such as Twitter API1 and Weibo API2.

We construct user feature vectors by extracting a list of user features from user profiles

supported by certain social media platforms. After this vectorization step, the input of the

model will be a set of vectors (xs,x1,x2, . . . ,xn).

5.2.2 Embedding

The Embedding layer group has one or multiple layers. It transforms raw vector

representations of news spreaders into latent (embedding) vector representations. In the

context of machine learning, embedding generally refers to the process of transforming

original vector representations of data instances into latent vector representations, typically

for the purpose of dimension reduction. Embedding is widely used in machine learning

models for natural language processing (Goldberg & Levy, 2014; Levy & Goldberg, 2014),

graph modeling (Yan, Xu, Zhang, & Zhang, 2005), protein analytics (Shi, Liu, Perez, &

Taylor, 2005), etc. We adopted embedding in our SMCC model because of the following

two reasons: (i) Embedding can increase the neural network’s learning ability and its

robustness against noise in raw features; (ii) Embedding guarantees our model’s flexibility.

The types and dimensions of user features might vary across social media platforms. By

transforming variable-length raw user feature vectors into fixed-length embedding vectors,

other modules of our SMCC model do not need to change when being applied to different

social media platforms.

1https://developer.twitter.com
2https://open.weibo.com
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By embedding, each raw feature vector xi is transformed into a latent feature vector

hi by the following formula:

hi = ReLu(Wexi + be),

where We,be are the parameters of the embedding layer, and ReLu denotes the standard

Relu function. After embedding, the input of the model will be transformed into a set of

vectors (hs,h1,h2, . . . ,hn).

5.2.3 Integration

The Integration layer group has one or multiple layers. It integrates all embedding vectors

into one single vector that represents the concerned news being spread. Before being fed to

the classification layer, a set of embedding vectors will be aggregated into one single vector

by the following steps. First, we produce a fake news spreader likelihood score cs ∈ [0, 1]

for each source user by the following formula:

cs = Sigm(Wcxs + bc),

where Wc,bc are the parameters of the fake news spreader likelihood scoring layer, Sigm

denotes the standard Sigmoid function. The fake news spreader likelihood score measures

the prior probability of a source user to produce fake news. It is calculated based on the

characteristics of the source user. The reason to apply a fake news spreader likelihood score

in our model will be discussed below in this section.

Next, we aggregate the embedding vectors of all the retweeters by mean-pooling, i.e.:

h̄ =
1

n

n∑
i=1

hi.

At last, we produce a final aggregated vector h̃ by concatenating the source user’s fake

news spreader likelihood score cs with the aggregated vector h̄ by the following formula:

h̃ = cs‖h̄,
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where ‖ denotes the concatenation operation.

We design the above integration procedure due to the following reasons: (i) Source

users who initially tweet news objects should be treated separately from retweeters.

Compared with retweeters, source users often play a different role in spreading news on

social media and have a different range of user features. For instance, based on the statistics

of our experimental datasets in Chapter 3, we found that on average, a Twitter source

user has 5,400 followers, while a Twitter news spreader has 2600 followers. Thus, in our

SMCC model, we do not aggregate the feature vector of a source user and that of retweeters

together. (ii) Source users can, to some extent, reflect the truthfulness of its news but should

not dominate the model’s output. The reason is that some malicious fake news producers

mix a small amount of fake news with a large amount of true news to make their fake news

harder to be distinguished. If the output of our model is mainly determined by the source

users’ characteristics, then it will be difficult for our model to detect fake news posted by the

special type of fake news producers mentioned above. To address this issue, in our SMCC

model, we first produce a fake news spreader likelihood score, which can be regarded as

a prior probability of a news object tweeted by a certain user to be fake. It is intuitive to

assume that if a user has a history of tweeting fake news objects, then the next news object

he/she tweeted will have a higher prior probability of being fake. Recall in Chapter 3, we

have shown that a user’s tendency to spread fake news can be predicted based on his/her

user characteristics. Thus, the fake news spreader likelihood score is an integration of that

user model in Chapter 3 with the fake news classification model proposed in this chapter.

However, the truthfulness of a news object is still mainly dependent on its retweeters since

the source user’s fake news spreader likelihood score only accounts for one element in

the final aggregated vector. (iii) The output of the SMCC model should be robust enough

against malicious manipulation. It is easy to edit a source user’s profile or let a user who

never tweeted fake news to tweet fake news once. However, it is much harder to control

who will retweet a piece of fake news. When the number of news spreaders accumulates,
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it will be even harder to cheat our model by manipulating retweeters, since after a news

object is posted, all users who read it can quickly retweet it.

5.2.4 Classification

The Classification layer group has one or multiple layers. It outputs a binary label that

indicates whether the concerned news being spread is fake. Given the aggregated vector

h̃, our model first fed it to a hidden layer, then produces the output label by the following

formulas:

h̃′ = ReLu(Whh̃ + bh),

y(ai) = Sigm(Woh̃
′ + bo),

where h̃′ is the intermediate vector produced by the hidden layer, Wh,bh are the

parameters of the hidden layer, Wo,bo is the parameters of the output layer, and y is the

output label.

The loss function of training the proposed SMCC model is formulated as:

L = − 1

|A|

|A|∑
i=1

(
L(ai) log y(ai) + (1− L(ai)) log(1− y(ai))

)
+ λ‖Θ‖2,

where Θ = {We,be,Wc,bc,Wh,bh,Wo,bo} denotes all the parameters of the model

and λ is a regularization factor.

5.3 Experiments and Results

5.3.1 Dataset

We still used the datasets introduced in Chapter 3 to evaluate our proposed model’s and the

baselines’ detection effectiveness.
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5.3.2 Baseline Approaches

We compared our proposed SMCC model with a series of baseline models discussed in

Chapter 2, including:

• DTC ((Castillo et al., 2011)) A decision tree model that detects fake news based on

aggregated news characteristics.

• SVM-TS ((Ma et al., 2015)) An SVM model that detects fake news based on time-

series of aggregated news characteristics.

• GRU ((Ma et al., 2016)) An RNN model that detects fake news based on temporal-

linguistic patterns recognized from sequences of user comments.

• PTK ((Ma et al., 2017)) An SVM model with a tree kernel that detects fake news

based on structural patterns of news’ propagation trees.

• CSI ((Ruchansky et al., 2017)) A hybrid deep learning model that detects fake news

based on features extracted from news content, source user, and user comments.

We also evaluated a reduced version of SMCC, named SMCC-R, which does not take the

source user into account.

5.3.3 Evaluation Metrics

To quantifiably evaluate the effectiveness of fake news detection approaches, we adopt

several widely-used standard metrics for classification problems, i.e., Accuracy, Precision,

Recall, and F1 Score. Regarding fake news detection as a binary classification problem,

those metrics can be calculated based on the following notations and formulas:

• True Positive (TP): a fake news object is predicted as fake;

• True Negative (TN): a true news object is predicted as true;

• False Negative (FN): a fake news object is predicted as true;
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• False Positive (FP): a true news object is predicted as fake.

Precision =
|TP |

|TP |+ |FP |

Recall =
|TP |

|TP |+ |FN |

F1 =
2 ∗ |TP |

2 ∗ |TP |+ |FP |+ |FN |

Accuracy =
|TP |+ |TN |

|TP |+ |TN |+ |FP |+ |FN |

5.3.4 Model Setup

We implemented the proposed SMCC model using Keras3, which is a Python wrapper of

TensorFlow4. The model is trained and tested using five-fold cross-validation. At each

round of cross-validation, we randomly split the entire dataset into five folds of equal size.

We keep three folds as the training set, one fold as the validation set, and the remaining one

fold as the testing set. Then, the model is trained for 1000 epochs to minimize its training

loss. Weights and bias are updated using stochastic gradient descent with the Adadelta

update rule (Zeiler, 2012). Dropout (Srivastava et al., 2014) is applied to each hidden layer

of the model to avoid overfitting. We also applied zero-padding5 to handle news objects that

have fewer retweeters than the number of spreaders required by an SMCC model. We adopt

a file logger to keep track of the best model, which yields the highest classification accuracy

on the validation set after each epoch during the entire training process. Finally, the best

3https://keras.io/
4https://www.tensorflow.org/
5http://www.bitweenie.com/listings/fft-zero-padding/
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model acquired after the 1000 epochs is applied to the testing set for model testing. Before

formal cross-validation, we perform 20 rounds of pre-training to empirically configure the

model’s hyperparameters based on the model’s accuracy on the validation set. The model

configurations are show in Table 5.1. After configuring the model, we formally performed

5-fold cross-validation for 50 rounds and recorded the average performance metrics yielded

on the testing set as the evaluation results.

