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ABSTRACT 

 

REDUCTION IN SALT DEPOSITION ON CARBON NANOTUBE 

IMMOIBLIZED MEMBRANE DURING DESALINATION VIA MEMBRANE 

DISTILLATION  

 

by  

Madihah Saud Humoud 

 

 As water scarcity increases globally under the stresses of increasing demand, aquifer 

depletion, and climate change, the market for efficient desalination technologies has grown 

rapidly to fill the void. One such developing technology, membrane distillation (MD), has 

found much interest in the scientific community. MD has also been powered by solar 

energy and waste heat resources because it can be operated at relatively low temperatures. 

Recent studies indicate that MD could potentially achieve the efficiencies of state-of-the-

art mature thermal desalination technologies, although additional engineering and 

scientific challenges must first be overcome. 

                MD can be used to treat high salinity water where the salt concentration is high. 

The aim of this research is to better understand and provide solutions for one of the major 

challenges being faced by high concertation applications of MD, more specifically 

membrane fouling. Through experiments, this thesis compares different heating systems in 

MD, namely conventional and microwave heating, and their effect on fouling. It also looks 

at carbon nanotube immobilized membrane, and studies the effect of carbon nanotubes on 

fouling. In this research MD is carried out using highly concentrated aqueous calcium 

carbonate, calcium sulfate and barium sulfate solutions, and it is observed that the decline 

in flux over time is significantly less in microwave induced membrane distillation (MIMD). 

As compared to conventional heating, the salt deposition on the membrane is 50-79 % less 

during microwave heating. 



 
 

             The second and third part of this research shows the effects of adding different 

antiscalant materials to the feed side of the experiment to investigate the fouling behavior 

under fixed operating parameters such as feed concentration, temperature, and feed 

flowrate. The results show a strong influence of using antiscalant materials on the highly 

concentrated salt solutions and on produced water from hydraulic fracturing as well. It is 

observed that using carbon nanotube based membranes and antiscalants, the fouling 

behavior could be reduced and water vapor flux in MD can be enhanced. Results also show 

that the presence of CNTs facilitates the removal of deposited salts by washing and the 

CNIM regains 97% of its initial water flux, whereas the unmodified polypropylene only 

regains 85% of the original value. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

As population grows, a number of people experiencing water shortage is expected to 

multiply fourfold between 2000 and 2025 [1, 2]. Desalination is progressively being touted 

as a solution to the water crisis in the last decades. Desalination processes, including 

thermal distillation and membrane-based separation, can extract fresh water from various 

saline water sources such as seawater and produced water from oil and gas industries. 

While the natural fresh water availability has been gradually depleted due to water 

pollution, saline water sources are virtually limitless. In addition, recent technological 

advancements in the desalination field have significantly reduced the cost, and at the same 

time improved the quality of desalted water to satisfy stringent regulations. Desalination 

processes can be environmentally friendly when they are driven by renewable energy [3, 

4]. 

Large-scale thermal distillation and membrane-based desalination processes have 

been well used for fresh water provision to large and centralized communities [5]. 

However, sufficient fresh water provision in small and remote coastal areas remains a 

considerable challenge. Thermal distillation desalination processes, including multi-stage 

flash (MSF) and multi-effect distillation (MED) are energy intensive. Thus, they are only 

economically applicable in areas (i.e; the Middle East) where energy costs are affordable 

[6]. The desalination technology, reverse osmosis (RO) has expanded rapidly in the last 

two decades; its market share now dominates, and its costs have now approached near that 

of conventional water sources [7]. Other desalination technologies have grown as well, 
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including the thermal technologies of membrane distillation (MD), humidification 

dehumidification (HDH), multi-effect distillation (MED), as well as other technologies 

such as ion exchange resins and mechanical vapor compression [2, 8]. The thermal 

technologies have advantages over RO, including superior fouling resistance, reduced 

pretreatment needs, and lower energy use if paired with waste heat or renewable heat 

sources, and higher purity product water [9]. Membrane based desalination processes, most 

notably reverse osmosis (RO), consume less energy than the thermal distillation. 

Nevertheless, RO desalination requires extensive feed water pretreatment owning to its 

susceptibility to fouling [6, 10]. Furthermore, RO desalination relies on electricity to run 

high pressure pumps to achieve the salt-water separation. RO systems are made of 

expensive materials such as duplex stainless steel to withstand the high pressure and 

corrosion [11]. Thus, RO is only economically viable for large-scale desalination 

applications. 

Membrane distillation (MD), a thermally driven membrane separation process, 

embodies notable attributes that are particularly promising for strategic desalination 

applications. These applications include small-scale seawater desalination for fresh water 

provision in remote coastal areas and desalination of hypersaline solutions (e.g; brine from 

the RO desalination process or liquid desiccant solution used in air conditioners). In MD, 

a hydrophobic microporous membrane is used as a barrier against dissolved salts and non-

volatile substances, but acts as a facilitator for water vapor transfer [9, 12]. A water vapor 

pressure gradient is induced by a temperature difference between two sides of the MD 

membrane which acts as the driving force for the water vapor transfer, and the MD process 

is negligibly affected by the feed osmotic pressure. Thus, the desalination process using 
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MD can produce ultrapure water from highly saline solution feeds at a mild feed water 

temperature without the need for high hydraulic pressure. MD can employ low-grade heat 

sources such as waste heat or solar thermal energy to meet its primary energy demands [13, 

14]. In addition, the absence of high hydraulic pressure allows the MD system manufacture 

from inexpensive and noncorrosive materials, hence reducing both process investment and 

operational costs [9, 12]. Given these advantages, MD desalination has been studied 

extensively in recent decades. To date, the application of MD for saline water desalination 

is still restricted to laboratory or pilot-scale demonstrations. The full realization of MD for 

seawater and oil/gas produced water desalination has been hindered by the limited 

understanding of the thermal energy consumption and the susceptibility to pore wetting 

due to membrane fouling/scaling of the process [15, 16]. 

MD processes can be practiced in four basic configurations, including direct contact 

membrane distillation (DCMD), air gap membrane distillation (AGMD), vacuum 

membrane distillation (VMD), and sweeping gas membrane distillation (SGMD). Amongst 

these configurations, DCMD and AGMD have simple arrangements with fewer process 

equipment and hence offering more cost-effective desalination means as compared to 

VMD and SGMD. As a result, DCMD and AGMD are considered more suitable for 

strategic and small-scale desalination applications than VMD and SGMD. 

 

1.2 Objectives and Scope of the Dissertation  

The overall goal of this research is to optimize the MD process with respects to membrane 

Fouling/scaling which is one of the biggest challenge in the upcoming desalination 

technology, membrane distillation. This work aims to improve understanding of the fouling 
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in MD and introduced new solutions and techniques to reduce fouling and enhance the 

overall yield in MD process. Specific objectives to achieve this goal are to: 

 Reduction of Inorganic Fouling in Microwave Induced Membrane Distillation on Carbon 

Nanotube Immobilized Membrane. 

 

 Fouling Reduction in Carbon Nanotube Immobilized Membrane during Membrane 

Distillation using antiscalant materials.  

 

 Treatment of Produced Water using Carbon Nanotube Immobilized Membrane via Direct 

Contact Membrane Distillation. 

 

 

The dissertation focusses on determining suitable operating conditions for example, feed 

temperature, feed concentration and feed flowrate to minimize membrane scaling and 

evaluating membrane cleaning efficiency during the MD process for treating highly 

concentrated feed solution. Carbon nanotube immobilization on the unmodified membrane 

surface was used as the feed side in all experiments. Surface morphology was observed to 

differ for membranes fabricated with CNTs and its different functionalization which in turn 

altered the interaction with water vapor. 

1.3 Dissertation Outline  

 This dissertation has three major chapters in addition to the Introduction, Literature 

Review, and the Conclusions sections. The first project focused on using microwave 

irradiation in MD process for highly concentrated salt solutions to study the inorganic 

fouling/scaling on the membrane surfaces in desalination application, and will be covered 

in Chapter 3. In Chapter 3, the membrane fouling/ scaling will be investigated during a 

DCMD process with three types of inorganic salts solutions such as CaSO4, CaCO3, and 

BaSO4 in high concentrations. The second project is Chapter 4 that will show the effect of 

using antiscalant materials on the feed side solution to reduce inorganic fouling on the 
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membrane surface and enhanced the MD performance via DCMD by using carbon 

nanotube immobilized membrane. The washability and regenerability was also studied 

during the MD operation to report the effect of carbon nanotube on the membrane life time. 

The third project is Chapter 5 which include the treatment of produced water using carbon 

nanotube immobilized Membrane via direct contact membrane distillation (DCMD). This 

chapter reported the effect of using antiscalant on produced water solution to reduce fouling 

on the membrane surface. The fouling characteristics of produced water was investigated 

in this research to show the effect of using this technique to improve the antifouling 

behavior during the MD process. The last part is conclusion and recommendations for 

future work which is Chapter 6. 
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CHAPTER2 

LITERATURE REVIEW  

 

2.1 Membrane Distillation for Desalination Applications 

 

Membrane distillation (MD) is a thermally driven separation process. In MD desalination, 

a microporous hydrophobic membrane and a temperature difference across the membrane 

are used to help the salt-water separation. The membrane acts as a barrier against liquid 

water and hence all dissolved salts and non-volatile substances, while allowing for the 

permeation of water in vapor phase through its pores [9, 12]. A hot brine solution is kept 

in direct contact with the membrane on the feed side while a cool fluid is maintained on 

the permeate side [17, 18]. The temperature difference between two sides of the membrane 

induces a water vapor pressure gradient, thus facilitating the transfer of water vapor 

through the membrane pores. 

Membrane distillation is classified into four basic configurations depending on the 

methods applied on the permeate side to collect the distillate as it shown in Figure 2.1 [9, 

12]. These configurations include direct contact membrane distillation (DCMD), air gap 

membrane distillation (AGMD), vacuum membrane distillation (VMD), and sweeping gas 

membrane distillation (SGMD). Amongst these configurations, DCMD and AGMD are the 

most suitable for desalination applications. DCMD has the simplest arrangement as 

compared with other MD configurations. The hot saline feed and the cold distillate streams 

are in direct contact with the membrane, and the vapor condensation occurs inside the 

DCMD membrane module. The direct contact arrangement also facilitates the heat and 

mass transfer between the process streams and the membrane surfaces, thus rendering 
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DCMD high water flux [13, 19, 20]. However, the simple arrangement also leads to a 

significant heat loss due to conduction via the membrane from the hot feed to the cold 

distillate stream, therefore limiting thermal efficiency of the DCMD process. In AGMD, 

an air gap is introduced between the membrane and the distillate stream to alleviate the 

heat conduction for improved thermal efficiency [21, 22]. The air gap also increases the 

resistance to the transfer of water vapor, hence reducing water flux of AGMD when 

comparing to DCMD [23]. The substitution of the air gap by a gas flow in SGMD or 

vacuum in VMD helps reduce the mass transfer resistance and at the same time mitigate 

the heat conduction. As a result, SGMD and VMD can attain high water flux together with 

improved thermal efficiency [24, 25].     Nevertheless, SGMD and VMD require external 

condensers for distillate collection and additional equipment [9, 12]. Therefore, the SGMD 

and VMD processes are more complex and costly than DCMD and AGMD [9, 12]. 

 

 

Figure 2.1 Four main MD configurations. 
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In addition to different heat transfer designs for the MD module, the construction 

technique may also vary. Four types of MD modules have been used in the literature, as 

seen in Figure 2.2. 

 

Figure 2.2 Types of MD Modules that have been studied in the literature. 
Source:[26] 
 

Flat plate systems are usually composed of sheets sandwiched together. Because they are 

so simple to construct, they are used very frequently in bench-scale systems, as well as in 

industry. Spiral wound functions very much like flat plate in terms of gap sizes, heat 

transfer, and modeling, and have the added benefit of reducing the amount of metal 

condenser surface and are more compact. Because of these benefits, other membrane 

technologies such as reverse osmosis very frequently use spiral wound membranes. 

However, because MD is a relatively immature technology, this potentially more cost-

effective to mass produce design is rarely seen. MD systems can also be conical, with a 

series of tubes alternating between feed and condensate. In practice, these systems are still 

largely theoretical. All three of these types are similar enough in gap dimensions and flow 

regime that they can usually be modeled as flat plate systems, neglecting the curvature. 

The final type, hollow fiber membranes, is fundamentally different and must be modeled 

separately. These systems use small capillary tubes to transport permeate or feed, which 
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are contained in a larger chamber. Because these tubes are very small (e.g; 1 mm) [27],  

these flows are laminar, while the larger flat plate systems tend to use turbulent flow to 

minimize temperature and concentration polarization. Additionally, because the flow 

channels are fully-filled cylinders, the curvature cannot be neglected, and they must be 

modeled in polar coordinates. These systems are usually DCMD, although VMD [27], and 

AGMD systems have been developed as well [28]. 

2.1.1 Potentials of MD for Desalination Applications 

MD has some prominent features that make it a promising candidate for desalination 

applications, particularly for hyper saline solutions. As a thermally driven process, water 

flux in MD is negligibly affected by the feed osmotic pressure as compared with other 

pressure driven membrane desalination processes such as reverse osmosis (RO) and nano-

filtration (NF). As a result, the MD process can concentrate saline waters up to the 

saturation limits of salts in the feed waters. Given this capability, MD has been employed 

for treatment of concentrated brine from RO processes of seawater and gas drilling water 

[29-32], and hyper saline draw solutions from forward osmosis (FO) processes [33, 34]. 

Moreover, because the MD process does not involve high hydraulic pressure to achieve 

salt-water separation as in RO and NF, MD systems can be made from inexpensive non-

corrosive materials for example plastics and aluminum alloys to reduce the process 

investment and operational costs. MD also inherits typical attributes of membrane 

processes, including modulation, compactness, and process efficiency; therefore, it 

requires significantly less physical and energy footprints as compared to conventional 

thermal distillation such as MSF and MED. Finally, the primary energy input to the MD 

process is heat at mild temperatures which are ranging from 40 to 80 oC. Low-grade heat 
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such as waste heat or solar thermal energy can be sourced to meet the energy demand of 

the MD process, leading to noticeable process energy cost savings. As a result, MD can be 

an ideal replacement for RO or MSF and MED in the desalination applications which 

require a low-cost and maintenance-free process or involve highly saline feed waters. 

These applications can be small-scale seawater desalination for fresh water provision in 

remote coastal areas, and treatments of brine following other desalination processes or 

hyper saline liquid desiccant solution used in air conditioning systems.   

2.1.2 Temperature and Concentration Polarization Effects 

Temperature and concentration polarization effects are intrinsic problems of the MD 

process [9, 12]. MD is a non-isothermal separation process in which heat and mass transfer 

simultaneously occur and are interconnected [9, 12]. The MD process involves three main 

steps: (1) the vaporization of the feed water at liquid-vapor interface in the feed channel, 

(2) the movement of water vapor through the membrane pores, and (3) the condensation of 

water vapor into distillate in the permeate channel. With the transfer of water, heat is taken 

away at the liquid-vapor interfaces on the feed and permeate sides of the membrane. As a 

result, the temperatures and salt concentrations at the liquid-vapor interfaces are different 

from those in the bulk feed and permeate, and boundary layers are established on both sides 

of the membrane as shown in Figure 2.3. These phenomena are termed temperature and 

concentration polarization effects. Temperature polarization effect renders the temperature 

difference between two sides of the membrane smaller than that between the feed and the 

distillate (or coolant) streams, thus reducing the process water flux. On the other hand, 

concentration polarization effect increases the salt concentrations at the membrane surface 

as compared with the bulk feed concentrations. For MD desalination of seawater or other 
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saline feed waters with similar feed salinity, the influence of concentration polarization 

effect on water flux is negligible as compared to that of temperature polarization effect [9, 

35, 36]. For the MD process of hyper saline feeds, concentration polarization effect can 

greatly reduce water flux and increase the process propensity for membrane scaling. The 

negative effects of temperature and concentration polarization on MD water flux are more 

severe for the process operated at high temperature and low feed velocity [35]. Under 

extreme conditions, negative flux can occur as a result of polarization effects [12]. Thus, 

temperature and concentration polarization effects are deemed a drawback of MD, and are 

desired to be minimized [36-39]. Various methods such as using spacers, applying 

turbulent flow, transverse vibration, and aeration, and employing microwave irradiation 

have been approached to mitigate the effects of temperature and concentration polarization 

on MD performance [39, 40]. 
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Figure 2.3 Temperature and concentration polarization effects in DCMD. 
Source:[41] 

 

The magnitude of the temperature polarization effect can be evaluated using the 

temperature polarization coefficient (∅). For the DCMD process, ∅ can be calculated using 

Eq. (2.1). The value of ∅ depends on the process fluid dynamic, and can vary from 0.4 to 
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0.7 [37]; however, a temperature polarization coefficient as high as 0.93 has been reported 

in the literature [35]. 

