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ABSTRACT 

DUAL MODALITY OPTICAL COHERENCE TOMOGRAPHY:  

TECHNOLOGY DEVELOPMENT AND BIOMEDICAL APPLICATIONS 

 

by 

Farzana Rahmat Zaki 

Optical coherence tomography (OCT) is a cross-sectional imaging modality that is widely 

used in clinical ophthalmology and interventional cardiology. It is highly promising for in 

situ characterization of tumor tissues. OCT has high spatial resolution and high imaging 

speed to assist clinical decision making in real-time.  

OCT can be used in both structural imaging and mechanical characterization.  

Malignant tumor tissue alters morphology. Additionally, structural OCT imaging has 

limited tissue differentiation capability because of the complex and noisy nature of the 

OCT signal. Moreover, the contrast of structural OCT signal derived from tissue’s light 

scattering properties has little chemical specificity. Hence, interrogating additional tissue 

properties using OCT would improve the outcome of OCT’s clinical applications. In 

addition to morphological difference, pathological tissue such as cancer breast tissue 

usually possesses higher stiffness compared to the normal healthy tissue, which indicates 

a compelling reason for the specific combination of structural OCT imaging with stiffness 

assessment in the development of dual-modality OCT system for the characterization of 

the breast cancer diagnosis. 

This dissertation seeks to integrate the structural OCT imaging and the optical 

coherence elastography (OCE) for breast cancer tissue characterization. OCE is a 

functional extension of OCT. OCE measures the mechanical response (deformation, 

resonant frequency, elastic wave propagation) of biological tissues under external or 



internal mechanical stimulation and extracts the mechanical properties of tissue related to 

its pathological and physiological processes. Conventional OCE techniques (i.e., 

compression, surface acoustic wave, magnetomotive OCE) measure the strain field and the 

results of OCE measurement are different under different loading conditions. Inconsistency 

is observed between OCE characterization results from different measurement sessions. 

Therefore, a robust mechanical characterization is required for force/stress quantification. 

A quantitative optical coherence elastography (qOCE) that tracks both force and 

displacement is proposed and developed at NJIT. qOCE instrument is based on a fiber optic 

probe integrated with a Fabry-Perot force sensor and the miniature probe can be delivered 

to arbitrary locations within animal or human body.  

In this dissertation, the principle of qOCE technology is described. Experimental 

results are acquired to demonstrate the capability of qOCE in characterizing the elasticity 

of biological tissue. Moreover, a handheld optical instrument is developed to allow in vivo 

real-time OCE characterization based on an adaptive Doppler analysis algorithm to 

accurately track the motion of sample under compression. 

 For the development of the dual modality OCT system, the structural OCT images 

exhibit additive and multiplicative noises that degrade the image quality. To suppress noise 

in OCT imaging, a noise adaptive wavelet thresholding (NAWT) algorithm is  developed 

to remove the speckle noise in OCT images. NAWT algorithm characterizes the speckle 

noise in the wavelet domain adaptively and removes the speckle noise while preserving the 

sample structure. Furthermore, a novel denoising algorithm is also developed that 

adaptively eliminates the additive noise from the complex OCT using Doppler variation 

analysis. 
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OCT 
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imaging beams to illuminate the sample simultaneously, 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

There is a strong need for technologies that measures the mechanical properties of 

biological tissue. Microscopic mapping of tissue mechanical properties is critical for the 

diagnosis and treatment of a wide range of diseases including traumatic brain injury (TBI) 

and breast cancer. TBI, also known as intracranial injury that occurs due to injury to the 

central nervous system from physical trauma and damage to the central nervous system, is 

one of leading cause of death and disability around the world. TBI contributes to 30% of 

all injury deaths in USA [1]. However, data on mechanical properties of biological tissues 

are quite limited [147- 149]. In addition, values reported in literature are highly inconsistent 

[83]. Particularly, the Young’s moduli of brain tissue reported in literature vary for several 

orders of magnitude (from kPa to GPa) [150]. The scarcity of data on tissue mechanical 

properties is due to technical limitations in current measurement methodologies. Breast 

cancer is the most common cancer among women (excluding nonmelanoma skin cancers) 

and is the second leading cause of cancer-related deaths for women in the United States. 

According to the surveillance research report of American Cancer Society, an estimated 

60,290 new cases of breast cancer and 40, 290 deaths from breast cancer were expected in 

the United States in 2015 [2]. Although the death rates have declined significantly over the 

past two decades due to the improvement of public awareness and early detection of the 

disease, the diagnosis and treatment are far from perfection. 
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 Conventionally, medical practitioners apply manual palpitation method on tissues 

as part of the screening and diagnosis of breast cancer (such as stiffness) [3]. However, 

manual palpitation provides the qualitative measurement of tissue mechanics properties. In 

recent years, a new branch of imaging techniques, known as elastography, has been 

developed for better characterization of the tissue pathologies quantitatively. Elastography 

is a medical imaging modality that tracks the tissue deformation upon an applied 

mechanical load and relates the tissue deformation, typically elasticity, which is then 

mapped into an image, known as elastogram. For example, tumor and cancer tissues are 

often stiffer than the healthy ones. Currently, elastography is commercially applied in 

ultrasound elastography (URE) and magnetic resonance imaging (MRI) as a diagnostic tool 

for the assessment of breast lesions [4] and liver fibrosis [5]. Meanwhile, the spatial 

resolution of these techniques is limited from few hundred micrometers (μm) to several 

millimeter (mm) ranges allowing the visualization of macroscale level visualization of 

tissue features.  

 

Figure 1.1 Scales of different elastography techniques. 
                                 Source: [6] 
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Meanwhile, elastography by atomic force microscopy (AFM), can explore the 

cellular scale (nanometers to micrometers). Yet, this technique lacks the capability to 

measure tissue mechanical properties in the range of micrometers to millimeters—a vital 

scale between that of cells and whole organs in order to reveal the microscopic progression 

of cancer tissue detection at early stage. Therefore, a technology for in situ, microscopic 

characterization of breast tissue is urgently needed for improved diagnosis and treatment 

of breast cancer. Optical coherence elastography (OCE) can bridge the gap. Scales of 

different elastography methods based on penetration depth and imaging spatial resolution 

are presented in Figure 1.1. 

Optical Coherence Elastography (OCE) is a functional extension of Optical 

Coherence Tomography (OCT), which is a cross-sectional imaging modality based on low 

coherence light interferometry. Compared to conventional macroscopic medical imaging 

modalities, OCT has high spatial resolution (1μm - 10μm) to reveal fine structural details 

of biological tissue. In addition, OCT also provides extremely high imaging speed 

(typically faster than 100, 000 A-scans per second, or 100 B-scan frames per second) to 

assist clinical decision making in real-time. In breast cancer management, OCT can be used 

in both structural imaging and mechanical characterization. However, in situ structural 

OCT imaging alone has limited efficacy in distinguishing normal breast tissue from 

diseased breast tissue because OCT signal is obscured by photons with multiple scattering 

events and speckle noise. Hence, there is a need to integrate additional imaging/sensing 

capabilities with structural OCT imaging for its translation to clinical applications. In 

addition to morphological difference, cancerous breast tissue usually has higher stiffness 

compared to normal breast tissue, which is a compelling reason for the specific 
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combination of structural OCT imaging with stiffness assessment in the proposed dual-

modality OCT characterization of breast tissue. 

The most frequently used parameter that describes the elasticity of a material is the 

Young’s modulus measured at small strains. The Young’s modulus can be directly 

measured using the stress-strain relationship through a compression process. Researchers 

also investigated indirect methods to quantify the Young’s modulus of tissue. One of the 

indirect measurement technologies is dynamic elastography that generates dynamic 

excitation and propagating mechanical wave in tissue [11, 12]. In dynamic OCE, OCT 

imaging system is used to measure the propagation parameters of shear wave or surface 

wave for the estimation of Young’s modulus. The mechanical excitation in dynamic OCT 

can be introduced by focused ultrasound or by photothermal effects, providing great 

opportunity for loading at depth. Nevertheless, indirect measurement of tissue Young’s 

modulus has limited spatial resolution and limited access to deep tissue. Conventional 

compression OCE that measures spatially resolved tissue displacement under compression 

has the potential to achieve high spatial resolution and can be implemented as an instrument 

with a small form factor. However, conventional compression OCE lacks the mechanism 

for force or stress quantification. This can limit its application in tissue characterization, 

because most of the biological tissues have different elastic behavior under large loads as 

compared to small loads. Strain stiffening is frequently observed in biological tissue at 

large loads, and the linear stress-strain relationship is limited to few tissues such as bone 

tissue in a very limited deformation regime. In other words, the displacement of tissue 

measured by OCE not only depends on the mechanical characteristics of the tissue, but also 

depends on the magnitude of loading [13]. Therefore, it is critical for OCE measurement 
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to consider both the linear and nonlinear elasticity of tissue quantitatively to achieve 

effective tissue differentiation, which has not been investigated extensively before [14]. 

For the development of the dual modality OCT system, the structural OCT images 

suffer from additive and multiplicative noises that degrade the image quality. To suppress 

noise in OCT imaging, a noise adaptive wavelet thresholding (NAWT) algorithm has been 

developed to remove the speckle noise in OCT images. NAWT algorithm characterizes the 

speckle noise in the wavelet domain adaptively and removes the speckle noise while 

preserving the sample structure. Furthermore, a novel denoising algorithm is also 

developed that adaptively eliminates the additive noise from the complex OCT using 

Doppler variation analysis.  

In summary, pathological tissue has altered microarchitecture which can be 

characterized by the structural OCT imaging. Moreover, pathological tissue has altered 

mechanical properties which can be assessed by OCE technique. Therefore, the dual 

modality (structural and mechanical) measurement of OCT integrates the structural OCT 

imaging with stiffness assessment of OCE and allows more accurate characterization of 

biological tissues. 

1.2 Background Information 

1.2.1 Light-tissue Interactions/Tissue Optics 

 

Light is an electromagnetic wave. Typically, OCT imaging in nontransparent tissue is 

performed in the near-infrared region. Elastic light scattering is considered as the most 

important light-tissue interaction that generates OCT signal. Light scattering is generated 

from the spatial heterogeneity distribution of the optical refractive index. Optical refractive 

index depends on the spatial distribution of local mass density and constituent of a tissue 
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(i.e., lipid membrane, collagen fibers, the size of nuclei, hydration status in the tissue, etc). 

A simple relationship between the optical refractive index and the local molecular 

density of the tissue is given as: 

𝑛 =  𝑛0 +  𝛼𝜌                                                           (1.1) 

where n0 indicates the refractive index of the liquid medium (i.e., water), ρ is the fractional 

volume of the tissue solids such as proteins, DNA, RNA, lipids, etc. and can vary from 0 

to 1 and α is the proportionality constant. All these quantities are dependent to wavelength 

of light [151].  

The process of light scattering can be defined with the help of an electromagnetic 

wave. Let’s consider an electromagnetic wave of a unit magnitude propagating in the z0 

direction through the sample where the refractive index varies. The scattering particle will 

generate a spherical wave Ez(r) located at r position in the direction of z = r/r, where r =|r|. 

The generated spherical wave is: 

𝐸𝑧(𝒓) = 𝒈(𝒛, 𝒛𝟎)
𝑒𝑗𝑘𝑟

𝑟
                                                  (1.2) 

where 𝒈(𝒛, 𝒛𝟎) represents the scattering amplitude and is also a complex vector 

component. 