Table 5.1 Model Configurations

Hyperparameter Choice Experimental Range

Number of embedding layers 1 1− 5

Number of hidden layers 1 1− 5

Embedding layer size 27 23 − 210

Hidden layer size 25 23 − 210

Dropout rate 0.1 0 - 1

Regularization factor (λ) 0.01 0-0.1

Learning rate 0.001 0.0001 - 0.02

For the early detection of fake news, it is important to know how long it takes for

a detection approach to identify a piece of fake news after it starts to spread. Thus, a

detection deadline must be involved to evaluate a model’s performance on early detection.

A detection deadline can be measured either by absolute time or by the number of news

spreaders. We first measured detection deadline by the number of news spreaders, since

it can be directly implemented in our SMCC model. In Twitter, news spreaders refer to

“retweeters”, i.e., users who “retweet” a news object. Weibo has a similar news forwarding

mechanism as Twitter. Therefore, in the two experimental datasets, we set the number

of news spreaders to be the number of observed retweeters. We varied the number of

retweeters from 10 to 150 with an interval of 10 to train multiple models. For example, if
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the number of retweeters is set to 10, then we only use the first ten retweeters’ information

to train and test the model.

Next, we measured the detection deadline by absolute time. When a detection

deadline reaches, the number of observed retweeters can be different for each news. Thus,

in this scenario, we did not train multiple models again. Instead, we used the models

trained when we measure the detection deadline by the number of retweeters and directly

applied them to the testing set. Given a news object and a detection deadline, we applied the

pre-trained model with a number of required spreaders that were less than but the closest

to the observed number of retweeters to make a prediction. For example, if a news object

had 25 retweeters observed by a detection deadline of 15 minutes, then we applied a model

trained with 20 retweeters to make a prediction. For each detection deadline, we performed

50 rounds of 5-fold cross-validation and reported the average performance of the best model

on the test set.

5.3.5 Results

Training Performance Figures 5.2-(a) and 5.2-(b) show the learning curves of the

proposed model on the two experimental datasets at a random round of cross-validation,

respectively. We find that the validation loss is very close to the training loss on both two

datasets, which demonstrates that there exists no overfitting or underfitting in our model.

Comparison of Optimal Performance During our experimentation, we found that most

detection approaches’ performance peaks after observing more than 150 retweeters. Thus,

we first compare their optimal performance by setting the detection deadline to be 150

retweeters. Table 5.2 shows the comparison of optimal detection effectiveness on both the

Twitter15 and the Weibo16 datasets when the detection deadline is fixed at 150 retweeters.

From Table 5.2, we can find the following results: (i) Among the baseline models,

CSI performs the best. GRU and PTK perform a little bit worse than CSI. DTC and SVM-

TS perform the worst; (ii) Compared with the best baseline model CSI, the proposed SMCC
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(a) Learning curve on Twitter15 (b) Learning curve on Weibo16

Figure 5.2 Learning curves on the two experimental datasets.

Table 5.2 Comparison of Optimal Performance

Approach
Twitter15 Weibo16

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

DTC 0.765 0.782 0.748 0.764 0.825 0.803 0.841 0.823

SVM-TS 0.808 0.796 0.815 0.807 0.867 0.842 0.877 0.867

GRU 0.915 0.901 0.923 0.915 0.921 0.906 0.945 0.921

PTK 0.911 0.896 0.917 0.910 0.914 0.909 0.938 0.915

CSI 0.925 0.934 0.910 0.923 0.934 0.906 0.947 0.932

SMCC-R 0.980 0.978 0.983 0.979 0.934 0.917 0.959 0.936

SMCC 0.980 0.978 0.983 0.979 0.934 0.917 0.959 0.936
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model performs significantly better on the Twitter15 dataset but only slightly better on the

Weibo16 dataset; (iii) The reduced model SMCC-R has the same optimal performance

as SMCC, which will be discussed later; (iii) Among the four effectiveness metrics, the

proposed SMCC model performs the best at recall, which we think is the most important

effectiveness measurement for the task of fake news detection. In real-world social media

platforms, fake news detected by our approach can be sent to social media administrators

who can decide how to deal with them. Thus, it is more acceptable to receive more alerts

of potential fake news that are actually true, than potentially letting through real fake news.

That is the reason why recall is the most important metric. Besides recall, we also provide

F-measure that also takes precision into consideration.

Comparison of Early Detection Performance Figures 5.3 and 5.4 show the comparison

of early detection performance on the Twitter15 and the Weibo16 datasets, respectively

when detection deadline is measured by the number of retweeters. Figures 5.5 and 5.6

show the comparison of early detection performance on the two datasets, respectively

when detection deadline is measured by the absolute time. Figure 5.7 shows the

average propagation speed of news objects on social media calculated based on our two

experimental datasets.

From those figures we can find the following results: (i) For all the seven models,

their performance peaks when the detection deadline is approaching 150 retweeters or 90

minutes; (ii) At the early beginning of news’s propagation period, i.e., when the detection

deadline is ten retweeters or five minutes, the baseline detection approaches all have a

low performance while the proposed SMCC and SMCC-R have a high performance; (iii)

The performance difference between the proposed models and the baseline models is larger

when the detection deadline is shorter; (iv) The performance difference between SMCC and

SMCC-R is also larger when the detection deadline is shorter. But this difference is much

smaller than the performance difference between the proposed models and the baseline
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(a) Accuracy (b) Precision

(c) Recall (d) F1 Score

Figure 5.3 Comparison of early detection performance on Twitter15 when detection
deadline is measured by the number of retweeters.

68



(a) Accuracy (b) Precision

(c) Recall (d) F1 Score

Figure 5.4 Comparison of early detection performance on Weibo16 when detection
deadline is measured by the number of retweeters.
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(a) Accuracy (b) Precision

(c) Recall (d) F1 Score

Figure 5.5 Comparison of early detection performance on Twitter15 when detection
deadline is measured by the absolute time.
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(a) Accuracy (b) Precision

(c) Recall (d) F1 Score

Figure 5.6 Comparison of early detection performance on Weibo16 when detection
deadline is measured by the absolute time.

Figure 5.7 Average propagation speed of news objects on social media.
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models. These results show that the output of the SMCC model is primarily determined

by retweeters, and source users can increase its performance slightly when only very few

retweeters are observed; (v) The early detection performances are consistent when the

detection deadline is measured by both the number of retweeters or by the absolute time

based on the average propagation speed data; (vi) These results demonstrate that SMCC

outperforms baseline models significantly on fake news early detection.

Analysis of the Relationship between Fake News Spreader Likelihood Score and Fake

News Tweeting Behavior Note that in Section 5.2.3, we produce a fake news spreader

likelihood score for each source user. The proposed fake news spreader likelihood score

is not applied on retweeters because, in Chapter 3, our user classification model did not

perform very well on retweeters compared with on source users. To further justify its

usefulness, we conducted an analysis of the relationship, fake news spreader likelihood

scores, and source users’ fake news tweeting behavior.

Table 5.3 shows the result of the analysis. We can find that the average fake news

spreader likelihood score of source users who have tweeted fake news is significantly larger

than that of source users who never tweeted fake news. Moreover, users who have tweeted

fake news more than once have a larger average fake news spreader likelihood score than

users who have tweeted fake news only once. These results show that there exists a strong

relationship between a source user’s fake news spreader likelihood score and the number

of fake news he/she has tweeted. That is, the higher a source user’s fake news spreader

likelihood score is, the more likely and more often, the source user will spread fake news.

Recall that in Section 5.2.3, we assume that the fake news spreader likelihood score is

the prior probability that a news object tweeted by a particular source user is fake. The

results of our correlation analysis confirm our assumption. Compared with the user model

we proposed to predict whether a user is a fake news spreader in Chapter 3, we can find

that the average fake news likelihood scores of source users who have posted only one fake
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Table 5.3 Analysis of the Relationship Between Fake News Spreader Likelihood Score
and Fake News Tweeting Behavior

Twitter15

# Fake news 327

# Source user 277

# Fake news tweeted # Source user Avg. fake news spreader likelihood score

0 45 0.109

1 189 0.786

> 1 43 0.983

Weibo16

# Fake news 2313

# Source user 2309

# Fake news tweeted # Source user Avg. fake news spreader likelihood score

0 470 0.102

1 1583 0.751

> 1 256 0.965
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news (0.78 in Twitter15 and 0.75 in Weibo16) are lower than the accuracy of the user model

(0.91 in Twitter15 and 0.87 in Weibo16), however, the average fake news likelihood scores

of source users who have posted more than one fake news (0.98 in Twitter15 and 0.96 in

Weibo16) are higher than the accuracy of the user model. This result shows that source

users who post fake news frequently are more informative for detecting fake news.

