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ABSTRACT 

MODELLING IN VITRO DISSOLUTION AND RELEASE OF SUMATRIPTAN 

SUCCINATE FROM POLYVINYLPYRROLIDONE-BASED MICRONEEDLES 

AIDED BY IONTOPHORESIS 

by 

James Paul Ronnander 

 

 

A novel dissolving microneedle array system is developed to investigate permeation of a 

sumatriptan succinate formulations through the skin aided by iontophoresis. Three 

formulations consisting of hydrophilic, positively charged drug molecules encapsulated in 

a water-soluble biologically suitable polymer, polyvinylpyrrolidone (PVP), have been 

accepted by the U.S. Food and Drug Administration (FDA). The microneedle systems are 

fabricated with 600 pyramid-shaped needles, each 500 µm tall, on a 0.785-cm2 circular 

array. In vitro transdermal studies with minipig skin and vertical Franz diffusion cells show 

> 68% permeation of sumatriptan over a 24-hour period. A combination of microneedle 

and electrical current density ranging from 100 to 500 µA/cm2 using Ag / AgCl electrodes 

displays increased flux with current density. At 500 µA/cm2, a dissolving array loaded with 

4.3 mg sumatriptan leads to a steady-state delivery rate of 490 µg/cm2h with negligible lag 

time. In theory, a 9.58-cm2 microneedle-array patch loaded with 47.30 mg of sumatriptan 

succinate could provide the required plasma concentration, 72 ng/ml, for nearly six hours. 

In parallel, a mathematical model based on first principles is developed to predict 

the amount of drug delivered into the skin using software (e.g., Mathematica). A system of 

mass balance equations are derived to simulate the dissolution, diffusion, electromigration 

and transport of the active ingredient through the epidermis. The analytical approach allows 

for the evaluation and estimation of the effects of key parameters (i.e., loading dose, 



polymer concentration, needle height, needle pitch width and current density) on the 

release profile. The skin layer concentration increases significantly with either increased 

loading dose or elongated height of the microneedle. The percentage of sumatriptan 

permeating through skin increased favorably with increased electrical current applied to 

microneedle patch. An inverse correlation was observed between the pitch width (center to 

center distance of adjacent needles) and the cumulative amount of sumatriptan permeated 

into the dermis. Predicted cumulative release data from mathematical model simulations 

of each of the three formulations were successfully validated with in vitro permeation data 

administered with Franz cells and minipig skin.  
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CHAPTER 1 

INTRODUCTION 

1.1    Objective 

The goal of this dissertation is to help provide improved clinical results for large molecule 

pharmaceutical products and biological drugs using minimally invasive transdermal 

delivery systems. More specifically, this research focuses on the development of a 

theoretical model based on transport phenomena principles to assess and predict drug 

delivery of encapsulated sumatriptan succinate active pharmaceutical ingredients in 

soluble microneedle systems alone and soluble microneedles aided by iontophoresis. The 

theory-based approach has the potential for validating preliminary laboratory studies and 

enhancing properties of the microneedle systems. Methods based on laboratory 

experiments and mechanistic modeling will make the clinical research less risky, less 

empirical and more reliable than trial-and-error experimental procedures.  

In Chapter 2, materials and methods for development, the evaluation and in vitro 

testing of the microneedle array systems are described. The micro array formulations are 

analyzed to determine the best properties with respect to uniformity, strength, and 

flexibility, and the ability to penetrate minipig skin. This step is critical because dissolving 

microneedle arrays need to preserve uniformity in terms of needle array pattern, pitch 

(space between needles), height and width. Test methods include: optical microscopy, 

mechanical testing, and transepidermal water loss (TEWL). In vitro experiments with 

vertical Franz diffusion cells measure the transdermal permeation of the active 

pharmaceutical ingredient (API) across Göttingen minipig skin. Permeation experiments 
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are conducted with dissolving microneedles alone and aided by iontophoresis to enhance 

penetration of drug molecules through the skin.  

In Chapter 3, dissolving microneedle array systems are investigated as a suitable 

alternative delivery method of sumatriptan for the relief of migraine. The formulations 

consist of a positively-charged, encapsulated pharmaceutical ingredient (sumatriptan 

succinate) and a hydrophilic, bio-compatible polymer (polyvinylpyrrolidone) approved by 

the U.S. Food and Drug Administration (FDA). In vitro diffusion studies with Göttingen 

minipig skins demonstrate an increase in drug release as compared to previously developed 

sumatriptan transdermal patch systems. Further enhancement with electrical current 

densities of 100, 300 and 500 µA/cm2 shows an increase in the steady-state flux of drug 

with current density.  

Finally, in Chapter 4, a mathematical model is developed to predict the in vitro 

permeation of sumatriptan succinate molecules across the skin. Mass balance equations are 

derived to detail the dissolution, diffusion, electromigration and transport of encapsulated 

drug substance across the epidermis.  A mathematical software (Mathematica®) is used to 

solve the equations and derive relationships to predict the effects of critical parameters on 

drug release. The computed (e.g., theoretical) release profiles were then validated with in 

vitro diffusion studies using female minipig skin. The model successfully describes the in 

vitro permeation of three distinct microneedle formulations containing sumatriptan.  

1.2    Motivations 

The oral administration of biological and pharmaceutical drug products is limited by poor 

drug absorption and/or first pass effect metabolism in gastrointestinal (GI) tract or liver  

[1-3]. The most common alternative is drug administration through subcutaneous/ 
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intramuscular injections or intravenous infusion. However, the use of  hypodermic needles 

have several drawbacks, including the pain associated with injection. In addition, they are 

difficult to administer, cost more and must be sterile. Another disadvantage is that these 

drug delivery routes (except for intravenous infusion) lead to fluctuations in concentration 

of drug in the blood plasma, a situation which can lead to toxic effects or ineffective 

treatment [4]. 

This is the case with the drug sumatriptan succinate prescribed for the treatment of 

acute migraines and cluster headaches. A triptan compound acts to bind serotonin (5-

hydroxytriptamine) receptors in the brain and induce vasoconstriction of arteries to reduce 

neurogenic inflammation. Sumatriptan was the first available triptan compound and is 

recognized as the leading standard in prescription migraine therapy [5-7]. Migraines affect 

over 1 in 10 people globally, 31.8 % of patients experience three or more headaches per 

month, and 53.7 % of migraine’s require bedrest due to severity [8, 9]. Migraine symptoms 

typically include throbbing or pulsing pain, aura, sensitivity (light and sound), nausea and 

vomiting [10-12]. There are several treatment options including various dosage forms 

(intranasal spray, oral tablet, subcutaneous injection) but each method has limitations 

which reduce patient compliance. For example, the oral and intranasal delivery routes 

demonstrate lower therapeutic response (bioavailability 14% and 16%, respectively) and 

may cause side effects (nausea and vomiting) [13, 14]. On the other hand, subcutaneous 

injection is difficult for an individual to administer and may cause pain around the injection 

site [15].  

An attractive minimally invasive alternative is the use of transdermal systems 

which can be self-administered and deliver a controlled amount of medication through the 



4 

skin over an extended period of time (up to 7 days). These systems provide effective, pain-

free delivery of active ingredients into the bloodstream (avoiding first-pass metabolism 

effects) with minimal side effects. A typical model of a transdermal therapeutic system 

(TTS) is the matrix-controlled patch shown in Figure 1.1. The patch is comprised of an 

occlusive backing layer, a drug-containing adhesive and a release liner. After removing the 

release liner, the patch is applied to the skin for controlled release of the medication. The 

drug must diffuse through the stratum corneum (10-20 µm thick) and the viable epidermis 

(50-100 µm thick) to enter the capillary-rich dermis for systemic absorption. The primary 

barrier is the stratum corneum comprised of “bricks” of corneocyte cells surrounded by a 

“mortar” of intercellular lipid matrix of lipid bilayers. Typically, successful transdermal 

drugs are low molecular weight compounds (< 500 Da), lipophilic (log P ~ 1 - 3), and 

effective at low doses (few milligrams per day) [16-19]. Chemical permeation enhancers 

can be added to formulations as excipients to reversibly disrupt the intracellular lipid 

structures located in the stratum corneum and increase the permeation of large molecules. 

The challenge is that the chemicals increase skin irritation and can damage deeper living 

cells in dermal layers. Only a limited subset of chemical enhancers have been used to 

successfully increase small molecule diffusion without skin irritation [20, 21]. 

 

 

Figure 1.1  Transdermal matrix-controlled system.   
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Sumatriptan Succinate (C18H27N3O6S) has a molecular weight of 413.5 g/mol, is 

freely soluble in water, hydrophilic (Log PpH 7.4 = -1.5), and has melting point of 165°C 

making it ideal for aqueous formulations [22, 23]. However, previous in vitro studies by 

Balaguer-Fernandez et al. demonstrate that standard transdermal methods, including 

enhancers, are not suitable for the delivery of sumatriptan. A patch system comprised of 

drug solution, methyl cellulose polymer and Azone® (enhancer) required a lag time of 

15.21 h  and surface area of 293 cm2 to achieve the target Cmax value of 72 ng/ml [24, 25].  

Modern transdermal applications incorporate microneedle (MN) technology, or an 

array of micron-sized needles in a small patch, designed to deliver macromolecules and 

hydrophilic compounds through the skin. These microneedles effectively bypass the 

stratum corneum and epidermis to achieve systemic drug uptake into the dermis. They are 

designed with a pattern of micron-sized needles for perforation of the epidermis with 

micron-sized ‘holes’, which create channels for drug delivery into dermal capillaries and 

entry into the blood circulatory system. The individual microneedles are designed with 

height in the range of 150 to 1,500 µm and a surface density less than 2000 needles/cm2. 

These dimensions allow them to puncture the dermis without causing pain as they do not 

penetrate into deeper skin layers to sever nerves and blood vessels. Several types of 

microneedles (solid, coated, hollow and dissolving polymeric microneedles) have been 

developed and investigated for different drug delivery applications. Solid microneedles are 

used to enhance permeation of drugs through the skin by pre-treating an area of the skin 

with microneedles prior to application of a transdermal formulation (i.e., ‘poke and patch’ 

method). Coated microneedles are coated with drug solution and inserted into the skin (i.e., 

‘coat and poke’ method). Hollow microneedles contain arrays of solid, hollow micron-
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sized needles filled with drug solution that is deposited directly into the dermis by diffusion 

or pressure-driven flow (i.e., ‘poke and flow’ method). Dissolving microneedles are 

fabricated with biodegradable polymers containing encapsulated active drug ingredients 

which solubilize and are released into the skin [26-28].  

Microneedle technology has been shown to greatly enhance in vitro and in vivo 

transport of sumatriptan succinate drug across the skin.  The ‘poke and patch’ method was 

successfully utilized by Nalluri et al. (2015) for transdermal delivery of sumatriptan 

through pig ear skin following pretreatment with Dermaroller® microneedle roller or 

AdminPatch® solid microneedle patch. In vitro permeation results indicated that acceptable 

therapeutic dose was possible with a 2.5 cm2 transdermal patch following pre-treatment 

with an AdminPatch®, fitted with 1.5 mm length needles [29]. However, these solid, 

stainless steel AdminPatch® microneedle systems are not disposable and considered 

biohazardous sharps waste [30, 31]. Separately, two research groups developed dissolving 

microneedles from polysaccharide polymers (sodium hyaluronate or dextran) for in vivo 

delivery of sumatriptan succinate. In vivo studies for both polysaccharide microneedle 

systems showed promising bioavailability (> 90%) compared to subcutaneous 6-mg 

Imitrex® (sumatriptan) injection [32, 33]. Finally, a polyvinylpyrrolidone-based 

microneedle device, ZP-Zolmitriptan, was developed by Kellerman et al. to deliver 

zolmitriptan. Clinical phase I results showed ZP-Zolmitriptan achieved maximum blood 

serum levels, and a Cmax value equal or greater than 2.5-mg oral dose of Zolmitriptan 

[34].  

The combination of iontophoresis and microneedle technologies has been shown to 

have synergistic effects and increase uptake of macromolecules through the skin while 
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modulating the drug delivery rate.  Iontophoresis applies a low-density electric current (< 

500 µA/cm2) to the skin to propel charged drug molecules through the low-resistance 

tunnels created by the needles. For a positively charged drug, molecules are repelled by the 

positive electrode (anode) and attracted to the negatively charged electrode (cathode) [16, 

35-38]. Several in vivo and in vitro studies have demonstrated increased delivery of 

macromolecules (oligonucleotides, dextrans, proteins) through porcine skin with 

microneedle pre-treatment and iontophoresis as compared to iontophoresis alone [20]. 

However, research on the combination of dissolving microneedle and iontophoresis 

technologies for drug administration is limited and neither method has influenced greatly 

the transdermal drug delivery market.  

The experimental portion of this research focused on i) developing dissolving 

microneedles for the release of sumatriptan and ii) combining microneedle arrays with 

iontophoresis to optimize delivery (Figure 1.2 and 1.3). Dissolving microneedles are 

formulated from water-soluble biodegradable polymers that encapsulate the API within the 

matrix. The dissolvable microneedles are inserted into the epidermis where they dissolve 

in minutes, releasing the API into the dermis for rapid release into the systemic circulation. 

Microneedles dissolve leaving no sharp medical waste for disposal after use and studies 

show that skin punctures left by microneedles are painless and heal within 3 days [39-41]. 

There are several factors that affect drug delivery with microneedles, including 

microneedle height, microneedle density, number of microneedles, drug concentration, and 

size of encapsulated drug molecule [28, 39]. This research considered several sumatriptan 

preparations to evaluate the formulations with respect to its strength, flexibility, uniformity, 

and ease of insertion into the skin. These preparations were then combined with a range of 
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current densities (100 – 500 µA/cm2) to determine the effect of the system on lag time, 

steady-state diffusion flux and cumulative drug release. In vitro studies were conducted 

with vertical Franz cells to determine sumatriptan release, from microneedle alone and 

microneedle combined with iontophoresis, through Göttingen minipig skin [42].    

 

 

Figure 1.2  Schematic representation of dissolvable microneedles for rapid release of 

encapsulated drug.  

 

 

Figure 1.3  Iontophoretic transdermal microneedle patch. 
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Design optimization of the essential parameters of the microneedle systems is 

paramount to improving drug delivery through the skin. The dissolving microneedle 

systems must be able to properly insert into the skin without fracturing individual needles 

in the array. Several physical properties effect microneedle insertion, including 

microneedle geometry (shape of array), surface area, needle height, pitch width (center-to-

center distance of adjacent needles), and polymer matrix type. In 2004, a study by Davis et 

al. demonstrated that the needle height and pitch-width were important properties with 

long, densely packed arrays required for greater needle penetration into the skin [28, 43]. 

In 2008, Al-Qallaf et al. working with hollow or solid squared-shaped microneedle arrays, 

developed a mathematical algorithm for determining the best parameters for the transport 

of drug macromolecules across the skin. The study showed that the pitch width had a 

greater impact on drug delivery than the needle radius [44]. In a separate study, Al-Qallaf 

and Davidson et al. developed a mathematical model, based on Fick’s first law of diffusion, 

to predict delivery of macromolecules from coated solid microneedles which confirmed 

that needle height and pitch-width were crucial for increasing drug diffusion [45]. These 

models are based on solid and hollow microneedle systems and cannot be applied to drug 

delivery from dissolving microneedle arrays which involve dissolution and diffusion 

processes.  

In 2015, Kim et al. designed a system of dimensionless governing equations for 

describing dissolution of an individual conical shaped microneedle and release of 

encapsulated drug into a control volume. Several simulations were conducted with sucrose 

microneedle containing encapsulated fentanyl citrate active substance that indicated i) a 

decreased pitch led to an increased permeation and ii) the dissolution rate was independent 
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of the elimination rate constant [46]. This research builds on previous studies by deriving 

several mathematical models based on Nernst-Brunner equation, Fick’s 2nd law and 

Coulomb’s law to describe: 1) dissolution of dissolving microneedles, 2) diffusion of drug 

through the skin and 3) impact of iontophoresis on microneedle dissolution and drug 

diffusion. Simulation experiments for each model allowed for a thorough analysis of the 

impact of model parameters (e.g., drug load, needle height, needle pitch width and polymer 

concentration) on the device performance. The predictions were then evaluated in the lab 

with in vitro permeation experiments using Franz cells, excised Göttingen minipig skin 

samples, and iontophoresis. Soluble microneedles with different formulations consisting 

of PVP polymer and sumatriptan succinate API were tested to confirm the models.  

1.3    Research Significance and Impact 

This research focused on the development of theoretical models based on transport 

phenomena principles to assess and predict drug delivery of encapsulated sumatriptan 

succinate in soluble microneedle systems alone and soluble microneedles aided by 

iontophoresis. The models were then used to identify critical attributes of the microneedle 

system (i.e., microneedle height, base width, pitch width), formulation factors (i.e., 

concentration, solubility and density) and process parameters (i.e., current density). The 

work was validated using in vivo permeation experiments with vertical Franz diffusion 

cells and skin excised from female Göttingen minipigs.  

