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ABSTRACT 

 
ENGINEERING OF ESCHERICHIA COLI 2-OXOGLUTARATE 

DEHYDROGENASE COMPLEX WITH MECHANISTIC AND SYNTHETIC GOALS 
 

by 
Joydeep Chakraborty 

 
The Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) compromises multiple 

copies of three enzymes - 2-oxoglutarate dehydrogenase (E1o), dihydrolipoyl 

succinyltransferase (E2o), and dihydrolipoyl dehydrogenase (E3). OGDHc is found in the 

Krebs cycle and catalyzes the formation of the all-important succinyl-Coenzyme A (succinyl-

CoA). OGDHc was engineered to understand the catalytic mechanism and optimized for 

chemical synthetic goals.  

Succinyl-CoA formation takes place within the catalytic domain of E2o via a 

transesterification reaction. The succinyl group from the thiol ester of S8-

succinyldihydrolipoyl-E2o is transferred to the thiol group of CoA. Mechanistic studies were 

designed to investigate enzymatic transthioesterification. His375 and Asp374 was shown to be 

important in E2o. The magnitude of the rate acceleration provided by these residues suggests 

a role in stabilization of the symmetrical tetrahedral oxyanionic intermediate by formation of 

two hydrogen bonds, rather than in acid–base catalysis. Further evidence ruling out a role in 

acid–base catalysis is provided by saturation mutagenesis studies at His375 and substitutions 

to other potential hydrogen bond participants at Asp374. The rate constant for reductive 

succinylation of the E2o lipoyl domain (LDo) by E1o and 2-oxoglutarate (99 s-1) was 

approximately twofold larger than the rate constant for kcat (48 s-1) for the overall reaction 

(NADH production). It could be concluded that succinyl transfer to CoA and release of 

succinyl-CoA is the rate-limiting step. The results suggest a revised mechanism of catalysis for 

acyl transfer in the superfamily of 2-oxo acid dehydrogenase complexes, thus provide 



fundamental information regarding acyl-CoA formation, so important for several biological 

processes including post-translational succinylation of protein lysines.  

OGDHc was converted from a 2-oxoglutarate dehydrogenase to a 2-oxo aliphatic 

dehydrogenase complex by engineering consecutive components. OGDHc was reprogrammed 

to accept alternative substrates by evolving the E1o and E2o components. Wt-ODGHc does 

not accept aliphatic substrates. E1o was previously engineered to accept a non-natural aliphatic 

substrate, 2-oxovalerate (2-OV). E2o also required engineering to accept 2-OV in the overall 

reaction. Hence, saturation mutagenesis libraries of E2o were screened and several variants 

were identified for 2-OV activity. Variants also displayed activity for larger aliphatic 

substrates, which demonstrates the potential green synthetic utility. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 2-Oxoglutarate Dehydrogenase Complex 

The 2-oxoglutarate dehydrogenase complex (OGDHc) or α-ketoglutarate dehydrogenase 

complex is most commonly known for its role in the Krebs cycle. This enzyme belongs to 

a family of multienzyme complexes. They are classified on the natural substrate 

(pyruvate, 2-oxoglutarate (2-OG) or branched-chain α-keto acids) that they utilize (Figure 

1.1) [1]. 

 

 

Figure 1.1 α−Keto acid substrates. 

This family of multienzyme complexes is important in controlling the carbon flux 

from carbohydrate precursors and a select group of amino acids into and around the 

Krebs cycle (Figure 1.2) [2]. This enzyme complex catalyzes the non-equilibrium 

reaction converting 2-ΟG, Coenzyme A (CoA) and NAD+ to succinyl-CoenzymeA 

(succinyl-CoA), NADH and CO2.  
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Figure 1.2 Krebs Cycle. 
Figure adaptation: Jeremy M. Berg, John L. Tymoczko, and Lubert Stryer Biochemistry, 8th edition, 2015 
pp 509 figure 17.15. 
 

The overall reactions require three protein components, which is comprised of a 

substrate specific dehydrogenase/decarboxylase (E1o EC 1.2.4.2, Figure 1.3a), dihydro-

lipoamide succinyl transferase (E2o EC 2.3.1.6, Figure 1.3b), and dihydrolipoamide 

dehydrogenase (E3 EC 1.8.1.4, Figure 1.3c). The above enzymes respectively require the 

cofactors thiamine diphosphate (ThDP), lipoic acid and flavin adenine dinucleotide 

(FAD). In Escherichia coli, E1o and E3 exist as homodimers. The E2o component is a 

trimeric multidomain protein, starting with the amino terminal end a flexible lipoyl 
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domain (LDo), followed by a long mostly unstructured subunit binding domain for 

assembly with E1o/E3, then a central nexus catalytic core domain (CDo).  The enzyme 

complex is inhibited by its end products, succinyl-CoA and NADH. It is also regulated by 

the ATP/ADP ratio, the NADH/NAD+ ratio, calcium and the substrate availability in the 

cellular environment [3,4]. 

 

 

Figure 1.3 Ribbon diagrams for OGDHc components: A. Structure of a truncated variant 
of E1o (tE1o) that is missing the first 77 amino acids on the N-terminus (PDB ID: 2JGD). 
The structure of tE1is homodimer and each chain (105 kDa/subunit) is represented as 
gold and green ribbons. B. NMR structure of E2o lipoyl domain (21 kDa) (PDB ID: 
1PMR). C. Catalytic domain of the E2o is shown as a trimer with each chain (45 
kDa/subunit) represented in red, yellow and maroon ribbons (PDB ID: 1C4T).  
D.  E3 is shown as a homodimer (55 kDa/subunit) (PDB ID: 4JDR). 
 

1.2 Structural Assembly 

The quaternary organization of the OGDHc ensures that the products of one reaction are 

efficiently shuttled to the next active site for the subsequent reaction (called substrate 

channeling). In almost all instances, E1o and E3 are recruited into their multienzyme 

complexes through direct interaction with E2o, which is an oligomeric enzyme with  

structurally distinct domains that are linked by flexible regions [5].  OGDHc complexes 

are assembled in a tight but noncovalent fashion. This multicomponent and multimeric 



4 
 

nature results in the formation of relatively large complexes with an approximate mass of 

2.5 MDa [6,7].  In E. coli, the assembly of OGDHc is organized around a 24-meric 

central core of E2 that exhibits octahedral symmetry (Figure 1.4). The oligomeric E2 core 

is responsible for tethering and orientating both the E1o and E3 enzymes within the 

complexes via compact, peripheral subunit-binding domains. The organization of the 

three component enzymes is crucial for the activity of the complex. The proposed 

stoichiometry for the E. coli complex has been estimated at 12 E1o : 24 E2o : 12 E3.  The 

oligomeric E2o forms the foundation, and it is bound to multiple copies of E1o and E3 

[6,8,9].  

 

Figure 1.4 Schematic representation of assembled 2-oxoglutarate dehydrogenase 
multienzyme complex consisting of multiple copies of E1o, E2o and E3 [10]. 
Figure adaptation: Reginald H. Garrett, Charles M. Grisham Biochemistry, 6th edition, 2017 pp 670 figure 
19.21. 
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1.3 OGDHc Overall Reaction 

The overall reaction of OGDHc is as follows (Equation 1.1): 

2-oxoglutarate + NAD+ + CoA → succinyl-CoA + CO2 + NADH + H+ (1.1) 

The steps of the overall reactions are shown in Figure 1.5.  

Step 1: E1o component catalyzes the initial decarboxylation of the 2-oxoglutarate, using 

ThDP as a cofactor.  

Step 2: This step is followed by reductive succinylation of the lipoyl group bound to the 

ε-amino group of a lysine residue in E2o.  

Step 3: E2o is a succinyl transferase responsible for transferring the succinyl group to 

CoA.   

Step 4: The reduced dihydrolipoyl group left on E2o is reoxidized to the dithiolane ring 

by the flavoprotein E3, with NAD+ as the ultimate proton acceptor [11].  

 

 

Figure 1.5 The overall reaction mechanism of the complex.  

https://en.wikipedia.org/wiki/Succinyl_CoA
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1.4 E1o Component 

The thiamin diphosphate (ThDP) dependent E1o component is a 

dehydrogenase/decarboxylase enzyme. The crystal structure of apo-E1o has  been solved 

to 2.6 Å, and it reveals that the enzyme in E. coli is a homodimer (α2) [12]. The crystal 

structure (Figure 1.3A) depicts a 190 kDa truncated E1o lacking the first 77 residues 

from its N-terminus.  The truncated enzyme retains decarboxylase activity but it does not 

form a complex with E2o, suggesting the importance of the N-terminus for E1o-E2o 

interactions [12]. The E1o active site is lined by three histidine residues at positions 260, 

298 and 729 and a serine at position 302 (Figure 1.6). The residues have been proposed to 

be responsible for substrate specificity. Their proximity to the ThDP thiazolium ring 

make them likely to define the substrate binding pocket or be of catalytic importance 

[12,13].  

 

Figure 1.6 Active site of E1o. The active site residues His260, His298 and Ser 302 of 
chain A (cyan) and His729 of chain B (red) have been shown (PDB ID: 2jgd). 
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In the active site, the catalytic mechanism has been proposed based on the two 

histidines at 260 and 298 which behave as a general acid-base catalyst. Substrate 

channeling occurs through an acidic channel that serves as a proton wire. The catalytic 

rates of E1o were greatly reduced upon substitution of  alanine in place of the His260 and 

His298, that proved their importance in the reaction [12]. This is consistent with their role 

in recognition of the distal carboxylate of 2-OG. Previously, the program to alter the 

substrate specificity of OGDHc to utilize it as a catalyst for green chemical synthesis was 

initiated by engineering the active site of E1o. In OGDHc, there are three levels of 

substrate specificity. One occurs at the E1o level and the other two at E2o (LDo and 

CDo). The active site histidines at 260 and 298 of E1o were identified by structural data 

as important residues for binding and activity [13].  The goal was to engineer the enzyme 

to accept a non-natural substrate 2-oxovaleric acid (2-OV). This substrate is a homolog of 

2-OG (Figure 1.1), but it lacks the distal carboxyl group (Figure 1.1). The libraries 

His260X, His298X and His260X/His298X were constructed by saturation mutagenesis 

and screened for activity towards 2-OV as substrate.  Active mutants were identified 

using a E1o-specific assay (Figure 1.7). The assay is a direct measure of the 

decarboxylase activity of E1o by an external oxidizing agent 2, 6- 

dichlorophenolindophenol (DCPIP). Reduction of DCPIP is determined by the loss of 

absorbance at 600 nm [14] and affirms that decarboxylation to the enamine had taken 

place. 
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Figure 1.7 DCPIP, an E1-specific, assay reaction. 

Results showed that His260 was crucial for substrate binding and most likely has a 

hydrogen bonding role.  The His298 residue when replaced with leucine, threonine, 

valine or aspartate were all shown to decarboxylate 2-OV (Figure 1.5, Step 1). The E1o- 

His298Asp was the most active variant showing improvements of catalytic efficiency 

over the wild type enzyme towards 2-OV [13].  However, NADH production could not 

be detected in the overall reaction. Mass-spectrometric evidence also showed that there 

was successful transfer of the E1o-bound hydroxybutyl-ThDP intermediate of substrate 

(2-OG/2-OV) to the E2o-LDo. This indicated at the E2o level, the second substrate 

checkpoint, where the succinyl group is transferred from the S-atom of dihydrolipoamide 

to the S-atom of CoA was blocked towards synthesis of the acyl-CoA derivative derived 

from 2-OV.  

Further, hybrid complexes were also constructed consisting of components from 

both the OGDHc and the pyruvate dehydrogenase complex (PDHc). The results 

suggested different components acting as ‘gate-keepers’ for the specificity for these two 

multienzyme complexes in E. coli. It was shown that E1p determined specificity for 

pyruvate. However, the same specificity towards 2-OG is determined by E1o and E2o 

[13].  

From this information, it was evident that engineering E2o was necessary to bypass 

its substrate checkpoint. To broaden the scope of efforts to produce acyl-CoA analogues 
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and use OGDHc as a synthetic tool, the mechanism at the active site of the catalytic core 

domain of E2o was further investigated. Also, it was essential to understand the structure-

function relationship of the E2o active site residues that contribute to the catalysis of the 

succinyl-transfer reaction.  

 

1.5 E2o Component 

The E2o component consists of, from N-terminal, lipoyl domain, subunit binding 

domain, and a catalytic domain.  The number of lipoyl domains can vary between 1 to 3, 

which depends on the organism. The domains are connected by flexible linker segments. 

In E. coli, the E2o component consists of only one lipoyl domain (LDo), followed by one 

E1 and/or E3 binding  domain (peripheral subunit binding domain or PSBD), and then  

by a carboxyl-terminal catalytic or core domain (CDo)  (E2oec) [15] (Figure 1.8). The 

E2o is organized as a 24-mer with octahedral symmetry [16].   The flexibility of the 

linker segments is thought to inhibit crystallization of the native E2o. Despite that, 

significant amount of structural information has been published from individual domains 

(Figure 1.8) [17].  

 

Figure 1.8 Schematic representation of the domains of the E2o component of E. coli.  
The ditholane ring of the flexible lipoyl-lysine arm has been shown on the lipoyl domain (yellow). The 
value of n = 1, 2 or 3 depends on the organism. For E. coli, n = 1. The lipoyl domain is followed by the 
peripheral subunit binding domain (PSBD) represented in orange. The final catalytic core domain is 
represented in green. 
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1.6 E3 Component 

The third component of OGDHc is E3 or dihydrolipoamide dehydrogenase. E3 is a 

flavoprotein that binds FAD and NAD+ and it is shared between OGDHc and PDHc, and 

in fact all such complexes in a particular cell share the same E3. In E. coli, the E3 

interacts with E2o non-covalently at the PSBD.  The role of E3 is to reoxidize the 

dihydrolipoamide of E2o LDo after succinyl transfer (Figure 1.5, Step 3) [18]. Thus, the 

E3 restores the initial redox states of the E2o LDo lipoamides allowing the multienzyme 

complex to cycle (Figure 1.5, Step 4). In the other half of the redox reactions, E3 reduces 

NAD+ to NADH (Figure 1.9 and Figure 1.5, step 4) [19]. 

 

Figure 1.9 E3 catalyzes the restoration of the redox states of the cofactors and the E2 
component. 
 

1.7 Applications of OGDHc 

1.7.1 As an enzyme for green synthesis 

The pharmaceutical, food, detergent, and biofuel industries have reaped the advantages of 

enzyme catalysis in commercial-scale applications. For complex chemical reactions, the 

most significant advantages that  enzyme catalysis holds over chemical catalysis  are the 
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high regio-, chemo-, and stereoselectivities at which enzymes convert substrate to 

product [20]. This is the advantage in biological systems; however, they may not be 

suited for industrial applications. A few common examples of industrially applied 

enzymes are trypsin, amylase, laccase and lipase in food processing and detergent 

industries [21–24]. In the pharmaceutical industry, an example of enzyme catalyzed 

synthesis is sitagliptin, a drug marketed by Merck for type II diabetes treatment [25,26]. 

The conventional synthesis requires heavy metals, extreme reaction conditions and 

suffers from low yields. Hence, an R-selective transaminase was evolved to catalyze the 

synthesis with 99.95% e.e. in organic solvent [27–29].  

An important example of an intermediate in the organic chemistry and drug 

industries is CoA linked thioesters. Acyl-CoA and its analogs are important products of 

α-ketoacid dehydrogenase class of enzymes, such as OGDHc. CoA derivatives are 

essential and found as intermediates at the crossroads of a variety of metabolic pathways. 

For example, acetyl CoA is an important link between glycolysis and Krebs cycle [30]. 

CoA forms thioester linkages with α−keto acid substrates and its terminal thiol. The 

reactivity of CoA thiol or thioester is diverse. Thiol has a relatively high pKa (9-10), 

which makes them good nucleophiles.  On the other hand, thioesters are good 

electrophiles for alcohols, amines, and enolates.  Furthermore, a thioester can serve as a 

nucleophile in its enolate form.  This duel character provides versatility for CoA as a 

cofactor in nature  [31].  CoA – linked thioesters can be used as intermediates for organic 

synthetic purposes.  For example, they are precursor to their corresponding carboxylic 

acid derivatives [32]. Furthermore, they are also key intermediates for peptide coupling 

[33–35], acyl transfer [36,37], thiol protecting strategies [38] and in organometallic 

reaction coupling [39]. CoA thioesters are important molecules in the pharmaceutical 
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industry as reactivity probes, as enzyme inhibitors and as reporter labels [40]. Traditional 

organic synthetic pathway for acylation of thiols involve the use of acyl sources from 

carboxylic acids, acid anhydrides or acid chlorides. The reactions proceed in the presence 

of strong bases such as ethylamine, pyridine or DMAP for refluxing for several hours. 

The reactions are also supplemented with suitable catalysts such as triflates, CsF, NBS, 

zeolites, rongalite, lanthanum(III), isopropoxide, Lewis acids, zinc lithium, 

bis(perfluoroalkylsulfonyl)imide, ionic liquids, titanocene bis(perfluorooctanesulfonate) 

and dodecylbenzenesulfonic acid for the acylation of thiones. [41]. In conclusion, the 

synthetic routes are multistep, energy intensive and involve extreme reaction conditions 

that can be possibly hazardous to the environment. 

OGDHc catalyzes the rate limiting step of the Krebs cycle, which is succinyl CoA 

formation from 2-OG (Figure 2) [2].  As a CoA-dependent enzyme complex it uses the 

cofactor to bind to carboxylic acids, which are involved in primary and secondary 

metabolism [31].  OGDHc is able to perform trans-thioesterification as a natural reaction, 

which is chemically difficult to achieve. The final product of this reaction is a CoA-

linked thioester (succinyl-CoA) which is of much interest in pharmaceutical and chemical 

industries.  This makes OGDHc a suitable candidate for one-pot multistep green chemical 

synthesis under much milder aqueous conditions, thus providing a sustainable and green 

synthetic chemical pathway.  However, being part of a conserved metabolic pathway, 

such as the Krebs cycle, OGDHc has high substrate specificities at multiple levels at the 

constituent components. Thus, optimization of the complex is required, to implement it at 

an industrial level. 
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1.7.2 Enzyme optimization and engineering 

Enzymes catalyze highly specific reactions under mild conditions in aqueous solutions. 

Therefore, enzymes can be used for environmentally friendly chemical synthesis. 

However, they require engineering and optimization for industrial process conditions, 

such as thermostability, organic solvent resistance or altered substrate specificity.  

Enzyme properties are not coupled.  For example, altering the substrate specificity may 

come at the cost of thermostability. This is especially true for enzymes of conserved 

pathways, that have specific functions across many species [42,43]. Although the activity 

and many other properties can be enhanced by accumulation of beneficial mutations over 

generations of random mutagenesis and screening, it was once believed that it was 

impossible  to create completely novel catalytic activity [44]. One of the earliest 

approaches to modify enzyme specificity was by rational design [45–47]. This requires 

in-depth knowledge of crystal structure of the protein and active site configurations. 

However, the complexity of structure-function relationship of enzymes is a critical 

limitation to this approach. It is found that enzyme modifications that enhance certain 

enzyme properties, such as substrate specificity or new catalytic activity, can be located 

near the active site [48–52]. However, other mutations beneficial for properties such as 

stability or activity may be far from the active site. It has also been shown that mutations 

far from the active site can contribute to substrate specificity [53–55].  These mutations 

would be impossible to predict from rational design.  

 Directed evolution breaks through this barrier. This idea mimics natural evolution 

on a single molecule level. First, a parent gene is used to create a library with random 

mutations. Next, a screening or selection is used to identify protein variants with the 
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desired properties. Then, the gene is isolated, and it is used as the parent for the next 

round of laboratory evolution until the optimization is achieved (Figure 1.10).  

 

 

 

Figure 1.10 Schematic representation of Directed evolution method to evolve proteins. 

 The major advantage of directed evolution is rapid engineering of enzymes 

without in-depth structural knowledge. One of the earliest examples was subtilisin 

evolution in a polar organic solvent dimethyl sulfoxide [56,57]. The final variant had a 

~471 fold increased activity over the wild-type under similar conditions [58]. The 

potential of directed evolution is to be used as a tool to manipulate proteins towards 

performing reactions that are absent in the biological world. For example, enzymatic 

formation of carbon-silicon bonds was achieved.  This reaction is not found in any 

biological system. Cytochrome C was evolved  to catalyze formation of carbon-silicon 
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bonds with an efficiency of ~15 times over the best chemical catalyst used for the 

purpose [59].  In nature, cytochrome C is an electron carrier in the electron transport 

chain, and it does not perform any catalytic reactions. Rational and directed evolution can 

complement each other in an engineering strategy.  Structure/function knowledge can be 

used to create focused libraries [60]. For example, saturation mutagenesis can used. 

Saturation mutagenesis is a method to mutate any amino acid simultaneously to all other 

19 amino acids.    

 

1.7 Thesis Objectives 

1. Characterization of the critical residues in the active site of E2o catalytic domain 
that contribute to catalysis and elucidate the mechanism of the succinyl transfer reaction. 
 
The main goal is to understand the contribution of the catalytically important residues in 

the E2o catalytic domain. It has been established that the human OGDHc activity is 

linked to Alzheimer’s and Parkinson’s diseases [61], besides its contribution to cellular 

disorders related to oxidative stress. The E2o catalytic domain is conserved in all life 

forms.  Mechanistic knowledge provides molecular details of metabolic pathways and the 

underlining cause of disease. 