Discussion on the Effect of Missing User Profiles on the Experimental Results Recall

that we slightly modified the original Twitter dataset by discarding users whose user profile

is no longer available from original propagation paths. In this section, we discuss whether

this operation will introduce any bias in our experimental results. Table 5.4 shows the

statistics of news spreaders whose user profile is unavailable in the original Twitter15

dataset, from which we constructed our Twitter15 dataset. We can find that there is only

a small percentage of spreaders (< 4.5%) whose user profile is unavailable, both at the

aggerated level and per news level. Furthermore, this percentage does not significantly

differ between fake news and true news, and between the aggerated level and per news

level. Thus, by discarding those users from the original propagation paths, we neither

significantly reduced the size of the original dataset nor changed the relative percentages

of fake news spreaders vs. non-fake news spreaders in our modified dataset. Thus, for

the baselines, irrespective of whether the original or the new dataset was used, their

performances should not result in significant differences. For our framework, using the

modified dataset was a necessity since the original dataset did not contain user profiles.

However, we do not believe our framework gained any advantage by using the modified

dataset. Finally, we directly implemented all the baseline approaches using our modified

dataset to make a fair comparison. Therefore, it is not likely to introduce any biased

comparison results by using the modified dataset.
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Table 5.4 Statistics of News Spreaders whose Profile is Unavailable in the Original Twitter
Dataset

Fake News True News

Avg. number of spreaders per news 282.54 511.69

Avg. number of spreaders whose profile is unavailable per news 11.66 22.77

Avg. percentage of spreaders whose profile is unavailable per news 4.05% 4.37%

Total number of spreaders 92,391 180,627

Total number of spreaders whose profile is unavailable 3,813 7,861

Percentage of spreaders whose profile is unavailable 4.13% 4.35%

5.3.6 Discussion

In this section, we further interpret the experimental results from the perspective of

methodology and discuss the advantages of SMCC over baseline models in terms of

scalability, flexibility, and security. For a fake news detection approach, scalability

measures how well it can handle massive and growing amounts of social media data;

flexibility measures how easily it can be implemented on different social media platforms

without major changes; security measures how strongly it can defend malicious attacks.

Among all the baseline models, DTC yielded the lowest performance because of

the following reasons: (1) It adopts 15 hand-crafted features, most of which are in

an aggregated level, e.g., average registration age and average followers count among

retweeters. However, directly using aggregated features will lose information about

individual retweeters; (2) Those 15 hand-crafted features cannot cover a wide range of

user characteristics; (3) The aggregated features only become stable, given a relatively

large number of retweeters. However, they often fluctuate significantly when very few

retweeters are observed. For instance, the average registration age of the first ten and first

20 retweeters of the same news object may be significantly different. Thus, the training

data may contain large noise for an early detection model. (4) DTC uses decision tree as its

machine learning algorithm, of which the learning ability often cannot catch up with that of
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deep learning models, which are the most widely-used machine learning models nowadays.

The basic methodology of SVM-TS is similar to that of DTC. It outperforms DTC because

of the following reasons: (1) It extracts a time series of aggregated user features instead of

static ones, which capture the dynamically aggregated user features within a time period;

(2) SVM model has a better discriminative ability than decision tree, and it is less sensitive

to dimensionality. SVM-TS still has the same four limitations of DTC. Especially, when

the observed number of retweeters is small, time series of aggregated user features fluctuate

more seriously. However, our SMCC model does not suffer from this problem since it

aggregates a series of user features by mean-pooling.

Compared with DTC and SVM-TS, our SMCC model has the following advantages:

(1) SMCC uses a comprehensive set of user features extracted from social media user

profiles as input features, and only discards very few features that are extremely skewed; (2)

Before aggregating user features, SMCC first transforms them into embedding vectors to

reduce the amount of information loss; (3) SMCC produces a fake news spreader likelihood

score of source users, which influences the model’s output more significantly when the

number of retweeters is very small. (4) SMCC model is less sensitive to the exact retweet

sequence. The above two mechanisms reduce the impact of random noises when only

a very small number of observed retweeters during an early stage of news’s propagation

period is observed, thus allowing the model to produce reliable outputs. (5) SMCC adopts

a deep learning-based machine learning algorithm, which has a stronger discriminative

ability than traditional algorithms.

GRU and PTK rely on latent and complex features extracted from the social

engagements surrounding news objects to detect fake news. GRU extracts temporal

patterns from sequences of user comments. PTK extracts structural patterns from retweet

networks. Although these two approaches yield a good performance when the detection

deadline is long, their performances drop the fastest when the detection deadline is short or

very few tweets. The reason is that when a news object starts to spread, and only very few
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retweets are observed, there are often very few user comments, and the retweet network

is quite simple. Therefore, temporal patterns and structural patterns have not formed yet.

Our SMCC model does not rely on those complex features that are often inadequate for the

early detection of fake news. In addition, GRU is prone to malicious attack, since it is easy

for fake news producers to create several fake user comments shortly after they post fake

news. Our SMCC model has a significant advantage in security compared with GRU. It

relies on user characteristics that are more difficult to be manipulated than user comments.

Moreover, when the number of retweeters grows large, the integrated embedding vector

will be much more difficult to be manipulated.

CSI is a hybrid deep learning model that integrates linguistic patterns extracted

from retweet text content and user features extracted from social networks. It yields

the best effectiveness and efficiency among the baseline models. However, compared

with our SMCC model, it has the following limitations: (1) The insufficient retweet

text content degrades its performance for early detection; (2) The user features used in

CSI are constructed based on SVD decomposition of social networks instead of being

extracted from user profiles. This feature extraction mechanism does not fully utilize

user characteristics already available from user profiles and is not scalable since it is very

difficult to acquire and maintain a large social network and to perform SVD decomposition

over very large networks. Compared with CSI, SMCC has major advantages on scalability

and flexibility. It only requires low-level user characteristics that can be directly extracted

from user profiles for model training. Moreover, its model structure is not so complex

compared with very deep models like CSI. Thus, the SMCC model can be trained on a

large volume of real-world data much more efficiently. In addition, SMCC can be easily

implemented across multiple social media platforms without any major change. It only

needs to extract different user characteristics that are supported by the underlying social

media platforms.
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5.3.7 Summary

In this chapter, we propose a novel machine learning model named Social Media Content

Classification (SMCC) to classify social media content based on spreaders’ characteristics,

for the purpose of fake news early detection. Compared with the PPC model proposed

in Chapter 3, SMCC is insensitive to retweet sequence; thus, it yields more robust

performance when the retweet sequence is short at an early stage of news’ propagation.

Compared with PPC, SMCC is more suitable for Twitter-like platforms where a full

propagation path is unavailable to observe.

78



CHAPTER 6

EARLY DETECTION OF FAKE NEWS ON SOCIAL MEDIA VIA

STATUS-SENSITIVE CROWD RESPONSES

User characteristics combined with other social context data such as retweet text might

encapsulate more useful patterns that can be used to differentiate fake news from true news

compared with user characteristics or retweet text alone. Also, some specific retweet text

posted by some specific users at some specific ranking positions of a retweet sequence

might be more discriminative at identifying fake news. Thus it needs to be highlighted in

some way. Thus, in this chapter, we propose our third proposed detection model named

FNED that further improves our first two models by addressing the above issues.

6.1 Methodology

In this section, we first introduce some preliminaries used in the social media environment.

Then, we formally define the problem of fake news early detection. Next, we present our

proposed fake news detection model in detail.

6.1.1 Preliminaries and Problem Statement

In this section, we first introduce some preliminaries and then formally define the problem

of fake news early detection. We adopt some terminologies on Twitter, such as “tweet” and

“retweet”, to discuss the context of our problem. We use italic lowercase characters (a)

for scalar variables, italic uppercase characters (A) for sets and functions, bold lowercase

characters (x) for vectors, and bold uppercase characters (X) for matrices.

Let A = {a1, a2, . . . , a|A|} be a set of news articles, each of which is associated with

a label yi ∈ {0, 1}, where yi = 0 when ai is true news, and yi = 1 when it is fake news.

When a news article ai is posted on social media, usually it will be responded by a number

of social media users. We define the crowd response of a news article ai as a sequence of

79



individual user responses, denoted as R(ai) =
(
(u0, r0, t0), (u1, r1, t1), . . . , (un, rn, tn)

)
.