The developed platform can help explain new experimental results, aid in product 

design and the development of manufacturing processes. The contribution can be used to 

evaluate the delivery of protein and peptide macromolecules, as well as, poorly soluble 

drug molecules. The framework will potentially reduce R&D expenses, increase the quality 
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of results and make the clinical research less risky, less empirical and more reliable than 

trial-and-error experimental procedures.  

The advantages of this research will be i) development of optimal transdermal drug 

systems for the delivery of macromolecules to the systemic circulation, ii) more precise 

prediction of drug delivery into the body, iii) reduction of therapeutic ‘lag time’ effect, and 

iv) increased therapeutic effects of drug molecules. 

The application and benefits of combining dissolved microneedles and 

iontophoresis merit further analysis to unlock the full potential of this burgeoning 

technology. A detailed assessment of the synergistic effects of the two methods promises 

to result in a deeper understanding of design criteria pertinent to the transdermal delivery 

of macromolecules. For example, many medical diseases and conditions require treatment 

over a long period, e.g., from 24 hours to 7 days. For these cases, a slow and constant 

supply of a macromolecule can be achieved by designing an iontophoretic transdermal 

system with a slow dissolution of the microneedles. The current density is easily increased 

to provide a faster release for patients requiring an immediate pain relief. It is possible to 

adjust the device to design appropriate treatment regimens for specific patient groups and 

drug molecules. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1    Chemicals and Reagents 

Microneedle formulations consisted of the active pharmaceutical ingredient (API) 

sumatriptan succinate [3-[2-(dimethylamino) ethyl]-N-methyl-indole-5-methane-

sulfonamide succinate (1:1)] purchased from Meohs Fine Chemicals (Iberica SL), 

polyvinyl pyrrolidone (Kollidon K30) acquired from BASF (Ludwigshafen, Germany), 

polysorbate 80 procured from Croda (New Castle, DE), and glycerine obtained from P&G 

chemicals (Cincinnati, OH). All other chemicals and reagents were analytical grade.  

2.2    Preparation of Sumatriptan Microneedle Arrays 

The sumatriptan succinate microneedle systems were fabricated using methods previously 

described by the author [42]. A total of four PVP-based sumatriptan microneedle 

formulations were developed for characterization studies and their compositions are listed 

in Table 2.1.  
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Table 2.1 Microneedle Array Wet Composition (%, w/w) 

Excipients P1 P2 P3 P4 

Sumatriptan 10 5 5 15 

Polyvinylpyrrolidone 30 30 20 30 

Water 58 63 73 53 

Glycerine 1 1 1 1 

Polysorbate 80 1 1 1 1 

 

 

An  aqueous pre-solution was prepared by slowly dissolving PVP, polysorbate 80 

and glycerine in purified water, and degass by sitting on benchtop. The active solution was 

formulated by adding an aliquot of this pre-solution (e.g., 2 – 5 ml) to a small beaker, 

adding the sumatriptan succinate API, stirring until fully dissolved, and degas by sitting 

un-stirred on the bench-top. Approximately 100 mg of active solution was pipetted into 

each negative mold of platinum-cured silicone microneedle arrays (i.e., negative molds) 

and pressed into microneedle chambers by pressure using methods described by other 

research groups [47, 48]. The molds were dried at room temperature under ambient 

conditions overnight on the lab bench. The dried microneedle arrays were carefully 

removed from the PDMS molds and sealed in water-resistant containers. The PVP-

sumatriptan microarrays were stored in the sealed containers at room temperature for up to 

6 weeks and retained their pyramid needle shape, as examined under microscope.  
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These fabrication techniques were used to prepare circle microneedle arrays from 

each preparation (P1 – P4 )  and square arrays from P1 formulation (Figure 2.1).  

 

Figure 2.1  Photographs of P1 formulated dissolving microneedle arrays; A) circle array 

containing 600 pyramid-shaped needles; B) square array containing 196 pyramid-shaped 

needles.  

2.3    Characterization of Microneedles with Light Microscope 

The microneedle systems were visually examined using light microscope (Nikon Optishot-

2, Nikon, Japan), digital sight (Nikon D5-Fi1, Nikon, Japan) and imaging software (NIS-

Elements, Nikon, Japan) [42]. Circle microneedle arrays from each preparation (P1 – P4 )  

and square arrays from P1 formulation were inspected to ensure they maintained consistent 

appearance, shape and dimensions. Circle arrays from each formulation  were inspected to 

ensure they contained 600 uniform pyramid-shaped needles with consistent height of 500 

µm, base width of 300 µm and pitch width (i.e., center-to-center distance between needles) 

of 300 µm (Figures 3.4 – 3.7). Also, square-shaped arrays (P1 formulation) were examined 
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to confirm each contained 196 individual pyramid-shaped needles with consistent height 

of 500 µm, base width of 385 µm and pitch width of 700 µm. 

A different optimal microscope (Swift-Duo, Vision Engineering, Woking, UK) and 

imaging software (M3 Metrology, Vision Engineering, Woking, UK) were used to examine 

minipig tissue samples following in vitro permeation trials. The minipig samples were 

inspected for patterns of small holes corresponding to the circle and square microneedle 

array patterns.  

2.4    Tensile Strength 

The microneedle systems mechanical strength was evaluated using a texture analyzer 

(TA.XTPlus, Stable Microsystems Ltd, Godalming, UK), as described previously [42]. The 

mechanical failure force of individual arrays was measured using the instrument in 

compression mode equipped with a 3-point bend fixture (HPD/3 PB, Stable Microsystems 

Ltd, Godalming, UK). Prior to performing the tests, the PVP-sumatriptan microneedles 

were stored for 24 hours at 25 °C and 45% relative humidity for 24 hours. For each test, a 

single microarray is loaded  onto the 3-point bend fixture (Figure 2.1), a sensor probe 

applied an axial  load to the microneedle at 0.1 mm/s. The test was terminated when a 

maximum displacement (5 mm) was attained or force decreased below a threshold (< 0.1 

N). For each test, a force (N) versus displacement (mm) curve (similar to stress versus 

strain curve), based on average force values (n=3), was generated.  
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Figure 2.2  Set-up of three-point bend apparatus for testing mechanical strength of 

microneedle array.  

2.5    Mass, Drug Content and Density of Microneedle Systems 

Laboratory experiments were conducted to determine the mass, drug content and density 

of the microneedle systems. Ten microneedles, from each formulation, were prepared per 

the methods described in Section 2.2. During preparation, the wet weight of drug solution 

dispensed into each mold, mwet, and the dry weight of fabricated microneedles, mdry, were 

measured on an analytical balance. The mass of the microneedle was calculated as the 

average dry weight of the ten microneedles. The average drug content (i.e., mass fraction 
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of sumatriptan API, β), in each microneedle was calculated using Eq. 3.1l; where 

,% MN wetDrug  is the percent (%, w/w) of sumatriptan in the microneedle solution. 

 
( )( )

( )
,% MN wet wet

dry

Drug m

m
 =   (2.1) 

The density of the microneedle systems was measured by standard water displacement 

technique described in [49]. A 5 ml aliquot of purified water was dispensed into a 10 ml 

volumetric flask. The ten microneedles were inserted into the flask and submerged beneath 

the surface of the water. The total volume of water was measured and used to calculate the 

average density of the dissolving microneedles from each formulation. 

2.6    Simulated Biological Fluid Preparation 

A simulated biological solution was prepared, as previously described [49], as a surrogate 

for interstitial fluid located in the skin. A one liter parenteral simulated body fluid, 

developed by Marquis et. al. [50], was blended in the lab. The solution was determined to 

be a suitable substitute for determining the solubility of the microneedle matrix polymer 

(i.e., polyvinylpyrrolidone) in tissue fluid. The fluid was originally designed as a 

dissolution medium for conducting experiments on parenteral dosage forms including 

subcutaneous, intravenous, and intramuscular injections or implants.  

2.7    Polyvinylpyrrolidone Solubility 

The solubility of the matrix polymer (PVP) was measured in a simulated biological fluid 

(solvent), as previously described by the author [49]. One hundred milliliter of simulated 

biological solution was dispensed into a 250 ml glass beaker and stirred with a stand mixer 
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(Eurostar, IKA, Staufen, Germany). PVP polymer was added to solution in increments of 

10 g and allowed to dissolve into solution. The visual appearance was recorded and solution 

viscosity was measured using a handheld Brookfield viscometer (Viscotester 2-plus, 

Haake, Karlsruhe, Germany). The biological solution was determined to reach saturation 

at 1.0 g/ml when the fluid viscosity exceeded that of lubricant oil (approximately 10 dPas). 

It is presumed that the interstitial fluid viscosity would not exceed that of lubricant oil and 

that this described a realistic solubility value. A plot of the viscosity (dPas) versus 

concentration (g/ml) is shown in Figure 2.2.  

  

 

Figure 2.3  Viscosity – concentration curve for PVP in simulated biological fluid.  

2.8    Minipig Skin Preparation 

Whole female Göttingen minipig skin tissue samples (Ellegaard Göttingen Minipigs 

Agricultural Service, Denmark) were purchased and prepared as described in [42]. Frozen 
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full minipig skin samples were thawed at room temperature, rinsed with water, shaved to 

remove hair and dermatomed to thickness of 800 µm (Acculan 3TI; Aesculap AG). The 

prepared skin samples were punched into samples (25 mm diameter), frozen and stored for 

use within a 9-month period. Göttingen minipig tissue was selected for the in vitro 

permeation studies as an excellent model for human skin. The minipig skin is histologically 

similar to human skin and exhibits lower inter- and intra-variation due to breeding 

standardization [51, 52].  

2.9    Optical Coherence Tomography Imaging 

Optical coherence tomography (OCT) imaging equipment was used to generate high-

resolution, cross-sectional tomographic images of the Göttingen tissue structures in real-

time during microneedle treatment. OCT imaging creates a set of 2-dimensional images 

representing back-reflected light from a series of cross-sectional planes through the sample 

[53]. In the lab, imaging was performed with an optical coherence tomography device 

(VivoSight TP1302, Michelson Diagnostics Ltd., Kent, UK) and imaging software 

(VivoSight 4.5 software, Michelson Diagnostics Ltd., Kent, UK). In vitro studies of 

microneedle systems dissolving within the minipig tissue samples were imaged in real-

time until needles were fully dissolved.  

2.10  Transepidermal Water Loss (TEWL) 

Transepidermal water loss (TEWL) was used to characterize the barrier function of the 

minipig skin using a TEWL device (Biox AquaFlux, AF200, London, UK).  The TEWL, 

or skin surface vapor loss, is good indicator of the barrier function of the stratum corneum 

with damaged skin (e.g., dry skin) displaying high TEWL values compared to normal skin 
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[54-56]. Tests were conducted on mini-pig skin samples before and after insertion of 

dissolving microarrays into the skin. Individual 10 mm diameter microneedles were 

applied to a 25 mm diameter mini-pig skin samples.  The microneedles were inserted using 

a custom device which applied uniform tangential force across the skin (approximately 150 

N/cm2). After insertion, the microneedle was held in-place on the skin for a period of 15 

seconds to ensure good penetration into the skin surface. For comparison, TEWL was 

measured before and after tape-stripping minipig skin 15x to remove the stratum corneum. 

Tape-stripping skin 15x has been shown to remove horny corneocyte layers (stratum 

corneum) from the epidermis [57]. The tape-stripping method involved applying a standard 

pressure-sensitive adhesive tape (e.g., Scotch-tape®) to the skin surface, pressing firmly for 

over 5 seconds and slowly remove tape.  

2.11  In vitro Permeation Studies 

In vitro diffusion experiments, as described previously [42], were performed in vertical 

Franz diffusion cells (Glastechnik, Gräfenroda, Germany) with a diffusion area of 1.595 

cm2. Frozen tissue samples (25 mm diameter) were thawed and placed with skin surface 

(stratum corneum side) facing up on benchtop. To imitate realistic conditions, the tissue 

samples were not pre-wetted. Sumatriptan microneedle arrays were placed gently onto the 

skins and inserted into the skin using a custom applicator device designed to apply a 

uniform impulse force (150 N/cm2) during insertion. The microneedle-skin samples were 

covered with a PET liner and immediately placed into the Franz cells with the microneedles 

facing the donor compartment. The occlusive PET liner was placed over the microneedle-

skin samples to facilitate diffusion into the skin. The receptor chamber was filled with 10-

mL phosphate buffer solution (pH 7.4) (PBS) containing sodium azide (0.1%, w/w), stirred, 
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and controlled at 32 °C. At prearranged time intervals, the receiver cell solution was 

withdrawn completely and replaced with fresh PBS (10 ml) to maintain sink conditions. 

The diffusion studies were used to acquire data, including microneedle drug load (µg/cm2); 

percentage drug released after 24 hours (%); cumulative amount of drug released after 24 

hours, Q24h (µg/cm2); sumatriptan steady-state flux, Jss (µg/cm2/h); sumatriptan retained in 

skin (µg/cm2) and lag time (h).  

For comparison, passive diffusion (control) studies were conducted with inverted 

microneedle samples from preparations P1 and P2.  The control samples were prepared by 

gently placing inverted microneedles (i.e., needles faced upward) onto minipig skin 

samples, covered with occlusive PET liners and inserted into vertical Franz cell device. 

Additional passive diffusion studies were performed with P1 and P2 microneedles on skin 

samples after removing the skin’s stratum corneum. The stratum corneum was carefully 

removed from the minipig skin samples using the tape-stripping method (15x) described 

in Section 2.10. Following removal of the stratum corneum, inverted microneedles were 

gently placed onto skins and covered with PET liners for placement in Franz cell. Finally, 

in vitro  permeation of a sumatriptan reference donor solution was measured. Reference 

solution samples were prepared by applying 100 µl aliquot of 5 mg/ml sumatriptan 

succinate in PBS (pH 7.4) solution to the non-woven pad (SA = 1.188 cm2) applied to the 

skins (Figure 2.3), cover with PET liner and inserted into Franz cell. 
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Figure 2.4  Non-woven pad on minipig skin containing sumatriptan reference solution. 

For iontophoresis, in vitro permeation studies were set-up in a two chamber Franz 

cell configuration with silver/ silver chloride electrode couples connected by a silver wires 

(Figures 2.4 - 2.5). Sumatriptan succinate is positively (+) charged at pH 7.4, the anode 

electrodes were placed in the donor compartment directly on-top of the microneedle-skin 

samples [58]. A constant physiologically acceptable electric current, between 100 to 500 

µA/cm2, was applied to microneedle-skin samples using a power supply (Hameg HM 

7042-5, Mainhausen, Germany) [37, 59, 60]. The iontophoretic diffusion studies were used 

to acquire data including: microneedle drug load (µg/cm2); percent drug permeated in 6 

hours (%); cumulative amount after 6 h, Q6h (µg/cm2); sumatriptan steady-state flux, Jss 

(µg/cm2/h); and lag time (h). 
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Figure 2.5  Two-chamber franz cell system with electrical current. 
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Figure 2.6  Two-chamber franz cell system with silver-silver chloride electrodes.  

2.11  Analytical Methods 

Analytical sample aliquots, collected from the receiver cell, were analyzed with a High-

Performance Liquid Chromatography (HPLC) system (Jasco LC-2000Plus Series, Tokyo, 

Japan) [42]. The HPLC was equipped with a C18 column (Kromasil, 250 x 4.6 mm, 5 µm, 

VDS Optilab, Berlin, Germany) and a UV Detector (Jasco 2077). The mobile phase 

contained a mixture of sodium dihydrogen phosphate solution and acetonitrile (pH 3.2) 

(90:10, v/v); flow rate of 1.5 ml/min. The UV detection set at 227 nm and the injection 
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volume was 20 µL. The sumatriptan drug retained in the tissue samples after in vitro 

diffusion were extracted by shaking samples in 5 ml methanol for 24 hours.  

2.12  Statistical Methods 

Statistical analysis was performed with Matlab software (Mathworks, Natick, 

Massachusetts, US). An unpaired students t-test was applied to evaluate multiple data sets 

using a one-way analysis of variance (ANOVA). The ANOVA comparison results were 

considered statistically significant if p < 0.05. 
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CHAPTER 3 

DEVELOPMENT OF SOLUBLE MICRONEEDLE SYSTEM FOR DELIVERY 

OF SUMATRIPTAN SUCCINATE  

3.1    Formulation of Sumatriptan Dissolving Microneedle Array 

For this research, a dissolving microneedle system was developed to meet several integral 

design criteria including:  

• Microneedle is comprised of biocompatible polymer. 

• Microneedle is soluble in water.   

• Microneedle system has sufficient mechanical strength to penetrate skin.  

• Microneedle formulation is stable over long term storage at room temperature. 

• Active pharmaceutical ingredient is positively (+) charged at physiologic pH 7.4 

for iontophoretic delivery. 

• Microneedle fabrication process is scalable for commercial manufacturing. 