 

2. Altering substrate specificity of OGDHc and convert 2-oxo acid to a 2-oxo-
aliphatic acid dehydrogenase complex by engineering E2o. 
 
An important application of OGDHc, is its ability to perform a complex acyl transfer 

reaction and produce succinyl-CoA. CoA-linked thioester chemical synthesis is a 

multistep process. Engineered recombinant OGDHc can potentially replace existing 

synthetic methods with a green method to generate the desired thioester analogs.   
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CHAPTER 2 

CATALYSIS OF TRANS-THIOACYLATION IN THE ACTIVE CENTERS OF 
DIHYDROLIPOAMIDE ACYLTRANSACETYLASE COMPONENTS OF            

2-OXO ACID DEHYDROGENASE COMPLEXES 

 

2.1 Introduction 

In the Krebs cycle, the 2-oxoglutarate dehydrogenase complex (OGDHc) catalyzes one of 

the most important steps, converting 2-oxoglutaric acid (2-OG) to succinyl CoA. OGDHc 

is composed of multiple copies of three components: (i) 2-oxoglutarate 

dehydrogenase/decarboxylase (E1o), (ii) dihydrolipoamide succinyl transferase (E2o) and 

(iii) dihydrolipoamide dehydrogenase (E3).   The key metabolic product succinyl-CoA is 

produced from the catalytic domain of the E2o. In Escherichia coli, E2o is a multidomain 

enzyme: proceeding from the N-terminus it consists of a lipoyl domain(s) (LDo) (~85 

amino acids), a peripheral subunit binding domain (PSBD) (~48 amino acids) and a 

catalytic core domain (CD) (~231 amino acids). The E2o core is  composed of 24 

subunits that are organized with a 432 point group symmetry, to which both E1 and E3 

dimers are attached tightly and non-covalently [1-4].   The organization of the E2 core in 

OGDHc is specific for each organism [5].  The domains E2o are linked together by 

flexible 25–30 residue segments rich in alanine, proline, and charged amino acids 

[62,63].  Chapter 1 outlines the structural organization of the overall complex along with 

the role of the individual components in the overall reaction. In the current chapter, the 

kinetic parameters of E2o have been determined to characterize catalysis at the active site 

of the enzyme. 
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2.2 E2o Domains 

2.2.1 Role of the lipoyl domain 

The lipoyl domain is the site of attachment of the prosthetic group, lipoic acid. The 

attachment of the lipoyl group to the conserved Lys43 at the tip of the protruding β-turn, 

gives a domain flexibility and reach to the active centres of E1 and E3 (Figure 2.1) [64].  

 

Figure 2.1 General mechanism of the lipoyl domain accessibility to the active sites of E1 
and E3 for 2-oxoacid dehydrogenase complexes [65].  
The flexible lipoamide arm of the lipoyl domain is able to transport the decarboxylated acyl intermediate 
from E1 (turquoise) active site to the E2 catalytic domain (green). In the E2CDo, the acyl group is 
transferred to CoA forming Acyl-CoA. The dithiolane ring of the lipoamide arm gets re-oxidized at E3 
(yellow).   

The number of lipoyl domain varies from one to three depending on the enzyme 

complex. In Escherichia coli the OGDHc has one lipoyl domain while pyruvate 

dehydrogenase complex (PDHc) has three [62]. An individual lipoyl domain carries a 
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lipoyl group in amide linkage with the N-6 amino group of a specific lysine residue 

forming the swinging arm that ferries substrate (Figure 2.2) [66]. This attachment also 

limits the diffusion of the dithiolane ring. Only R-enantiomers of the lipoate and 

dihydrolipoate function with the OGDHc. It is essential for the lipoyl group to be 

attached to the lipoyl domain for the reductive acylation reaction by the dithiolane ring 

[11,66]. The ring is at the end of a 1.4 nm swinging arm and is free to rotate with respect 

to the bulk of the protein.  

 

Figure 2.2 Structure of lipoyl domain with the attached lipoyl moiety. 
The green ribbon represents a single chain of the lipoyl domain of E.coli E2o. The NMR structure is 
derived from PDB entry 1PMR. The lipoate moiety is shown to be attached with the Lys43 residue of the 
lipoyl domain. The 1.4nm flexible arm has a dithiolane ring at the end of it. 
 

The enzymes trypsin and lipoamidase have been used as probes to examine the 

correlation between loss of lipoyl domains or lipoyl moieties versus the loss of overall 

activity for PDHc and OGDHc. Trypsin digest releases the lipoyl domains that are 

covalently attached with the lipoyl moieties.  In contrast, lipoamidase releases the lipoyl 

moiety from the lipoyl domain. The results showed that the rate of release of lipoyl 
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domains (tryptic digests) or lipoyl moieties (lipoamidase digest) was higher than the 

corresponding rate of loss of overall activity [63,67].  

The flexibility of the lipoyl domain confers some process of molecular recognition 

and interaction between LDo and its cognate E1o component [5]. In recent years, the 

Farinas and Jordan groups have undertaken studies of the E. coli 2-oxoglutarate 

dehydrogenase complex (OGDHc) with a view to expand the substrate range of the 

complex and utilize it for green chemo-enzymatic synthesis. The active site of E1o was 

engineered to accept the non-natural substrate 2-oxovaleric acid (2-OV). However, the 

overall reaction of the complex did not produce NADH or butyryl-CoA. Mass-

spectrometric evidence showed that the E1o active center could reductively acylate the 

lipoyl domain.  This indicated an apparent checkpoint regulation at the active site of E2o 

catalytic domain.  Hybrid complexes with different components of PDHc (E1p, E2p and 

E3) and OGDHc (E1o, E2o and E3) revealed that E1o could reductively acylate the 

lipoyl domains of both E2p and E2o. This property was absent in E1p. Hence, it was 

concluded that substrate recognition occurs at E1p for PDHc and at E1o, E2oLDo and 

E2oCD for OGDHc [13]. To broaden the synthetic versatility to produce acyl-CoA 

analogues, it was necessary to bypass the E2o checkpoint. A mechanistic role is proposed 

for the key catalytic residues at the active site of E2oCD.  

2.3 The Catalytic Core Domain of E2o 

2.3.1 Active site of E2o core domain 

The E2o structure has not been determined. However, the structure of a truncated form 

(tE2o) from E. coli has been solved to a 3.0 Å resolution. The tE2o structure lacks most 

of the N-terminal and peripheral domains [9,68]. The E. coli E2oCD topology is highly 
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similar to that of another well-known enzyme of the acyl-transferase family, the 

chloramphenicol acyl transferase (CAT; EC 2.3.1.28)[69] and A. vinelandii E2pCD [15, 

16]. Conserved amino acids were found from sequence alignments from various 

organisms [17]. 

Structural homology and crystallographic data of CAT and E2oCD suggested a 

general mechanism of the succinyl transferase reaction occurring at the active site. Also, 

residues involved in catalysis in the active site had been predicted [71]. An active site 

histidine (His375) was proposed to be a general-base catalyst. In the first step, His375  

was suggested to deprotonate the thiol group of coenzyme A (CoA-SH) [16]. Next, CoA-

S- would attack the carboxylate of the acylated lipoyl moiety (from LDo) to form a 

tetrahedral intermediate. The collapse of this intermediate results in the transfer of the 

acyl group to CoA-S-. The tetrahedral intermediate is stabilized by a threonine residue 

(Thr323). In addition, an aspartic acid residue (Asp379) assists in the stabilization of the 

correct tautomer of the catalytically essential histidine (vide infra). 

The side chain of His375 is oriented 2.5 Å apart with respect to the Thr323 (Figure 

2.3b). A salt bridge between Asp374 and Arg376 on the same loop as His375, stabilizes 

the enzyme-substrate complex. In the E2oCD-CoA complex, the conformation changes 

the orientation Asp379 to interact with His375 and form a salt bridge with Arg184 of a 

neighbouring residue. In addition, the side-chain of Arg376 is positioned so that a single 

hydrogen bond is formed with Asp374 (Figure 2.3b)[16]. 
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Figure 2.3 a, Ribbon drawing showing the crystal structure of the truncated E2o 
Catalytic Domain trimer with each subunit in a different color ribbon [16]. The three 
chains of the trimer, viz, chain a, chain b and chain c are represented by red, green and 
cyan respectively. b, active site region at a trimeric subunit interface within the trimer 
showing positions of active site residues Thr323, Asp374, His375, Arg376 and Asp379 
on chain b is shown (PDB ID:1C4T). 
 

2.3.2 Mechanism of the succinyl transferase reaction at the E2o core 

Structural homologies  

In the superclass family of acyl transferases, sequence alignment studies have been 

carried out between E2o and E2p derived from the sucB and aceF genes, respectively. 

The active site mechanism of these enzymes have been proposed based on their sequence 

homologies with CAT [71]. The CAT catalyzes the O-acetylation of chloramphenicol in 

antibiotic resistant bacteria [72,73]. A common feature amongst the CAT, E2o and E2p 

active sites is the presence of a conserved motif sequence containing the catalytic 

histidine: His-x-x-x-x-Asp-Gly-x-His (where, x is any amino acid residue).  

The catalytically important His375 has been identified in E2o and His602 for E2p, 

corresponding to the catalytic His195 in CAT (Figure 2.4). The latter has been 

extensively studied and kinetically characterized by Shaw and Leslie [74,75].  
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Figure 2.4 Comparison of the crystal structure of monomeric chloramphenicol acetyl 
transferase (PDB ID: 1CIA) and E2o dihydrolipoamide succinyl transferase catalytic 
domain, chain a (PDB ID: 1C4T). 
The crystal structure superposition of CAT and E2oCD reveals catalytic His195 and Asp199 are located on 
the same loop for CAT as the corresponding His375 and Asp379 for E2oCD.  

 

2.3.3 Comparative acyl transfer mechanism site of the acyltransferase superfamily 

The role of the active site histidine E2o-His375 has been predicted based on CAT-

His195, which serves as a general base. Evidence of formation of hydrogen bond 

between N-1 proton of His195 and the carboxylate of another conserved aspartate residue 

(Asp199)  had been reported [75]. This confers tautomeric stabilization that possibly 

allows the electron pair at N-3 to abstract a proton from the 3-OH group of 

chloramphenicol to promote a nucleophilic attack on the thioester of CoA (Figure 2.5, for 

CAT) [76]. A similar mechanism had been proposed for E2oCD active site catalysis. The 

conserved E2o-Asp379 plays a similar role as CAT-Asp199 (Figure 2.4). The N-3 of 

His375-imidazole abstracts a proton from CoA-SH. This triggers the nucleophilic attack 

on the carbonyl carbon of the dihydrolipoamide succinyl group. This forms the 

tetrahedral oxyanionic intermediate which is stabilized by a third catalytic residue Thr323 

(Figure 2.5 for E2oCD) [71].  
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Figure 2.5 Top. The proposed mechanism involving the catalytic His375 at the active site 
of E2o core domain. His375 is proposed to be a general base catalyst in the succinyl 
transferase reaction.  
Bottom. The mechanism of catalytic His195 at the active site of chloramphenicol acyl 
transferase. His195 is a general-base catalyst in the acyl-transferase reaction [16,72]. 

 

2.4 Importance of Studying the E2o-Active Site Mechanism and 
the Objectives of this Study 

 
Recent studies revealed multiple roles for the mitochondrial OGDHc, and a better 

understanding of their mechanism could be important for bringing new insight into 

human diseases. The unique property of the mitochondrial OGDHc to produce the 

reactive oxygen species superoxide and hydrogen peroxide (H2O2) from its substrate 2-

OG had been attributed earlier to the flavin cofactor tightly bound to the E3 component 

[77,78]. Jordan group studies revealed that human E1o (hE1o) can produce the ThDP-

enamine radical and superoxide anion from 2-OG and from the next higher homologue 2-

oxoadipate (2-OA) by one-electron oxidation of the ThDP-enamine intermediate with 

dioxygen [79,80]. The efficiency of superoxide/H2O2 production by OGDHc was 7 times 
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larger from 2-OA than from 2-OG making the OGDHc one of the important reactive 

oxygen species producers among 2-oxo acid dehydrogenase complexes in mitochondria 

[78,80].  

In a role different from its role in the TCA cycle, the OGDHc could also serve as a 

producer of succinyl groups in neurons and neuronal cell lines for reversible post-

translational modification of the cytosolic and mitochondrial enzymes, including those 

from the TCA, by succinylation, hence playing a role in neurodegenerative diseases [81]. 

The post-translational modification of histone proteins by succinylation is regarded as 

very important because it can directly regulate gene expression [82,83]. Recently, 

evidence of the interaction between the nuclear OGDHc and lysine acetyltransferase 2A 

displayed a role of lysine acetyltransferase as a carrier of succinyl groups produced by 

nuclear OGDHc for direct histone H3 succinylation [82]. 

 Studies from the Jordan group suggested that human 2-oxoadipate dehydrogenase 

(hE1a, also known as DHTKD1-encoded protein), which is involved in the oxidative 

decarboxylation of 2-oxoadipate to glutaryl- CoA on the final degradative pathway of L-

lysine, L-hydroxylysine, and L-tryptophan, has recruited the hE2o and hE3 components 

of the OGDHc for its function [84]. In other words, the hE2o could serve as a source of 

both succinyl-CoA and glutaryl-CoA in mitochondria and could be linked to the lysine 

post- translational modification by glutarylation earlier reported [85]. 

 The enzymatic mechanism being studied in this research is responsible for 

synthesis of important acyl- CoA metabolites involved in post-translational modification 

of proteins. The results provide important baseline residue-specific contribution to 

catalysis of succinyl-CoA formation in the active center of the E. coli E2o that would be 

applicable to all E2o components due to high sequence identities reported for all E2o 
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core/catalytic domains [16,17,19,70,86–88]. The major goal of this study was to address 

the role of the highly conserved His375 in the active center of the E. coli E2o. The 

His375Ala substitution was found to decrease the catalytic efficiency (kcat/Km, 2-OG) by 

54-fold compared to unsubstituted E2o. This value was approximately 10 000 times 

smaller than that deter- mined on Ala substitution of the corresponding His195 in 

chloramphenicol acetyltransferase (CAT, kcat/Km = 53 x 10-4-fold smaller for the 

His195Ala variant than wild-type) [75], placing in doubt the earlier deduction of an acid–

base catalyst role of His375, assigned by comparison with CAT [71,89]. To gain more 

insight regarding the function of His375, site-saturation mutagenesis was carried out at 

this residue, whose results suggested that the His375Trp and His375Gly substitutions at 

E2o were acceptable, reducing the catalytic efficiency only by two- and five- fold, 

respectively. Similarly, the Asp374Asn substitution in the E2o active center (10 times 

less efficient variant) rescued some of the activity displayed by the Asp374Ala 

substitution (54-times less efficient variant), consistent with participation of Asp374 in 

hydrogen bond formation. The totality of the current studies suggested that there is no 

proton transfer in the rate-limiting step in which both His375 and Asp374 participate 

(Figure 2.6); rather, they may stabilize by hydrogen bonds a transition state, probably 

resembling a tetrahedral oxyanionic intermediate. 



26 
 

 

Figure 2.6 Mechanism of 2-oxoglutarate dehydrogenase complex and the putative 
oxyanionic tetrahedral intermediate suggesting the role of His375 and Asp374 in E2o 
active center [90]. 

2.5 Materials and Methods 

2.5.1 Reagents 

Dithiothreitol (DTT), 2-oxoglutarate, 2-oxovalerate, 2-oxoadipate, and pyruvate were 

from Sigma-Aldrich (St. Louis, MO, USA). NADH, CoA, isopropyl-β-D-

thiogalactopyranoside (IPTG), DNase I, micrococcal nuclease, DL-α-lipoic acid, and 

ThDP were from Affymetrix (Cleveland, OH, USA). Protease inhibitor cocktail tablets 

were from Roche Diagnostics GmbH (Mannheim, Germany). Ni-Sepharose 6 Fast Flow 

and HiPrepTM 26/60 SephacrylTM S-300 HR column were from GE Healthcare 

(Pittsburgh, PA, USA). QuikChange Site-Directed Mutagenesis Kit was from Agilent 

Technologies (Santa Clara, CA, USA). Primers for site-directed mutagenesis were from 

Fisher Scientific (Pittsburgh, PA, USA). Escherichia coli strain JW0715 containing the 

pCA24N plasmid encoding the E1o component and JW0716 containing pCA24N plasmid 
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encoding the E2o component were obtained from National Bio Resource Project (NIG, 

Japan). AG1 cells (Agilent Technologies) were used as host cells. 

 

2.5.2 Protein Expression and Purification 

2.5.2.1 Expression and purification of E1o.  Expression and purification of E1o 

was as reported earlier with some modifications [13,91,92]. The E1o component was 

purified using a Ni-Sepharose 6 Fast Flow column equilibrated with 20 mM KH2PO4 (pH 

7.5) containing 0.20 M KCl, 0.20 mM ThDP, 1.0 mM MgCl2, 1.0 mM benzamidine·HCl 

(buffer A) and 30 mM imidazole. After the protein was applied to the column, the 

column was washed with 500 mL of 30 mM imidazole and then with 500 mL of 50 mM 

imidazole, both in buffer A. The E1o was eluted with 150 mM imidazole in buffer A and 

was dialyzed against 2000 mL of 20 mM KH2PO4 (pH 7.5) containing 0.35 mM KCl, 

0.20 mM ThDP, 1.0 mM MgCl2, and 1.0 mM benzamidine ·HCl for 15 h at 4 oC.  For 

E1o storage, buffer was exchanged to 20 mM KH2PO4 (pH 7.5) containing 0.20 M KCl, 

0.20 mM ThDP and 1.0 mM MgCl2 by ultrafiltration using a concentrating unit with a 

cut-off of 30 kDa. The E1o was stored at -80 oC. 

2.5.2.2 Expression and purification of the E2o and its variants.  Expression and 

purification of E2o was as reported earlier for human E2p with some modifications 

[18,19]. AG1 cells were grown in LB medium supplemented with 35 µg/mL of 

chloramphenicol and protein expression was induced by 0.50 mM IPTG for 5 h at 37 oC. 

Harvested cells were resuspended in 20 mM KH2PO4 (pH 7.5) containing 0.30 M NaCl, 1 

mM benzamidine·HCl, 1 mM DTT, and two protease inhibitor cocktail tablets.  The 

resulting cell suspension was incubated with lysozyme (0.60 mg/mL) for 20 min on ice. 

Next, MgCl2 (5 mM) and 1000 U each of DNase I and Micrococcal Nuclease were 
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added, and the cells were incubated for an additional 20 min on ice. Cells were then 

disrupted by ultrasonication at a setting of 6 using 10 s pulse ‘on’ and 30 s pulse ‘off ’for 

total time of 5 min. PEG-8000 (50% w/v) was added drop-wise to the clarified lysate to 

6% (v/v) and the precipitated pellet was dissolved in 20 mM KH2PO4 (pH 7.5) containing 

0.30 M NaCl, 1 mM DTT, 1.0 mM benzamidine·HCl and 1 mM EDTA. The E2o was 

purified using a Sephacryl S-300 High Resolution size-exclusion column equilibrated 

with 20 mM KH2PO4 (pH 7.5) containing 0.30 M NaCl, 1 mM DTT, 1.0 mM 

benzamidine·HCl and 1 mM EDTA. Fractions containing E2o according to PAGE were 

collected and E2o was precipitated by ultracentrifugation for 4.0 h at 140,000 g. The 

pellet was dissolved in 20 mM KH2PO4 (pH 7.5) containing 0.40 M NaCl, 0.50 mM 

EDTA, 1,0 mM DTT and 1.0 mM benzamidine·HCl for 15 h at 4 oC. The clarified E2o 

was stored at -80 oC.  

The E2o variants with Thr323Ala, Thr323Ser, Asp374Ala, Asp374Asn, His375Ala, 

His375Cys, His375Asn, Arg376Ala, and Asp379Ala substitutions were created using the 

pCA24N-E2o plasmid as a template and two synthetic oligonucleotide primers 

complementary to the opposite strands of the DNA with Quik-Change site-directed 

mutagenesis kit and Protocol supplied by the manufacturer (Stratagene, La Jolla, CA). 

The following oligonucleotide primers and their complements were used (mismatched 

bases are underlined, and mutated codons are shown in boldface type): 

5’-AACTTCACCATCGCGAACGGTGGTGTGTTCGGTTCC-3’ (Thr323Ala), 

5’-AACTTCACCATCAGCAACGGTGGTGTGTTCGGTTCC-3’ (Thr323Ser)                                                                                           

5’-CTGGCGCTGTCCTACGCGCACCGTCTGATC-3’ (Asp374Ala) 

5’- GGCGCTGTCCTACAACCACCGTCTG-3’ (Asp374Asn)       

5’-GCGCTGTCCTACGATGCGCGTCTGATCGAT-3’ (His375Ala) 



29 
 

 5’-GCGCTGTCCTACGATTGCCGTCTGATCGAT-3’ (His375Cys)  

5’-GCTGTCCTACGATAACCGTCTGATCG-3’ (His375Asn)                                                                                  

5’-TCCTACGATCACGCGCTGATCGATGGTCGC-3’ (Arg376Ala)  

 5’-CACCGTCTGATCGCGGGTCGCGAATCCGTG-3’ (Asp379Ala)  

5’-GGCGCTGTCCTACGATNNSCGTCTGATCG-3’ (His375X) where N = A/T/G/C 

and S = G/C 

The presence of substitutions was verified by DNA sequencing with specific primers at 

the Molecular Resource Facility of Rutgers New Jersey Medical School (Appendix B).  