Each tuple (uk, rk, tk) ∈ R(ai) represents the k-th crowd response. That is, user uk

responds to the news with the response text rk at time tk. Without losing generalizability,

let (u0, r0, t0) be the first crowd response to a news article or a news event. In this case, r0

might be the news content if u0 originally composed the news article or a user comment

plus the news content or the link of the original news article if the news article is migrated

from other websites. We also call the user u0 as the source user of the news article.

Next, we define the status of user uk at time tk as S(uk, tk). The status of a social

media user includes the user’s characteristics and activity history observed at a certain time

point. It is usually maintained in the form of user profile on a social media platform. Given

the definition of user status, we extendR(ai) to let it be the status-sensitive crowd responses

of ai, denoted as:

R(ai) =
(
(u0, S(u0, t0), r0, t0), (u1, S(u1, t1), r1, t1), . . . , (un, S(un, tn), rn, tn)

)
.

In the early stage of news propagation, the number of crowd responses is usually

limited. Thus, we formulate the task of fake news early detection as detecting fake news

based on the first k crowd responses, where k is a detection deadline. Here we measure

detection deadline by the number of crowd responses instead of absolute time because of

the following two reasons: (1) The number of crowd responses can be directly incorporated

into the machine learning model as a parameter. (2) A detection deadline measured by

absolute time can be easily transformed to that measured by the number of crowd responses

via proper padding schema. We define R(ai, k) as the first k status sensitive crowd

responses of ai, denoted as: R(ai, k) =
(
(u0, S(u0, t0), r0, t0), . . . , (uk, S(uk, tk), rk, tk)

)
.

Then, the task of fake news early detection is to find a model H that predicts a label

L̂(ai) ∈ {0, 1} for each news article ai ∈ A based on its first k status-sensitive crowd

responses, which is formally defined as:

ŷ(ai) = H
(
R(ai, k)

)
.
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6.1.2 Model Overview

Our proposed fake news detection model has three major components: a Status-Sensitive

Crowd Response Feature Extractor (shown in Figure 6.3), a CNN-based News Classifier

(shown in Figure 6.4), and a PU-Learning Framework (shown in Figure 6.5).

Given a news article posted on social media, our detection model first collects its

status-sensitive crowd responses, each of which is a combination of a piece of text response

and a user profile of the user who sends the response. Next, a status-sensitive crowd

response feature extractor extracts both texts, and user features from status-sensitive crowd

responses, and then concatenate them to form a feature map that represents the news article.

Then, a CNN-based news classifier is applied to produce a class label based on the extracted

status-sensitive crowd response feature map. A PU-Learning framework is also utilized to

enhance the performance of our detection model given unlabeled and imbalanced training

data. We name our proposed detection model as FNED (Fake News Early Detection).

Figure 6.1 shows the flowchart of our proposed detection model.

Figure 6.1 Flowchart of our proposed fake news early detection model.

6.1.3 Status-Sensitive Crowd Response Feature Extractor

Figure 6.2 visualizes the status-sensitive crowd responses to a given news article. Given

a news article posted on social media, a sequence of its crowd responses, e.g., retweets

or comments, are observed. In some cases, the first crowd response consists of a news

title followed by a URL. Each crowd response is associated with a user profile of the user
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who sends this response. The combination of a crowd response with its corresponding user

profile forms a Status-Sensitive Crowd Response.

Figure 6.2 Status-Sensitive Crowd Responses to a given news article.

For each status sensitive crowd response (uj, S(uj, tj), rj, tj) ∈ R(ai, k), a text

feature vector cj ∈ Rd1 is extracted from the response text rj via a basic Text-CNN block

(Y. Wang et al., 2018), and a user feature vector uj ∈ Rd2 is extracted from the user status

S(uj, tj) via an embedding block. The user status S(uj, tj) is recorded in the user profile.

Next, cj and uj are concatenated to form a status-sensitive crowd response feature vector:

rj = cj ⊕ uj,

where rj ∈ Rd, d = d1 + d2 and ⊕ is the concatenation operator. Here d1,d2, and d are the

dimensions of the text, user, and the concatenated status-sensitive crowd response feature

vector, respectively. Then, the first k status-sensitive crowd response feature vectors are

concatenated to form a feature map that represents the news article ai:

Ri,k = r1 ⊕ r2 ⊕ · · · ⊕ rk,
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where Ri,k ∈ Rd×k. The architecture of the proposed Status-Sensitive Crowd Response

Feature Extractor is shown in Figure 6.3.

Figure 6.3 Architecture of the Status-Sensitive Crowd Responses Feature Extractor.

6.1.4 CNN-based News Classifier

The output of the Status-Sensitive Crowd Responses Feature Extractor is a feature map

that consists of a sequence of k concatenation of text and user features. Our proposed

CNN-based News Classifier utilizes basic convolution networks (CNNs) and two novel

mechanisms proposed by ourselves, i.e., Position-Aware Attention Mechanism and Multi-

Region Mean-Pooling, to produce a news label from this feature map. Figure 6.4 shows the

architecture of CNN-based news classifier.

Position-aware Attention Mechanism Given a sequence of status-sensitive crowd

responses, it is intuitive to assume that not all of them have the same ability to discriminate

true and fake news. Some special text response generated by some special type of user

in some special ranking position may reflect the truthfulness of a concerned news article
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Figure 6.4 Architecture of the CNN-based News Classifier.

more significantly, thus should be somehow highlighted in the entire propagation path.

Thus, our detection model should be able to learn how much attention should be put over

each status-sensitive crowd response. We propose a Position-aware Attention Mechanism,

which is an extension of the basic Attention Mechanism (Mnih, Heess, Graves, et al., 2014;

Bahdanau, Cho, & Bengio, 2014), to solve this problem.

For each status-sensitive crowd response feature vector rj(1 ≤ j ≤ k), its attention

weight and transformed vector is calculated as follows:

r′j = rj ⊕ (j/k),

Fw(r′j) = Relu(WT
ajr
′
j + baj),

αj =
exp(Fw(r′j))

Σk exp(Fw(r′j))
,

r′′j = αjrj,

where (j/k) is the relative ranking position of the j-th status-sensitive crowd response,

r′j is the concatenation of the j-th status-sensitive crowd response feature vector with its
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relative ranking position, Fw is an attention score function with weights Wa and bias

ba, αj is the normalized attention weight of the j-th status-sensitive crowd response via

a softmax function, r′′j is the transformed status-sensitive crowd response feature vector

after our Position-aware Attention Mechanism. The difference between our proposed

position-aware attention mechanism and the basic attention mechanism is that in the

position-aware attention mechanism, the ranking position of each data point is considered.

The difference between our proposed position-aware attention mechanism and the basic

attention mechanism is that in the position-aware attention mechanism, the ranking position

of each data point in a sequence of data points is considered, whereas the basic attention

mechanism does not take this information into consideration. Therefore, our proposed

position-aware attention mechanism can be used to classify sequential data where the

ranking positions of data points are important.

Convolution Network Given the dimension of the transformed feature map R′′i,k as d×k,

a convolution network with kernel size d × h and number of filters l is applied to extract

intermediate features. In detail, each convolutional filter with window size d× h takes the

contigious h status-sensitive crowd response feature vectors as the input and outputs one

scalar feature:

sj = Relu(Wc · R′′i,j:j+h−1 + bc),

where Wc,bc are the weights and bias of the convolutional filter. We perform the same

convolution operation with l filters to produce a feature vector sj ∈ R′′l. By repeating

the same convolution operations for each window of h consecutive status-sensitive crowd

response feature vectors, we obtain a sequence of intermediate feature vectors:

s = [s1, s2, . . . , sk−h+1].

Multi-Region Mean Pooling Next, we propose a novel mean pooling mechanism named

Multi-Region Mean Pooling to extract aggregated features from the feature map. Instead of

85



one-time mean pooling over all the k − h + 1 feature vectors, m mean pooling operations

are performed, each over the first k−h+1
2m−1 feature vectors:

s̄m = Σ
k−h+1

2m−1

j=1 sj/
k − h+ 1

2m−1
.

We propose this unique mean-pooling mechanism because of the following reasons: (1)

Multi-Region Mean-Pooling can capture different granularities of aggregated features from

the entire feature map, while the basic mean-pooling can only calculate one overall average;

(2) If the real available number of crowd responses is less than k, zero padding is required.