• Microneedle device will meet regulatory compliance requirements.  

 

These criteria were considered when selecting active and inactive pharmaceutical 

excipients for the microneedle formulation.  

A medium viscosity polyvinylpyrrolidone (Kollidon K30) polymer was chosen as 

a binder due to its favorable properties that include readily soluble in water, inert, low 

toxicity, biodegradeable, and biologically compatible [61]. Polyvinylpyrrolidone (PVP) 

has been used in numerous oral tablet formulations as a binding agent and in ophthalmic 

solutions as a lubricant. The polymer was approved by the FDA for use as an inactive 

ingredient in pharmaceutical formulations [62]. Laboratory experiments confirmed PVP 

(k30) readily dissolves in water at concentrations equal or less than 30% (w/w) and 
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mixtures quickly degassed with slow mixing or standing still on lab bench. In contrast, 

exploratory experiments with water-soluble carboxymethylcellulose (CMC) yielded 

aerated, highly viscous solutions at low concentrations (< 5%, w/w) which could not be 

degassed with a vacuum pump. For these reasons, PVP (k30) was selected as matrix 

polymer for microneedle systems.  

The active ingredient sumatriptan succinate (C18H27N3O6S) was selected as an 

ideal active pharmaceutical ingredient for assessment of microneedle formulations. 

Imitrex® (sumatriptan) is approved by the FDA for use in oral, subcutaneous, intranasal 

and iontophoretic prescriptions [14, 25, 63, 64]. Sumatriptan has a molecular weight of 

413.5 Da, an octanol/water partition coefficient of -1.5 (pH 7.4), a solubility in water of 

101 mg/ml (20 °C), a low melting point of 165°C, and is positively charged. Thus, it is not 

suitable for passive transdermal diffusion which requires small molecules with low 

molecular weight (< 500 Da) and a high lipophilicity (Log P ~2-3) [18, 19]. However, a 

well-designed microneedle device should be able to deliver large hydrophilic 

macromolecules, such as sumatriptan, through the skin [28, 39]. Furthermore, 

iontophoresis, or the application of a mild electric current (< 500 µA/cm2), has been shown 

to significantly increase in vitro and in vivo transdermal delivery of sumatriptan succinate 

[65, 66]. Thus, the sumatriptan succinate API will be used to evaluate microneedle 

formulations for enhanced transdermal delivery with and without iontophoresis.  

The excipient glycerin (i.e., glycerol) was added to the formulation as a lubricant 

to provide smoothness to the microneedle systems. Preliminary formulations containing 

PVP, sumatriptan and water resulted in microarrays that were difficult to remove from 

silicone molds and often deformed during the de-molding process. Addition of 1% (w/w) 
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glycerin to the formulations yielded smooth microneedle arrays that remained intact during 

the demolding process (Figure 3.1b-e). The glycerin additive is frequently used in 

pharmaceutical products with low risk of toxicity and accepted by the FDA as ‘generally 

recognized as safe’ (GRAS).  

The hydrophilic nonionic compound polysorbate 80 (PS 80) was incorporated as a 

surfactant in the aqueous formulation. The PS 80 helped facilitate proper wetting of drug 

solution onto the negative silicone molds by reducing surface beading effects. Additionally, 

PS 80 increased the flexibility of the dried microneedle systems. Initial PVP, sumatriptan 

and water formulated arrays yielded non-uniform, brittle microneedles with small air 

bubbles (Figure 3.1a). Formulations with 1% (w/w) PS 80  provided uniform, flexible 

microneedle systems that were bubble-free (Figure 3.1b-e). The PS 80 has been approved 

by FDA for use in pharmaceutical and cosmetic industry in lotions, vaccines and 

intravenous medications.   
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Figure 3.1  Photographs of polyvinylpyrrolidone microneedle arrays; (A) microneedles, 

containing only PVP (20%, w/w), are glassy, brittle, non-uniform and contain bubbles; 

(B-C) microneedles, containing PVP (20%, w/w) , glycerol (1%, w/w) and polysorbate 

80 (1%, w/w), are uniform, flexible and produce no bubbles; (D-E) P1 formulated 

microneedles with sumatriptan are uniform, flexible and do show any bubble. 

The formulations were made in the laboratory using standard mixing equipment. 

Four different systems, with compositions described in Table 2.1, were prepared with 

purified water, 5 – 15% (w/w) sumatriptan succinate, 10 – 20% (w/w) PVP, small amounts 

of glycerin and polysorbate 80. A 50 ml pre-solution was prepared from inactive 

ingredients in a beaker using a powered stand mixer. The pre-solution was easily degassed 

with slow mixing or by standing still on the lab benchtop. A 2 – 5 ml active solution was 

prepared by manually mixing sumatriptan powder with the pre-solution in a small beaker 

using a metal spatula. The active solutions were degassed by allowing them to sit on a 

benchtop. The sumatriptan API did not dissolve into solution at the higher 15% (w/w) 
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concentration (P4 formulation) and tiny particulates were observed in the solution. 

However, P4 microneedles were fabricated to assess the effects of increased drug load on 

the physical properties of the microneedles, including needle geometry and mechanical 

strength.  

The circle and square-shaped microneedle arrays (Figure 2.1) were prepared from 

the active solution using silicone molds (negative) and a small pressure vessel. The drug 

solution was carefully pipetted into silicone molds which were then placed onto a custom 

microneedle stand (Figure 3.2.b) for transfer into the pressure vessel (Figure 3.2.c). The 

drug solution was filled into the needle cavities in the molds by applying 2 – 6 bar pressure 

over the molds for approximately 15 minutes, similar to procedure described by Ripolin et 

al. [47].  

The molds were removed from the pressure vessel and dried overnight under 

ambient conditions of 25 °C and 65% relative humidity (Figure 3.2.d). Following drying, 

the microneedles were carefully peeled from the silicone molds and sealed in moisture 

resistant containers. The microneedles were stored up to 6 weeks at room temperature and 

individual needles retained their pyramid-shape, as verified by inspection under a 

microscope.   
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Figure 3.2  Photographs of the laboratory setup; (A) silicone mold filled with P1 

solution; (B) stand to transfer filled microneedle molds into the pressure vessel;  

(C) pressure vessel; (D) dried P1 microneedles in the silicone mold.  

 

For commercial applications, regulatory agencies will probably require that the 

microneedle devices be sterile and produced under aseptic conditions to prevent infection 

during treatment. The previously described manufacturing process should be amended to 
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sterile filter (0.22 µm) the active solution. The casting, drying and packaging operations 

should be performed under aseptic conditions [67]. 

3.2    Characterization of Sumatriptan Dissolving Microneedle Array 

The PVP-Sumatriptan dissolving microneedles were evaluated to determine the optimal 

formulation (P1 – P4) in relation to a number of physical characteristics including:  

• Microneedle array uniformity. 

• Microneedle Drug Load, β 

• Microneedle Density, ρ 

• Solubility of PVP polymer in body fluid, cS  

• Microneedle mechanical strength 

• Microneedles ability to penetrate minipig skin 

• Transepidermal water loss (TEWL) 

 

The microneedle formulations (P1 – P4) were evaluated with respect to uniformity, 

strength, flexibility and ability to penetrate minipig tissues [42]. The microneedle systems 

must maintain structural integrity with respect to needle array pattern, height, width, and 

pitch width pre- and post- insertion for proper drug delivery. For example, an array with 

non-uniform needle heights may lead to difficulty inserting the array into skin and/or  

failure of some needles to penetrate the skin. Dissolving microneedle systems from each 

formulation (P1 – P4) were visually inspected with a light microscope (Figures 3.3 – 3.7). 

For each formulation, circular microneedle systems had a surface area of 0.785 cm2 and 

contained a total of 600 needles with a height of 500 µm, width of 300 µm and pitch width 
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of 350 µm. Square microneedle array systems were molded from P1 solution to form square 

array patterns with a 0.884 cm2 surface area consisting of 196 needles with needle height 

of 500 µm, needle width of 385 µm and pitch width of 700 µm. Table 3.1 contains a 

summary of the geometric dimensions for each microneedle formulation, including the 

microneedle surface area (SA), base width (w), height (h), needle pitch width (pw) and base-

plate thickness (ɗbp). All microneedle formulations (P1 – P4) produced uniform 

microneedle systems in terms of needle spacing, height, width and pitch width.  

 

 

Figure 3.3  Optical microscope image P1 circle microneedle; (A) top-down view;  

(B) side view.  
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Figure 3.4  Optical microscope image P2 circle microneedle; (A) top-down view;  

(B) side view.  

 

 

Figure 3.5  Optical microscope image P3 circle microneedle; (A) top-down view;  

(B) side view.  
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Figure 3.6  Optical microscope image P4 circle microneedle; (A) top-down view;  

(B) side view.  

 

 

Figure 3.7  Optical microscope image P1 square microneedle; (A) top-down view;  

(B) side view.  

 

Laboratory experiments were performed to determine the physical properties of the 

different microneedle formulations, including the microneedle dried mass (mdry), 

microneedle drug load (β), microneedle density (ρ), and solubility of PVP in body fluid 

(cS) (Table 3.1). The microneedle systems mass, drug content and density were calculated 

using the methods described in Section 2.5, except for the P4 microneedles.  The drug 
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content and density of P4 microneedles were not measured due to the insolubility of 

sumatriptan in the formulation. The arrays contained increasing drug content (β) in the 

order of P2 < P3 < P1; with P1 micro arrays containing the most mass and drug content, as 

expected, due to the higher PVP content and drug loading. The P1 square arrays had a 

slightly higher drug content than circle arrays, which was attributed to a lower moisture 

retention due to increased surface area. The most dense microneedle system was P3 with 

array density decreasing in the order of P3 > P2 > P1. The determination of the solubility 

of polyvinylpyrrolidone polymer matrix in simulated body fluid is described in Section 2.7. 

The United States Pharmacopeia (USP) suggests the simulated biological fluid as a 

dissolution medium for testing in vitro release rate of parenteral dosage forms including 

subcutaneous, intravenous, and intramuscular injections [50].  
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The mechanical strength of the dissolving microneedle formulations was measured using 

a texture analyzer device. A 3-pt bend test was performed using the set-up depicted in 

Figure 2.3. The 3-pt test was selected as means to evaluate both the strength and flexibility 

of microneedle base-plate and individual needles. The microneedle base-plate and needles 

require a certain degree of flexibility to prevent cracking during removal of systems from 

the negative silicone molds. On the other hand, both the base-plate and individual needles 

require strength to penetrate the skin’s surface during insertion without deforming or 

breaking. The mechanical strength for each microneedle formulation was measured and 

plotted in Force (N) – Displacement (mm) curves (comparable to stress-strain curves)  

displayed in Figures 3.8 – 3.11. The Force-Displacement curves represent the average 

mechanical strength (n = 3) of microneedles from each formulation (P1 – P4). The overall 

force for all formulations (P1 – P4) started to decline after being displaced approximately 

1.1 mm due to bending of the microneedle base-plate. Following mechanical testing, each 

microneedle system was inspected under an optical microscope for system failures, 

including cracks in the base-plate, deformed needles and/or broken needles. For all 

formulations (P1 – P4), no cracks were observed in the base-plate and the individual 

needles maintained a pyramid-shape with no observed deformations or broken needles. 

The mechanical tests showed that increasing polymer concentration led to much stronger 

microneedles and increasing drug content reduced microneedle strength. The results met 

expectations as increasing polymer content increases the polymer lattice strength and 

increasing the amount of API molecules in the formulation decreases the stability of the 

polymer lattice.  For example, the P2 microneedles were prepared with the highest 

concentration of polyvinylpyrrolidone polymer (30%, w/w) and lowest amount of 
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sumatriptan succinate (5%, w/w) and exhibited the greatest maximum strength of 4.97 N. 

Decreasing PVP concentration to 20% in P3 microneedles resulted in a drastic 42-fold 

reduction in microneedle strength from 4.97 N to 0.12 N (p < 0.01). However, increasing 

the microneedle sumatriptan load from 5 to 15% (w/w) with P4 microneedles yielded a 

smaller 5-fold reduction in strength from 4.97 N to 0.90 N (p < 0.01).  

The mechanical strength of square microneedles prepared from P1 solution were 

tested and an average Force (N) – Displacement (mm) curve is plotted in Figure 3.12. 

Following mechanical testing, the  microneedle arrays were inspected under an optical 

microscope and no cracks were observed in the base-plate and all needles maintained a 

pyramid-shape with no deformations or cracks. The larger square microneedle showed 

similar decline in peak force after being displaced approximately 1.1 mm. The square 

arrays maximum peak force of 2.24 N was higher than the P1 circle array maximum force 

of 1.63 N. The greater strength was attributed to the higher density (1.480 g/cm3) in the 

square array as compared to the circle arrays (1.150 g/cm3). 
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Figure 3.8  Mechanical test (3-pt bend) of P1 microneedles (circle); average values  

(n = 3).  

 

Figure 3.9  Mechanical test (3-pt bend) of P2 microneedles (circle); average values  

(n = 3).  
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Figure 3.10  Mechanical test (3-pt bend) of P3 microneedles (circle); average values  

(n = 3).  

 

Figure 3.11  Mechanical test (3-pt bend) of P4 microneedles (circle); average values  

(n = 3).  
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Figure 3.12  Mechanical test (3-pt bend) of P1 microneedles (square); average values  

(n = 3). 

During in-vitro trials the minipig skin samples were examined to assess the 

microneedles ability to puncture and penetrate the skins surface. Microscopic images of 

the skin samples post-treatment were taken and visually confirmed the needles successfully 

punctured the skin (Figure 3.13). In addition, an indicator solution (nitrazine yellow dye) 

was applied to minipig skin following treatment to increase visibility of the skin punctures. 

The dye turned the minipig skin blue allowing for quick visual inspection of minipig skins 

un-aided by the microscope. An inspection of minipig skin confirmed successful 

penetration of circle arrays (P1 – P3) and square arrays (P1) (Figure 3.14).       
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Figure 3.13  Optimal microscope images; (A) blank minipig tissue (10x mag);  

(B) minipig tissue post-treatment with P1 microneedle (10x mag); (C) minipig tissue 

post-treatment with P1 microneedle (50x mag).  
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Figure 3.14  Photographic images of minipig tissue stained with nitrazine yellow dye; 

(A) blank minipig tissue; (B) P1 circle array treated minipig tissue; (C) P2 circle array 

treated minipig tissue; (D) P3 circle array treated minipig tissue; (E) P1 square array 

treated minipig tissue.  
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In vitro optical coherence tomography (OCT) study was used to observe and 

evaluate the microneedle systems solubilize and dissolve within the skin. The OCT 

imaging system was capable of generating micron-scale, high resolution 2-D cross-

sectional images of the needles within the tissue samples [68, 69]. Figure 3.15 displays 

images of P1 formulated microneedles dissolving in dermatome (800 µm) female 

Göttingen minipig skin over a ten minute period. The images confirm the PVP-based 

needles rapidly dissolve immediately following insertion into the moist skin. Following 10 

minutes, the individual needles were completely solubilized and the microneedle base-

plate had begun to dissolve.  
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Figure 3.15  Optical coherence tomographic images of P1 circle microneedle dissolving 

in minipig tissue over time; dissolution of microneedle at (A) 1 min; (B) 2 min;  

(C) 4 min; (D) 10 min.  

The skin barrier function was characterized by measuring transepidermal water loss 

(TEWL) of minipig skin pre-and post- treatment with dissolving microneedles. TEWL, or 

measurement of skin surface vapor loss, is an effective tool for determining the integrity 

of the stratum corneum (i.e., skin barrier). Damaged skin (i.e., dry skin) is unable to retain 

moisture and will result in higher TEWL values [54, 55, 70]. TEWL measurements were 
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taken before and after application of microneedles (circle) into the skin for 15 seconds 

(Table 3.2). Following treatment of skin with the P1 microneedle arrays, the minipig skin 

surface average water loss increased 4.9-fold (p < 0.001). The increased evaporation is 

explained by the array of micron-scale tunnels present in the skin after microneedle 

treatment which create low resistance pathways for transport of water through the skin. A 

similar 4.6-fold increase in average TEWL was realized after removing the stratum 

corneum from the skin utilizing the tape-stripping technique (15x) (p < 0.001). A 

comparison of the TEWL values for skin treated with P1 circle microneedles versus skin 

treated by tape-stripping method showed no significant differences (p > 0.05). These results 

indicate the circle microneedle arrays effectively bypass the stratum corneum.  