∅ =
𝑇𝑚𝑓 − 𝑇𝑚𝑑

𝑇𝑝𝑓 − 𝑇𝑝𝑑
 

(2.1)  

 

 

Similarly, the concentration polarization coefficient (∅) is used to assess the concentration 

polarization effect, and it is calculated as: 

∅ =
𝑋𝑚𝑓 − 𝑋𝑚𝑑

𝑋𝑝𝑓 − 𝑋𝑝𝑑
 

(2.2)  

 

 

The MD process can achieve a nearly complete salt rejection. Thus, salt concentration in 

the distillate can be ignored, and ∅ can be simplified as: 

∅ =  
𝑋𝑚𝑓

𝑋𝑏𝑓
 

(2.3)  

 

       

The mass transfer of water flux through the MD membrane is proportional to the water 

vapor pressure difference between two sides of the membrane, and is given as: 

𝐽 =  𝐶𝑚 × (𝑃𝑚𝑓 − 𝑃𝑚𝑑) (2.4)  
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Where Cm is the membrane mass transfer coefficient, Pmf and Pmd are the water vapour 

pressures at the liquid-vapour interfaces on two sides of the membrane. The water vapour 

pressure (P) of a saline solution at temperature T is calculated as: 

𝑃 = 𝑒𝑥𝑝 (23.1964 −
3816.44

𝑇 − 46.13
) × 𝜒𝑤 × 𝜒𝑤 

(2.5)  

 

     

Where χw and aw are the molar fraction and activity of water, respectively. For aqueous 

saline solution, the water activity can be estimated using the molar fraction of salt (χs) as 

follow [42] 

 

𝑎𝑤 = 1 − 0.5𝜒𝑠 − 10𝜒𝑠
2 

 

(2.6)  

 

The membrane mass transfer coefficient, Cm, can be calculated using empirical 

correlations. The selection of empirical correlations for Cm calculation is determined by 

mass transfer mechanisms inside the membrane pores. Possible mass transfer mechanisms 

within MD membrane pores are viscous flow, surface diffusion, Knudsen diffusion, and 

molecular diffusion [9, 43, 44]. However, surface diffusion is often neglected in general 

MD applications [12]. Thus, depending on the structural properties of membrane, the 

properties of transported vapor, and operating parameters, the dominant MD mass transfer 

mechanism can be viscous flow, Knudsen diffusion, molecular diffusion, or a transition 

between them [45, 46]. The calculation of water flux using the Eq. (2.4) involves the 

temperature and salt concentration at the membrane surfaces, hence it is impractical. Due 

to polarization effects, the temperature and salt concentration of the process solutions at 



15 
 

the membrane surfaces differ from those in the bulk solutions, and it is unviable to measure 

them. Alternatively, water flux of the MD process can be calculated using properties of the 

bulk process streams as follow: 

𝐽 =  𝐾𝑚  × (𝑃𝑏𝑓 − 𝑃𝑝𝑑) (2.7)  

 

Where Km is the process mass transfer coefficient, Pbf and Pbd are respectively the water 

vapour pressure of the feed and distillate streams. Km depends on the membrane properties 

and operating conditions, and its value can be experimentally determined. It is noteworthy 

that temperature and concentration polarization might be included in the experimental 

determination of Km. 

2.1.3 Sources of Heat in MD  

Energy-efficient desalination and water treatment technologies play a critical role in 

augmenting freshwater resources without placing an excessive strain on limited energy 

supplies. By desalinating high-salinity waters using low-grade or waste heat, membrane 

distillation (MD) has the potential to increase sustainable water production, a key facet of 

the water-energy nexus. However, despite advances in membrane technology and the 

development of novel process configurations, the viability of MD as an energy-efficient 

desalination process remains uncertain. Because of the challenges being faced by MD it is 

important to explore more opportunities for in MD membranes and system design because 

the energy efficiency of MD is limited by the thermal separation of water and dissolved 

solutes. However, in DCMD configuration, high fluxes could be achieved, however, heat 

losses are considerable and lead to low thermal efficiency process relative to the other MD 

configurations. Heat transfer through the membrane takes place via two ways; (1) latent 
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heat of vaporization carries out by the permeate flux and (2) conduction heat transfer 

through the membrane matrix [47]. Conduction heat transfer represents the heat loss during 

the separation process and it should be minimized to enhance the membrane thermal 

performance. Previous studies showed that about 20–50% of heat transferred through the 

membrane was by conduction due to higher heat transfer coefficient of the permeate side 

of DCMD configuration [48]. 

The solar energy is one of the most important energy sources in which MD systems 

can only depend on. Thermal energy from a solar collector such as flat plate solar collector 

[49] or evacuated tube solar collector [50], which work at low temperatures, is of interest 

in MD process. Also, photovoltaic (PV) cells can be used to convert solar radiation into 

electricity to provide the circulating pumps with the required power and consequently the 

MD system can be described as a stand-alone system with low energy consumption [51]. 

Another source of heating energy in MD is microwave irradiation. It is generally believed 

that microwave irradiation produces two effects: thermal effect and non-thermal effect 

(special effect) [52]. The special effect is an interesting and often confusing phenomenon 

in many researches, such as microwave-assisted synthesis or preparation of organic 

compounds [53-58], microwave-enhanced molecules diffusion in polymeric materials [59, 

60], and microwave-assisted extraction or removal [61-65]. It is considered by many 

scholars that the light quantum (the quantum of electromagnetic radiation) of microwave 

has some special effects on reducing the Gibbs free energy of activation of reactions. The 

effects may be shown in two respects: (1) microwave energy is absorbed and stored in the 

internal molecule; (2) the arrangement of molecules is changed [52]. Moreover, in a liquid 

reaction system, the polar molecules irradiated by microwave change directions quickly to 
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form a “micro-agitation” effect, which can also be considered as a microwave special 

effect. For ionic solutions placed in a microwave field, the ions will migrate toward 

corresponding electric field direction and change migration direction continuously with the 

alternation of the electric field. Based on this principle, it has been confirmed that the rate 

of ion exchange can be enhanced by using microwave as heat source for ion exchange 

reactions [66]. This mode of ion migration and changing direction has a special effect on 

crystallization process.  

There are only a few reports on the use of microwaves in membrane processes. They have 

been employed in gas separation where they successfully enhanced gas transfer in 

membrane pores [60]and in vacuum-based membrane distillation.[67, 68] These processes 

have been carried out in microwave ovens where the membrane is also exposed to the 

microwave, and can be problematic if the latter absorbs microwave. The placing of the 

membrane module in a microwave cavity is not always feasible, and this is particularly true 

in processes such as direct contact membrane distillation (DCMD) where the microwave 

would also heat the water in the permeate side and reduce the vapor pressure gradient. In 

addition, putting the whole membrane modules in microwave heaters can be challenging 

during scale up.  
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2.1.4 Membrane Pore wettability in MD 

One vital requirement for the MD process to sustain its separation efficiency is the non-

wettability of the membrane pores. To achieve a complete salt rejection, only water vapor 

is allowed to transfer through the membrane pores, and the pores must be in dry condition. 

Under certain conditions, liquid water can penetrate the membrane pores and render them 

wet. The resistance of the MD process to membrane pore wetting is evaluated using the 

membrane liquid entry pressure (LEP). The calculation of LEP is as follow: 

𝐿𝐸𝑃 =  −2𝐵 × 𝜏𝑙  × cos 𝜃 /𝑟𝑚𝑎𝑥 (2.8) 

 Where B is the geometric factor representing the pore structure, 𝜏𝑙 is the liquid surface 

tension, 𝜃  is the liquid-solid contact angle, and rmax is the maximum membrane pore radius. 

According to Lawson and Lloyd [42], the membrane pores become wetted when the 

pressure difference between liquid phase and vapor phase at the pore entrance exceeds 

LEP. 

Factors that can lead to membrane pore wetting during the MD process are the 

deposition of contaminants in the feed water on the membrane surface and the resultant 

degradation of the membrane. As implied in the Eq. (2.8), a higher LEP value can be 

achieved when using a more hydrophobic membrane (i.e. ϴ > 90o) with the feed solution 

having a high surface tension ( 𝜏𝑙). Most membranes used in MD have water-membrane 

contact angle in the range from 120o to 130o [69], and fabricated surface-modified 

membranes with water-membrane contact angle as high as 160o and 178o have been 

proposed for the MD process for desalination applications [23, 70]. Contaminants 

depositing on the membrane surface can alter its hydrophobicity, thus reducing LEP and 

increasing the risk of membrane pore wetting. Moreover, organic contaminants such as 
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surfactants and detergents can greatly reduce the surface tension of the feed water [71], 

leading to further reduction in LEP. 

2.1.5 Membrane Fouling and Scaling in MD 

Membrane fouling is a major hindrance to the commercialization of MD for water 

treatment and desalination [15, 72]. Fouling reduces permeability, shortens the lifetime of 

membranes, and increases energy consumption. Consequently, membrane fouling raises 

the operational costs of the MD process. The investment cost of the MD process is also 

increased because of additional pre-treatment facilities and chemicals required to prevent 

and control fouling [72, 73]. 

Membrane fouling in MD is defined as the accumulation of undesirable deposits 

onto the membrane surface or into the membrane pores leading to a decline of membrane 

efficiency [74, 75]. The formation of unwanted materials adds extra resistance to the total 

mass transfer resistance of the MD process. The undesirable deposits might be particulates, 

gels formed by organic substances, precipitated crystals of sparingly soluble salts, and 

biofilm formed by microorganisms. Membrane fouling is categorized into four types, 

namely colloidal fouling, organic fouling, scaling, and biofouling according to the nature 

of particles that induce fouling. Amongst these types, organic fouling and scaling are the 

most prevalent during the MD desalination process [74, 75]. 

Organic fouling is a result of adsorption of dissolved organic substances such as 

oil, macromolecules, protein, humic acids onto membrane surface. The accumulation of 

these organic matters on the membrane surface leads to a decline in membrane 

permeability. It is worth mentioning that despite their low concentration in the feed water, 

organic foulants often cause severe declines in MD water flux because they can form 
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complexation with calcium scales in the feed water [76, 77]. Moreover, hydrophobic 

membranes are more prone to organic fouling due to hydrophobic adsorption of organic 

materials to the membrane surface [76, 78]. 

Scaling (or inorganic fouling) in the MD process is caused by the precipitation of 

sparingly soluble salts at their super-saturation state. The most likely scalants faced in MD 

desalination are calcium sulphate (CaSO4), calcium carbonate (CaCO3), and silicate [15, 

79-81]. These scalants have limited and temperature-inverse solubility (except silicate) in 

the MD operating temperature range [82]. During the MD process, when water is extracted 

from the feed solution, the concentrations of the sparingly soluble salts in the feed channel 

increase and might reach super-saturation, posing a high risk of scaling. The scale 

formation on the membrane can constrain the MD desalination process from achieving high 

water recovery ratios [79, 80]. 

MD operating parameters exert great effects on the scale formation rate and the 

scale morphology. Gryta [83] reported that increasing feed temperature resulted in a higher 

rate of the carbonate scale formation, and low feed flow velocity led to a more compact 

deposit layer on the membrane. A similar trend was observed in the study of Wang et al. 

[84] . Nghiem and Cath [15] observed more severe scale formation of CaSO4 than that of 

CaCO3 and silicate, and they also found that increased feed temperature and CaSO4 

concentration led to a decrease in the induction time and an increase in the CaSO4 crystal 

size. He et al. [80] declared that the co-precipitation of CaCO3 and CaSO4 formed more 

adherent and tenacious deposit layers on the membrane than those consisted of single salts. 

The scale formation on the membrane in MD is also influenced by the temperature 

and concentration polarization. Due to the polarization effect, concentrations of the 
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sparingly soluble salts in boundary layers adjacent to the membrane are higher than those 

in the bulk feed solution, hence increasing the scale formation tendency [82, 84, 85]. In 

contrast, the temperature polarization effect reduces the temperature of the feed solution 

next to the membrane, and might increase the solubility of sparingly soluble calcium salts; 

therefore, it lowers potential for the scale formation. However, the influence of the 

temperature polarization effect on the scale formation is trivial in comparison with that of 

the concentration polarization effect [80, 82]. It is noteworthy that unlike sparingly soluble 

calcium salts, silica has solubility proportional to temperature, thus temperature 

polarization tends to raise the deposition of silica on the membrane surface [81]. 

2.2 MD for Seawater Desalination Applications 

2.2.1 Membrane Fouling and Scaling in Seawater MD Desalination 

There is a consensus that MD is much less susceptible to membrane fouling than pressure-

driven filtration processes such as RO for seawater desalination applications. Unlike in RO, 

in MD water permeates through the membrane in vapor phase, while liquid water and 

foulants are retained on the membrane surface. The MD process does not involve high 

hydraulic pressure on the membrane surface to drive the water transport through the 

membrane as RO does. Membrane fouling in MD is caused by the adsorption of foulants 

onto the membrane surface. As a result, the seawater MD desalination process requires 

noticeably less feed water pre-treatment as compared to RO. 

The MD process demonstrates enormous potential for seawater desalination with 

high water recovery ratios. As a thermally driven separation process, water flux in MD is 

negligibly affected by the feed osmotic pressure. Therefore, the MD process can achieve 

water recovery ratios appreciably higher than those of the seawater RO process. In the 
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context of high water recovery, inorganic membrane fouling (membrane scaling) caused 

by the precipitation of sparingly soluble salts such as salts of calcium, magnesium, Barium, 

and silicate that counts as considerable challenge to the sustainable seawater MD process. 

There has been abundance of studies on membrane scaling and mitigation 

techniques in MD as summarized in the two recent review papers [75, 86]. These studies 

have elucidated the detrimental effects of membrane scaling on the process performance 

(e.g. water flux and distillate quality), and examined various techniques to alleviate and 

control membrane scaling during the MD process. Notable examples include the studies 

by Nghiem and Cath [79] ,Hickenbottom et al. [87] , He et al. [80], Martinetti et al. [32], 

Mericq et al. [31], Adam et al. [88], Chen et al. [89], Ge et al. [30], Hou et al. [90], Peng 

et al. [91], and Zhang et al. [29]. However, most of these scaling studies used lab-scale 

DCMD systems with either synthetic saline feed solutions or brine from the seawater RO 

desalination process. None of the previous studies has explored membrane scaling and 

mitigation techniques during seawater desalination using the pilot or large-scale AGMD 

process. It is worth reiterating that AGMD together with DCMD are the most used MD 

configurations for seawater desalination applications. Membrane scaling in the DCMD 

process might differ from that during the AGMD process given the much lower operating 

flux of AGMD as compared to DCMD. In addition, the characteristics and hence the 

scaling propensity of synthetic saline solutions and seawater RO brine are different from 

those of actual seawater. Last but not least, some membrane scaling mitigation techniques 

proposed in the previous studies (e.g. resetting the scale induction period by regular 

membrane flushing with fresh water [15], flow and temperature reversal [87], and 

ultrasonication [90, 92], microwave irradiation [93, 94],antiscalant materials [95] are 
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effective for DCMD, but might not be practicable for AGMD. As a result, membrane 

scaling during the AGMD process of actual seawater, particularly under operating 

conditions practiced for pilot or large-scale processes, is still a research gap that needs 

addressed. 