The most commonly used term to describe the characteristics of scattering property 

is the scattering cross-section. Scattering cross-section is the geometrical cross-section of 

a particle that produces the equal quantity of scattering and scattered power observed in a 

solid angle of Ω from all sides of the particles and can be expressed as: 

𝜎𝑠 = ∫ |𝒈(𝒛, 𝒛𝟎)|
4𝜋

0

2
𝑑Ω                                               (1.3) 

A relative quantity, the total cross-section (𝜎𝑡) is defined as: 

𝜎𝑡 = 𝜎𝑠 + 𝜎𝑎                                                              (1.4) 
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where 𝜎𝑎 is the absorption cross-section. 

In tissue optics, the absorption and scattering coefficients represent the overall 

attenuation experienced by the sample due to the light propagation. Absorption of light 

provides information about the chemical composition of a tissue and can provide 

information such as tissue oxygenation, oxygen consumption, blood hemodynamic, etc. 

[15]. Generally, when an electron interacts with the light, a photon energy at specific 

frequency is absorbed and is moved to a higher energy state. The attenuation causes an 

exponential decay of the incident light intensity with the penetration depth. Penetration 

depth measures the depth that light can penetrate through a sample tissue and it depends 

on the absorption and scattering properties of the biological specimens. 

For biological applications, OCT system typically use the near-infrared 

wavelengths and hereby, the optical response of the tissue is generally governed by the 

scattering phenomena rather than the absorption. OCT, therefore, provides good 

penetration depth and uses the coherence gating detection scheme to reject the undesired 

multiple scattered lights. Additionally, OCT provides micron-scale resolution with 

imaging contrast based on intrinsic sample properties, i.e., the scattering potential. This 

makes the extensive use of OCT imaging system for the retinal imaging [153- 155]. 

 

1.2.2 Introduction to Optical Coherence Tomography (OCT) 

 

Tomographic technique generates slices of images from the three-dimensional objects and 

has a great impact on medical field imaging due to its capability for producing non-invasive 

diagnostic images from the sample tissues. In early 90´s, Huang et al. [16] applied the low 

coherence interferometry principle to generate the high resolution, cross-sectional 

tomographic images of biological tissues by measuring the echo time delay and magnitude 
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of backscattered light. The technique is known as Optical Coherence Tomography (OCT).  

Imaging was performed ex vivo in the human retina and in atherosclerotic plaque as 

examples of imaging in transparent, weakly scattering media and in highly scattering 

media. Figure 1.2 shows the early OCT images. Imaging experiment was performed with 

an infrared light of 800nm wavelength. These early OCT images had an axial image 

resolution of ~15μm, which introduces almost one order of magnitude better for clinical 

imaging opportunity than standard ultrasound imaging technique.  

 

Figure 1.2 Generation of cross-sectional images by OCT through the measurement of the 

magnitude and echo time delay of backscattered light from the different transverse 

positions. A two-dimensional data set is displayed as a grayscale or false color image. 
Source: [16] 

 

 

Now-a-days, OCT has become an optical imaging modality for biomedical research 

and clinical applications in several areas, e.g., ophthalmology, dermatology, oncology, etc. 

Compared to conventional macroscopic medical imaging modalities, OCT has high spatial 

resolution (1μm - 10μm) to reveal fine structural details of biological tissue. In addition, 

OCT also provides extremely high imaging speed (typically faster than 100, 000 A-scans 

per second, or 100 B-scan frames per second) to assist clinical decision making in real-
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time.  

1.2.2.1 Coherence and interference.   Coherence is important in 

understanding OCT. In physics, two wave sources are said to be coherent if they have a 

constant phase difference with the same frequency and the same waveform. Coherence is 

an ideal property of waves that enables stationary (i.e. temporally and spatially 

constant) interference. 

 Interferometry measures the echo time delay of the backscattered light with high 

sensitivity and high dynamic range. OCT uses the interference to measure the backscattered 

signal intensity indirectly through the use of an interferometer. Therefore, a reference arm 

is required as the back-reflection intensity cannot be measured directly due to the high 

speed associated with the propagation of light. A Michelson interferometer will be 

discussed to present the interferometry and coherence concept. 

 

Figure 1.3 Schematic representation of a Michelson interferometer. 

 

A schematic of the interferometer is shown in Figure 1.3. The system comprises of 

three main parts: optical source, scanning system and optical detector. The light emitted 
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from the optical source with low coherence length is divided from the beam-splitter to the 

sample and reference arm. Next, the backscattered lights from the sample and the reference 

arms are recombined at the beam-splitter and the generated interference patterns are 

detected by the optical detector. According to the broadband properties of the optical 

source, the interference fringes will appear only when the optical path difference between 

the two arms are nearly identical and are matched to within the coherence length as shown 

in Figure 1.4(a). The coherence length (lc) is a measure of the coherence and is inversely 

proportional to the frequency bandwidth. In OCT imaging, the coherence length determines 

the axial or depth resolution. 

For path length mismatches greater than the coherence length as shown in Figure 

1.4 (b), the electromagnetic fields from the two beams are uncorrelated and no interference 

would be occurred. The magnitude and echo time delay of the reflected light can be 

measured by scanning the reference mirror delay and demodulating the interference signal 

from the interferometer. Because the interference signal is measured as a function of time 

and echoes are measured sequentially, this detection technique is also known as time 

domain detection. 

 
Figure 1.4 Two types of coherence length  

                                              Source: [16] 

 

 

1.2.2.2 Interferometric techniques for OCT imaging system  Optical 
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coherence tomography uses interferometry to perform high-resolution measurements of 

light echoes. Two different types of interferometric detection techniques are used in OCT 

instruments: time domain OCT (TD-OCT), Fourier domain OCT (FD-OCT). 

 In TD-OCT system, a broadband light source is used. Due to the low coherence of 

the light source, the interference signal is obtained only when the optical path length of the 

sample and reference arm is matched to within the narrow coherence length. The reference 

arm is then scanned to match the optical path length of the reflections from within the 

sample. The recorded interference signal at different depths or relative time delays between 

reference and sample is then demodulated to generate a reflectivity depth profile or A-scan 

as shown in Figure. 1.5(a). 

  In FD-OCT systems, the interference signal is distributed and integrated over many 

spectral slices, and is inverse Fourier transformed to obtain the depth-dependent reflectivity 

profile of the sample. The main advantage of FD-OCT is that, once that a CCD based 

spectrometer is used, there is no need of any mechanical scanning for depth resolved 

imaging. All the depth information and the scattering profile are encoded in the spectral 

interference pattern, which is further processed easily by a personal computer. Therefore, 

the position of the reference arm is fixed. Hence, FD-OCT system provides a higher scan 

speed compared to TD-OCT. However, in FD-OCT, the detector cost is high and complex 

and the FD signal needs additional signal processing with powerful computers.   
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Figure 1.5 Schematic of different OCT modalities: (a) Time domain OCT (TD-OCT), two 

different Fourier domain OCT (FD-OCT); (b) Spectral domain OCT (SD-OCT); (c) Swept 

source OCT (SS-OCT). 
 Source: [17] 

 

There are two types of Fourier domain detection schemes: spectral domain OCT 

(SD-OCT) and swept source OCT (SS-OCT). Both instruments use Fourier domain 

detection techniques. The SD-OCT instrument uses a broadband near-infrared 

superluminescent diode (SLD) as a light source and a spectrometer as the detector. The 

interference signal is split into different optical frequencies using a diffraction grating and 

is then detected through a one-dimensional (1-D) CCD array as shown in Figure. 1.5(b). 

Resampling of the data obtained from the CCD array is performed in order to correct the 

nonlinear spatial mapping of wavenumbers. After resampling and subtraction of the DC 

background, the depth-resolved structural profile information can be obtained by 

performing the inverse Fourier transform. 

In SS-OCT, the system uses an interferometer with a narrow instantaneous 

bandwidth, frequency-swept light source. The light source sweeps through a range of 

wavelengths and measures the interference output as a function of time by a single 
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photodiode as the detector. The collected signal obtained from the detector is equivalent 

to the SD-OCT technique. Then Fourier transform is performed to the detected intensity 

spectrum to generate the depth-resolved reflectivity profile (A-scan) of the sample as 

shown in Figure 1.5(c). In SS-OCT, the setup does not require any moving mirrors, no 

gratings and CCDs. SS-OCT systems are advantageous for their tremendously fast 

scanning speeds, in the range of 50kHz to several MHz axial scans per second.   

 

1.2.2.3 Mathematical derivation of the interference signal at the detector for OCT  

In SD-OCT system, an electrical field amplitude of the optical source (Ei), defined by 

Equation (1.5), is applied to the beam-splitter which splits the radiation to the sample (Es) 

and reference arm (Er). 

𝐸𝑖 =  𝑆(𝑘, 𝜔)𝑒
(𝑘𝑧−𝜔𝑡)                                                           (1.5) 

where z = Sample depth 

            k = Wave number = 
2𝜋

𝜆
= 

𝜔

𝑐
 

            ω = Angular frequency 

As the sample consists of multiple layers, for the discrete reflection, we have: 

𝑟𝑠(𝑧𝑠) = ∑𝑟𝑠𝑛 𝛿(𝑧𝑠 − 𝑧𝑠𝑛)

𝑁

𝑛=1

 

Es and Er can be expressed as Equations (1.6) and (1.7), respectively. 

𝐸𝑠 = 
𝐸𝑖

√2
 [𝑟𝑠(𝑧𝑠)⨂𝑒

𝑖2𝑘𝑧𝑠] =  
𝐸𝑖

√2
 ∑ 𝑟𝑠𝑛𝑒

𝑖2𝑘𝑧𝑠𝑛𝑁
𝑛=1                                          (1.6) 

𝐸𝑟 = 
𝐸𝑖

√2
 𝑟𝑟𝑒

𝑖2𝑘𝑧𝑟                                                                                            (1.7) 

The intensity on detector (Id) is proportional to square modulus of the sum of the electric 

fields of sample and reference arm: 
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                              𝐼𝑑(𝑘, 𝜔) =  
𝜌

2
 |𝐸𝑟 + 𝐸𝑠| 

2 

= 
𝜌

2
 |
𝑆(𝑘,𝜔)

√2
 𝑟𝑟𝑒

𝑖(2𝑘𝑧𝑟−𝜔𝑡) + 
𝑆(𝑘,𝜔)

√2
 ∑ 𝑟𝑠𝑛𝑒

𝑖(2𝑘𝑧𝑠𝑛−𝜔𝑡)𝑁
𝑛=1 | 2                             (1.8) 

By elimination the ω terms, Equation (1.8) will become: 

 𝐼𝑑 = 
𝜌

4
 [𝑆(𝑘)(𝑅𝑅 + 𝑅𝑠1 + 𝑅𝑠2 + 𝑅𝑠3 +⋯)] + 

𝜌

4
 [𝑆(𝑘)∑ √𝑅𝑠𝑛𝑅𝑅  (𝑒

𝑖2𝑘(𝑧𝑟−𝑧𝑠𝑛)𝑁
𝑛=1 +

 𝑒−𝑖2𝑘(𝑧𝑟−𝑧𝑠𝑛))] + 
𝜌

4
 [𝑆(𝑘)∑ √𝑅𝑠𝑛𝑅𝑠𝑚 (𝑒

𝑖2𝑘(𝑧𝑠𝑛−𝑧𝑠𝑚)𝑁
𝑛≠𝑚=1 + 𝑒−𝑖2𝑘(𝑧𝑠𝑛−𝑧𝑠𝑚))]           (1.9) 

Equation (1.9) contains three terms that contribute to the total OCT signal intensity: DC 

term, cross-correlation term and the auto-correlation term, respectively. The DC term is 

generated from the sample and reference reflectivities. The cross-correlation term is 

formed from the interference of the sample and reference arms and the auto-correlation 

term is obtained due to the sample path difference. 

