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ABSTRACT

CONVEX RELAXATIONS OF A CONTINUUM AGGREGATION
MODEL, AND THEIR EFFICIENT NUMERICAL SOLUTION

by
Mahdi Bandegi

In this dissertation, the global minimization of a large deviations rate function (the

Helmholtz free energy functional) for the Boltzmann distribution is discussed. The

Helmholtz functional arises in large systems of interacting particles — which are

widely used as models in computational chemistry and molecular dynamics. Global

minimizers of the rate function (Helmholtz functional) characterize the asymptotics

of the partition function and thereby determine many important physical properties

such as self-assembly, or phase transitions. Finding and verifying local minima to

the Helmholtz free energy functional is relatively straightforward. However, finding

and verifying global minima is much more difficult since the Helmholtz energy is

nonconvex and nonlocal. Instead of minimizing the original nonconvex functional, the

approach in this dissertation is to find minimizers to a convex lower bound functional.

The so-called relaxed problem consists of a linear variational problem with an infinite

number of Fourier constraints, leading to a variety of computational challenges. A

fast solver (for the relaxed problem) based on matrix-free interior-point algorithms is

developed by exploiting the Fourier structure in the problem in conjunction with a

new preconditioner.
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CHAPTER 1

INTRODUCTION

This dissertation develops theory and numerical methods for computing global

minimizers (ground states) to variants of the Helmholtz free energy functional.

In Chapter 2, we introduce the Helmholtz free energy functional, and present

suitable conditions under which minimizers to the Helmholtz free energy characterize

the long-time behavior for large systems of interacting particles undergoing Brownian

motion (which are models used in molecular dynamics). Specifically, the Helmholtz

energy arises as a large deviations rate function for the Boltzmann distribution (of

discrete particle models). Minimizers of the Helmholtz energy provide information

on the asymptotics of the Boltzmann distribution, and can characterize phenomena

such as phase transitions and self-assembly.

In Chapter 3, we formulate sufficient conditions for global minimizers to the

Helmholtz energy functional. The sufficient conditions are formulated as a lower

bound obtained through a convex relaxation of the original nonconvex energy. The

conditions take the form of a linear variational problem, and have the additional

advantage of, in some cases, being exact. Recently, many works in the optimization

community formulate similar convex relaxation approaches using methods such

as sums-of-squares programming and semi-definite programming, however, these

approaches have been primarily for finite dimensional problems.

Chapter 4 discusses some properties of solutions to the standard form of linear

programming.

Chapter 5 focuses on developing numerical techniques to solve the sufficient

conditions developed in Chapter 3. Numerical discretizations of the sufficient

conditions take the form of linear programming problems with (a large number of)

1



Fourier mode constraints. To enable the solution of the large linear programming

problems, we adopt a matrix-free, primal-dual interior-point algorithm. A central

issue in the matrix-free1 approach is ill-conditioning due to the interior-point method.

We introduce a simple preconditioner to alleviate the ill-conditioning. We then

compare the performance of the preconditioner, to other approaches in the literature,

for a few of our variational problems. We observe that the preconditioner outperforms

other approaches (by requiring fewer matrix-vector products and floating point

operations).

1Matrix-free in a sense that they do not need to build and store matrices — only matrix
vector products are needed.
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CHAPTER 2

BACKGROUND ON PAIRWISE INTERACTION MODELS

In this chapter we introduce the Helmholtz functional and motivate the computation

of ground states (global minimizers). We first introduce discrete pairwise interaction

models and then discuss how the Helmholtz free energy arises as a large deviations

rate function to the corresponding Boltzmann distribution. We conclude the section

with examples from molecular dynamics where the discrete particle solutions are

known to sample the Boltzmann distribution. When the large deviations result

holds, minimizers to the Helmholtz rate function provide information on the long-time

molecular/stochastic dynamics (such as phase transitions and self-assembly) of large

interacting particle systems.

2.1 Pairwise Interaction Energy in Many Particle Systems

The total energy for a system of n identical particles in spatial dimension d, with

positions xi ∈ Rd can be written as [44]

E(x1, . . . ,xn) =
1

2

n∑
i=1

n∑
j=1
i̸=j

w(xi − xj) + n
n∑

i=1

u(xi). (2.1)

Here w(r) is referred to as the interaction energy between two pairs of particles.

Meanwhile u(x) is an external potential felt by all particles. The incorporation of the

factor of n in front of the external potential (2.1) is done so that the summations in

(2.1) involving w(x) and u(x) have similar (order of magnitude) contributions to the

energy as n→ ∞.

We can write the continuum model (at zero temperature), analogous to the

discrete energy (2.1), using the following energy functional [3]

E(ρ) = 1

2

∫
Rd

∫
Rd

ρ(x)w(x− y)ρ(y)dxdy +

∫
Rd

u(x)ρ(x)dx. (2.2)

3



Note that ρ(x)dx in equation (2.2) is the fraction of particles in the region dx, and

will be considered as a probability measure. Without a loss of generality, the total

mass m of ρ(x)dx is taken to be 1:

m :=

∫
Rd

ρ(x)dx = 1. (2.3)

In Equation (2.2) the double integral weights the energy of ρ(x)dx particles and

ρ(y)dy particles by the interaction cost w(x− y).

2.2 The Helmholtz Functional as a Large Deviations Rate Function

In this section we address the motivation to study the Helmholtz free energy functional

and its global minimizers. The relation between the discrete form of the total

energy (2.1) and the energy functional (2.2) can be shown using the Large Deviation

Principles (LDP) [27, 52], furthermore, applying Mean-field results, the importance

of finding the global minimizers of (2.2) in approximating the Gibbs-Boltzmann

distribution will be shown [52].

The Gibbs-Boltzmann distribution gives the probability of the system being in

state n as

Pn(x1, . . . ,xn) = Z−1exp
(
− βE(x1, . . . ,xn)

)
, (2.4)

where Z =
∫
Rd · · ·

∫
Rd exp

(
− βE(x1, . . . ,xn)

)
dx1 · · · dxn, and β = (kbT )

−1 is the

inverse temperature (with T being the temperature, and kb being the Boltzmann

constant).

The large deviations principle provides the asymptotics of Pn in the limit as

n ≫ 1. Assumptions that guarantee a large deviations principle, adopted from [16]

are:

A1. w(x) is continuous; except possibly at 0 where w(0) = +∞.

A2. u(x) is continuous; and u(x) > c∥x∥ at large x (with c > 0).

4



A3. w(x) + u(x) is bounded from below.

A4. E(ρ) is weakly continuous (at points ρ(x) where E(ρ) <∞).

For P under the assumptions (A1)-(A4), and fixed G ⊆ (Rd)n and symmetric, where

n≫ 1, we have the following large deviations principle [16]

Z−1

∫
G

e−βE(x1,...,xn)dx1 · · · dxn ≈ maximize e−βn2
(
E(ρn)−E(ρ0)

)
(2.5)

subject to ρn ∈ G.

Here, ρn(x) =
1
n

∑n
i=1 δ(x − xi) is the empirical measure where ρn ∈ G means (with

an abuse of notation) that (x1, . . . ,xn) ∈ G. The density ρ0(x) is the minimizer for

(2.2), i.e., ρ0(x) = argmin E(ρ) taken over the (larger) space of probability measures 1.

From the large deviation principle (2.5) we can see the rate function is the Helmholtz

functional (2.2), which describes the importance of finding minimizers to the energy

functional (2.2). Specifically, (2.5) shows that configurations of particles ρn(x) that

are not close to ρ0(x) are (exponentially) unlikely to occur. As stated in (2.5), the rate

function is (2.2) and is applicable when β is held constant as n→ ∞ (corresponding

to a low temperature model). For high temperatures, (achieved by letting β → 0),

additional terms, such as an entropy term β−1
∫
ρ log ρ dx, are added to the rate

function E [16, 29].

2.3 Brownian Motion and Langevin Dynamics

In this section, we review a few aspects and examples of Brownian motion, and

Langevin dynamics. The purpose is to demonstrate that the discrete energy (2.1)

arises in a variety of stochastic models that sample the Boltzmann distribution.

Hence, when the Boltzmann distribution admits a large deviations principle, the

1When w(0) is infinite, E(ρn) is also infinite, so there is a technical modification of (2.5) to
a renormalized energy [16,52]

5



(continuum) Helmholtz energy (2.2) can be used to gain insight into the long-time

behavior of Brownian motion.

Brownian motion refers to the random motion of particles immersed in a fluid

(such as air or water) [45]. The random motion of microscopic particles was originally

observed by Robert Brown in 1827 under microscopical observations on plant pollen

of the plant. A mathematical theory modeling the density or probability of a particle

undergoing Brownian motion (through the use of the diffusion equation) was first

presented by Einstein in 1905 [28]. A subsequent set of differential equations used

to model Brownian motion were then introduced by Langevin in 1908 [36]. The

Langevin equation that describes the Brownian motion of a particle X ∈ R3, with

mass m, under the application of a force field F ∈ R3 is:

m
d2

dt2
X = F(X)− γ

d

dt
X+ ζ(t). (2.6)

Here γ > 0 is the friction constant and ζ(t) is the random force. As we can see

from the right-hand side of (2.6), the Langevin equation contains both a frictional

force term γ d
dt
X and stochastic term ζ(t). Note that ζ(t) is not a single unique

function, i.e., ζ(t) and ζ(t′) are independent whenever t ̸= t′, which makes (2.6)

a stochastic differential equation (SDE), and not an ordinary differential equation

(ODE) [43,62]. In the case when frictional forces are much larger than inertial forces,

i.e., |γ d
dt
X| ≫ |m d2

dt2
X| [39], the second order equation (2.6) is approximated by the

overdamped Langevin equation. The overdamped Langevin equations for n particles

in the presence of thermal noise with a conservative force then becomes:

dxj = Fjdt+
√

2β−1dη, Fj = −∇jE(x1,x2, · · · ,xn). (2.7)

Here dη is a (Brownian) noise term, and E is the potential, which is often taken to

be of the form (2.1)). In equation (2.7) we have taken Fj = −∇jE(x1, · · · ,xn) to be

a conservative force governed by the potential E(x1, · · · ,xn).

6



Figure 2.1 Structures observed in models (images from [51]) of nuclear matter using
the energy (2.8): (l-r) particle densities are 0.05, 0.025, 0.01 fm−3, The shading show
a density isosurface to highlight phase separation between the two species of particles.

We now collect several examples from the literature that use variations of (2.1).

Example 1. (Nuclear matter)

Astrophysicists have been long interested in studying the properties of neutron-rich

matter2. Neutron-rich matter can exhibit complex structures as the result of a

competition between attractive nuclear forces and repulsive Coulomb (electromagnetic)

forces [13].

For example, Figure 2.1 shows three different nuclear pasta formations for

various densities of matter. With new advancements in computational power, different

varieties of nuclear pasta have been recently identified [13].

One interaction energy used to model nuclear matter, for a charge-neutral

system of neutrons, protons, and electrons is given by the following

Vtotal =
1

2

n∑
i=1

n∑
j=1
j ̸=i

Vij. (2.8)

In this model there are two species of particles, neutrons and protons. Particle i is

represented by a position and a label of proton or neutron. The interaction energy,

2Neutron-rich matter is a neutral system composed of a neutron enriched mixture of neutrons
and protons embedded in a degenerate electron gas [1].

7



Table 2.1 Nuclear interaction parameters [51] used in the model (2.8)

a (MeV) b (MeV) c (MeV) Λ (fm2)

110 −26 24 1.25

further can be written as Vij = V n
ij +V

c
ij, where V

n
ij is a nuclear interparticle force and

V c
ij is a Coulomb force [35]:

• The nuclear component

V n
ij = ae−

r2ij
Λ + [b+ cτz(i)τz(j)]e

−
r2ij
2Λ ,

where, rij is the distance between two particles i and j, τz = +1 or (−1) is

the isospin projection of the proton (or neutron) particle. In addition, a is the

strength of the short-range repulsion between nucleons, b and c are the strength

of their intermediate-range attraction, and Λ is the length scale of the nuclear

potential. Typical parameter values are shown in Table 2.1.

• The Coulomb component

V c
ij =

α

rij
e−

r2ij
λ τp(i)τp(j),

where α is the fine structure constant, λ is the screening length which is fixed

(λ = 10), and τp ≡
1 + τz

2
is the nucleon charge.

Example 2. (DLVO Theory)

The DLVO theory3 uses two different forces, electrostatic repulsion and van der Waals

attraction to explain the colloidal stability [57]. For example, the DLVO potential

between two spheres of radius R at a distance D away from each other is [10]:

W (D) = W (D)A +W (D)R, (2.9)

3The DLVO theory is named after Derjaguin, Landau, Verwey, and Overbeek [23].

8



where W (D)A and W (D)R are van der Waals attractive energy, and repulsive energy

due to electrostatic forces. Here, W (D)A and W (D)R are defined below

W (D)A = −π
2Cρ2

6D

R

2
, (2.10)

where C is a constant for the interaction energy, and ρ is the number density of the

sphere.