2.2.2 Energy Consumption of Seawater MD Desalination 

Together with membrane scaling, intensive energy consumption has been considered a 

hindrance to the realization of MD for seawater desalination applications. As a phase-

change separation process, MD consumes huge amount of thermal energy (i.e. heating and 

cooling) to facilitate the phase conversion of water from liquid to vapor and vice versa. 

The transfer of the latent heat that is associated with the transfer of water coincides with 

the heat conduction through the membrane during the MD process. The heat conduction 

through the membrane, which is the heat loss, can account for up to 50% of the total heat 

input of the MD process [12]. As a result, most MD processes reported in the literature 

demonstrate poor energy efficiency with specific energy consumption of several orders of 

magnitude higher than that of RO [14, 96, 97]. 

It is noteworthy that specific thermal energy consumption (STEC) of the MD 

processes reported in the literature is widely dispersed as recently highlighted by Khayet 

[47]. The STEC of the MD process can differ in 3 orders of magnitude, ranging from as 

low as 1 up to 9,000 kWh/m3 [47]. The wide dispersion in STEC values is attributed to the 

variation in the configuration, membrane module geometry, and operating conditions of 

the MD process [47]. 

As a notable example, Carlsson [98] reported a very low STEC of 1.25 kWh/m3, 

but failed to provide any analytical details and operating parameters of the MD process 
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used in his study. Koschikowski et al. [99] reported a STEC value of 117 kWh/m3 for a 

MD system with an 8 m2 spiral-wound AGMD membrane module at 75 oC evaporator inlet 

temperature and 350 L/h water flow rate. A larger AGMD system (i.e. with membrane area 

of 40 m2) exhibited a higher STEC value ranging from 200 to 300 kWh/m3 [100]. Much 

higher STEC values were reported for the MD processes using DCMD configuration. Of a 

particular note, Criscuoli et al. [101] demonstrated a DCMD process with really high STEC 

values ranging from 3500 to 4580 kWh/m3. 

Thermal efficiency of the MD process can be significantly enhanced, and thus the 

process STEC can be reduced by recovering the latent heat associated with the water vapour 

transfer. 

In AGMD, the recovery of the latent heat can be achieved inside the membrane 

module. The feed water can be fed to the coolant channel to act as a coolant fluid, and in 

tandem to be preheated by the latent heat of water vapor condensation. Then, the preheated 

feed water can be additionally heated by an external heat source to reach a desired 

temperature prior to entering the feed channel of the AGMD membrane module (Figure 

2.1). Thus, STEC of the AGMD process can be noticeably reduced. Operating conditions, 

including feed inlet temperature, feed salinity, and particularly water circulation rate, are 

expected to exert strong influences on the STEC of the AGMD process. It is noteworthy 

that no previous studies have systematically elucidated the influences of operating 

conditions on thermal and electrical energy consumption of the AGMD process with actual 

seawater. Optimization of the seawater AGMD desalination process at pilot or large-scale 

level remains a gap in the MD literature. 
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Unlike in AGMD, in DCMD the heat recovery can be achieved using an external 

heat exchanger [102]. The latent heat accumulated in the distillate stream is recovered to 

preheat the feed stream in the heat exchanger. When the heat exchanger is coupled with 

the DCMD membrane module, the relative flow rate between the feed and the distillate 

stream and the surface areas of the heat exchanger and the membrane module strongly 

determine the process STEC [102]. The DCMD process obtains minimum STEC at a 

critical relative flow rate and with infinite heat exchanger and membrane module surfaces 

[102]. In practice, however, it is unfeasible to have heat exchanger and membrane module 

with infinite surfaces. 

Thermal efficiency of the DCMD process can also be improved by brine recycling. 

In the DCMD process, particularly for the small-scale system with short membrane 

channels, the warm brine leaving the membrane module contains a considerable amount of 

sensible heat. When the brine is recycled in the process, the brine sensible heat can be 

utilized, hence reducing the total heat demand and STEC of the process. Brine recycling 

also helps enhance the utilization of the available membrane surface area to increase the 

water recovery ratio of the DCMD process. Indeed, Saffarini et al. [103] have suggested 

brine recycling for MD thermal efficiency improvement. A major challenge to brine 

recycling in seawater DCMD desalination is to manage the negative influence of 

membrane scaling and increased feed salinity on the water flux and salt rejection of the 

process. It is noteworthy that brine recycling for optimization of the seawater DCMD 

process has not yet been experimentally evaluated. 
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2.2.3 MD for Produced Water Treatment 

Shale oil and gas is an unconventional energy resource that is found in relatively 

impermeable rock and requires hydraulic fracturing to recover the hydrocarbons [104]. The 

shale oil and gas industry has significantly improved the energy security of the United 

States, and has disrupted the oil and gas markets by driving down prices worldwide [105]. 

However, shale oil and gas production consumes substantial amounts of freshwater and 

produces vast quantities of wastewater [106-108]. For example, shale oil and gas 

production in the U.S. has led to a total water usage of 940 billion liters from 2005 to 2014, 

and has produced 775 billion liters of hazardous wastewater [106]. There are growing 

concerns associated with the handling and disposal of shale oil and gas wastewater. The 

majority of this wastewater is currently injected underground into deep and isolated 

formations, but this technology may induce seismic events and is constrained by geological 

and legal restrictions [104, 109, 110]. Also, the discharge of shale oil and gas wastewater 

into publicly owned treatment works (POTWs) pollutes the water environment due to its 

high salinity and toxicity [104, 111, 112]. Furthermore, many of the western shale plays in 

the U.S. coincide with areas suffering high to severe water stress [108]. Therefore, effective 

treatment and reuse of shale oil and gas wastewater as an additional source for beneficial 

purposes will address the dual challenges of water scarcity and pollution associated with 

the shale oil and gas industry, thereby promoting sustainability at the water-energy nexus. 

Shale oil and gas wastewater, including flow back and produced water, contains high 

concentrations of total dissolved solids (TDS) and complex organic and inorganic 

components [112-114]. Hence, the treatment of such complicated wastewater is an 

extremely challenging task. Although reverse osmosis (RO) is the most energy efficient 
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desalination technology [5], the TDS of shale oil and gas wastewater (up to 360,000 mg/L) 

typically approaches or exceeds the salinity limit of RO (~70,000 mg/L TDS) [115], 

rendering RO an inappropriate technology for shale oil and gas wastewater treatment. 

Membrane distillation (MD) is a hybrid thermal, membrane-based desalination technology, 

which utilizes a partial vapor pressure difference to drive the transport of water vapor 

across a hydrophobic, microporous membrane [12, 116]. Like other thermal desalination 

processes, MD is able to desalinate hypersaline feed water beyond the salinity limit of RO 

[117]. The capability of MD to utilize low-grade heat (e.g., geothermal energy), which is 

commonly contained in shale oil and gas wastewater [115], reduces primary energy 

consumption and operational costs of the treatment system [117]. Further, the modular 

configuration of a MD system renders it adaptable to the fluctuation in both quantity and 

quality of shale oil and gas wastewater [117]. Thus, MD is a promising technology that is 

potentially suitable to the desalination of shale oil and gas wastewater [118]. Since MD is 

typically used in the desalination of concentrated feed water with high salinities, MD 

membranes are facing high concentrations of foulants and scalants. As a result, membrane 

fouling and scaling significantly constrain the efficiency of MD [74, 119]. Also, pore 

wetting, which is caused by low surface tension foulants, results in significant salt passage 

and may eliminate the desalination function of the MD process [120, 121]. Accordingly, 

various modification approaches have been applied to MD membranes to hinder fouling 

and wetting, primarily by optimizing the wetting properties of membrane surface [121-

129]. For example, super hydrophobic or omniphobic membranes with high wetting 

resistance have been fabricated by introducing both a re-entrant structure and low surface 

tension materials [121-124, 128, 129]. Recently, a thin in-air hydrophilic layer has been 
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coated on MD membrane surface to reduce organic fouling [125, 126, 130]. The 

underwater oleophobic property of the hydrophilic layer deters the attachment of 

hydrophobic foulants (e.g., oil droplets) to the membrane surface and prevents pore 

blocking [125, 126]. To date, novel MD membranes developed by means of the above 

approaches have been dominantly tested with synthetic feed solutions containing 

individual foulants. However, the performance of these MD membranes in desalinating 

real industrial wastewater with complex and variable chemical compositions has not been 

systematically understood.   

2.3 Membranes 

2.3.1 Nanostructured Membranes 

As already mentioned, the two important membrane characteristics are their flux and 

selectivity. These are controlled by chemical and physical characteristics, morphology as 

well the presence of and absence of pores. A broad classification for membranes is that 

between the porous and nonporous. This essentially refers to the presence or absence of 

pores in the membrane. The former has openings through which select molecules pass. 

Movement through these membranes can also be by size exclusion and is used in 

applications such as nanofiltration and dialysis. Separation can also be accomplished by 

hydrophobicity, for example a hydrophobic porous membrane does not allow water to 

permeate. During extraction, two liquid phases meet at the pores, and during pervaporation 

the analyte vaporize at these sites. Non-porous membranes are solid (pore-free) structures 

and the molecules must move through them via diffusion, and therefore the partitioning of 

the analyte is critical.  
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The membrane may also have diverse structures. For instance, homogenous 

(isotropic) membranes are uniform throughout while asymmetric (anisotropic) and 

composite thin-films are not. Isotropic membranes include micro porous, nonporous dense 

and electrically charged membranes. Separation in micro porous membranes (pore size 

between 101-104nm) is a function of particle and pore size distribution, and are used for 

processes such as microfiltration. In nonporous dense membranes, transport is via diffusion 

and separation is influenced by partition coefficient as well as diffusivity of components in 

the membrane. These types of membranes are commonly used for extraction, reverse 

osmosis and pervaporation. Anisotropic membranes refer to those in which the material, 

the porosity and pore size vary throughout the structure and include thin-film composites 

and Loeb-Sourirajan membranes [131]. The composite membrane usually consists of 

different polymers where the surface layer determines selectivity, while the porous layer 

serves as a support.  

Homogenous solid membranes such as silicone tend to provide lower fluxes but 

higher selectivity. On the other hand, the porous membranes provide higher flux but lower 

selectivity. Composite membranes are a compromise. The porous part provides for a high 

flux, while the solid layer on top provides selectivity. For example, a one-micron silicone 

layer on top of a polypropylene composite provides high VOCs flux while preventing large 

amounts of water from permeating through. For thin-film composites, the thin surface layer 

represents a small percentage of the overall membrane but is responsible for much of the 

membrane’s selectivity. Scanning electron microscope (SEM) images of porous and 

composite membranes are shown Figure 2.4. 
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Figure 2.4 SEM of thin-film composite (polyamide surface layer supported by 

polypropylene) and microporous polypropylene.  
Source:[132] 

 

An assessment of permeability and selectivity has shown asymptotic limitations on 

the separation capability of pure polymeric membranes. Efforts at improving these have 

looked at the development of novel materials as well as the modification of their structure 

and morphology. Recent interest has been focused on developing strategies for 

incorporation of nanomaterials such as carbon nanotubes, zeolites, carbon black, gold in 

membrane matrix or surface for the generation of nanostructured membranes with higher 

flux and selectivity.  

The rate of mass transport through the membrane, Q, is controlled by the diffusion of solute 

can be estimated under steady-state conditions by use of the following equation: 

𝑄 = 𝐵𝐴𝐷(∆𝑃)𝐶𝑤/𝑏 (2.9) 

Where, A is the surface area of the membrane, D is the diffusion coefficient in the 

membrane material, P is the vapor pressure (or concentration) gradient, b is the thickness 

of the membrane, B is a geometric factor defined by the porosity of the membrane and 

𝐶𝑤 is the inlet concentration.  The presence of nanomaterials can affect several of these 

parameters; B and D are altered by the presence of the nanoparticles, while the partition 

coefficient is affected by the physical/chemical properties of the nanomaterials while their 

high surface area can facilitate greater flux. Therefore, an important consideration 
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associated with the incorporation of nanomaterials in the membranes are their chemical 

properties, size distribution, agglomeration, interaction with the membrane matrix, effect 

on porosity, surface area and morphology. Additionally, such nanomaterials can be 

effective sorbents. Together these can enhance the selective partitioning as well as the 

permeation of the solute of interest.  

 A common approach to the fabrication of nanostructured membrane involves 

adding the filler material to a polymer solution followed by film casting or spinning and is 

referred to as the mixed matrix membrane (MMM). Good polymer-filler adhesion and 

uniform dispersion allows the formation of uniform membranes of submicron thickness. 

Such membranes possess some unique properties that benefit from the polymer as well as 

the nanofillers. Due to their small sizes, the nanoparticles can be implemented within 

micron or submicron thick films to serve as high flux barriers. For example, in fabrication 

of a polymeric layer tightly packed with nanomaterials like zeolite or CNTs form a dense 

mixed matrix region. Incorporation of nanocarbons within polymeric membranes have 

been studied to increase permeate flux in extraction and pervaporation processes [133, 

134]. Dense arrays of aligned MWNTs can potentially be used for solute transport though 

the tube pores [134]. These exceptionally high transport rates as demonstrated by the CNTs 

was attributed to the specific pore size of the nanotubes, molecular smoothness of the 

surface and hydrophobicity and has been proposed as means for desalination [135] via 

membrane distillation. Additionally, ability to tailor surface properties by chemical and 

biochemical functionalization of a specific nanomaterials is an attractive route for 

membrane development. Similarly, they can be incorporated in porous structures where 

they alter the shape, size selective nature and allow molecular sieving [136].   
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2.3.2 Carbon Nanotube Membranes 

Since their discovery in 1991, CNTs have received much attention. Carbon nanotubes 

(CNTs), which are essentially graphene sheets rolled into tubes as single-walled (SWNT) 

or multiple-walled (MWNT) structures, can be interesting materials for membrane 

systems. There has been much interest in these materials because of their excellent thermal, 

electrical and structural properties. In addition, their favorable adsorption properties have 

fostered their use as sorbent materials in many analytical and extraction processes [137, 

138]. They are found to be excellent sorbents for volatile and semivolatle organics [139] 

as well as small molecules such as methane [140], water vapors [141] and other gases 

[142]. Consequently, they have found applications in chromatography as well as air and 

water sampling. They have also been used as effective media in SPE [143] and SPME 

[144]. In membranes, they can increase the selective partitioning and permeation of the 

solutes of interest.  

 In typical CNT membrane-based liquid extraction, when the two phases contact at 

the pores, the interactions can take place via rapid solute exchange on the CNTs, thus 

increasing the effective rate of mass transfer and flux. The high aspect ratio of the CNTs 

dramatically increases the active surface area as well which contribute to flux 

enhancement. Fabrication of CNT membranes are discussed in the following section. 