From Equation (1.9), it is found that as Id depends on k, Fourier transform can be 

applied to obtain the signal depth. For an arbitrary cosine function: 

cos(𝑘𝑧0)
𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚
⇔               

1

2
 [𝛿(𝑧 + 𝑧0) +  𝛿(𝑧 − 𝑧0) ]                      (1.10) 

After applying the Fourier transform on Id, Equation (1.9) can be reduced to 

𝐼𝑑 = 
𝜌

8
 [𝛾(𝑘)(𝑅𝑅 + 𝑅𝑠1 + 𝑅𝑠2 + 𝑅𝑠3 +⋯)]

+ 
𝜌

4
 [∑√𝑅𝑠𝑛𝑅𝑅

𝑁

𝑛=1

[𝛾(2(𝑧𝑟 − 𝑧𝑠𝑛))] +  𝛾(−2(𝑧𝑟 − 𝑧𝑠𝑛))]] 

+ 
𝜌

4
 [∑ √𝑅𝑠𝑛𝑅𝑠𝑚

𝑁
𝑛≠𝑚=1 [𝛾(2(𝑧𝑟 − 𝑧𝑠𝑛))] +  𝛾(−2(𝑧𝑟 − 𝑧𝑠𝑛))]]                            (1.11) 

 

1.2.2.4 Performance analysis of OCT system 

(a) Image resolution of OCT: 

OCT system has two kinds of resolution: axial resolution and lateral (transverse) resolution. 
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The axial image resolution in OCT is determined by the coherence length of the light 

source. The coherence length is proportional to the width of the field autocorrelation 

measured by the interferometer, and the envelope of the field autocorrelation is related to 

the Fourier transform of the power spectrum. For a Gaussian-shaped spectrum, the axial 

resolution (𝛥𝑧) can be defined as: 

𝛥𝑧 =  
2ln (2)

𝜋
 
𝜆0
2

Δ𝜆
                                                                   (1.12) 

Here, Δz  is the full-widths-at-half-maximum (FWHM) of the autocorrelation function, λ0  

is the center wavelength of the light source and Δλ is the bandwidth of the light source, 

respectively. Choice of light source (λ0  and Δλ) affects Δz and also the penetration depth 

of the sample tissue. As axial resolution is inversely proportional to the bandwidth of the 

light source, broad bandwidth optical sources are required to achieve high axial resolution. 

The transverse or lateral resolution in OCT imaging is determined by the 

diffraction-limited spot size of the focused optical beam. The diffraction-limited minimum 

spot size is inversely proportional to the numerical aperture (NA) or the focusing angle of 

the beam. The transverse resolution (𝛥𝑥) is given as: 

                                              𝛥𝑥 =  
4𝜆

𝜋
 ( 
𝑓

d
)                                                                                (1.13) 

where d is the spot size on the objective lens, f is its focal length of the lens and NA = d/f. 

A better performance of lateral resolution can be achieved by using a larger NA that focuses 

the beam to a small spot size. Typically, OCT imaging is performed with low NA focusing 

to have a large depth of field. 

(b) Sensitivity of OCT: 

Interference amplifies weak signals and hence increases sensitivity of the system. An 

important feature of an OCT system is the weakest sample reflectivity (Rs,min ) that provides 
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a signal power equal to the noise of the system. Therefore, Sensitivity (S) can be defined 

as the ratio of the signal power generated by a perfectly reflecting mirror (R = 1) and that 

generated by Rs,min. Since these signal powers are proportional to the corresponding 

reflectivities we have: 

𝑆 =  
1

𝑅𝑠,𝑚𝑖𝑛
|
𝑆𝑁𝑅=1

                                                        (1.14) 

Standard OCT devices use ac detection. As most amplifiers display flicker noise 

(1/f noise; with typically 3dB per octave slope) in the low frequency range, frequencies 

more than 10kHz are used. The dominating noise sources are shot noise, excess intensity 

noise and receiver noise. In the interim region, shot noise governs and the sensitivity can 

be expressed as: 

𝑆 =  
𝛼

4
 
𝑃𝑠

𝑞𝑒𝐵
                                                           (1.15) 

Here, 𝛼 =  
𝑞𝑒𝜂

ℎ𝜈
 ,qe is the electron charge, η is the quantum efficiency, hν is the photon 

energy, Ps is the source power and B is the bandwidth of the light source. So, sensitivity is 

proportional to the source power and is inversely proportional to the electronics bandwidth. 

In OCT system, at lower power, receiver noise limits the sensitivity of the system and at 

higher power no additional sensitivity are added due to the presence of excess noise. 

 

1.2.2.5 Image generation and display of OCT system OCT data can be collected and 

displayed in a number of different formats. The most common three types of formats are 

A-scan, B-scan and C-scan images in OCT. Each form represents a unique way to visualize 

the test sample. 
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(a) A-scan OCT image:  

A-scan OCT image generates the reflectivity or depth-resolved profile of the sample being 

scanned. It generates the intensity of the reflected light at various depths for a single sample 

location. It contains information about the spatial dimensions and location of the sample 

structures within the region of interest. Figure 1.6(a) shows the A-scan image of a sample 

object. It represents the intensity of the backscattered signal from the sample as the varying 

depth in the axial direction. 

(b) B-scan OCT image: 

 B-scan OCT image provides a two-dimensional graphical presentation. It generates a 

cross-sectional image of the sample by axially scanning and combining the series of A-

scan images sequentially. Figure 1.6(b) shows the B-scan or cross-sectional image of a 

fingertip of a healthy volunteer. 

 

Figure 1.6 Different image display in OCT: (a) A-scan, (b) B-scan or cross-sectional 

image, (c) C-scan image. Here, human fingertip is used as sample to acquire the images. 
Source: [18-19] 

(c) C-scan OCT image: 

C-scan image generates 3D image of the sample by performing the lateral scanning and the 
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combining the B-scan images sequentially. Using the 3D data cube, an enface image is 

formed. Figure 1.6(c) shows an enface image of a fingertip of a healthy volunteer. From 

the figure, the ridges and valleys of the fingerprint are visible clearly. 

 

1.2.3 Speckle Analysis in OCT 

Speckle is an intrinsic feature of images appearing in all types of coherent imaging systems, 

such as ultrasound, synthetic aperture radar, optical holography and OCT. Speckle is often 

considered as a granular-textured noise. Speckle noise imposes the fundamental limitation 

on image quality for OCT. It obstructs the structural features and makes it challenging to 

extract information (such as structural property of a sample) from an OCT image. 

Therefore, a lot of research work is going on to suppress this speckle effects by reducing 

the speckle contrast ratio of the image. However, the main limitation is due to the fact that 

“speckle” and “structure” cannot be easily separated. 

In OCT, speckle is produced by the addition of multiple optical wavefields, 

backscattered from the sample arm of an interferometer. A speckle pattern in a B-scan FD-

OCT image is presented in Figure 1.7 [20]. 

 

 
Figure 1.7 A speckle pattern in a B-scan FD-OCT image. 

                               Source: [20] 
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In OCT, speckle is distinct from noises (such as intensity, shot and phase noises 

determined by the imaging system, that depend on the source and detection scheme 

properties). In fact, speckle formation is sample dependent and time invariant. For instance, 

if the sample is motionless with respect to the probing beam, then speckle plays a vital role 

for the formation of OCT images. Hence, in this situation, complete removal of speckle 

would cause with no OCT image at all [21]. Speckle in a single backscattering scenario 

can be modeled as the difference between the coherent and incoherent images of a highly 

random microstructure modulated by a slowly varying “mean” function. [22] 

 

1.2.3.1 Mathematical Analysis of Speckle  In this section, only the signal arising 

due to single scattering, by first order Born-approximation scattering is considered [23] in 

which the sample is denoted as superposition of non-interacting phase gratings. Thereby, 

for monochromatic light, the scattered wave depends linearly on the sample’s scattering 

potential for any incident wave is: 

𝑆𝑆 (𝒓, 𝑘𝜆) =
 𝑘𝜆
2(𝑛2(𝒓)−1)

4𝜋
                                                  (1.16) 

Where n(r) represents the refractive-index, r is a three-dimensional spatial location vector, 

kλ represents wavenumber at a particular λ 

  For simplicity, assuming the refractive index is wavenumber-independent 

(neglecting dispersion effect of the sample), sample susceptibility can be considered to 

discard the wavenumber dependency from the calculation, as [24] 

𝜒 (𝒓) = (𝑛2(𝒓) − 1) =  
 𝑆𝑆 (𝒓)4𝜋)

𝑘𝜆
2                                          (1.17) 

In particular, the scattering potential represents as 

𝜒(𝒓) = 𝑃(𝒓)𝑁(𝒓)                                                                (1.18) 
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where P is a slowly varying non-negative deterministic function denoted as the 

macroscopic variations in the sample and N is a rapidly varying complex ergodic random 

process function represented as the microscopic scatterer distribution within the 

macroscopically locally homogeneous regions and can be approximated as Dirac delta 

function, δ(r). The terms “Slowly” and “rapidly” varying in this section is considered with 

respect to the spatial scale of the OCT PSF envelope.  

The detected OCT signal, as a function of scan position, is given by the 

superposition integral: 

𝐴 (𝒓) =  ∭ 𝜒(𝒓′)𝐵(𝒓 − 𝒓′;  𝒓)𝑑3𝒓′
∞

−∞
                          (1.19) 

where B(a, r) is the local system PSF.  

However, if the imaging system is spatially invariant for one-dimensional, then 

Equation (1.19) is a convolution integral, A (r) = χ(r) ⊗ B(r), so that B(a; r) ≡ B(a). It 

means that the OCT PSF can be assumed to be spatially invariant when performing enface 

imaging. 

Consider, N is a Delta-dirac function. The integral of N over its entire domain is 1. 

The mean value 𝐴(𝒓)̅̅ ̅̅ ̅̅  = 0, due to the random phase of N. This simple statistic provides a 

clarification for the speckle phenomenon. So, the total OCT signal is due to fluctuations 

about this zero-mean point. 