W (D)R =
64πkbTRρ∞γ

2

κ2
e−κD. (2.11)

Here, γ is the reduced surface potential

γ = tanh(
zeψ0

4kT
),

where ψ0 is the potential on the surface, and T is the temperature.

In addition, κ−1 is the characteristic thickness of the double layer (Debye length)

κ =

√∑
i

ρ∞ie2z2i
ϵrϵ0kbT

,

where

• ρ∞i is the number density of the ion i in the bulk solution,

• z is the valency of the ion,

• ϵr is the relative static permittivity,

• ϵ0 is the vacuum permittivity, and

• kb is the Boltzmann constant.
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CHAPTER 3

CONVEX RELAXATION OF THE HELMHOLTZ FUNCTIONAL

This section discusses finding global minimizers to the Helmholtz functional on a

periodic domain when there is no external potential. The presented approach relies

on a convex relaxation of the pairwise Helmholtz functional, and results in sufficient

conditions for global minimizers. The sufficient conditions are computationally

tractable as convex problems, and when satisfied, guarantee that a probability density

is a global minimizer. The sufficient conditions take the form of a linear optimization

problem for the auto-correlation of the probability density with non-negative Fourier

modes.

3.1 Convex Relaxations to Computationally Tractable Problems

We are interested in energy functionals that model systems with a large number of

particles, and take the form

E(ρ) := 1

2

∫
Ω

∫
Ω

ρ(y)w(x− y)ρ(x)dxdy,

∫
Ω

ρ(x)dx = 1. (3.1)

Here, we restrict our focus to a periodic domain Ω = [0, 1]d with dimension 1 ≤ d ≤ 3,

w(x) is the interaction energy, and ρ(x) is the density function used to represent the

distribution of particles.

Remark 1. (Inversion symmetry of the interaction potential) For the energy

functional in (3.1), without loss of generality one can take the interaction potential,

w(x), to be symmetric under inversion, i.e., w(−x) = w(x) for all x ∈ Rd. Here,

w(−x) := w(−x1,−x2, . . . ,−xn). The symmetry assumption on w(x) can be justified

by writing w(x) in terms of its even and odd components, w(x) = wE(x) + wO(x),

10



where

wE(x) :=
1

2

(
w(x) + w(−x)

)
, wO(x) :=

1

2

(
w(x)− w(−x)

)
.

Note that the integral in (3.1) is zero for the function wO(x):∫
Ω

∫
Ω

ρ(y)wO(x)ρ(x)dxdy =

∫
Ω

∫
Ω

ρ(y)
(
w(x− y)− w(y − x)

)
ρ(x)dxdy = 0.

Hence, if w(x) is not symmetric under inversion, one can simply replace w(x) with

wE(x) since the integral with wO(x) vanishes.

The problem to find global minimizers to the pairwise energy (3.1) is:

minimize
1

2

∫
Ω

∫
Ω

ρ(y)w(x− y)ρ(x)dxdy, (P)

over probability measures ρ(x) ∈ C1 with
∫
Ω

ρ(x)dx = 1.

Here C1 is the following convex cone1

C1 :=
{
f ∈ C0(Ω)′ :

∫
Ω

f(x)u(x)dx ≥ 0 for all u ∈ C0(Ω) with u(x) ≥ 0
}
.

Remark 2. (Solution to the problem (P)) We denote the global minimum of the

problem (P) as E0 := E(ρ0), achieved by some probability measure ρ0(x)dx. Under

the following assumptions 1, the minimizer (P) exists, however when Ω is not bounded

the minimizer might not exist [12,14,19,53].

Assumption 1. (Assumptions on the interaction energy w(x))

A1. w(x) is continuous on Ω.

A2. w(x) is periodic with period 1.

1In the definition of C1, C0(Ω) is the space of periodic continuous functions on Ω.

11



Definition 3.1.1. (Definition of convexity) We say that a function (or functional)

E is convex if for any ρ1, ρ2 and 0 ≤ α ≤ 1, then

E
(
αρ1 + (α− 1)ρ2

)
≤ αE(ρ1) + (1− α)E(ρ2).

A set S is convex if for any x, y ∈ S and 0 ≤ α ≤ 1 then

αx+ (α− 1)y ∈ S.

For convex problems, sufficient conditions for global minimizers can be formulated

using the Karush-Kuhn-Tucker (KKT) conditions. For problem (P), the KKT

conditions for a density ρ∗(x) take the form [6,15]

Λ(x) :=

∫
Ω

w(x− y)ρ∗ydy, (3.2)

and satisfies

Λ(x) = 2µ, for all x ∈ S∗ := supp(ρ∗)2. (3.3)

Λ(x) ≥ 2µ, for all x ∈ Ω. (3.4)

Here, µ ∈ R is a Lagrange multiplier constant. For general w(x), the energy E is

not convex. One of the primary difficulties when solving the problem (P) is a lack

of sufficient conditions. Note that if ρ∗ solves the KKT equations for problem (P),

then ρ∗ does not necessarily solve (P). In other words, the KKT conditions are not

sufficient to guarantee global minimizers.

We do not work directly with the KKT conditions, but rather formulate global

conditions that provide sufficient conditions for global minimizers. The sufficient

conditions are formulated using a convex relaxation to the problem (P) and also

result in a lower bound on the energy E0.

2supp(f) is the support, i.e., the set where f(x) does not vanish.
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To obtain the convex relaxation to the problem (P) (see [3]), we use a change

of variables s = x− y in the integral of the energy (3.1)

E(ρ) = 1

2

∫
Ω

∫
Ω

ρ(x)ρ(x+ s)w(s)dxds =
1

2

∫
Ω

F (s)w(s)ds, (3.5)

where F (s) :=

∫
Ω

ρ(x)ρ(x+ s)dx.

Definition 3.1.2. (Auto-correlation of ρ(x)) F (s) defined in (3.5) is the auto-

correlation of ρ(x). We denote it with F = ρ ◦ ρ, i.e.,

ρ ◦ ρ := F (s) :=

∫
Ω

ρ(x)ρ(x+ s)dx. (3.6)

Defining the set A as

A :=
{
F : F (s) =

∫
Ω

ρ(x)ρ(x+ s)dx, such that ρ ∈ C1,
∫
Ω

ρ(x)dx = 1
}
,

the problem (P) can be written as

minimize
1

2

∫
Ω

F (x)w(x)dx, (P′)

subject to F ∈ A.

Note that the Problem (P′) is not a convex optimization problem despite the linear

functional ⟨F,w⟩. This is because A is not a convex space (see Remark 3).

Remark 3. (The set A is not convex) To show that A is not convex take f1(x) =

1+cos(2πx) and f2(x) = 1+cos(2πnx) on Ω = [0, 1], where n≫ 1 is a large integer.

The convex combination of

λ(f1 ◦ f1) + (1− λ)(f2 ◦ f2) = λ
(
1 +

1

2
cos(2πx)

)
+ (1− λ)

(
1 +

1

2
cos(2nπx)

)
= 1 +

1

4
cos(2πx) +

1

4
cos(2nπx),
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when λ = 1
2
, must come from an auto-correlation of a function taking the form (with

arbitrary phases φ1, φ2)

f3(x) = 1 +
1√
2
cos(2πx− φ1) +

1√
2
cos(2nπx− φ2).

Choosing n large enough, the minimum value of f3(x), regardless of the values φ1, φ2,

can be made arbitrary close to 1 −
√
2 < 0. Hence, for sufficiently large n, there is

no non-negative probability f3(x) with auto-correlation (λ(f1 ◦ f1) + (1− λ)(f2 ◦ f2)).

Proposition 3.1.3. (Properties of A) Given any F (x) ∈ A, the following properties

hold:

P1. F (x) is a probability.

P2. The Fourier transform of F (x) is real and non-negative.

Proof. The proof for proposition 3.1.3 has two parts:

1. To prove (P1), it is sufficient to show that F (x) is non-negative, and integrates to

one.

i. For any continuous, non-negative function u(x) ≥ 0, the integral ⟨F, u⟩ can

be written as

⟨F, u⟩ =
∫
Ω

∫
Ω

ρ(x)ρ(y)u(x− y)dxdy = ⟨ρ, U⟩,

where

U(x) :=

∫
Ω

ρ(y)u(x− y)dy,

and ρ(x) ∈ C1. The function U(x) ≥ 0 is non-negative, and also continuous

since it is a convolution of ρ(x) with a continuous function U . Hence,

integrating U(x) against ρ(x) is also non-negative, implying: ⟨F, u⟩ =

⟨ρ, U⟩ ≥ 0.
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ii. Taking u(x) = 1 in the definition for U(x) implies that U(x) = 1. It then

follows that ⟨F, 1⟩ = ⟨ρ, 1⟩ = 1.

2. To prove (P2), it is enough to show that sine modes of F (x) are all zero and cosine

modes of F (x) are all non-negative.

i. Integrating F (x) against any sine mode, sin(2πk.x), yields:

⟨F, sin(2πk.x)⟩ =
∫
Ω

∫
Ω

ρ(x)ρ(y)
(
sin(2πk.x) cos(2πk.y)

− sin(2πk.y) cos(2πk.x)
)
dxdy = 0.

ii. Integrating F (x) against any sine mode, cos(2πk.x), yields:

⟨F, cos(2πk.x)⟩ =
∫
Ω

∫
Ω

ρ(x)ρ(y) cos
(
2πk.(x− y)

)
dxdy

= |⟨ρ, cos(2πk.x)⟩|2 + |⟨ρ, sin(2πk.x)⟩|2 ≥ 0.

Proposition 3.1.3 (P2) implies that F ∈ C2, where C2 is the following convex set:

C2 :=
{
f ∈ C0(Ω)′ : for all continuous u(x) ≥ 0, and k ∈ Zd \ 0,∫

Ω

f(x) cos(2π.x)dx ≥ 0,

∫
Ω

f(x)u(x)dx ≥ 0,∫
Ω

f(x) sin(2π.x)dx = 0,

∫
Ω

f(x)dx = 1
}
.

(3.7)

Furthermore, (P1) implies that F is a probability, which is also a convex set. Since

the intersection of two convex sets is convex, the set C1 ∩ C2 is a convex space. This

observation motivates relaxing the optimization of (P′) over the set A, with the
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following relaxation over the intersection of C1 and C2

minimize
1

2

∫
Ω

w(x)F (x)dx (R)

subject to

∫
Ω

F (x)φ(x)dx ≥ 0 for all φ(x) ∈ C0(Ω)3 with φ(x) ≥ 0,∫
Ω

F (x)dx = 1,∫
Ω

F (x)e−i2πkxdx ≥ 0 (k ∈ Zd \ 0).

Here, ≥ 0 means the Fourier transform is both real and non-negative.

Remark 4. (Solution to the relaxed problem (R)) We denote the solution to the

relaxed problem (problem (R)) as FR(x), and the corresponding energy to be ER =

1
2
⟨FR(x), w⟩. In general, we observe that solutions to the problem (R) may be either

continuous functions, i.e., FR(x) ∈ C0; or may be non-classical functions, such as a

combination of a finite number of Dirac point masses, i.e.,

FR(x) =
1

|χ|
∑
s∈χ

δ(x− s), (3.8)

where, χ ⊂ Ω, and |χ| is the number of Dirac points.

Since the optimization in (R) is over a set that is strictly larger than A, one

immediately has the inequality ER ≤ E0.

Problem (R) also has a dual, which will be useful in formulating sufficient

conditions for minimizers. In the following, we assume the existence of Lagrange

multipliers to the constraint that F (x) ∈ C1, and also F (x) ∈ C2. With this

3C0(Ω) is the space of periodic continuous functions on Ω.
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assumption, the dual (D) to the problem (R) takes the form

maximize ED (D)

subject to w(x)− 2ED = w+(x) +K(x),

w+(x) ≥ 0,∫
Ω

K(x) cos(2πk.x)dx ≥ 0.

In problem (D) the function w+(x) plays the role of a Lagrange multiplier to the

constraint that F (x) ∈ C1, while K(x) is the Lagrange multiplier to the constraint

that F (x) ∈ C2. The variable ED actually plays two roles. It is the Lagrange multiplier

to the constraint
∫
Ω
Fdx = 1, and is also the variable to optimize. Since C1 and C2

are convex cones, the functions w+(x) and K(x) also reside in corresponding (dual)

convex cones. Namely,

• The function w+(x) is assumed to be continuous, mirror symmetric and non-

negative, i.e. w+(x) ≥ 0. Together, these imply that for any F (x) ∈ C1, we

have ∫
Ω

F (x)w+(x)dx ≥ 0. (3.9)

• K(x) is a continuous, mirror symmetric, mean-zero function with real non-

negative cosine coefficients4, i.e.,

K̂(k) :=

∫
Ω

K(x) cos(2πk.x)dx ≥ 0, for all k ∈ Zd, and K̂(0) = 0,

K(x) =
∑
k∈Zd

K̂(k) cos(2πk.x).

Since K̂(k) ≥ 0, for any F (x) ∈ C2, we have∫
Ω

F (x)K(x)dx =
∑
k∈Zd

K̂(k)F̂ (k) ≥ 0. (3.10)

4We assume that
∑

k∈Zd K̂(k) < ∞ to guarantee that the cosine series for K(x) converges
uniformly.
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• Note that ED is a lower bound for problem (R), which can be shown using (3.9)

and (3.10) as follows

ER =
1

2

∫
Ω

w(x)FR(x)dx

=
1

2

∫
Ω

w+(x)FR(x)dx+
1

2

∫
Ω

K(x)FR(x)dx+ ED (3.11)

≥ ED.