If the feature map R′′i,k contains too many zero vectors, then after convolution operations,

the intermediate feature vectors will contain too many zero vectors (if bc = 0) or bias

vectors (bc). Thus, the basic mean-pooling approach will cause information loss from the

non-zero intermediate feature vectors because they will be averaged together with lots of

zero vectors or bias vectors. However, our proposed Multi-Region Mean Pooling approach

does not suffer from this problem because, in several small regions, only the non-zero

intermediate feature vectors will be averaged. After mean pooling, m intermediate feature

vectors are flattened and then concatenated into one single intermediate feature vector:

fi,k = s1 ⊕ s2 ⊕ · · · ⊕ sm.

News Classification Finally, a multi-layer perceptron (MLP) block that consists of

multiple fully-connected layers is adopted to produce a class label for the news article

ai, simply denoted as:

ŷ(ai) = softmax(Relu(Wm · fi,k + bm)),

where Wm,bm are the weights and bias of the MLP block.
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6.1.5 Optimization

We denote our CNN-based news classifier as H(·; θ), where θ denotes all the included

parameters. Let Y be the set of news labels. We adopt the cross entropy function to

measure the detection loss:

L(θ, k) = −E(ai,yi)∼(A,Y )[yi logH(R(ai, k)) + (1− yi) log(1−H(R(ai, k)))].

Given the detection deadline k, the optimization goal is to find the optimal θ that minimize

the detection loss:

θ̂ = arg min
θ
L(θ, k).

The optimization can be solved by stochastic gradient descent-based optimization approaches.

6.1.6 The PU-Learning Framework

Figure 6.5 shows the architecture of our proposed PU-Learning framework. It is adopted

when our proposed CNN-based news classifier is trained only with positive (fake news in

our context) and unlabeled news samples, in order to best mimic the real-world scenario.

In the PU-Learning framework, the training data includes a collection of positive (fake)

news samples (P ), and a collection of unlabeled news samples (U ) whose truthfulness are

supposed to be unknown. The size of positive news samples is supposed to be smaller

than the size of unlabeled news samples, i.e., |P | < |U |. And among the unlabeled news

samples, the size of positive unlabeled (real fake) news samples (PU ) is supposed to be

smaller than the size of negative unlabeled (true) news samples (NU ), i.e., |PU | < |NU |,

and |PU |+ |NU | = |U |. To create a balanced dataset for training a binary news classifier,

we first conduct undersampling over the unlabeled news samples. A collection of pseudo-

true news samples (N ′) is randomly selected from unlabeled news samples (U ) whose size

is the same as the size of positive news samples, i.e., |N ′| = |P |. Then, we train an

instance of our proposed news classification model on the combination of the pseudo-true
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news samples and the positive news samples (N ′ ∪ P ). During the model training process,

we regard pseudo-true news samples as true news samples. The result of the model training

process is a weak classifier. We repeat this undersampling and model training process for k

times. Then, k weak classifiers are produced. Next, we ensemble those k weak classifiers

by simply averaging their outputs to generate a strong classifier. Then, we use this strong

classifier to classify the unlabeled news samples (U ). The top n unlabeled news samples

that are classified as fake consist of a collection of machine labeled fake news samples (P ′).

Next, we append the machine labeled fake news samples to the real fake news samples

to update the collection of real fake news samples, i.e., P ⇐ P + P ′. The procedure

of undersampling, weak classifier training, ensemble classification, and positive sample

updating is repeated over a number of times until the accuracy of the strong classifier on a

validation dataset peaks. The parameters of our proposed PU-Learning framework are the

number of weak classifiers per iteration (k), and the number of machine-labeled fake news

samples produced per iteration (n).

Figure 6.5 Architecture of our proposed PU-Learning framework.
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6.2 Experiments & Results

6.2.1 Dataset

We used the datasets described in Chapter 3 to evaluate our proposed model’s and the

baselines’ detection effectiveness.

6.2.2 Baseline Approaches

We compared our proposed fake news early detection model (FNED) with a series of

baseline models, including:

• DTC ((Castillo et al., 2011)) A decision tree model that detects fake news based on

aggregated news characteristics.

• SVM-TS ((Ma et al., 2015)) An SVM model that detects fake news based on time-

series of aggregated news characteristics.

• GRU ((Ma et al., 2016)) An RNN model that detects fake news based on temporal-

linguistic patterns recognized from sequences of user comments.

• CSI ((Ruchansky et al., 2017)) A hybrid deep learning model that detects fake news

based on features extracted from news content, source user, and user comments.

• BLSTM ((Guo et al., 2018)) A hierarchical social attention network for rumor

detection.

• PPC ((Y. Liu & Wu, 2018)) An RNN+CNN model to detect fake news early based

on news propagation path represented by a sequence of user features.

• RvNN ((Ma et al., 2018)) A deep network model based on top-down tree-structured

neural networks for rumor representation learning and classification. We didn’t

implement the bottom-up version since its performance is lower.
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6.2.3 Experimental Setup

We implemented the proposed model using Keras1, which is a Python wrapper of

TensorFlow2. When preprocessing the text responses, English characters in the Twitter15

dataset is tokenized using the NLTK toolkit3, Chinese characters in the Weibo16 dataset

is tokenized using an open-source Chinese tokenizer4. The model was trained and tested

using 5-fold cross-validation. At each round of cross-validation, we randomly split the

entire dataset into five equal-sized folds. We kept three folds as the training set, one fold as

the validation set, and the remaining one fold as the testing set. Then, the model was

trained for 1000 epochs to minimize its training loss. Weights and bias were updated

using stochastic gradient descent with the Adadelta update rule (Zeiler, 2012). Dropout

(Srivastava et al., 2014) was applied to each hidden layer of the model to avoid overfitting.

Before conducting formal cross-validation, we performed 20 rounds of pre-training to

configure the model’s hyper-parameters based on the model’s accuracy on the validation

set. Table 6.1 presents a list of hyper-parameters of our proposed FNED model as well

as their experimental ranges. After configuring the model, we formally performed 5-fold

cross-validation for 50 rounds and reported the average performance metrics yielded on

the testing set as the evaluation results. We adopt standard effectiveness metrics, including

accuracy, precision, recall, and F1 score, to evaluate all the models. And we measured

the detection deadline both by the number of retweets, i.e., the first k-th crowd responses,

and by propagation time. When propagation time was used as the detection deadline, we

calculated the average number of crowd responses observed before the detection deadline

as the model parameter k. Zero-padding5 was applied to handle news articles that have

fewer than k crowd responses. In the PU-Learning setting, we trained 50 weak classifiers

per iteration and appended the top 5% of the unlabeled news samples that are classified as

1https://keras.io/
2https://www.tensorflow.org/
3https://www.nltk.org/
4https://www.npmjs.com/package/chinese-tokenizer
5http://www.bitweenie.com/listings/fft-zero-padding/
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fake news by the strong classifier with the highest confidence score to the real fake news

collection at each iteration. We trained and evaluated our proposed model under multiple

combinations of the class balance ratio, i.e., |P |/|P + N |, and positive label ratio, i.e.,

|PL|/|P |, to mimic its performance in real-world scenarios.

Table 6.1 Hyper-Parameters of the Proposed FNED Model

Hyper-Parameter Value Experimental Range

The dimension of the text feature d1 27 25 − 210

The dimension of the user feature d2 27 25 − 210

Convolution window height h 5 1− 20

Number of multi-region mean-pooling operations m 5 1− 10

Overall dropout rate 0.15 0− 0.5

The number of weak classifiers per iteration k 10 1− 50

The number of machine labeled fake news samples produced per iteration n 5 1− 20

6.2.4 Results

Training Performance Figure 6.6 shows the learning curves of the proposed model on

the two experimental datasets at a random round of cross-validation, respectively. We

find that the validation loss is very close to the training loss on both two datasets, which

demonstrates that there exists no overfitting or underfitting in our model.

Comparison of Optimal Performance Through our experiments, we found that our

detection model’s performance peaks after observing more than 150 retweets. Thus, we

first compare their optimal performance by setting the detection deadline to be the first 150

retweets, i.e., k = 150. Table 6.2 shows the comparison of optimal detection effectiveness.

From Table 6.2 we can find that our proposed FNED model outperforms the baseline

models in terms of each evaluation metric, especially in the recall of the fake news.
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(a) Learning curve on Twitter15. (b) Learning curve on Weibo16.

Figure 6.6 Learning curves on the two experimental datasets.