2.5.2.3 Expression and purification of LDo and E2o 1-176 didomain.  Expression 

and purification of the E2o lipoyl domain (LDo, residues 1-105 in E2o) and E2o1-176 

didomain was as reported earlier for E. coli LDp and E2p1-190 [19,93]. The representation 

of the individual domains that were used for the experiments are described in Figure 2.7. 

To ensure full lipoylation of the LDo and E2o1-176 di-domain, these E2o derived domains 

were lipoylated in vitro by an E. coli protein lipoyl ligase as reported earlier [91]. 

Lipoylation of each E2 derived domain was confirmed by FT-MS (data not shown). 

Figure 2.7 E2o Constructs that were used for the experiments. Each of the constructs 
were expressed separately, and the recombinant proteins were purified before subsequent 
activities were measured. 
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2.5.2.4 Expression and purification of the E2o catalytic domain and its His375Ala 

and Asp374Ala variants. For expression of the CDo, DNA encoding residues 93 – 

404 corresponding to catalytic domain (Figure 2.7) [16], subunit binding domain and 

linker connecting them in wt-E2o was synthesized and was cloned into pD451-SR vector 

by DNA 2.0 Inc. (Menlo Park, CA).  DNA encoding CDo with His6 tag at the C-terminal 

end was introduced into BL21 (DE3) cells (Novagen) and cells were grown in LB 

medium supplemented with 35 µg/mL of kanamycin at 37 oC overnight. 15 mL of the 

overnight culture was inoculated into 800 mL of the LB medium supplemented with 

kanamycin (35 µg/mL) and cells were grown to OD600 of 0.5-0.6 at 37 oC, and then IPTG 

(0.5 mM) was added, and cells were grown for an additional 5 h at 37 oC. The cells were 

then washed with 50 mM KH2PO4 (pH 7.5) containing 0.15 M NaCl and were stored at -

20 oC. The harvested cells were resuspended in 20 mM KH2PO4 (pH 7.5) containing 0.30 

M NaCl, 1 mM benzamidine·HCl, 1 mM DTT, and two protease inhibitor cocktail 

tablets. Cells were treated with lysozyme (0.6 mg/mL) at 4 oC for 20 min and then with 

DNase I (NEB) and Micrococcal Nuclease (NEB) (1,000 units of each) for an additional 

20 min at 4 oC. Cells were disrupted by a sonic dismembrator with 10 s pulse “on” and 30 

s pulse “off” for 5 min.  The supernatant was centrifuged at 30,000 g for 20 min.  The 

clarified lysate was loaded onto a 10 ml Ni-Sepharose 6 Fast Flow column (GE 

Healthcare) pre-equilibrated with 20 mM KH2PO4 (pH 7.5) containing 0.30 M NaCl, 1.0 

mM benzamidine·HCl and 10 mM imidazole. The column was first washed with 35 mM 

imidazole in the same buffer solution. The CDo was eluted with 150 mM imidazole. The 

fractions containing CDo were dialyzed against 2,000 ml of 20 mM KH2PO4, containing 

0.45 mM NaCl and 1.0 mM benzamidine·HCl by overnight at 4 oC. The CDo was 
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concentrated by ultrafiltration with a 10 kDa MW cut off concentrating unit and was 

stored at -80 oC. 

For construction of Asp374Ala and His375Ala CDo variants, the pD451-SR 

plasmid encoding CDo was used as a template, and the amplification primers 5’-

GCGCTGTC-CTACGATGCGCGTCTGATCGAT-3’ (for His375Ala) and 5’-

CTGGCGCTGTCCTA-CGCGCACCGTCTG ATC-3’ (for Asp374Ala) and their 

complements were used for site-directed mutagenesis (the mismatched bases are 

underlined and mutated codons are shown in boldface type). The QuikChange site-

directed mutagenesis kit was used for single-site substitution (Figure 2.7) (Stratagene, La 

Jolla, CA). 

2.5.2.5 Expression and purification of E3.  Expression and purification of E3 was 

carried out exactly following published protocols by the Jordan group [18].  

 

2.5.3 Enzyme Activity Measurement 

Overall OGDHc activity was measured in the reaction assay as reported earlier [13]. For 

OGDHc assembly, E1o in 20 mM KH2PO4 (pH 7.0) containing 0.15 M NaCl was 

assembled with independently expressed E2o and E3 components with a mass ratio of 

E1o:E2o:E3 of 1:1:1 (µg/µg/µg) for 20 min  at 25 oC. Reaction was initiated by 2-OG (2 

mM), or pyruvate (25 mM), or 2-OV (45 mM), and CoA (0.13 mM).  

In the OGDHc assay with CDo and LDo replacing E2o, the E1o (60 µg, 1.4 µM 

subunits) in 50 mM KH2PO4 (pH 7.0) was first preincubated with independently 

expressed CDo or CDo variants (60 µg, subunits 4.9 µg) and E3 (60 µg, 2.9 µM subunits) 

at a mass ratio of 1:1:1 (µg: µg: µg) at 25 oC. An aliquot with 5 µg of E1o (0.11 µM 

subunits) was then withdrawn and was mixed with varying concentrations of LDo in a 
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cuvette containing all components needed for OGDHc assay. After 1 min of equilibration 

at 30 oC, the OGDHc reaction was initiated by the addition of 2-OG (2 mM) and CoA 

(0.13 mM) as above. 

 

2.5.4 Site Saturation Mutagenesis in the E2o Core Domain on the His375 Residue 

Creation of the mutagenic library. 

The site saturation mutagenesis technique was used to create a library at the His375 

position in the E2o core domain using a modified procedure for QuikChange Site 

directed mutagenesis kit and using NNS primers: 

5’-GGCGCTGTCCTACGATNNSCGTCTGATCG-3’ (His375X) where N = A/T/G/C 

and S = G/C. The pCA24N-E2o wild-type plasmid DNA was used as template. A typical 

50 mL reaction contained 10x PfuUltra buffer, dNTP (0.2 mM) and PfuUltra DNA 

polymerase (1U), pCA24N encoding E2o as template, and NNS primers listed above. 

The PCR reaction consisted of 16 cycles at 95 °C for 30 s, 55 °C for 1 min and 68 °C for 

10 min. After the PCR, DpnI was added to the reaction mixture and then PCR product 

was transformed into E. coli BL21 (DE3) competent cells and plated on LB-agar plate 

containing 30mg/ml chloramphenicol and was incubated overnight at 37 oC. The 

transformants were emulsified and stored as 20% glycerol frozen stocks at -80 oC.  

Growth and expression 

The library was plated onto an LB-Agar plate containing chloramphenicol antibiotic 

(50 µg/ml) to obtain single colonies.  Approximately 270 single colonies were picked and 

inoculated into a 96-well plate containing LB medium and chloramphenicol (50 µg/ml) to 

make master plates. The master plates were incubated at 37 oC at 250 RPM. Next, 

duplicate plates were constructed by inoculating (50x dilution) deep well plates that 
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contained 1 ml LB media, chloramphenicol, d,l-lipoic acid (0.3 mM) and IPTG (1 mM) 

for E2o.  The deep-well plates were incubated at 37 oC at 250 RPM. The cells were 

centrifuged at 1600 g and the media was discarded.  The cell pellets were stored -20 oC 

until use. The cell pellets were resuspended and lysed in a buffer containing KH2PO4 (20 

mM), NaCl (0.15 M), DTT (1 mM), protease inhibitor cocktail tablet, lysozyme (1 

mg/ml), DNAse (0.1 mg/ml) and incubated for 1 h at 37 oC. The lysate was centrifuged 

twice at 1600g for 30 min and the clarified supernatant was used for the subsequent steps. 

The E1o and E3 components were over-expressed separately each in 1.6L culture 

medium following published protocols and lysed [18]. The lysates of E1o, E2o and E3 

were reconstituted in a 96 well plate (total volume 300 µl) buffer containing KH2PO4 (20 

mM), NaCl (0.15 M), MgCl2 (1 mM) and ThDP (0.1 mM) in a ratio of 1:2:1 as per 

OD600nm/µl for 1 h and mixed well. The first column on the plate was the wild-type 

OGDHc complex as shown in the Figure 2.8, represented by the screen section. 
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Figure 2.8 Schematic representation of the steps followed for high-throughput screening 
assay.  

 

Screen and validation 

The overall activity was measured in a 200 µl flat-bottomed 96-well plate containing 0.1 

M Tris-HCl (pH 8.0), MgCl2 (1 mM), ThDP (0.1 mM), DTT (2.6 mM), NAD+(2.5 mM), 

CoA (0.13 mM) and substrate OG (5-10 mM). NADH production was measured by the 

initial rate of reaction at 340 nm.  The reaction was initiated using 60 µl of the 

reconstituted complex. The endpoint at 340 nm was measured with a plate reader 

(Spectramax ® M2 UV-Vis) after 2, 5, 7 and 10 min.  

Those E2 variants were chosen that had similar or higher activity than the wild-type       

[(OD 340 final variant x - OD340 initial variant x) / (OD340 final wt - OD340 initial wt)]. The 

candidates were re-screened, and the positive variants were sequenced.   
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The rescreening conditions were identical to the screening assay with a minor 

modification (Figure 2.8, re-screen). First, identified clones were traced back to the 

master plate and re-streaked on an LB-agar plates containing chloramphenicol 

(50 µg/ml). The first column was reserved for wild-type and 2 columns or 16 colonies 

from a single E2-variant were inoculated into a 96 well plate containing LB medium and 

antibiotic. The false positives were discarded (Figure 2.8).  The positive clones were 

sequenced, overexpressed, and purified following the same protocol for E2o as described 

above. Next, the purified E2 variants were reconstituted with purified E1o and E3 and 

kinetic parameters were determined.  

 

2.5.5 Fluorescence Spectroscopy 

To determine the dissociation constant of CoA and succinyl-CoA with the E2o 

His375Trp variant, to the protein (0.24 mg/mL, concentration of active centers of 3.5 

μM) in a mixture of 50 mM KH2PO4 and 50 mM Tris (pH 8.0), containing 0.1 M NH4Cl, 

1 mM DTT and glycerol (1% v/v) was added CoA (3-570 µM) or succinyl-CoA (5-380 

µM), and the fluorescence spectra were recorded after each addition at 25 oC using a 

Cary Eclipse spectro-fluorimeter. The excitation wavelength was 295 nm, and the 

emission spectra were recorded in the range of 300-450 nm in 3 mL quartz cuvettes. The 

Kd values for CoA were calculated using Equation 2.1. 

(Fo – Fi) / Fo = (∆Fmax / Fo[CoA]n) / (S0.5
n + [CoA]n) (2.1) 

where (Fo – Fi) / Fo is the relative fluorescence quenching following the addition of CoA 

or suc-CoA, n is the Hill coefficient, and for n = 1.0, the value of S0.5 is equal to Kd. 
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2.5.6 Reductive Succinylation of the LDo by E1o and OG 

For this experiment, the LDo (100 µM) was incubated with E1o (0.015 µM) in 35 mM 

(NH4)2CO3 (pH 7.5) containing 0.50 mM MgCl2 and 0.1 mM ThDP. The reaction was 

started by addition of 2 mM of 2-OG.  Aliquots of 10 µL were withdrawn at times of                 

5-600 s and were diluted into 1 mL of 50% methanol and 0.1% formic acid to stop the 

reaction. Samples were analyzed by ESI FT-MS. The fraction of succinylated LDo at 

different times was determined by taking a ratio of the relative intensity of the mass of 

the succinylated form to the total relative intensity (sum of unsuccinylated and 

succinylated LDo). The time dependence of this fraction was plotted, and the data were 

fitted to a single exponential (Equation 2.2) using Sigma Plot 10.0. The rate constant was 

calculated from the linear fit to the initial rate conditions. 

f = fo + f1 x (1-e-kt) (2.2) 

 

2.5.7 Succinyltransferase Reaction of the CDo and its His375Ala and Asp374Ala 
Variants in the Reverse Direction 
 
The following protocol outlines simultaneous detection of succinylated and 

unsuccinylated LDo forms when CDo was used as catalyst in the reverse reaction. The 

reaction mixture in 300 µL of the 35 mM NH4HCO3 (pH 7.5) contained the following: 40 

µM LDo lipoylated in vitro; 0.10 mM TCEP to keep LDo in the reduced form; 0.15 mM 

succinyl-CoA, and 0.05 µM CDo. The reaction was started by addition of CDo after 40 s 

of equilibration of the reaction assay and was conducted at 30 oC. Aliquots of 20 µL were 

withdrawn at times of 5-120 s and were diluted into 1 mL of 50% methanol and 0.1% 

formic acid to quench the reaction. Samples were analyzed by ESI FT-MS. The fraction 

of succinylated LDo at different times was determined by taking a ratio of the relative 
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intensity of the mass corresponding to the succinylated form to the total relative intensity 

(sum of intensities for the unsuccinylated and succinylated LDo). The time dependence 

of this fraction was plotted, and data were fitted to a single exponential (Equation 2.2) 

using Sigma Plot 10.0. The rate constant was calculated from the linear fit to the initial 

rate conditions.               

 

2.6 Results and Discussion 

2.6.1 Reductive Succinylation of the Lipoyl Domain by E1o and 2-OG is not the 
Rate-Limiting Step in the OGDHc Reaction 
 
Reductive succinylation of the lipoyl moiety covalently attached to the lipoyl domain on 

E2o is the final step involving ThDP-bound covalent intermediates formed on the first 

E1o component of the OGDHc. It is a concomitant oxidation of the 2-OG derived 

enamine and reductive acylation of E2o (Figure 2.7, for C-terminally truncated E2o 

proteins created by DNA manipulations and employed in these experiments). According 

to Figure 2.6, the S8-succinyldihydrolipoyl-E2o is the product of the reductive 

succinylation of the lipoyl-E2o by E1o and 2-OG [94]. Next, transfer of the succinyl 

group from the thiol ester of S8-succinyldihydrolipoyl-E2o to CoA takes place 

exclusively at the E2o core domain active centers (Figure 2.3), so there is no oxidation–

reduction involved in succinyl transfer, rather it represents a conversion of one thiol ester 

to another. 

 Earlier, an appropriate model reaction was developed [91] to study the rate of 

reductive acetyl transfer from E. coli pyruvate dehydrogenase (E1p) to the lipoyl domain 

of the dihydrolipoyl transacetylase (E2p), which maintains both the chemistry and the 

intercomponent communication due to its specific recognition of E1p [95–97]. The 
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method developed takes advantage of the ability to detect and quantify LD-E2p and 

acetyl-LD-E2p simultaneously in the quenched reaction mixtures using Fourier transform 

mass spectrometry (FT-MS). Analogously, the reductive succinylation of LDo by E1o 

and OG under steady-state conditions here examined provides an appropriate model 

reaction to study the communication between the E1o and E2o components. The LDo 

employed in these studies was fully lipoylated in vitro by E. coli lipoyl protein ligase (see 

Materials and methods), and lipoylation was con- firmed by FT-MS [91]. Two LDo 

forms were identified by FT-MS: an LDo form with mass of 11421.2 Da that correlates 

well with the theoretical mass of LDo = 11420.4 Da, and an LDo form with mass of 

11435.2 Da that differs from the previous form by 14 Da, possibly due to methylation of 

His6-tag as reported in the literature [98]. Both LDo forms could be nearly completely 

reductively succinylated by E1o and OG (>90% succinylation) (Figure 2.9a), leading to 

an LDo form with mass of 11523.2 Da (increase in mass by 102 Da on succinylation, the 

theoretical mass = 11522.4 Da), and LDo form with mass of 11537.2 Da. An average 

(based on three experiments) rate constant of 99 s-1 could be calculated from a steady-

state experiment for reductive succinylation of LDo (see Fig. 2.9a for a typical 

experiment) and was approximately twice as large as the kcat of 48 s-1 determined from 

the overall OGDHc activity measurements in Table 2.1. These data indicate that with a 

sufficient amount of LDo in the reaction assay, the succinyl transfer from E1o to E2o is 

not a rate-limiting step (48 s-1 is kcat for overall activity vs. 99 s-1 for reductive 

succinylation). Importantly, the substrate analogues, 2-OA (kglutarylation = 22 s-1), 2-OV 

(kbutyrylation = 0.0084 s-1), and pyruvate (kacetylation = 0.048 s-1), could also be used by E1o as 

substrates for reductive acylation of LDo; however, their efficiency was lower than that 

with 2-OG (see Figures 2.9a for 2-OG and 2.9b for 2-OA). Finally, this model reaction is 
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an important control to assure that the acyl group derived from 2-OG on E1o could be 

transferred to LDo before acyl-CoA formation in the active centers of E2o and could lead 

to determination of the catalytic rate constants for acyl transfer. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.9 Time dependence of the reductive acylation of LDo by E1o and 2-
oxoglutarate or 2-oxoadipate.  
a. The reductive succinylation of the LDo by E1o and OG. LDo (100 µM), E1o (0.048 µM active centers), 
0.1 mM ThDP, and 0.5 mM MgCl2 in 35 mM NH4HCO3 (pH 7.5) were mixed with 2 mM OG. At time 
interval (5- 240 s), aliquots of 10 µL were withdrawn and were quenched into 1 mL of 50% methanol and 
0.1% formic acid. Samples were analyzed by FT-MS. b. The reductive glutarylation of the LDo by E1o and 
OA. The LDo (100 µM), E1o (0.075 µM active centers), 0.10 mM ThDP and 0.5 mM MgCl2 in 35 mM 
NH4HCO3 (pH 7.5) were mixed with 2.5 mM OA. Samples were analyzed by FT-MS. The relative 
intensity of the acylated versus total LDo (sum of acylated and unacylated) was plotted versus time. The 
trace is a nonlinear regression fit to a single exponential rise to maximum (see Equation 2.3), and the 
dashed line represents a linear fit to initial rate conditions. The rate constants were calculated from the 
initial slope. 
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Table 2.1 Kinetic Parameters of E2o and its Active Center Variants Assembled into 
OGDHc 
 
E2o 

Variant 
OGDHc activity 

a 
(µmol·min-1·mg-

1) 
 

 

kcat 
(s-1) 

kcat/Km 

(M-1 s-1) 
 

E1o- activity b 

(µmol·min-1·mg-1) 
Km, 2-OG 

(mM) 
Km, CoA 

(mM) 

wt E2o 13.7 ± 2.5 
(100%) 

48.0 1.07x106 0.35 ± 0.01 0.05 + 0.011 0.0204 

Thr323Ala 6.2 ± 0.30 
(45%) 

21.7 0.48x106 0.36 ± 0.01 0.095 + 0.03 0.0233 

Thr323Ser 5.9 ± 0.50 
(43%) 

20.7 0.46x106 0.29 ± 0.03 ND ND 

Asp374Ala 
 

Asp374Asn 
 
 

0.28 ± 0.01 
(2.1%) 

1.33 ± 0.03 
(9.7%) 

0.98 
 

4.7 

0.02x106 
 

0.10x106 

0.32 ± 0.02 
 

0.40 ± 0.07 

0.077 ND 

His375Ala 
 

0.29 ± 0.03 
(2.1%) 

1.0 0.02x106 0.30 ± 0.01 0.082 ND 

His375 Cys 
 

His375Asn 

0.13 ± 0.01 
(1.0%) 

0.07 ± 0.01 
(0.5%) 

 

0.46 
 

0.26 

0.01x106 
 

0.006x106 

0.33 ± 0.04 
 

0.44 ±0.01 

  

His375Trp* 8.137 + 0.4 

(59.4%) 

28.8 0.52 x106 0.33 ± 0.04 

 

0.07 + 0.02 0.0133 

His375Gly* 1.76 + 0.15 
(12.6%) 

5.76 0.18 x106 0.37 + 0.08 0.04 + 0.006 0.0206 

Arg376Ala 
 

7.7 ± 0.08 
(56%) 

27.0 0.60x106 0.31 ± 0.04 0.14 + 0.007 0.0198 

Asp379Ala 
 

1.3 ± 0.07 
(9.5 %) 

4.6 0.10x106 0.29 ± 0.01 ND 0.0211 

a) OGDHc was assembled from E1o, indicated E2o variants and E3 at a mass ratio of 1:1:1 (µg: µg: µg). 
Activity was calculated per mg of E1o. No OGDHc activity was detected for E1o or E3 in the absence of 
E2o.  
b) E1o-specific activity of the assembled OGDH complexes was measured in a DCPIP assay and was 
calculated per mg of E1o1. All assays were carried out in triplicates. The E2o* variants are the mutants 
picked on site-saturation mutagenesis. 
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2.6.2 Residues Asp374 and His375 are the key E2o active site residues 

Next, the residue-specific contribution to catalysis of succinyl-CoA formation in the 

active center of the E. coli E2o was studied. Results of this study would be applicable to 

all E2o components due to high sequence identities reported for all E2o core/catalytic 

domains [16,17,19,70,87,88,99]. Putative residues from the active center of the E2o 

involved in succinyl transfer and substrate binding were identified based on the X-ray 

structure of the truncated cubic core of the E. coli E2o, known as the E2o catalytic 

domain (Figure 2.3a) [16,17]. The following E2o active center variants were created to 

determine their individual contributions toward the catalytic efficiency of the OGDHc 

complexes assembled from E1o, E2o (or its active center variants) and E3: Thr323Ala, 

Thr323Ser, Asp374Ala, Asp374Asn, His375Ala, His375Cys, His375Asn, Arg376Ala 

and Asp379Ala (Figure 2.3b, Table 2.1). The activity of the assembled OGDHc variants 

was measured in the overall assay for NADH production and in an E1-specific assay to 

study 2-OG oxidation by OGDHc in the presence of the artificial electron acceptor 2,6-

dichlorophenolindophenol (DCPIP). The E1-specific activity does not need the presence 

of the E2o and E3 components; however, substitutions in E2o could potentially affect 

assembly into OGDHc.  