2.3.2.1 Carbon Nanotube Immobilized Membranes (CNIM). Mitra et al. [145] 

immobilized Carbon Nanotubes within the pores of membranes leading to the development 

of unique membrane structure referred to as the CNIM. This was achieved by immobilizing 

CNT using dispersion in a polymer solution. The dispersion was injected into the lumen of 

a conventional hollow fiber under pressure. This served as the immobilization step, and the 
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polymer served as the glue that held the CNTs in place. Such membranes were robust, 

thermally stable and possessed high selectivity. The goal here was to immobilize CNTs 

without covering its active surface with the polymer, or having a thick polymeric layer over 

it. This is advantageous as well as challenging. However, accomplishing this is highly 

desirable so that their surface is free to interact directly with the solute. The membrane 

produced from this method has been used for liquid-liquid extractions, membrane 

distillation and pervaporation [145-149]. Typical membrane produced by this process is 

shown in Figure 2.5 (a –b). Additionally, Figure 2.5 (c – d) shows the typical SEM image 

of CNIM membrane in comparison to the unmodified polypropylene membrane. 
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Figure 2.5 (a) Photograph of carbon-nanotube immobilized membrane (CNIM); (b) 

photograph of pure polypropylene; (c) SEM image of unmodified polypropylene 

membrane; and, (d) CNIM. Source:[145] 

 

2.3.2.2 Carbon Nanotube Nanocomposite Membrane. Initial attempts at incorporating 

CNTs in membranes involved the formation of CNT-nanocomposite by solution casting. 

Peng and coworkers[150] fabricated membranes with chitosan functionalized MWNTs. 

Surface decoration/wrapping of carbon nanotubes with chitosan biopolymer led to 

dissolution and dispersion in PVA solution. The mixture was subsequently mechanically 

stirred, ultrasonically agitated and cast onto a glass plate. The pristine nanocomposite was 

dried to form 80 μm thick membrane. The membrane was used in pervaporation of 

benzene/cyclohexane (50/50, w/w) mixture. 
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2.3.2.3 Aligned Carbon Nanotube Membranes (ACNTs). Although great deal of 

practical and fundamental studies has been reported on CNT- Mixed Matrix Membrane 

(MMM), related researches in this area did not receive much attention until Hinds et. al. 

[134] reported aligned carbon nanotubes (ACNTs) membrane using CVD on quartz 

substrate across a polystyrene film. The quartz substrate (2cm x 2cm) with aligned 

multiwalled CNTs was coated drop wise with 50% (by weight) of polystyrene (PS). Excess 

polymer was removed by spin coating at 3000 rpm for 1 minute. Following that, neat 

toluene was poured dropwise onto the sample and allowed to set for 1 minute to further 

dissolve excess polymer covering the tops of CNTs and spin coated for 1 minute at 3000 

rpm. Finally, the sample was dried in a vacuum oven at 70oC for 4-5 days under 25-inch 

Hg pressure to fabricate the aligned CNT/PS composite film which was removed from 

quartz substrate by HF solution (1:2 by volume).  Additionally, plasma oxidation was 

performed to remove excess polymer as well as open CNT tips. The resulting free standing 

composite films as formed, with the CNT alignment intact from top to bottom were 

accessible to the outer molecule both sides of the formed membrane. Figure 2.6 illustrates 

the fabrication of cross sectional schematic of aligned CNT (ACNTs) membrane 

fabrication steps. 
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Figure 2.6 Aligned carbon-nanotube (CNT) membrane fabrication steps. 
Source:[151] 

 

2.3.3 Application of Nano Structured Membranes 

The nanostructured membranes are relatively new developments and even newer when it 

comes to analytical chemistry. Some applications that show a great deal of promise are 

presented here. In the analytical field, the largest application has been with the 

incorporation of CNTs.  This is an attractive because the CNTs are excellent sorbents that 

can enhance partition coefficients, increase the selectivity and result in enhanced 

enrichment and extraction efficiency. Functionalization of CNTs can also be used to alter 

selectivity because it alters solute solvent interactions. 
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2.3.3.1 Carbon Nanotube Membranes in Pervaporation. The outstanding sorbent 

characteristic of CNTs has led to the exploration in pervaporation. Pervaporation 

performance of the resulting MWNTs incorporated polyvinyl alcohol PVA-MMM) was 

carried out by Choi et al. [152] where an increase in flux and a decrease in the selectivity 

was reported with the increase in MWNTs content. These were attributed to   two key 

factors: the crystallinity of membrane and the molecular transport through the nanotubes. 

Higher amount of MWNTs created strong interaction with PVA and therefore prevented 

the packing of molecules to form crystal, resulting in a decrease in the crystallinity of the 

PVA matrix. Peng et al. [153] studied the pervaporation properties of CNT-PVA 

membranes for the separation of benzene/cyclohexane mixtures. The CNTs were dispersed 

with cyclodextrin by grinding during the formation of MMM in order to reduce the 

aggregation and improve the compatibility of CNTs in the polymer matrix. The resulting 

MMMs exhibited the highest benzene permeation flux of 61.0 gm−2 h−2 with separation 

factors of 41.2 for the mixture with weight percent of 1:1. Upon the comparison of 

pervaporation properties with the PVA and cyclodextrin dispersed PVA membranes, the 

MMMs prepared through the incorporation of CNTs demonstrated enhanced mechanical 

strength properties and pervaporation properties. Mondal and Hu [154] have reported the 

adverse effects of the presence of high MWNT content in pervaporation process. 

Functionalized MWNTs were incorporated into segmented polyurethane (SPU) to study 

the water vapor transport properties. In such MMM system, MWNTs were found to 

influence both crystalline and amorphous regions of SPU matrix by imparting stiffness to 

the polymer matrix, particularly when added in excess.   
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Figure 2.7 Mechanism of pervaporation in carbon-nanotube immobilized membrane 

(CNIM). Source: [147]  

 

Sae - Khow and Mitra [147] reported the development of novel CNIM using a composite 

membrane for the pervaporative removal of organics from an aqueous matrix. The CNIM 

demonstrated several advantages including enhancement in organic removal and mass 

transfer by 108 and 95% respectively and also enhanced recovery at low concentrations, 

lower temperatures, and higher flow rates. The nanotubes provided additional pathways 

for enhanced solute transport, affecting both the partitioning and diffusion through the 

membrane as shown in detailed mechanism depicted as Figure 2.7. 

2.3.3.2 Carbon Nanotube Membranes in Membrane Extractions. The sorbent 

characteristics of the CNT membrane have been exploited in membrane extraction as well. 

Eshaghi et al. [155] demonstrated a three-phase supported liquid membrane consisting of 

an aqueous (donor phase), organic solvent/nano sorbent (membrane) and aqueous 

(acceptor phase) system operated in direct immersion sampling mode. The MWNTs 
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dispersed in the organic solvent were held in the pores of a porous membrane supported by 

capillary forces and sonication. Their proposed method allowed the very effective and 

enriched recuperation of an acidic analyte into one single extract. The method showed good 

linearity in the range of 0.0001-50 micro g/L, reproducibility and detection limits in the 

pico gram/L with enrichment as high as 2100. 

Hylton et al. [156] used CNIM to carry out three-phase supported liquid micro 

extraction (μ-SLME) as well as liquid-liquid extraction (μ-LLME). The immobilization 

was carried out such that the CNT surface was accessible to adsorption/desorption. Several 

organic compounds including haloacetic acids and non-polar organics were studied using 

a hollow fibre CNIM. The incorporation of MWNTs improved the extraction efficiency by 

as much as 144%.  Sae Khow et al. [145] reported the effect of both polar and non-polar 

compounds as analyte and reported that the enrichment factor enhancement by 30-113% 

using CNIM. O.Sae Khow and Mitra[146] also demonstrated the simultaneous extraction 

and concentration on CNIM, where the CNTs enhanced both these phenomenon (Figure 

2.8) leading to superior performance in terms of higher enrichment factors and extraction 

efficiency. The CNTs immobilized in the pores of a polypropylene hollow fiber, led to 

nearly 250% enrichment enhancement over the unmodified parent membranes. The 

detections limits for polycyclic aromatic compounds were between 0.042 and 0.25 μg/L. 

This flow through system was designed for on-line extraction in automated analysis. 
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Figure 2.8 Carbon-nanotube (CNT)-assisted extraction and enrichment. Triangles 

represent the analyte molecules and the circles represent the solvent molecules. 

 Source: [146]. 

 

More recently, Bhadra et al. [157] demonstrated for the first time that Carbon 

Nanotubes could be immobilized on the surface of solid polymeric membranes, which can 

also lead to enhanced extraction of polar and non-polar organics. A polar membrane was 

used on which nonpolar CNTs were immobilized. This CNIM combination showed 

dramatic enhancement of enrichment factor by 92% and solvent retention by as much as 

29%.  

2.3.3.3 Carbon Nanotube Membranes in Membrane Distillation. A novel analytical 

method that also used carbon nanotube based membranes is membrane distillation (MD). 

Mitra et. al. [148, 149]  recently reported this real-time, online concentration technique, 

where the aqueous matrix is removed from the sample to enhance analyte enrichment.  

Therefore, MD is a universal method that can be used for a wide range of compounds, and 
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is unlike conventional membrane extractions that rely on the permeation of the analyte into 

an extractant phase.  An alternate to thermal distillation, here a heated aqueous solution (or 

polar solvent such as ethanol) is passed through the lumen of a hydrophobic hollow fiber, 

which prevents the transport of the liquid phase across the membrane.  However, the 

solution is partially converted to vapor (60-90oC) and MD relies on the net flux of this 

vapor from the warm to the cool side of the membrane. The driving force for the vapor 

transport is determined by the vapor pressure difference across the membrane, which 

depends upon the temperature difference. 

MD provides a complimentary approach to conventional membrane extraction 

which relies on the selective permeation of the analyte, and is often a challenge because 

selective membranes for diverse analytes are not always available. MD with CNIM (Figure 

2.9 (a)) has shown great promise because the CNTs were instrumental in increasing water 

vapor as well as solvent flux. The mechanism of MD with CNTs is shown in Figure 2.9(b) 

for removing polar solvents for concentrating pharmaceutical compounds. Comparison 

between MD performance with and without CNTs is shown in Figure 2.9(c). Enrichment 

using CNIM [149] doubled compared to membranes without CNTs, while the methanol 

flux and mass transfer coefficients increased by 61% and 519%,  respectively. 

Additionally, the carbon nanotube enhanced MD process showed excellent precision 

(RSD of 3–5%), and the detection limits for pharmaceutical compounds were in the range 

of 0.001 to 0.009 mg L−1. Overall, it was postulated that the CNTs served as sorbent sites 

thereby providing additional pathways for enhanced solvent vapor transport, thus 

enhancing preconcentration.  
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Figure 2.9 (a) Membrane distillation (MD) as an on-line preconcentration technique; (b) 

membrane device; (c) MD performance on unmodified membrane and carbon-

nanotube immobilized membrane (CNIM). 

 Source: [149]. 
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CHAPTER3 

 

REDUCTION OF SCALING 

 IN MICROWAVE INDUCED MEMBRANE DISTILATION  

ON CARBON NANOTUBE IMMOBLIZED MEMBRANE  

 

 

3.1 Introduction 

With water scarcity looming all over the horizon, the generation of potable water from 

sea/brackish water as well as the saline waste management are becoming important 

desalination technologies. Desalting is also important for zero to minimal liquid discharge 

(ZLD) systems that eliminate liquid waste from production facilities by recovering all salts 

and reusing the purified water [117, 158, 159]. Typical ZLD units use thermal distillation 

techniques because Reverse osmosis (RO) has limited applicability at high salinity 

encountered in ZLD [160, 161]. 

Compared to conventional thermal distillation, the relatively low temperature 

operation (50–90°C) and the lower CAPEX (capital expenditure) make membrane 

distillation (MD) an attractive alternative [9, 17, 18, 21]. In MD, the driving force is a 

temperature induced vapor pressure gradient generated by having a hot feed and a cold 

permeate [162]. The low operating temperature in MD makes desalination possible using 

low grade heat sources such as low pressure steam and solar energy [163-167]. Compared 

to reverse osmosis (RO) a major advantage of MD is that while the former uses dense 

hydrophilic membranes, MD uses microporous hydrophobic membranes that are less prone 

to fouling, and MD can be used to treat water with higher salinity [16, 74, 168, 169] 

To make MD commercially viable, it is important to address some of its limitations 

such as low water vapor flux, fouling at high salt concentrations and high energy 
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consumption [74, 170-176]. Since MD can be used for treating high salt concentration 

waters, some major commercial opportunities for MD are the treatment of RO reject, power 

plant blow downs and water from [74, 122, 177-179]. One of the anticipated problems with 

increased salt concentrations is fouling where flux decreases due to the deposition of 

suspended or dissolved substances on the membrane [16, 74]. Membrane processes are 

susceptible to scaling at higher salt concentrations when the ionic product of sparingly 

soluble salts in the concentrated feed exceeds its equilibrium solubility product [180]. 

Some common scalants are calcium salts such as calcium carbonate (CaCO3), Calcium 

sulfate (CaSO4) and barium sulfate (BaSO4) [16, 74, 168]. Several approaches such as the 

use of ultrasound, pH control of feed side, and incorporated gas bubbling into direct contact 

membrane distillation (DCMD) has been used to reduce fouling in MD [90, 181, 182].  

Recently, we have reported microwave induced membrane distillation (MIMD) 

where the feed water is heated by microwave instead of conventional thermal heaters [94]. 

The mechanism of microwave heating is quite different from conventional heating [52, 

94]. In general, saline water generates dipoles when placed in a microwave field which 

then develops orientation polarization, and the lag between the dipole orientation and the 

electric field leads to heating of the water [183-186]. In addition, non-thermal effects such 

as local super heating and generation of nanobubbles are associated with microwave 

heating [67, 187-189]. Together these lead to lower temperature polarization, higher vapor 

pressure gradient and flux [68]. The microwave process is also known to reduce the 

activation energy of physical and chemical processes, break down hydrogen bonded 

structures and reduce the average particle size salts in an aqueous environments [67, 68, 

190-192]. The energy consumption in MIMD has also been reported to be significantly 
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lower than that by regular heating [94, 193, 194]. Based on the results so far, MIMD 

appears to be a promising technique.      

Particle size of the dissolved solute is one of the key factors that influences 

membrane fouling. In general, it has been observed that the particles with smaller size tend 

to lower the fouling tendency [94]. Since important parameters such as hydrogen bonding 

and surface tension are affected by microwave radiations, the latter also affects the 

colloidal behavior of salts [94, 195-197]. Both crystal growth and decomposition which 

refers to the breakdown of salt crystals are effected by microwave radiations [198]. Since 

the mechanism of salt crystals formation in microwave is known to be quite different [199, 

200], therefore, it is expected that the fouling behavior in MIMD will vary from 

conventional heating. The objective of this research is to explore the effect of microwave 

heating on fouling in a MD process, especially in the presence of common foulants such 

as calcium and barium salts.   

 

3.2 Experimental   

3.2.1 Chemicals, Materials and Membrane module 

CaSO4 (99% pure, anhydrous), CaCO3 (98+%, pure heavy powder), and BaSO4 (99%, 

precipitated) were obtained from Fisher Scientific (Hanover Park, IL) and deionized water 

(Barnstead 5023, Dubuque, Iowa) were used in all experiments. 

The carboxylated carbon nanotubes (CNT-COOH) were incorporated on the 

polypropylene (PP) membrane (A carbon nanotube immobilized membrane (CNIM) was 

used in this study. The base membrane was a polypropylene (PP) membrane (0.45 µm pore 

size, STERLITECH company, WA, US) to fabricate the carbon nanotube immobilized 
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membrane (CNIM). The details for CNT-COOH synthesis and CNIM fabrication have 

been reported before [175, 201].  

3.2.2 Experimental Setup 

The MIMD setup for this experiment is shown in Figure 3.1 and it has been described in 

our previous work [94]. A polytetrafluoroethylene (PTFE) module with an effective 

membrane area of 11.94 cm2 has been used for DCMD experiments. The experimental 

setup includes the membrane module, pumps (Cole Parmer, Vernon Hills, IL) for feed and 

permeate flow, temperature controlled water bath (GP-200), a circulating chiller (MGW 

Lauda RM6) and a microwave (Oster, OGZF1301). A temperature controlled water bath 

was used to heat the feed water for conventional MD and an 1100-watt domestic 

microwave for MIMD. The experiments were carried out at different feed flow rates and 

temperatures with constant permeate flow rate of 200 mL/min at 15oC. K-type temperature 

probes (Cole Parmer) were used to monitor the temperatures of the system. The permeate 

water quality was monitored using a conductivity meter (Jenway, 4310). Under similar 

conditions, each of the experiment was conducted for three times. The relative standard 

deviation was found less than 1%. 
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Figure 3.1 Schematic of microwave induced membrane distillation system. 