Table 6.2 Comparison of Optimal Performance when k = 150

Approach
Twitter15 Weibo16

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

DTC 0.765 0.782 0.748 0.764 0.825 0.803 0.841 0.823

SVM-TS 0.808 0.796 0.815 0.807 0.867 0.842 0.877 0.867

GRU 0.915 0.901 0.923 0.915 0.921 0.906 0.945 0.921

CSI 0.925 0.934 0.910 0.923 0.934 0.906 0.947 0.932

BLSTM 0.831 0.868 0.810 0.836 0.924 0.919 0.928 0.925

PPC 0.932 0.919 0.937 0.920 0.931 0.925 0.938 0.932

RvNN 0.912 0.894 0.916 0.913 0.919 0.910 0.932 0.915

FNED 0.985 0.979 0.983 0.980 0.938 0.929 0.952 0.942
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Comparison of Early Detection Performance Figures 6.7 - 6.10 show the comparison

of early detection performance on the two experimental datasets when detection deadline

is measured by the number of retweets and the propagation time, respectively. Figure 6.11

shows the average propagation speed of news articles on social media calculated based

on our two experimental datasets. From these figures, we can find that our proposed

model outperforms the baselines significantly in terms of early detection on all metrics.

And this performance difference is more significant when the detection deadline is shorter.

Also, the evaluations of early detection performance using different detection deadlines are

consistent based on the average propagation speed of news articles on social media.

(a) (b)

(c) (d)

Figure 6.7 Early detection performance comparison on Twitter15 when detection deadline
is measured by the number of retweets.

Ablation Study We also evaluate several simplified variations of our proposed model,

each of which has one key component removed. We conduct this ablation study in order to
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(a) (b)

(c) (d)

Figure 6.8 Early detection performance comparison on Weibo16 when detection deadline
is measured by the number of retweets.
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(a) (b)

(c) (d)

Figure 6.9 Early detection performance comparison on Twitter15 when detection deadline
is measured by the propagation time.
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(a) (b)

(c) (d)

Figure 6.10 Early detection performance comparison on Weibo16 when detection
deadline is measured by the propagation time.

Figure 6.11 Average propagation speed of news articles on social media.
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investigate the impact of each key component of our proposed model that we proposed in

this study. Below is a list of reduced internal models:

• FNED-UF: User features extracted from user profiles are removed. Only text features

are used to model crowd responses.

• FNED-TF: Text features extracted from the response text are removed. Only user

features are used to model crowd responses.

• FNED-PAAM: Position-aware attention mechanism is removed. All crowd responses

are treated identically.

• FNED-MRMP: Multi-region mean-pooling is replaced with the basic global average-

pooling.

• FNED: The full model.

Table 6.3 shows the comparison of the optimal performance of the reduced internal models

and the full model. From the results, we can find that if one key component is removed,

our proposed model’s performance will drop. Among the four key components, user

features affect the detection accuracy most significantly, while text feature affects it most

insignificantly. These results demonstrate that all proposed features in the FNED model

contribute to its effective early detection.

6.2.5 Performance of PU-Learning

In this section, we report our proposed model’s and the baseline models’ performance

under the PU-Learning scenario, i.e., when training data is imbalanced and not fully

labeled. Figures 6.12 and Figure 6.13 show the results. From these figures, We can find

that when the class-distribution is more balanced and more positive labeled news samples

are available, our models and the baselines’ detection accuracy increases. Among all the

models, our proposed model still performs the best. Compared with Table 6.2 which
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Table 6.3 Comparison of Optimal Performance of the Reduced Internal Models and the
Full Model

Approach
Twitter15 Weibo16

Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

FNED-UF 0.905 0.892 0.913 0.901 0.889 0.862 0.913 0.905

FNED-TF 0.962 0.958 0.963 0.961 0.921 0.914 0.927 0.923

FNED-PAAM 0.952 0.943 0.976 0.953 0.915 0.907 0.931 0.918

FNED-MRMP 0.932 0.914 0.946 0.933 0.921 0.911 0.942 0.915

FNED 0.985 0.979 0.983 0.980 0.938 0.929 0.952 0.942

shows the optimal detection performances, we can find that when the class balance ratio

(P/(P +N)) is 20% and the positive label ratio (PL/P ) is 50%, our proposed model can

yield a similar accuracy as the model trained using the complete dataset. However, only

10% of the labeled fake news samples in the original datasets are used for training our

model. Thus, it proves our model’s effectiveness under PU-Learning settings.

(a) (b)

Figure 6.12 Performance of PU-Learning on Twitter15 dataset.

6.2.6 Discussion

In this section, we further discuss our experimental results to explain why our proposed

model outperforms the baselines, as well as the implications of our proposed fake news

detection model and its key components.
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(a) (b)

Figure 6.13 Performance of PU-Learning on Weibo16 dataset.

As we can see from our user feature study, the user characteristics of fake news

spreaders distribute significantly differently from those of the general user population on

social media. We also built a simple neural network model to predict whether a social

media user is likely to spread fake news based on his/her user characteristics. The model’s

prediction accuracy is high except on the Twitter15 dataset, which does not include a large

number of retweeters. Based on the above findings, we assume that user characteristics

of news spreaders can be utilized to detect fake news. Thus, we combine users’ text

response to a news article with their corresponding user profiles to generate status-sensitive

crowd responses. Status-sensitive crowd responses can give us more information about

the truthfulness of a news article than text response only. For example, the text response

“I believe this is true” generated by a user who has never spread fake news and the same

comment generated by another user who have spread some fake news pieces might give us

an entirely different clue about whether the concerned news is fake. Our user classification

model can predict whether a user is likely to spread fake news with an acceptable accuracy

in most cases. We also believe its performance can be improved given larger datasets.

The rich information contained in the user characteristics of news spreaders has not been

fully utilized by existing approaches yet. Many existing approaches model the crowd

response to a news article by textual and linguistic features, e.g., GRU (Ma et al., 2016).
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Although recent approaches (T. Chen et al., 2017; Ruchansky et al., 2017; Guo et al.,

2018) incorporate user features, they treat them independently with text responses instead

of combining them together, as our proposed model does. Compared with the baselines, our

proposed model fully utilizes the information encoded in status-sensitive crowd responses

to detect fake news. That is one reason why our model outperforms the baselines.

Early detection of fake news is of critical importance. Although many existing

approaches have decent performances when a large amount of data is observed, their early

detection performance is low and thus will be of marginal use in the real world. The reason

is that at the early stage of fake news propagation, the data required by these models is

usually insufficient. For instance, the baseline model RvNN (Ma et al., 2018) detects fake

news based on a recursive neural representation of the news propagation tree. However,

at the early stage of news propagation, the structure of the propagation tree is usually

very simple, e.g., only one root node with several child nodes. It is difficult to identify

significant differences between the propagation tree structure of fake news and that of true

news. Another example is the baseline mode GRU (Ma et al., 2016). It adopts recurrent

neural networks to learn linguist patterns from a sequence of users’ response text to a

news article to identify fake news. However, users may retweet a news article without

any response text to it. At the early stage of news propagation, users’ response text is

often insufficient. This affects this model’s early detection performance. Compared with

the baselines, our proposed model can fully utilize the data observed at the early stage of

news propagation, which is a sequence of status-sensitive crowd responses. Therefore, our

proposed model outperforms the baselines significantly in fake news early detection. The

results of PU-Learning also indicate our model’s robust performance when training data is

imbalanced and not fully-labeled.

To effectively learn hidden patterns from a sequence of status-sensitive crowd

responses that can be used to detect fake news, we propose two novel deep learning

mechanisms in our CNN-based model, i.e., position-aware attention mechanism and
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multi-region mean-pooling. A news article usually receives a number of status-sensitive

crowd responses, but not all of them have the same ability to differentiate fake news from

true news. Therefore, our detection model is designed to pay more attention to those

status-sensitive crowd responses that can reflect the truthfulness of the news article more

significantly. Compared with the basic attention mechanism, our proposed position-aware

attention mechanism takes the ranking position of each status-sensitive crowd response

into consideration. Ranking position is important when modeling users’ response to a

news article. Some specific response generated by some specific user at some specific

ranking position might give us an important clue as to whether a concerned news article

is fake. However, the basic attention mechanism without the position information cannot

learn this pattern. Another novel deep learning mechanism we proposed is multi-region

mean-pooling. Compared with the basic mean-pooling, it can extract aggregated features

from a feature map in multiple-granularity. To detect fake news early, it is necessary

to model early status-sensitive crowd responses differently from the late ones. Our

multi-region mean-pooling mechanism gradually calculates an average of the first several

hidden representations of the status-sensitive crowd responses, i.e., first 5, 10, 15, ...,

to achieve this purpose. Another advantage of multi-region mean-pooling is that it can

handle missing data better. Assume that a model is trained based on sequences of

50 status-sensitive crowd responses. When it is applied to classify a sequence of 10

status-sensitive crowd responses, zero-padding is applied to extend the length of this

sequence. In this case, the basic mean-pooling will average the feature vectors learned by

CNN with lots of zeros. This will cause some information loss. Our proposed multi-region

mean-pooling does not suffer from this problem because the first ten feature vectors learned

by CNN will be averaged separately from the later 40 vectors. Our ablation study proves the

effectiveness of our proposed novel position-aware attention mechanism and multi-region

mean-pooling.
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The advantages of our proposed FNED model compared with baseline models

indicate promising potential for our model to be implemented in real-world social media

platforms for fake news early detection. It can be applied on social media sites as a filter

to automatically label potential fake news articles. Then, the labeled articles can be sent

to social media administrators who will decide how to handle them. Beyond the task of

fake news detection, our proposed position-aware attention mechanism and multi-region

mean-pooling provide a solution to model sequential data in other machine learning tasks

where the ranking position of each data point is important.