As shown in Table 2.1, the Thr323 E2o substitutions to Ala or Ser do not 

significantly affect the NADH production as 45% (Thr323Ala E2o) and 43% (Thr323Ser 

E2o) of E2o activities were detected. From these results, it is unlikely that Thr323 in E2o 

is a catalytically important residue, contrary to the suggestion made based on the X-ray 

studies [16]. Similarly, the Arg376Ala E2o substitution led to 56% OGDHc activity 

remaining. In contrast, the Asp374Ala and Asp374Asn E2o substitutions revealed 2.1% 

and 9.7% of OGDHc activity remaining, respectively. Approximately, 9.5% of the 
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OGDHc remaining activity was detected for Asp379Ala substituted E2o (Table 2.1). The 

His375Ala, His375Cys and His375Asn E2o substitutions at the highly conserved 

histidine residue in all 2-oxo acid dehydrogenase complexes, led to 2.1%, 1.0% and 0.5% 

activity remaining, respectively, but did not abolish the OGDHc activity.  

These findings are in  in agreement with data reported from Rutgers earlier for 

amino acid substitutions in His339 for E. coli pyruvate dehydrogenase complex (PDHc) 

which is analogues to His375 in E2o [100]. The activity of the E. coli PDHc was reduced 

to approximately 5.6% with the His399Ala and 2.8% with the His399Cys substitution, 

clearly indicating that cysteine substitution led to a lower activity of both E2’s as 

compared with the Ala substitution [100]. When OGDH complexes assembled with E2o 

and its variants were tested with pyruvate (25 mM) or 2-OV (45 mM) as potential 

substrates for chemo-enzymatic synthesis of acyl-CoA analogues, no NADH production 

was detected, indicating that neither acetyl-CoA nor butyryl-CoA could be produced 

(data not presented).  It is also noteworthy that neither the E1o-specific activity of the 

reconstituted OGDH complexes, nor indeed the complex assembly itself, was affected by 

the indicated E2o substitutions (Table 2.1).  

The following could be concluded: two residues, Asp374 and His375 from the E2o 

active center are catalytically important, as substitution of either residue for Ala impaired 

E2o catalytic efficiency by 54-fold, while a 107-fold reduction was observed for the 

His375Cys E2o variant. Compared to the wild type E2o, the His375Asn substitution 

lowered the catalytic efficiency by 178-fold, while the Asp374Asn E2o substitution 

lowered it by only 11-fold. The rate retardation resulting from Ala substitution of all five 

active center residues here tested is ~125,000 fold [this number represents the product of 

(kcat/Km)wild type / (kcat/Km)variant] for each Ala substituted variant. This number could be 
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compared to the 30,000-fold rate acceleration for acyl transfer between two aliphatic 

thiols reported by Hupe and Jencks in model systems [101]. 

 

2.6.3 Functional importance of Asp374 and His375 in independently expressed E2o 
catalytic domain  
 
An alternative approach to study coupling of the E2o active center with the peripheral 

E1o and E3 components was developed by the Jordan group recently [19].  It employs 

independently expressed E2o catalytic domain (CDo) in combination with a lipoyl 

domain source originated from E2o, such as lipoyl domain by itself (LDo) or C-

terminally truncated E2o proteins, such as E2o1-176 didomain, which consists of LDo, an 

E1o and E3 binding domain (peripheral subunit binding domain, PSBD) and flexible 

linkers connected them (see Figure 2.7). For this approach, first, the functional 

competence of the independently expressed CDo in the overall OGDHc reaction needed 

to be proved.  As shown in Figures 2.10 and 2.11, on mixing of the CDo with varying 

concentrations of the LDo (0-70 µM) (Figure 2.10a), or of E2o1-176 didomain (0 –16 µM) 

(Figure 2.11), with E1o and E3 components to complete the OGDH-like complex, 

production of NADH could be detected. While the rate of NADH production was 

proportional to the concentration of the lipoyl domain source, no evident saturation could 

be reached with either LDo or E2o1-176 didomain. Nor could saturation be reached with 

the Asp374Ala and His375Ala CD variants (Figure. 2.10b, 2.10c). In the absence of 

saturation apparent in Figures 2.10 and 2.11, the values of the second order rate constants 

kcat/Km could be calculated from the initial slope for NADH production: 0.124 x 106 M-1 

s-1 (CDo+LDo domains); 0.192 x 106 M-1s-1(CDo + E2o1-176 di-domain); 0.028 x 106 M-1 

s-1 (CDoAsp374Ala + LDo) and 0.019 x 106 M-1 s-1 (CDoHis375Ala +LDo) in comparison with  
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1.07x106 M-1 s-1 for  E2o by itself (Table 2.2). Again, the catalytic efficiency of 

Asp374Ala and His375Ala CDo variants was 4.4- and 6.5- fold, respectively, lower than 

that for unsubstituted CDo. These results confirm the contribution of Asp374 and His375 

to E2o catalysis. Another important conclusion from this study is that the reaction 

intermediates could be transferred between active centers of E1o, CDo and E3 in the 

presence of lipoyl domain source in the reaction assay with no covalent bond linking 

CDo and lipoyl domain source. This is the second example from Rutgers, as similar 

findings were reported earlier for the E. coli E2p [19]. In support of these striking 

conclusions, the following controls were performed: (i) No OGDHc activity was detected 

for LDo on its own in the absence of CDo; (ii) Negligible or no OGDHc activity could be 

detected for a mixture of E1o, E3 and CDo, but in the absence of LDo, thereby excluding 

any contamination from intrinsic wild-type OGDHc. The results indicate that it will be 

sufficient to use independently expressed E2o domains for future active center 

engineering of E2o. 
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Figure 2.10 Dependence of the OGDHc Activity on Concentration of the Lipoyl Domain 
in the Overall Assay with CDo and LDo replacing E2o.  
a. The E1o (3 µg, 0.028 µΜ  subunits), E3 (3 µg, 0.06 µΜ subunits) and CDo (3 µg, 0.1 µΜ subunits) were 
mixed at a mass ratio of 1:1:1 (µg:µg:µg) in 0.1 M Tris-HCl (pH 8.0) containing MgCl2 (1.0 mM), ThDP 
(0.2 mM), NAD+ (2.5 mM) and different concentrations of the LDo (0-67.5 µΜ) at 30 oC. After 5 min of 
equilibration, the reaction was initiated by OG (2 mM) and CoA (0.13 mM) and NADH production was 
recorded at 30 oC for 5 min. b. The Asp374Ala CDo and LDo were used to replace E2o. c. The His375Ala 
CDo and LDo were used to replace E2o. Condition of experiment for b and c were similar to that presented 
above for a. 
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Figure 2.11 Dependence of the OGDHc activity on concentration of the E2o1-176 
Didomain in the Overall Assay with CDo and E2o1-176 Didomain replacing E2o.  
For experimental conditions, see figure legend to Figure 2.10. 
 

Table 2.2 The Second Order Rate Constants for NADH production in the Overall Assay 
where E2o was substituted by its indicated Catalytic Domain Variants and Lipoyl 
Domain in comparison with E2o 
 

E2o source kcat/Km 
(M-1 s-1)a 
forward direction 

    kcat  
   (s-1)b 
reverse direction 
 

 E2oa 
 

1.07x106     n/a 

CDo+LDo 
 

0.124x106 
 

   19.9 

CDoAsp374Ala +LDo 
 

0.028x106 
 

    1.86 

CDoHis375Ala +LDo 0.019x106      4.9 
 

a Activity was measured in the NADH assay in the physiological direction. bActivity was measured in the 
reverse direction. The concentrations of dihydro-LDo were: 35 µM for Asp374Ala CDo and 40 µM for 
both His375Ala CDo and for wild-type CDo. For details on activity measurement see Materials and 
Methods section.  
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2.6.4 Further evidence for the catalytic importance of Asp374 and His375 from the 
rate of succinyl transfer catalyzed by the E2o catalytic domain 
 
To further substantiate the role of the His375Ala and Asp374Ala substitutions in the 

catalytic domain of E2o, an experiment was designed to study the succinyl transfer per se 

in the reverse reaction as shown in Equation 2.3, enabling us to determine rate constants 

for the reaction taking place in the E2o active center exclusively. A mixture of dihydro-

LDo [LDo reduced by tris(2-carboxyethyl)phosphine, TCEP] and CDo or its variants, 

was reacted with succinyl-CoA according to Equation 2.3 where CDo or variants are the 

catalysts for the reaction. 

 
          CDo  

          succinyl-CoA + dihydro-LDo     succinyldihydro-LDo + CoA 
 

(2.3) 

            
Direct measurement of the masses of dihydro-LDo and succinyldihydro-LDo by 

FT-MS was used to quantify the rate of succinyl transfer from succinyl-CoA to the 

dihydro-LDo. At concentrations of dihydro-LDo (40 µM), succinyl-CoA (0.15 mM), and 

CDo (0.05 µM), the dihydro-LDo is a substrate, CDo is a catalyst, and succinyldihydro-

LDo is a product in Equation 2.3. The reaction was stopped at different times (5–120 s) 

by diluting into 50% methanol and 0.1% formic acid, and the samples were analyzed by 

FT-MS. The ratio of succinyldihydro-LDo / total LDo (the sum of succinyldihydro-LDo 

and dihydro-LDo) was plotted versus time (Figure 2.12a). As seen from Figure 2.12a, 

approximately 60% of dihydro-LDo is converted to succinyldihydro-LDo with a rate 

constant of 19.9 s-1 as calculated from a linear fit to the initial rate of succinyldihydro-

LDo formation (Table 3). It should be noted that some time-dependent formation of 

succinyldihydro-LDo was detected by FT- MS even in the absence of CDo in the reaction 

assay. While this nonenzymatic reaction was insignificant with unsubstituted CDo, the 
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slope of this nonenzymatic reaction was taken into account when rate constants were 

calculated for the His375Ala and Asp374Ala CDo variants (Figure 2.12 b,c). As seen in 

Figure 2.12 and Table 2.2, the rate constant of 1.86 s-1 (Asp374Ala) and of 4.9 s-1 

(His375Ala) was 11 times and 4 times smaller, respec- tively, compared to the rate 

constant of 19.9 s-1 for unsubstituted CDo. A ratio of succinyldihydro-LDo/total LDo of 

~ 0.55–0.60 (reproducible with wild-type and variant CDo’s in Fig. 6) was observed. The 

data above, and presented in Table 2.2, support the conclusion that Asp374 and His375 

are important residues for succinyl transfer in both directions, as they need to be, while 

also suggesting an equilibrium constant near unity for the reaction in Equation 2.3. 
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Figure 2.12 Kinetics of Succinyldihydro-LDo formation by CDo and variants in the 
Reverse Succinylltransferase Reaction. 
a. The dihydro-LDo (40 µM), 0.10 mM TCEP and 0.05 µM CDo in 35 mM NH4HCO3 (pH 7.5) were 
mixed with 0.15 mM succinyl-CoA. The reaction was stopped by addition of 50% methanol and 0.1% 
formic acid and samples were analyzed for the presence of succinyldihydro-LDo and dihydro-LDo by FT-
MS. The relative intensity of succinyldihydro-LDo versus total intensity (sum of succinyldihydro- and 
dihydro-LDo) was plotted versus time. A control experiment was performed in the absence of CDo. b. 
Progress curves of succinyldihydro-LDo formation by Asp374Ala CDo.  The reaction assay in 0.30 ml of 
35 mM NH4HCO3 (pH 7.5) contained the following: 35 µM dihydrolipoyl-LDo, 0.35 mM TCEP and 0.15 
mM succinyl-CoA. After 40 s of pre-incubation, the reaction was started by addition of 0.10 µM 
Asp374Ala CDo. c. Progress curves of succinyldihydro-LDo formation by His375Ala CDo. The reaction 
assay was similar to that in b except of 40 µM dihydrolipoyl-LDo was used. The traces are the nonlinear 
regression fit to a single exponential rise to maximum, and the dashed line represents a linear fit to initial 
rate conditions. For rate constants calculation in b and c, the slope in the control experiment was subtracted 
from that in the experiment. 
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2.6.5 Site saturation mutagenesis on the E2o active center His375 

To gain further insight into the possible role of His375, out site-saturation mutagenesis 

was carried out on this residue and screened for possible variants that display OGDHc 

activity.  

The following His375 variants were identified: His375Trp E2o with a significant 

retention of the overall NADH activity (60%); and His375Gly E2o with significantly 

reduced NADH activity (13%) compared to unsubstituted E2o (Table 2.1). Steady-state 

kinetic experiments revealed an approximately twofold reduction in kcat for the 

His375Trp E2o (29 s-1) and about eightfold reduction for the His375Gly E2o (6 s-1) 

compared to E2o (48  s-1) (Table 2.1; Figures 2.13 a,b,c). No significant changes in 

values of Km with respect to 2-OG or CoA were detected for the variants in comparison to 

the unsubstituted E2o (Table 2.1, Figure 2.14a). To further test whether His375 

participated as a general acid–base catalyst, the pH dependence of the overall NADH 

activity of the His375Trp E2o and of the unsubstituted E2o, both assembled with the E1o 

and E3 components, was com- pared and revealed no difference in their shapes. The 

pKapp for the alkaline limb of the curve was 8.8 for E2o and 8.7 for the E2o-His375Trp 

variant (Figure 2.14b). This parallel behavior of the pH dependence with His or Trp 

effectively rules out an acid–base role for His375.  

As there is no tryptophan residue in the E2o active center, the intrinsic fluorescence 

could be utilized of the newly installed Trp in position 375 of the His375Trp E2o variant 

to determine the nearly equal Kd of CoA (61.2 µM) and succinyl-CoA (47 µM) from 

quenching of fluorescence on addition of either compound (Figure 2.15). As control, the 

E2o experienced no fluorescence quenching, thus also confirming substitution at the 

active center. In view of the modest decrease in kcat/Km with the Trp substitution at 
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a 

b 

c 

position 375, these Kd values are appropriate for the unsubstituted E2o, and indicate 

similar binding affinity of E2o for CoA and succinyl-CoA, where both succinyl and CoA 

moieties appear to contribute to binding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13 Dependence of the NADH production in the OGDHc reaction on 
concentration of the 2-oxoglutarate substrate for the (a) wild type complex, (b) E2 mutant 
His375Trp and (c) His375Gly. 
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Figure 2.14 (a) Dependence of the NADH production in the OGDHc reaction on 
concentration of the Coenzyme A.  
NADH assay with wild type E2o, E2His375Trp and E2His375Gly. 
 
(b) pH dependence of the OGDHc activity for wild-type E2o and His375Trp E2o variant. 
The E1o (3 µg, 0.028 µΜ subunits), E3 (3 µg, 0.06 µΜ subunits), and wild-type E2o (3 µg, 0.1 µΜ 
subunits) or His375Trp E2o were mixed at a mass ratio of 1 : 1 : 1 (µg: µg: µg) in the reaction assay 
containing 0.05 M Tris/HCl, 0.05 M KH2PO4, MgCl2 (1.0 mM), ThDP (0.2 mM), and NAD+ (2.5 mM) 
with pH of the reaction assay varied from 6.28 to 8.5. The reaction was initiated by CoA (0.13 mM) and 
OG (2 mM) and NADH production was recorded at 30 °C for 1 min. The values of activity were plotted to 
a curve defined by one ionizing group according to Equation (2.4). 

log(activity)= log(activitymax) - log (1+10pK1-x) (2.4) 

 

  

a 

b 
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Figure 2.15 Quenching of the intrinsic fluorescence of the His375Trp E2o by CoA and 
succinyl-CoA.  
a. The top panel shows the dependence of the relative fluorescence quenching on the concentration of CoA. 
His375Trp E2o (0.24 mg/mL, concentration of active centers of 3.5 μM) in a mixture of 50 mM KH2PO4 
and 50 mM Tris (pH 8.0) containing 0.15 M NH4Cl, 1 mM DTT and 1% glycerol was titrated with CoA 
(3−570 μM). b. The bottom panel shows the dependence of the relative fluorescence quenching on the 
concentration of succinyl-CoA (5−380 μM). Data points in a and b were fit to Hill Equation (2.1); the lines 
are the regression fit trace. 
 

2.7 Conclusions 

This chapter is directed to an elucidation of the fundamental mechanism of the 

transthioesterification reaction carried out by the E2o of the E. coli OGDHc that would 

be applicable to all E2o components due to high sequence identities reported for the E2 

catalytic domains [16,17,19,70,87,88,99]. Important classes of enzymes carrying out 

similar reactions include inteins in expressed protein ligation [102] and many reactions 
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on the polyketide pathways [103]. Based on the studies, the following important results 

emerged. 

(a) Identification of catalytically important Asp374 and His375 residues of the E2o 

catalytic domain and the rate acceleration provided by these residues. The other residues 

tested displayed much smaller contribution to catalysis. Using the E2o variants 

substituted by alanine at the putative catalytic center for transthioesterification, NADH 

production as a measure of the complex activity indicated that the five residues tested 

accounted for 2.23 (Thr323Ala), 54 (Asp374Ala and His375Ala each), 1.78 

(Arg376Ala), and 11 (Asp379Ala)-fold rate accelerations for a total of ~125,000-fold. 

This is the first identification of partial catalytic rate constants for this important reaction 

and raises the question: Which likely mechanism is consistent with the results?  

 (b) A closer look at the transthioesterification mechanism was provided by the use of 

independently expressed E2o domains (LDo, E2o1–176, and CD) that allowed to the 

conclusion that both Asp374 and His375 are important residues for succinyl transfer in 

both the physiological and in the reverse direction. 

(c) The rate of reductive acylation of LDo by a number of substrate analogues (2-

oxoadipate, 2-oxovalerate and pyruvate) signals that communication between E1o and 

E2o is not fatally compromised by the alternative substrates. The rate constant of 99 s-1 

for reductive succinylation of the LDo by E1o and 2-OG (the rate constant for the 

reaction starting with free enzyme and culminating in reductive succinylation of E2o, 

resulting in formation of S8-succinyldihydrolipoyl-LDo) compared to the kcat of 48 s-1 

(NADH formation by OGDHc). 

 (d) These results raise the question: Which likely mechanism of transthiolacylation is 

consistent with the experimental findings? Based on numerous precedents, there are two 
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prominent likely mechanisms to account for the transfer of acyl group between two thiols 

depicted by the step characterized by the rate constants k6 and k-6 in Figure. 2.6. A 

general acid–base mechanism would suggest that the His375 converts the thiol of the 

attacking nucleophile (CoA-SH) to a thiolate anion (CoAS-) as depicted on pathway B in 

Figure 2.16. The activated thiolate then attacks the carbonyl atom of the 

succinyldihydrolipoyl-E2 to form a tetrahedral intermediate, which is stabilized by the 

hydroxyl side chain of Thr323 [17]. This notion was long accepted based on analogy with 

a mechanism developed for chloramphenicol acetyltransferase (CAT) [69,71,75]. When 

the analogous His195 in chloramphenicol acetyltransferase was replaced by Ala, a 9x105-

fold decrease in kcat and virtually no change in Km was observed, that is, a (kcat / Km)wild-

type CAT/( kcat / Km)His195Ala CAT = 500 000 [19]. In contrast, the (kcat / Km) unsubstituted E2o/ (kcat / 

Km) His375Ala E2o = 54. This difference strongly suggests different functions for the highly 

conserved active center histidine on the two enzymes. 

 

Figure 2.16 Likely mechanisms of succinyl transfer from dihydrolipoamide-E2o                   
to CoA-SH. 
Pathway A: direct attack by the conjugate base thiolate anion of CoASH assuming a low pKa for the 
CoASH, or by the thiol form itself. Pathway B: initial proton transfer from CoASH to His375 forming the 
conjugate base CoAS-, which is the attacking agent. Both pathways then proceed by an oxyanionic 
tetrahedral intermediate consistent with model studies [101]. 
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 As a ‘gold standard’ for acid–base catalysis by a histidine side chain, comparison 

with the much studied His64 at the catalytic triad of the subtilisin family of serine 

proteases, where the His64Ala substitution led to a reduction of 106-fold in kcat/Km, a 

number similar to that observed for CAT [104] is also presented.  

As an alternative to acid–base catalysis, for a protein with a pKa for the cysteine 

thiol group near pH 7.0, one could envision direct attack by a thiolate anion on the thiol 

ester carbon, forming an essentially symmetrical tetrahedral oxyanionic intermediate, in 

which the central carbon atom is flanked by two C–S bonds, where either C–S bond has 

nearly equal probability for cleavage (Figure 2.6, lower left and Figure 2.16 pathway A) 

[101]. It can be suggested that the nearly equal magnitude of the rate acceleration 

provided by the His375 and the Asp374 residues, more likely, reflects their roles in 

stabilizing the oxyanion by two hydrogen bonds (Figure 2.16, pathway A), in other words 

creating a so-called ‘oxyanion hole’.  