Table 3.2  TEWL Values of Minipig Skin Pre- and Post- Microneedle Treatment or 

Tape-Striping Technique (15x); Average Values ± SD 

Sample 

 

Minipig 

Lot 

 

Sample 

Size 

Insertion 

Time (sec) 

TEWL 

(g/m2/h) 

Difference 

(g/m2/h) 

Circle Microneedle      

    Control (no microneedle)  325975 n = 3 15 15.18 ± 2.92 N/A 

    P1 Microneedle  325975 n = 3 15 73.86 ± 0.36 58.68 ± 2.70 

Tape-Stripping       

    Control (no tape-strip) 325975 n = 3 15 15.36 ± 1.21 N/A 

    Tape-strip (15x)  325975 n = 3 15 70.41 ± 3.56 55.05 ± 2.38 

 

An overall comparison of the physical characteristics of the four formulations (P1 

– P4) and array types (circle & square) indicates the optimal dissolving microneedle system 

is a P1 formulated circle microneedle. The P1 formulation contains optimal sumatriptan 

API drug loading (10%, w/w), highest possible PVP-polymer content (20%, w/w), good 
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mechanical properties and inserts well into minipig tissue. The other three formulations 

were sub-optimal for various reasons: P4 formulation contained undissolved sumatriptan 

API, P2 and P3 formulations contained lower drug load. The circle and square arrays both 

penetrated the minipig skin, but the circle array is preferred as it contains a denser array 

pattern with over three times the number of individual needles in a smaller surface area.    

3.3    In vitro Diffusion of Sumatriptan Microneedles Using Minipig Skin Model 

In vitro permeation studies to determine drug release of sumatriptan succinate through 

minipig skin were executed with circle microneedle arrays from three of the formulations 

(P1 – P3) [42]. Permeation trials were carried out using vertical Franz diffusion cells with 

female Göttingen minipig tissue as a suitable and preferred model for in vitro diffusion 

through human skin. The minipig skin has been shown to exhibit lower intra-donor 

variation compared to human skin due to variations in the human skin age of donors and 

lifestyles [51, 71]. Each of the minipig skin samples was shaved to remove hair on skin, 

dermatomed to 800 µm thickness and skin surface was gently dried. A tissue sample 

thickness of 800 µm was selected to ensure the 500 µm needles in the microneedle systems 

did not pierce through skin releasing drug directly into the receiver compartment. The top-

layer skin surface was carefully dried and not pre-wetted to mimic realistic conditions for 

microneedle treatment. A detailed description of the minipig skin preparation is described 

in Section 2.8. The permeation trials were carried out over 32 hour period with samples 

collected at 1, 2, 6, 8, 24, and 32 hours. During each interval the receiver cell solution was 

completely emptied and replaced with phosphate buffer solution to maintain sink 

conditions. The in vitro minipig permeation trial lab set-up and test condition specifics are 

outlined in Section 2.11.  
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The permeation trials included transdermal diffusion experiments with dissolving 

microneedles, passive diffusion (control) experiments, passive diffusion experiments 

following removal of stratum corneum and a sumatriptan succinate reference solution 

(Figures 3.16 – 3.19). The dissolving microneedle experiments were performed with 

microarrays inserted into minipig skins and placed into Franz cells with the needles facing 

the donor compartment. Passive diffusion (control) tests were conducted with P1 and P2 

arrays by inverting the microneedles on the skin samples (i.e., needles facing up) to mimic 

application of a traditional transdermal patch. Additional passive diffusion experiments 

were carried out with inverted P1 and P2 microneedles on minipig skin after removal of 

the stratum corneum using the tape-stripping technique (15x). Finally, the permeation of a 

sumatriptan succinate reference solution was evaluated which comprised 5 mg/ml 

sumatriptan API in phosphate buffer solution (pH 7.4). At the completion of each trial, skin 

samples were visually inspected with blue dye solution (nitrazine blue dye) to ensure 

microneedles fully dissolved and the full array penetrated the skin.  

Results, included microneedle drug load (µg/cm2); percentage drug released after 

24 hours (%); cumulative amount of drug released after 24 hours, Q24 (µg/cm2); 

sumatriptan steady-state flux, JSS (µg/cm2/h); lag time (h), and sumatriptan API retained in 

skin (µg/cm2). The steady-state flux was determined by calculating the slope of the steady-

state part of the cumulative flux curves. The steady-state flux was reached between 2 – 8 

hours for microneedle systems, between 24 – 32 hours for control samples, between 2 – 8 

hours for tape-stripped control samples, and 24 – 32 hours for reference samples. All in 

vitro results are summarized in Table 3.3 and cumulative flux curves are contained in 

Figures 3.16 – 3.19.  
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Circle microneedle arrays from each of the three formulations P1, P2 and P3 

successfully released over 26% sumatriptan API after eight hours (average, n = 3), over 

68% sumatriptan API after twenty-four hours (average, n = 3) and over 82% after thirty-

two hours (average, n = 3). A linear relationship was observed between loading of 

sumatriptan succinate in microneedles versus cumulative drug release at 24 hour and 

steady-state flux. For example, a 2-fold increase in drug load from 5 – 10% (w/w) related 

to 2-fold increase in the cumulative drug release and steady-state flux. This is observed 

when comparing the P1 circular microneedles (10% w/w sumatriptan, Q24h = 7598 µg/cm2; 

Jss = 395 µg/cm2/h); with either the P2 circular microneedles (5% w/w sumatriptan, Q24h = 

4059 µg/cm2; Jss = 192 µg/cm2/h; p < 0.001) or P3 circular microneedles (5% w/w 

sumatriptan, Q24h = 4291 µg/cm2; Jss = 268 µg/cm2 h; p < 0.001). Increasing the 

polyvinylpyrrolidone polymer content from 10 to 20% (w/w) in P2 circle arrays versus P3 

circle arrays had no effect on drug release (p > 0.05) and a slight decrease in steady-state 

flux (p < 0.05). Circle microneedle arrays from each of the formulations exhibited quick 

release with lag times < 40 minutes. For all three formulations, over 85% sumatriptan 

succinate API was accounted for in the receiver cell aliquots and retained in minipig skin 

post-testing.  

Control experiments were performed with circle-shaped microneedles (P1 and P2) 

as a means to evaluate the effectiveness of dissolving microneedle systems. The P1 and P2 

control samples exhibited a higher degree of variability between samples (SD > 70%) and 

significantly lower drug release at 24 hour  (p < 0.05) and steady-state flux (p < 0.001), as 

compared to the microneedle samples. Furthermore, the release was extremely slow with 

lag times of 6 hours and 9. 4 hours for P1 and P2 control samples, respectively. This data 
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demonstrates the circle-shaped dissolving microneedle arrays are a very effective active 

transdermal system for transporting sumatriptan through the epidermis.  

The circular microneedles ability to completely bypass the skin’s stratum corneum 

(i.e., primary barrier) was tested by placing inverted microneedles (similar to control test) 

on tissue samples after the stratum corneum was removed tape-stripping (15x). The 

inverted microneedles (P1 and P2) on tape-stripped skin released over 24% sumatriptan 

API after eight hours (average, n = 3), over 54% sumatriptan API after twenty-four hours 

(average, n = 3) and over 64% after thirty-two hours (average, n =3). For P1 and P2 

microneedles, no significant differences were observed between drug release at 24 hours 

(p > 0.5) and steady-state flux (p > 0.5), as compared to the inverted microneedles on tape-

stripped skin. These results prove the microneedles effectively bypass the stratum corneum 

for drug delivery directly into the dermal layers of the skin. The arrays have needles with 

length of 500 µm which penetrates through the stratum corneum (approximately 50 µm) 

and deep into the epidermal layers of the skin. This creates deep channels for solubilized 

sumatriptan drug to transport through the skin.  

Review of the in vitro microneedle data from the three formulations (P1 – P3) 

indicates the optimal microneedle system is a P1 formulated circle microneedle array. The 

P1 formulation contains the maximum amount of sumatriptan API (10%, w/w) which 

related to the highest drug release. However, results show that the PVP concentration 

should be reduced to (20%, w/w) which would lead to increased steady-state flux of 

sumatriptan.  
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3.4    In vitro Delivery of Sumatriptan From Dissolving Microneedle Arrays Aided 

by Iontophoresis 

Iontophoresis in vitro studies were carried out to enhance the transdermal delivery of the 

positively-charged sumatriptan succinate molecules through the skin. In vitro tests 

included:  

• Visual examination of microneedle and iontophoresis treated minipig skin.  

• Transepidermal water loss (TEWL) of microneedle and iontophoresis treated 

minipig skin. 

• In vitro Franz cell permeation studies with iontophoresis.  

 

The in vitro experiments involved insertion of microneedle arrays into Göttingen minipig 

skin and applying a mild, constant electrical current, 100 to 500 µA/cm2, across the samples 

during diffusion. Tests included circle-shaped microneedle arrays formulated from P1, P2 

and P3 solulation, as well as, square-shaped microneedle arrays formulated from P1 

solution. Permeation trials were implemented over a six-hour period with samples 

extracted at 1, 2, 3, 4, and 6 hours. Sink conditions were maintained by completely 

emptying and refilling the Franz receiver cell following each interval. The six-hour 

treatment time was selected as comparable to the Zecuity® iontophoretic device approved 

by the FDA for transdermal delivery of sumatriptan succinate over four hours [35, 72]. The 

in vitro iontophoretic diffusion trial lab set-up and test conditions are described in detail in 

Section 2.11.  

In vitro studies included experiments with dissolving microneedles aided by 

iontophoresis, dissolving microneedles un-aided by iontophoresis, and passive diffusion 

(control) experiments. Tests involving dissolving microneedles were conducted with 
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individual circle or square microarrays inserted into minipig skins and placed into Franz 

cells with the microneedles facing the donor compartment..  The passive diffusion (control) 

tests were conducted by inverting microneedle arrays on top of the minipig skin (i.e., 

needles facing up) to simulate passive transdermal delivery from these systems.  

At the completion of each trial, skin samples were visually inspected with blue dye 

solution (nitrazine yellow) to verify microneedles pierced the skin and were fully dissolved. 

For circle arrays (P1 – P3) and square arrays (P1), a recognizable circle or square pattern 

was visible in the skin samples. Applying increasing electrical current made the patterns 

darker and more distinct with the higher current density (500 µA/cm2) being the most 

pronounced. This is observed in Figure 3.20 which contains photographs of the blue dyed 

tissue samples following in vitro testing with and without iontophoresis.  
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Figure 3.20  Photographic images of minipig tissue dyed with nitrazine yellow dye; (A) 

blank minipig tissue; (B) P1 circle microneedle; (C) P1 circle microneedle with  

100 µA/cm2; (D) P1 circle microneedle with 500 µA/cm2.  

TEWL values were used to assess iontophoretic microneedle treatments effect on 

skin barrier functionality for both circle and square microneedle arrays. TEWL 

measurements were taken before and after six-hour in vitro permeation trials with control 

samples, dissolving microneedle samples and dissolving microneedle samples with 

electrical current (Table 3.4). For circle microneedle arrays without iontophoresis, the 
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average TEWL measurements increased 2.6-fold for minipig samples treated\using P1 

circle micro arrays (p < 0.001), 3.1-fold for P2 micro arrays (p < 0.001), and 3.1-fold for 

P3 micro arrays (p < 0.001).  The addition of a high electric current (500 µA/cm2) across 

samples during the six-hour diffusion period correlated to minor increases in TEWL values. 

For minipig skin treated with P1, P2 and P3 circle microneedles and iontophoresis, the 

average TEWL increased 2.7-fold (p < 0.001), 3.1-fold (p < 0.001) and 3.3-fold (p < 0.001), 

respectively. For P1 and P2 microneedles, no significant difference was observed between 

microneedles with or without iontophoresis (p > 0.5). However, for P3 microneedles a 

significant difference was observed (p < 0.01). The results indicate that iontophoresis has 

an increased effect on microneedle arrays containing less polymer. The square 

microneedles formulated from P1 solution resulted in a 2.6-fold increase in average TEWL 

values (p < 0.001). Testing with a high electrical current (500 µA/cm2) electric current 

resulted in slightly larger average TEWL values exhibiting a 3.2-fold increase which were 

not significantly different from non-iontophoresis results (p > 0.05).  
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Table 3.4  TEWL Values of Minipig Skin Pre- and Post- Microneedle Treatment or 

Microneedle Treatment Aided by Iontophoresis; Average Values ± SD 

Sample Minipig 

Lot 

Sample 

Size 

Insertion 

Time (h) 

TEWL 

(g/m2/h) 

Difference 

(g/m2/h) 

P1 Circle Array      

    Control (no microneedle)  228932 n = 3 0 25.46 ± 4.69 N/A 

    Microneedle 228932 n = 3 6 65.24 ± 3.49 39.78 ± 5.00 

    Microneedle + 500 µA/cm2 228932 n = 3 6 69.52 ± 5.69 44.07 ± 4.26 

P2 Circle Microneedle      

    Control (no microneedle) 229025 n = 3 0 21.82 ± 2.22 N/A 

    Microneedle  229025 n = 3 6 67.59 ± 3.57 45.76 ± 4.53 

    Microneedle + 500 µA/cm2 229025 n = 3 6 68.28 ± 2.66 46.46 ± 4.51 

P3 Circle Microneedle      

    Control (no microneedle) 229025 n = 3 0 21.00 ± 3.20 N/A 

    Microneedle  229025 n = 3 6 64.94 ± 1.06 43.94 ± 3.97 

    Microneedle + 500 µA/cm2 229025 n = 3 6 68.60 ± 0.40 47.60 ± 2.89 

P1 Square Microneedle      

    Control (no microneedle)  231545 n = 3 0 20.57 ± 1.48 N/A 

    Microneedle 231545 n = 3 6 54.21 ± 4.88 33.64 ± 4.88 

    Microneedle + 500 µA/cm2 231545 n = 3 6 65.59 ± 4.11 45.48 ± 3.12 

 

In vitro permeation data, including microneedle drug loading (µg/cm2); percentage 

drug released at six-hours (%); cumulative amount drug released at six-hours, Q6 (µg/cm2); 

steady-state flux, JSS (µg/cm2/h); and lag time (h). The steady-state flux and lag time were 

determined from the slope of the steady-state portion of the cumulative flux curves between 

2 – 6 h. For control samples, the steady-state flux and lag time were not calculated as the 

steady-state portion of the cumulative flux curves occurred between 24 – 32 h, see  
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Section 3.4. All in vitro results are summarized in Table 3.5 and cumulative flux curves 

are contained in Figures 3.21 – 3.25. 

The circle dissolving arrays from the three formulations (P1 – P3) each successfully 

released over 953 µg/cm2 after six hours (average, n = 3). The lag time for microneedles to 

reach steady-state flux varied from 30 – 60 minutes for all microneedle samples. A 

relationship was not observed between increased drug loading and either cumulative drug 

release or steady-state flux. For example, increasing drug load 2-fold from 5 to 10% (w/w) 

and keeping PVP concentration constant at 30% (w/w) led to negligible increases in the 

cumulative drug release and steady-state flux. This is observed in comparing P2 circular 

microneedles (Q6h = 953 µg/cm2; Jss = 184 µg/cm2/h) to P1 circular microneedles (Q6h = 

1133 µg/cm2; Jss = 206 µg/cm2/h); p > 0.05). Doubling the drug load and increasing 

polymer concentration from P3 (Q6h = 1050 µg/cm2; Jss = 226 µg/cm2/h) to P1 (p > 0.5) led 

to insignificant changes in cumulative drug release and steady-state flux. And a 10% (w/w) 

higher concentration in PVP polymer between P3 and P2 did not have a significant impact 

on drug release or steady-state flux (p > 0.5). That said, the cumulative drug release of 

sumatriptan from control samples at six hours was 23 – 51% lower than their dissolving 

microneedle counterparts. This confirms the effectiveness of the microneedle arrays in 

circumventing the stratum corneum to deliver drug within the dermis versus passive 

transdermal diffusion.  

Addition of an electrical current of 500 µA/cm2 resulted in 149% increase in drug 

release at six hours for P3 microneedles, 95.2% increase for P1 microneedles and 50.6% 

increase for P2 microneedles. The P3 formulated microneedle aided by iontophoresis 

demonstrated no lag time, but the P1 and P2 had lag times between 36 and 54 minutes. 
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Increasing the polymer matrix concentration from 20 – 30% (w/w) while maintaining 

constant drug load resulted in approximate 2-fold increase drug release and steady-state 

flux values. This was demonstrated between the P2 microneedles (Q6h = 1437 µg/cm2;  

Jss = 266 µg/cm2/h) with under 500 µA/cm2 electrical current in comparison to P3 

microneedles (Q6h = 2888 µg/cm2; Jss = 490 µg/cm2/h, p < 0.01). Doubling the sumatriptan 

succinate load between P2 and P1 (Q6h = 2262 µg/cm2; Jss = 433 µg/cm2/h, p < 0.05) 

increased drug release and steady-state diffusion by > 57%.  

Square microneedle arrays formulated from P1 solution and loaded with 17.04 

mg/cm2 sumatriptan demonstrated a cumulative release of 258 µg/cm2 and steady-state 

diffusion of 49 µg/cm2/h after six hours. The results were disappointing as drug release 

was 22.8% lower than a P1 formulated circle array loaded with less sumatriptan succinate 

(10.8 mg/cm2). Combining the P1 square microneedles (Q6h = 258 µg/cm2;  

Jss = 49 µg/cm2/h) with 500 µA/cm2 electrical current significantly increased drug release 

327% and steady-state diffusion 279% (Q6h = 1102 µg/cm2; Jss = 186 µg/cm2/h, p > 0.01). 