Remark 5. (Dual cones in (D)) In finite dimensions, the cone K ⊂ Rn has the

associate dual cone defined as

K∗ =
{
y ∈ Rn : xTy ≥ 0 for all x ∈ K

}
.

From (3.9) and (3.10), w+(x) and K(x) are in cones that are dual to C1 and C2.

The solution to the dual problem (D) then gives an optimal decomposition of

w(x) as

w(x) = w+
R(x) +KR(x) + 2ER. (3.12)

3.2 Sufficient Conditions for Optimality

In this section we introduce sufficient conditions for a global minimizer of the problem

(P), using the relaxation (R).

The sufficient conditions for a global minimum of the problem (P) are as follows:

• Suppose that ρ∗(x) is a probability distribution with auto-correlation FR(x),

i.e., FR(x) = ρ∗ ◦ ρ∗, that solves (R). Then, since the energy, E , given by any

probability distribution is by definition larger than the minimizer, E0, and also,

problem (R) is a lower bound for (P), we have

E(ρ0) = ER ≥ E0 ≥ ER,

and therefore, ER = E0, which implies that ρ∗ = ρ0 is a global minimum to (P).

18



• There exists ρ∗(x) that solves (D), i.e., E(ρ∗) = ED. Then from (3.11), and the

fact that any probability distribution is larger than the minimizer ED = ER ≤

E0 ≤ ER, which shows the ρ∗ is optimal.

3.2.1 Complementarity Conditions

In this section we look at the complimentarity conditions which describes the relations

between a solution ρ0, and the dual variables w+
R(x) and KR(x).

Let’s consider that we have the dual solution (3.12), and substitute it into the

objective function ⟨F (x), w(x)⟩ to obtain:

ER =
1

2

∫
Ω

w+
R(x)FR(x)dx+

1

2

∫
Ω

KR(x)FR(x)dx+ ER. (3.13)

Equations (3.9) and (3.10) imply that both integrals are in (3.13) are non-negative.

Hence, for (3.13) to hold, the integrals must vanish:∫
Ω

w+
R(x)FR(x)dx = 0, (3.14)∫

Ω

KR(x)FR(x)dx = 0.

From (3.14) we can write a relationship for the support of FR(x) to w
+
R(x) and the

Fourier modes of FR(x) to KR(x). Specifically, the constraints in (3.14) infer the

following complementary supports:

w+
R(x)FR(x) = 0, for all x ∈ Ω, (3.15)

K̂R(k)F̂R(k) = 0, for all k ∈ Zd,

where K̂R(k) and F̂R(k) are the cosine coefficient KR(x) and FR(x).

Equations (3.15) shows that when the sufficient conditions are satisfied by

some ρ0, the complimentarity conditions prove insight into which spatial and Fourier

components of w+
R(x) and KR(x) influence ρ0(x).
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3.3 Example Solutions to Convex Relaxation

This subsection presents a few example solutions to the problem (R) and (D). The

section focuses on a toy potential that is inspired by taking a Morse-type potential

on a periodic domain

wPM(x) = −GLe−
1
L
sin(π|x|) + e− sin(π|x|), G, L > 0. (3.16)

In analogy with the parameters often used in the Morse potential, G is the

characteristic velocity induced by attraction of particles, while L is a characteristic

length scale [5, 6, 47]. Note that the interaction energy is symmetric, i.e., wPM(x) =

wPM(−x), and bounded at the origin, i.e., wPM(0) <∞.

We present two key examples that highlight the different behavior in the solution

FR(x) — that is, FR(x) may be a continuous function, or FR(x) may contain non-

classical Dirac masses.

In the first example where FR(x) is continuous, we fix the parameter values in

(3.16) to be (G,L) = (0.9, 1.5). Figure 3.1 provides an example of the solution to

(D), while Figure 3.2 shows the solution FR(x), and the decomposition w+
R(x). As we

can see from Figure 3.2, FR(x), and w
+
R(x) do not overlap, which is consistent with

the results in §3.2.1.

The second example is for a solution where FR(x) is a collection of Dirac

masses, such as the expression in (3.8). Figure (3.3) shows the solution FR(x) =

1
2
δ(x) + 1

2
δ(x− 1

2
) which consists of two Dirac masses. The figure also demonstrates

the complimentary conditions (3.14) and (3.15) regarding the relation between the

support of the minimizer to (R), FR(x), and w+
R(x) and KR(x). Note that Fourier

modes of FR(x) that shown by the blue dots in Figure 3.1 are approximately O(10−2),

which is not zero. This is an artifact of the solution being computed using the

interior-point method, and the values of the Fourier modes can be made smaller by

tightening the tolerances in the interior-point method.
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Figure 3.1 The figure shows the solution to (D) for the periodic potential wPM(x)
defined in (3.16). The parameters are (G,L) = (0.9, 1.5) resulting in a solution FR(x)
(not shown) that is continuous. Computations are done with n = 512 grid points.

Figure 3.2 The figure is for parameters (G,L) = (0.9, 1.5) which result in a non-
classical solution F̂R(x) (which is continuous). Computations were done with n = 64
grid points. The figure highlights the complementary support of FR(x) and w

+
R(x) in

real space.
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Figure 3.3 The figure is for parameters (G,L) = (3, 0.2) which result in a non-
classical solution FR (which is two Dirac masses). Computations were done with
n = 64 grid points. The figure highlights the complementary support of F̂R(x) and
w+

R(x) in real space (left), and complementary support of F̂R(k) (blue circles) and

K̂+
R (k) (black crosses) in k space (right).

Remark 6. Comparison of sufficient conditions and particle model) The gradient

flow on equation (2.1) for the interaction potential (3.16) is defined by the ODE

ẋj = −∇xj
EN , 1 ≤ j ≤ N. (3.17)

The long-time solution of the system (3.17) and the histogram of particle

positions as t → ∞ for parameters (G,L) = (0.9, 1.5) for N = 500 particles with

slightly perturbed uniform random initial data is shown in Figure 3.4. Comparison

of the recovered approximate global minimizer, ρ∗(x), that satisfies the sufficient

conditions and the histogram from gradient flow shows that the support of the density

is close to the width of the region which particles coalesce in particle model.
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Figure 3.4 Gradient flow (i.e., time evolution of equation (3.17)) for N = 500
particles to a steady state (i.e., critical point) of (2.1) for a periodic Morse-type
potential (3.16) (left), here only 30 particles shown; Particle density at the steady
state obtained by differentiating the cumulative density function as was done in [6]
(right). The parameters are (G,L) = (0.9, 1.5).
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CHAPTER 4

BASIC PROPERTIES OF LINEAR PROGRAMMING PROBLEMS

In this section we collect and review well-known properties of the solutions to linear

programming (LP) problems in standard form. These properties will provide some

insight into the nature of the numerical solutions to (R) and will be used in the

subsequent chapters. The usual notation for a problem in standard form is:

minimize cTx

subject to Ax = b, (4.1)

x ≥ 0,

where x, c ∈ Rn,b ∈ Rm,A ∈ Rm×n. Without loss of generality, the rows of A are

assumed to be linearly independent so that they characterize independent equality

constraints.

We denote the solution to the problem (4.1) as x∗. The feasible set to the

standard problem (4.1) is:

C :=
{
x ∈ Rn : Ax = b, x ≥ 0

}
. (4.2)

The following subsections outline properties regarding solutions to LP problems of

the form (4.1) (see, for instance, Chapter 3, [55]).

4.1 Constraint Qualifications

In this section we write the KKT conditions for (4.1). These conditions are important

as they characterize solutions to (4.1).

Let the Lagrangian L associated with the standard problem (4.1) be:

L(x,λ, s) = cTx + λT(Ax− b)− sTx,
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where λ ∈ Rm and s ∈ Rn are Lagrange multiplier vectors. A point x∗ is a solution to

(4.1) if and only if there exist points (s∗, λ∗) such that (x∗, s∗, λ∗) satisfy the following

KKT conditions [11].

c+ATλ∗ − s∗ = 0,

Ax∗ − b = 0,

s∗Tx∗ = 0, (4.3)

x∗ ≥ 0,

s∗ ≥ 0.

We use capital letters to denote the matrices of corresponding vectors, i.e., S =

diag(s). The following are conditions that guarantee a solution to (4.3): there is one

point s > 0 (strictly positive) and λ that satisfy the first equation in (4.3) [8]

ATλ+ c = s. (4.4)

4.2 Solutions are Extreme Points

Definition 4.2.1. (Extreme Points (Chapter 2, [7])) Let S be a non-empty convex

set defined in Rn. A vector x ∈ S is called an extreme point if there are no two

vectors y, z ∈ S and y ̸= z such that x = αy + (1− α)z for a scalar α ∈ (0, 1).

For instance, when S is a polygon the extreme points are corners.

Theorem 4.2.2. (LP Solutions are Extreme Points (Chapter 2, [7])) Assume that

(4.1) has a solution. There is at least one extreme point of the set C that minimizes

the linear objective function cTx.

Proof. (a) Assume that the solution to the LP problem is unique. If the unique

solution, x∗, is not an extreme point then there are vectors x,y ∈ C such that

x∗ = αx+ (1− α)y for a scalar α ∈ (0, 1). The objective in (4.1) can be written as

cTx∗ = cTαx+ (1− α)cTy > cTαx∗ + (1− α)cTx∗,
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which implies that cTx∗ > cTx∗, therefore, x∗, is an extreme point by contradiction.

(b) If the solution to the LP problem is not unique, then the optimal set C0 :={
x ∈ Rn : cTx ≤ cTy, for all x,y ∈ C

}
forms a closed convex set. Every closed

convex set C0 has at least one extreme point (Chapter 2, [7]).

Definition 4.2.3. (Active and Inactive Sets) For any point z ∈ C, the active set is

defined as A = {j : zj = 0}, the inactive set is I = {j : zj > 0}.

Denote by |A| the number of elements in A (and the same for |I|). Hence |A|

denotes the number of zero entries of z and |A| + |I| = n. When z is in the interior

of C, |A| = 0.

4.3 Upper Bounds on the Support of Solutions

Proposition 4.3.1. (Upper bound on |A| (Proposition 2.1.4 (b), [7])) A vector v ∈ C

defined in (4.2) is an extreme point of C if and only if the columns of A corresponding

to the non-zero coordinates of v are linearly independent.

Proof: (=⇒) Let v ∈ C be a vector with k zero elements, (i.e., |A| = k). If we write

the constraint Av = b in block form with active and inactive sets as

A =

(
AI AA

)
, v =

vI

vA

 where vA = 0, and vI > 0,

then we obtain the (equivalent) equality constraint

(
AI AA

)vI

0

 = b.

If the columns of AI are linearly dependent, then AI w = 0, has a non-zero solution,

w ̸= 0. For arbitrary β ∈ R, we then have

AI(vI + βw) = b.
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By taking β > 0 small enough, the vectors vI + βw ≥ 0 and vI − βw ≥ 0

are both non-negative. This implies that there exists a vector w′ =
(
w 0

)T
so that

v + βw′ ∈ C and v − βw′ ∈ C. We can write

v =
1

2
(v + βw′) +

1

2
(v − βw′),

therefore, v is not an extreme point. Hence, the columns of AI must be linearly

independent.

(⇐=) Conversely, assume that AI has linearly independent columns. Suppose that v

is not extreme. We can then write v as a convex combination of two other vectors

y, z ∈ C

v = αy + (1− α)z, for a scalar α ∈ (0, 1).

Since y ≥ 0 and z ≥ 0, the only way for vj = 0 is to also have yj = zj = 0. Since v,

y, and z can be decomposed into blocks corresponding to the active and inactive sets

of v (i.e., v =
(
vT
I 0

)T
), we have

Av = AIvI = b,

Ay = AIy
′ = b,

Az = AIz
′ = b.

It follows that v, y, and z are all solutions of a system with linearly independent

columns, and by uniqueness, we have v = y = z, implying that v is an extreme point

of C.

Remark 7. (Unique solutions to (5.8) are determined by the set A or I) Assume

that z∗ is the unique solution to (5.8) with active and inactive set A and I. Then

z∗ is an extreme point. Without loss of generality, we can reorder the matrix A into

blocks corresponding to the active and inactive set in z =
(
0 zI

)T
; A =

(
AA AI

)
.
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Using the block structure, the equality constraint, i.e., Az = b, can be written as

(
AA AI

) 0

zI

 = AIzI = b. (4.5)

Since z∗ is an extreme point, by Proposition 4.3.1, the columns of A corresponding to

non-zero coordinates of z are linearly independent, hence, (4.5) uniquely determines

zI.