It had been demonstrated some years ago that in subtilisin, where a putative 

transition state stabilizing oxyanion hole is created by one main chain hydrogen bond 

donor and one side chain hydrogen bond donor (Asn155), substitution of Asn155 to Leu 

had small effect on the Km but reduced the kcat by a factor quoted as 200- to 300-fold 

[105]. This is very similar in magnitude to the kcat/Km reductions observed (54 for each) 

with the Asp374Ala and His375Ala substitutions reported in this study (again no change 

in Km was observed).  These results also concur with homology modelling studies 

between the enzymes chloramphenicol acetyl transferase and dihydrolipoamide acetyl 

transferase about existence of a His-Asp-Gly consensus in the catalytic core which is 

likely to play an important role [71].  
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While well accepted, it has been difficult to obtain experimental proof for the 

existence of an oxyanion in solution; as an example, proton inventory solvent kinetic 

isotope effect studies, a very subtle method, failed to do so [106].  

The proposed hydrogen bond donation by Asp374 and His375 was tested by 

studying the alternative Asp374Asn substitution in E2o that allows hydrogen bond 

donation similar to His375 (Table 2.1). The His375Asn substitution led to 4.0-fold 

further reduction in the E2o catalytic efficiency (to 0.5% of the remaining activity) 

compared to the His375Ala substitution (to 2.1%). In contrast, the Asp374Asn 

substitution partially rescued the E2o catalytic efficiency (9.7%) compared to Asp374Ala 

E2o (2.1% activity) and suggested that Asp374 is more likely to be involved in hydrogen 

bond formation. The result also raises an important implication that the carboxyl group of 

Asp374 has an unusually elevated pKa as only in the conjugate acid form could it serve as 

a hydrogen bond donor. As this step appears to be part of rate limitation, it can be further 

speculated that the alkaline limb of the two activity–pH profiles (parallel for His375 or 

Trp375), and the deduced pKa of 8.7–8.8 pertains to a highly perturbed Asp374 

environment.  

The His375 residue appears to be more sensitive to substitutions, suggesting a more 

complicated scenario. Therefore site-saturation mutagenesis was carried out on this 

residue and screened for substitution-tolerant active variants. Informatively, the 

His375Trp and His375Gly variants were found to have intermediate activity (60% and 

13%, respectively). Steady-state kinetic analysis of the enzymes harbouring these 

substitutions revealed only modest changes in Km. But, the two-fold decrease in the kcat 

for E2o-His375Trp compared to the wild-type E2o is inconsistent with the earlier 

suggestion that His375 acts as a proton donor for protonation of the leaving group. These 
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results are consistent with studies by McLeish’s laboratory on the ThDP-dependent 

enzyme benzoylformate decarboxylase, where similar changes were observed on site- 

saturation mutagenesis studies based on the active site His281, by finding that the 

His281Phe and His281Trp variants displayed significant activity [107], and also arguing 

strongly against acid–base catalytic activity. Additional argument against an acid–base 

role of His375 is provided by the similar activity–pH profiles of unsubstituted E2o and its 

His375Trp variant.  

Given the results with the E2o- His375Trp variant, assigning a role to the His375 

side chain need to be done cautiously: rather than a direct participation in a hydrogen 

bond as suggested in Figure 2.16, perhaps the imidazole ring provides a physical barrier 

protecting the hydrogen bonding unit, a role that could also be played by the indole side 

chain of Trp. Of course, there is also the possibility that the indole NH of Trp375 is the 

hydrogen bond donor for oxyanion stabilization.  

Using a variety of experiments, the accumulated evidence allowed the conclusion 

that the rate-limiting step on OGDHc is succinyl transfer to CoA in the E2o active center. 

In contrast, on the E. coli PDHc, the rate-limiting step is the initial addition of substrate 

to the E1p component forming the first covalent pre-decarboxylation intermediate [26]. 

The results also provide crucial information for further engineering of the E2o component 

for producing a variety of acyl-CoA analogues. 
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CHAPTER 3 

ENGINEERING 2-OXOGLUTARATE DEHYDROGENASE TO A 2-OXO 
ALIPHATIC DEHYDROGENASE COMPLEX BY OPTIMIZING 

CONSECUTIVE COMPONENTS 
 

3.1 Introduction 

Multienzyme complexes are attractive for one-pot sequential step chemical synthesis of 

complex molecules.  Enzymes catalyze reactions with high yield and enantioselectivity 

under mild conditions [108–112], which makes them desirable for fine chemical, 

pharmaceutical, and agricultural industries [59,113]. Next, they facilitate the formation 

enzyme-substrate complex for improved catalytic efficiency. For example, the substrate 

is channeled from one catalytic center to the next one. This prevents intermediates from 

diffusing into the cytoplasm. Furthermore, cellular damage is avoided, which may be 

caused from toxic byproducts [114,115].    

Multienzyme complexes are found in conserved metabolic pathways across all 

kingdoms [116]. It is believed that their primitive ancestors were once promiscuous. They 

performed a multitude of bond forming/breaking reactions with a variety of mechanisms 

[116,117].  Hence, a relatively small set of enzymes supported numerous pathways to 

sustain life.   As time marched forward, gene duplication and divergence led to enzymes 

with exquisite catalytic efficiency in particular metabolic pathways [118]. Therefore, 

metabolic pathways have been reprogrammed for survival of the organism. This 

necessitates conversion of a specialist for a particular substrate to a generalist with broad 

substrate specificity, then back to a specialist with a new function.  Optimizing a 

multienzyme complex requires engineering the component for each individual reaction, 
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which may include two or more proteins. This can be achieved via laboratory or directed 

evolution, which have become the method of choice for protein design [44,119–122].   

The Escherichia coli 2-oxoglutarate dehydrogenase (OGDHc) multienzyme 

complex was converted into a 2-oxoaliphatic acid dehydrogenase with broader substrate 

specificity.  The natural substrate for OGDHc is 2-oxoglutarate (2-OG) and the enzyme 

was engineered to accept 2-oxovalerate (2-OV) (Figure 3.1).  

 

 

Figure 3.1 Substrate structures. 

 

The OGDHc catalyzes a rate-limiting step in the Krebs cycle and it belongs to the 

super-family of 2-oxo acid dehydrogenase complexes [3,12].  The Krebs cycle 

commences with condensation of oxaloacetate with acetyl-Coenzyme A, the latter being 

a product of the pyruvate dehydrogenase member of the super-family, while pyruvate is 

the end product of glycolysis.  OGDHc is composed of three components: (1) the thiamin 

diphosphate (ThDP)-dependent 2-oxoglutarate dehydrogenase/decarboxylase (E1o, EC 

1.2.4.2, 105 kDa/subunit), (2) dihydrolipoylsuccinyl transferase (E2o, EC 2.3.1.6, 45 

kDa/subunit), and (3) dihydrolipoyl dehydrogenase (E3, EC 1.8.1.4, 55 kDa/subunit). In 

E. coli, E1o and E3 exist as homodimers. The E2o component is a trimeric multidomain 

protein, starting with the amino terminal end a flexible lipoyl domain (LDo), followed by 
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a long mostly unstructured subunit binding domain for assembly with E1o/E3, then a 

central nexus catalytic core domain (CDo).  The proposed complex  contains 12 E1o: 24 

E2o :12 E3 (total mass of 2.5 MDa) [6,7].  The OGDHc has three substrate specificity 

checkpoints: one is in E1o and other two in E2o (CDo and LDo)[13].  The overall 

reaction of OGDHc proceeds according to Equation 3.1.  While the detailed reactions 

proceed by a succession of reactions (Equations 3.2-3.5). 

 

2-OG + CoASH + NAD+succinyl-CoA + CO2 + NADH + H+ (3.1) 

RC(=O)COOH  + E1o-ThDP  CO2 + E1o-ThDP=C(OH)R   (an enamine) (3.2) 

E1o-ThDP=C(OH)R + lip(S-S)-E2o  E1o-ThDP + RC(=O)S-lip(SH)-E2o (3.3) 

RC(=O)S-lip(SH)-E2o  + HS-CoA  R(C=O)-S-CoA + lip(SH)2-E2o (3.4) 

lip(SH)2-E2o + E3-FAD + NAD+  lip(S-S)-E2o + NADH + H+  + E3-FAD (3.5) 
 
[R = -(CH2)2-COOH, ThDP = thiamin diphosphate, lip(S-S) = oxidized lipoate on E2o, 
lip(SH)2 = reduced lipoate] 
 

The OGDHc controls the carbon flux through the Krebs cycle [2].  OGDHc 

catalyzes formation of CoA linked thioesters via trans-thioesterification, which makes it a 

suitable candidate for green chemical synthesis. Thioesterification reactions are of 

importance in both organic chemistry and chemical biology[123,124]. For example, they 

are found in antibiotics and natural products [36,125].  Thioester  derivatives are also 

useful for the synthesis of heterocyclic compounds and molecules containing carbonyl 

functional groups[126–128]. Hence, thioester synthesis is essential in the industrial, and 

pharmaceutical industries. Traditional thioester synthesis requires an acyl source 

available from carboxylic acids, acid anhydrides, or acid chlorides. The reaction 

conditions are harsh and energy intensive, often requiring strong bases, long reflux 
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conditions, and toxic heavy metals[41].   Thus, recombinant engineered OGDHc may be 

provide a green alternative method to chemical synthesis of acyl-CoenzymeA thiolesters.  

The Escherichia coli OGDHc was converted into a 2-oxoaliphatic acid 

dehydrogenase. The natural substrate for OGDHc is 2-OG. The E1o and E2o of the 

complex were engineered to accept 2-oxovalerate (2-OV) (Figure 3.1). The E1o 

His298Asp variant was identified from saturation mutagenesis libraries to be active 

towards 2-OV. The catalytic efficiency of E1o His298Asp variant increased 4.4-fold for 

2-OV, while a 1200-fold decrease for 2-OG resulted in the E1o-specific assay (assay with 

DCPIP, 2,6-dichlorophenolindophenol)[13]. However, when the E1o-His298Asp was 

reconstituted with wt-E2o and E3, it did not display overall activity (NADH production) 

with 2-OV.  Mass spectrometric evidence showed that wild-type and E1-His298Asp 

transfers the ThDP-bound decarboxylated intermediate of 2-OG or 2-OV to the E2o 

lipoyl domain (Equation 3.2). However, the lack of overall activity for 2-OV indicated 

that butyryl-coenzyme A was not formed in the E2o-CD. Hence, the reaction was halted 

in the E2o-LDo at the S8-butyryldihyrdolipoyl-E2o intermediate. It became evident that 

the E2o-CD active center required engineering to complete the reaction.  The X-ray 

structure of the E. coli E2o-CD indicated that the residues Ser330, Ser333 and His348 

may interact with the succinyl carboxylate of the LDo substrate intermediate[16,17] 

(Figures 3.2a, 3.2b). The side chains of Ser330, Ser333, and His348 were proposed to 

form a hydrogen bond with the terminal carboxylate of the 2-OG.  Amino acid 

substitutions at these positions may result in accepting a hydrophobic substrate (Figure 

3.2b). Hence, these amino acids were targeted for saturation mutagenesis. The libraries 

were screened for overall activity with 2-OV and E2o-Ser333Met, E2o His348Phe, E2o 

His348Gln and E2o His348Tyr were identified to be active towards 2-OV.  In addition, 
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the variant complexes could also accept a larger and more hydrophobic substrate, 2-oxo-

5-hexenoic acid (2-OHe) (Figure 3.1).  

 

 

 Figure 3.2 E2oCD structure and active site.  (a) The E2o-core depicted as a trimer with 
the surface area shown.  
The ribbons of three colors cyan, red and green represents chains a, b and c respectively (PDB id: 1c4t).  
 
(b) The active-site binding pocket of the E2oCD trimer is represented. Ser330, Ser333 
and His348 are shown to be lining the active site.  
S8-succinyl dihydrolipoamide (ligand) was docked into the active site pocket of the E2oCD (receptor). The 
docking calculations were performed with AutoDock Vina v.1.1.2  using Chimera to visualize [129,130]. 
The terminal carboxylate oxygen of S8- succinyl dihydrolipoamide is at a distance of 3.2 Å from the 
His348 imidazole-N(3) and 2.7 Å from the Ser333 sidechain-OH. 

 

3.2 Materials and Methods 

3.2.1 Reagents 

Dithiothreitol (DTT), 2-oxoglutarate (2-OG), 2-oxovalerate (2-OV), butyryl-CoA were 

from Sigma Aldrich (St. Louis, Mo). NADH, CoA, isopropyl-β-D-thiogalactopyranoside 

(IPTG), DNase I, Micrococcal Nuclease, DL-α-lipoic acid and ThDP were from 
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Affymetrix (Cleveland, OH). Protease inhibitor cocktail tablets were from Roche 

Diagnostics GmbH (Germany). Ni Sepharose 6 Fast Flow and HiPrepTM 26/60 

SephacrylTM S-300 HR column were from GE Healthcare (Pittsburgh, PA). QuikChange 

Site-Directed Mutagenesis Kit was from Agilent Technologies (Santa Clara, CA).  

Primers for site-saturation mutagenesis were from Fisher Scientific (Pittsburgh, PA). E. 

coli strain JW0715 containing the pCA24N plasmid encoding the E1o component and 

JW0716 containing pCA24N plasmid encoding the E2o component were obtained from 

National Bio Resource Project (NIG, Japan). AG1 cells (Agilent Technologies) were 

used as host cells. DNA sequencing was carried out by Molecular Resource Facility at 

New Jersey Medical School, Rutgers University. 

 

3.2.2 Creation of the saturation mutagenesis library and screen 

Site-directed saturation mutagenesis libraries for E2o at positions Ser330, Ser333 and 

His348 were constructed using a modified QuikChange procedure, very similar as 

described in Chapter 2. A typical 50 µL reaction contained 10x PfuUltra buffer, dNTP 

(0.2 mM) and PfuUltra DNA polymerase (1U), pCA24N encoding E2o as template, and 

NNS primers listed as in Table 3.1. The PCR reaction consisted of 16 cycles at 95 °C for 

30 s, 55 °C for 1 min and 68 °C for 10 min. After the PCR, DpnI was added to the 

reaction mixture and then PCR product was transformed into E. coli BL21 (DE3) 

competent cells and plated on LB-agar plate containing 30µg/ml chloramphenicol and 

was incubated overnight at 37 oC. The transformants were emulsified and stored as 20% 

glycerol frozen stocks at -80 oC. The libraries were restreaked on an LB-Agar plate with 

chloramphenicol antibiotic.  

 



65 
 

Table 3.1 List of Primers used for Saturation Mutagenesis 

Primersa Sequenceb 

Ser330X 5’- GGTGGTGTGTTCGGTNNSCTGATGTCTACGCCG -3’ 

Ser333X 5’- GGTTCCCTGATGNNSACGCCGATCATCAACCCG -3’ 

His348X 5’- GCGCAATTCTGGGTATGNNSGCTATCAAAG -3’ 

a X represents any amino acid. 
b N refers to an equal mixture of A, T, G and C; S refers to an equal mixture of G and C.  
 

E2o libraries (Ser330X, Ser333X and His348X) were screened.  First, a sample 

from the frozen stock of each of the E2-libraries was applied onto an LB-Agar plate 

containing 30 µg/ml chloramphenicol. Next, approximately 270 colonies of each library 

were picked onto a 96-well plate (200 µl volume) containing LB media with 30 µg/ml 

chloramphenicol and shaken overnight at 250 rpm and 37 oC. The first column was 

inoculated with wt-E2o single colonies as control. The plates were covered with 

breathable cover films to minimize evaporation. Next, the plate was replicated into 96 

deep-well plate (2 ml volume) containing 1 ml LB media, 30 µg/ml chloramphenicol, 0.3 

mM lipoic acid and 1 mM IPTG. This master plate was stored at -80 oC.  The plates were 

induced for 16 h at 250 rpm, at 37 oC in triplicates.  The OD600nm/µl was normalized for 

the culture and the cells were harvested by centrifugation at 2000 g for 15 min at 4 oC. 

The residual supernatant was discarded, and the cell pellets containing the expressed 

mutant proteins were frozen at -20 oC. 

The cell pellets were resuspended in 300 µl lysis buffer (20 mM KH2PO4, 0.2 M 

NaCl, 1 mM DTT, 1 mM benzamidine-HCl), protease inhibitor (2 tablets/50 ml), 

lysozyme (1 mg/ml), DNAse (0.1mg/ml) and incubated for 40 min at 37 o C. After 

incubation, the suspension was centrifuged at 2000 g for 25 min at 4 oC. The supernatant 
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was used as the E2-lysate for assembly and the pellet was discarded. All subsequent steps 

were performed on ice. 

The complex was assembled by the following procedure. E1o and E3 expression 

was previously described and cell lysates were used in the assay[13,18]. The expression 

was based on cell density and normalized. The lysates of E1o, E2o and E3 were 

reconstituted in a 96 deep-well plate (2 ml volume). The total reaction volume was 300 µl 

[240 µl E1:E2:E3 of 1:2:1 (v:v:v);  60 µl buffer (20 mM KH2PO4, 0.2 M NaCl, 1 mM 

MgCl2 and 0.2 mM ThDP)]. The first column was E1o-His298Asp/E2o/E3 for control. 

The plate was mixed on a plate shaker for 10 min at room temperature and stored on 4 oC 

for 30 min.    

The activity assay volume was 200 µl.  The wells contained 135 µl of assay buffer (0.1 M 

Tris-HCl (pH 8.0), 0.15 M NaCl, 1 mM MgCl2, 0.2 mM ThDP, 2.6 mM DTT and 2.5 

mM NAD+). Next, 50 µl was transferred from the above lysate solution to each well. The 

plates were equilibrated at 30 oC. Then, the reaction was initiated using 0.13 mM CoA 

and 10 mM 2-OV. Next, the endpoint (2, 5, 7, and 10 min) was measured at 340 nm at 30 

oC. The plate contents were mixed between readings.  Positive clones were identified as 

those that were 20 % above the control lane.  

A rescreen was performed to eliminate false positives. The positive clones were 

streaked on an LB-agar plate containing chloramphenicol (30 µg/ml) from the 

corresponding master plate.   The plate was incubated for 12 h at 37 oC. 16 colonies were 

picked for each positive clone and they were placed into a 96-well plate (200 µl volume) 

containing LB media with chloramphenicol (30 µg/ml). Wild-type E2o was used on the 

same plate as the control. The activity procedure is similar to the screening assay. The 
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His348X library screen identified eight positive clones which were re-screened and 

sequenced (Figure 3.3). The positive variants from the preliminary screen was validated 

in a rescreen. The graph represents end-point absorbance at 340nm plotted with time. 

Each point is an average of 16 E2 colonies for each clone reconstituted with E1o-H298D 

and E3. The complex formed with wild-type E2o (E1o-H298D: E2o: E3) was used as 

control.  The complexes containing E2o-His348Phe, E2o-His348Gln and E2o-His348Tyr 

were expressed and purified to verify the screening results. One positive clone was 

identified from Ser333X library. Sequencing revealed the variant to be Ser333Met. 

However, No positive clones were identified from the Ser330X library that were active 

towards 2-OV. 

 

Figure 3.3 Rescreen of E2His348X library.   
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3.2.3 Expression and purification of E1o, E2o, E3 and variants 

E1o, E2o, E3 and variants were expressed and purified following published procedures 

[13,18,90]. 

 

3.2.4 Enzyme activity measurements. 

Overall activity was measured in triplicate with purified proteins.  The kinetic parameters 

were determined following published procedures [13,90].  The E1o/E2o/E3 ratios were 

optimized at substrate saturation conditions prior to determining the kinetic parameters of 

the OGDHc variant complexes.  The mass ratios (µg: µg: µg) for E1o-His298Asp:E2o-

His348Phe:E3, E1o-His298Asp:E2o-His348Gln:E3, and E1o-His298Asp:E2o-

His348Tyr:E3, were 1:8:1, while E1o-His298Asp:E2o-Ser333Met:E3 was 1:10:1. 

 

3.2.5 Modelling of solvent accessible surface 

The solvent accessible substrate binding channel was generated by the 3 V (Voss-

Volume-Voxelator) server. First, the structure of E2o CDo was prepared by deleting all 

non-standard and non-complexed residues using the UCSF Chimera tool. This structure 

was entered as input in the 3V server. The outer probe radius was set to 9 Å and the inner 

probe radius was set to 1.5 Å. The final solvent accessible volume was generated as a 

solid surface accessing into the protein substrate binding pocket. The server also gives 

output about the volume and surface area of the binding channel [131]. This is an mrc file 

extension, which is viewable in the UCSF Chimera software.  

Further, the Rotamer tool in Chimera was used to generate the mutants in the E2o 

active site. The amino acid substitution calculations provide results with a number of 

orientations of the side chain with the corresponding probability. The orientation with the 
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maximum probability in the active site pocket without the substrate bound is chosen. This 

conformer is further overlaid with the wild-type E2o chain, to generate any visual 

changes in the active site pocket.  

 

3.2.6 Receptor-ligand docking of substrate into E2oCD with Chimera 

Ligand 

The ligand (S8-succinyl dihydrolipoamide) was created using Chemdraw Ultra 12.0 

software. Next, the translated canonical SMILE string of the 2D structure was used to 

generate a 3D structure of the ligand with a -1 charge.  This structure was saved as mol2 

file and used as ligand for docking.  

Receptor 

The receptor (E2oCD) was obtained from RCSB PDB (1c4t). First, the nonstandard and 

unbound solvent atoms were removed from the structure. Then, the Dockprep tool was 

used on the receptor to minimize the structure. The necessary hydrogens and charges 

were added. This structure was saved into a new PDB file and used for docking. 