The higher electrical current was able to increase flux of charged molecules and 

compensate for the square microarrays reduced ability to bypass stratum corneum.  

The results of in vitro microneedle testing with iontophoresis for the three 

formulations (P1 – P3) demonstrate the most suitable microneedle device as a P3 

formulated circle microneedle array. The P3 formulation contained minimal sumatriptan 

succinate (5%, w/w) but released 27% more drug than P1 microneedle with double the 

amount of API when combined with 500 µA/cm2 electrical current. The higher drug load 

is attributed to reduced polymer matrix in formulation P3 which allows for faster diffusion 

of charged molecules into epidermis by iontophoresis and no lag time. These results 
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indicate an optimal iontophoretic microneedle device would contain 10% (w/w) 

sumatriptan succinate and 20% (w/w/) polyvinylpyrrolidone which should lead to even 

greater drug release and higher steady-state flux values.  

Table 3.5  Franz Cell In vitro Permeation Data for Sumatriptan Succinate Through 

Minipig Skin After Six Hours Aided by Iontophoresis; Average Values ± SD 

Sample 
Sample 

Size 

Drug Load 

(µg/cm2) 

Cumulative 

Drug 

Released, Q6h
 

(µg/cm2) 

Percentage 

Drug 

Released, Q24h  

(%) 

Steady-

state Flux, 

JSS 

(µg/cm2/h) 

Lag 

Time 

(h) 

Circle Arrays       

P1 (Control) n = 3 10679 ± 206 579 ± 396 5.5 ± 3.8 N/A N/A 

P1 MN  n = 3 10773 ± 285 1133 ± 259 10.5 ± 2.5 206 ± 49  0.5 ± 0.7 

P1 MN + 100 

µA/cm2 
n = 3 10887 ± 128 1362 ± 311 12.5 ± 2.9 267 ± 63 1.0 ± 0.1 

P1 MN + 300 

µA/cm2 
n = 3 10913 ± 159 1132 ± 193 10.4 ± 1.7 208 ± 43 0.6 ± 0.1 

P1 MN + 500 

µA/cm2 
n = 3 11062 ± 110 2262 ± 437 20.5 ± 4.0 433 ± 74 0.9 ± 0.1 

P2 (Control) n = 3 5380 ± 162 223 ± 237 4.2 ± 4.5 N/A N/A 

P2 MN  n = 3 5361 ± 87 953 ± 233 17.8 ± 4.1 184 ± 42 0.9 ± 0.2 

P2 MN + 500 

µA/cm2 
n = 3 5369 ± 121 1437 ± 163 26.8 ± 2.9 266 ± 23 0.6 ± 0.3 

P3 (Control) n = 3 5416 ± 135 243 ± 124 4.5 ± 2.4 N/A N/A 

P3 MN  n = 3 5367 ± 131 1050 ± 332 21.4 ± 6.2 226 ± 62 1.0 ± 0.2 

p3 MN + 500 

µA/cm2 
n = 3 5437 ± 89 2888 ± 350 53.2 ± 7.3 490 ± 17 0.0 ± 0.7 

Square Arrays       

P1 (Control) n = 3 17048 ± 346 64 ± 62 0.4 ± 0.4 N/A N/A 

P1 MN  n = 3 17040 ± 458 258 ± 89 1.5 ± 0.5 49 ± 28  0.3 ± 1.3 

p1 MN + 500 

µA/cm2 
n = 3 17131 ± 173 1102 ± 668 6.5 ± 4.0 186 ± 110 0.1 ± 0.1 
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3.5    Transdermal Microneedle Devices for Drug Delivery of Sumatriptan Succinate 

With and Without Iontophoresis   

The rate of sumatriptan succinate drug delivery to patients from the proposed microneedle 

device and iontophoretic microneedle device were determined using a one-compartment 

pharmacokinetic model. The one-compartment model was evaluated using microneedle in 

vitro flux data and clinical trial data for sumatriptan succinate 6-mg subcutaneous injection 

(Imitrex®) reported in the literature [73]. The following clinical study parameters and 

assumptions were used to develop the one-compartment model,  

• Drug administered at a constant zero-order infusion rate, R 

• Drug eliminated by first-order process 

• Mean plasma concentration, Cmax = 72 ng/ml 

• Volume of distribution, VD = 170 L 

• Drug elimination half-life, t1/2 = 2 h 

 

The mass balance for slow, constant infusion (zero-order rate) of drug substance 

and elimination (first-order rate) is given by Equation 3.1, with drug in the body, DB; 

infusion rate, R; and elimination rate, kEL.  

 

 B
EL B

dD
R k D

dt
= −   (3.1) 

The concentration of drug in the body is written in terms of the plasma drug 

concentration, CB, and volume of distribution, VD; (i.e., B B DD C V= ) 
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 B
B EL B D

dC
V R k C V

dt
= −   (3.2) 

Applying the steady-state approximation, Equation 3.2 is reduced to  

 
*

EL D BR k V C=   (3.3) 

Where 
*

BC  represents the steady-state drug plasma concentration (i.e., Cmax). The 

elimination rate can be was determined from its relationship to the drug half-life per 

Equation 3.4 

 1/2

0.693

EL

t
k

=   (3.4) 

Applying sumatriptan clinical data for the volume of distribution (VD = 170 L) and 

half-life (2 h) reveals the microneedle device must delivery an infusion rate of 4.24 mg/h 

to maintain the target plasma levels (Cmax = 72 ng/ml). 

3.5.1  Sumatriptan Dissolving Microneedle Device Design 

The in vitro results for P1 formulated dissolving microneedles (Section 3.3) demonstrated 

a mean steady-state flux of 395 μg/cm2 over a 7 h period and lag time of approximately 39 

minutes. Hypothetically, a dissolving microarray patch with area of 10.7 cm2 and 118.8 mg 

sumatriptan could provide therapeutic relief (i.e., 72 ng/ml) from migraines over a 7 hour 

period. This is a significant improvement when compared to previous studies for 

development of a sumatriptan transdermal patch. A traditional sumatriptan patch 

formulated with methyl cellulose polymer and Azone® enhancer would require a 15 hour 

lag time and 293 cm2 patch area [24]. 
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It is suggested that a smaller sumatriptan microarray patch is designed by reducing 

the PVP content in the system which was shown to increase the in vitro steady-state drug 

flux. The patch should be modified to include an adhesive backing layer over the system 

for adhering the patch to the skin. A separate applicator device will be used by the patient 

to insert the microarray device into the patients skin. Once inserted into the skin, the patch 

would require a thirty minute application period for the microneedles to dissolve into the 

skin.   

3.5.2  Sumatriptan Dissolving Microneedle Iontophoretic Device Design 

The in vitro results for P3 formulated microneedles, combined with iontophoresis,  showed 

a steady-state drug flux of 490 μg/cm2 over four hours with no lag time. Theoretically, an 

iontophoretic microneedle device with surface area 8.7 cm2, electrical current of 500 

μA/cm2 and 47.3 mg sumatriptan would provide a therapeutic plasma concentration over a 

4-hour period. This iontophoretic microneedle patch would be more efficient and require 

1/3 of the API when compared to the P1 formulated microneedle patch (Section 3.5.1).  

An iontophoretic microneedle device would require a cathode patch, anode patch 

over the microneedle, and power source. A low voltage positive (+) current would be 

applied to the anode patch affixed above the dissolving microneedle. The current would 

travel through the microneedle, into the skin to the cathode patch situated in adjacent 

position on the skin. The power source would be programmed to apply current over the 4 

hour application period. The power source system including the anode and cathode patches 

could be designed as either a single-use or multiple use system. For a multiple-use system, 

a new microneedle system would be applied to patch prior to each use.  
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CHAPTER 4 

MATHEMATICAL MODELLING FOR THE IN VITRO RELEASE OF 

SUMATRIPTAN SUCCINATE FROM DISSOLVING MICRONEEDLE 

SYSTEMS 

4.1    Development of Mathematical Model for the In vitro Dissolution and Release of 

Sumatriptan From Dissolving Microneedle Arrays 

A mathematical model was derived to simulate the in vitro dissolution and release of drug 

from dissolving, pyramid-shaped polyvinylpyrrolidone-based microneedle systems, as 

previously described [49]. Simulation studies will aid in the evaluation and prediction of 

critical microarray design properties (e.g., drug loading, needle height and needle pitch-

width) on transdermal drug delivery through the skin. The developed framework was 

validated using in vitro data from polyvinylpyrrolidone-based dissolving microneedles 

containing encapsulated sumatriptan succinate API described in Section 3.3.  

Previous modeling research on microneedle systems has focused primarily on the 

optimization of drug delivery from solid and hollow microneedle devices. In 2004, Davis 

et al. developed a model for predicting the insertion and fracture forces of hollow 

microneedle systems from specific geometric parameters (e.g, needle tip radius, wall 

thickness, and wall angle) [43]. Later, Al-Qallaf et al. (2008) successfully developed a 

mathematical framework for predicting the optimum design parameters (e.g., number of 

needles, needle radius, pitch-width, etc) for the transdermal delivery of macromolecules 

from solid and hollow microneedle systems [44]. These studies were followed by the 

derivation of several diffusion models for solid [74] and hollow microarray devices [75, 

76]. However, these governing equations do not include dissolution of the microneedle 

and, therefore, cannot be used to assess the performance of soluble microneedle patches.  
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A mathematical framework was developed by Kim et al. (2015) to describe the 

dissolution and release of an encapsulated active ingredient from a single cone-shaped 

microarray into a control volume. A set of equations were derived from the Nernst-Brunner 

equation for the dissolution of the microneedle and drug concentration profiles in the skin. 

The model was applied to simulate the release of fentanyl citrate from a single dissolving 

sucrose microneedle. It was possible to determine the effects of the fentanyl mass fraction 

and pitch width on transdermal delivery [77]. This research builds on this previous 

contribution by deriving a set of governing equations for the delivery of the API from a 

dissolving, pyramid-shaped microneedle into a control volume. In-silico modeling studies 

will help to evaluate and predict the influence of critical design parameters (drug load, 

polymer concentration, pitch width and needle height) on the release profile.    

The mechanistic model described in this study is developed to capture the 

dissolution process immediately after insertion of the array into skin. In this study, the 

micron-sized needles are assumed to penetrate the epidermis but not the blood capillaries 

and nerves in the dermis. The microneedle system is comprised of a biocompatible, water-

soluble polymer matrix encapsulating water-soluble drug molecules. Once inside the skin, 

the microarray is ‘wetted’ by the interstitial fluid, which allows the needles to quickly 

dissolve to release the drug. The dissolved drug accumulate in the epidermis,  diffuses 

through the dermal layers and are absorbed into the systemic circulation.  

The model was constructed by considering a rectangular control-volume 

encompassing a single pyramid-shaped needle (Figure 4.1). This control-volume 

represented the skin layer and was designed with a height equal to the skin depth, δS; length 

on each side equal to the pitch-width, pw; and rectangular volume, v. The pyramid-shaped 
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needle was fully submerged into the skin (i.e., rectangular control-volume) with initial 

volume, vc,0; side length, L; and height, h. The mathematical model considered a number 

of assumptions, including: 

• One-dimensional drug transport in the negative z-direction. 

• Drug metabolism in the skin is not considered. 

• Drug binding to viable skin tissues is not considered.  

• Mass transport through sides of control-volume is not considered. 

• Impact of needle properties on insertion into skin was not considered.  

• Decrease in needle volume directly correlates to increase in available skin layer 

volume. 

• Microneedles and skin layer tissues are isotropic and dissolution occurs evenly 

over surfaces of needle. 

• The API concentration in the skin is uniform (i.e, rate of diffusion is rapid 

compared to rate of dissolution). 
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Figure 4.1  Drug release from dissolving pyramid-shaped microneedle with base-plate. 

For the purpose of the model, the drug particles are transported in the negative z-

direction towards the base of the rectangular volume (i.e., systemic circulation). The 

influence of various needles properties (i.e., needle height, pitch-width, base length) on 

microneedles ability to penetrate the stratum corneum and fully insert into the skin were 

not considered in this study. The model assumes individual needles fully insert into the 

skin for transdermal delivery of drug. In vitro experiments with blue dye (nitrazine yellow) 

demonstrated that circular microneedle arrays (N = 600) containing pyramid-shaped 

needles (h = 0.05cm, l = 0.03cm) properly insert into the skin (Section 3.2) [42].  
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The dimension of the control-volume was assumed to remain constant throughout 

the dissolution process. The needle volume, vc, slowly decreases as it dissolves causing a 

similar increase in the volume of the skin layer, v. The microneedles and skin layer tissues 

are considered to be isotropic with the dissolution occurring evenly over the pyramid 

needle surfaces. This assumption is valid if the drug substance and polymer concentration 

are distributed homogenously throughout the pyramid needle. This leads to a constant half 

angle at the apex of the pyramid throughout the dissolution of the microneedle. The half 

angle is defined as the ratio of the pyramid needle height to the pyramid base length and is 

defined by Equation 4.1 and depicted in Figure 4.2b.  

 
0

0

( )
tan

2 ( ) 2

LL t

h t h
 = =   (4.1) 

 

Figure 4.2  Schematic of pyramid-shaped needle; (A) cross-section view; (B) half angle 

view.  

The concentration of active drug in the skin layer tissue was assumed to be uniform 

throughout the compartment. This is a realistic assumption because diffusion was faster 



78 

than the dissolution of the pyramid needles or the elimination of drug into systemic 

circulation.  

The mathematical model for describing the dissolution of the microneedle is 

presented with the full derivations in Sections 4.1.1 and 4.1.2. The definition of the model 

parameters are provided in Table 4.1. The material balance for drug mass in the skin layer 

results in  
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The height of the pyramid is defined as  

 
( ) 1

( )
sin

D
S

kdh t
c c t

dt



  
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  (4.3) 

The initial conditions are 

 ( 0) 0c t = =   (4.4) 

and 

 0( 0)h t h= =   (4.5) 

The cumulative amount of drug released is  

 ,0 0 ,0( ) ( (t) + c(t)(  +  - (t)))C C C CQ t     = −   (4.6) 

Additional equations were derived to describe the long-term release of drug from 

dissolving microneedles containing a rectangular base-plate. The in vitro tests used to 
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validate the mathematical model were generated from dissolving microneedles containing 

a base-plate with uniform homogenous encapsulated PVP polymer and sumatriptan 

succinate drug. The base-plate equations were simplified with the following assumptions: 

 

• The microneedle base-plate dissolves after the pyramid-shaped needles. 

• The ratio of parallelepiped sides remain constant during the dissolution. 

 

The following equations were derived to describe the dissolution of the base-plate 

following microneedle dissolution. The derivation of the equations is contained in Section 

4.1.3 and the equation parameters are listed in Table 4.1. The drug concentration in the 

solid baseplate, cSD, is described by  

 

2
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 ,0(0)SD SDc c=   (4.8) 

The drug concentration in the skin layer, c(t), after base-plate begins to dissolve, is 

given by  

 

2
2 3

0

2

0

   
   - D s s w SD

L

s w

k A c d p cdc
k c

dt d p M

  
= − 

 
  (4.9) 

 (0) Lc c=   (4.10) 
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The cumulative amount of drug released is  

 
2

,0 0( ) ( +m ) - ( (t) + c(t)) C s w SDQ t d p c=   (4.11) 

Immediately after the microneedle dissolves, the solid base-plate concentration, cSD, and 

skin layer concentration, c, are zero and c(tD), respectively. The cumulative percent drug 

released, M(t), is obtained by dividing Q(t) by ,0 0+mC .    
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4.1.1   Derivation of Dissolution Governing Equation for Microneedle Height 

The derivation of the governing equation for the height of the microneedle begins with 

defining the mass of an individual pyramid-shaped microneedle, with density, ρ; pyramid 

base length, L; needle height, h; half angle, θ; and volume, vc.  

 ( ) ( )21
( )

3
cv t L t h t 

 
=  

 
  (4.13) 

Substitute Equation 4.1 to define mass of microneedle in terms of microneedle 

height yields  

   (4.14) 

Taking the first derivative with respect to time results in  

 ( )2 24 tancdv dh
h t

dt dt
=   (4.15) 

A cross-section of a pyramid needle is depicted by Figure 4.2a with height from z 

to z + Δz and side width, s. At zero time, the circumference of the pyramid needle is 4s 

with each side having width 

 
( )L l h

s
h

−
=   (4.16) 

 At time t + Δt, the outer layer pyramid dissolves by a thickness of Δɗ pictured in 

Figure 4.1b and is used to defined the reduction of the pyramid base width, ΔW.  