 

3.2.3 Membrane Performances 

The performance of MIMD, especially its fouling characteristics with CNIM was 

investigated using CaSO4, CaCO3, and BaSO4 solutions at the concentrations of  2950, 

3500 and 2500 ppm respectively. Comparisons were made with conventional MD. The 

water vapor permeate flux was used to determine the performance of MIMD and MD with 

varying feed temperatures and flow rates. The water vapor flux, Jw, is expressed as: 

Jw =
𝑊𝑝

t ∙ A
 

(3.1) 

 

     

Where, Wp is the total mass of permeate, t is the operation time and A is the effective 

membrane surface area. To compare fouling in conventional MD and MIMD, the flux was 

measured over a period of time and the normalized flux decline, FDn, was measured as:   
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FD𝑛 (%) =   (1 −
𝐽𝑓

𝐽𝑜 
) 𝑥 100 

(3.2) 

 

Where, Jf and J0 are the final permeate flux and initial flux, respectively.  

The deposition of salt crystals was characterized by scanning electron microscopy 

(SEM) (JEOL; model JSM-7900F, JEOL USA inc., USA) and quantified using gravimetric 

measurements (Perkin Elmer, TGA 8000). Dynamic light scattering (Zetasizer Nano-ZS90, 

Malvern Instrument Ltd, UK) was used to determine the sizes of salt particles in simulated 

conventional and microwave heating. The water and salt-water interactions with 

microwave heating were characterized using Fourier transform infrared spectroscopy 

(FTIR) (IRAffinity-1, Shimadzu). 

 

3.3 Results and Discussion 

3.3.1 Effect of Temperature and Feed Flowrate  

Figure 3.2 (a) shows the effect of temperature on water vapor flux in MD and MIMD.  

Highly concentrated CaSO4 solution was used as the feed. The permeate fluxes of both MD 

and MIMD with CNIM increased with increase in temperatures as the water vapor pressure 

increased with temperature. It was observed that MIMD provided higher permeate flux at 

all temperatures when compared with the conventional MD. The highest enhancement was 

found at the feed temperature of 50°C with permeate flux of 38.6 kg/m2.h, which was 90 

% higher than conventional MD. 

The effect of varying feed flow rate at 70oC is shown in Figure 3.2 (b). The 

permeate flow rate was kept constant at 200 ml/min. Increase in feed flow rates increased 

the water vapor fluxes of both MIMD and MD. The increased feed flow rate not only 
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increases the amount of water vapor into the MD module, but created a turbulence and 

decreased the boundary layer effect at the bulk feed solution-membrane interface. As a 

result, the temperature polarization decreased and the permeate flux was enhanced. In 

general, these results are in line with our previous study with NaCl [94]. The enhancements 

in MIMD were attributed to the microwave effects such as localized super heating, 

nanobubbles formation, breakdown of hydrogen-bonded H2O and salt-water cluster 

destruction. However, it is noted that the enhancements reported here for CaSO4 were 

higher than those reported for NaCl [94].  
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Figure 3.2 Effect of increasing (a) feed temperature and (b) flow rate on water vapor flux 

for CaSO4 solution during MD and MIMD. 
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3.3.2 Membrane Fouling in MD and MIMD 

As already mentioned, the membrane fouling in MIMD was studied using highly 

concentrated salt solutions such CaSO4, CaCO3, and BaSO4, and compared to the 

conventional MD. These concentrations were clearly higher than what is normally 

encountered and were used only to test the level of fouling. Fouling was investigated by 

the reduction of flux over the period of operation time. All experiments were carried out at 

a feed temperature of 70oC and feed flow rate of 200 ml/min. Figure 3.3 a, 3.3 b, and 3.3c 

show the water vapor flux as a function of time for CaSO4, CaCO3, and BaSO4, 

respectively. The reduction in water vapor flux with time showed that fouling was quite 

serious with the salt solutions tested for both MIMD and MD. 

Figure 3.3 a shows that the water vapor flux was 46.1 kg/m2.h at the first hour for 

conventional MD with CaSO4 solution, while it was 54.3 kg/m2.h for MIMD. The flux for 

MD dropped to 12.6 kg/m2.h after 12 h of continuous operation. The flux reduction pattern 

was somewhat different for MIMD, where the flux reduced rapidly within the first four 

hours and then gradually decreased to 23.5 kg/m2.h after 12 h, which was 86.5 % higher 

than that of MD. The initial and final permeate fluxes were used to calculate the normalized 

flux decline. The results show that the normalized flux decline of MD and MIMD with 

CaSO4 were 72.7% and 56.7%, respectively.  

Figure 3.3 b illustrates the water vapor flux of MIMD and MD with CaCO3. The 

flux for MD was 50.1 kg/m2.h, while it was 55.3 kg/m2.h for MIMD at the first hour. The 

flux decline was much slower for CaCO3 than CaSO4. The flux of MD modestly dipped 

and ended up at 32.4 kg/m2.h after 20 hrs. For MIMD, the water vapor flux had the same 

trend as CaSO4 with the significant reduction in the first five hours, followed by the gradual 
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decrement and the flux was 40.2 kg/m2.h after the operation of 20 h, which was 24.1% 

higher than that of MD. The normalized flux decline of MD was 35.6%, while the value of 

MIMD was 27.3%.  

Figure 3.3 c shows the fluxes of MD and MIMD for BaSO4 with 16 h of continuous 

operation. The initial flux was 50.1 kg/m2.h for MD and gradually decreased to 33.5 

kg/m2.h after 16-h operation. At the same time the flux of MIMD was 54.4 kg/m2.h at the 

first hour and gradually reduced to 38.5 kg/m2.h after 16 h, which is 14.9% higher than that 

of MD. The normalized flux decline of MD and MIMD with BaSO4 were 33.4% and 

29.2%, respectively. 

The normalized flux decline of the three salts calculated at the operation time of 12 

h showed that CaSO4 was the strongest foulant and this was in agreement with results 

published previously [94]. The results also shown that BaSO4 was the stronger foulant 

compared to CaCO3. It was also evident that the microwave heating provided not only 

higher water vapor flux than MD, but also the fouling was less compared to conventional 

heating.   
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Figure 3.3 Water vapor flux in PP-CNIM membranes for (a) CaSO4  at a concentration 

of  2.95g/l; (b) CaCO3 at a concentration of 3.5g/l ; and (c) BaSO4 at a concentration of 

2.5g/l. All analysis was done at a temperature of 70 °C and feed flow rate of 200 mL/min. 

(continued). 
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Figure 3.3 (continued) Water vapor flux in PP-CNIM membranes for (a) CaSO4  at a 

concentration of  2.95g/l; (b) CaCO3 at a concentration of 3.5g/l ; and (c) BaSO4 at a 

concentration of 2.5g/l. All analysis was done at a temperature of 70 °C and feed flow 

rate of 200 mL/min.  

 

 

3.3.3 Deposition of Salts on MD and MIMD Membranes 

 

            The difference in the deposition of salt on CNIM by conventional MD and MIMD 

was quantified by weighing the amount of salt on the membrane before and after the 

experiment. The weight measurements were made after drying the membrane in an oven 

overnight at 70oC.  Table 3.1 shows that the total amount salt deposited on the membrane 

surface after 7 h of continuous operation at 70oC under during MD and MIMD. The amount 

of salt deposited was significantly less, 50 to 79% for MIMD.  
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Table 3.1 Deposition of Salts on the Membrane Surface after 7 hrs of Operation at 70oC 

Salt Amount of salt deposited on the membrane surface (mg) % weight 

decrease Conventional heating Microwave heating 

CaSO4 20.8 9.4 54.8 

CaCO3 7.1 1.5 78.9 

BaSO4 3.6 1.8 50.0 

 

Membrane fouling was further investigated by characterizing the deposition of the 

respective salt crystals on the CNIM. Figure 3.4a and 3.4b show SEM images of the 

original polypropylene membrane and the CNIM used in these experiments.  Figure 3.4c 

and 3.4d show the deposition of calcium sulfate crystal scales on CNIM after the 

experiments with conventional heating and microwave heating respectively. It is evident 

that the formation of calcium sulfate crystal on the membranes was significantly different 

in MD and MIMD. With conventional heating, calcium sulfate salt seemed to form 

homogeneous crystals that adhere to the membrane surface (Figure 3.4c), while such 

crystal formation was not observed in MIMD. Here the calcium sulfate crystals were small 

and non-uniform, and the particles appeared to be sparsely dispersed certain areas on the 

membrane (Figure 3.4d). As a result, there was more active membrane surface available 

during MIMD that resulted in higher water vapor flux.  Similar pattern of crystal formation 

was also observed in case of CaCO3.With conventional MD, the rod like crystal of calcium 

carbonate densely packed the membrane surface (Figure 3.4e), whereas in MIMD, the 

crystals were smaller in size and flaky in nature with interstitial pores in-between them 

(Figure 3.4f).   

The deposition of barium sulfate on the membrane was also studied as illustrated 

in Figure 4g and 4h. The crystals of barium sulfate salt with conventional heating appeared 
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to be quite uniform and agglomerated (Figure 3.4g). While, with microwave heating, the 

particles were smaller and loosely deposited on the membrane surface (Figure 3.4h), so 

these resulted in higher flux enhancement for MIMD, compared to MD. 
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Figure 3.4. a) original PP membrane; b) CNIM; c) CaSO4 scale with conventional heating; 

d) CaSO4 scale with MIMD; e) CaCO3 scale with conventional heating; f) CaCO3 scale in 

MIMD; g) BaSO4 scale with conventional heating; and h) BaSO4 scale with MIMD 

conventional heating; and h) BaSO4 scale with MIMD. 
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3.4 Proposed Mechanism 

Applying microwave heating of the brine during MD can affect the solution in different 

ways. The microwave heating breaks down the hydrogen bonded structure in the aqueous 

phase and disintegrate the salt particles present in the solution [94]. FTIR [94]and Raman 

[197] measurements have shown that the O-H band changes significantly in microwave 

treated water. 

From nucleation theory [199], nucleation rate per volume is described by : 

I =
D

𝑅𝑑
2  𝑛−∆𝐺∗/𝐾𝑇 

(3.2) 

Where D is the diffusivity of nuclei, Rd is the space between the nuclei, ΔG* is the 

activation energy, K is the Boltzmann constant, and T is the temperature. D, Rd, as well as 

the activation energy can later dramatically under microwave radiations. Another important 

consideration is the change in surface tension which is a measure of surface energy under 

microwave radiations. The reduction of surface tension is related to the nucleus radius salt 

granule by the equation below. 

𝑅∗ =
−2γ

∆𝐺𝑉
  

(3.3) 

Where R* is the critical nucleus radius, γ is the surface energy per area of nucleus or equal 

to σ (surface tension). Therefore, microwave radiation is expected to reduce surface 

tension, the nuclei radius and finally the size of the salt crystal. In addition, the nano-

bubbles generated under microwave irradiation can also alter colloidal behavior of 

crystallizing salts, a phenomenon that has not been studied so far. 
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The influence of microwave heating on fouling reduction was investigated by using 

FTIR spectroscopy and studying the alterations of the particle size via dynamic light 

scattering. The FTIR spectra of CaSO4, CaCO3 and BaSO4 solution at room temperature 

(RT), conventional heating and microwave heating are presented in Figure 3.5a, 3.5b and 

3.5c, respectively. As can be seen from the figures that the IR absorption of water 

molecules differed under conventional and microwave heating due to the variation in 

water-water and salt-water interactions [94]. The peak at 2127 cm-1 resulted from the 

combination of bending and liberations. The bending frequency at 1644 cm-1 was attributed 

to the hydrogen bonding, which was much weaker for microwave treated water for CaSO4 

solution. The peak at ~3490 cm-1 arose due to the stretching of water molecules. The nature 

of the spectrum was observed to be different under changing heating conditions as the 

arrangement of hydrogen bonded water clusters changed differently, which led to the 

variation of the peaks. The nature of FTIR spectra for BaSO4 solution at 1644 cm-1 and 

~3490 cm-1 were found to be slightly different than other Ca+2 salt solutions due to the 

difference in the ionic interactions of the corresponding salt solutions.   
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Figure 3.5 FTIR spectra of a) CaSO4-water solution (2.95g/l); b) CaCO3-water solution 

(3.5g/l); c) BaSO4-water solution (2.5g/l) under room temperature (RT) microwave 

(MIMD) and conventional heating (MD
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Dynamic Light Scattering (DLS) was used to measure changes of the particle size of salt 

molecules after microwave irradiation compare to conventional heating. Figure 3.6a shows 

the influence of microwave irradiation on particle size distribution of CaSO4. The average 

CaSO4 particle size was 1173 nm at room temperature and dropped to 994 nm at 70°C of 

regular heating, while it was 354 nm. When heated by the microwave heating at the same 

temperature. This showed that the microwave heating significantly lowered the average 

particle size of the CaSO4 clusters. Figure 3.6b shows the influence of microwave heating 

on the particle size of CaCO3 which was 1175 nm at room temperature, and it dropped to 

371 nm at 70°C of regular heating and to 226 nm during microwave heating. Similar 

influences were seen for BaSO4 as shown in Figure 3.6c, where the particle size dropped 

from 827 nm during regular heating to 362 nm during microwave heating. In general, the 

particle size of all the salts above was significantly reduced by regular heating and 

microwave heating compared to what was observed at room temperature. This is in line 

with the previous report on crystallization in microwave activated water where microwave 

radiation led to a reduction in crystal lattice volume and crystal size compared to samples 

without microwave treatment [94]. 

It is noted that the size reductions for CaSO4, CaCO3, and BaSO4 were different. It 

appears that BaSO4 was followed by CaCO3, and CaSO4. Among the other factors, the 

dissimilarities could be attributed to the difference in their dielectric constants. BaSO4 had 

the highest dielectric constant, so it could absorb more energy and show more microwave 

effects while CaCO3 had a higher electric constant than CaSO4, which made the rate of size 

reduction of CaCO3 higher than of CaSO4.
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Figure 3.6 The influence of microwave irradiation on particle size distribution of a) 

CaSO4; b) CaCO3; and c) BaSO4.
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3.5 Conclusion 

Microwave irradiation was used as a means to heat the highly concentrated CaCO3, CaSO4 

and BaSO4 solutions in the DCMD mode. Besides the enhancement of water vapor flux, 

the MIMD exhibited significantly less fouling and the normalized flux decline was lower 

than conventional MD. The salt deposition on the membrane surface was observed to be 

between 50-79% less during MIMD and the morphology of the deposits from MIMD was 

quite different from those of conventional MD. It appears that non-thermal effect, such as, 

localized super heating, the breakdown of hydrogen bonding, alternation of surface tension, 

the increase in ionic mobility altered colloidal behavior and particle formation in MIMD. 

Apart from the less energy requirement and higher flux in MIMD, the lower flux decline 

at very high salt concentrations could lead to dramatic improvements to the MD technology 

in the future.
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CHAPTER 4 

 

SCALING REDUCTION IN CARBON NANOTUBE IMMOBLIZED 

MEMBRANE DURING MEMBRANE DISTILLATION  

 

4.1 Introduction  

 Reverse osmosis (RO), multi-stage flash and multi-effect distillation are the most common 

desalination techniques that have shown much promise. However, they have  limitations 

such as fouling of RO membranes in presence of  scaling ions, and the high energy  and 

capital cost in thermal methods [119, 202]. As a result, alternative desalination 

technologies, including solar evaporation and membrane distillation (MD) are being 

explored [203-205]. The MD process paired with solar energy or low grade heat source can 

be an attractive alternate to the conventional membrane based desalination [51, 206].  MD 

is also evolving to be an effective desalination technique for treating the high salinity water 

that RO is unable to handle due to high osmotic pressure and extensive pretreatment 

requirements [207-209].   