Docking 

The Autdock Vina plugin was used to perform the docking. The search volume was set 

for a cube with edge length 15Å.  The cube occupied the proposed active site pocket. The 

docking results returned 10 possible orientations of the ligand with the receptor. The 

orientations were scored based on the energy (kcal/mol) and RMSD values. The 

orientation of the ligand with the highest score with respect to the receptor was chosen.  
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3.2.7 Enzymatic synthesis of the butyryl-CoA by OGDHc assembled from 
His298Asp E1o with E2o variants with substitutions in the trans-thiolacylation 
active center, and with E3 
 
For enzymatic synthesis of the butyryl-CoA, the E1oHis298Asp was reconstituted with 

E2o variant (His348Phe, His348Tyr, His348Gln or Ser333Met) and E3. The complex 

was assembled in 0.1 mL buffer containing 0.1M Tris (pH 7.5)0.3M NH4Cl, 0.5 mM 

ThDP and 2.0 mM MgCl2. For OGDHc assembly, the His298Asp E1o (0.035 mg) was 

mixed with the E2o variant (0.24 mg) and E3 (0.059 mg) at a mass ratio of 1: 6.9: 1.7, a 

ratio that was selected from kinetic experiments where NADH production by the variant 

complexes from 2-OV was measured at OD340. After 30 min of incubation of the 

assembled components at 25 oC, the reaction medium containing 0.1M Tris.HCl (pH 8.0), 

0.5 mM ThDP, 2.0 mM MgCl2, 2.6 mM DTT and 2.5 mM NAD+ was added to each 

reaction mixture to a total volume of 0.4 mL. Next, 2-OV (4 mM final concentration) was 

added to each reaction mixture followed by equilibration for 1 min at 30 oC in a 

thermomixer (Eppendorf).  The enzymatic reaction was initiated by addition of CoA (300 

µM final concentration).  After one h or overnight incubation at 30 oC, the samples were 

acidified to pH 2.0  by additon of 2.5% trifluoroacetic acid (TFA) to a final concentration 

of 0.1%  and were filtered through a 10-kDa membrane (Amicon Ultra-0.5 mL 

centrifugal filters, Millipore Sigma) to separate  proteins from the reaction mixture.  

The CoA esters were purified by solid phase extraction with Sep-Pak® Vac tC18 

cartridges (Waters) equilibrated with 0.1% TFA[132]. Briefly, the cartridges were 

washed with 3 vol of 0.1% TFA (v/v) and CoA esters were eluted with 0.1% TFA 

containing 50% acetonitrile (v/v). Solvent was partially removed by centrifugation on a 

Speed-Vac concentrator. The samples were concentrated to a volume of ~100 µL. 
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3.2.8 Analysis of product using MALDI TOF/TOF Mass Spectrometry 

Butyryl-CoA (Sigma Aldrich) and CoA (Sigma Aldrich) were used as external standards. 

The matrix was CHCA (α-cyano-4-hydroxycinnamic acid from Sigma) which was 

dissolved in 70% acetonitrile/0.1% TFA. Approximately 1 µL of the sample was 

withdrawn and was mixed with1 µL of α-cyano-4-hydroxycinnamic acid matrix in the 

tube and then 1µL of the mixture was spotted on the plate. The samples were analyzed 

with a 355 nm laser in the negative mode on the ultrafleXtreme MALDI TOF/TOF 

spectrometer (Bruker Daltonics, Bremen, Germany).  For each spectrum, 5 subspectra 

with 400 laser shots with 400 Hz frequency were acquired. The spectra were analyzed 

using flexAnalysis 3.0 software (Bruker Dlatonics, Bremen, Germany) and were 

smoothed using by the Savitzky-Golay algorithm after the baseline subtraction. 

 

3.3 Results and Discussion 

This is the first report in which the 2-oxoglutarate dehydrogenase complex is converted 

into a 2-oxo aliphatic dehydrogenase complex by consecutive engineering of the E1o and 

E2o components. The natural substrate for OGDHc is 2-OG, which contains a terminal 

carboxylate group.  Variants of the multienzyme complex were screened for overall 

activity towards 2-OV, which has a terminal methyl group (Figure 3.1). We were able to 

bypass the three stages of substrate recognition, namely the E1o active site, the lipoyl 

domain of E2o, and the catalytic domain of E2o.  

The E2o variants were overexpressed, purified, and assembled with E1o-His298Asp 

and E3. The kinetic parameters were evaluated for the 2-OV.  Wild-type E1o/E2o/E3 

does not show detectable overall activity (NADH production) towards 2-OV.  Previously, 

E1o-His298Asp was demonstrated to be active for 2-OV in an E1o-specific assay.  
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However, E1o-His298Asp/E2o/E3 does not show overall activity towards 2-OV[13].  

This indicated additional engineering at E2o was required for altering substrate 

specificity in the overall reaction. The residues Ser330, Ser333, and His348 were 

proposed to be important in substrate recognition in E2o[16]. Hence, saturation 

mutagenesis libraries of these residues were constructed (E2-Ser330X, E2-Ser333X or 

E2-His348X) and assembled with E1o-His298Asp and E3, and the overall activity was 

screened with 2-OV.  Positive clones were identified that displayed approximately 20% 

activity above the wild-type control for 2-OV. The E2o variants with the His348Phe, 

His348Tyr, His348Gln, or Ser333Met substitution were identified in the screen to be 

active towards 2-OV in the overall activity assay (NADH formation). 

 

3.3.1 Computational analysis of substrate channel and surface-volume 
measurements 
 
There are three proposed binding sites in the trimer.  Each site is formed at the interface 

of two monomers[9,16]. For example, the cyan and green E2o CD monomers together 

form the substrate binding pocket and the water accessible volume is represented in solid 

magenta (Figure 3.4). The substrate accessible volume was computed by rolling a 1.5 Å 

sphere, and it is represented in a magenta solid (Figure 3.4) [131].  The volume was 

determined to be 2265 Å3 of the wt-E2o CD (Figure 3.4A). E2o His348Phe and 

His348Tyr have similar volume when compared to wt-E2o CD (Figure 3.4B and 3.4D).  

On the other hand, the E2o CD His348Gln and Ser333Met variants have smaller volumes 

of 18 Å3 and 90 Å3, respectively (Figure 3.4C and 3.4E).  

 The ligand S8-succinyl dihydrolipoamide (SLM) was modelled substrate binding 

channel of E2oCD and its variants. The H-bond distances were calculated between the 
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amino acid side chains of residue lining the active site pocket of the receptors (E2oCD) 

and terminal carboxylate of SLM. The wild type E2oCD was docked with SLM as 

control (Figure 3.5A).  

It has been proposed that the His348 and Ser333 residues are able to identify the 

terminal carboxylate of SLM by forming a H-bond [16]. The wild type docking results 

show that the distances of the carboxylate of SLM and the His348-N2 and Ser333-0H is 

3.2 Å and 2.7 Å, respectively (Table 3.2).  These distances fall under moderately strong 

H-bond category. 

The side chains for E2oCD-His348Tyr side chains of residues are 3.4 and 3.0 Å for 

Tyr348 and Ser333, respectively (Figure 3.5D, Table 3.2). Also, kinetic experiment 

results show that E2oCD-His348Tyr is the most active variant (kcat/Km: 38.5% with 

respect to the wt-E2oCD) towards 2-OG. This variant has similar hydrogen bond 

distances and binding site volume.  Hence, it is most active for 2-OG. 

 The side chains for E2oCD-His348Phe are 4.6 and 3.1 Å for Phe348 and Ser333, 

respectively (Figure 3.5B, Table 3.2). The Van der Waals volume of Phe side chain (135 

Å3) is slightly larger than His (118 Å3). Phe fulfills a volume constraint, which is 

accompanied by lower catalytic efficiency (28% of wt-E2oCD).   

The side chains for E2oCD-Ser333Met side chains are 3.5 and 4.0 Å for His348 and 

Met333, respectively (Figure 3.5E, Table 3.2). Moreover, the side chains for E2oCD-

His348Gln are 3.4 and 4.7 Å for Gln348 and Ser333, respectively (Figure 3.5C, Table 

3.2). The substrate-channel volumes decrease by 90 Å3 and 18 Å3 for both Ser333Met 

and His348Gln variants. This decrease is attributed to a change in the orientations of the 

amino acids side chains at position 333 for both the mutants which is reflected in a poor 

interaction with the substrate (Table 3.2). A cumulative unfavorable environment leads to 
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a decrease in catalytic efficiency (24% and 17% w.r.t. wt-E2oCD) for both Ser333Met 

and His348Gln variants. 

  

Table 3.2 Comparison of E2oCD Amino Acid Side Chain Distances with Catalytic 
Efficiency towards 2-OG 
 
 

E2oCD substitution kcat/Km, 2-OG 
(M-1s-1) 

Residue 
348a (Å) 

Residue 333b  
(Å) 

none 
 

875 x 103 

(100%) 
3.2 2.7 

His348Tyr 
 

337.5 x 103 
(38.5%) 

3.4 3.0 

His348Phe 
 

244 x 103 
(28%) 

4.6 3.1 

Ser333Met 
 

210 x 103 
(24%) 

3.5 4.0 

His348Gln 
 

149 x 103 
(17%) 

3.4 4.7 

a Denotes the distance between terminal carboxylate of S(8)-succinyl dihydrolipoamide and side chain of 
the respective residue at position 348. 
b Denotes the distance between terminal carboxylate of S(8)-succinyl dihydrolipoamide and side chain of 
the respective residue at position 348. 
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Figure 3.4 The solvent-accessible substrate channel modelled into the trimeric E2oCD. 
The substrate channel is shown in magenta. The trimer is represented by three different ribbon colors (red, 
green and cyan). Only one of the available three channels have been represented. S330, S333 and H348 are 
depicted as grey spheres. A. Wild type; B.His348Phe; C. His348Gln; D. His348Tyr; E. Ser333Met. 
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Figure 3.5   The active-site binding pocket of the E2oCD trimer and its variants docked 
with the substrate is represented.  



77 
 

S8-succinyl dihydrolipoamide (ligand) was docked into the active site pocket of the 

E2oCD (receptor) and variants: A. wildtype E2oCD B. E2oCD-His348Phe C. E2oCD-

His348Gln D. E2oCD-His348Tyr E. E2oCD-Ser333Met. The docking calculations were 

performed with AutoDock Vina v.1.1.2  using Chimera to visualize [129,130]. The 

distances between the terminal carboxylate oxygen of S8- succinyl dihydrolipoamide and 

nearest the side-chain atom of the corresponding amino acid receptor has been shown.  

 

3.3.2 Assembly of E1o-His298Asp/E2o-variants/E3 complex active with 2-OV 

The overall activity ratio for the [E1o-His298Asp/E2o-His348Gln/E3]2-OV, [E1o-

His298Asp/E2o-Ser333Met/E3]2-OV, [E1o-His298Asp/E2o-His348Tyr/E3]2-OV, [E1o-

His298Asp/ E2o-His348Phe/E3]2-OV, were 1.8%, 2.1%,, 3.0%  and 5.6%, respectively, 

when compared to [E1o-His298Asp/E2o/E3]2-OG (Table 3.3).  E1o-His298Asp and E3 

assembled with E2- His348Phe, E2- His348Gln, or E2- His348Tyr had a Km between 

0.01- 0.05 mM (Figures 3.6 a,b; 3.7a,b; 3.8a,b and 3.9a,b). On the other hand, the Km for 

E1o-His298Asp/E2o/E3 could not be determined because it has no activity towards 2-

OV.   
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Table 3.3 Kinetic Characterization of the Different Complexes with Substrates 2-
Oxoglutaric Acid, 2-Oxovaleric Acid and 2-Oxo-5-Hexenoic Acid (continued) 
 

2-oxoglutaric acid 
 

E2 substitution Overall activity 
(µmol/min/mg E1) 

Km 
(mM) 

kcat 
(s-1) 

kcat/Km 
(M-1s-1) 

nonea 

 
18.2 + 0.6 

(100%) 
0.04 + 0.01 35 875 x 103 

 
noneb 

 
5.35 + 0.11 (29.4%) 0.03 + 0.007 21.1 703.3 x 103 

His348Pheb 
 

2.06 + 0.04 (11.3%) 0.03 + 0.011 7.32 244 x 103 

His348Glnb 
 

2.94 + 0.1 (16.1%) 0.07 + 0.01 10.45 149.3 x 103 

His348Tyrb 
 

1.90 + 0.02 (10.6%) 0.02 + 0.005 6.75 338 x 103 

Ser333Metb 
 

2.37 + 0.03 (13.02%) 0.042 + 0.01 8.4 210 x 103 

 

 

 

 

 

 

2-oxovaleric acid 
 

E2 substitution Overall activity 
(µmol/min/mg E1) 

Km 
(mM) 

kcat 
(s-1) 

kcat/Km 
(M-1s-1) 

nonea 

 
No activity detected - - - 

noneb 
 

No activity detected - - - 

His348Pheb 
 

0.30 + 0.1 0.01 + 0.004 0.81 81 x 103 

His348Glnb 
 

0.096 + 0.03 0.05 + 0.01 0.34 6.8 x 103 

His348Tyrb 
 

0.161 + 0.02 0.01 + 0.007 0.57 57 x 103 

Ser333Metb 
 

0.107 + 0.006 0.08 + 0.012 0.38 4.7 x 103 
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Table 3.3 (continued) Kinetic Characterization of the Different Complexes with 
Substrates 2-Oxoglutaric Acid, 2-Oxovaleric Acid and 2-Oxo-5-Hexenoic Acid 
 

 
a Wild type E1o/E2o/E3 in a mass ratio of 1:1:1 (µg: µg: µg). 
bThe mutant complex is comprised of E1oHis298Asp, indicated E2o-X (X=Phe, Gln, Tyr or, Met) and E3 
with a mass ratio of approximately 1:8:1 (µg: µg: µg). Activity was calculated per mg of E1His298Asp.  
 

 

2-oxo-5-hexenoic acid 
 

E2 substitution Overall activity 
(µmol/min/mg E1) 

Km 
(mM) 

kcat 
(s-1) 

kcat/Km 
(M-1s-1) 

nonea 

 
No activity detected - - - 

noneb 
 

No activity detected - - - 

His348Pheb 
 

0.279 + 0.0012 0.5 + 0.14 0.99 1.98 x 103 

His348Glnb 
 

0.182 + 0.005 1.1 + 0.2 0.65 0.59 x 103 

His348Tyrb 
 

0.243 + 0.033 0.73 + 0.25 0.86 1.17 x 103 

Ser333Metb 
 

0.50 + 0.12 0.11 + 0.023 1.68 15.3 x 103 
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Figure 3.6 Michaelis Menten curves for the overall activity of the complex constituted of 
E1oHis298Asp:E2oHis348Phe:E3 in a mass ratio of 1:8:1 (µg: µg: µg).  
The Y axis is represented by the rate of reaction shown by slope/min at absorbance 340nm. The X axis is 
represented by the corresponding substrate. For plot a. substrate 2-oxoglutarate is used. For plot b. substrate 
2-oxovalerate is used and for plot c. substrate 2-oxo-5-hexenoic acid is used. 
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Figure 3.7 Michaelis Menten curves for the overall activity of the complex constituted of 
E1oHis298Asp:E2oHis348Gln:E3 in a mass ratio of 1:8:1 (µg: µg: µg).  
The Y axis is represented by the rate of reaction shown by slope/min at absorbance 340nm. The X axis is 
represented by the corresponding substrate. For plot a. substrate 2-oxoglutarate is used. For plot b. substrate 
2-oxovalerate is used and for plot c. substrate 2-oxo-5-hexenoic acid is used. 
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Figure 3.8 Michaelis Menten curves for the overall activity of the complex constituted of 
E1oHis298Asp:E2oHis348Tyr:E3 in a mass ratio of 1:8:1 (µg: µg: µg).  
The Y axis is represented by the rate of reaction shown by slope/min at absorbance 340nm. The X axis is 
represented by the corresponding substrate. For plot a. substrate 2-oxoglutarate is used. For plot b. substrate 
2-oxovalerate is used and for plot c. substrate 2-oxo-5-hexenoic acid is used. 
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Figure 3.9 Michaelis Menten curves for the overall activity of the complex constituted of 
E1oHis298Asp:E2oSer333Met:E3 in a mass ratio of 1:10:1 (µg: µg: µg).  
The Y axis is represented by the rate of reaction shown by slope/min at absorbance 340nm. The X axis is 
represented by the corresponding substrate. For plot a. substrate 2-oxoglutarate is used. For plot b. substrate 
2-oxovalerate is used and for plot c. substrate 2-oxo-5-hexenoic acid is used. 
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The kcat/Km was 81.0, 57.0, 6.8, and 4.7 mM-1. s-1 for [E1-His298Asp/E2-X/E3] (X = 

His348Phe, His348Tyr, His348Gln, or Ser333Met) with 2-OV, respectively.   The 

residue histidine 348 is conserved in a broad range of species [16,17]. This residue was 

proposed to interact with the distal carboxylate of 2-OG for substrate recognition.  It 

could be predicted that a hydrophobic amino acid substitution is required for 2-OV 

recognition and E2-His348Phe was most active towards 2-OV.  The phenylalanine 

substitution does not alter the volume. It may enhance favorable hydrophobic interactions 

with the distal –CH3 group of 2-OV to accommodate the substrate in the pocket (Figures 

3.4B, 3.5B and 3.10A). The tyrosine amino acid substitution does not alter the solvent 

accessible volume.  However, the hydrophobic character of the phenol ring furnishes 

complementary interactions with 2-OV that are not available with histidine. The histidine 

and glutamine have similar size, which are 114 and 118 Å, respectively. The His348Gln 

has a smaller solvent accessible volume than wt-E2o CD (Figures 3.4C, 3.5C and 3.10B).  

It is possible that a reduced pocket size favors the accommodation of the smaller 2-OV. 

Furthermore, the hydroxyl group of serine at position 333 has been proposed to H-bond 

with the distal carboxylate of succinyl dihydrolipamide [16].  Finally, similar to 

His348Gln, the Ser333Met substitution results in a smaller volume for 2-OV.  Hence, 

methionine can interact favorably with the distal -CH3 (Figure 3.4E, 3.5E and 3.10D).  
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 Figure 3.10 Substrate binding pocket of 2-OV binding variants.  The amino acid 
substitution is superimposed over the wild-type residue.   
Wt-E2o is represented by cyan ribbon. The orange ribbon represents the mutants A. H348F B. H348Q C. 
H348Y and D. S333M (PDB ID 1c4t).  
 

The variant complexes show substrate inhibition with higher concentrations of 2-

OV (Figure 3.11), the His348Gln < His348Phe < Ser 333Met. The complex assembled 

with E2-Ser333Met shows maximum inhibition with 2-OV, while the His348Gln variant 

shows the least inhibition. The complex assembled with E2o-His348Tyr, however, 

remained unaffected by higher concentrations of 2-OV.  



86 
 

 

Figure 3.11 Substrate inhibition kinetics of the 2-oxovalerate dehydrogenase complexes 
consisting of E2o variants His348Phe, His348Gln and Ser333Met in overall activity with 
2-oxovalerate. 
 

3.3.3 E1o-His298Asp/E2-variants/E3 complexes active with 2-OHe 

The engineered 2-oxo aliphatic acid dehydrogenase was evaluated to accept alternate 

functionalized aliphatic substrates.  The kinetic parameters were determined for 2-OHe.  

This substrate is the next higher homolog of 2-OV, which contains a terminal alkene 

(Figure 3.1).  The 2-OHe contains an alkene substituent that is useful for potential 

functionalization to increase subsequent product diversity. Similarly to 2-OV, no overall 

activity was detectable with wt-OGDHc and complex reconstituted with E1o-

His298Asp/E2o/E3 and 2-OHe. The kcat/Km was 15.3, 1.98, 1.17, and 0.59 mM-1 . s-1 for 

Ser333Met, His348Phe, His348Tyr and His348Gln, respectively (Figures 3.6c, 3.7c, 3.8c, 

3.9c).   Ser333Met variant is the most active. This is expected because methionine 

provides a small and hydrophobic pocket. On the other hand, the Phe, Tyr, and Gln 

substitutions at position 348 may fulfill a space constraint. The complexes assembled as 

[E1o-His298Asp/E2o-His348Gln/E3]2-OHe, [E1o-His298Asp/E2o-His348Tyr/E3]2-OHe, 
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[E1o-His298Asp/E2o-His348Phe/E3]2-OHe, and [E1o-His298Asp/E2o-Ser333Met/E3]2-

OHe when compared to [E1o-His298Asp/E2o/E3]2-OG, displayed overall activities of 3.4%, 

4.54%, 5.2%,  and 9.3%, respectively (Table 3.3). 

 

3.3.4 The activity of reconstituted E1o-His298Asp/E2-variants/E3 active with 2-OG 

The OGDHc variants acquired new substrate specificity for aliphatic substrates and it 

also retained activity towards 2-OG. The kinetic parameters were compared with wt-

OGDHc with the variant complexes and 2-OG. The kcat/Km was 1.2-fold greater for wt-

OGDHc compared to E1-His298Asp/E2o/E3. The variant’s reduced catalytic efficiency 

is mainly due to the reduction of kcat (Table 3.3).  Next, E1-His298Asp/E3 reconstituted 

with E2o-His348Tyr, His348Phe, Ser333Met or His348Gln was considered and the 

kcat/Km was decreased by 2.5, 3.6, 4.1 and 5.9-fold relative to wt-OGDHc, respectively. 