( ) ( )3 24
tan

3
cv t h t  

 
=  

 
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cos

N
W




 =   (4.17) 

Thus, at time t + Δt the change in volume of the pyramid needle, due to dissolution, 

is  

 
0

(4 )

h

cv s Wdz = −    (4.18) 

Equation 4.18 is simplified with Equations 4.16 and 4.17 to yield 

 
0

( )
4

cos

h

c

L h z N
v dz

h 

−   
 = −   

  
   (4.19) 

Division of both sides of Equation 4.19 by Δt, taking the limit as Δt → 0, and 

integrating produces 

 2 seccdv dN
hL

dt dt
= −   (4.20) 

In Equation 4.20, the last term is determined from the Nerst and Brunner equation 

[78]; with dissolution constant, kD, solubility of PVP in the body fluid, cS, and the mass 

fraction of drug in the microneedle, β. 

 
1D

S

kdn
c c

dt



 

  −
= −  

  

  (4.21) 

The Equation 4.20 and Equation 4.21 resulted in  

 
1

2 secc D
S

dv k
hL c c

dt




 

   −
= − −   

    
  (4.22) 



84 

Finally, the right-hand side of Equations 4.15 and 4.22 yields the governing equation 

for the height of the pyramid needle over time and initial condition:  

 
1

sin

D
S

kdh
c c

dt



  

  −
= − −  

  

  (4.23) 

 0(0)h h=   (4.24) 

4.1.2   Derivation of Dissolution Governing Equation for Skin Layer Drug 

Concentration 

It is necessary to first determine the volume of the compartment (i.e., skin layer), v(t), at 

time t. The skin layer volume consists of the initial volume of the skin layer, v0, and the 

volume gained as the microneedle dissolves in the tissue, vc,0 - vc (t). Here, vc,0 represents 

the initial microneedle volume at zero time and vc(t) is the microneedle volume at time t. 

Thus, the skin layer volume is  

 ( )0 ,0( ) ( )c cv t v v v t= + −   (4.25) 

A mass balance on the skin layer control volume demonstrates the accumulation of 

drug substance in the skin layer, 
( )d vc

dt
, is the difference between the drug released from 

the dissolving microneedle, ( ) 2( )
sL s z d wk d c p=− , and the drug exiting the skin layer into 

the bloodstream, 
cdv

dt


 
− 
 

.   

 ( ) 2( )
( )

s

c
L s z d w

dvd vc
k d c p

dt dt
=

 
= − + − 

 
  (4.26) 
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The equations are simplified by applying the following chain rule (Equation 4.27)  

 ( )d vc dc dv
v c

dt dt dt
= +   (4.27) 

After combining Equations 4.27 and 4.26, the following equation is obtained: 

 
2( ) ( ) c

L s w

dvdc
v k c d p c

dt dt


 
= − + − − 

 
  (4.28) 

Finally, both sides of Equation 4.28 are divided by v to give   

 ( ) 2

0 ,0

tan 1
4

cos

D
L S

c c

kdc c
k c h c c

dt

  

     

      − −
= − + −     

+ −      
  (4.29) 

The initial condition is 

 (0) 0c =   (4.30) 

4.1.3   Derivation of the Dissolution Equation for Drug Release From the 

Microneedle Base-plate  

The derivation of the governing equation for the base-plate of the microneedle begins with 

defining the mass of the parallelepiped (Figure 4.1); with mass of drug remaining in 

parallelepiped, M; mass transfer coefficient, kD; parallelepiped ‘wet’ surface area, A; 

solubility of matrix polymer in solvent, CS; and concentration of drug in liquid phase, c.    

 ( )S aq

dM
k A C C

dt
= − −   (4.31) 

The Equation 4.31 was simplified by assuming Caq << CS for most in vitro 

situations to give  
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S

dM
k AC

dt
= −   (4.32) 

 Since the density remains constant during dissolution, it can be shown that: 

 

2

3

0

0

M
A A

M

 
=  

 
  (4.33) 

Equation 4.32 is simplified to yield 

 

2

3

0

0

S

dM M
k A C

dt M


 
= −  

 
  (4.34) 

with the initial condition 

 0(0)M M=   (4.35) 

As a results, we have the following system: 

 

2
2 3

0

2

0

   
   -SD D s s w SD

s w

dc k A c d p c

dt d p M

  
=  

 
  (4.36) 

 ,0(0)SD SDc c=   (4.37) 

 

2
2 3

0

2

0

   
   - D s s w SD

L

s w

k A c d p cdc
k c

dt d p M

  
= − 

 
  (4.38) 

 (0) Lc c=   (4.39) 
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4.2    In vitro Release Studies for Validation of Sumatriptan Microneedle Dissolution 

Mathematical Model 

The dissolution mathematical model (Section 4.1) was analyzed using in vitro data from 

pyramid-shaped dissolving sumatriptan microneedles to estimate dissolution and 

elimination rate constants. The predicted drug release profile was validated against in vitro  

data for three separate sumatriptan microneedle formulations. Simulation experiments to 

evaluate key design parameters (drug load, polymer concentration, needle height and pitch 

width) for release of sumatriptan succinate from dissolving pyramid-shaped microneedles 

[49].  

4.2.1  Comparison of Simulated and Experimental In vitro Minipig Results 

The dissolution model for predicting drug release from dissolving pyramid-shaped 

microneedles was evaluated against in vitro data from dissolving microneedles containing 

the base-plate and formulated to release the sumatriptan succinate. Equation 4.12 was used 

to predict the drug release profiles of three different sumatriptan formulations (P1, P2, and 

P3) with different drug loading and polymer concentration (Table 2.1). The microneedle 

dimensions and formulation parameters were determined by experiments in the lab 

(Section 3.2) and are summarized in Table 3.1. Regression techniques, implemented in 

Mathematica®, were applied to the in vitro data for all formulations to derive estimates for 

the dissolution rate constants, kD, and elimination rate constants, kL. The standard weighted 

squared error between simulated values from Equation 4.12 and in vitro results was 

minimized with respect to kL and kD (Table 4.2). The predicted kD and kL values were used 

to generate theoretical release profile which compared well with the experimental results, 

see Figures 4.3 – 4.5.   
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Table 4.2  Estimated Sumatriptan Microneedle Formulation Parameters for Dissolution 

Model 

Formulation  
tD1

* 

(h) 

kD
* 

(cm/h) 

kL
* 

(h-1) 

Circle Arrays     

P1  1.28 ± 0.6 0.0143 ± 0.0074 0.0516 ± 0.0030 

P2  0.51 ± 0.6 0.0388 ± 0.055 0.0569 ± 0.0052 

P3  0.23 ± 0.2 0.0912 ± 0.088 0.0621 ± 0.0016 

*value ± confidence interval 

 

 

Figure 4.3  Plots comparing minipig in vitro cumulative percent release of P1 

microneedles (solid dots) to predicted profiles (solid lines).  
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Figure 4.4  Plots comparing minipig in vitro cumulative percent release of P2 

microneedles (solid dots) to predicted profiles (solid lines). 

 

 

Figure 4.5  Plots comparing minipig in vitro cumulative percent release of P3 

microneedles (solid dots) to predicted profiles (solid lines). 
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Figure 4.6  In vitro percent release sumatriptan succinate from dissolving microneedle 

after 6 hours from formulation P1 (●), P2 (■) and P3(♦); average values (n = 3). 

Estimated dissolution times for microneedles from each formulation were 

generated using the model and predicted kD and kL values (Table 4.2). The dissolution time 

for the P1 formulation (13.8 min) was similar to dissolution times calculated observed 

experimentally in the lab (< 15 minutes). Tomographic imaging studies conducted in the 

lab showed P1 formulated dissolving microarrays with circle geometry dissolving in 

approximately 10 minutes (Section 3.2). Similar experimental results related to dissolution 

of PVP-based  microneedles in porcine skin were reported by both Sullivan and Quin [79, 

80]. The P1 and P2 formulations, on the other hand, demonstrated significantly higher 

dissolution times of 30.6 and 76.8 minutes, respectively. However, it should be noted that 

the confidence intervals were very high for all three formulations.  

The estimated dissolution rate constant values correlated to experimental results 

with a similar trend of kD [P1] < kD [P2] < kD [P3] as shown in Figure 4.6, where kD [Pi] 

represents the Pi formulation value. A higher initial release is realized as the process is 
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governed by dissolution at early times. This behavior is predicted by Equation 4.9 for the 

accumulation of drug in the skin layer which indicates slow first-order clearance into the 

blood stream (first term on right-hand side) as compared to dissolution term (second term 

on right-hand side).  

The relationships between the P1 – P3 microneedle formulation parameters 

(polymer conc., drug load and density) with the dissolution and elimination rates are not 

completely understood and require subsequent investigations. No trends were observed 

when comparing the drug load, β, to the kD results. The density of the microneedle 

formulations increased in a similar manner to the kD values: ρ [P1] < ρ  [P2] < ρ  [P3]. 

Further investigation is required to determine if drug release from microneedles can be 

altered by the density. A 10 % increase in PVP polymer matrix concentration from P3 to 

P2 related to a 42.5 % reduction in the kD value. A similar increase in drug release with 

decreased polyvinylpyrrolidone concentration in dissolving microneedles was observed by 

Shah et al. [81]. On the other hand, the elimination rates remained constant with all three 

formulations, kL [P1] < kL  [P2] < kL  [P3].  

4.2.2  Simulation Studies 

Simulation studies were conducted to determine optimal design parameter values for the 

sumatriptan succinate dissolving microneedle systems. The impact of changing the 

microneedle height, microneedle pitch-width or loading dose on drug delivery, was 

evaluated. The simulations were performed using the P1 microneedle formulation 

parameters. 

The response to varying the initial microneedle height, h0, was assessed by plotting 

skin layer concentration, c(t), as a function of time for three h0 values (Figure 4.7). The 
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initial height of the pyramid needles had a major effect on drug release as indicated by cmax 

values. For example, a 20% increase in height from 0.05 cm to 0.06 resulted in 69% 

increase in cmax values from 0.036 μg/ml to 0.061 μg/ml. 

The influence of pitch width, pw,  on drug delivery was evaluated by plotting skin 

layer concentration, c(t), as a function of height for three pw values (Figure 4.8). The pitch 

width had a significant impact on skin layer concentration as a negligible increase in pitch 

width related to a considerable reduction in drug concentration. For example, a 50% 

increase in pitch width from 0.035 cm to 0.0525 cm resulted in a 44% decrease in drug 

concentration from 0.017 μg/ml to 0.0075 μg/ml. 

The effect of drug loading, β,  was measured by plotting skin layer concentration, 

c(t), as a function of height for three β values (Figure 4.9). The sumatriptan concentration 

in the microneedles had a direct relationship with the drug layer concentration. Incremental 

variations in microneedle sumatriptan concentration led to proportional changes in drug 

layer concentration. For example, decreasing the sumatriptan content in microneedle three-

fold from  β = 0.3 to β = 0.1 produced a three-fold decrease in skin concentration from  

0.017 μg/ml to 0.051 μg/ml. 
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Figure 4.7  Modelling effect of needle height on sumatriptan succinate release using P1 

formulation parameters; needle height, h [h = 0.06cm (̶  •), h = 0.1 (—), h = 0.1(--)]. 

 

Figure 4.8  Modelling effects of pitch width on sumatriptan succinate release using P1 

formulation parameters; pitch width, pw, of microneedle [pw = 0.035cm (--),  

pw  = 0.0525cm (—), pw = 0.07cm ( ̶  •)]. 
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Figure 4.9  Modelling effects of drug loading on sumatriptan succinate release using P1 

formulation parameters; mass fraction (β) sumatriptan succinate in microneedle  

[β = 0.1% ( ̶  •), β = 0.2% (—), β = 0.3% (--)]. 

 

4.3    Development of Mathematical Model for In vitro Dissolution, Diffusion and 

Release of Drug Substance From Dissolving Microneedle Array 

In this section, a mathematical model, which includes the dissolution and diffusion, is 

introduced to predict drug release from a dissolving pyramid-shaped microneedle. The 

previous model, developed in Section 4.1 and described in [49], estimated the percentage 

of drug released from dissolving microneedles using equations for microneedle height 

(Equation 4.3) and skin layer concentration (Equation 4.2). Note that the simplified model 

assumed a constant homogenous drug concentration in the skin layer. In this study, a new 

model is developed by applying Fick’s second law of diffusion and a material balance on 

the drug in the skin. This approach will be used to predict the drug concentration profile 

within the epidermis over time during and after dissolution of the microneedle.  
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The dissolution and diffusion equations were developed using a method similar to 

the homogenous model described in Section 4.1. The microneedle depicted in Figure 4.1 

is used again to derive the equations. In this case, the assumptions made in generating the 

model are listed below:  

• One-dimensional drug transport in the negative z-direction. 

• Drug metabolism in the skin is not considered. 

• Drug binding to viable skin tissues is not considered.  

• Mass transport through sides of control-volume not considered. 

• Impact of needle properties on insertion into skin was not considered.  

• Decrease in needle volume directly correlates to increase in available skin layer 

volume. 

• Microneedles and skin layer tissues are isotropic and dissolution occurs evenly 

over surfaces of needle. 

A dissolution and diffusion model is described by the set of equations listed below 

and includes the governing equation for change in microneedle height and the change in 

skin layer drug concentration. A complete derivation of the governing equations for 

microneedle height and skin layer concentration are included in Sections 4.1.1 and 4.1.2, 

respectively. All parameter definitions are presented Table 4.1. 

The material balance for drug mass in the skin layer is, 
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  (4.40) 

 The height of the pyramid is defined as  
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( )

sin

D Sk cdh t

dt  
= −   (4.41) 

 

The initial conditions are  

 ( ) 00h h=   (4.42) 

and 

 ( ),0 0c x =   (4.43) 

It is assumed that the concentration at the boundary plane between the pyramid base 

and the baseplate remains unchanged while the microneedle dissolves, 

 
( )
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,

z

c z t

z
=




  (4.44) 

The drug concentration at the base of the control-volume (ie. blood stream) 

maintains sink conditions: 

 ( ), 0sc d t =   (4.45) 

Thus, diffusive flux, J(t),  through the base of the control-volume (i.e., blood 

stream)  is defined as  

 ( )
( )2

,

s

w

z d

J t p
c z t

D
z

=

= −



  (4.46) 
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The cumulative amount of drug released ( )Q t  is then determined from the 

diffusive flux, (J(t),  

 ( ) ( )
0

t

Q t J d =    (4.47) 

The cumulative percent drug released, M(t), is obtained by dividing Q(t) by 

,0 0+mC .  

 ( )
( )

( )
0

,0 0

t

c

J d
M t

m

 


=

+


  (4.48) 

In a second step, the dissolution and diffusion model equations were revised to 

describe the long-term release of drug from dissolving microneedles containing a 

rectangular base-plate. In vitro tests used to validate the model equations for release and 

diffusion of dissolving microneedles containing a rectangular base-plate with uniform 

homogenous encapsulated PVP polymer and sumatriptan succinate drug. The base-plate 

equations were developed with similar assumptions to the previous base-plate equations 

for the dissolution model (Equations 4.7 to 4.10): 

• The microneedle base-plate dissolves after the pyramid-shaped microneedles. 

• The ratios of parallelepiped sides remain constant during the dissolution. 

 

In modeling the drug release from the microneedle and base-plate, the previous 

governing equations (Equations 4.40 - 4.45) are combined with the a new pyramid base 

boundary condition (Equation 4.49). Several conditions are applied to Equation 4.49 with  
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4.4    In vitro Release Studies for Validation of Sumatriptan Microneedle Dissolution 

and Diffusion Mathematical Model 

Simulations, using the dissolution and diffusion mathematical model (Section 4.3) will be 

run to evaluate the effects of key design parameters (drug load, polymer concentration, 

needle height and pitch width) on the release of sumatriptan succinate from microneedles. 

Later, the model will be validated with in vitro data from pyramid-shaped sumatriptan 

microneedle devices containing a rectangular base-plate.  

4.4.1  Simulation Experiments 

The P1 formulated circle microneedle arrays were used as a base-case with dimensions and 

formulation parameters determined by laboratory experiments (Section 3.2) and 

summarized in Table 3.1. The dissolution rate (kD = 0.0143 cm/h) for P1 formulation, 

determined through regression techniques in Section 4.2, was applied. The diffusion 

coefficient for sumatriptan succinate across Göttingen minipig skin (D) was approximated 
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from the steady-state diffusion equation and the lag-time method [82]. A value of D = 7.90 

x 10-5 cm2/h was determined.   

Contour plots are shown in Figures 4.10 – 4.13 and demonstrate the influence of 

drug load, pitch width and needle height on the drug concentration within the epidermis 

after 4 hours. Changes in the load and pitch-width had a significant impact on drug 

diffusion. Reducing the drug load 20%, from β = 21.42% to β = 17.14%, led to a 50% 

decrease in sumatriptan concentration at base of skin compartment (Figure 4.11). 