A major obstacle in membrane based desalination techniques is fouling [210-213] 

from the deposition of suspended or dissolved substances on the active membrane surface 

and/or within its pores [16, 214, 215]. Several types, such as inorganic fouling or scaling, 

particulate and colloidal fouling, organic fouling and biofouling are common [216-218]. 

Fouling has also been an important issue in RO, nano-filtration, and ultra-filtration [219-

221] .  Due to the use of porous hydrophobic membranes, fouling tends to be significantly 

less in MD than RO, but still is an important consideration for high salinity water desalting.  

Several approaches for fouling reduction such as the introduction of nano-bubble and ultra 
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sound have been reported [90, 222, 223]. Of particular interest has been the deposition of 

inorganic salts such as calcium carbonate (CaCO3), calcium sulfate (CaSO4) and barium 

sulfate (BaSO4), which are found in hard waters as well as industrial waste from power 

plants, hydraulic fracturing and waste waters form industries such as textiles and pulp and 

paper [224].  The formation of a fouling layer comprising of salt crystals formed on/within 

the pores of MD membranes are known to cause progressive wettability of the membrane 

[225]. The addition of several antiscalants have been reported for the reduction of fouling 

[226] in RO and thermal distillation processes. The use of antiscalants in thermally driven 

MD process could potentially help to lower the scaling without any adverse effect [88, 95, 

227].  

 We have described the development of carbon nanotube immobilized membrane 

(CNIM), where the carbon nanotubes (CNTs) increased the partitioning of the water vapor 

while rejecting the liquid phase leading to dramatic increase in MD flux [173, 228, 229].  

Besides this, it is expected that the presence of CNTs may reduce the scale formation on 

membrane surfaces where the CNTs serve as a screen. This may resist the membrane pore 

blocking by salt deposition, and it is conceivable that the salt crystals deposited on the 

screen-like CNTs can be removed or washed off rather easily (as shown in Figure 4.1). In 

this way, the CNT-screen maintains the pore opening for the permeation of water vapor, 

while repelling the liquid water and salt clusters for longer period of time.  The objective 

of this project was to study the fouling behavior of the CNIM for various highly 

concentrated feed mixtures and to evaluate the performance of CNIM with addition of 

antiscalant.  
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Figure 4.1 Screening effect of CNTs in preventing the salt deposition on the membrane 

surface. 

 

4.2 Experimental 

 

4.2.1 Materials and Chemicals 

 Flat polypropylene (PP) membrane (0.45 Micron pore size, from STERLITECH Inc., WA, 

USA) was used in this study. Calcium sulfate (CaSO4), calcium carbonate (CaCO3), barium 

sulfate (BaSO4) salts and the antiscalant (AS) polyacrylic acid (PAA) (63 wt% solution in 

water, mol. Wt. ~2000) were purchased from Thermo Fisher Scientific Chemicals Inc. 

(Fair Lawn, NJ). Deionized water (Barnstead 5023, Dubuque, Iowa) was used to prepare 

the feed solutions and as cold distillate.  

Multi-walled CNT was purchased from Cheap Tubes, Inc. (Brattleboro, VT, USA). 

The MWCNTs were functionalized with carboxylic acid groups in a Microwave 

Accelerated Reaction System (Model: CEM Mars, CEM Corporation, Matthews, NC, 
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USA) in our laboratory. The PP membrane was used as the base membrane to fabricate the 

carbon nanotube immobilized membrane (CNIM). The CNTs are immobilized on the 

membrane surface using small amount of polyvinylidene fluoride (PVDF) as binder. 

Excess PVDF has been removed from the surface by washing with acetone after 

fabrication. The functionalization process and CNIM fabrication methods have been 

reported before [171, 201, 230]. Our previous studies have already proven the ability to 

retain the CNT coating on the surface for longer period of time [175, 176]. 

4.2.2 Experimental Procedure 

Figure 4.2 demonstrates the DCMD experiment set up in the laboratory. The details have 

been described before[93]. The hot aqueous feed solutions were circulated on one side of 

the membrane in the DCMD cell. The initial salt concentration in the feed were 2.95g/L 

for CaSO4 solution, and 3.5g/L for CaCO3 and 2.5 g/L for BaSO4 salt solution. 50 mg of 

antiscalant was added in 1L of feed solution for the experiment. The data was reported after 

repeating each experiment at least three times to conform its reproducibility. 
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Figure 4.2 Schematic representation of the experimental setup.
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Scanning electron microscopy (SEM) (JEOL, Model JSM-7900F, JEOL USA Inc.; USA) 

was used to characterized the surface morphology of the PP membrane and the CNIM 

before and after the experiment. Thermogravimetric analysis (TGA, Perkin–Elmer Pyris 

7 TGA system at a heating rate of 10 °C/min in air) was used to investigate the thermal 

stability of the membranes.  

4.2.3 DCMD Performance  

The MD performances of CNIM membrane with and without the antiscalant was studied 

as a function of time, temperature, and feed flow rate. The water vapor flux, Jw, is 

measured as: 

𝐽𝑤 = 𝑊𝑝/𝑡. 𝐴 (4.1)  

 

Where Wp is the mass of permeated water in time t through surface area A. The flux can 

also be denoted as: 

𝐽𝑤 =  𝑘 (𝑃𝑓  −  𝑃𝑝) (4.2)  

 

The overall mass transfer coefficient (k) was computed as:  

𝑘 =  𝐽𝑤 / (𝑃𝑓  − 𝑃𝑝) (4.3)  

 

Where Pf and Pp are the feed and permeate side water vapor pressure, respectively.  

To compare fouling between the PP membrane and CNIM, the flux was measured over 

time and the normalized flux decline, FDn, was determined as: 
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𝐹𝐷𝑛(%) = (1 −   
𝐽𝑓

𝐽0
) × 100 

(4.4) 

   

Where, Jo and Jf are the initial and final permeate flux over a period of time t, respectively.  

4.3 Results and Discussion 

 

4.3.1 Characterization of the Membranes 

Figures 4.3a and b shows the surface SEM images of the original PP membrane and CNIM. 

Figure 4.3a illustrates the pores present on PP membrane surface, and the incorporation of 

the carboxylated CNTs led to a modification in morphology as can be seen from Figure 

4.3b. AFM images from our previous studies have shown that the incorporation of CNTs 

on membrane surface also increases the surface roughness [175]. The gas permeation test 

of the membranes demonstrated no significant change in the effective surface porosity over 

the effective pore length of the membranes, as only small quantity of CNTs was 

immobilized on the membrane surface [201, 230].  

Figure 4.3 Surface SEM image of (a) PP membrane and (b) CNIM.

(a) (b) 
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Figure 4.3 c) The TGA curves of plain and modified membranes. 

The thermal stability of the PP membrane and CNIM was studied using TGA. The 

TGA curves of the two membranes are shown in Figure 4.3c. It can be seen from the TGA 

curves that both membranes are quite stable within the operating temperature ranges. The 

initial weight loss of the membrane was started at ~270oC and completely decomposed at 

~380oC. The TGA curve for CNIM slightly shifted upward, which exhibited the enhanced 

thermal stability of the CNIM due to the presence of CNTs [231].
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Figure 4.4 Contact angle measurements on unmodified PP and CNIM membrane (a) 

Contact angle: 115 (pure water plain PP); (b) Contact angle: 125 (pure water PP CNIM); 

(c) Contact angle: 112 (salt water plain PP); (d) Contact angle: 117 (salt water CNIM). 

  

The contact angles of the unmodified PP and CNIM for pure water and salt solution 

are shown as above in Figure 4.4. Droplet size of 4mm was used to measure contact angles. 

The presence of CNTs dramatically altered the contact angle. With 100% water in the feed, 

the contact angle for CNIM was higher (125o) than the unmodified PP membrane (115o).  

In presence of salt, the contact angle reduces slightly. The liquid entry pressure (LEP) was 

measured using a method described before [201]. The LEP of the pure water solution was 

found to be 30 and 27 psig, which changed to 26 and 24 psig with the CaSO4, (2.95g/l) 

salt solution for unmodified PP and CNIM, respectively.

(a) 

(d) (c) 

(b) 
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4.3.2 Effect of Temperature and Feed flowrate on the water vapor Flux 

The influence of feed solution temperature on water permeation rate for PP membrane and 

CNIM with pure water and aqueous CaSO4 solution (2.95g/L) at feed and distillate flow 

rate 200 mL min−1 is shown in Figure 4.5a. The legend key PP-AS or CNIM-AS in the 

graph denotes the membrane performance using AS in the feed solution. In all cases the 

initial permeate flux followed a direct relationship with temperature as the vapor pressure 

gradient increased with temperature. Among the two membranes, CNIM exhibited higher 

flux at any particular temperature, which was in line with our previously reported results 

[201]. It is important to note that the addition of PAA (antiscalant) did not show any 

negative effect on water permeation. Similar water vapor flux was observed for both 

membranes with antiscalant when pure water was used as feed. The mass transfer 

coefficient (k) was observed to be enhanced for CNIM (5.67 X 10-4 and 5.01 X 10-4 

kg/m2.s.kPa, for CNIM and PP membrane, respectively) compared to the PP membrane. 

However, the addition of antiscalant in pure water feed did not show any significant change 

in the mass transfer coefficient for both membranes. At high such concentrations, the 

CaSO4 was expected to quickly foul the membrane and the temperature dependence graph 

did not show an exponential increment pattern like pure water as feed, as the fouling rate 

increased at higher temperatures [74, 119]. A slight increase in initial flux was due to the 

antifouling effect of antiscalant at short period of time (1 hr). At a temperature of 60oC, the 

water vapor flux with antiscalant increased from 25.1 to 31.8 kg/m2.hr and 32.7 to 37.7 

kg/m2.hr for PP and CNIM, respectively.
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Figure 4.5 (a) Effect of temperature on permeate flux of pure water and CaSO4 solution 

at 200 mL/min feed and distillate flow rate (run time 1hr). 

 

Figure 4.5b illustrates the performance of the PP and CNIM as a function of feed 

flow rate at 100, 150 and 200 mL/min, while the permeate side flow rate was maintained 

constant at 200 mL/min at a feed temperature of 70°C. Results indicate that the water vapor 

flux was enhanced by feed flow rate for all membranes. The increase in feed flow rate 

reduced the boundary layer resistance by intensifying the turbulence at feed solution-

membrane, and generated more water vapor per unit time [232] .The use of antiscalants in 

feed solution with CNIM did not show any significant effect with respect to flow rate.
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Figure 4.5 (b) Effect of flow rate on permeate flux of CaSO4 solution at 70 °C and 200 

mL/min distillate flow rate (run time 1hr).  

 

4.3.3 Membrane Fouling 

The fouling of PP membrane and CNIM was studied with highly saline feed solutions, 

namely CaSO4 (2.95g/L), CaCO3 (3.5g/L), and BaSO4 (2.5g/L). The high concentrations 

were deliberately selected so that the membranes would foul quickly. The membrane 

fouling was evaluated by the reduction of permeated water flux with time during the 

operation. Figure 4.6a, 4.6b, 4.6c and 4.6d, show the deviation of water vapor flux as a 

function of time for all salts at 70oC feed temperature, feed and permeate flow rate of 200 

mL/min.
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Figure 4.6 Water vapor flux in PP membrane and CNIM at 70oC and 200 mL/min feed 

flow rate for (a) pure water (run time 1 hr); (b) CaSO4 solution (2.95g/L) (c) CaCO3 

solution (3.5g/L); and (d) BaSO4 solution (2.5g/L) (b-d run time 10 hr).(continued).
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Figure 4.6 ( continued) Water vapor flux in PP membrane and CNIM at 70oC and 200 

mL/min feed flow rate for (a) pure water (run time 1 hr); (b) CaSO4 solution (2.95g/L) (c) 

CaCO3 solution (3.5g/L); and (d) BaSO4 solution (2.5g/L) (b-d run time 10 hr).
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Figure 4.6 depicts the decline in water vapor fluxes with time for both the 

membranes as an outcome of scaling. It is clear from the figures that the CNIM exhibited 

higher antifouling properties in comparison with PP membrane. This may be due to 

additional screening effect of CNTs which reduced pore blocking from salt deposition (as 

shown in Figure 4.1). Figure 4.6a shows the short term scaling behavior of CaSO4 salt 

solutions with PP membrane and CNIM with and without antiscalant. The water vapor flux 

declined with time as expected. However, the use of antiscalant lowered the fouling 

tendency, hence generated higher water vapor flux.  

It can be seen from Figure 4.6b that for CaSO4 solution, the flux declined to 13.4 

from 39.4 kg/m2.hr for PP, and to 30.5 from 47.6 kg/m2.hr for the CNIM after 10 hr of 

operation. The results show that by using CNIM the water vapor flux after 10 hr was still 

126.7% higher than the PP membrane. The less fouling tendency of CNIM can be 

explained via its ‘screening effect’, where the net-like presence of CNTs prevent the salt 

clusters to deposit on the membrane surface or pores. Furthermore, the experiments were 

carried out using antiscalant (PAA) to study its effect on CNIM. It was observed that the 

use of AS in the feed solution improved the antifouling behavior of the membranes and the 

water vapor flux after 10 hr of operation was 26.8 kg/m2.hr and 36 kg/m2.hr for PP 

membrane and CNIM, respectively, which is 100% and 18 % higher compared to the 

system without AS. This may be due to the fact that the antiscalant delays the clustering 

process and prevents the precipitation of salt on the membrane surface [7, 233-235]. The 

presence of AS was found to be more effective with the PP membrane than the CNIM.  

Similar trends were observed with the other two salts and are shown in Figure 4.6c 

and 4.6d. As can be seen from the Figure 6c that the water vapor flux of CaCO3 solution 
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(3.5g/L) declined to 22.6 from 47.2 kg/m2.hr and 32.4 from 51.1 kg/m2.hr for PP membrane 

and CNIM, respectively. These represented 52.1 and 36.6% reduction in flux respectively. 

The use of AS further subside the flux reduction for both membranes. For BaSO4 salt 

solution (2.5g/L concentration, shown in Figure 4.6d), the flux declined to 23.7 from 47.7 

kg/m2.hr for PP membrane, and to 37.7 from 49.4 kg/m2.hr with CNIM. The results 

exhibited higher membrane antifouling performance using CNIM and the water vapor flux 

was found to be 59% higher for CNIM compared to PP membrane after 10 hr of operation. 

However, by using the antiscalant materials with CNIM the membrane fouling reduced 

further and the flux increased by ~18%. Among all three salts, CaSO4 fouled the membrane 

most drastically and the use of AS in the feed solution also was found to be more effective 

for CaSO4. In general, by using CNIM the fouling reduced on the membrane surface and 

enhanced the MD performance. The addition of AS further increased the antifouling 

properties of the system. 

 Table 4.1 Normalized Flux Decline (FDn) for Various Salt Solutions 

 

The normalized flux declination (FDn) for different membrane systems with various 

salt solutions are shown in Table 4.1. It is clear from the table that the CNIM exhibited 

lower flux decline for all salts compared to PP, indicating a clear lowering the fouling 

tendency. The use of AS further improved the antifouling property of both membranes. For 

CaSO4, the flux decline for CNIM-AS and CNIM were found to be 30.8 and 36%, 

respectively, which were 23% and 45% lower than that of the PP membrane. 