Remark 8. (Geometry of the set C, (4.2), and conditioning of the system (4.5))

Linear system (4.5) can be solved by knowing the active set corresponding to z∗, i.e.,

solution to (5.8). The conditioning of the system (4.5) is determined by the matrix

AI, and is related to the geometry, i.e., the angles, at the vertex of the solution in the

feasible set C, defined at (4.2). Note that methods like the interior-point method hone

in on the active set during the solution process. Therefore, the conditioning of AI has

the potential to impact the use of iterative Krylov solvers in an interior-point method.

This is because Krylov solvers may perform poorly by requiring many iterations on

ill-conditioned problems.
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CHAPTER 5

CONIC OPTIMIZATION WITH FOURIER CONSTRAINTS

In this section we devise numerical methods for solving the sufficient conditions given

by the relaxed problem (R). The specific form of the problem (R) we derived in

the previous chapter involves minimizing a linear (variational) objective function,

with a collection of linear constraints. Numerical discretizations of (R) will then

take the form of a linear programming (LP) problem. This section will focus

on devising numerical discretizations and corresponding matrix-free interior-point

methods (IPMs) to solve the resulting LP problem for (R). Matrix-free methods

that avoid having to build and directly solve large linear systems (such as those

that occurring during the IPM solution process) provide an attractive avenue for

improving the IPM computational solution time. For problems such as (R), reduction

in computational time is crucial to increase the dimension (to d = 2 and 3) and

resolution of the problems we may address.

5.1 Numerical Discretizations of the Convex Relaxation

In this section we present numerical details regarding discretization for the problem

(R).

5.1.1 Periodic Domain: Ω = [0, 1]

For the problem (R), we use an equispaced discretization using n > 0 grid points.

In dimension d = 1, we have: xj = j/n, for 0 ≤ j ≤ n − 1. Using the equispaced

discretization, the functions w(x) and F (x) can be represented as vectors w, f ∈ Rn

where

wj := w(xj) and fj ≈ F (xj). (5.1)
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Using the vectors (5.1) we discretize problem (R). Since we adopt an equispaced grid,

the integrals in (R) can be discretized using simple quadrature.

• Mass constraint ∫
Ω

F (x)dx = ⟨F (x), 1⟩ ≈ 1

n

n−1∑
j=0

fj = 1. (5.2)

• Non-negativity constraints, for all smooth ϕ(x) ≥ 0∫
F (x)ϕ(x)dx ≥ 0 =⇒ fj ≥ 0. (5.3)

• Fourier constraints∫
Ω

F (x)e−i2πkxdx ≥ 0, and real (k ∈ Zd \ 0). (5.4)

Condition (5.4) is equivalent to the following cosine and sine expressions

⟨F (x), cos(2πkx)⟩ ≈
n−1∑
j=0

cos

(
2πkj

1

n

)
fj ≥ 0, (5.5)

⟨F (x), sin(2πkx)⟩ ≈
n−1∑
j=0

sin

(
2πkj

1

n

)
fj = 0. (5.6)

The discrete (in)equalities (5.5), and (5.6) can be formulated using the discrete

Fourier transform, which is defined as follows.

Definition 5.1.1. (Discrete Fourier transform) The discrete Fourier transform

(DFT) of the vector f , with length n, and its inverse are defined as

f̂k =
n−1∑
j=0

fj ω
j k
n , fj =

1

n

n−1∑
k=0

f̂k ω
−j k
n ,

where ωn = e−
2πi
n is the nth root of unity.
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We use the notation f̂ = fft(f) and f = ifft(̂f) to denote the fast Fourier

transform algorithm, which computes the discrete Fourier transform using O(n log n)

flops. The DFT can be represented through matrix multiplication f̂ = F f , where

F ∈ Cn×n is given by (ω̄ is the complex conjugate of ω)

Fkj = ωjk
n ,

(
F−1

)
kj

=
1

n
ω̄jk
n ,

or:

F =



1 1 1 . . . 1

1 ωn ω2
n . . . ωn−1

n

1 ω2
n ω4

n . . . ω
2(n−1)
n

...
. . .

...

1 ωn−1
n ω

2(n−1)
n . . . ω

(n−1)(n−1)
n


.

Remark 9. (Discrete Fourier Transform Norm) The matrices F and F−1 have

orthogonal columns but are not unitary, and have the following matrix 2-norms

∥F∥2 =
√
n, ∥F−1∥2 =

1√
n
.

Using the discretizations from (5.2–5.4), the discrete version of problem (R) is:

minimize
1

n
wTf

subject to f ≥ 0, (5.7)

f̂ ≥ 0,

1Tf = n,

1√
n
IT− F f − f̂ = 0,
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where

1 =



1

1

...

1


∈ Rn, f =



f0

f1
...

fn−1


∈ Rn, f̂ =



f̂1

f̂2
...

f̂n−1


∈ Cn−1, I− =

 0T

In−1

 ∈ Rn×(n−1).

Here, In ∈ Rn×n is the identity matrix, and 0 is a vector of zeros.

Note the slight abuse of notation that f̂ does not contain the zero mode f̂0, and

that F is also scaled by 1√
n
. This is to ensure that 1√

n
F has norm one, and also

that in subsequent computations the application of F on a vector v is always just an

FFT. We assume the problem (5.7) has a unique solution and denote it as f∗n (i.e.,

f∗n = argmin 1
n
wTf) and the optimal value p∗n = 1

n
wTf∗n.

The formulation of (5.7) warrants the following observations. First, we multiply

the objective function in (5.7) by 1
n
, so that in the limit as n→ ∞ the optimal value

1
n
wTf is a Riemann sum for the integral

∫
w(x)F (x)dx. However, for any fixed value

of n, replacing 1
n
wTf with wTf in (5.7) does not change the solution vector f∗n (the

minimum p∗n would no longer converge as n→ ∞). Second, in (5.7) we have written

f̂ ≥ 0 to mean that (i) f̂ is real and Re(f̂) ≥ 0. Note that Im(̂f) = 0 is equivalent to

fn−j = fj+1 for j = 1, · · · , n
2
− 1 (i.e., the vector f is symmetric).

The problem (5.7) involves constraints on f and its Fourier transform f̂ . We now

put the LP problem (5.7) into standard form1. This will allow us to write the IPM in

a framework that can be generalized later to other discretizations and versions of our

relaxed problem (R). It will also allow us to use standard LP theorems to provide

some characterization on the support of the solutions to (5.7). To put the problem

1One standard form of an LP problem is: (i) the objective variables are non-negative; and
(ii) the constraints are equalities.
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into standard form, let:

u =

w

0

 , z =

f

f̂

 , b =

√
n

0

 , A =

(
1√
n
F − I−

)
,

where u ∈ R2n−1, z ∈ C2n−1, b ∈ Rn, A ∈ Cn×(2n−1).

Problem (5.7) in standard form2 is:

minimize
1

n
uTz

subject to Az = b, (5.8)

z ≥ 0.

Note that the constraint z ≥ 0 is subtle since it means that the values zj are

both real and zj ≥ 0 for all 0 ≤ j ≤ 2n− 1 (despite the fact that A is complex). In

addition, the factor 1√
n
in the definition of A implies that 1√

n
F has norm 1 (Remark

9), which ensures that the norm of A is bounded by 2 independent of n. Note that the

rows of A are linearly independent since the invertible matrix F appears as a block

in A. Since f is symmetric, the values of f̂ are purely real. Therefore, the constraints

on f ensure that z ∈ R2n−1 is real. As we can see, the problem (5.8) has n equality

constraints and 2n − 1 inequality constraints. We denote the solution to (5.8) as z∗

which is unique due to the unique assumption on (5.7).

5.2 Interior-Point Methods

There are many methods for solving LP problems, with two of the most popular being

the simplex method [20] and IPMs [11]. The difference between the simplex and IPM

lies in how they traverse the feasible set to arrive at a solution. Specifically, for LP

problems, the feasible set is a polyhedral set (i.e., consisting of linear inequalities and

equalities) and the optimal solution (when unique) only occurs at the vertices, or

2With the exception that we include a 1
n prefactor in the objective function.
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extreme points of the set (Theorem 4.2.2, [9]). In the worst case, the classical simplex

method algorithm checks all vertices, leading to an exponential number of iterations

(since polyhedral sets with m constraints can have 2m vertices.) [40]. In practice, the

simplex method performs much better than the worst-case scenario [58].

In 1979 L.G. Khachian proposed an ellipsoid algorithm with polynomial

complexity, which in the worst case, has significantly fewer iterations than the simplex

method [38]. Later, in 1984 N. Karmarkar discovered that the interior-point algorithm

would outperform3 the ellipsoid method [37]. See the review by M. Wright [58] for a

detailed history of interior point methods. Unlike the simplex method, which improves

by stepping around the vertices on the boundary of the feasible set, the interior-point

method starts from a feasible interior point and improves along an interior path

(known as the central path) toward the optimum point on the boundary. Generally,

IPMs are a better approach to solve LP problems with many vertices, i.e., the feasible

set is defined using a large number of bounding hyperplanes close to the optimum

vertex [20].

A primary reason that we pursue IPMs over the simplex method is that

IPMs generalize to semidefinite programming (SDP) problems, while the simplex

method does not. Having methods that generalize to SDPs is an important future

consideration: the sufficient conditions for the Helmholtz free energy involving

multiple species of particles modifies the LPs in (R) to SDPs. Hence, advances in our

understanding of IPMs for the LP problem (R) will extend to the more general SDP

setting in the future.

Interior-point methods take (modified) Newton steps to optimize a penalized

objective function and arrive at a solution. For large-scale problems (with a large

number of variables and/or inequalities) the solution of a Newton step involves solving

3The complexity for Khachian’s algorithm is O(n6L2), and the algorithm proposed by
Karmarkar is O(n3.5L2), where n is the dimension of the problem and L is the problem
data size (length of the input data stream) [21,37].
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a linear system with a Jacobian matrix and will often be the bottleneck for solving the

optimization problem. If the Jacobian matrix is dense (as in our case), direct methods,

such as Gaussian elimination, are very costly. For example, Gaussian elimination on

Jacobian matrices that arise from numerical discretizations of (R) with n grid points

may require O(n3) floating point operations (flops) to solve. As a result, numerical

discretizations of (R) using direct methods such as MATLAB’s (version R2018a)

built in optimization routines can handle problems with very limited resolution in

two dimensions.

In our case, however, matrix-vector products involving the Jacobian can be

computed quickly via the fast-Fourier transform due to the nature of the Fourier

constraints. Hence, matrix-free Krylov subspace methods, that only require matrix

vector products, offer an attractive route towards solving (R) in higher spatial

dimensions. As with any Krylov method, a key challenge is to ensure that the linear

system being solved is well-conditioned.

5.2.1 The Logarithmic Barrier Function

Interior-point methods (IPM) are a class of algorithms for solving optimization

problems (with non-empty interiors or relative interiors) such as (4.1). Interior-point

methods work by solving modified versions of the KKT conditions (4.3) using a

sequence of Newton steps [11]. The purpose of adopting an interior-point method

is to avoid imposing the inequality constraints in the KKT conditions, and instead

to solve a system of equality constraints. This is because the solution to a system

of equality constraints is often easier to implement numerically; for instance, using

Newton or gradient descent methods.

One approach to solve constrained optimization problems with inequality

constraints like the problem (5.8) is the barrier method, which is a particular

interior-point method. The idea in the barrier method is to include the inequality
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constraints directly into the objective function by adding a barrier function. The

barrier function penalizes the objective function variables as they approach the

boundary of the feasible set [11].

In order to solve (5.8) using the barrier method, the inequality constraints in

(5.8) are penalized by a logarithmic barrier that is discussed in Definition 5.2.1.

Definition 5.2.1. (Logarithmic barrier function) The logarithmic barrier function

for the Problem (5.8) is:

ϕ(z) := −
2n−1∑
j=1

log(zj),

with dom ϕ =
{
z ∈ Rn : zj > 0 for j = 1, · · · , 2n− 1

}
.

We replace the inequality constraints in (5.8) with the logarithmic barrier to

arrive at the following modified optimization problem

minimize
1

n
uTz+ tϕ(z) (5.9)

subject to Az = b.

The solution to problem (5.9) depends on the parameter t > 0 and is referred to as

the central path.

Definition 5.2.2. (Central Path) For each value of t > 0, denote the solution to

(5.9) as z∗t , the locus of points z∗t is referred to as the central path.

The central path has many interesting properties [11]. If (5.8) has a solution,

then the central path is well defined (since ϕ(z) is strictly convex on z > 0, (5.9) has

a unique minimizer).

The gradient of (5.9) is:

∇
( 1
n
uTz+ tϕ(z)

)
:=

1

n
u− tZ−11, (5.10)
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where 1 ∈ R2n−1, and Z denotes diagonal matrix of the vector z (i.e., Z =

diag(z1, z2, . . . , z2n−1)).

Remark 10. (Properties of the barrier problem (5.9))

• Using the barrier method, one has the advantage of solving for an optimization

problem without any inequality constraints with a desired method such as the

Newton’s method.

• The problem (5.9) is actually a family of nonlinear problems indexed by the

parameter t.

• As the parameter t goes to zero, the solution to the barrier problem (5.9) becomes

a better approximation to the solution of problem (5.8). Proposition 5.2.3 shows

that as t → 0, 1
n
uTz∗t → 1

n
uTz∗. Under a few additional assumptions on the

problem (5.8), i.e., that z∗ is unique, one can further show that z∗t → z∗ as

t→ 0.