The mean-squared value of A(r) by the sifting property of the delta function is: 

|𝐴(𝑟)|2̅̅ ̅̅ ̅̅ ̅̅ ̅ =  ∭ ∭ 𝜒(𝑟′)𝜒∗(𝑝′)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
∞

−∞

∞

−∞

 𝐵(𝑟 − 𝑟′;  𝑟)𝐵∗(𝑟 − 𝑝′; 𝑟)𝑑3𝑟′𝑑3𝑝′ 

               ≅  |𝑃(𝑟)|2  ∭ |𝐵(𝒓′; 𝒓)|2𝑑3𝒓′
∞

−∞
                                                       (1.20) 

The factor |P(r)|2 is taken outside the integral due to the assumption that it is slowly 
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varying (in comparison with the size of |B (r0; r)|2).Now for an incoherent imaging system 

(hypothetical equivalent) which is linear with respect to optical intensity, the detected 

signal by the convolution integral is: 

𝐹 (𝒓) =  ∭ |𝜒(𝒓′)|2|𝐵(𝒓 − 𝒓′;  𝒓)|2𝑑3𝒓′
∞

−∞
                                     (1.21) 

The variance of F is zero under the delta-function limit. So, F (r) can be expressed as: 

𝐹(𝒓) =  𝐹(𝒓)̅̅ ̅̅ ̅̅ =  |𝑃(𝒓′)|2∭ |𝐵(𝒓 ′;  𝒓)|2𝑑3𝒓′
∞

−∞
                             (1.22) 

Equations (1.20) and (1.22) reveal the origin of speckle in coherent imaging. The 

incoherent image F(r) represents the exact reconstruction of |P(r)|2, equal to its mean 

(deterministic) value, and is independent of the small-scale fluctuations caused by N(r). 

Furthermore, both the squared modulus of the coherent complex amplitude distribution 

(|𝐴(𝒓)|2̅̅ ̅̅ ̅̅ ̅̅ ̅) and the incoherent intensity distribution (𝐹(𝒓)  show same mean value. 

Based on the prior analysis, speckle can be defined as the difference between a 

coherent image |A(r)|2 and the corresponding incoherent image F (r) considering that the 

imaging process can be modeled by a superposition integral [22].  

In OCT, if we represent the sample as a collection of point scatterers, then the OCT 

signal can be expressed as [22]: 

𝐴 =  |𝐴|𝑒𝑗𝜃𝐴 = ∑ 𝐴𝑖 = ∑ 𝑎𝑖𝑒
𝑗𝜙𝑖𝑀

𝑖=1
𝑀
𝑖=1                                 (1.23) 

Where Ai indicates the phasor influence of i-th scatterer of total M components to 

the signal. The term |A| is known as speckle envelope. Assuming, the scatteres are identical, 

the distribution of ai depends only on the shape of the local point-spread function (PSF). 

PSF of an imaging system indicates the response of a point source. Moreover, all the values 

of ai and ϕi are independent [156].  
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Therefore, the speckle envelope is Rayleigh-distributed and the speckle size 

remains almost constant over the entire A-scan image [22].  Additionally, the OCT PSF 

has pulse broadening effect in the axial direction of the sample with the increase of sample 

depth in the presence of dispersion. However, in SD-OCT system, low NA is considered 

for selecting the lens of the sample arm. As a result, OCT signals are not affected by the 

dispersion and the speckle size will remain the same [157]. Moreover, as the phase 

contribution of different scatterers to OCT signal varies over the A-scan, this variation 

maintains the dispersion-free speckle correlation function, even if the axial resolution of 

the image degrades [22]. 

 

1.2.3.2 Speckle Reduction Methods  Speckle suppression methods can be 

classified into two categories: 1) based on the modification of the experimental setup and 

2) post-processing of the recorded OCT images.  

In experimental methods, multiple images are captured under different detection 

schemes or illumination techniques. The main purpose of these methods is to obtain the 

uncorrelated speckle patterns from the local region that corresponds to the same region of 

interest (ROI). For example, Angle compounding approach uses speckle averaging in OCT 

using summation of A-scan envelope signals from an array of detectors [21]. An 

illumination direction diversity method [25] can be applied for speckle-reduction technique 

for enface OCT images. Some other experimental methods include the illumination center 

wavelength [26]; the detection angle [27-30], the beam focal position [31-32] and strain 

induced in the sample [33-34]. 

Post-processing techniques are flexible for OCT speckle suppression. Speckle 

reduction algorithms are applied to extract useful sample information from speckle-
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corrupted images and suppress image-distorting effects. The first image postprocessing 

technique for speckle suppression in OCT has used a wavelet filter [35].  Many methods 

have been proposed, for instance, averaging filters [21], wavelet transforms [36] and 

anisotropic diffusion [37]. However, the averaging filter technique degrades the spatial 

resolution [22].  In wavelet transform filtering methods, the signals are decomposed into 

wavelet coefficients. Based on the magnitudes of coefficients, a spatially adaptive 

threshold estimator classifies the signal either as information or speckle noise. Wavelet 

transform can reduce the speckle while preserving the spatial resolution of the image.  

 

1.2.4 Introduction to Optical Coherence Elastography (OCE) 

 

Optical coherence elastography (OCE) was first introduced by Schmitt in 1998 [38]. OCE 

shows great potential for micron and submicron imaging applications because it benefits 

from the high resolution of OCT, while additionally providing the elastic properties of the 

sample. OCT provides structural images that are similar to histology, where the 

microstructures of biological tissues can be quantified based on the optical backscattering 

properties within the imaging region of interest. This high-resolution, noninvasive imaging 

modality allows OCE to evaluate the mechanics of intact tissue on microscopic scale. OCE 

has a number of advantages over ultrasound elastography and magnetic resonance 

elastography, such as: spatial resolution, sub-nanometer displacement sensitivity and fast 

image acquisition speed. Table 1.1 shows the comparison of various elastography 

techniques based on performance evaluation. OCE has the ability to generate high-

resolution and high-contrast elastograms. Therefore, current research interests are focusing 

on the key advances to enable clinical OCE, feasible imaging probes integrated with 

loading instruments, and better contrast realization in pathological tissue. 
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Table 1.1 Performance Evaluation of Elastography Techniques 

 

Techniques Resolution Imaging depth SNR (dB) Imaging Speed 

Magnetic 

Resonance 

Elastography 

 

1.3mm Whole body 5 - 14  2 – 20min 

Ultrasound 

Elastography 

0.1 – 0.5mm 4-5cm 8 - 12 4 - 30μs 

OCE 15 - 100μm 0.5 – 3mm 10 -25 20 - 100μs 

Brillouin 

Microscopy 

0.5 - 5μm 0.1 – 3mm 10 - 30 2 – 5min 

Atomic Force 

Microscopy 

1-100nm Surface only 10 -33 30s – 30mins 

 
Source: [39] 

 

There are three main steps to perform the OCE, which is given as follows: 

(1) Identification of the structural characteristics of the sample tissue (i.e., isotropic or 

anisotropic) and establishment of an appropriate theoretical relationship with appropriate 

boundaries to connect the applied forces to strains or deformations. 

(2) Design of appropriate experimental methods to perform the experiment and also the 

detection scheme to identify the tissue deformation for the theoretical framework.  

(3) Obtain the stress-strain relationship and hence, calculate the elastic modulus. 

 

1.2.4.1 Mechanical Properties of Tissue  Elastography maps local mechanical 

properties, such as stiffness or elasticity, from a set of measured displacements. The 

relationship between the measured displacement and the elasticity is not apparent due to 

complex varying composition of tissue. Most of the biological tissues exhibit viscoelastic, 

anisotropic and nonlinear behavior in response to applied force [40-41]. Most of the time, 
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tissue is approximated as a linear elastic solid with isotropic mechanical properties [7], [42-

43]. The assumption of linearity is commonly applied typically for strain <10%) in 

elastography [8]. 

 For a linearly elastic material, the stress and strain distribution throughout a volume 

can be defined by second-order tensors to determine the tissue mechanical properties. The 

isotropic linear elastic constitutive Equation [44] is given by 

𝜎𝑥𝑦 = 𝜆𝜀𝑧𝑧𝛿𝑥𝑦 + 2𝜇𝜀𝑥𝑦                                                  (1.24) 

where x, y and z are the Cartesian coordinates and λ and μ are elastic constants, known as 

Lamé constants and δxy represents Kronecker delta (For x = y, the value is 1, otherwise it 

is 0 otherwise). Equation (1.24) is defined at each spatial (xyz) location in the tissue.  

The loading can be static, quasi-static and dynamic. For a uniaxial static or quasi-

static loading, compressive axial stress, σ and axial strain, ε are linearly related through the 

Young’s modulus, E, given as, 

𝐸 =  
𝜎

𝜀
                                                                             (1.25) 

For the dynamic load, elasticity is measured by the wave propagation in the bulk 

material [45] or on the surface [46] of a sample. For an isotropic linear elastic model of 

tissue behavior, the propagation of a shear wave in a bulk material is given by the 

Helmholtz Equation [44]: 

𝐺∇2𝑢 − 𝜌
𝜕2𝑢

𝜕𝑡2
 = 0                                                            (1.26) 

Where G is the shear modulus, u is displacement, ρ is density and ∇ is the Laplacian 

operator. The relationship between shear modulus and Young’s modulus (E) is: 

𝐺 =  
𝐸

2 (1+ 𝜐)
                                                                      (1.27) 

where υ is Poisson’s ratio. 
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For soft tissues, Poisson’s ratio is around 0.5, so, Equation (1.27) simplifies to G = 

E/3 . The phase velocity of the shear wave, cs is related to the shear modulus by the 

expression [45] 

𝑐𝑠 = √
𝐺

𝜌
                                                                          (1.28) 

where ρ for soft tissue is typically assumed to be ∼1000 kg/m3[45]. 

 

When a dynamic load is applied at the surface of the sample, the generated surface 

wave behaves as Rayleigh waves. Rayleigh waves have surface longitudinal and vertical 

shear components that propagate only few meters per second to penetrate through an elastic 

medium. For OCE, the surface acoustic phase velocity, cp, in an elastic, homogeneous half-

space is related to the Young’s modulus by [46] 

𝑐𝑝 = 
0.87+1.12𝜈

1+𝜈
 √

𝐸

2𝜌(1+ 𝜈)
                                               (1.29) 

1.2.4.2 OCE Techniques  OCE techniques use a wide variety of loading 

mechanisms, namely, static/quasi-static or dynamic onto the tissue either internally or 

externally [12]. Each OCE technique measures the displacement and estimates the tissue 

mechanical properties through a mechanical deformation model. In this section, 

compression OCE using quasi-static, external loading; Surface acoustic wave (SAW-OCE) 

with dynamic loading; and Magnetomotive OCE (MM-OCE) by internal loading will be 

presented briefly. Key elements of these techniques are shown in Figure 1.8. 

Table 1.2 summarizes some performance parameters of OCE techniques.  
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Table 1.2 Comparison of OCE Techniques 

Techniques Measured 

parameter 

Dynamic 

range 

Axial 

resolution 

Lateral 

resolution 

Loading 

frequency 

Compression Local strain ~ 660 

 

40 – 120μm 

[47] 

Same as OCT 0 – 800Hz 

[48] 

SAW  Phase velocity ~450 Not known 500- 1000μm 1 – 300Hz 

[49] 

MM Natural 

frequency 

 

~16 

 

Same as 

OCT 

 

Not known 10 – 400Hz 

[50] 

Source: [44] 

 

(i) Compression OCE 

In compression OCE, an external compressive load is applied to the sample. Typically, a 

step change in this load is applied between acquisitions (of either OCT A-scans or B-scans). 