Salt FDn (%) of  various salt solutions 

PP CNIM PP- AS CNIM-AS 

CaSO4 66 36 40 30.8 

CaCO3 53 37 25 27 

BaSO4 51 24 17 22 
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4.3.4 Deposition of Salts on the Membranes 

The deposition of the salt crystals on the membrane surface was measured by weighting 

the amount of salt on the membrane before and after 6 hours run and then drying the 

membrane overnight in an oven at 70oC. The weight measurements were done very 

carefully to avoid any loss of deposited salt from the surface.  The results are shown in 

Table 4.2.  

Table 4.2. Deposition of Salts on the Membrane Surface after 6 hr of Operation at 70oC  

Salt Amount of salt deposited on the membrane surface (mg) % weight 

decrease PP PP-AS 

CaSO4 12.4 8.9 28.2 

CaCO3 22.6 16.8 25.7 

BaSO4 6.8 5.3 22.1 

 CNIM CNIM-AS  

CaSO4 8.6 6.4 25.6 

CaCO3 10.5 7.9 24.8 

BaSO4 5.2 4.1 21.2 

 

From Table 4.2 it is clear that the amount of salts deposited on the membrane 

surface was lesser for CNIM than the PP membrane for all cases. The lower salt deposition 

on CNIM may be attributable to the screening effect of CNTs [236]. The table also 

demonstrates the advantage of using antiscalant in reducing the salt deposition on the 

membrane surface [237, 238]. The AS influenced the PP membrane based desalination 

slightly more than the CNIM, where the salt deposition reduced by 25.6% and 28.2% 

respectively for CNIM and PP for CaSO4.   

SEM images of the deposition of various salt crystals on different membrane 

surfaces with and without using antiscalant is shown in Figure 4.7. The SEM images clearly 

show the difference in crystal configuration of different salt clusters. It is also revealed 

from the images that the use of AS significantly reduced the fouling layer on the membrane 
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surface [95, 119, 239]. The foulants interact with each other and with the membrane surface 

to form deposits [240-244], The antiscalant interact with the foulants and with the 

membrane surface to breakdown the salt crystals (foulants) and reduce the fouling as it 

shows in Figure 4.7 a, b and c for all salts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 (a) SEM image of CaSO4 deposition on (i) PP; (ii) PP-AS; (iii) CNIM and (iv) 

CNIM-AS after running the experiment given in Figure 4.6b.  

  

(i) 

(iv) (iii) 

(ii) 
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Figure 4.7 (b) SEM image of CaCO3 deposition on (i) PP; (ii) PP-AS; (iii) CNIM and 

(iv) CNIM-AS after running the experiment given in Figure 4.6c. 

  

(i) 

(iv) (iii) 

(ii) 
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Figure 4.7 (c) SEM image of BaSO4 deposition on (i) PP; (ii) PP-AS; (iii) CNIM and (iv) 

CNIM-AS after running the experiment given in Figure 4.6d.   

 

4.3.5 Membrane Regeneration and Stability 

The regenerability of the fouled membranes using CaSO4 as feed were studied with or 

without AS in the system. The MD experimentations were continued for 6 hours followed 

by washing the fouled membrane by circulating DI water at 70oC for 30 min and then 

continue the MD experiments again for another 6 hours. The water vapor flux after washing 

was compared with the initial flux.  

 

 

(i) 

(iii) (iv) 

(ii) 
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Table 4.3 Membrane Regeneration Data  

 

Membrane 1st Day Flux 

(kg/m2.hr) 

2nd Day Flux 

(kg/m2.hr) 

Flux regenerated 

(%) 

PP 39.4 33.5 85.0 

PP-AS 44.4 39.4 88.7 

CNIM 47.6 45.2 95.0 

CNIM-AS 52.0 50.2 96.5 

 

Table 4.3 shows the regenerability of the membranes with CaSO4 with and without AS. It 

is clear from the Table that the CNIM was able to remove the deposited salts and attained 

around 97% of its initial water vapor flux. In contrast, the PP membrane only reached up 

to 85% of its original value, which clearly demonstrated the superiority of CNIM in terms 

of membrane regeneration.  

The outcomes were further confirmed by using SEM and measuring the weight of 

the salts remained on the membrane surface after washing. Figures 8 a, b, c and d show the 

surface SEM images of the CaSO4 fouled PP membrane and CNIM with and without AS 

after washing. The salt precipitation was found to be less on the CNIM surface after 

washing, which further demonstrated the washability and regenerability of the CNIM.  
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Figure 4.8 SEM image of the fouled membrane after washing (a) PP; (b) PP-AS; (c) 

CNIM and (d) CNIM-AS 

 

Table 4.4 shows the amount of salt remained on the membrane surface after 

washing the fouled membranes. The result showed the amount of salt remained on the 

membrane surface was significantly lower than that of the fouled membrane. Among PP 

and CNIM, the CNIM showed higher washability of the deposited salts. 

  

(a) (b) 

(d) (c) 
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Table 4.4 Amount of Salt Deposition on the Membrane Surface after Washing 

 

Salt Amount of salt remained on the membrane surface after washing (mg) 

CaSO4 PP PP-AS CNIM CNIM-AS 

5.5 4.2 2.3 1.9 

Removal 

(%) 

55.6 52.8 73.3 70.3 

 

While running the experiment with CNIM, no CNTs have been detected in the feed 

solutions that have been recycled. The CNIM was also run with aqueous solutions for 30 

days (6hr per day) at 70oC and then inspected to see is there was any loss of CNTs. 

However, any appreciable loss of CNTs was not observed, which demonstrates the ability 

of CNTs to retain on the membrane surface[171]. 

 

4.4 Conclusion 

This paper successfully demonstrates the enhanced antifouling behavior of CNIM over 

pristine PP membrane. The addition of antiscalant to the feed solution resulted in a 

reduction in fouling on the surface of the membrane. The desalination performance of PP 

and CNIM were compared. The CNIM exhibited lower flux decline for all the salts. The 

washability and regenerability of the CNIM was observed to be superior than the pristine 

PP membrane. The addition of antiscalant materials and using CNIM in MD was found 

highly effective in enhancing the membrane performance and membrane regenerability 

when treating the high concentration fouling salts.  
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CHAPTER 5 

 

ENHANCED PEREFORMANCE OF CARBON NANOTUBE IMMOBOLIZED 

MEMBRANE FOR TREATMENT OF HIGH SALINITY PRODUCED WATER 

VIA DIRECT CONTACT MEMBRANE DISTILATION 

 

5.1 Introduction  

Hydraulic fracturing or fracking employs horizontal drilling technique to release oil and 

hydrocarbon by injecting high pressure water containing particulates and chemical 

additives. A major problem with fracking is the large volume of wastewater it generates, 

both initially, as “frac” flow back, and over time as produced water. The U.S. alone 

generates approximately 70 million barrels of produced water per day or 25 billion barrels 

per year from oil and gas activities [245]. This volume is increasing as fracking activities 

expand. At the same time options for waste water disposal are narrowing, putting oil and 

gas operations in jeopardy. Water pollutants in frack and produced water include total 

dissolved solids (TDS), oil and grease, suspended solids, volatile organics, heavy metals, 

dissolved gases, chemical additives such as scale and corrosion inhibitors, guar gum and 

emulsion/reverse-emulsion breakers. After the recovery of some of the additives, the 

desalination and TDS removal remains the major challenge, which can be as high as 

350,000 or ten times average sea water concentration [246].  

 The two major approaches to desalination (or desalting) are thermal distillation and 

membrane separations. In the former, the saline water is boiled using thermal energy and 

recondensed. Commercial thermal distillation methods such as multistage flash, multi-

effect distillation and mechanical vapor compression have relatively large footprints and 

require larger investments. On the other hand, membrane process have lower capital and 
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operating costs and the most common desalination technique is Reverse osmosis (RO). 

Some of the limitations of RO come from the increase in osmotic pressure at high salt 

concentrations, which often makes it ineffective for treating highly saline water 

(concentrations above 70000 ppm). Moreover, dense hydrophilic membranes used in RO 

tend to foul easily leading to low water production and reduced membrane life. Therefore, 

RO often requires extensive pretreatment such as water softening which increases both 

capital and operational expenses. Subsequently, there is an urgent need to develop new 

membrane based techniques for treating oil and gas industry produced water [247, 248]. 

At his point, the two viable techniques for treating high salinity water appear to be are 

forward osmosis (FO) [249, 250] and membrane distillation (MD) [232, 251].   MD is a 

thermally driven desalination technology that has seen steady improvements in the design 

of membranes and technical performance [252, 253]. Previous studies have shown that MD 

has the potential to achieve up to 99.9% of salt rejection [254, 255] and 99.5% of organic 

materials removal [256]. Moreover, the low operating temperature (60 to 90oC)  of MD 

also makes it ideally suited for integration with renewable energy sources such as solar or 

low grade industrial waste heat sources [208, 257] such as flare gas at oil fields [247]. 

 Recently, our group has fabricated carbon nanotube based membranes and used in 

a variety of separation applications that range from pervaporation, extraction to Nano 

filtration [171]. The physicochemical interaction between the water vapor and the 

membrane can be dramatically altered by immobilizing CNTs on the membrane surface 

[173, 201]. First, CNTs are excellent sorbents that have surface areas between 100 and 

1000m2/g [201, 258]. Many factors, such as the presence of defects, capillary forces in 

nanotubes, polarizability of graphene structure lead to strong H2O vapor/CNT interactions, 



88 
 

the absence of a porous structure lead to high specific capacity while facilitating fast 

desorption of large molecules. It is anticipated that the CNIM will provide higher flux in 

the treatment of produced water [229, 259].  

A major obstacle in the widespread use of the membrane technologies in the 

treatment of high salinity water is the problem of membrane fouling [217, 260, 261] due to 

the deposition of suspended or dissolved substances on the membrane surface and/or within 

its pores [262, 263]. This is particularly true for produced water that contains high levels 

of salts, ions and metals. With concentration of CaCO3 and different ions and cations at 

near saturation level, any membrane process including MD is expected to foul rapidly. 

Recently we have reported the development carbon nanotube immobilized membranes 

(CNIM) that have shown relatively lower fouling as the CNTs immobilized on the surface 

act as nano-brushes that prevent the salt crystals from depositing on the surface [93]. The 

CNIM has shown high salt tolerance compared to pure polymeric membranes and has been 

used to treat water with TDS as high as 230,000 mg/L. 

The use of antiscalant has also been reported to be beneficial in RO and other 

process by reducing scaling of different salts [264, 265]. Various types of antiscalants 

including acids, bases, enzymes, surfactants, disinfectants and combined cleaning 

materials has been employed in membrane separation processes[266, 267]. The choice of 

antiscalants depends on the nature of treated water. Produced water contains iron-based 

components that deposits on the membrane surface even with relatively low concentrations 

of iron in the feed side. (1-hydroxy Ethylidene-1, 1- Diphosphonic acid) (HEDP) is 

threshold inhibitor based on phosphonic acids (or their salts) which have the added 

advantage of sequestering iron in a stoichiometric reaction [268-270]. This is important in 



89 
 

membrane applications, as any soluble iron will cause rapid fouling as it oxidizes and 

becomes insoluble. HEDP has the potential to dissolve the oxidized materials on these 

metal’s surfaces [271]. Therefore, there is growing interest in possible options for treatment 

or reuse of produced waters. The objective of this paper was to investigate the enhancement 

in water vapor flux and antifouling characteristics of CNIM with addition of HEDP 

antiscalant in treating produced water via DCMD mode.  

 

5.2 Materials and Methods 

5.2.1 Chemicals and Materials 

Produced water used in this experiment was collected from Chemtraet Company USA. 

Deionized water (Barnstead 5023, Dubuque, Iowa) was used in all experiments. Filter 

papers (Whatman- 1441-150 size 41 with Diameter of 150mm) from Cole-Parmer, 625 

East Bunker Ct Vernon Hills, IL 60061 United States. MWCNTs were purchased from 

Cheap Tubes Inc., Brattleboro, VT. The average diameters of the CNTs were ∼ 30 nm and 

a length range of 15 µm. 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid (HEDP) 

antiscalant purchased from ( Fisher Scientific Company, Hanover Park,60133 IL). 

5.2.2 Water Sample Composition  

Produced water samples used for experiments were collected from Chemtraet in 

Pennsylvania. The sample contains sand and different types of chemicals that provided in 

Table1. 
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Table 5.1 Analysis of Produced Water before Filtration (A) in Figure (5.1) 

Analysis Produced 

Water  

pH 2.19 

Conductivity, μmho 239651 

Calcium Hardness, as CaCO3, mg/L 119500 

Magnesium Hardness, as CaCO3, mg/L 12590 

Iron, as Fe, mg/L 90 

Copper, as Cu, mg/L <1.0 

Zinc, as Zn, mg/L 2.4 

Sodium, as Na, mg/L 71820 

Potassium, as K, mg/L 1780 

Chloride, as Cl, mg/L 118 

Sulfate, as SO4, mg/L 130 

Nitrate, as NO3, mg/L <100 

Ortho−Phosphate, as PO4, mg/L <500 

Silica, as SiO2, mg/L 41 

 

5.2.3 Water Sample and Pretreatment Methods 

The water sample was first filtered with Whatman-41 filter paper to remove the large solid 

particles from the produced water. The antiscalant HEDP was added to the filtered water 

prior to the DCMD experiment. Figure1 showed the produced water sample before, after 

filtration, and with HEDP antiscalant. Also, Table 2 shows the ICP-MS results for the 

filtered produced water with and without using HEDP. 

 

 

 

 

Figure 5.1 (A) Produced water sample before filtration; (B) Produced water sample after 

filtration; and (C) Produced water sample with HEDP  
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Table 5.2 Analysis of Produced Water after Filtration (b) and with HEDP (c). 

Element Conc. PPM [B] Conc. PPM [c] 

Li 12.85105519 1.627538997 

Be <0.0017 <0.0017 

Na 153.9527754 28.95956318 

Al 0.0136204867 0.01304088831 

K 12.50826194 1.257055475 

Ca 1455.058891 52.68469769 

Sc 0.000066141186 <0.0 

Ti <0.0004 <0.0004 

V 0.000173930282 0.000020687219 

Cr 0.000140303226 <0.0 

Mn 1.274097669 0.01115449473 

Fe 1.390113521 0.008039872058 

Co 0.000066371033 0.000011111706 

Ni 0.000636449023 0.000108444154 

Cu 0.01369814176 0.006227625894 

Zn 0.02490735413 0.001189185756 

Ge <0.0 <0.0 

As 0.001758593414 0.00049789394 

Se <0.0018 <0.0018 

Rb 0.3650287873 0.02602917761 

Sr 597.9545132 10.85984992 

Mo 0.000017699723 <0.0 

Ag 0.000038914761 0.000008988294 

Cd <0.0 <0.0 

In <0.0 <0.0 

Sn 0.000089764015 0.00002671536 

Sb 0.000186120956 0.000041128582 

Cs 0.1027199687 0.008031620967 

Ba 288.5929217 11.43338683 

TI 0.000238425152 0.000008223622 

Pb 0.001336379863 0.001715917264 

Bi 0.000010316481 <0.0 
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5.2.4 CNIM Fabrication 

 Effective dispersal of CNTs and immobilization on the membrane surface was an essential 

step in CNIM fabrication. The CNT membrane was prepared using a polytetra-

fluoroethylene (PTFE) laminate sup-ported on polypropylene composite membrane 

(Advantec, 0.2 μm poresize, 74% porosity). The CNTs dispersion was carried out as 

follows: 1.5 mg of CNTs were dispersed in a solution containing 8 g of acetone and 

sonicated for four hours. 0.2 mg of polyvinylidene di fluoride (PVDF), which acted as a 

binder during immobilization of the CNTs was dissolved in 2 g of acetone and mixed with 

CNTs dispersion as it mentioned in our previous papers [201]. The PVDF-nanotube 

dispersion was thereafter applied uniformly with a dropper over the membrane held on a 

flat surface to form the CNIM. The wet CNIM was kept under the hood for overnight 

drying. The CNIM was characterized using scanning electron microscopy (SEM) Leo 1530 

VP, Carl Zeiss SMT AG Company, Oberkochen, Germany. 