Proposition 5.2.3. (Convergence of the Barrier Problem (5.9), Chapter 11, [11])

In the solution to (5.9), z∗t satisfies the following inequality

1

n
uT(z∗t − z∗) ≤ t(2n− 1). (5.11)

Proof. The proof uses weak duality on the original problem (5.8). The Lagrangian

corresponding to problem (5.8) has the form

L(z, s,λ) =
1

n
uT z− sT z+ λT (Az− b). (5.12)

To invoke weak duality and obtain an inequality, we introduce

g(s,λ) = minimize L(z, s,λ)

subject to z ≥ 0.
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Weak duality says that for any s ≥ 0, λ ∈ Rn that is dual feasible, one has the lower

bound on the objective function

g(s,λ) ≤ 1

n
uTz∗. (5.13)

Hence any choice of s,λ that is dual feasible provides a lower bound. We now

generate such an s and λ using the solution to the problem (5.9) to obtain the

required inequality. Since z∗t minimizes a convex objective function with only a

linear constraint (no inequality constraint), the KKT equations for z∗t involve only an

equality constraint Lagrange multiplier which we call λ∗(t). Together z∗t and λ∗(t)

solve:

Az∗t − b = 0, (5.14)

and

1

n
u− tZ∗−1

t 1+A†λ∗(t) = 0. (5.15)

In equation (5.15) Z∗
t = diag(z∗t ), and A† is the conjugate transpose of a matrix

A. Now denote s∗(t) = tZ∗−1

t . Here, s∗(t) and λ∗(t) are dual feasible for the original

problem (5.8) because s∗(t) > 0 (since z∗t > 0 is always in the interior), and λ∗(t) ∈ Rn

[11].

We now substitute the variables s∗(t) and λ∗(t) into g(s,λ) to obtain:

g(s∗(t),λ∗(t)) = minimize L(z, s∗(t),λ∗(t))

subject to z ≥ 0.
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Since z∗t solves the equations (5.14–5.15), it is exactly the value needed to minimize

the Lagrangian to obtain

g(s∗(t),λ∗(t)) = L(z∗t , s
∗(t),λ∗(t)) (5.16)

=
1

n
uT z∗t − s∗(t) z∗t + λ∗(t)T (Az∗t − b)

=
1

n
uT z∗t − t(2n− 1).

Note that 2n− 1 is the dimension of z in (5.9). Finally, substituting (5.16) in (5.13)

yields:

1

n
uT z∗ ≥ g(s∗(t),λ∗(t))

≥ 1

n
uT z∗t − t(2n− 1),

which shows (5.11), and completes the proof.

5.2.2 Primal-Dual Interior-Point Method

In this section we introduce the primal-dual interior-point method4. Since interior-

point methods traverse the interior of the feasible set, we require that the interior of

C, i.e., int(C) (or more precisely, the relative interior of C), to be non-empty.

The Lagrangian for the optimization problem (5.8) is

L =
1

n
uTz + λT(Az− b)− sTz,

where λ ∈ Rn and s ∈ R2n−1 are dual parameters.

In this primal-dual interior-point method z, λ, and s are strictly feasible in the

sense that z > 0, s > 0, and λ ∈ Rn. The idea behind the primal-dual method is to

4The method is called primal-dual since both primal and dual variables are updated at each
iteration [11]. One can also write primal-dual interior-point method using barrier parameter
which is mentioned in Appendix B.
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minimize (5.8) but instead relax the complementarity condition zTs = 0 and impose

ZS = tI. With this modification, the KKT equations are:

g1 :=
1

n
u+A†λ− s,

g2 := Az− b, (5.17)

g3 := ZS− t I.

The equations that need to be solved are:

g1 = g2 = g3 = 0, (5.18)

where we seek the solutions that satisfy z > 0, and s > 0. Note that the last equation

in (5.17) is the relaxed form of the complimentary condition zisi = 0 and allows for

both zi > 0, and si > 0 to be positive. As t→ 0, equation g3 converges to g3 = 0, so

that the solution at t = 0 satisfies ZS = 0.

Equations (5.17–5.18) are exactly the equations of the logarithmic barrier (5.14–

5.15) obtained by introducing an extra variable S = tZ−1. Although primal-dual

methods and the logarithmic barrier method solve the same system of equations (i.e.,

the value of t has the same meaning in both systems), they differ slightly in the way

that they generate sequences of values z,λ, s that solve (5.18). In the logarithmic

barrier method, the values of z∗t follow the central path and generate a corresponding

set of s∗(t) that always exactly satisfies g3 = 0. Primal-dual methods allow for both

z and s to vary independently so that when using an iterative method (i.e., Newton’s

method) to solve (5.17–5.18) the sequence of points z and s may not exactly satisfy

g3 = 0 (and may not follow the central path). We continue to use the notation zt to

denote the sequence of points generated by the primal-dual method.

Primal-dual methods solve equations (5.18) simultaneously as t→ 0. The idea

is to use a sequence of Newton steps to generate increments ∆z, ∆λ, and ∆s, and

then to use these increments to move z, s, λ towards values that solve (5.18). A
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typical Newton solver would fix a value of t and then solve (5.18) until the variables

converge. However, it is more efficient to decrease the value of t in each Newton

iteration. As a result, primal-dual IPM are not strictly Newton methods, since the

equation g3 changes in each iteration of the Newton loop. The fact that the primal

dual dynamics converge is an interesting problem in its own right.

One Newton step, starting at location z, s, λ applied to the equations (5.18)

yields the following equation for the increment:
0 A† −I

A 0 0

S 0 Z



∆z

∆λ

∆s

 =


−g1

−g2

−g3

 . (5.19)

Note that the third equation in (5.19) yields:

S∆z+ Z∆s = −g3. (5.20)

Solving (5.20) for ∆s in terms of ∆z, and substituting back into (5.19), yields the

equivalent system

B︷ ︸︸ ︷Z−1S A†

A 0


d︷ ︸︸ ︷∆z

∆λ

 =

r︷ ︸︸ ︷−g1 − Z−1g3

−g2

 . (5.21)

For any vector d̃ (that may or may not solve (5.21), we denote the residual as ẽ, i.e.,

ẽ = Bd̃− r.

One potential issue with interior-point methods [30,41,58–60] is that the matrix

B (usually) becomes ill-conditioned as the values of z and s approach their optimal

points. As the values of Z, S approach optimality (t→ 0), the product zjsj → 0. As

a result, the diagonal matrix Θ := (Z)−1S (in the upper left block of B) has values
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that approach either Θjj → 0, if sj → 0, or Θjj → ∞, if zj → 0.

lim
t→0

Θjj = z−1
j sj =


0 j ∈ I

∞ j ∈ A
. (5.22)

Hence, the norm ∥Θ∥2 → ∞, which also causes the norm ∥B∥2 → ∞. Generally

speaking, this will cause the condition (5.21) κ(B) → ∞ as (z,λ, s) approach their

optimal values. The ill-conditioning in B, due to Θ, is generic and occurs in any

IPM that has inequality constraints. Although IPM have an inherent ill-conditiong,

the poor conditioning is not detrimental when direct linear solvers (such as Guassian

elimination) are used on (5.21) [30, 41, 58–60]. In other words, Guassian elimination

can be used to solve (5.21). If solving (5.21) is too computationally complex for

Guassian elimination, and iterative Krylov solvers are used on (5.21) then the ill-

conditioning due to the IPM does present a serious problem, and must be addressed.

5.3 Matrix-Free Methods for the Primal-Dual Algorithm

There has been a lot of interest in using matrix-free methods [4, 24–26, 32, 42]. For

example, a fast, matrix-free implicit method has been developed to solve unsteady

flow problems involving moving boundaries [46]. Matrix-free optimization methods

have also been recently developed for compressed sensing problems [22, 31], as well

for applications in deep-learning [61]. The inherent structure of the problem makes it

necessary to investigate and propose an appropriate preconditioner in order to solve

the Newton’s step in the interior-point algorithm.

One way to remove the ill-condition in B due to the values of Θ is through

using a preconditioner (see §5.3.1, and §5.3.2). Using a matrix P, in a symmetric

fashion, we obtain the preconditioned system:
P− 1

2BP− 1
2y = P− 1

2 r

P− 1
2y = d

. (5.23)
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When P is diagonal, with non-negative entries along the diagonal, then both P
1
2 and

P− 1
2 are easily evaluated and well-defined.

Remark 11. (Invertibility of the matrix B) Matrix B defined in (5.21) is always

invertible. This can be shown by finding ∆z, and ∆λ in (5.21) directly. Note that by

formulation, rows of the matrix A are linearly independent. In components the two

equations in the linear system are:

Θ∆z+A†∆λ = −g1 − Z−1g3, (5.24)

and

A∆z = −g2. (5.25)

Note that Θ is diagonal and all entries are > 0, therefore, both sides of the equation

(5.24) can be divided by Θ. Then multiply this equation through by A and using

equation (5.25) gives

AΘ−1A†∆λ = −AΘ−1(g1 + Z−1g3) + g2. (5.26)

Let’s denote W := AΘ−1A†. Provided that the matrix W is invertible (see

Proposition 5.3.1), implies that equation (5.26) can be solved for ∆λ. This shows

that the matrix B is invertible.

Proposition 5.3.1. (Invertibility of the matrix W) The matrix W := AΘ−1A† is

invertible.

Proof. From definition the matrix W is symmetric. For y ∈ Cn, and q = A†y, then

we can write

y†Ay = q†Θ−1q

=
n∑

j=1

|qj|2θ−1
jj ≥ 0,
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since each term in the sum is positive. Hence, W is positive semi-definite. On the

other hand W cannot have a zero eigenvalue, since yTAy = 0 implies that A†y = 0.

But this cannot be true as rows of A, i.e., columns of A†, are linearly independent.

Therefore, W is positive definite and so invertible.

Remark 12. (Solving the equation (5.21) using MINRES)5 The left-hand side matrix

in the equation (5.21) (i.e., B) is symmetric, but not necessarily positive definite.

Of the possible matrix-free standard Krylov subspace methods (CG6, MINRES7,

GMRES), we focus on using MINRES since it is well-suited for symmetric matrices

B that are not positive definite [48].

Remark 13. (Matrix-free approach) Matrix vector products involving B can be done

using O(n logn) flops. This is because B consists of: Θ, which is diagonal, and A,

which has a diagonal block and a DFT block. The DFT block in A can be computed

using the FFT in O(n logn).

Note that in the primal-dual IPM algorithm explained in Algorithm 1, µ is the

centering parameter to control the decrease of t. Also, ϵη̂ is the tolerance to restrict

the surrogate duality gap, and ϵNW is the tolerance for the Newton method. At each

Newton iteration we solve (5.21) using MINRES, where the stopping criteria is taken

as ∥ẽ∥∞ < ϵMR.

Algorithm 1. (Primal-dual interior-point method [11])

given z > 0, t > 0, µ > 1, s > 0, ϵη̂ > 0, ϵNW > 0, ϵMR > 0.

repeat

1. Determine t. Set t := η̂
µ
, where η̂ is the surrogate duality gap and computed as

η̂ = 1
2n−1

∑2n−1
j=1 zj sj.

5Minimal Residual Method, see the Appendix A for more information about Krylov subspace
methods such as MINRES.
6Conjugate gradient
7Generalized minimal residual
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2. Use preconditioned MINRES to solve (5.21) and obtain the Newton search

direction d.

3. Perform line search in direction d8, to obtain the Newton increment and update

(z, s, λ).

until ∥zi − zi−1∥∞ < ϵNW and η̂ < ϵη̂.

The primal-dual Algorithm 1 is a standard method [11]. However, MINRES is

used in step 2 to solve Equation (5.21). The value η̂ is the surrogate duality gap, which

provides an estimate on how close the objective value at zt is to the true objective

function. The value of µ tries to iteratively drive the value of η̂ to zero.

5.3.1 A Common Preconditioner

One common preconditioner that can be used to solve (5.21) is the diagonal (with

positive entries) [49]

P2 =

Z−1 0

0 I

 . (5.27)

An approach equivalent to using the preconditioner (5.27) is implemented in the

software [50]. Specifically, this preconditioner can be implemented by substituting

∆z = Z
1
2 ∆z̄ into the system (5.21), and then multiplying the first row by Z

1
2 .

Therefore, in the variables ∆z̄,∆λ the system is: S Z
1
2A†

AZ
1
2 0


∆z̄

∆λ

 =

−Z
1
2g1 − Z− 1

2g3

−g2

 . (5.28)

Remark 14. (Symmetric properties) The vector f is symmetric (and f̂ is real).

Hence, the vector z inherits the same symmetries as well. It is straightforward to show

8The step length α along the search direction d is the maximum α so that z, s,λ stay strictly
positive: (z, s,λ) + α(∆z,∆s,∆λ) > 0.
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that the Krylov subspace d, Bd, B2d preserves the symmetries in ∆z. Any choice of

preconditioner should ensure that the (preconditioned) resulting Krylov subspace also

preserves the symmetries in z and λ.