6.3 Summary

In this chapter, we propose a novel deep neural network to detect fake news early. Our

experimental results demonstrate that status-sensitive crowd response, i.e., a user response

to a news article combined with user characteristics, is more useful for fake news early

detection than a user response alone. Our proposed detection model includes two novel

deep learning mechanisms that facilitate early detection, i.e., position-aware attention

mechanism and multi-region mean-pooling. We also demonstrate that PU-Learning can

be utilized for fake news early detection based on mainly-unlabeled and imbalanced

training data. The advantages of our proposed FNED model compared with baseline

models indicate a promising potential for our model to be implemented in real-world

social media platforms for fake news early detection. It can be applied on social

media sites as a filter to automatically label potential fake news articles. Then, the

labeled articles can be sent to social media administrators who will decide how to handle

them afterwards. In addition, our proposed Position-Aware Attention Mechanism and

Multi-Region Mean-Pooling mechanism provide novel solutions to model sequential data

where time and ranking positions are important in deep learning.
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CHAPTER 7

LIMITATIONS, DISCUSSIONS, CONTRIBUTIONS, FUTURE STUDIES, AND

SUMMARY

In this chapter, we first discuss the limitations of our current research framework. Second,

we discuss several overall key aspects regarding our entire research framework Next, we

summarize the contributions of our research. Then, we propose our future research plan.

Finally, we summarize our research.

7.1 Limitations

In this section, we will discuss the limitations of the proposed detection approach.

• Small Data Size One problem with the experimental datasets is that their size is

small. Both the Weibo and Twitter dataset we used is relatively small (includes

no more than 10,000 fake news samples). Small datasets can potentially cause the

problem of overfitting in a machine learning task. There are public datasets for fake

news detection that are larger than our experimental datasets, e.g., FakeNewsNet

(Shu, Mahudeswaran, Wang, Lee, & Liu, 2018). However, they are not suitable for

our study because of the following reason. In our research, we propose machine

learning models to detect fake news based on user characteristics of news spreaders.

Our models require that each user response to a news article is a direct retweet of the

original post of the concerned news article. However, not all of the user responses

collected in the FakeNewsNet dataset satisfy this requirement. In the FakeNewsNet

dataset, the user responses of a news article are collected by searching all tweets that

contain the keywords in the news title instead of by gathering direct retweets. Those

collected user responses are not guaranteed as direct retweets to the concerned news

article; furthermore, not all retweets of a concerned new article were collected by
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their approach. Therefore, FakeNewsNet dataset is not suitable for our study. Many

other datasets have the same issue as FakeNewsNet thus are also not suitable either.

• Data Incompleteness Another problem with the experimental datasets is data

incompleteness: a small portion of user accounts have been suspended by Twitter.

In this case, their user profiles are no longer available. All data associated with these

user accounts had to be removed. Thus, in our experiments, we were not able to

model those users in news propagation paths, and also this resulted in even smaller

than the original datasets, which might affect our models’ detection effectiveness.

If our detection models are implemented in real-world social media platforms, this

limitation can be easily addressed since they have all the suspended users’ data in the

backend database.

• Data Availability Another limitation of this research is data availability. In this

research, we only adopt user characteristics in user profiles to model source users

and retweeters. However, users can be better modeled by adopting more relevant

information, such as social connections and activity history. However, these data

is not fully accessible by the public. For example, Twitter API can only crawl a

collection of the most recent 200 tweets and retweets posted by a user. Therefore,

this user’s previous tweets are not accessible.

Note that the limitation of data incompleteness and data availability only exist in

our experimental scenarios. For real-world social media platforms, they have full data.

Therefore, if social media administrators decide to implement our model on their social

media platform using full data and expand our model by incorporating user activity history,

they will not have the issue of data incompleteness and data availability.
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7.2 Discussions

In this section, we discuss several issues and implications for our proposed fake news early

detection framework in this dissertation.

• Applicability The first unique feature of our proposed fake news early detection

framework is that it is content-independent. Our models do not rely on news content

to detect fake news. Thus, it is applicable to detect fake news in any format, e.g., a

picture, a video, or a URL link with a short text description, as long as it is spread on

a social media platform where user profiles of news spreaders are available.

• Effectiveness on Early Detection Early detection of fake news is of critical

importance. If a detection model can only detect fake news after observing a large

amount of data, it will be of marginal use in the real world, since at this moment, fake

news has already been widely spread. Compared with existing detection approaches,

our proposed detection framework is significantly more effective in the task of early

detection mainly because of the following reasons: (1) We extract useful features

from user characteristics of news spreaders to differentiate fake news from true news.

User characteristics of news spreaders are much more available at the early stage

of news propagation compared with other features utilized by existing approaches

such as response text or propagation network. (2) We propose several novel deep

learning mechanisms and incorporate them into our detection model to better extract

features and learn patterns from user characteristics of news spreaders, including

fake news likelihood score, position-aware attention mechanism, and multi-region

mean-pooling.

• Efficiency Compared with most existing detection approaches, our proposed framework

is more efficient. Our models do not depend on complex features that require a long

time to calculate, e.g., graph decomposition of a social network (Ruchansky et al.,

2017). Our deep models’ structure is also not so complex. It does not require long

105



training time. Our proposed models can be trained off-line and run in real time for

early detection. Training data only needs to be updated periodically.

• Utility The proposed fake news early detection framework can be easily implemented

in social media sites as a backend administrative tool. Detection models can be

trained off-line. When a news article is posted, a pre-trained detection model will

be applied to estimate its probability to be fake news. All the detected potential fake

news articles can then be sent to social media administrators for verification. They

will then decide how to handle verified fake news articles. Since our proposed fake

news early detection framework is content-independent, it performs the first step in

combating fake news, i.e., “fake news early detection”. It is used to detect whether a

news article is potentially fake as a whole. However, it can not tell which part of the

news article is fake and why it is fake, which is the second step in combating fake

news, i.e., “fake news verification”.

In addition, our user model is also useful for detecting potential fake news spreaders.

Although its performances were not high in one of the four experimental datasets, we

still believe its performance can be further improved, given a larger dataset and more

fine-tuning. In that case, it can then be implemented in real-world applications. A

social media platform can attach a label to each user’s profile that indicates whether

this user is likely to spread fake news. For those users who are identified as potential

fake news spreaders, their future behavior needs to be paid with additional attention.

For instance, news articles posted by those users will have a higher priority to be sent

to our fake news detection model.

The outcomes and findings of the proposed research can also be applied to related

research topics and other more general theoretical research problems. In our FNED

model, we proposed two novel deep learning mechanisms, i.e., position-aware

attention mechanism and multi-region mean-pooling. These two novel mechanisms
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can be used to improve the classification of time-series data, where the ranking

position of each data point is important.

• Security and Robustness Compared with existing detection approaches, our proposed

detection framework is more robust against possible attacks because user profiles are

more difficult to be manipulated. For example, many existing approaches detect

fake news based on user comments. As a consequence, a fake news producer can

easily post fake comments under the fake news articles he/she posts to cheat this

kind of detection models. However, our proposed detection framework relies on user

characteristics of news spreaders as a main source of data to detect fake news. If a

fake news producer aims to cheat our models, then he/she needs to maintain a lot

of user profiles that look normal to spread fake news. These profiles need to have

a certain number of followers and followees, tweets and retweets, and interactions

with other normal users instead of fake accounts. This process is both expensive

and time-consuming. However, our proposed models might still be attacked if the

attacker spends a large amount of money and time. This issue is beyond the scope of

our current study.