The local axial strain (i.e., the strain measured over a small depth range), εl , is estimated, 

as illustrated in Figure 1.8(a), by measuring the change in displacement, Δuz , over an axial 

depth range, Δz [51]: 

𝜀𝑙 =
Δ𝑢𝑧

Δ𝑧
                                                                          (1.30) 
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Figure 1.8 Illustrations of loading schemes and elasticity estimation for three OCE 

techniques: (a) Compression: (top to bottom) loading and detection in a bi-layer sample; 

displacement versus depth; the corresponding local strain, εl ; (b) SAW: (top to bottom) 

periodic loading and off-axis detection; amplitude decay with depth for high and low SAW 

frequencies, f1 and f2 , respectively; phase velocity, cp , is frequency-dependent in a layered 

sample); (c) MM: (top to bottom) MNPs embedded in a homogeneous sample in response 

to a step application of the magnetic field; applied magnetic field; corresponding sample 

response versus time, where fn is the natural frequency of oscillation and Tn the period. 
Source: [44]. 

 

The elastogram maps this local strain, which provides a relative measurement of 

mechanical properties. Compression OCE is one of the effective ways to measure the 

elasticity ([4], [41-42]). Young’s modulus can be calculated from the local strain with 

known local stress value.  

 Quasi-static compression loading can be quantified through speckle tracking which 

has limited motion sensitivity [51 - 54]. On the other hand, phase-sensitive OCT detection 

methods [55 - 57] has higher motion sensitivity Compression OCE has also used dynamic 
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loading [48, 58-60]. In dynamic loading, a sinusoidal external load’s vibration amplitude 

is measured and then the dynamic strain is calculated over the variations of vibration 

amplitude with respect to the axial depth.  

(ii) Surface Acoustic Wave OCE (SAW-OCE) 

In SAW-OCE, as illustrated in Figure 1.8(b), surface waves are generated by a transient 

(pulsed) or periodic load and then are detected by OCT after propagating at small velocity 

(typically at a few m/s) over a lateral distance of typically ∼0.5–20mm [61-62]. The 

relationship between phase velocity of the SAW and the Young’s modulus is given in 

(1.31). 

𝑐𝑝 = 
0.87+1.12𝜈

1+𝜈
 √

𝐸

2𝜌(1+ 𝜈)
                                              (1.31) 

 Various loading methods have been used to generate SAWs. Contact methods 

include a metal rod or piezoelectric transducer in direct contact with the sample [63 - 66], 

as shown in Figure 1.8(b).  

The SAW decays exponentially in depth, with an effective penetration depth, zSAW, 

approximately equal to the wavelength, λSAW: 

𝑧𝑆𝐴𝑊 ≈ 𝜆𝑆𝐴𝑊 =
𝑐𝑝

𝑓𝑆𝐴𝑊
                                                    (1.32) 

where fSAW is the SAW frequency.  

The SAW-OCE has the capability to measure tissue mechanical properties at depths 

beyond the OCT imaging limit. Also; it is suitable for non-contact (air-pressure or 

photothermal) loading on sophisticated tissues such as the cornea [61-62].  

SAW-OCE has lower lateral resolution (∼500μm) compared to OCT’s lateral 

resolution (∼10μm). This limitation is due to the relatively long wavelength (>10mm) set 

by the system in order to detect the time delay and dispersion of the surface acoustic waves.  
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(iii) Magnetomotive OCE (MM-OCE) 

MM-OCE uses magnetic nanoparticles (MNPs) scattered in the tissue and stimulated by 

an external magnetic field to produce local nanometer-range tissue displacements [67 - 71]. 

MM-OCE uses the time-dependence of the motion to determine the Young’s modulus.  

Local magnetic gradient force, F, per unit volume, V, in tissue containing MNPs 

resulting from the gradient magnetic field, B, is given by [44]: 

𝐹

𝑉
= [(𝑀𝑀𝑁𝑃 + 𝑀𝑇). ∇]𝐵                                               (1.33) 

Where MMNP and MT are the volume magnetizations due to the MNPs and tissue, 

respectively.  

Net magnetic force is either positive or negative due to the opposite magnetization 

directions (positive or negative) for the tissue. However, MMNP >MT [68]. The magnetic 

susceptibility of MNPs is >105 times larger than that of tissue. Therefore, a threshold MNP 

fractional volume of 10−5 [68] is a significant factor for the application of MM-OCE.  

A schematic illustration of MM-OCE is shown in Figure 1.8(c). The under-damped 

oscillation of magnetite MNPs was measured [50] and used to characterize the Young’s 

modulus of silicone phantoms. The natural frequency of the samples is linearly dependent 

on the square root of E [50]. An MM-OCE has the ability to perform measurements in 

small samples. Moreover, MM-OCE requires low force to operate and hence, makes it a 

suitable candidate to measure very soft tissues over other OCE techniques.  

 

1.3 Research Objective 

The aim of this doctoral study is to develop of a dual modality OCT system for structural 

imaging and quantitative optical coherence elastography (qOCE) sensing. This includes: 
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(i) Development of dual modality qOCE system that tracks both interaction force 

and local displacement for quantitative mechanical characterization of 

biological tissue. 

(ii) Development of an adaptive Doppler analysis algorithm to accurately track the 

deformation of tissue under OCE measurement. 

(iii) Validation of qOCE technique for linear and non-linear characterization on 

mechanical substance (phantom) as well as various bio-applications such as ex 

vivo (brain tissue), in vivo (skin tissue) sample.  

(iv) Validation of depth-resolved displacement for qOCE characterization of 

stiffness on samples with different thicknesses. 

(v) Implementation of a noise adaptive wavelet threshold (NAWT) algorithm to 

reduce the speckle noises from OCT images. 

(vi) Assessment and removal of additive noise in a complex OCT signal based on 

Doppler analysis. 

 

1.4 Dissertation Organization 

Chapter 1 covers the motivation, background information related to our research and the 

objectives of the present thesis. We have briefly discussed the optical interference theories 

and light-tissue interaction. A brief introduction of OCT methodology, time-domain OCT 

(TD-OCT) and Fourier-domain OCT (FD-OCT) are also presented from the view of 

principle and performance in Chapter 1. Next, the chapter also represents a brief 

introduction on OCE theories. We will consider the physical principles that govern the 

tissue deformation. We will use the conventional quantities to relate tissue displacement, 

deformation, load and elasticity. Also, recent developments of OCE techniques will be 

covered in this chapter. 

Chapter 2 describes the development and validation of qOCE technology based on 

FD-OCT. Here, we will describe the implementation of our miniature qOCE probe that 

tracks both the interaction force and depth resolved local displacement within the sample. 



32 
 

The signal processing technique of the qOCE probe will be also presented in the chapter. 

The chapter focuses on the application of qOCE probe on phantoms and biological tissues 

(in vivo skin tissue and ex vivo brain tissue) 

Chapter 3 demonstrates the capability of quantitative optical coherence 

elastography (qOCE) for robust assessment of material stiffness under different boundary 

conditions using the reaction force and displacement field established in the sample. 

Chapter 4 presents the development of a handheld optical instrument that allows 

in vivo real-time OCE characterization based on an adaptive Doppler analysis algorithm to 

accurately track the motion that varies as time and spatial location. Afterwards, the imaging 

system and data acquisition will be described for the adaptive Doppler algorithm. We will 

then show results obtained from phantom experiments and in vivo tissue characterization, 

to demonstrate the effectiveness of the adaptive Doppler analysis for motion tracking in a 

dynamic manual loading process. 

Chapter 5 shows the noise adaptive wavelet thresholding (NAWT) algorithm that 

removes the speckle noise in OCT and OCE images. Our NAWT algorithm utilizes the 

characteristics of speckle noise in wavelet domain to adaptively remove speckle noise, 

while preserves structure features in OCT image. Moreover, NAWT has improved visual 

appearance of OCT image compared to conventional wavelet domain thresholding and 

Gaussian filtering. 

Chapter 6 represents the development of an innovative algorithm to adaptively 

eliminate the additive noise from the complex OCT using Doppler variation analysis. The 

method first generates a map of additive noise for the OCT image through Doppler 

variation analysis. Then, the additive noise is removed from the real and imaginary parts 
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of the complex OCT signal through pixelwise Wiener filtering. Results show that this 

method has the capability to improve the sensitivity of OCT imaging while preserving the 

spatial resolution without any modification of the imaging apparatus and data acquisition 

protocol. 

Chapter 7 is the concluding chapter. It contains the summary of the work. The 

chapter also highlights scopes for the future work. All references are placed at the end of 

this thesis. 
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CHAPTER 2  

DESIGN AND IMPLEMENTATION OF A qOCE FIBER-OPTIC PROBE  

 

 

2.1 Introduction 

This chapter describes the development of a quantitative optical coherence elastography 

(qOCE) technology. Design and fabrication of a miniature qOCE probe are discussed. 

qOCE probe has an integrated force sensor and acquires structural OCT data to 

quantitatively characterize the mechanical properties of tissue. The qOCE system can be 

used to establish the relationship between mechanical stimulus and tissue response to 

characterize the stiffness of biological tissue. qOCE data is processed in real-time using 

graphic processing unit (GPU). The calibration and validation of qOCE in linear and 

nonlinear mechanical characterization is discussed in this chapter.  

 

2.2 Principle of qOCE Technology 

2.2.1 System Configuration and Fabrication of qOCE Probe 

Figure 2.1(a) shows the schematic diagram of qOCE system. The qOCE system utilizes a 

spectral domain OCT (SD-OCT) engine operated at 1.3μm. A superluminescent diode 

(SLD1325 Thorlabs, 100nm bandwidth) is used as a light source. The system operates at a 

91 kHz A-scan rate and has an axial resolution of ~7.5μm. The phase noise of the SD-OCT 

system is 0.01radians that implies a displacement tracking sensitivity of 1nm. The output 

of broadband SLD light source illuminates the reference and sample arm of a fiber-optic 

Michelson interferometer through a fiber-optic coupler (FC). In this system, a fiber optic 

qOCE probe is used as the sample arm of the Michelson interferometer. The interference 
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signal from the sample and reference arms is detected by a CMOS InGaAs camera 

(SUI1024LDH2, Goodrich) after a spectrometer. A frame grabber (PCIe-1433, National 

Instrument) receives the interferometric signal from the camera and streams the signal to 

the host computer for further processing. All the device controls and signal processing are 

performed by a host computer (Dell Precision T7600) with software developed in C + + 

(Microsoft Visual Studio, 2012) in real-time using graphic processing units (GPU). 

 A miniature fiber optic probe (qOCE probe) is used to apply compression in the 

sample. If the sample is mechanically homogeneous, the loading produces a uniaxial 

compression. Otherwise, the state of stress is determined by the heterogeneity that can also 

be measured. A common-path OCT signal tracks the probe deformation in response to the 

applied force. The common-path OCT signal is detected from the interference of the optical 

fields (Efp1) reflected from the tip of single mode fiber (SMF) and from the first surface of 

the GRIN (gradient index) lens (Efp2). Another OCT signal is sensed from the interference 

between the sample light (Es) and the reference light (Er) through Michelson interferometry 

to trace the sample deformation in front of the probe tip. 

 

 
Figure 2.1 (a) Illustration of qOCE system (FC: fiber-optic coupler, SLD: 

superluminescent diode, Efp1: optical reflection from single mode fiber-tip, Efp2: optical 

reflection from the proximal end of the first GRIN lens, Es: sample light, Er: reference light; 

(b) qOCE probe for tissue characterization. 
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 Figure 2.2 shows the qOCE probe. The size of the probe is compared with a US 

quarter. To fabricate the probe, a SMF is inserted into a stainless-steel tube (25-gauge). 