The decrease was attributed to reduction of kcat.  

Next, the E1o-His298Asp and E3 was assembled with E2o-His348Phe, E2o-

His348Gln, E2o-His348Tyr and E2o-Ser333Met.  The overall activity was 11.3%, 

16.1%, 10.6% and 13% compared to wt-OGDHc towards 2-OG (Table 3.3), respectively.  

Volume calculations indicate that the pocket size does not change for His to Tyr or 

Phe substitutions at position 348 (Figures 3.4A, 3.4B, 3.4D).  Histidine to tyrosine is a 

conservative substitution, and it is the most active variant towards 2-OG[133]. The 

tyrosine hydroxyl group can interact with the terminal carboxylate of 2-OG. The Phe 

residue could only fulfill a volume requirement.  The Met or Gln substitutions lead to a 

smaller binding pocket, which may lead to unfavorable steric interaction with 2-OG.  In 

addition, the hydrophobic side chain of Met leads to detrimental interactions with the 

carboxylate of 2-OG.   
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It is clear that the amino acid substitutions identified by our experiments could not 

be predicted.  For example, Phe is one the most hydrophobic amino acids. However, 2-

OG remains active with E2o His348Phe.  In fact, the catalytic efficiency is only 

decreased by 3.6-fold [13,134].   

 

3.3.5 E1o specific activity towards 2-OG, 2-OV, and 2-OHe 

The E1o-specific activity ratio for wt-E1o2-OV : wt-E1o2-OG, wt-E1o2-OHe : wt-E1o2-OG,  E1-

His298Asp2-OV ; wt-E1o2-OG, and  E1-His298Asp2-OHe : wt-E1o2-OG are 5.5, 2.0, 17.4, and 

5.4%, respectively (Table 3.4).  The E2o variants were assembled with E1o-His298Asp 

and E3 to form the engineered complexes. The overall activity (NADH) for this complex 

was determined with 2-OG, 2-OV and 2-OHe. First, the overall activity was determined 

with the natural substrate, 2-OG. The control complex formed by E1o-

His298Asp/E2o/E3 has approximately 29.4% activity in comparison to wt-OGDHc with 

2-OG. 
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Table 3.4 E1o-specific Activity and Kinetic Parameters for Various Substrates 

Wild-type E1o-specific activity 
Substrate DCPIP activity  

(µmol.min-1.mg-1)  
 

Km  
(mM) 

kcat  
(s-1) 

kcat/Km  
(mM-1s-1) 

2-OGa 0.775 + 0.04 0.006 + 0.02 2.7 456.6 

2-OVb 0.0429 + 0.004 8.18 + 0.63 0.152 0.0165 

2-OHEc 0.0168 + 0.0072 8.01 + 1.9 0.0595 0.0074 

 
E1o-specific activity for E1oH298Dd 

Substrate DCPIP activity  
(µmol.min-1.mg-1)  

 

Km  
(mM) 

kcat  
(s-1) 

kcat/Km  
(mM-1s-1) 

2-OGa 0.206 + 0.057 1.87 + 0.81 0.73 0.39 

2-OVb 0.135 + 0.04 6.62 + 0.93 0.48 0.0725 

2-OHec 0.042 + 0.011 11.1 + 1.3 0.148 0.0134 
a 2-OG, 2-oxoglutaric acid; b 2-OV, 2-oxovaleric acid; c 2-OHe, 2-oxo-5-hexenoic acid 
dE1oH298D parameters are determined for four different preparations of the pure enzyme 
and the average value of the parameters is shown. 
 

3.3.6 Enzymatic synthesis of butyryl-CoA from 2-oxovalerate 

The synthesis of the butyryl-CoA by E1oHis298Asp assembled with each of the E2o 

variants and E3 into the corresponding OGDHc was demonstrated and provides strong 

evidence that 2-oxovalerate could be a satisfactory substrate for butyryl-CoA synthesis 

by some E2o variants, particularly by the E2oHis348Gln variant. Hence, the method 

could be employed for bio-based production of butyryl-CoA for E2oHis348Gln and 

variants (Figures 3.12-3.17). Table 3.5 summarizes the MALDI TOF/TOF data for all 

analyzed E2o variants. 
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Figure 3.12 MALDI TOF/TOF detection of the butyryl-CoA formed in the enzymatic 
reaction from 2-oxovalerate and CoA by OGDHc assembled from 
E1oH298D/E2oH348Q/E3.  Both, CoA (m/z = 766.395) and butyryl-CoA (m/z = 
836.448) are present on the spectrum. Inset shows an enlarged region of the butyryl-CoA 
peak. For experimental conditions, see Materials and Methods section.  
 

Table 3.5 Summary of the MALDI-TOF/TOF data for Butyryl-CoA Detection in the 
OGDHc Reaction 
 
E2o variant 
assembled with 
E1o-H298D and 
E3a 

   CoA 
 substrate b 

   Butyryl-CoA 
   synthesised  

      Butyryl-CoA / 
(CoA + butyryl-CoA) 
(the relative peak 
heights) 
 

His348Phe  m/z = 766.296   m/z = 836.342        0.019 (1.9%) 
His348Tyr m/z = 766.293   m/z = 836.334        0.044 (4.4%) 
His348Gln m/z = 766.395   m/z = 836.448        0.221 (22%) 
Ser333Met m/z = 766.403   m/z = 836.442        0.066 (6.6%) 
a Butyryl-CoA synthesis was conducted for ~ 15 h at 30 oC. For His348Phe E2o, data are presented after 
one h reaction time since no butyryl-CoA was detected after 15 h of reaction. b The concentrations of CoA 
and 2-oxovalerate of 300 µM  and 4 mM, respectively were used in the reaction mixture. 
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Figure 3.13 MALDI TOF/TOF spectrum of the CoA standard (m/z = 766.513). 

 

 

Figure 3.14 MALDI TOF/TOF spectrum of the butyryl-CoA standard (m/z = 836.489). 
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Figure 3.15 MALDI TOF/TOF detection of the butyryl-CoA formed in the enzymatic 
reaction from 2-oxovalerate and CoA by OGDHc assembled from E1o-His298Asp, E2o- 
His348Phe and E3.  Both, CoA (m/z = 766.296) and butyryl-CoA (m/z = 836.342) are 
present on the spectrum. Inset shows an enlarged region of the butyryl-CoA peak.  
 

Figure 3.16 MALDI TOF/TOF detection of the butyryl-CoA formed in the enzymatic 
reaction from 2-oxovalerate and CoA by OGDHc assembled from E1o-His298Asp, E2o- 
His348Tyr and E3.  Both, CoA (m/z = 766.293) and butyryl-CoA (m/z = 836.334) are 
present on the spectrum. Inset shows an enlarged region of the butyryl-CoA peak.  
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Figure 3.17 MALDI TOF/TOF detection of the butyryl-CoA formed in the enzymatic 
reaction from 2-oxovalerate and CoA by OGDHc assembled from E1o-His298Asp, E2o- 
Ser333Met and E3.  Both, CoA (m/z = 766.403) and butyryl-CoA (m/z = 836.442) are 
present on the spectrum. Inset shows an enlarged region of the butyryl-CoA peak.  
   

3.4 Conclusion 

The OGDHc is an example of an enzyme in a highly conserved pathway across all 

kingdoms. In this study, it was evolved from a 2-oxo acid dehydrogenase to a 2-oxo 

aliphatic acid dehydrogenase.  This was accomplished by engineering two consecutive 

components of the multienzyme complex. The promiscuous variant components were 

able to catalyze the reaction with both natural and unnatural substrates.  In short, a 

generalist could be converted to a new specialist through a negative selection.    For 

example, variants could be screened that are not active toward natural substrate while 

retaining activity for the non-cognate substrate.  Similar to natural evolution, the new 

pathway could be engineered to suit particular user-defined goals.  For example, 

orthogonal pathways can be engineered from existing pathways. These designed routes 

can run in parallel to the existing pathways and can be used for chemical and synthetic 

biology [135].    



94 
 

APPENDIX A 

CARBOLIGATION WITH THIAMIN DIPHOSPHATE DEPENDENT ENZYMES 

 

A.1 Introduction 

Carboligation is defined as formation of novel C-C bonds [136]. A common reaction 

characteristic of ThDP dependent enzymes (glyoxylate carboligase, 1-deoxy-D-xylulose-

5-phosphate synthase (DXPS), benzaldehyde lyase etc…)  involves formation of novel C-

C bonds or carboligation [137–141]. Previously, the synthetic program using the 

carboligation reactions was initiated by Jordan group with various active site 

modifications in both yeast pyruvate decarboxylase (yPDC) from Sachharomyces 

cerevisae and E1p from pyruvate dehydrogenase complex of Escherichia coli [142–144]. 

The E1o subunit of OGDHc is known for its decarboxylase activity as the natural 

reaction. The function of OGDHc starts with the decarboxylation of 2-OG by E1o to 

form the ThDP adduct of succinic semialdehyde (enamine) intermediate (Figure A.1, step 

1) [145]. This intermediate is a substrate for the E2oLDo. The succinyl group is 

transferred from the E1o active site to LDo followed by the succinyl transferase action at 

the CDo. However, in absence of E2 or E3 subunits, the catalytic potential of the central 

enamine intermediate has been exploited for the purpose of carboligation. Thus, with the 

addition of appropriate acceptors, E1o is able to catalyze the formation of δ-hydroxy-γ-

keto acids [145]. These are important intermediates for organic synthesis. For some 

enzymes, carboligation is a natural course of the pathway, while for all 2-oxoacid 

decarboxylases, it is a side reaction [142,143,146,147]. ThDP dependent enzymes (E1p, 

benzoylformate decarboxylase, etc.), have been demonstrated for carboligation potential 
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as industrial biocatalysts. This is due to for their innate promiscuity towards non-natural 

substrates and perform carboligation [148]. [44,117,149,150].  

The mechanism of carboligation by E1o is similar to that of the ThDP dependent 

enzymes. In the first step, C2-ThDP bound intermediate is formed by nucleophilic 

addition of the ThDP-ylide to the carbonyl carbon of a donor substrate (Figure A.1). 

Next, this step is followed by the decarboxylation reaction, which results in the formation 

of an activated carbonyl compound bound to C2 α-ThDP (C2 α-carbanion/enamine) 

(Figure A.1). This reaction is common to ThDP dependent class of enzymes. 

 

Figure A.1 E1o catalyzed reaction mechanism of carboligation reaction. 

 

The ThDP acts as an electron sink and the reactivity of the carbonyl carbon atom 

adjacent to C2 α -ThDP undergoes an ‘Umpolung’ reaction and this alters the reactivity 

of the bound carbonyl carbon from an electrophile to a nucleophile. Also, an enamine-
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carbanion, has the properties of an activated aldehyde. Therefore, addition of an acceptor 

molecule aldehyde (methyl glyoxal), ketone (ethyl glyoxalate) or keto-acid (2-OV, 2-OG) 

(Figure A.2) results in formation of chiral 2-hydroxy ketones (acetoin-like) or hydroxy-

ketoacids (acetolactate-like) [145,151,152]. 

 

 

Figure A.2 Examples acceptor substrates:  Ethyl glyoxalate and methyl glyoxal. 

 

This property has been used for chiral synthesis over the years [137,151,153]. E1o 

component has been studied for the purpose as well [91,92,147]. E1o has been previously 

proved to have a broad substrate range, making it an excellent candidate for protein 

engineering [12,13]. Carboligation studies have also been reported by our group with the 

E1o component using a 2-keto acid (2-OG, 2-OV and 2-oxo-isovaleric acid)  as a 

substrates with various acceptor aldehydes (ethyl glyoxalate and methyl glyoxal) [147].  

Thiamin dependent decarboxylases have been engineered to produce enantioselective 

carboligase products from amino acid analogs [142,144]. These molecules are potential 

lead molecules in drug development pipeline for some of the well-known drugs such as: 

the tranquilizer and smoking cessation drug bupropion [154], the anti-allergic drug 

cytoxazon [155], and the multidrug-pump inhibitor 5-methoxyhydnocarpin [156]. 

Carboligase products are also precursors for Alzheimers drugs [142,144].  
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The objective of this study is to explore the carboligation properties of the E1o  

component of the E.coli 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc) 

and its variant His298Asp [147]. In addition, MenD was evaluated for carboligation (vide 

infra). A combination of different substrates and acceptor compounds were used to 

demonstrate the ability of the enzymes to catalyze carboligation. Studies on several 

aliphatic and aromatic substrate-acceptor combination have also been reported for 

carboligation reactions catalyzed by E1o [145,157]. The products were characterized by 

CD spectroscopy and proton NMR. 

MenD (2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate 

synthase; EC 2.5.1.64 or 2.2.1.9), is involved in the second step of menaquinone 

biosynthesis. MenD catalyzes carboligase reactions as E1o.  It catalyzes a ThDP and 

Mg+2-dependent 1,4-addition of 2-OG to isochorismate to form SEPHCHC and CO2 

(Figure A.3) [158–160]. MenD is the only enzyme known to catalyze the addition of a 

ThDP intermediate to the β-carbon of a second substrate [145,161]. This reaction is 

similar to the Stetter reaction, which is a 1,4-addition, or conjugate addition, of an 

aldehyde to a β-unsaturated compound. A functionally active MenD was expressed and 

purified and tested of carboligation reactions. 

 

 

Figure A.3 Reaction catalyzed by MenD.   
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This work reinforces the versatility of E1o as a valuable chiral synthetic tool. This 

is supported by the fact that the enzyme accepts 2-oxoglutaric acid (2-OG), 2-oxoadipic 

acid (2-OA), 2-oxo-hexanoic acid (2-OH) and 2-oxo-5-hexenoic (2-OHe) acid as 

substrates. Glyoxalate, propanal and butyraldehyde are the acceptor compounds (Figure 

A.4).  

 

 

Figure A.4 Substrates and acceptors for carboligase reaction for E1o and MenD. 
 

A.2 Materials and methods 

A.2.1 Materials 

Ni-NTA agarose used for protein purification was purchased from GE Healthcare Life 

Sciences. Thiamin diphosphate (ThDP), dithiothreitol (DTT), isopropyl-β-D-

thiogalactopyranoside (IPTG), NAD+, coenzyme A (CoA), Micrococcal Nuclease, and 
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DNase I, Lyophilized were purchased from Affymetrix USB.  E. coli strain JW0715 

containing the plasmid pCA24N encoding the OGDHc-E1 (E1o) component [ASKA 

clone (-)] was obtained from National Bio Resource Project (NIG, Japan). Sodium 

pyruvate, 2,6-dichlorophenolindophenol (DCPIP), 2-oxoglutarate (2-OG), 2-oxovalerate 

(2-OV), 2-oxoadipate (2-OA), and glyoxylic acid were purchased from Sigma Aldrich. 

Butyraldehyde and propanal were purchased from Acros Organics (part of Thermo Fisher 

Scientific).  2-Ketohexanoic acid (2-OH) was purchased from Santa Cruz Biotechnology.  

4-Pentenal was purchased from Thermo Fisher Scientific Chemicals.  

 

A.2.2 Expression and purification of wild type E1o human, MenD, wild type E1o 
E.coli and its variants 
 
Wild type E1o was obtained from E. coli strain JW0715 harboring the plasmid pCA24N 

encoding the OGDHc-E1 (E1o) component.  An E. coli AG1 frozen stock harboring the 

E1o plasmid was streaked on LB agar plates containing chloramphenicol (100 µg/mL) 

and incubated at 37 °C overnight.  A single colony was used to inoculate 5 tubes with 10 

ml LB containing chloramphenicol (100 µg/mL).  

The overnight culture was used to inoculate 4L of LB medium containing 

chloramphenicol (30 µg/mL), 1.0 mM thiamin hydrochloride, and 2.0 mM MgCl2.  Cells 

were grown at 37 oC, 250 rpm till to OD600 reached 0.60-0.70, then 0.50 mM IPTG was 

added and cells were grown overnight at 27 oC with shaking. The cells were collected at 

4400 g at 4 °C and washed with 20 mM KH2PO4 (pH 7.0) containing 0.15 M NaCl.  Cell 

pellets were stored at -20 oC until purification. 

 

 



100 
 

Cell Disruption and Purification.   

All subsequent steps were carried out at 4 °C. The cells were resuspended in 40-50 

ml sonication buffer: 20 mM KH2PO4 (pH 7.4) containing 0.3 M NaCl, 5.0 mM MgCl2, 

2.0 mM ThDP, 1.0 mM benzamidine hydrochloride, 25 mM imidazole, and 1.0 mM 

PMSF (1.0 mM). Lysozyme was added to a final concentration of 0.60 mg/ml, and cells 

were incubated for 20 min on ice. Nuclease and DNase were added at 1,000 units each 

and cells were incubated for 20 min on ice. The cells were sonicated for 10 min (20 s 

pulsar “on” and 20 s pulsar “off”) using the Sonic Dismembrator Model 550 (Fisher 

Scientific). The lysate was centrifuged at 30,000 g at 4 °C for 30 min.  

His6-tag wild type E1o or E1o variant were purified by using a His6-tag a Ni 

Sepharose 6 Fast Flow Column (GE Healthcare).  The column was equilibrated with 150 

ml of sonication buffer and 50 ml of cell lysate was applied on the column. The column 

was then washed with 10 column volume (CV) of binding buffer containing 20 mM 

KH2PO4 (pH 7.5), 0.3 M KCl, 5 mM MgCl2, 2 mM ThDP and 25 mM imidazole 

followed by 10 CV of washing buffer containing 20 mM KH2PO4 (pH 7.5), 0.3 M KCl, 5 

mM MgCl2, 2 mM ThDP and 50 mM imidazole. The bound proteins were eluted using 

elution buffer containing 20 mM KH2PO4 (pH 7.5), 0.3 M KCl, 5 mM MgCl2, 2 mM 

ThDP and 200 mM imidazole. Fractions with enzyme were combined, dialyzed against 

20 mM KH2PO4 (pH 7.5), 0.30 M KCl, 2.0 mM MgCl2, 0.5 mM ThDP and 1.0 mM 

benzamidine hydrochloride.  Next, the protein was precipitated by PEG-8000 (50% w/v) 

adding 0 – 16% PEG dropwise (~4 ml per 25 ml protein) on ice with stirring for 10-15 

minutes.  The protein was collected by centrifugation at 15,000 rpm for 20 minutes at 4 

oC.  The resulting protein pellet was dissolved in ~0.5 ml of 50 mM KH2PO4 (pH 7.5) 

containing 0.4 M ammonium chloride, 1.0 mM MgCl2, 0.2 mM ThDP, and 1.0 mM 
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benzamidine hydrochloride.   The purity was confirmed by SDS-PAGE. Wild type E1o 

and E1o variants were stored at -80 °C. 

 

A.2.3 CD Spectroscopy for Product Accumulation 

CD spectra were recorded on a Chirascan CD Spectrometer (Applied Photophysics, 

Leatherhead, U.K.) in 2.4 ml volume with 1 cm path length cell at 30 oC in the near-UV 

(270 – 400 nm) wavelength region.  E1oec (1.0 mg/ml) in 50 mM KH2PO4 (pH 7.5) 

containing 0.15M NaCl, 0.1 mM ThDP, and 0.5 mM MgCl2 was incubated with 5.0 mM 

2-OA in the presence of the acceptor 15 mM glyoxylic acid and CD spectra was acquired 

at various times to detect product accumulation. E1oh (1.0 mg/ml, 4.4 µM) in 50 mM 

KH2PO4 (pH 7.5) containing 0.15M NaCl, 0.2 mM ThDP, and 1.0 mM MgCl2 was 

incubated with 2.0 mM 2-OG in the presence of the acceptor 1.0 mM glyoxylic acid and 

CD spectra was acquired at various times to detect product accumulation. 

 

A.2.4 Steady State Kinetics of E1oec activity by CD spectroscopy 

Time dependent product formation was monitored continuously at 278 nm in the kinetics 

mode by CD.  A typical reaction mixture in a 2.4 ml cuvette contained 50 mM KH2PO4 

(pH 7.5), 0.15 M NaCl, 0.2 mM ThDP, and 1.0 mM MgCl2, and varying concentrations 

of glyoxylic acid and fixed concentration of 2-OG or varying concentrations of 2-OA and 

fixed concentration of glyoxylic acid. The reaction was started by the addition of 20 µg 

of E1oec and was monitored for 500 s at 30 oC.  A similar reaction mixture was used with 

varying concentrations of 2-OG and fixed concentration of glyoxylic acid with E1oh.  

The reaction was started with 10 µg E1oh and was monitored for 500 s at 37 oC.  Steady 
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state velocities calculated from the linear region of the progress curves were fit to a 

hyperbolic Michaelis-Menten plot (Equation A.1). 

 

A.2.5 E1oec specific activity assay with DCPIP 

The E1-specific activity of wild type E1o and its variant His298Asp were measured by 

monitoring the reduction of DCPIP at 600 nm using a Varian DMS 300 

spectrophotometer. The assay medium (1 ml) contained in 50 mM KH2PO4 (pH 7.5), 0.5 

mM MgCl2, 0.2 mM ThDP, 0.1 mM DCPIP and 2.0 mM 2-OG or 20.0 mM 2-OV at 30 

°C. The reaction was initiated by adding the enzyme (20 μg). One unit of activity is 

defined as the amount of DCPIP reduced (μmol/min/mg of E1o).  For Km measurement, 

similar conditions were used in the presence of substrates [2-OH (2.0 – 20 mM) or 2-oxo-

5-hexenoic acid (2.0 – 20 mM)]. The observed slope was plotted against [substrate] and 

the resulting progress curves were fit to a hyperbolic Michaelis-Menten plot and Km 

values were calculated by using Equation A.1. 

v = (Vm* xn) / (xn + Km
n) (A.1) 

 

Where Vm is the maximum slope observed, x is the ligand concentration, n is the Hill 

coefficient (Km= S0.5 if n ≠1) and Km is the Michaelis constant for the varied substrate. 