5.2.5 Experimental Procedure 

MD experiments were conducted in the direct contact MD (DCMD) configuration. Figure 

2 shows the schematic diagram of the MD system used in the laboratory. The membrane 

module used for DCMD was a cylindrical module utilizing a flat membrane with a gasket 

diameter of 3.9 cm and an effective membrane area of 11.94 cm2. The membrane used was 

flat composite PTFE membrane supported with polypropylene nonwoven fabric (Advantec 

MFS, Dublin, CA, USA; 129 µm thick, 0.2 µm pore size and 70% porosity). The preheated 

hot produced water was passed through a heat exchanger, which was used to maintain the 

desired temperature throughout the experiment. The hot feed was recycled to the feed tank 

and permeate was collected in the distillate tank. DI water was used as cold distillate. Both 
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hot and cold sides were circulated through the module using peristaltic pumps (Cole 

Parmer, model 7518-60). Inlet and outlet temperatures of the feed and distillate were 

monitored continuously throughout the experiment. Viton and PFA tubings and connectors 

(Cole Parmer) were used to make connections in the experimental set up. The ionic strength 

of the original feed solution and permeate were measured using an Electrode Conductivity 

Meter (Jenway4310).  
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Figure 5. 2 Schematic representation of the experimental setup. 

5.2.6 DCMD Performance using CNIM and PTFE Membrane 

The MD performances of PTFE and CNIM was studied as a function of time, temperature, 

and feed flow rate. The water vapor flux, Jw, measured as: 

Jw = wp/t. A (5.1)  
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Where wp is the mass of permeated water in time t through surface area A. To compare the 

fouling on both membranes, the flux measured over time and the normalized flux decline, 

FDn, measured as: 

𝐹𝐷𝑛(%) = (1 −   
𝐽𝑓

𝐽0
⁄ ) × 100 

(5.2) 

Where, Jf and J0 are the final permeate flux and initial flux, respectively. Table 5.2 shows 

the normalized flux decline FDn (%) of produced water with and without using HEDP. 

5.3 Results and Discussion 

5.3.1 Membrane Characterization 

The SEM images of the CNIM and the PTFE membrane shown in Figure 5.3 a; and b. 

SEM images shows porous structure of the pristine PTFE membrane and presence of 

CNTs on the CNIM surface. The distribution of CNTs was relatively uniform over the 

entire membrane surface. The TGA curves of PTFE and CNIM membranes shown in 

Figure 5.3c. It is clear from the figure that the membranes are quite stable within the 

experimental temperature ranges.  
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Figure 5.3 (a) SEM image of PTFE membrane; (b) CNIM; and c) The TGA curves of 

PTFE membrane and CNIM. 

5.3.2 Effect of Temperature and Feed Flow Rate on Water Vapor Flux 

The effect of temperature on permeate flux for both membranes is illustrated in Figure 5.4a 

at feed flow rate 200 mL/min and distillate flowrate of 200 mL/min1. It is clear from the 

figure that the water vapor flux increased with increase in temperature as higher feed 

temperature generates high vapor pressure gradient. The CNIM demonstrates higher flux 

compared to the PTFE membrane at all temperatures. The flux enhancement in CNIM is 

in line with our previously reported data [149, 171, 175].  Further, the addition of HEDP 
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(antiscalant) on the feed side led to enhanced performance of MD for both membranes. At 

a temperature of 70oC, the water vapor flux increased from 30.9 to 35.2 kg/m2.h for PTFE 

and 46.1 to 51.6 kg/m2.h with CNIM with the incorporation of HEDP at the same 

experimental conditions. 

In addition, the influence of increasing feed flow rate at a constant temperature of 

70 oC and 200 mL/min permeate flow rate is displayed in Figure 5.4b. It was observed that 

the permeate flux increased with an increase in feed flow rate for all membranes and the 

CNIM offered higher water vapor flux when compared to  PTFE. The increased feed flow 

rate reduces the fouling by increasing the turbulence, which in turn reduces the boundary 

layer effect at the membrane-feed solution interface [272]. As can be seen from Figure 

5.4b, at a feed flowrate of 150 mL/min, the water vapor flux increased from 25.1 to 29.3 

kg/m2.h for PTFE and from 30.9 to 41.9 kg/m2.h with CNIM using antiscalant, which was 

17% and 36% higher, respectively. 
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Figure 5.4 (a) Effect of temperature on permeate flux of produced water solution at 

200mL/min flowrate; (b) Effect of flowrate on permeate flux of produced water solution 

at 70oC temperature and 200 mL/min flow rate.  
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5.3.3 Fouling Behavior of Produced water 

The fouling behavior of filtered produced water was studied on pristine PTFE 

membrane and CNIM using HEDP antiscalant and was characterized by the reduction of 

permeated water flux as a function of time. Figure 5.5 showed that the water vapor flux 

reduced significantly with time for all membranes as an outcome of scaling. It is clear from 

the figure that the CNIM exhibited higher antifouling properties in comparison with PTFE 

membrane. This may be due to additional screening effect of CNTs which reduced pore 

blocking from salt deposition on membrane pores. For produced water solution, the flux 

declined to 10.9 from 30.9 kg/m2.hr for PTFE and to 19.3 from 46.1 kg /m2.hr for the 

CNIM after 7 hr of operation. The results show that by using CNIM the water vapor flux 

after 7 hr was still 77% higher than that of the PTFE membrane. The use of HEDP in the 

feed solution further improved the antifouling behavior of both membranes and the water 

vapor flux after 7 hr of operation was 35.2 kg/m2.hr and 51.6 kg/m2.hr for PTFE membrane 

and CNIM, respectively, which is 32.4% and 74% higher compared to the system without 

HEDP. This may be due to the fact that the antiscalant delays the clustering process and 

prevents the precipitation of salt on the membrane surface [7]. 
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Figure 5.5 Water vapor flux in PTFE and CNIM membranes for produced water solution 

with and without using HEDP (antiscalant). 

 

Table 5.3 Normalized Flux Decline (FDn) for Produced Water Solution 

 

 

 

The normalize flux declination (FDn) for all membranes after 7 hr of operation with 

produced water are shown in Table 5.2. It is clear from the table that the reduction in flux 

was lower in CNIM compared to the PTFE membrane, indicating lower fouling tendency. 

The use of HEDP further improved the antifouling property of both membranes. Under 

Solution FDn (%) of  produced water solution 

PTFE CNIM PTFE-HEDP CNIM-HEDP 

Produced water 64.8 58.2 59.5 35.1 
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similar conditions, the CNIM with HEDP exhibited an improvement of 41% in FDn 

compared to the pristine PTFE membrane.  

5.3.4 Deposition of Foulants on the Membrane Surface 

The deposition of the foulants on the membrane surface was evaluated by measuring the 

membrane weight before and after the experiment. The weight measurements were done 

with precision by drying the membrane overnight in the oven at 70oC to avoid any loss of 

deposited foulants from the surface.  

Table 5.4 Deposition of Foulants on the Membrane Surface after 7 hr of Operation at 70oC  

Solution Amount of salt deposited on the membrane surface (mg) % weight 

decrease PTFE PTFE-HEDP 

Produced 

water 

15.76 4.68 70.3 

CNIM CNIM-HEDP  

1.02 0.79 22.5 

 

From Table 5.3 it is clear that the amount of salts deposited on the membrane 

surface was lesser for CNIM than the pristine PTFE membrane for all cases. The lower salt 

deposition on CNIM may be attributable to the screening effect of CNTs. The table also 

demonstrates the advantage of using antiscalant in reducing the salt deposition on the 

membrane surface. The CNIM along with HEDP in feed successfully lowered the salt 

deposition on membrane surface, which is a major concern in treating the feed containing 

higher amount of foulants, such as produced water.  

 SEM images of the deposition of various salt crystals on different membrane 

surfaces with and without using HEDP antiscalant is shown in Figure 5.6. The SEM images 

clearly show the variation of foulants’ morphology and amounts deposited on the 

membrane surfaces with and without using HEDP for both membranes. It is also revealed 
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from the images that the use of HEDP significantly reduced the fouling layer on the 

membrane surface. The antiscalant interact with the foulants and with the membrane 

surface to breakdown the crystals (foulants) and reduce the fouling as it shows in Figure 

5.6 b and d.  

 

Figure 5.6 SEM image of foulants deposition on (a) PTFE; (b) PTFE-HEDP; (c) CNIM 

and (d) CNIM-HEDP. 

  

(a) (b) 

(c) (d) 
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5.3.5 Membrane Regeneration  

The regenerability of the fouled PTFE membrane and CNIM, treating the produced water 

were studied with and without HEDP (antiscalant). Here, the MD experiments were 

running for 6 hours continuously (1st day) followed by washing the fouled membrane for 

30 minutes with DI water at 70oC and then continue the MD experiments again for another 

6 hours continually on the next day for 5 days by taking the first data after washing at 70oC 

as it shown in Table 5.4.  

Table 5.5 Membrane Regeneration Data  

Membrane 1st Day Flux 

(kg/m2.hr) 

2nd Day Flux 

(kg/m2.hr) 

Flux regenerated 

(%) 

PTFE 30.9 25.1 81.1 

PTFE-HEDP 35.2 33.5 95.2 

CNIM 46.1 41.9 90.9 

CNIM-HEDP 51.9 49.4 95.2 

 

 Table 5.4 shows the regenerability of the membranes with produced water with and 

without HEDP. It is clear from the Table that the CNIM was able to attain around 91% of 

its initial water vapor flux, which clearly indicated significant removal the deposited salts 

from the membrane surface and pores. In contrast, the PTFE membrane only reached up to 

81% of its original value, which clearly demonstrated the superiority of CNIM in terms of 

membrane regeneration. The use of HEDF further helped regeneration of both membranes, 

which showed around 95% recovery of initial flux. 
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5.3.6 Mass transfer Coefficient 

The overall, mass transfer coefficient can be described as:  

𝐽𝑤 =  𝑘 (𝑃𝑓  −  𝑃𝑝) (5.3) 

 

Or 𝑘 =  𝐽𝑤 / (𝑃𝑓  −  𝑃𝑝) (5.4) 

   

Where, Jw is the water vapor flux, k is mass transfer coefficient, and Pf and Pp are 

partial vapor pressure of average feed and permeate temperatures. The mass transfer 

coefficients were found to be higher for CNIM membrane as compared to the PTFE 

membrane. 

Table 5.5a summarizes the change in mass transfer coefficients of PTFE membrane 

and CNIM with varying feed flow rate at 70 oC. Both membranes exhibited increased mass 

transfer coefficient with increase in feed flow rate. The diffusion of the water vapor through 

the boundary layers mainly controls the overall mass transfer rate of the process. At higher 

feed flow rate, the turbulence increased that led to the reduction in the boundary layer 

resistance and significantly increased the mass transfer coefficients. Between these two 

membranes, CNIM exhibited higher mass transfer coefficient in comparison with the PTFE 

membrane.  

Table 5.5b shows the mass transfer coefficients at different temperatures. It is 

evident from the table that the CNIM showed higher mass transfer coefficients compared 

to pristine PTFE membrane in all cases. Rapid sorption/desorption on CNTs surfaces along 

with activated diffusion led to increase the overall water vapor transport. The mass transfer 

coefficients was found to decrease with increase in temperature for both membranes. 
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Table 5.6a. Effect of varying feed flow rate on mass transfer coefficient at 70 oC. 

Mass transfer coefficient (kg/m2 sec−1 Pa) × 10-7 

Feed Flowrate(ml/min) PTFE CNIM 

100 1.9 2.6 

150 2.4 3.0 

200 3.7 4.4 

 

Table 5.6b. Mass Transfer Coefficient of Various Membranes as a Function of 

Temperature. 

Mass transfer coefficient (kg/m2 sec−1 Pa) × 10-7 

Temperature (°C) PTFE CNIM 

60 3.4 4.9 

70 3.0 4.4 

80 2.4 3.1 

 

5.4 Membrane Stability 

The quality of permeate side water was carefully investigated to monitor the stability of 

modified membrane and salt breakthrough. The stability of CNIM was tested for 60 days. 

The permeated water was monitored throughout the experiment to ensure the quality of 

water by measuring the conductivity of the permeate side water and using Raman 

spectroscopy [7]. The permeated water sample did not show any presence of salts or CNTs 

after long period of operation.  
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5.5 Proposed Mechanism 

The proposed mechanism for enhanced antifouling behavior of CNIM in presence of 

HEDP antiscalant is shown in Figure 5.7. The HEDP is known to be the most effective 

threshold inhibitors based on phosphonic acids (or their salts) that prevents the 

precipitation of the foulants on the membrane surface by delaying the clustering process of 

charged ions protonuclei [7]. This is important in membrane applications especially with 

produced water as it contains large quantity of inorganic salts that deposits on the 

membrane surface, causing significant reduction in membrane performances and wetting. 

Our previous studies with CNTs have demonstrated that CNTs are excellent sorbents that 

enhance partition coefficient of the solutes leading to higher flux in membranes [7]. 

Further, the presence of CNTs could act as an additional screen that also prevents the salt 

deposition on the membrane pores.  

CNIM

CNTs as 

protective 

barrier

Feed side

Permeate side

CNTs SaltFeed Water vapor

Preventing the precipitation of the foulants on the 

membrane surface by delaying the clustering process 

HEDP   

Figure 5.7 Proposed Mechanism. 
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5.6 Conclusion 

The CNIM was successfully employed in treating the produced water. The MD 

performance was compared with pristine PTFE membrane. The addition of HEDP 

antiscalant in the produced water feed solution, further helped to reduce fouling and 

prevented the deposition of foulants on the membrane surface.  The CNIM exhibited lower 

flux decline and the regenerability of the CNIM was also found superior than the pristine 

PTFE membrane. In summary, treating the produced water solution using HEDP 

antiscalant on CNIM in MD was found to be highly effective in reducing the fouling 

behavior, which in turn led to an enhancement in water vapor permeation through the 

membrane. 
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CHAPTER 6 

SUMMARY  

In summary, this research successfully demonstrates the enhanced antifouling behavior. 

First, by using the CNIM membrane over pristine membrane with microwave irradiation 

as a heat source in the DCMD system. Besides the enhancement of water vapor flux, the 

MIMD (microwave heating) exhibited significantly less fouling and the normalized flux 

decline was lower than conventional MD. The salt deposition on the membrane surface 

was observed to be between 50-79% less during MIMD and the morphology of the deposits 

from MIMD was quite different from those of conventional MD. It appears that non-

thermal effect, such as, localized super heating, the breakdown of hydrogen bonding, 

alternation of surface tension, the increase in ionic mobility altered colloidal behavior and 

particle formation in MIMD. Apart from the less energy requirement and higher flux in 

MIMD, the lower flux decline at very high salt concentrations could lead to dramatic 

improvements to the MD technology in the future. Also, the addition of PAA antiscalant 

to the feed solution resulted in a reduction in fouling on the surface of the membrane. The 

desalination performance of pristine and CNIM membranes were compared. The CNIM 

exhibited lower flux decline for all the salts. The washability and regenerability of the 

CNIM was observed to be superior to the pristine membrane. The addition of antiscalant 

materials and using CNIM in MD was found highly effective in enhancing the membrane 

performance and membrane regenerability when treating the high concentration fouling 

salts. Finally, the addition of HEDP antiscalant in the produced water feed solution, further 

helped to reduce fouling and prevented the deposition of foulants on the membrane surface.  

The CNIM exhibited lower flux decline and the regenerability of the CNIM was also found 
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superior than the pristine PTFE membrane. In summary, treating the produced water 

solution using HEDP antiscalant on CNIM in MD was found to be highly effective in 

reducing the fouling behavior, which in turn led to an enhancement in water vapor 

permeation through the membrane.  
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