The fiber and the tube are attached together with the optical epoxy to achieve the preferred 

firmness for the elasticity measurement. With additional cascaded tubing, the fiber is then 

combined to a polyimide tube (Microlumen) with inner diameter of 1.8mm. An adhesive 

optical epoxy is applied to the proximal end of the polyimide tube for fixation. A pair of 

GRIN lenses (Newport, LGI1300-1A, 0.23 pitch, 0.26mm working distance) is attached to 

the distal end of the polyimide tube. The distance between the first GRIN lens and the fiber 

tip is adjusted to obtain the collimated light beam. The second GRIN lens focuses the light 

beam in such a way that the waist of the output beam is located at 0.26mm depth away 

from the GRIN lens surface. Particularly, the mechanically active portion in this probe for 

the OCT sensing is the segmentation between the assembly points of the SMF and the first 

GRIN lens. 

 

Figure 2.2 qOCE probe compared to a US quarter. 

 

 As shown in Figure 2.1(b), a lead-in SMF is connected to the proximal end of the 

qOCE probe shaft and a pair of rod GRIN lenses are attached to the distal end of the probe 

shaft. The cleaved SMF tip and the proximal surface of the first GRIN lens work as two 

end surfaces to form a low fineness Fabry Perot (FP) cavity. Incident light from the SLD 
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is reflected by two end surfaces (Efp1 and Efp2) of the FP cavity due to a discontinuity in 

refractive index (from glass to air and from air to glass). 

  The common path interference between Efp1 and Efp2 generates an OCT signal (A-

scan, IFP) with a peak located at the depth Lfp that equals the FP cavity length as shown in 

Figure 2.3(a). The phase of complex valued OCT signal at Lfp varies proportionally with 

the variation length of the FP cavity (as shown in Figure 2.3(b) and (c)) and hence, the 

force is exerted from the tip of the probe. In other words, the force exerted through the 

qOCE probe causes deformation of the probe which in turn generates a detectable Doppler 

phase shift in the complex valued OCT signal. Meanwhile, the GRIN lens pair also serves 

as an objective lens and focuses the output light beam from SMF for illuminating the 

sample.  

 

Figure 2.3 (a) Elasticity measurement by qOCE probe; (b) deformation of FP cavity in 

proportional to the applied force; (c) FP cavity deformation results in phase shift in OCT 

signal. 
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 The spectrometer detects the backscattered light from the sample (Es) through the 

fiber optic probe for OCT imaging. Es interferes with the reference light (Er) and generates 

a depth-resolved profile for the sample (Isample). In summary, Isample is derived from the 

Michelson interferometer consisting of the reference arm and the sample arm, and IFP is 

derived from the common path interferometer (the FP cavity). The optical path length 

(OPL) of reference arm is adjusted in such a way that eventually, OCT signal from the 

sample (Isample) can start beyond Lfp. OPL is matched by a SMF patch cord in the reference 

arm and through the coarse and fine adjustment of the collimator position in the reference 

arm. This configuration is known as the spatial division multiplexing of the OCT signal. 

This method is used for simultaneous tracking the probe deformation (ΔLprobe) and the 

sample tissue deformation (ΔLsample). 

  Particularly, the GRIN lenses pair helps the light beam to focus tightly into the 

sample and selects a smaller value of Lfp. A shorter FP cavity length is necessary to refrain 

from the insignificant signal roll-off in the system. It is maintained by locating the Isample 

closer to the equal optical path plane. 

Now, If LGRIN represents OPL of the light reflected by the distal surface of the 

second GRIN lens, then the appropriate OPL of the reference arm can be chosen as: 

Lref < LGRIN + Lfp                                                                         (2.1) 

The sample is located beyond Lfp to avoid the overlapping of signals from the FP 

cavity. Moreover, the probe deformation for the quantification of the force has low impact 

on the measurement of tissue deformation as the stiffness of the probe has higher order of 

magnitude compared to the that of the soft tissue (GPa versus kPa). Therefore, the 

mechanical property of the tissue can be obtained by measuring the force and the depth-
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resolved displacement simultaneously from the space-division-multiplexed OCT signal in 

the qOCE system.  

If the material of the specimen (phantom or tissue) is linearly elastic, a static force 

generates a uniform displacement. If the material is viscoelastic, a dynamic sinusoidal force 

can be applied to measure the response. As the mechanical property of the sample is 

unknown, a simplified linear elastic model with a Young’s modulus E is considered in this 

study. 

 Using OCT signals obtained, we can quantify the deformation of the probe ΔLprobe 

and the force exerted is given as: 

F = α × ΔLprobe                                                                            (2.2) 

where α is a constant that correlates the probe tip force (F) with the deformation of the 

probe and can be determined by the calibration experiments. The stress applied to sample 

can be derived as: 

σ =  
F

A
                                                                                         (2.3) 

where A is the area of the GRIN lens.  

 In addition, the strain of the tissue can be calculated as: 

ϵ =  
ΔLsample

L0
                                                                                (2.4)  

Here, L0 is the initial specimen thickness before compression and ΔLsample represents the 

sample deformation.  

 Finally, the sample’s Young’s modulus (E) which is the linear slope of strain-

stress curve can be obtained using Equation (2.5)  

E =  
σ

ϵ
= 

αL0

A
 (
ΔLprobe

ΔLsample
)                                                              (2.5) 
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where tissue elasticity can be quantified by comparing the deformation of probe and the 

sample. 

 However, Equation (2.5) is valid based on the following assumptions: 

(i) The load is applied slowly. Therefore, force applied to the tissue is 

equivalent to force measured by the integrated Fabry Perot force sensor.  

 

(ii) The tissue specimen is elastic and viscoelasticity is not considered.  

(iii) The materials are incompressible and hence, Poisson’s ratio of 0.5 has been 

considered for the sample. 

 

 In this study, the elastic tissue specimen is inserted in between the two rigid 

compressors one of which is the qOCE probe tip. This configuration provides the most 

simplified boundary condition and is frequently used indentation method to characterize 

the biomechanical properties of the soft tissue. For example, indentation measurement on 

Young’s moduli of breast tissues are performed through simultaneous quantification of 

mechanical loading and tissue deformation [9, 72].  

 

2.2.2 Signal Processing 

We analyzed OCT data to track the probe deformation and sample deformation to 

characterize the mechanical properties quantitatively. 

 

2.2.2.1 Signal Processing to Track the Probe Deformation Figure 2.4(a) shows 

the block diagram to track the probe deformation. At first, DC subtraction and interpolation 

on spectral domain OCT data acquired by the CMOS camera is performed to obtain k- 

(wavenumber) space interferogram. Afterwards, Doppler analysis and peak identification 

algorithms are applied to track the probe deformation.  
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Figure 2.4 Signal processing block diagram for (a) tracking of probe deformation for the 

quantification of force/stress; (b) tracking of tissue deformation for the quantification of 

deformation/strain. 

 

 To track probe deformation as shown in Figure 2.4(a), the fast Fourier transform 

(FFT) on k-space interferogram is applied to obtain a complex valued 1D OCT signal, 

IFP(z,t). Here, z indicates the axial coordinate and t indicates the time of measurement. 

Next, the signal peak generated by the interference between optical waves from two end 

surfaces of the FP cavity, (IFP(Lprobe, t)) is identified. Afterwards, Doppler phase shift, 

(δϕprobe(t)) between A-scans captured at different time interval, δtFP (here, δtFP = 5ms) is 

calculated by using Equation (2.6) [73]:  

δϕprobe(t) = a tan[ IFP (Lprobe, t +  δtFP)IFP
∗  (Lprobe, t)]        (2.6) 

Meanwhile, δϕprobe(t) is proportional to the probe deformation and thus the force 

applied to the sample can be determined. 

 

2.2.2.2 Signal Processing for the Sample Deformation The tracking of sample 

deformation is obtained from OCT signal of the sample (Isample(z,t)) and also through 

Doppler analysis as shown in Figure 2.4(b).  The following steps are applied to determine 

the sample deformation: 
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Step-1: Numeric Dispersion Compensation 

OCT signal collected from the sample suffers from signal degradation due to the effect of 

the chromatic dispersion. Therefore, the amount of dispersion mismatch needs to be 

measured in order to obtain a high resolution and a high SNR OCT signal (Isample(z,t)) from 

the sample. To quantify the mismatched dispersion, the non-linear phase of the 

interferometric spectrum is extracted through Hilbert transformation on the interferometric 

spectrum. Afterwards, the non-linear phase component of the signal is approximated by 

applying the third order polynomial fitting: Φ(k) = p3k
3 + p2k

2 + p1k + p0 where po to p3 are 

the coefficients. Finally, the non-linear phase is then subtracted in the GPU based software 

before preforming FFT for real-time dispersion compensation.  

Step-2: Doppler analysis 

 Biological tissue is less rigid compared to the plastic probe shaft and deforms more. 

Therefore, two A-scans acquired with smaller time interval (δts = 0.2ms) is applied for 

Doppler phase calculation (Equation (2.7)). Otherwise, deformation obtained through 

Doppler analysis may suffer from the phase wrapping artifact.  

𝜹ϕsample(z, t) = atan[Isample (z, t) +  δtsample)Isample
∗ (z,t)]                        (2.7) 

Step-3: Averaging  

Both structural OCT signal from highly scattering sample and Doppler OCT signal exhibit 

speckle noise. As a result, to track sample deformation with higher accuracy, spatial 

average is performed to obtain the filtered phase shift (δϕsample,filtered(t)) for better result 

(Equation (2.8)). δϕsample,filtered(t) is proportional to spatially resolved displacement of the 

sample that can be converted to the local deformation and strain. 

δϕsample,filtered (t) =  ∫ 𝛅ϕsample(z, t) dz
L0+ 

δL

2

L0− 
δL

2

                       (2.8) 
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 with δϕprobe(t) or δϕsample,filtered(t) obtained, probe deformation (δLprobe) and sample 

deformation (δLsample) can be determined using Equation (2.9). For probe deformation 

tracking, the central wavelength of SLD output in air (λ0 = 1.3μm) is selected in Equation 

(2.9). For sample deformation tracking, the wavelength correction is achieved by the 

refractive index (λ = λ0/n). 

δLprobe,sample(t) =  
δϕprobe,sample (t)

4π
λ                                        (2.9) 

 Notably, in compression OCE, mechanical loading is applied to tissue in a quasi-

static process and it is essential to quantify the deformation over the entire compression 

process. Therefore, both the probe deformation and the sample deformation are integrated 

over the same time interval, as shown in Equation (2.10). The time integration also 

improves SNR for the elasticity measurement. 

ΔLprobe,sample(t) = ∫ δLprobe,sample(τ) dτ
t

tstart
                                        (2.10) 

 with probe and sample deformation acquired using Equation (2.9) and (2.10), tissue 

elasticity can be measured using Equation (2.5). In the real-time software, a variable is 

continuously updated to calculate the accumulated displacement as shown in Equation 

(2.11):  

ΔLprobe,sample = ΔLprobe,sample + dLprobe,sample                                                 (2.11) 

 where dLprobe,sample represents the incremental displacement.  