7.3 Contributions

The major contributions of this research are summarized as follows:

• We are the first to systematically focus on improving the effectiveness of fake news

early detection based on insufficient data.

• We demonstrated that many social media user characteristics distribute significantly

differently across fake news spreaders and fake news ignorants (normal users).

• We demonstrated that by combining users’ response text with user characteristics as

status-sensitive crowd response, we could detect fake news more effectively than by

utilizing user response or user characteristics alone.
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• We demonstrated that by incorporating a user classification model to predict users’

tendency to spread fake news (through the proposed fake news spreader likelihood

score), our proposed fake news detection model could yield better performance.

• We demonstrated that when a news article just starts to spread, its truthfulness can

be predicted based on its source user; after a news article has been retweeted many

times, retweeters’ user characteristics can be used to conduct more robust prediction

on its truthfulness.

• We propose a novel deep learning model to detect fake news early based on

a sequence of status-sensitive crowd responses. The model includes a novel

position-aware attention mechanism that can learn to highlight key status-sensitive

crowd responses at key ranking positions, and a novel multi-region mean-pooling

mechanism that can conduct feature aggregation from multiple timeframes of the

propagation path.

• We are the first to adopt PU-Learning in the problem of fake news detection to solve

the issue of unlabeled and imbalanced distributed data.

7.4 Future Plans

In this section, we will introduce our future research plan, which might further improve the

proposed detection approach by addressing the limitations discussed previously.

7.4.1 Adopting Dynamic User Profiling to Utilize Users’ Historical Behaviors

We plan to adopt a dynamic user profiling mechanism (shown in Figure 7.1) to utilize users’

historical behaviors, in order to further improve the proposed detection approach.

To generate a dynamic user profile for a specific user, we first retrieve his/her user

profile and a certain number of his/her historical tweets. We do not retrieve all historical

tweets because different user has a different number of historical tweets. Our model should
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Figure 7.1 Proposed dynamic user profiling mechanism.

have a fixed parameter, i.e., the number of historical tweets. And this parameter will be

tuned during the model’s training process. Then, we extract user characteristics from

the retrieved user profile. In the meanwhile, we use detection approach to classify each

retrieved historical tweet. Then, their class labels (“true” or “fake”) will be merged with

the extracted user characteristics to generate a dynamic user profile.

Based on dynamic user profiling, the input of a detection model will be the news

spreaders’ dynamic user profiles instead of static user characteristics. Note that the

detection model is used in the proposed dynamic user profiling mechanism. Thus, with

the dynamic user profiling mechanism, the modified detection approach will be an iterative

system.

7.5 Summary

In this dissertation, we proposed a research framework for fake news early detection on

social media. Through our literature review, we found that existing machine learning-based

detection approaches have a major limitation on the efficiency of early detection. They rely

on either content or social context features that are usually insufficient at the early stage of

news propagation.

To solve this problem, we first investigated what features are readily available at the

early stage of news propagation and can also be utilized to detect fake news. We found

that on social media, user characteristics of news spreaders are readily available at the

early stage of news propagation since each user has a user profile, which includes his/her
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user characteristics. And those user profiles can be directly accessed via social media

APIs. Next, we investigated whether the user characteristics of news spreaders can tell

us the truthfulness of the concerned news article. Before investigating this question, we

first investigated whether there exists a significant difference between the distribution of

user characteristics of fake news spreaders and that of the general user population. If this

significant difference indeed exists, then it will be possible to utilize user characteristics of

news spreaders to detect fake news, since a fake news story often has several intentional

spreaders, who often ranked top in its propagation path. We conducted hypothesis tests

on the distributions of both continuous and binary user characteristics in our experimental

datasets. The results demonstrated that there is indeed a significant difference between the

user characteristics of fake news spreaders and that of the general user population (as well

as the user characteristics of fake news ignorants and that of the general user population).

Based on this finding, we further proposed a machine learning model to predict whether

a user is s fake news spreader based on his/her user characteristics. The model yielded

an acceptable performance. The results of our user feature study implied us to propose

a machine learning model to detect fake news based on the user characteristics of its

spreaders, which lead to our next researches on detection models.

After a news article is posted on social media, there will usually be a number of

users who retweet it. The source user and each of its retweeters can be characterized by

his/her user characteristics, in the form of a feature vector. Thus, a news propagation

path can be constructed as a sequence of vectors. Since we formulate the problem of

fake news detection as a binary classification problem, a machine learning model to

classify sequences of vectors is required. Based on our literature review, we found that

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are both

suitable for this task. Thus, we combine them together in our first proposed fake news

detection model named Propagation Path Classification (PPC). We evaluated the proposed

PPC model and compared it with several baselines. The experimental results showed
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that our PPC model outperforms the baselines on the task of fake news early detection.

The main reason is that compared with text content or social context features utilized by

the baselines, user characteristics are more readily available at the early stage of news

propagation. Thus, our proposed detection model does not suffer from insufficient data

observed at this stage. However, we still found two limitations of the first proposed PPC

model. First, it simply treated source users and retweeters identically while not taking the

difference of their roles in news propagation into consideration. Second, the PPC model is

too sensitive to the exact retweet paths, which can be unstable because of network delays

in real-world applications. Thus, we then proposed a second detection model to address

these two limitations.

In our second detection model named Social Media Content Classification (SMCC),

we first proposed a fake news spreader likelihood score as its intermediate output. This

score incorporates the machine learning model to predict a user’s tendency to spread fake

news that was proposed in our user feature study (Chapter 3). Our experimental results

showed that this fake news spreader likelihood score could improve the effectiveness of

the SMCC model when the observed retweeters are very few. The SMCC model also has

an embedding and integration mechanism that make it less sensitive to the exact retweet

sequences. The experimental results showed that our SMCC model outperforms those

baselines that are very sensitive to the exact retweet sequences. However, our SMCC model

also has several limitations. First, it does not take users’ response text to a news story into

consideration. Second, it can not handle the problem of unlabeled and imbalanced data.

To further address the two limitations of our proposed SMCC model, we proposed

our third detection model named Fake News Early Detection (FNED). It combines

users’ response text to a news story with their user characteristics to generate status

sensitive crowd responses. The proposed FNED model has three major components:

a Status-Sensitive Crowd Response Collector, a CNN-based News Classifier, and a

PU-Learning Framework. Given a news article posted on social media, the status-sensitive
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crowd response collector collects each of its crowd responses and then combines them

with the corresponding user profiles to generate a sequence of status-sensitive crowd

responses. Then, the CNN-based news classifier first extracts both text and user features

from status-sensitive crowd responses, and then concatenate them to form a feature map

that represents the news article. Next, convolutional networks (CNNs) with different kernel

sizes and the number of filters are applied on the feature map to extract intermediate

features, which are then fed to a multi-layer perceptron (MLP) block to classify the news.

The PU-Learning framework is adopted when our model is trained only with positive (fake)

and unlabeled news samples. Compared with the first two models, our third model yielded

better effectiveness on fake news early detection because of the following reasons. First,

besides user characteristics, it also incorporates users’ response text, which is another

useful feature for detecting fake news. Unlike many existing detection approaches that

treat user responses and user characteristics separately, our FNED model combines them

together as status sensitive crowd responses to capture more accurate information from

users’ response to a news story. For instance, the same response text posted by different

users may carry different meanings. Thus, treating user responses and user characteristics

separately can not capture this difference. Another unique mechanism of our proposed

FNED model is the multi-region mean pooling. It conducts mean pooling on different

lengths of retweet sequences to capture different granularities of latent features from a

sequence of status sensitive crowd responses. These two unique mechanisms further

improved our model’s effectiveness on fake news early detection. Moreover, a PU-Learning

framework is also incorporated to handle the problem of unlabeled and imbalanced data.

Our experimental results showed that the FNED model could also perform well in a

simulated real-world scenario with unlabeled and imbalanced data.

We conducted comprehensive experiments to evaluate the proposed models on

two datasets collected from Twitter and Sina Weibo, respectively. Experimental results

demonstrate that our proposed models can detect fake news with over 90% accuracy within
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5 minutes after it starts to spread and before it is retweeted 50 times, which is significantly

faster than state-of-the-art baselines. Also, our third model requires only 10% labeled fake

news samples to achieve this effectiveness under PU-Learning settings. Those advantages

indicate promising potential for our models to be implemented in real-world social media

platforms for fake news detection. Our proposed detection model can be applied on social

media sites as a filter to label potential fake news threads automatically. Then, the labeled

potential fake news threads can be sent to social media administrators who will decide how

to handle them afterwards.
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