5.3.2 A New Preconditioner

In this section we introduce a new preconditioner for the system (5.23). We implement

the preconditioner and solve the relaxed problem (R). We then study and compare

the numerical performance and conditioning of the new preconditioner against other

standard preconditioning approaches for several instances of problem (R).

We are particularly interested in understanding the performance scaling as the

mesh n (problem size) grows, while ensuring convergence of the underlying solution

f∗n → FR(x).

We introduce and examine the following diagonal (with positive entries)

preconditioner9

P1 =

I+Θ 0

0 I

 . (5.29)

Applying (5.29) to (5.23), we have

P1
− 1

2BP1
− 1

2 =

(I+Θ)−1Θ (I+Θ)−
1
2A†

A(I+Θ)−
1
2 0

 . (5.30)

5.4 Performance of the Preconditioners: Asymptotic Study

In this subsection, we use asymptotics to understand how the different preconditioners

(P1,P2) modify the equation (5.21) in the vicinity of an optimal solution (i.e., the

extreme points of C). In the vicinity of extreme points, the matrix B becomes

poorly ill-conditioned, which is alleviated by the preconditioners. Krylov solvers,

9A non-diagonal preconditioner, P3, is also tested, but the results imply preference of
using preconditioner P1 (see C for more details about implementation and comparison of
preconditioner P3 to other preconditioners).
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such as MINRES perform better on well-conditioned problems (see Appendix A),

and motivates the current study to understand how the preconditioners improve

conditioning.

In the limit as (zt, st) approach a solution (z, s), we may extract out different

block terms in the matrix (5.30) using property (5.22)

lim
t→0

Θjj

1 + Θjj

=
z−1
j sj

1 + z−1
j sj

=
sj

zj + sj
=


0 j ∈ I

1 j ∈ A
. (5.31)

lim
t→0

1√
1 + Θjj

=


1 j ∈ I

0 j ∈ A
. (5.32)

In the MINRES algorithm, the matrix (5.30) will be applied as it appears. For the

purpose of the asymptotic study, without loss of generality, we permute the rows

and columns of P1
− 1

2 (B)P1
− 1

2 so that they are in matrix blocks corresponding to

the active and inactive sets. Specifically, Θ = diag(ΘA,ΘI), A = (AA,AI). Using

(5.31), and (5.32), the matrix blocks in (5.30) simplify to

P1
− 1

2 (B)P1
− 1

2 =

(1 +Θ)−1Θ (1 +Θ)
−1
2 A†

A(1 +Θ)
−1
2 0

 =


I 0 0

0 0 A†
I

0 AI 0

 , (5.33)

we denote the submatrix M as

M =

 0 A†
I

AI 0

 .

For every finite value of t > 0, the matrix P1
− 1

2BP1
− 1

2 is invertible. However,

in the limit t → 0, the matrix P1
− 1

2 becomes a projection, and the matrix M may

not be invertible. The fact that M is not invertible is not a fundamental problem
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because the preconditioned linear system is still solvable (since P1
− 1

2 also multiplies

the right-hand side vector as well).

To gain some insight into performance of the preconditioned Krylov methods, we

examine the (effective) conditioning of the matrix M. If the matrix AI is invertible,

thenM is also invertible and κ(M) is well-defined. IfAI is not invertible (for instance

if AI is not square then M is not invertible), then we will examine the effective

conditioning number:

(Effective conditioning) κ(M) :=
σmax(M)

σmin(M)

where σmin(M) is the smallest non-zero singular value of M.

AlthoughMmay not be invertible, we expect that the linear systemP1
− 1

2 (B)P1
− 1

2d =

P1
− 1

2b will always be solvable which motivates the study of the effective conditioning.

Remark 15. (Some properties of the matrix M)

• The matrix M is symmetric but not positive definite. The (effective) condition

number of M is related to AI as:

κ(M) =
σmax(M)

σmin(M)
=
σmax(AI)

σmin(AI)
,

where σ’s are singular values and σmin(AI) is the smallest non-zero singular

value of AI.

• One can derive a symmetric matrix which is positive semi-definite10

M2 = M†M =

A†
IAI 0

0 AIA
†
I

 ,

with the condition number

κ(M2) =
σmax(M

2)

σmin(M2)
=

|λmax(M
2)|

|λmin(M2)|
=
σ2
max(M)

σ2
min(M)

,

10For any vector x ̸= 0 and invertible matrix M (i.e., Mx ̸= 0), the product MTM is
positive semi-definite since xTMTMx = ∥Mx∥2 ≥ 0 [54].
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where λ’s are eigenvalues. Note also that A†
IAI is invertible because AI has

linearly independent columns and that A†
IAI and AIA

†
I have the same non-zero

eigenvalues (which are positive).

Remark 16. (Eigenvalues of A†
IAI) The origin of the effective conditioning of M

is due to the (square-root) of the eigenvalues of A†
IAI. We can further identify the

eigenvalues of A†
IAI in terms of partial Fourier matrices.

Specifically, without loss of generality, the matrix AI has block form AI =

(F̂p Îp) where F̂ is a subset of the columns of the DFT matrix 1√
n
F ∈ Cn×α, and

Îp ∈ Rn×β is a subset of the columns of the matrix I−. The number of columns

α + β = |I| ≤ n is the size of the support of the inactive set (which is bounded by n

since the columns of AI are linearly independent). Hence F̂†
pF̂p = Iα and ÎTp Îp = Iβ

have orthonormal columns. Introduce G := ITp F̂p ∈ Cα×β. A simple calculation shows

that (dropping subscribes α and β on the identity matrices):

A†
IAI =

 I G†

G I

 , (5.34)

The maximum and minimum eigenvalues of (5.34) can be worked out directly in terms

of the norm ∥G∥. Specifically, since the eigenvalues of0 G†

G 0


are ±σ(G) where σ are the singular values of G, we have

λmax(A
†
IAI) = 1 + ∥G∥, λmin(A

†
IAI) = 1− ∥G∥

which yields

κ(A†
IAI) =

1 + ∥G∥
1− ∥G∥

, κ(M) =

√
1 + ∥G∥
1− ∥G∥

. (5.35)
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The matrix G is a partial Fourier matrix — it is comprised of sampling the

orthonormal matrix 1√
n
F at columns and rows related to the support of the extreme

point solution z∗. In other words, it is a submatrix of 1√
n
F. Hence ∥G∥ ≤ 1 and

the numerator in (5.35) is bounded by 2. Therefore, any potential ill-conditioning of

κ(M) depends on whether ∥G∥ stays bounded away from 1 as n→ ∞.

5.4.1 Test Case when FR(x) is One Dirac Mass

We consider the potential wPM(x) introduced in (3.16) with values (G,L) = (2, 1.5)

which yields a solution FR(x) that is one Dirac mass. For example, when n = 22,

the IPM converges in 16 Newton iterations (with parameters ϵNW = ϵη̂ = 10−4, and

ϵMR = 10−6). Below is the numerical solution z∗t at step 17 substituted into the

equation Az∗t = b :



0.5 0.5 0.5 0.5 0 0 0

0.5 −0.5i −0.5 0.5i −1 0 0

0.5 −0.5 0.5 −0.5 0 −1 0

0.5 0.5i −0.5 −0.5i 0 0 −1


︸ ︷︷ ︸

A

×



3.99981

0.00007

0.00005

0.00007

1.99988

1.99986

1.99988


︸ ︷︷ ︸

z∗t

=



2

0

0

0


︸ ︷︷ ︸

b

(5.36)

Equation (5.36) shows that the inactive set is converging to I = {1, 5, 6, 7}. The

submatrix AI of A derives from choosing columns of A related to the inactive set:

AI =



0.5 0 0 0

0.5 −1 0 0

0.5 0 −1 0

0.5 0 0 −1


, also A†

IAI =



1 −0.5 −0.5 −0.5

−0.5 1 0 0

−0.5 0 1 0

−0.5 0 0 1


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Table 5.1 Conditioning and Singular Values versus Problem Size when FR(x) is
one Dirac Mass

n κ(M) σmax(AI) σmin(AI)

22 3.73 1.366 0.366

23 5.47 1.391 0.254

24 7.87 1.403 0.178

25 11.22 1.408 0.125

26 15.94 1.411 0.088

27 22.58 1.413 0.062

28 31.97 1.413 0.044

29 45.23 1.414 0.031

210 63.98 1.414 0.022

211 90.445 1.414 0.016

212 127.99 1.414 0.011

213 181.03 1.414 0.0078

For arbitrary values of n, the inactive set I of discrete vectors that converge to

FR(x) = δ(x) is:

I = {1, n+ 1, n+ 2, · · · , 2n− 1}.

Using the inactive set I, we numerically compute AI , the singular values, and

corresponding corresponding conditioning number κ(M). Table 5.1 shows the

scaling of the conditioning number of AI for different values of n. Figure 5.1 plots

κ(M) ∼ 2
√
n with the asymptotic behavior.
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Figure 5.1 Condition number κ(M) ∼ 2
√
n versus problem size n when the solution

FR(x) is one Dirac mass.

5.4.2 Test Case when FR(x) is Two Dirac Masses

We consider the potential wPM(x) introduced in (3.16) with values (G,L) = (3, 0.2)

which yields a solution FR(x) that is two Dirac masses. For example, when n = 22,

the IPM converges in 16 Newton iterations (with parameters ϵNW = ϵη̂ = 10−4, and

ϵMR = 10−6). Below is the numerical solution z∗t at step 20 substituted into the

equation Az∗t = b :



0.5 0.5 0.5 0.5 0 0 0

0.5 −0.5i −0.5 0.5i −1 0 0

0.5 −0.5 0.5 −0.5 0 −1 0

0.5 0.5i −0.5 −0.5i 0 0 −1


︸ ︷︷ ︸

A

×



2.00005

0.00001

1.99993

0.00001

0.00006

1.99998

0.00006


︸ ︷︷ ︸

z∗t

=



2

0

0

0


︸ ︷︷ ︸

b

(5.37)
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Figure 5.2 Condition number κ(M) ∼
√
2n versus problem size n when the solution

FR(x) is two Dirac masses.

Equation (5.37) shows that the inactive set is converging to I = {1, 3, 6}. The

submatrix AI of A derives from choosing columns of A related to the inactive set:

AI =



0.5 0.5 0

0.5 −0.5 0

0.5 0.5 −1

0.5 −0.5 0


, also, A†

IAI =


1 0 −0.5

0 1 −0.5

−0.5 −0.5 1

 . (5.38)

The inactive set in the case when FR(x) is two Dirac masses for general n has

the form:

I =
{
1,
n

2
+ 1, n+ 2, n+ 4, · · · , 2n− 1

}
.

Table 5.2 and Figure 5.2 show κ(M) which is computed using singular values

corresponding to the inactive sets of A for the case where FR(x) is two Dirac masses.

Note there is a minor change in the condition number of the submatrix M changes

from κ(M) ∼ 2
√
n for the case when FR(x) is one Dirac mass to κ(M) ∼

√
2n for

case when FR(x) is two Dirac masses.
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Table 5.2 Conditioning and Singular Values versus Problem Size when FR(x) is
Two Dirac Masses

n κ(M) σmax(AI) σmin(AI)

22 2.41 1.306 0.541

23 3.73 1.366 0.366

24 5.47 1.391 0.254

25 7.87 1.402 0.178

26 11.22 1.409 0.125

27 15.94 1.411 0.088

28 22.58 1.413 0.062

29 31.97 1.414 0.044

210 45.23 1.414 0.031

211 63.98 1.414 0.022

212 90.45 1.414 0.016

213 127.99 1.414 0.011
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5.4.3 Test Case when FR(x) is Four Dirac Masses

We also consider a test case when the numerics converge to a solution FR(x) that is

four Dirac masses. In order to check the singular value of AI , as before, we identify

the inactive set I when n = 23:

I = {1, 3, 5, 7, 12} .

From I we have

AI =



1√
8

1√
8

1√
8

1√
8

0

1√
8

−i√
8

−1√
8

i√
8

0

1√
8

−1√
8

1√
8

−1√
8

0

1√
8

i√
8

−1√
8

−i√
8

0

1√
8

1√
8

1√
8

1√
8

−1

1√
8

−i√
8

−1√
8

i√
8

0

1√
8

−1√
8

1√
8

−1√
8

0

1√
8

i√
8

−1√
8

−i√
8

0



. (5.39)

We can see that columns 2 and 4 are complex conjugates. Table 5.3 and Figure

5.3 show the conditioning numbers, and indicates that condition number in this case

scales like O(
√
n).

The fact that κ(M) ∼
√
n is not unreasonable and gives an expected bound

on the MINRES algorithm to converge in O(
√
n) iterations. There may in fact be a

tighter bound.