 

2.3 Validation and Performance of qOCE Probe 

2.3.1 A-scan Signals from qOCE Probe 

Typical A-scan signals are acquired from the qOCE probe as shown in Figure 2.5. Figure 

2.5(a) shows OCT signals attained from the probe without (black) and with (blue) numeric 
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dispersion compensation. A silicone phantom with Titanium dioxide to provide scattering 

was used as sample. Both A-scans multiplex the signals from the common path 

interferometer and the Michelson interferometer. For the A-scan obtained without 

dispersion compensation (black), a sharp signal peak (red arrow) is observed. This peak 

corresponds to the common path OCT signal derived from the FP cavity (interference 

between optical fields Efp1 and Efp2 in Figure 2.1(b). As Efp1 and Efp2 share the same optical 

path, the interferometric signal is free from the dispersion mismatch and a sharp peak is 

detected without any dispersion compensation. Moreover, the detected A-scan signal 

broadens at a larger imaging depth, as indicated by the dashed rectangle. Signal bounded 

by the rectangle is generated from the interference between the reference mirror (Er) and 

the distal surfaces of the second GRIN lens (EGRIN), as well as sample (Es) under imaging. 

As the reference light and sample light in the Michelson interferometer travel through the 

different media (fiber and air), the detectable signal experiences a considerable amount of 

signal degradation due to the dispersion mismatch.  

 

Figure 2.5 (a) Typical A-scan from qOCE probe without (black) and with (blue) dispersion 

compensation; (b) multiplexed signals at three different surfaces for simultaneous tracking 

of the probe and the tissue deformation; (c) OCT signal from Michelson interferometer 

after the dispersion compensation. 

 

 In comparison, the blue curve shown in Figure 2.5(a) which is obtained after the 

dispersion compensation shows a sharp peak corresponding to the distal surface of the 
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GRIN lens (indicated by the green arrow), a sharp peak corresponding to the sample surface 

(indicated by the orange arrow) and depth-resolved sample profile. However, OCT signal 

due to interference between Efp1 and Efp2 diminishes in the blue curve because of additional 

non-linear phase induced to the dispersion-free signal in the process of numerical 

dispersion compensation. Figure 2.5(a) clearly shows that OCT signal from the FP cavity 

for force/stress measurement is spatially demultiplexed with OCT signal from the tissue 

for displacement/strain measurement. Multiplexed CP OCT signal attained from the FP 

cavity without dispersion compensation and Michelson OCT signal acquired from tissue 

with dispersion compensation are also shown in Figure 2.5(b). By tracking phase shift 

between complex valued, spatial division multiplexed OCT signal as shown in Figure 

2.5(b), the deformations of the probe and the tissue can be quantified.   

 Figure 2.5(c) shows segments of OCT signal obtained from the Michelson 

interferometer after dispersion compensation with visible low intensities weak scattering 

sample phantom. Curves with different color are obtained when the sample is located at 

various depths. Signal peak from the GRIN lens surface (indicated by the green arrow) 

remains identical shape for different signals. Particularly, focusing effect has been detected 

in Figure 2.5(c) where the focal plane is approximately 0.26mm away from the GRIN lens 

surface. 

 

2.3.2 Tracking of Probe and Tissue Deformation from the qOCE Probe 

Temporal variation of A-scan in Doppler phase shift is used to track the probe and the 

tissue deformation as shown in Figure 2.6. Figure 2.6(a) shows a frame of sequentially 

acquired spectral interferograms. In Figure 2.6(a), different coordinate in horizontal 

direction corresponds to different wavelength/wavenumber and different coordinate in 
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vertical corresponds to different time. Fringes due to the interference between optical fields 

from the two end surfaces of the FP cavity are visible in Figure 2.6(a). As the probe is used 

to compress tissue during the acquisition of Figure 2.6(a), slight fringe shift over time can 

be observed due to the probe shaft deformation. Using our real-time GPU software, we 

quantified the phase shift shown in Figure 2.6(a) by Equation (2.6) and converted the phase 

shift to probe deformation using Equations (2.8) and (2.9). Figure 2.6(b) shows signal from 

the tissue (screen capture of real-time display) when the qOCE probe is used to compress 

the phantom. Our software showed structural OCT signal (upper), as well as Doppler OCT 

signal (ODT, lower) obtained by calculating A-scan signal phase shift. Sequentially 

acquired signals are displayed in Figure 2.6(b) where different coordinate in horizontal 

direction corresponds to different time and different coordinate in vertical direction 

corresponds to different depth. Similarly, Figure 2.6(c) shows the screen capture of real-

time display when releasing the compression exerted to the same phantom through the 

probe. Notably, in our software, colored-coded Doppler signal has been used to improve 

the visualization in the direction of the motion or phase shift. The negative phase shift has 

been coded with red color and the positive phase shift has been coded with blue color. Due 

to small time window (0.1s) frame for the acquisition of A-scans during quasi-static 

compression shown in Figure 2.6(b) and 2.6(c), a small phantom deformation is found and 

cannot be detected in structural OCT images (upper insets of Figure 2.6(a) and 2.6(b)). 

However, the phase of OCT signal provides much higher sensitivity in deformation 

tracking. Deformation of phantom in different direction due to the compression and 

removal of compression are clearly visible in the lower panels of Figure 2.6(b) and 2.6(c). 
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Figure 2.6 (a) A frame of interferometric spectrum when force is applied to the probe; 

 (b) structural OCT image (upper) and Doppler OCT image (lower) during compression of 

sample by qOCE probe; (b) structural OCT (upper) and Doppler OCT images (lower) when 

the compression is released. 

 

2.3.3 Calibration of the qOCE Probe 

Accurate characterization of elastic property of tissue depends on the proper measurement 

of the external applied force/stress and the tissue’s response in the form of 

deformation/strain. First, the accuracy of deformation/displacement tracking is calibrated 

experimentally. The qOCE probe is attached to a precise linear motor (Newport, ILS100CC 

DC). The probe is translated by the motor in the axial direction without touching the rigid 

scattering sample. Therefore, the displacement between the probe and the sample is 

equivalent to the distance translated by the motor. Using OCT signal, displacement 

between qOCE probe and sample is determined by using Equations (2.7) – (2.10), in the 

real-time GPU software. Comparison of displacement extracted through Doppler analysis 

of OCT signal with the known motor displacement is as shown in Figure 2.7. Clearly, 

displacement calculated using Doppler analysis shows a linear dependency on actual 

displacement.  
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Figure 2.7 Calibration between Doppler OCT signal displacement and actual 

displacement. 

 

 The model is validated by linear regression given by Equation (2.12): 

Dphysical = a DDoppler + b                                                               (2.12) 

Where the parameters are a = 1.2 and b = 0.004mm. R2 statistic of the fitting is 0.9977, 

which indicates a high linear relationship between the calculated displacement and the 

actual displacement. The coefficient a accounts for the direction of light propagation and 

the refractive index of the phantom. 

 Moreover, another calibration experiment is conducted for the validation of the 

force/stress sensing capability of the qOCE system. The qOCE probe is mounted on a linear 

stage and the stage is translated horizontally to exert the force to the sensing tip of a digital 

force gauge (Shimpo, FG-3005) The digital force gauge has a high precision force 

measurement with 0.005N resolution. The probe deformation is tracked using Doppler 

OCT signal obtained from the integrated FP cavity. The results are then compared as shown 

in Figure 2.8.  
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Figure 2.8 Calibration between force due to the FP cavity deformation and the force 

applied. 

 

 Notably, the length of FP cavity is varied linearly with the force. The linear 

regression model is given by Equation (2.13)  

DFPC = αF + β                                                           (2.13) 

Here, the results indicated α = 0.1795N/μm. R2 statistic of the fitting is 0.9971, indicating 

a highly linear relationship between the force and the probe deformation. 

Figures 2.7 and 2.8 demonstrate the quantification of the force and displacement using 

OCT signal. Based on results obtained from the calibration experiments, phase shift 

extracted from OCT signal can be converted to the tissue deformation and the force. 

Finally, stress can be calculated using the area of the GRIN lens (~2.54 mm2) in contact 

with sample for the compression. 
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2.4 Elasticity Measurement and Mechanical Characterization of Samples 

Conventional compression OCE lacks the mechanism for the quantification of the 

interaction force which limits its application for the tissue characterization. This is because, 

it is impossible to compare tissue stiffness in different measurement sessions when the 

force in unknown. In addition, most of the biological tissues show different elastic 

performance when large loads are being applied as compared to small loads. At larger load, 

strain stiffening commonly occurs in biological tissue and the linear stress-strain 

relationship becomes restricted to few tissues such as bone tissue in a very limited 

deformation region. Therefore, the tissue displacement measured by OCE not only depends 

on the mechanical tissue characteristics, but also depends on the magnitude of loading 

applied to the tissue sample [13]. Therefore, OCE measurement considering the nonlinear 

elasticity of tissue is important to achieve the effective tissue differentiation, which has not 

been investigated widely before [14]. 

In the previous section, the development of qOCE instrument has been presented. 

The qOCE instrument simultaneously measures the force exerted to tissue and the resultant 

tissue deformation [74]. In this section, the significance of force quantification in OCE 

would be explored for the characterization of linear and nonlinear elasticity. In order to 

measure the apparent stress and the apparent strain of the tissue using qOCE, some 

assumptions are used: qOCE probe is moved slowly to apply the compressive load to the 

tissue so that sample tissues can be assumed as isotropic, homogeneous, elastic and 

incompressible within the volume interrogated by qOCE. Mechanical contrast between 

different biological tissues can be revealed using a calibrated qOCE instrument.  
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A miniature fiber optic qOCE probe integrated with a Fabry-Perot (FP) 

interferometer is used to indent the tissue sample and to collect optical signal for elasticity 

assessment. In acquiring experimental data, we simultaneously measured the apparent 

stress and strain for the elastic characterization of biological tissue. These quantities are 

referred as apparent stress and strain in this section, because our measurement assumed a 

uniform spatial distribution of the stress and the strain within the tissue, which may not be 

true in biological samples with structural and mechanical heterogeneity. The qOCE probe 

is used to perform slow indentation on the sample and OCT signals are acquired. We 

quantified the probe-tissue interaction force (F) using ΦFP, the accumulated phase shift at 

the signal peak for IFP, because ΦFP is proportional to probe shaft deformation and thus the 

force. Briefly, the Doppler phase shift φFP(τ) are calculated between A-scans and integrated 

the Doppler phase shift over time: 

𝜙𝐹𝑃(𝑡) =  ∫ 𝜙𝐹𝑃(𝜏) 𝑑𝜏
𝑡

0
                                                              (2.14) 

 

To quantify the force, a calibration experiment is performed to extract the constant 

(α) that correlated the probe tip force (F) with the phase shift (ΦFP) due to FP cavity 

displacement: F = αΦFP. The apparent stress was then obtained: σ = F/A. Here A indicates 

the area of the GRIN lens at the tip of the qOCE probe and A = 2.5mm2, calculated using 

the radius of the GRIN lens. On the other hand, we used Itissue to quantify tissue 

displacement and the apparent strain. We calculated tissue displacement (δl) using Doppler 

phase shift at depth d0: 

𝛿𝑙 =
 𝛿𝜙𝑡𝑖𝑠𝑠𝑢𝑒(𝑑0,𝜏)𝜆0

4𝜋
                                                                     (2.15) 

and integrated tissue displacement over time:  

Δ𝑑 =  ∫ 𝛿𝑙 (𝑑0, 𝜏)
𝑡

0
 𝑑𝜏                                                                  (2.16) 
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Assuming the uniform distribution of the displacement, the apparent strain can be 

calculated as: ε = Δd/(Δd + d0). In this study, d0 is chosen as 0.63mm where the tissue 

deformed substantially and the SNR of OCT signal is satisfactory. Notably, the apparent 

stress (σ) and the corresponding apparent strain (ε) are both obtained by integrating the 

Doppler phase from the beginning of indentation (τ = 0) to the observation time point t (τ 

= t). The fundamental data acquisition frequency for stress and strain signal was 10kHz, 

determined by an external trigger source. 