 

A.2.6 Carboligation reaction on an analytical scale 

20 mM butyraldehyde and 30 mM 2-oxoglutarate were incubated with 0.7 mg/ml E1oec 

in 1.2 mL of reaction buffer (50 mM KH2PO4 (pH 7.5) supplemented with 0.2 M NH4Cl, 

0.5 mM ThDP, 2.0 mM MgCl2 and 5% DMSO).  The reaction mixture was incubated for 

20-24 hours at room temperature and 400 rpm using an orbital shaking platform on a 
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magnetic stirrer.  After reaction was completed, circular dichroism (CD) spectroscopy 

was performed at 270-450 nm range for product detection.  For NMR analysis, the 

complete reaction mixture was extracted as follows: (1) 25 µl of 50% formic acid to bring 

the pH down to ~3, (2) spin the sample down at 3,000 rpm for 5 minutes to pellet any 

protein precipitation and transfer to new tube, (3) add 3 x 300 µl CDCl3 (plus 18 mg 

Na2SO4 if strong emulsion forms) and spin down sample at 3,000 rpm for 3 minutes.   To 

the remaining water layer, CD spectroscopy was again performed to determine amount of 

product extracted.   

E1o catalyzed reaction conditions: The reactions were performed in 50 mM KH2PO4, 

0.1 mM ThDP, 2 mM MgCl2, pH (8.0) at 30 ºC and 300 rpm using a Thermomixer 

(Eppendorf). The final concentration of E1o was set to 700 μg/mL.  

MenD-catalyzed reaction conditions: The reactions were performed in phosphate buffer 

(50 mM potassium phosphate, 0.1 mM ThDP, 2 mM MgCl2·6H2O, pH (8.0) at 30 ºC and 

300 rpm using a Thermomixer (Eppendorf). The final concentration of MenD was set to 

500 μg/mL.  

 

A.2.7 Expression and purification of MenD 

The cells for MenD were grown similarly to E1o with slight modifications. E. coli AG1 

cells harboring the MenD plasmid were streaked onto Luria agar plates containing 

chloramphenicol (30 μg/mL) and incubated overnight at 37 ˚C. A single colony was 

picked and incubated in 20 mL of LB media containing chloramphenicol (30 μg/mL) and 

allowed to grow overnight at 37 ˚C with shaking. This was diluted 10X into an 800 mL 

LB media kept at 37 °C with constant shaking, containing chloramphenicol (30 μg/mL), 

thiamin hydrochloride (1.0 mM), and MgCl2 (1.0 mM). The cultures were induced with 
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IPTG (0.5 mM) when the culture attained an OD600 between 0.5 - 0.8. After induction the 

cultures were allowed to grow overnight with constant shaking at temperature reduced to 

25 ˚C. The cells were later centrifuged and collected at 4,400 g, 4 ˚C, washed with 

KH2PO4  (50 mM, pH 7.5) and KCl (0.15 M). The supernatant was discarded and the 

pellets stored at -20 ˚C prior to sonication. The cells were resuspended in the sonication 

buffer containing KH2PO4 (50 mM, pH 7.5), KCl (0.3 M), ThDP (0.5 mM), MgCl2 (2.0 

mM), benzamidine hydrochloride (1.0 mM) and PMSF (1.0 mM in methanol) with 

lysozyme (0.6 mg/mL). The sonication and treatment with streptomycin sulfate (0.5% 

w/v) was carried out similarly to E1o (2.3.1). The supernatant collected at the end was 

applied to a Ni-Sepharose 6 fast column equilibrated with sonication buffer without 

lysozyme and PMSF. The loaded protein was subsequently washed with increasing 

concentrations of imidazole (30 - 50 mM) containing, KH2PO4 (50 mM, pH 7.5), KCl 

(0.3 M). ThDP  (0.5 mM), MgCl2 (2.0 mM), benzamidine hydrocloride (1.0 mM) and 

eluted using buffer containing imidazole (150 mM). Fraction from the elution were 

collected and dialyzed against a dialysis buffer similarly to (2.3.1) with modified KH2PO4  

(50 mM) concentration. The protein was filtered using ultrafiltration with a cutoff of 30 

kDa. 

 

A.3 Results and Discussion 

The studies reported here are an expansion of the previously reported studies done by the 

Jordan group adding to the repertory of E1o in chiral synthesis.  In addition to the use of 

2-oxoacids as substrates, structurally similar carboxylic acids were also tested (Figure 

A.4).  First, kinetic studies were conducted to verify whether or not the substrates from 

Figure A.4 are accepted by E1o.  Upon verification that they were in fact accepted 
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substrates, overnight carboligation reaction products (Figure A.5) were detected using 

CD spectroscopy and 1H NMR.  CD spectroscopy provides valuable information 

regarding stereochemistry of the resulting carboligation products. Specifically, the (R) 

enantiomer displays a negative CD peak while the (S) enantiomer a positive one all 

around 278-285 nm similar to the CD spectrum of acetoin enantiomers. 

 

 

Figure A.5 Structure and nomenclature of the chiral products produced from the E1o and 
variants catalyzed reaction by using variety of acceptors and substrates. 
 
A.3.1 Steady-state kinetics of E1oec by CD spectroscopy or E1o specific activity 
assay with DCPIP 
 
First, kinetic studies were conducted to verify if the following substrates are accepted by 

E1oec in addition to gathering kinetic data for the acceptor, glyoxylate.  Through the use 

of either CD spectroscopy, for product accumulation studies or kinetic mode studies, or 
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the E1o specific activity assay with DCPIP, various kinetic parameters were obtained 

(Table A.1).   

Table A.1 E1o Specific Activity and Kinetic Parameters for Various Substrates  
and Acceptors 
 

a DCPIP assay conducted with E1oec H298D 
b n/a, not applicable.   

Beginning with the E1oec natural substrate, 2-oxoglutarate, and glyoxylate as the 

acceptor, the Km value was determined for glyoxylate using a fixed concentration of 2-

oxoglutarate (Figure A.6).  The kinetic mode on the CD spectroscopy was used to 

monitor product formation at 278 nm, with a negative slope indicating the accumulation 

of a (-) peak.  As shown previously, the negative peak at 278 nm indicated the formation 

of the (R)-enantiomer [162]. 

  Kinetic Parameters 

Substrate or Acceptor 
DCPIP Activity 
(µmol min-1⋅ 
mg-1) 

kcat (s-1) Km (mM) 
kcat/Km  
(s-1/mM-

1) 

2-oxoglutarate 0.775 + 0.04 2.15 ± 0.10 0.006 + 0.02 456.6 

Glyoxylate n/ab  5.71 ± 0.64  

2-oxovaleratea 0.135 + 0.04 0.48 ± 0.06 6.62 + 0.93 0.0725 

2-oxoadipate n/ab  12.3 ± 1.8  

2-ketohexanoic acid 0.020 0.110 4.32 ± 0.50 0.0225 

2-oxo-5-hexenoic acid 0.0168 + .007 0.146 8.01 ± 1.9 0.0183 
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Figure A.6 Steady-state kinetics for E1oec with 2-OG and glyoxylate using kinetic mode 
on CD spectroscopy (top) and resulting Michaelis-Menten plot (bottom). 

Similar experiments were conducted with the substrate 2-oxoadipate, which 

demonstrated for the first time that E1oec does in fact accept 2-oxoadipate as a substrate.  

First, a wavelength scan was conducted using CD spectroscopy were the carboligation 

product peak at (+) 278 nm accumulated over time (Figure A.7, top).  The positive peak 

does indicate that the resulting carboligation product is the (S)-enantiomer.  Upon 

confirmation that E1oec does in fact accept 2-oxoadipate as a substrate, steady state 

kinetic data was collected using CD spectroscopy (Figure A.7, middle and bottom).   
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Figure A.7 Product detection and kinetics for E1oec with 2-OA and glyoxylate.  
(Top) Near-UV CD wavelength scan acquired at the indicated times to detect accumulation of (S)-chiral 
carboligation product produced by E1oec (1.0 mg/ml) from 2-oxoadipate (5 mM) and glyoxylate (15 mM) 
at 30 oC in 50 mM KH2PO4 (pH 7.5) containing 0.15 M NaCl, 1.0 MgCl2 and 0.1 mM ThDP.  (Middle) 
Steady-state progress curves of the reaction with E1oec (80 µg) at the indicated concentrations of 2-
oxoadipate (2-OA) in the presence of 30 mM glyoxylate in 50 mM KH2PO4 (pH 7.5) containing 0.15 M 
NaCl, 1.0 MgCl2 and 0.1 mM ThDP.  (Bottom) Dependence of the ellipticity at 278 nm on the 
concentration of 2-oxoadipate.  The data was fit using the hill equation.  
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In the case of the carboxylic acid substrates, the E1o specific activity assay with 

DCPIP was used where DCPIP acts as the acceptor similar to the carboligation reactions.  

The two substrates tested were 2-oxo-hexanoic acid (Figure A.8), containing a saturated 

side chain, and 2-oxo-5-hexenoic acid (Figure A.9), containing a terminal alkene 

functional group.  Both carboxylic acids tested were shown to be accepted by E1oec as 

substrates demonstrating once again the versatility of E1o for carboligation reactions.   

 

 
Figure A.8 E1oec kinetic parameters with 2-ketohexanoic acid from DCPIP activity 

assay. 

 

Figure A.9 E1oec kinetic parameters with 2-oxo-5-hexenoic acid from DCPIP activity 
assay. 
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4.3.2 Carboligation reaction on an analytical scale with E1oec or E1o-His298Asp 

Once the 2-oxoacid and carboxylic acid substrates were confirmed to be accepted as 

substrates by E1o, glyoxylate and the straight chain aldehydes were introduced as 

acceptors to test E1o-catalyzed chiral carboligation reactions.  Similar to the analytical 

scale production and work up implemented by Muller et al. with some modifications.  

 First, the 2-oxoacids, 2-OG and 2-OV, were tested with the straight chain 

acceptor, butyraldehyde (Figures A.10 and A.11).  As determined previously, the E1oec 

variant, His298Asp, was shown to accept 2-oxovalerate as a substrate and therefore was 

used in these studies.  In both cases, the (R)-enantiomer was produced as apparent by the 

negative CD peak at 279 nm with 2-OG (Figure A.10) and 2-OV (Figure A.11). Next, the 

chiral carboligation product was confirmed through the use of CD spectroscopy as well 

as NMR spectroscopy.  First, carboligation product peak was detected by CD 

spectroscopy followed by pH adjustment to ~3, conditions under which product 

extraction into chloroform could be performed.  The 1H NMR spectrum of the resulting 

extracted product was then recorded.  As all the carboligation products have in common 

the CH-OH functional group, they all exhibit a 1H NMR resonance with a proton 

chemical shift near 4-5 ppm (Figure A.5).   
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Figure A.10 E1oec catalyzed carboligation reaction with 2-oxoglutarate and 
butyraldehyde. A 1 mm path length cuvette was used, therefore actual ellipticity is 10x of 
that shown. 
 
 

 

Figure A.11 E1oec H298D catalyzed carboligation reaction with 2-oxovalerate and 
butyraldehyde. A 1 mm path length cuvette was used, therefore actual ellipticity is 10x of 
that shown. 

In the case of 2-oxoglutarate and butyraldehyde, the 1H NMR spectrum was 

obtained to verify the carboligation product (5-hydroxy-4-oxo-octanoic acid) formed 

(Figure A.12). The unique proton chemical shift for the CH-OH functional group at ~4.4 

ppm (Hc) and ~2.7 ppm (OH) is seen on the NMR spectrum in addition to the other 

protons. 
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Figure A.12 1H NMR spectrum of E1o-ec catalyzed carboligation product of 2-
oxoglutarate with butyraldehyde. The large peaks correspond to water (in CDCl3) near 
~2.0 ppm and DMSO-d6 near ~2.6 ppm. 

Next, the carboxylic acids, 2-ketohexanoic acid and 2-oxo-5-hexenoic acid, were 

tested with various acceptors.  The substrate 2-ketohexanoic acid was tested with 

glyoxylate, and in this case the (S)-enantiomer was formed verified by the (+) CD peak at 

~290 nm (Figure A.13). 
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Figure A.13 E1oec catalyzed carboligation reaction with 2-OH & glyoxylate. 
 

Of all the substrates tested, 2-oxo-5-hexenoic acid was of most interest due to the 

introduction of the terminal alkene functional group. The resulting carboligation product 

with glyoxylate, butyraldehyde, and propanal were confirmed by CD spectroscopy 

(Figure A.14). Remarkably, the carboligation product with glyoxylate produced the (S)-

enantiomer as shown by the positive peak at ~280 nm (Figure A.12, top), while both 

butyraldehyde and propanal produced the (R)-enantiomer with a negative peak at 282 nm 

(Figure A.12, middle and bottom). 
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Figure A.14 CD spectroscopy of E1oec catalyzed carboligation reaction with 2-oxo-5-
hexenoic acid and various acceptors. (Top) with glyoxylate, (Middle) with 
butyraldehyde, and (Bottom) with propanal.   
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4.3.3 Carboligation reaction on an analytical scale with human E1o 

In addition to the above work with E1oec, similar initial studies were conducted using 

human E1o.  For the first time, human E1o was used to catalyze carboligation reactions 

and therefore the natural substrate, 2-oxoglutarate, as well as the substrate 2-oxoadipate 

were tested with the acceptor glyoxylate.  First, the carboligation product produced by 2-

oxoglutarate and glyoxylate was verified by CD spectroscopy.  Similar to the E1oec 

results, human E1o produced the (R)-enantiomer as indicated by the (-) 279 nm peak 

(Figure A.15). 

 

 

Figure A.15 Human E1o catalyzed carboligation reaction with 2-oxoglutarate and 
glyoxylate.  A 1 mm path length cuvette was used, therefore actual ellipticity is 10x of 
that shown. 

Next, the carboligation product, 2-hydroxy-3-oxohexanedioic acid, was confirmed 

by 1H NMR spectroscopy (Figure A.16). Not only is the CH-OH functional group clearly 

visible (~4.4 ppm for -CH and ~2.75 ppm for -OH), but the other proton peaks at ~2.7 

and 2.5 ppm are also visible. For the first time, the carboligation reaction was 

successfully carried out by E1o-h. 
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Figure A.16 1H NMR spectrum of E1o-h catalyzed carboligation product of 2-
oxoglutarate with glyoxylate. The large peaks correspond to water (in CDCl3) near ~1.7 
ppm and DMSO-d6 near ~2.6 ppm.  
 

Next, the substrate 2-oxoadipate was used with the acceptor glyoxylate, and in fact 

human E1o can catalyze the formation of the carboligation product (Figure A.17).  The 

most obvious difference is that the product formed is the (S)-enantiomer proving that a 

one-carbon difference changes the orientation of the resulting carboligation product.  The 

NMR spectra of the product has also been shown in Figure A.18. 
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Figure A.17 Human E1o catalyzed carboligation reaction with 2-oxoadipate and 
glyoxylate.  A 1 mm path length cuvette was used, therefore actual ellipticity is 10x of 
that shown. 

 

Figure A.18 1H NMR spectrum of E1o-h catalyzed carboligation product of 2-oxoadipate 
with glyoxylate. The large peaks correspond to water (in CDCl3) near ~1.8 ppm and 
DMSO-d6 near ~2.6 ppm. 
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4.3.4 Comparative carboligation reactions of E1o and MenD 

The carboligation reactions were carried out and the presence of a chiral product in 

excess was confirmed using CD spectroscopy. The results are summarized in (Table 

A.2). 

 

Table A.2 CD Spectra Data for E1o and MenD 

Enzyme Substrate Acceptor CD278 
(mdeg) 

 
E1o 

(700 μg) 

 

2-oxoglutaratea 
 

Propanalb -54 

Benzaldehydeb -16 

 
MenD 

(500 μg) 

Propanalb -19 
2-oxoglutaratec Benzaldehyded -9 

2-oxoglutaratea Benzaldehydeb Nd 

2-oxo-5-hexenoic acida Propanal Nd 

2-oxo-5-hexenoic acida Benzaldehyde Nd 
(a 30 mM substrate, b ,d 20 mM acceptor and c 10 mM substrate) Nd: not detected 

 The CD was able to detect significant amount of enantiomer at 278 nm. For 

reaction between propanal as acceptor and 2-oxoglutarate as substrate with E1o, the 

majority of the product obtained was in the (R)-configuration (Figure A.19). The same 

was observed for reactions with MenD. When reactions between benzaldehyde as 

acceptor and 2-oxoglutarate as substrate were catalyzed using MenD, almost all of the 

product obtained was in its (R)-configuration (Figure A.20). For MenD, the best results 

were obtained when the substrate concentration was kept close to the enzymes Km value, 

above its Km the enzyme suffered saturation inhibition and decreased activity. E1o also 

gave similar reactions between benzaldehyde and 2-oxoglutarate. But, the amount of 

substrate used did not saturate E1o unlike with MenD.  (Km value for 2-oxoglutarate for 



119 
 

E1o: 0.1 mM; and MenD: 1.5 mM, from the literature [17,46]. For the reactions of 2-oxo-

5-hexenoic acid with MenD, there was no product detected in CD for reaction with 

propanal or benzaldehyde. This adds to the fact that the residues that perform the ThDP-

dependent decarboxylase activity are conserved in the family and mutations induced at 

the conserved domain and/or the hydrophobic chains supporting the active-site pocket 

can alter its substrate spectrum and reactivity (Figures A.17, A.18).   

 

 

 

 

 

 

 

 

Figure A.19 CD spectra of 2-oxoglutarate and propanal. 

 

 

 

 

 

 

 

 

Figure A.20 CD spectra of 2-oxoglutarate and benzaldehyde. 
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APPENDIX B 

SEQUENCING RESULTS 

 

 

Figure B.1   DNA sequencing results with primer E2o-His375Ala.  

 

Figure B.2   DNA sequencing alignment of wt-E2o and E2o-His375Ala confirming 
mutation. 
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Figure B.3   DNA sequencing results with primer E2o-Thr323Ala. 

 

Figure B.4   DNA sequencing alignment of wt-E2o and E2o-Thr323Ala confirming 
mutation. 
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Figure B.5   DNA sequencing results with primer E2o-Asp374Ala. 

 

Figure B.6   DNA sequencing alignment of wt-E2o and E2o-Asp374Ala confirming 
mutation. 
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Figure B.7   DNA sequencing results with primer E2o-Arg376Ala. 

 

Figure B.8   DNA sequencing alignment of wt-E2o and E2o-Arg376Ala confirming 
mutation. 
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Figure B.9   DNA sequencing results with primer E2o-Arg379Ala. 

 

Figure B.10 DNA sequencing alignment of wt-E2o and E2o-Arg376Ala confirming 
mutation. 
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Figure B.11   DNA sequencing results with primer E2o-His375Cys. 

 

Figure B.12 DNA sequencing alignment of wt-E2o and E2o- His375Cys confirming 
mutation. 
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Figure B.13 DNA sequencing results with primer E2o-Thr323Ser. 

 

Figure B.14 DNA sequencing alignment of wt-E2o and E2o-Thr323Ser confirming 
mutation. 
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Figure B.15 DNA sequencing results with primer E2oCD-His375Ala. 

 

Figure B.16 DNA sequencing alignment of wt-E2o and E2oCD-His375Ala confirming 
mutation. 
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Figure B.17 DNA sequencing results with primer E2oCD-Asp374Ala. 

 

 

Figure B.18 DNA sequencing alignment of wt-E2o and E2oCD-Asp374Ala confirming 
mutation. 
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Figure B.19 DNA sequencing results with primer E2o-His375Asn. 

 

 

Figure B.20 DNA sequencing alignment of wt-E2o and E2o-His375Asn confirming 
mutation. 
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Figure B.21 DNA sequencing results with primer E2o-Asp374Asn. 

 

 

Figure B.22 DNA sequencing alignment of wt-E2o and E2o-Asp374Asn confirming 
mutation. 
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Figure B.23 DNA sequencing results for E2o-His348Phe. 

 

 

Figure B.24 DNA sequencing alignment of wt-E2o and E2o-His348Phe confirming 
mutation. 
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Figure B.25 DNA sequencing results for E2o-His348Gln. 

 

 

Figure B.26 DNA sequencing alignment of wt-E2o and E2o-His348Gln confirming 
mutation. 
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Figure B.27 DNA sequencing results for E2o-His348Gln. 

 

 

Figure B.28 DNA sequencing alignment of wt-E2o and E2o-His348Tyr confirming 
mutation. 
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Figure B.29 DNA sequencing results for E2o-His348Gln. 

 

Figure B.30 DNA sequencing alignment of wt-E2o and E2o-Ser333Met confirming 
mutation. 
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Figure B.31 DNA sequencing results for E2o-His375Trp. 

 

Figure B.32 DNA sequencing alignment of wt-E2o and E2o-His375Trp confirming 
mutation. 
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Figure B.33 DNA sequencing for E2o-His375Gly. 
 

 

Figure B.34 DNA sequencing alignment of wt-E2o and E2o-His375Gly confirming 
mutation. 
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