Decreasing pitch-width  20% , from pw = 0.035 cm to pw = 0.028 cm, led to a 100% increase 

in drug content at the base of the control-volume (Figure 4.12). On the other hand, changes 

in the microneedle height had a less pronounced effect with a 20% decrease in height, h, 

from h = 0.05 cm to h = 0.04 cm, leading to a very negligible decrease in drug diffusion.  
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Figure 4.10  Contour plot of sumatriptan drug release from P1 microneedle after 4 hours 

[h = 0.05 cm, β = 21.42%, pw = 0.035 cm]. 
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Figure 4.11  Contour plot of sumatriptan drug release from P1 microneedle after 4 hours 

with reduced mass fraction API [h = 0.05 cm, β = 17.14%, pw = 0.035 cm].  
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Figure 4.12  Contour plot of sumatriptan drug release from P1 microneedle after 4 hours 

with reduced pitch width [h = 0.05 cm, β = 21.42%, pw = 0.028 cm]. 
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Figure 4.13  Contour plot of sumatriptan drug release from P1 microneedle after 4 hours 

with reduced microneedle height [h = 0.04 cm, β = 21.42%, pw = 0.035 cm]. 

 

4.4.2  Comparison of Simulated and Experimental In vitro Minipig Results 

A comparison was conducted to evaluate the dissolution and diffusion model estimated 

drug release profiles versus the in vitro data for the dissolving microarrays containing 

encapsulated sumatriptan in microneedles and a base-plate. Equations 4.48 and 4.49 were 

used to predict the drug release profiles of three different sumatriptan formulations (P1, 

P2, and P3) with different drug loading and polymer concentration (Table 2.1). Both the 
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microneedle dimensions and formulation properties were previously determined in lab 

experiments (Section 3.2) and are summarized in Table 3.1. In vitro data was augmented 

to include data from pull-points at 1, 2, 4, 6, 8, 24, 28 and 32 hours. Mathematica® software 

was used to apply regression techniques to the in vitro data for prediction of dissolution 

rate constant, kD; and diffusion coefficient, D. The standard weighted squared error 

between simulated values from Equation 4.48 and in vitro results was minimized with 

respect to kD and D (Table 4.3). The predicted kD and D values were used to generate 

theoretical release profiles which compared extremely well with the experimental results 

(Figures 4.14 – 4.16). Additionally, contour plots showing the diffusion gradient in the skin 

layers after 4 hours are shown for each formulation (Figures 4.17 – 4.19).  

The estimated diffusion coefficients for all three formulations showed the following 

trend, D [P1] ≈ D [P3] > D [P1] (Table 4.3), where D [Pi] represents the Pi formulation 

value. The 12 – 14% increase in D values for P1 and P2 indicates a possible inverse 

relationship between the diffusion coefficient and formulation drug content. On the other 

hand, dissolution rate constants for each of the formulations increased in the order of kD 

[P2] < kD [P1] <<< kD [P3]. As expected, a similar trend was observed in relation to both 

the microneedle dissolution times and the base-plate dissolution times. The P3 formulated 

microneedles exhibited very rapid pyramid dissolution time (1.6 min) and base-plate 

dissolution (0.2 min) compared to P1 and P2 microneedles (> 37 min). This demonstrates 

that polymer content has a significant impact on dissolution with a 10% (w/w) reduction 

in PVP concentration between preparations P1 and P2 versus P3 yielding over 26,000% 

increase in kD. The drug loading had a much less significant role with 10% (w/w) increase 

in sumatriptan between P2 and P1 only generating 38% increase in dissolution rate.  
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Table 4.3  Estimated Sumatriptan Microneedle Formulation Parameters for Dissolution 

and Diffusion Model 

Formulation 
tD1

* 

(h) 

tD2
* 

(h) 

kD
* 

(cm/h) 

D* 

(10-4 cm2/h) 

Circle Arrays     

P1 0.625 ± 0.28 1.65 ± 0.024 0.0264 ± 0.012 1.57 ± 1.3 

P2 0.904 ± 0.19 2.00 ± 0.0045 0.0192 ± 0.0040 1.75 ± 0.81 

P3 0.0265 ± 0.22 0.0034 ± NA 7.01 ± NA 1.79 ± 0.88 

 

*Microneedle dissolution time, tD1; base-plate dissolution time, tD2; dissolution rate 

constant, kD; diffusion coefficient, D; value ± confidence interval (NA refers to standard 

deviation greater than 3 times the mean.  

 

 

Figure 4.14  Plots comparing minipig in vitro cumulative percent release of P1 

microneedles (solid dots) to predicted profiles (solid lines).  
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Figure 4.15  Plots comparing minipig in vitro cumulative percent release of P2 

microneedles (solid dots) to predicted profiles (solid lines).  

 

 

Figure 4.16  Plots comparing minipig in vitro cumulative percent release of P3 

microneedles (solid dots) to predicted profiles (solid lines).  
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Figure 4.17  Contour plot of sumatriptan drug release from P1 microneedle after 4 hours. 
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Figure 4.18  Contour plot of sumatriptan drug release from P2 microneedle after 4 hours. 
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Figure 4.19  Contour plot of sumatriptan drug release from P3 microneedle after 4 hours. 

 

4.5    Development of Mathematical Model for In vitro Dissolution, Diffusion, and 

Release of Sumatriptan From Dissolving Microneedle Array Aided by Iontophoresis 

Here, a mathematical framework, incorporating dissolution, diffusion and electro-

migration, is presented to estimate drug release from dissolving pyramid-shaped 

microarrays under a low-density electric current. For this study, a new electrophoretic 

transport model is derived by applying Ohm’s law of electro-migration, Fick’s second law 

of diffusion, and a mass balance on the drug in the skin. This method will allow for 
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researchers to predict how drug is transported during and after microneedle treatment 

combined with iontophoresis.   

The equations for dissolution, diffusion and electrophoretic transport of ionic drug 

molecules were developed using the control-volume depicted in Figure 4.1. The model is 

based on the following assumptions, listed below:  

• One-dimensional drug transport in the negative z-direction. 

• Drug metabolism in the skin is not considered. 

• Drug binding to viable skin tissues is not considered.  

• Mass transport through sides of control-volume not considered. 

• Impact of needle properties on insertion into skin was not considered.  

• Decrease in needle volume directly correlates to increase in available skin layer 

volume. 

• Microneedles and skin layer tissues are isotropic and dissolution occurs evenly 

over surfaces of needle. 

• Electrical current is applied through an anode electrode placed above the 

microneedle array after insertion into the skin (Figure 1.3).  

 

The developed equations are listed below and includes changes in the microneedle 

height and in the skin layer drug concentration. The detailed derivation provided in 

Sections 4.1.1 and 4.5.1. All of the equation parameters are listed in Table 4.1.  

The material balance for drug mass in the skin layer is given by Equation 4.50; 

where γ is a dimensionless electromigration/convection parameter which represents the 

influence of the current applied to the microneedle and skin.  
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 The height of the pyramid is defined as 

 
( )

sin

d Sk cdh t

dt  
= −   (4.51) 

The initial conditions are  

 ( ) 00h h=   (4.52) 

and 

 ( ),0 0c x =   (4.53) 

The drug concentration at the base of the control-volume (ie. blood stream): 

 ( ), 0sc d t =   (4.54) 

Therefore, diffusive flux, J(t),  through the base of the control-volume (i.e., blood 

stream)  is defined as  

 ( )
( )2

,

s

w

z d

J t p
c z t

D
z

=

= −



  (4.55) 

The cumulative amount of drug released ( )Q t  is then determined from the 

diffusive flux, (J(t),  

 ( ) ( )
0

t

Q t J d =    (4.56) 
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The cumulative percent drug released, M(t), is obtained by dividing Q(t) by 

,0 0+mC .  

 ( )
( )

( )
0

,0 0

t

c

J d
M t

m

 


=

+


  (4.57) 

4.5.1   Derivation of Electrophoretic Transport Governing Equations for Skin Layer 

Concentration   

The iontophoretic transport equation for ionic compounds through the skin is given by 

Equation 4.58 which defines the concentration of drug in the skin layer as the result of 

passive diffusion, electro-migration, and convection [83-85].  
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Where υ is the convective flow velocity in the viable skin, and ν is an iontophoretic 

model parameter defined as 
zFE

RT
 = ; z is the ionized drug charge; F is the Faraday 

constant; E is the electric field; R is the ideal gas constant; and T is the temperature. 

Equation 4.58 is simplified by substituting the model parameter 
S

D
 


= +  , which 

accounts for electro-migration and convection processes. However, at relatively low fluid 

velocities the convection processes are negligible (i.e., 
S

D



=  ), yielding Equation 4.59, 
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Therefore, drug accumulation in the control-volume, ( )d vc

dt
; is the result of passive 

diffusion 

2

2

c
D

z




; the electro-migration of drug into the skin, 

S
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x
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; and its elimination 

into the systemic circulation (Section 4.1.2), 2

0 ,0

tan 1
4

cos
D

s

cc

k c
h c c

v v v

  

  

     
       

     

− −
−

+ −

:  

 
2

2

2
0 ,0

tan 1
4

cosS

D
s

cc

D C

x

kc c c
D h c c

t v v vz





  

  

     
−              

  − −
= + −

 + −
  (4.60) 

4.6    Simulation Studies to Evaluate Sumatriptan Microneedle Dissolution, 

Diffusion, and Electro-migration Mathematical Model 

Computer simulations were conducted with the dissolution, diffusion, and electro-

migration transport model (Section 4.5) to determine the effect of electrical current (i.e., 

parameter γ) on the release of sumatriptan succinate from dissolving pyramid-shaped 

microneedles.  The study uses the P1 circle microarray system dimensions and formulation 

parameters that were determined previously in Section 3.2 and summarized in Table 3.1. 

In vitro minipig release data were used to determine the dissolution rate (kD = 0.0143 cm/h) 

by applying regression techniques described in Section 4.2. Also, release values were used 

to estimate the diffusion coefficient (7.901 x 10-5 cm2/h) from the steady-state diffusion 

equation for lag time, tlag =h2/6D [82]. The electromigration/convection parameter, γ, was 

approximated to be 0.8 based on reference data for similar iontophoretic in vitro 

experiments applied to the drug amitriptyline HCL [84, 86]. 

Equation 4.66 was used to predict the in vitro drug release profiles of P1 formulated 

microarray patches under varied electrical current (Figure 4.19). The γ parameter correlates 
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to the influence of current on the drug transport with increased γ values related to increased 

current levels [84]. The study showed a favorable increase in percent sumatriptan released 

through the skin. A γ value of 1.6 related to an estimated 42% drug released after 8 hours, 

as compared to approximately 34% with no applied current.  

 

 

Figure 4.20  Predicted effect of the iontophoretic parameter, γ, on in vitro cumulative 

percent sumatriptan released from P1 microneedles over an 8 hour period; γ = 0 (solid);  

γ = 0.8 (dashed); and  γ = 1.6 (dot-dashed). 
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CHAPTER 5 

CONCLUSION  

 

This research involves a dissolving polyvinylpyrrolidone-based microneedle device 

designed for the transdermal delivery of sumatriptan succinate for migraine relief. The 

product is a suitable alternative drug delivery method that is painless and with minimal 

unwanted side effects. The microneedle systems were fabricated from a 0.785-cm2 circular 

array with 600 pyramid-shaped needles with consistent height (500 µm), width (300 µm), 

and pitch (350 µm).  Three formulations (P1, P2, P3) were successfully prepared from 5 – 

10% (w/w) sumatriptan succinate API, 20 – 30% (w/w) polyvinylpyrrolidone, polysorbate 

80, glycerol and purified water. Tensile tests showed that the microarray strength was 

improved by increasing polyvinylpyrrolidone concentration or decreasing the sumatriptan 

load. In vitro experiments were carried out on female Göttingen minipig skins with and 

without iontophoresis (i.e., low electrical current). Microneedles from each formulation 

properly inserted into the minipig skin as observed with optical microscope and visual 

inspection with indicator solution (Nitrazine yellow dye). Transepidermal water loss 

(TEWL) studies performed pre-and post- microneedle treatment demonstrated a 4.9-fold 

reduction in the barrier function. This change was greater than the 4.6-fold decrease 

observed following removal of the stratum corneum by tape-stripping (15x). These TEWL 

results indicate the microarrays produce an array of low-resistance tunnels which facilitate 

transport of water through the stratum corneum. In vitro release studies showed a major 

decrease in the lag time and an increased steady-state flux compared to previously 

developed sumatriptan transdermal delivery systems. Additional iontophoretic in vitro 
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experiments were conducted on each of the three microneedle formulations using a small 

electrical current of 100 – 500 µA/cm2. The electrical current significantly increased the 

flux of sumatriptan across the skin with only one third of the API required to deliver a 

similar therapeutic dose as that of a microneedle device alone.  

The design of new dissolving microneedle systems will require additional experimental 

design work and in vitro studies to optimize the microneedle geometry and formulation 

parameters. Model-based design was selected in this contribution as an efficient approach 

to assist researchers in the design and optimization of microneedle systems for drug 

delivery of macromolecules.  

Initially, a mathematical model was derived to predict sumatriptan succinate delivery 

from a pyramid-shaped microarray system. The model was applied to the three different 

sumatriptan microarray formulations to estimate the cumulative amount of drug released 

calculate the dissolution and elimination rate constants. It was concluded that increasing 

the drug load led to a rise in the maximum drug concentration in the skin; increasing the 

microneedle height resulted in a minor enhancement of drug layer concentration; and 

increasing the pitch width significantly reduced the sumatriptan content in the epidermis. 

Next, a second mathematical model was generated to describe the dissolution and diffusion 

of the medication through the dermal layers. The platform was used to predict diffusion 

profiles of the three sumatriptan formulations and estimate the diffusion coefficient and 

dissolution rate constants. Computer simulations determined that the polyvinylpyrrolidone 

concentration had a major impact on the microneedle dissolution. Reduction of the pitch 

width greatly increased diffusion through the skin. Finally, mathematical equations were 

derived to describe the dissolution and permeation of soluble microarrays and changes in 
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the dermal drug concentration following the application of a low-density electric current. 

Simulation studies showed that moderate improvement in the sumatriptan drug release 

could be achieved by increasing the current density.  

 

 

 

 

  



118 

REFERENCES 

 

[1] L. Zhu, L. Lu, S. Wang, J. Wu, J. Shi, T. Yan, C. Xie, Q. Li, M. Hu, Z. Liu, Oral 

absorption basics: pathways and physicochemical and biological factors affecting 

absorption, in:  Developing solid oral dosage forms, Elsevier, Amsterdam, 2017, 

pp. 297-329. 

[2] B. Homayun, X. Lin, H.-J. Choi, Challenges and recent progress in oral drug delivery 

systems for biopharmaceuticals, Pharmaceutics, 11 (2019) 129. 

[3] M. Goldberg, I. Gomez-Orellana, Challenges for the oral delivery of macromolecules, 

Nat Rev Drug Discov, 2 (2003) 289. 

[4] S.K. Bardal, J.E. Waechter, D.S. Martin, Applied pharmacology, Elsevier Health 

Sciences, China, 2011. 

[5] S.S. Jhee, T. Shiovitz, A.W. Crawford, N.R. Cutler, Pharmacokinetics and 

pharmacodynamics of the triptan antimigraine agents: a comparative review, Clin 

Pharmacokinet, 40 (2001) 189-205. 

[6] M.A. Moskowitz, F.M. Cutrer, Sumatriptan: a receptor-targeted treatment for 

migraine, Annu Rev Med, 44 (1993) 145-154. 

[7] M.M. Johnston, A.M. Rapoport, Triptans for the management of migraine, Drugs, 70 

(2010) 1505-1518. 

[8] R.B. Lipton, M.E. Bigal, M. Diamond, F. Freitag, M.L. Reed, W.F. Stewart, A.A. 

Group, Migraine prevalence, disease burden, and the need for preventive therapy, 

Neurology, 68 (2007) 343-349. 

[9] Y.W. Woldeamanuel, R.P. Cowan, Migraine affects 1 in 10 people worldwide 

featuring recent rise: a systematic review and meta-analysis of community-based 

studies involving 6 million participants, J Neurol Sci, 372 (2017) 307-315. 

[10] R. Burstein, R. Noseda, D. Borsook, Migraine: multiple processes, complex 

pathophysiology, J Neurosci, 35 (2015) 6619-6629. 

[11] S.D. Silberstein, Migraine symptoms: Results of a survey of self‐reported 

migraineurs, Headache, 35 (1995) 387-396. 

[12] L. Kelman, D. Tanis, The relationship between migraine pain and other associated 

symptoms, Cephalalgia, 26 (2006) 548-553. 



119 

[13] P. Fowler, L. Lacey, M. Thomas, O. Keene, R. Tanner, N. Baber, The clinical 

pharmacology, pharmacokinetics and metabolism of sumatriptan, Eur Neurol, 31 

(1991) 291-294. 

[14] C. Duquesnoy, J. Mamet, D. Sumner, E. Fuseau, Comparative clinical 

pharmacokinetics of single doses of sumatriptan following subcutaneous, oral, 

rectal and intranasal administration, Eur J Pharm Sci, 6 (1998) 99-104. 