The singular values in Figure 5.3 are obtained by considering AI as a matrix

over complex vectors, i.e., zj ∈ C. Incorporating the additional linear constraints

that zj is real, induces a restriction that AI act on symmetric vectors z. In the case

of n = 8, we have z3 = z7 in solving the problem Az = b. Therefore the modified
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Table 5.3 Conditioning and Singular Values versus Problem Size when FR(x) is
Four Dirac Masses

n κ(M) σmax(AI) σmin(AI) ̸= 0

23 2.41 1.31 0.54

24 3.73 1.37 0.37

25 5.47 1.39 0.25

26 7.87 1.4 0.18

27 11.22 1.41 0.12

28 15.94 1.41 0.09

29 22.58 1.41 0.06

210 31.97 1.41 0.44

211 45.23 1.41 0.31

212 63.98 1.41 0.02

213 90.50 1.41 0.01

Figure 5.3 Condition number κ(M) ∼
√
n versus problem size n when the solution

FR(x) is four Dirac masses.
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form of AI over this (symmetric) vector space is:

A∗
I =



1√
8

2 1√
8

0

1√
8

0 −1√
8

0

1√
8

−2 1√
8

0

1√
8

0 −1√
8

0

1√
8

2 1√
8

−1

1√
8

0 −1√
8

0

1√
8

−2 1√
8

0

1√
8

0 −1√
8

0



(5.40)

The matrix A∗
I has (non-zero) singular values σ(A∗

I) = {4.39, 3.18, 2.83, 1.62}. Table

5.4 and Figure 5.4 show that in the case of using the A∗
I the largest and smallest (non-

zero) singular values are bounded independent of n, so that the effective condition

number is bounded as n → ∞. This suggests that the convergence of MINRES

may be independent of the problem size n (which would be good). In the following

sections, we perform a numerical study to determine the practical performance of the

preconditioners.

5.5 Performance of the Preconditioners: Numerical Study

This section presents a numerical investigation for different preconditioners used to

solve Equation (5.8) with the primal-dual interior-point method. In each Newton

iteration, the MINRES algorithm with different choices of preconditioners is used to

solve Equation (5.21). Of particular interest is the total number of matrix-vector

products (MATVECs), added up over all the Newton iterations of the primal-dual

algorithm, required by the different preconditioners to compute a solution to a given

accuracy. This is because the total computational complexity scales with the number

of MATVECs (each MATVEC costing O(n log n) flops).
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Table 5.4 Restricted Conditioning and Singular Values versus Problem Size when
FR(x) is Four Dirac Masses

n κ(M∗) σmax(A
∗
I) σmin(A

∗
I)

23 3.13 2.04 0.65

24 3.90 2.06 0.53

25 4.48 2.07 0.46

26 4.86 2.07 0.43

27 5.09 2.08 0.41

28 5.21 2.08 0.40

29 5.28 2.08 0.39

210 5.31 2.08 0.39

211 5.33 2.08 0.39

212 5.34 2.08 0.39

213 5.34 2.08 0.39

Figure 5.4 Condition number for the matrix AI restricted to symmetric vectors z,
i.e., κ(A∗) versus problem size n. The case if for a FR(x) that is four Dirac masses.
The restricted condition number is bounded an converges as n→ ∞.
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Note that all the results in this section are for a periodic Morse type potential

as defined in (3.16), i.e.,

w(x) = −GLe−
1
L
sin(π|x|) + e− sin(π|x|), G, L > 0.

To compare the performance of P1 and P2 in the matrix-free primal-dual

algorithm we use the following criteria.

• Stopping criteria for the primal-dual Newton iteration loop: ∥ft− fref∥∞ < ϵNW

and η̂ < ϵη̂ where fref (computed via MATLAB) is a precomputed reference

solution. Note that this is different than the criteria stated in Algorithm 1

(which does not require knowledge of the solution) that ∥zi − zi−1∥∞ < ϵNW.

• Stopping criteria for the MINRES linear solver: we use ∥f̃∥ < ϵMR where ẽ =

Bd̃ − b is the residual. The MINRES routine appears inside the primal-dual

Newton loop. To ensure that the MINRES error does not impact the Newton

iterations we take ϵMR ≪ ϵNW.

• The parameters in the interior-point algorithm throughout this section are

taking as follows:

- Tolerance for MINRES algorithm: ϵMR = 10−8;

- Tolerance for the duality gap: ϵη̂ = 10−2;

- Tolerance for Newton’s method: ϵNW = 10−2.

5.5.1 Choice of the Centering Parameter µ

The parameter t in the primal-dual interior-point method depends on a factor µ > 1

(centering parameter). In this section two empirical studies are performed to quantify

the effect of µ on the convergence and performance of the matrix-free primal-dual

interior-point method.
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Figure 5.5 compares how the number of MATVECs and number of Newton

iterations in the matrix-free primal-dual algorithm scale with different values of µ.

Since µ roughly controls the geometric rate that t → 0, as expected, smaller values

of µ decrease t slowly and require more Newton iterations. Large values of µ create

large changes in the effective KKT equations in each iteration and also require more

Newton steps.

As we can see from the Figure 5.5, choosing a parameter µ = 80, the total

number of MATVECs is (roughly) less than other values. Therefore, for the rest of

the computations in this section we take µ = 80.

Figure 5.6 shows the convergence of the primal-dual interior-point method

variables versus the number of Newton iterations for different values of µ — and

explains our preference for choosing a parameter µ ≥ 10. We can see from the Figure

5.6 that the primal-dual algorithm converges faster using µ = 10 (left plot), and, the

surrogate duality gap decreases faster for µ = 10 (middle plot). Also, choosing a very

small parameter like µ = 1.5, makes the algorithm converge in more Newton steps,

and causes the surrogate duality gap to decrease slower.
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Figure 5.5 Trade-off in choice of parameter µ in the primal-dual interior-point
algorithm in solving the problem (5.21) using no preconditioner (top row), precondi-
tioner P1 (middle) and preconditioner P2 (bottom). The test case uses (3.16) with
(G,L) = (0.9, 1.5) yielding an FR(x) that is a continuous function. Test parameters
are: n = 28, ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.
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Figure 5.6 Convergence of the primal-dual interior-point algorithm for different
parameters µ: Convergence of the solution v.s. Newton steps (left); Surrogate duality
gap (η̂) v.s. Newton steps (middle); Interior parameter (t) v.s. Newton steps (right).
The results shown are using no preconditioners (top row), and preconditioners P1,
P2 (middle and bottom rows respectively). The test case uses (3.16) with (G,L) =
(0.9, 1.5) yielding an FR(x) that is a continuous function. Test parameters are: n = 28,
ϵNW = ϵη̂ = 10−2, ϵMR = 10−8. The reference solution fref is computed (to high
accuracy) using MATLABs optimization routine.
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5.5.2 Test Case when FR(x) is a Continuous Function

This section tests the performance of the different preconditioners when the solution

FR(x) is a continuous function (obtained when the parameters in wPM(x) are (G,L) =

(0.9, 1.5)).

Figure 5.7 presents the numerical solution for FR(x) (right) for different

preconditioners, and demonstrates that all three preconditioners are able to obtain

the solution at the present accuracy (and appear indistinguishable under visual

inspection). Figure 5.7 (left), provides a histogram plotting the number of Newton

iterations required against the number of MATVECs. The histogram hints at the

computational advantages of P1 compared to P2. Specifically, P1 has more Newton

iterations that require fewer MATVECs.

Figure 5.8 compares the convergence (in sup norm of the solution error, and

primal-dual parameter t) in the solution of (5.21). The preconditioners arise in

the MINRES computation, and only mildly impact (through the choice of MINRES

tolerance) the resulting increments ∆z,∆s,∆λ. This is why there is little difference

between the panels in Figure 5.8 — the three preconditioners travel (roughly) along

the same central path and converge at almost the same rates. Three points along

the central path at Newton iterations 1, 16 and 32, shown by red dots in Figure 5.8,

and selected to investigate the performance of the MINRES solver. The companion

Figure 5.9 plots the MINRES residual, i.e. ẽ = Bd − b from (5.21), versus the

number of MINRES iterations. Figure 5.9 clearly shows that at every Newton step,

the MINRES algorithm using preconditioner P1 converges at the fastest rate, thereby

requiring fewer MATVECs than either P2 or no preconditioner.

Finally, Figure 5.10 compares the total number of Newton iterations and

MATVECSs of the three preconditioners needed to compute the solution for different

problem sizes n. The figure shows that, in practice, the preconditioner P1 provides a

significant improvement in the slope of the number of MATVECs versus n, thereby
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improving computational cost in large problems. Note that for the purposes of the test

in Figure 5.10, we consider each value of n as an independent optimization problem.

In reality, the problems (5.8) are different discretizations of the same underlying

continuum problem. Hence, one could try to exploit this fact to improve the overall

computational complexity.

This subsection demonstrated that the preconditioner P1 outperformed other

preconditioners when FR(x) is a continuous function. In the following subsections we

examine the performance when FR(x) is a different critical point (which may change

the conditioning of the matrix AI and impact the performance of the matrix-free

methods).

5.5.3 Test Case when FR(x) is One Dirac mass

In this subsection we perform a numerical test when FR(x) is one Dirac mass,

specifically with wPM(x) and (G,L) = (2, 1.5). Figure 5.11 compares the number

of Newton iterations and MATVECs for the different preconditioners. The figure

shows that, in practice, the preconditioner P1 provides a significant improvement in

the slope of the number of MATVECs versus n, thereby improving computational

cost in large problems.

5.5.4 Test Case when FR(x) is Two Dirac Masses

In this subsection we perform a numerical test when FR(x) is two Dirac masses,

specifically with wPM(x) and (G,L) = (3, 0.2). Figure 5.12 compares the number

of Newton iterations and MATVECs for the different preconditioners. The figure

shows that, in practice, the preconditioner P1 provides a significant improvement in

the number of MATVECs versus n, thereby improving computational cost in large

problems.
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Figure 5.7 Comparison of the total number of MATVECs required to solve the
primal-dual algorithm for the problem (5.7) using no preconditioner (top row), P1

(middle) and P2 (bottom). The histograms on the left shows P1 requires a much
less number of MATVECs. The right plots visually show that solutions f(x) fully
converge to a continuous function. The test parameters are: (G,L) = (0.9, 1.5),
n = 28, µ = 80, ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.

65



Figure 5.8 Interior-point method convergence versus Newton iteration when FR(x)
is a continuous function, for no preconditioner, and preconditioners P1 and P2. The
left figures plot the sup norm of the solution error with respect to a reference solution
(computed via MATLAB). The right figures plot the convergence of the parameter t.
Test parameters are: (G,L) = (0.9, 1.5), ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.
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Figure 5.9 Comparison of the MINRES residual versus number of MINRES
iterations to equation (5.21). The plots are for three points along the central path
in the interior-point method (the points are the red circles in Figure 5.8). The
three curves compare convergence without using a preconditioner and with using
preconditioners P1 and P2. Test parameters are: (G,L) = (0.9, 1.5) (which yields a
continuous solution FR(x)), ϵNW = ϵη̂ = 10−2, ϵMR = 10−8. The preconditioner P1

outperforms the other preconditioners.
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Figure 5.10 Performance comparison of different preconditioners when FR(x) is a
continuous function. The number of Newton iterations (left) and MATVECs (right)
required by matrix-free interior-point methods are plotted versus problem size n.
The preconditioner P1 outperforms the other preconditioners by requiring fewer
MATVECs. Test parameters are: (G,L) = (0.9, 1.5), ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.

5.5.5 Test Case when FR(x) is Four Dirac Masses

In this subsection we perform a numerical test when FR(x) is four Dirac masses,

specifically with wPM(x) and (G,L) = (2, 0.15). Figure 5.13 compares the number

of Newton iterations and MATVECs for the different preconditioners. The figure

shows that, although the number of MATVECs versus n have similar slopes for P1

and P2, in practice, the preconditioner P1 provides a significant improvement in the

total number of MATVECs versus n, thereby improving computational cost in large

problems.
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Figure 5.11 Performance comparison of different preconditioners when FR(x) is
one Dirac mass. The number of Newton iterations (left) and MATVECs (right)
required by matrix-free interior-point methods are plotted versus problem size n.
The preconditioner P1 outperforms the other preconditioners by requiring fewer
MATVECs. Test parameters are: (G,L) = (2, 1.5), ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.

Figure 5.12 Performance comparison of different preconditioners when FR(x) is
two Dirac masses. The number of Newton iterations (left) and MATVECs (right)
required by matrix-free interior-point methods are plotted versus problem size n.
The preconditioner P1 outperforms the other preconditioners by requiring fewer
MATVECs. Test parameters are: (G,L) = (3, 0.2), ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.
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Figure 5.13 Performance comparison of different preconditioners when FR(x) is
four Dirac masses. The number of Newton iterations (left) and MATVECs (right)
required by matrix-free interior-point methods are plotted versus problem size n.
The preconditioner P1 outperforms the other preconditioners by requiring fewer
MATVECs. Test parameters are: (G,L) = (2, 0.15), ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.

5.6 Convergence of Discrete Solution Under Mesh Refinement

In this section we investigate the convergence of the discrete solution f∗n to the

continuum problem FR(x), under the refinement of the grid, i.e., n→ ∞. Continuum

variational problems give rise to a sequence of discrete optimization problems

parameterized by the number of grid points n. The goal is to understand the limit

as n→ ∞.

As mentioned in §5.2.2, the problem (5.7) can be found using the primal-dual

interior-point method, and letting the parameter t → 0. We already studied the

convergence of the interior-point method as t→ 0 in §5.3.2.