[15] C.G. Dahlöf, J. Saiers, Sumatriptan injection and tablets in clinical practice: results 

of a survey of 707 migraineurs, Headache, 38 (1998) 756-763. 

[16] M.R. Prausnitz, R. Langer, Transdermal drug delivery, Nat Biotechnol, 26 (2008) 

1261-1268. 

[17] R. Liuzzi, A. Carciati, S. Guido, S. Caserta, Transport efficiency in transdermal drug 

delivery: what is the role of fluid microstructure?, Colloids Surf B, 139 (2016) 

294-305. 

[18] M.N. Pastore, Y.N. Kalia, M. Horstmann, M.S. Roberts, Transdermal patches: 

history, development and pharmacology, Br J Pharmacol, 172 (2015) 2179-2209. 

[19] S. Wiedersberg, R.H. Guy, Transdermal drug delivery: 30+ years of war and still 

fighting!, J Control Release, 190 (2014) 150-156. 

[20] A. Williams, B. Barry, Penetration enhancers, Adv Drug Deliv Rev, 64 (2012) 128-

137. 

[21] M.R. Prausnitz, P.M. Elias, T.J. Franz, M. Schmuth, J.-C. Tsai, G.K. Menon, W.M. 

Holleran, K.R. Feingold, Skin barrier and transdermal drug delivery, 

Dermatology, 3 (2012) 2065-2073. 

[22] A. Femenia-Font, C. Padula, F. Marra, C. Balaguer-Fernandez, V. Merino, A. 

Lopez-Castellano, S. Nicoli, P. Santi, Bioadhesive monolayer film for the in vitro 

transdermal delivery of sumatriptan, J Pharm Sci, 95 (2006) 1561-1569. 

[23] C. Balaguer-Fernandez, C. Padula, A. Femenia-Font, V. Merino, P. Santi, A. Lopez-

Castellano, Development and evaluation of occlusive systems employing 

polyvinyl alcohol for transdermal delivery of sumatriptan succinate, Drug Deliv, 

17 (2010) 83-91. 

[24] C. Balaguer-Fernandez, A. Femenia-Font, S. Del Rio-Sancho, V. Merino, A. Lopez-

Castellano, Sumatriptan succinate transdermal delivery systems for the treatment 

of migraine, J Pharm Sci, 97 (2008) 2102-2109. 

[25] K.L. Dechant, S.P. Clissold, Sumatriptan, Drugs, 43 (1992) 776-798. 

[26] M.R. Prausnitz, Microneedles for transdermal drug delivery, Adv Drug Deliv Rev, 

56 (2004) 581-587. 



120 

[27] M.R. Prausnitz, Engineering microneedle patches for vaccination and drug delivery 

to skin, Annu Rev Chem Biomol Eng, 8 (2017) 177-200. 

[28] E. Larraneta, R. Lutton, A.D. Woolfson, L. Donnelly, Microneedle arrays as 

transdermal and intradermal drug delivery systems: materials science, 

manufacture and commercial development, Mater Sci Eng R Rep, 104 (2016) 1-

32. 

[29] B.N. Nalluri, S.S. Anusha, S.R. Bramhini, J. Amulya, A.S. Sultana, C.U. Teja, D.B. 

Das, In vitro skin permeation enhancement of sumatriptan by microneedle 

application, Curr Drug Deliv, 12 (2015) 761-769. 

[30] Y.-C. Kim, J.-H. Park, M.R. Prausnitz, Microneedles for drug and vaccine delivery, 

Adv Drug Deliv Rev, 64 (2012) 1547-1568. 

[31] J.W. Lee, S.O. Choi, E.I. Felner, M.R. Prausnitz, Dissolving microneedle patch for 

transdermal delivery of human growth hormone, Small, 7 (2011) 531-539. 

[32] D. Wu, Y.S. Quan, F. Kamiyama, K. Kusamori, H. Katsumi, T. Sakane, A. 

Yamamoto, Improvement of transdermal delivery of sumatriptan succinate using 

a novel self-dissolving microneedle array fabricated from sodium hyaluronate in 

rats, Biol Pharm Bull, 38 (2015) 365-373. 

[33] Y. Ito, S. Kashiwara, K. Fukushima, K. Takada, Two-layered dissolving 

microneedles for percutaneous delivery of sumatriptan in rats, Drug Dev Ind 

Pharm, 37 (2011) 1387-1393. 

[34] D. Kellerman, J. Lickliter, J. Mardell, T. von Stein, Pharmacokinetics and 

tolerability of a new intracutaneous microneedle system of zolmitriptan (ZP-

Zolmitriptan), HEADACHE, 56 (2016) 07030-05774. 

[35] Y.N. Kalia, A. Naik, J. Garrison, R.H. Guy, Iontophoretic drug delivery, Adv Drug 

Deliv Rev, 56 (2004) 619-658. 

[36] Y. Wang, R. Thakur, Q. Fan, B. Michniak, Transdermal iontophoresis: combination 

strategies to improve transdermal iontophoretic drug delivery, Eur J Pharm 

Biopharm, 60 (2005) 179-191. 

[37] M. Roustit, S. Blaise, J.L. Cracowski, Trials and tribulations of skin iontophoresis in 

therapeutics, Br J Clin Pharmacol, 77 (2014) 63-71. 

[38] R.F. Donnelly, T.R.R. Singh, D.I. Morrow, A.D. Woolfson, Microneedle-mediated 

transdermal and intradermal drug delivery, John Wiley & Sons, Chichester, West 

Sussex, UK, 2012. 

[39] T. Waghule, G. Singhvi, S.K. Dubey, M.M. Pandey, G. Gupta, M. Singh, K. Dua, 

Microneedles: a smart approach and increasing potential for transdermal drug 

delivery system, Biomed Pharmacother, 109 (2019) 1249-1258. 



121 

[40] S. Münch, J. Wohlrab, R. Neubert, Dermal and transdermal delivery of 

pharmaceutically relevant macromolecules, Eur J Pharm Biopharm, 119 (2017) 

235-242. 

[41] D.-J. Lim, J.B. Vines, H. Park, S.-H. Lee, Microneedles: a versatile strategy for 

transdermal delivery of biological molecules, Int J Biol Macromol, 110 (2018) 

30-38. 

[42] P. Ronnander, L. Simon, H. Spilgies, A. Koch, S. Scherr, Dissolving 

polyvinylpyrrolidone-based microneedle systems for in-vitro delivery of 

sumatriptan succinate, Eur J Pharm Sci, 114 (2018) 84-92. 

[43] S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, Insertion of 

microneedles into skin: measurement and prediction of insertion force and needle 

fracture force, J Biomech, 37 (2004) 1155-1163. 

[44] B. Al-Qallaf, D.B. Das, Optimization of square microneedle arrays for increasing 

drug permeability in skin, Chemical Engineering Science, 63 (2008) 2523-2535. 

[45] A. Davidson, B. Al-Qallaf, D.B. Das, Transdermal drug delivery by coated 

microneedles: Geometry effects on effective skin thickness and drug permeability, 

Chem Eng Res Des, 86 (2008) 1196-1206. 

[46] K.S. Kim, K. Ita, L. Simon, Modelling of dissolving microneedles for transdermal 

drug delivery: theoretical and experimental aspects, Eur J Pharm Sci, 68 (2015) 

137-143. 

[47] A. Ripolin, J. Quinn, E. Larraneta, E.M. Vicente-Perez, J. Barry, R.F. Donnelly, 

Successful application of large microneedle patches by human volunteers, Int J 

Pharm, 521 (2017) 92-101. 

[48] P. González-Vázquez, E. Larrañeta, M.T. McCrudden, C. Jarrahian, A. Rein-

Weston, M. Quintanar-Solares, D. Zehrung, H. McCarthy, A.J. Courtenay, R.F. 

Donnelly, Transdermal delivery of gentamicin using dissolving microneedle 

arrays for potential treatment of neonatal sepsis, J Control Release, 265 (2017) 

30-40. 

[49] P. Ronnander, L. Simon, H. Spilgies, A. Koch, Modelling the in-vitro dissolution 

and release of sumatriptan succinate from polyvinylpyrrolidone-based 

microneedles, Eur J Pharm Sci, 125 (2018) 54-63. 

[50] M.R. Marques, R. Loebenberg, M. Almukainzi, Simulated biological fluids with 

possible application in dissolution testing, Dissolut Technol, 18 (2011) 15-28. 

[51] M.H. Qvist, U. Hoeck, B. Kreilgaard, F. Madsen, S. Frokjaer, Evaluation of 

Gottingen minipig skin for transdermal in vitro permeation studies, Eur J Pharm 

Sci, 11 (2000) 59-68. 



122 

[52] H. Todo, Transdermal permeation of drugs in various animal species, 

Pharmaceutics, 9 (2017) 33. 

[53] J.G. Fujimoto, C. Pitris, S.A. Boppart, M.E. Brezinski, Optical coherence 

tomography: an emerging technology for biomedical imaging and optical biopsy, 

Neoplasia, 2 (2000) 9-25. 

[54] Y.A. Gomaa, D.I. Morrow, M.J. Garland, R.F. Donnelly, L.K. El-Khordagui, V.M. 

Meidan, Effects of microneedle length, density, insertion time and multiple 

applications on human skin barrier function: assessments by transepidermal water 

loss, Toxicol In Vitro, 24 (2010) 1971-1978. 

[55] Y. Werner, M. Lindberg, Transepidermal water loss in dry and clinically normal 

skin in patients with atopic dermatitis, Acta Derm Venereol, 65 (1985) 102-105. 

[56] E. Elmahjoubi, Y. Frum, G.M. Eccleston, S.C. Wilkinson, V.M. Meidan, 

Transepidermal water loss for probing full-thickness skin barrier function: 

correlation with tritiated water flux, sensitivity to punctures and diverse surfactant 

exposures, Toxicol In Vitro, 23 (2009) 1429-1435. 

[57] C. Surber, F.P. Schwarb, E.W. Smith, Tape-stripping technique, J Toxicol Cutan 

Ocul Toxicol, 20 (2001) 461-474. 

[58] A. Femenia-Font, C. Balaguer-Fernandez, V. Merino, A. Lopez-Castellano, 

Iontophoretic transdermal delivery of sumatriptan: effect of current density and 

ionic strength, J Pharm Sci, 94 (2005) 2183-2186. 

[59] V. Dhote, P. Bhatnagar, P. MISHRA, S. MAHAJAN, D. MISHRA, Iontophoresis: a 

potential emergence of a transdermal drug delivery system, Sci Pharm, 80 (2011) 

1-28. 

[60] N. Dixit, V. Bali, S. Baboota, A. Ahuja, J. Ali, Iontophoresis-an approach for 

controlled drug delivery: a review, Curr Drug Deliv, 4 (2007) 1-10. 

[61] W. Schwarz, PVP: a critical review of the kinetics and toxicology of 

polyvinylpyrrolidone (povidone), CRC Press, Chelsea, MI, 1990. 

[62] R. Awasthi, S. Manchanda, P. Das, V. Velu, H. Malipeddi, K. Pabreja, T.D. Pinto, 

G. Gupta, K. Dua, Poly (vinylpyrrolidone), in:  Engineering of Biomaterials for 

Drug Delivery Systems, Elsevier, Duxford, UK, 2018, pp. 255-272. 

[63] S. Vollbracht, A.M. Rapoport, New treatments for headache, Neurol Sci, 35 (2014) 

89-97. 

[64] C.M. Perry, A. Markham, Sumatriptan, Drugs, 55 (1998) 889-922. 



123 

[65] A. Femenía‐Font, C. Balaguer‐Fernández, V. Merino, A. López‐Castellano, 

Iontophoretic transdermal delivery of sumatriptan: effect of current density and 

ionic strength, J Pharm Sci, 94 (2005) 2183-2186. 

[66] M.W. Pierce, Transdermal delivery of sumatriptan for the treatment of acute 

migraine, Neurotherapeutics, 7 (2010) 159-163. 

[67] U.F.a.D. Administration, Guidance for industry, sterile drug products produced by 

aseptic processing—current good manufacturing practice, Silver Spring, (2004). 

[68] W. Drexler, U. Morgner, F. Kärtner, C. Pitris, S.A. Boppart, X. Li, E. Ippen, J. 

Fujimoto, In vivo ultrahigh-resolution optical coherence tomography, Opt Lett, 24 

(1999) 1221-1223. 

[69] D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. 

Hee, T. Flotte, K. Gregory, C.A. Puliafito, Optical coherence tomography, 

Science, 254 (1991) 1178-1181. 

[70] E. Berardesca, G. Borroni, Instrumental evaluation of cutaneous hydration, Clin 

Dermatol, 13 (1995) 323-327. 

[71] A.M. Barbero, H.F. Frasch, Pig and guinea pig skin as surrogates for human in vitro 

penetration studies: a quantitative review, Toxicol In Vitro, 23 (2009) 1-13. 

[72] M. Pierce, C. O'Neill, E. Felker, T. Sebree, Sumatriptan iontophoretic transdermal 

system: history, study results, and use in clinical practice, Headache, 53 (2013) 

34-42. 

[73] G.L. Plosker, D. McTavish, Sumatriptan. A reappraisal of its pharmacology and 

therapeutic efficacy in the acute treatment of migraine and cluster headache, 

Drugs, 47 (1994) 622-651. 

[74] O. Olatunji, D.B. Das, V. Nassehi, Modelling transdermal drug delivery using 

microneedles: Effect of geometry on drug transport behaviour, J Pharm Sci, 101 

(2012) 164-175. 

[75] R. Zhang, P. Zhang, C. Dalton, G.A. Jullien, Modeling of drug delivery into tissues 

with a microneedle array using mixture theory, Biomech Model Mechanobiol, 9 

(2010) 77-86. 

[76] I. Mansoor, J. Lai, S. Ranamukhaarachchi, V. Schmitt, D. Lambert, J. Dutz, U.O. 

Häfeli, B. Stoeber, A microneedle-based method for the characterization of 

diffusion in skin tissue using doxorubicin as a model drug, Biomed Microdevices, 

17 (2015) 61. 

[77] K.S. Kim, K. Ita, L. Simon, Modelling of dissolving microneedles for transdermal 

drug delivery: theoretical and experimental aspects, Eur J Pharm Sci, 68 (2015) 

137-143. 



124 

[78] A. Dokoumetzidis, P. Macheras, A century of dissolution research: from noyes and 

whitney to the biopharmaceutics classification system, Int J Pharm, 321 (2006) 1-

11. 

[79] S.P. Sullivan, D.G. Koutsonanos, M. Del Pilar Martin, J.W. Lee, V. Zarnitsyn, S.O. 

Choi, N. Murthy, R.W. Compans, I. Skountzou, M.R. Prausnitz, Dissolving 

polymer microneedle patches for influenza vaccination, Nat Med, 16 (2010) 915-

920. 

[80] H.L. Quinn, L. Bonham, C.M. Hughes, R.F. Donnelly, Design of a dissolving 

microneedle platform for transdermal delivery of a fixed-dose combination of 

cardiovascular drugs, J Pharm Sci, 104 (2015) 3490-3500. 

[81] V. Shah, B.K. Choudhury, Fabrication, Physicochemical Characterization, and 

Performance Evaluation of Biodegradable Polymeric Microneedle Patch System 

for Enhanced Transcutaneous Flux of High Molecular Weight Therapeutics, 

AAPS PharmSciTech, 18 (2017) 2936-2948. 

[82] S. Mitragotri, Y.G. Anissimov, A.L. Bunge, H.F. Frasch, R.H. Guy, J. Hadgraft, 

G.B. Kasting, M.E. Lane, M.S. Roberts, Mathematical models of skin 

permeability: an overview, Int J Pharm, 418 (2011) 115-129. 

[83] K. Tojo, Mathematical models of transdermal and topical drug delivery, Biocom 

Systems, Fukuoka, (2005) 26-27. 

[84] L. Simon, A.N. Weltner, Y. Wang, B. Michniak, A parametric study of iontophoretic 

transdermal drug-delivery systems, J Membrane Sci, 278 (2006) 124-132. 

[85] R. Wei, L. Simon, L. Hu, B. Michniak-Kohn, Effects of iontophoresis and chemical 

enhancers on the transport of lidocaine and nicotine across the oral mucosa, 

Pharm Res, 29 (2012) 961-971. 

[86] Y. Wang, Transdermal delivery of tricyclic antidepressants using iontophoresis, 

chemical enhancers and superporous hydrogels, Rutgers The State University of 

New Jersey, New Brunswick, NJ, 2004. 

 


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknwoledgement
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Materials and Methods
	Chapter 3: Development of Soluble Microneedle System for Delivery of Sumatriptan Succinate
	Chapter 4: Mathematical Modelling for the In Vitro Release of Sumatriptan Succinate from Dissolving Microneedle Systems
	Chapter 5: Conclusion
	References

	List of Tables
	List of Figures (1 of 5)
	List of Figures (2 of 5)
	List of Figures (3 of 5)
	List of Figures (4 of 5)
	List of Figures (5 of 5)