In the continuum problem (R), FR(x) admits two types of solutions that have

fundamentally different characteristics. In one case, we observe that FR(x) is a

continuous (but nonsmooth) function; while in other cases we observe that FR(x)

may contain Dirac masses and hence is not a classical function. When FR(x) is
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Figure 5.14 Linear convergence of solutions f∗n to problem (5.7). As n gets large Gn

converges to zero. The test case is for an interaction potential (3.16) with parameters
(G,L) = (0.9, 1.5) which yields a continuous minimizer FR(x) Ṫolerances for the
interior-point algorithm are: ϵη̂ = 10−10, ϵMR = 10−12, which are small enough to
remove any errors introduced by the interior-point algorithm.

continuous we will investigate a notion of strong convergence, i.e., does f∗n converge

uniformly to FR(x)? In order to test the convergence of solutions to the problem (5.7),

f∗n, we examine the sup norm of the difference between two solutions on consecutive

(nested) grids as:

Gn :=
∥∥∥f∗2n − f∗n

∥∥∥
n,∞

= max
[
(f∗2n)2j−1

− (f∗n)j

]
. (5.41)

1 ≤ j ≤ n

If Gn converges to zero, then the sequence of fn behaves somewhat like a Cauchy

sequence. Figure 5.14 shows the convergence of Gn, in the case when FR(x) is a

continuous function, for n = 25 − 212. The figure shows that as n → ∞, the discrete

solution f∗n converges to FR(x) linearly in n.

71



CHAPTER 6

CONCLUSION AND OUTLOOK

This chapter summarizes the conclusions and results presented throughout the thesis.

In addition, we also present some future works that generalize the results from this

thesis to other problems of interest.

6.1 Conclusions and Results

Conclusion 1. (Global minimizers of the Helmholtz free energy functional) In §2, we

presented the Helmholtz free energy functional as a continuoum model and showed it

arose from a large deviations principle to the Boltzmann distribution. Consequently,

global minimizers to the Helmholtz free energy functional characterize the long-time

behavior of systems with many particles at zero temperature.

Conclusion 2. (Sufficient condition for optimality) In §3, we used a convex

relaxation to formulate sufficient conditions for global optimality for the nonconvex

Helmholtz energy. The sufficient conditions take the form of an infinite dimensional

linear variational problem.

Conclusion 3. (Efficient numerical solver) We developed a fast numerical method in

§5 to solve the conic programming problem from §3 using a primal-dual interior-point

algorithm. The proposed method uses a MINRES algorithm, and exploits the Fourier

structure of the problem for an efficient matrix-free method.

Conclusion 4. (Computational cost of primal-dual interior-point method) We applied

a non-common preconditioner in order to alleviate the ill-conditioning that arises

in the matrix-free interior-point algorithm. A comparison of the results shows the

effectiveness of the proposed preconditioner. On the test problems we examined, the
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total computational cost is estimated to be O(n2 logn), which is faster than other

approaches.

6.2 Future Work

• More general cases of pair interaction problems contains an external potential

that we did not include in our problem, and need to incorporate for more

complex models;

• We only studied the Helmholtz energy for zero temperature, however, by

adding an entropy term one can study the Helmholtz energy (and Boltzmann

distribution) for finite temperatures;

• Extend the developed solver to problems with multiple species, and to higher

dimensional geometries (such as two and three dimensions, or molecular

configuration spaces).
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APPENDIX A

ITERATIVE ALGORITHMS FOR LINEAR SYSTEMS

Consider the following system of linear equations

Ax = b, where A ∈ Cn×n, and x,b ∈ Cn. (A.1)

Solving the problem (A.1) using noniterative methods (i.e., Gaussian elimination)

may require O(n3) work, which is computationally expensive as n gets larger. If

matrix vector products Av can be computed quickly, an attractive alternative is to

use an iterative Krylov method to solve (A.1). Table A.1 shows the most common

iterative algorithms depending on the corresponding matrix structure. For symmetric

positive definite matrices, the conjugate gradient method is usually preferred over

MINRES, however, in some cases it may be better to use MINRES [29]. The system

(5.21) that we are trying to solve in §5.2.2 is symmetric and not necessarily positive

definite, therefore, we implement MINRES in the interior-point method solver.

Table A.1 Different Iterative Algorithms for Solving (A.1) based on Properties of
the Matrix A

Iterative algorithm Properties of A

CG Symmetric positive definite

MINRES Symmetric

GMRES Nonsymmetric

74



A.1 Convergence and Cost of Conjugate Gradient

Although we use MINRES in our algorithms, we provide here a few details on the

rate of convergence (i.e., number of MATVECS) for the similar conjugate gradient

(CG) algorithm.

For a symmetric positive definite matrix A, let κ(A) =
λmax(A)

λmin(A)
be the

condition number. Given κ, a well-known upper bound on the error from the

conjugate gradient method is:

∥en∥A
∥e0∥A

≤ 2

(√
κ− 1√
κ+ 1

)n

≃ 2 e

−2n√
κ , (A.2)

where ek is the error defined as ek := xk − xk−1, and ∥x∥A for a positive definite

matrix A is defined as

∥x∥A = (xTAx)
1
2 .

From (A.2), the error (in the weighted A-norm) decays exponentially in the number

of iterations. Since e−2 ≈ 0.14, we expect that (roughly) after
√
κ of steps the solution

accuracy of x will improve by one digit. It is also worth noting that although conjugate

gradient is used as an iterative method, it is actually an exact method — if A has

n distinct eigenvalues then conjugate gradient and MINRES converge (using exact

arithmetic) in at most n steps [56].

Note that at each step of CG, and MINRES we have a matrix vector product

which (usually) dominates the computation cost of the algorithm. The time

complexity is therefore O(m
√
κ), where m is the cost (i.e., number of flops) of

computing a matrix vector product [29,34,48,56].

A.2 The Minimal Residual Algorithms

This section provides the MINRES and PMINRES (preconditioned MINRES)

algorithms [2, 17,18,33], which are used in §5, and C of this thesis respectively.
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In the algorithms below, P is the preconditioner of A. Since MINRES requires

that A is symmetric, one might expect that a preconditioned MINRES requires

the computation of P
1
2 to ensure that the precondition matrix P− 1

2AP− 1
2 remains

symmetric. The advantage of PMINRES is that it

(i) avoids having to compute P− 1
2 ; and

(ii) only requires the computation of P−1 once every iteration.
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Algorithm 2. (The minimal residual MINRES [17])

given A, b, ϵMR > 0

set

x0 = v0 = d0 = d−1 = 0,

γ0 = γ1 = 1, σ0 = σ1 = 0,

β1 = ∥b∥2.

repeat

vi = (1/βi)vi, αi = vT
i Avi, vi+1 = Avi − αivi − βivi−1, βi+1 = ∥vi+1∥2,

δ = γiαi − γi−1σiβi, ρ1 =
√
δ2 + β2

i+1, ρ2 = σiαi + γi−1γiβi, ρ3 = σi−1βi,

γi+1 = δ/ρ1, σi+1 = βi+1/ρ1, di = (vi − ρ3di−2 − ρ2di−1)/ρ1,

xi = xi−1 + γi+1 η di, ∥ri∥2 = |σi+1| ∥ri−1∥2, η = −σi+1η,

until ∥ri∥∞ < ϵMR .

Remark 17. (Matrix-vector product computation, Avi) Note that in applying

Algorithm 2 to the problem in §5, we do not build and store the matrix A.
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Algorithm 3. (The preconditioned minimal residual PMINRES [2, 17,18,33])

given A, b, P, ϵMR > 0

set

z0 = 0, z1 = b, q1 = P−1z1, β1 =
√
bTq1

δ
(1)
1 = 0, x0 = d0 = d−1 = 0, c0 = −1, s0 = 0

repeat

pk = Aqk, αk = (1/β2
k)q

T
kpk, zk+1 = (1/βk)pk − (αk/βk)zk − (βk/βk−1)zk−1

qk+1 = P−1zk+1, βk+1 =
√
qT
k+1zk+1, δ

(2)
k = ck−1δ

(1)
k + sk−1αk

γ
(1)
k = sk−1δ

(1)
k − ck−1αk, ϵ

(1)
k+1 = sk−1βk+1, δ

(1)
k+1 = −ck−1βk+1

SymOrtho(γ
(1)
k , βk+1) → ck, sk, γ

(2)
k , τk = ckϕk−1, ϕk = skϕk−1

if γ
(2)
k ̸= 0

dk = (1/γ
(2)
k )
(
(1/βk)qk − γ

(2)
k dk−1 − ϵ

(1)
k dk−2

)
, xk = xk−1 + τkdk

end

until ∥Axi − b∥∞ < ϵMR .

Remark 18. (Matrix-vector product computation, Aqk and P−1zk+1) In applying

Algorithm 3 to the problem in §5, we do not build and store the matrix A, or the

preconditioner P.
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Algorithm 4. (SymOrtho [17])

given a, b ∈ R

if b = 0,

s = 0, r = |a|, if a = 0, c = 1, else c = sign(a) end

elseif a = 0,

c = 0, s = sign(b), r = |b|

elseif |b| > |a|,

τ = a/b, s = sign(b)/
√
1 + τ 2, c = sτ , r = b/s

elseif |b| > |a|,

τ = b/a, s = sign(a)/
√
1 + τ 2, s = cτ , r = a/c

end
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APPENDIX B

QUADRATIC PENALTY FUNCTION METHODS

An alternative approach [31] to strongly enforcing the constraint Az = b, is to weakly

enforce the constraint using a quadratic penalty function:

minimize µ uTz+
1

2
||Az− b||2 (B.1)

subject to z ≥ 0.

In (B.1), a quadratic penalty function is introduced to enforce Az = b (approxi-

mately). The variable µ > 0 is an additional penalty parameter (not to be confused

with the primal-dual centering parameter). Applying a primal-dual method to (B.1)

requires solving a Newton step at each iteration to obtain the primal and dual

increments A†A −I2n−1

S Z


∆z

∆s

 =

−g1

−g2

 , (B.2)

where

g1 := A†Az+ µu−ATb− s,

g2 := ZS− t1.

Here, Z, and S are diagonal matrices of the vectors z, and s.

After eliminating ∆s in (B.2), the linear system for ∆z becomes symmetric

positive definite, so that conjugate gradient may be use. This is in contrast to the

approach in Chapter 5 which resulted in a symmetric but not positive definite matrix

and required an alternative to conjugate gradient (i.e., MINRES). Note that the

primal-dual algorithm for solving (B.1) has a loop over two parameters (i.e., µ and
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t) as opposed to just one for the primal-dual method used in Chapter 5. To avoid

the added complications of having two parameters, we prefer to use the primal-dual

method in Chapter 5 and handle the equality constraints with Lagrange multipliers

(at the expense of implementing MINRES).

81



APPENDIX C

STUDY OF A NON-DIAGONAL PRECONDITIONER

In this Appendix we introduce another preconditioner, P3, and compare it with the

two other preconditioners mentioned in §5.2.2. Here we solve the equation (5.19)

using a preconditioner that incorporates non-diagonal elements of matrix B:

P3 =


I+Θ1 0 c I

0 I+Θ2 0

c I 0 I

 . (C.1)

In (C.1), c is a positive constant, while Θ ∈ R(2n−1)×(2n−1) is defined as before, i.e.,

Θ := (Z)−1S, and contains two submatrices Θ1 ∈ Rn×n, and Θ2 ∈ R(n−1)×(n−1),

Θ =

Θ1 0

0 Θ2

 .

The inverse of P3 is:

P3
−1 =


D 0 −c D

0 (I+Θ2)
−1 0

−c D 0 I+ c2 D

 , (C.2)

where D =
(
(1− c2)I+Θ1

)−1
.

Note that the preconditioner is not diagonal. To avoid having to compute P3
− 1

2

we do not use the method (5.23) for implementation. Instead, we use the PMINRES

(preconditioned MINRES) algorithm [2, 17, 18, 33] which only requires application of

P3
−1.

Figures C.1 and C.2 show the comparison of using P3 with different values of

c against two other preconditioners for test problems when FR(x) is a continuous
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function, and FR(x) = 1
2
δ(x) + 1

2
δ(x − 1

2
) respectively. Based on Figures C.1 and

C.2, we can see that the number of MATVECs required by using P3 is more than P1

in both cases; and as c → 0 the difference between the number of MATVECs gets

smaller, i.e., (# of MATVECs with P3) → (# of MATVECs with P1).
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Figure C.1 Number of Newton iterations (left) and MATVECs (right) for different
values of problem size n using no preconditioner, P1, P2, and P3. The test is for
the interaction potential (3.16) with (G,L) = (0.9, 1.5) and results in a continuous
minimizer FR(x). Tolerance parameters are ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.
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Figure C.2 Number of Newton iterations (left) and MATVECs (right) for different
values of problem size n using no preconditioner, P1, P2, and P3. The test is for
the interaction potential (3.16) with (G,L) = (3, 0.2) and results in FR(x) =

1
2
δ(x) +

1
2
δ(x− 1

2
). Tolerance parameters are ϵNW = ϵη̂ = 10−2, ϵMR = 10−8.
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