To perform elastic characterization, we attached the qOCE probe to a high precision 

linear motor (Newport, ILS100CC DC) and translated the qOCE probe at small speed (~0.1 

mm/s) in axial direction for indentation. This relative slow motion is introduced to 

minimize any viscoelastic effects. The apparent stress-strain data are obtained during the 

indentation process for linear and nonlinear characterization of elastic properties of the 

material. 

To demonstrate qOCE’s capability in linear and nonlinear mechanical 

characterization, we performed qOCE measurement on following samples: 

(a) An in-house fabricated elastic phantom 

(b) In vivo qOCE experiment on human skin tissue 

(c) Ex vivo qOCE experiment on rat brain tissue 

 

2.4.1 Elasticity Measurement of Mechanical Substance  

Phantoms are used to evaluate the qOCE technique. At first, we performed the qOCE 

experiment on an in-house fabricated elastic phantom. The phantoms mimic the optical 
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property and elastic modulus of biological tissues. The phantom material is silicone rubber 

called RTV-22 purchased from Raw Material Suppliers. PDMS phantoms are fabricated 

with different stiffness by combining PDMS fluid with curing agent added at different 

volumetric ratios. In addition, titanium dioxide is poured into the samples to provide the 

light scattering [75]. The mixture is then thoroughly mixed, degassed for 15 minutes, and 

then is cured on a 6-inch square glass plate. PDMS samples are used for the experiment 

and specimens are cut using circular dies with a 0.5-inch diameter.   

Different loading condition is applied to observe the linear and nonlinear properties 

of the sample. Figure 2.9 shows the stress-strain relationship for different loading 

conditions. Figure 2.9.2(a) shows the linear apparent stress-strain curve for small apparent 

strain. The curve shows nonlinear characteristic after the apparent strain reaches high strain 

as shown in Figure 2.9(b). For linear regime of the apparent stress-strain curve (ε<0.1), 

Young’s modulus (E) of the material is: σ = Elinearε, where σ indicates the apparent stress, 

ε indicates the apparent strain and Elinear indicates the Young’s modulus for the linear region 

of the sample. After performing the regression analysis, Elinear: Elinear = 84.85kPa with R2 

statistics of 0.9971.  

For non-linear apparent stress-strain curve as shown in Figure 2.9(b), E of tissue 

can be extracted by the simplest form of Neo-Hookean model, given as: 

 𝜎 =  𝐸𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(
𝜆−1

3𝜆2
)                                                                        (2.17) 

Here λ indicates the magnitude of stretch and λ = 1-ε.  

The Neo-Hookean model reduces to the linear elasticity [76 - 77]. Afterwards, 

regression analysis is carried out to extract Enonlinear, using the nonlinear model. Enonlinear is 

85.64kPa. This value is highly consistent with Elinear. The R2 statistics of the regression 
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analysis is 0.9787. The fitting results are shown as the black curve in Figure 2.9(b). For 

comparison, both the linear and nonlinear curves are plotted in Figure 2.9(b). Notably, the 

experimental data is significantly different from the predicted linear model for the strain 

value larger than 0.2. 

 

Figure 2.9 (a) Linear stress-strain curve at small strain; (b) nonlinear stress-strain curves 

and curve fitting based on Neo-Hookean model. 
Source: [93] 

 

 

2.4.2 Elasticity Measurement of in vivo Biological Tissue 

An in vivo qOCE measurement is performed upon human skin tissue. This validates that 

the qOCE technology can estimate the nonlinear elasticity of biological tissue. The volar 

and the dorsal skin of the forearm of a 32 years old healthy volunteer is used as sample. 

The arm is rested on a flat rigid surface to minimize the motion artifacts during the 

measurement. Next, Quasi-static indentation is applied to the forearm regions. B-scan and 

enface images of volar and dorsal regions are shown in Figure 2.10(a)- (d), respectively. 

Uniform distribution of tissue strain is assumed during the experimental procedure for the 

analysis of dermis deformation and for the measurement of the dermis stiffness. During the 

experiment, it is also assumed that equilibrium has been achieved at arbitrary time during 

the indentation process and the apparent stress is detected by the probe tip and the force is 
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calculated. Figure 2.10(e) shows the apparent stress-strain curves (black dashed curve: 

volar forearm skin; red dashed curve: dorsal forearm skin) obtained during the experiment. 

Both curves are nonlinear. The slope of the skin stress-strain curve increases with the 

magnitude of mechanical loading. This is because, during the compression process the 

dermis collagen fibers rearrange their orientations and shows large stiffness [78]. As shown 

in Figure 2.10(e), dorsal forearm skin has larger slope compared to volar skin over the 

entire range of loading. These results are consistent with the experimental data of previous 

OCE experiment [65].  

When the apparent strain is small (ε< 0.1), E values in the linear elasticity regime 

for volar region is Evolar = 79.7kPa and dorsal skin region is Edorsal = 116.7kPa. Different 

tissues have different E values for the qOCE system and measurement geometry. This 

validated the qOCE system’s tissue differentiation capability. In comparison with the 

structural OCT images obtained in Figure 2.10(a) –(d), it is clear that structural OCT 

images do not show significant difference between volar and dorsal skins of the forearm. 

It suggests that qOCE can potentially provide a new dimension of information for the tissue 

characterization.  

Furthermore, linear regression analysis is performed for the apparent stress-strain 

data to demonstrate the nonlinear elastic behavior of the skin tissue. The resultant values 

of R2 statistics of the regression are 0.7616 and 0.8898, for the volar skin and the dorsal 

skin, respectively which implies that a linear model cannot provide the satisfactory 

performance to describe the apparent stress-strain relationship of Figure 2.10(e). 

 Alternatively, we modeled the acquired apparent stress and apparent strain values 

to a nonlinear elastic model for skin tissue, known as Veronda-Westman Constitutive Law: 



56 
 

𝜎 = 2𝜇0 (𝜆
2 − 

1

𝜆
)
exp[𝛾(𝜆2+ 

2

𝜆
−3)]−1 

2𝜆
                                                     (2.18) 

where σ indicates the stress and λ indicates the stretch [79, 80].  

This model is originally developed for skin tissue and is successfully used to fit 

experimental data. In this model, μ0 is directly related to linear elasticity E = 3μ0 and γ 

determines the nonlinear rate of the apparent stress-strain from the linear behavior. The 

fitting results are shown as solid curves in Figure 2.10(e).  

 

 
Figure 2.10 Volar forearm of human skin: (a) cross-sectional and (b) enface images; dorsal 

forearm: (c) cross-sectional and (d) enface images; (e) stress-strain curve for volar (black) 

and dorsal (red) regions. E indicates epidermis and D indicates dermis. 
Source: [93] 

 

 

For this experiment, μ0 is 14kPa for volar skin and 38kPa for dorsal skin. γ ≈ 5.3 

for both dorsal and volar skin. E = 3μ0 is satisfied for dorsal skin. However, this equation 

is not validated for volar skin. This is because, we had very limited data for the linear 

elasticity regime to estimate E. 

 

2.4.3 Elasticity Measurement of ex vivo Biological Tissue  

Next, the elasticity is measured by OCE to in vivo rat brain tissues. 10-week-old Sprague 

Dawley rats (320-360g in weight) from Charles River Labs are used as samples. The brain 

from a rat, sacrificed for other research purposes, is harvested. A coronal brain slicer is 
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used to cut the brain into slices with 3mm thickness. The miniature qOCE probe performed 

localized mechanical characterization on hippocampus and other anatomical regions 

(Figure 2.11(a)). The quasi-static indentation is provided using the qOCE probe on the 

brain slice. Hippocampus (Figure 2.11(b)) and cortex grey matter (Figure 2.11(c)) are 

interrogated. In Figure 2.11(b) and 2.11(c), the scale bars indicate 1mm. Hippocampus of 

the brain is the center for memory, emotion and spatial navigation. Hippocampal damage 

in traumatic brain injury (TBI) causes disability. The mechanical contrast between 

hippocampus and other parts of the brain directly relates the damage of hippocampus in 

TBI [81, 82]. Therefore, the mechanical properties of the hippocampus are important. In 

this experiment, qOCE probe is moved for 0.6mm to apply pre-compression.  

 
Figure 2.11 (a) qOCE probe and brain slice; (b) enface OCT image of hippocampus from 

the coronal plane (DG: dentate gyrus; CA1: Cornu Ammonis 1); (c) enface OCT image of 

cortex from the coronal plane; (d) stress-strain curve for cortex grey matter (black) and 

hippocampus (red) of rat brain. Solid curves represent experimental data and dashed curves 

are linear fitting of the stress-strain curve. 
Source: [93] 

 

The apparent stress-strain curves from the hippocampus (red) and the cortex (black) 

are shown in Figure 2.11(d) as solid curves. At small apparent strain (strain<0.1), the brain 

tissue had linear elasticity. Young’s moduli for hippocampus (EH) and cortex (EC) are: EH 

= 276kPa and EC = 74kPa. These values are consistent with results of previous 
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experimental findings. The result suggests that the hippocampus tissue has larger stiffness 

compared to the cortex [84]. Figure 2.11(d) shows the linear curve fitting of stress-strain 

as dashed curves. The difference between solid and dashed curves in Figure 2.11(d) 

suggests the nonlinear stress-strain relationship for brain tissues.  

We could not apply stress to the tissue for strain value larger than 0.2 due to the 

material failure. This is consistent with published results [75]. A linear regression model is 

applied to fit the apparent stress-strain data corresponding to strain ranging from 0 to 0.2. 

The R2 statistics are 0.9472 and 0.8094 for the hippocampus, and the grey matter, 

respectively. The result suggests that the elastic behavior of hippocampus is almost linear 

whereas the grey matter diverges from linear elastic characteristic at a smaller strain. 

 

2.5 Conclusion and Discussion 

In this chapter, the principle of a fiber-optic qOCE device has been described. The qOCE 

device simultaneously quantifies the force exerted on the tissue and measure the resultant 

tissue deformation. The qOCE technique allows direct measurement of elastic properties 

and therefore has great potential in many applications, such as cancer diagnosis, brain 

injury study, tissue engineering and biomechanical modeling. 

 Currently, Young’s modulus obtained from atomic force microscopy studies the 

tissue mechanics at the micro- through nanoscopic scale or be obtained from tensile 

stretching or indentation measurement that studies tissue mechanics at the macroscopic 

scale [83]. However, these techniques rely on ex vivo tissue specimens that have different 

mechanical properties from tissue in living organism. Therefore, the qOCE instrument with 
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small dimension allows in situ measurement of Young’s modulus and is highly significant 

for the study of tissue mechanics. 

 Biological tissues often exhibit nonlinear elastic behavior. Therefore, 

understanding the nonlinear elasticity is critical for elastography imaging and mechanical 

characterization of biological tissue. However, conventional OCE techniques lack the 

mechanism for force sensing. As a result, the nonlinearity of tissue elasticity has not been 

fully investigated and it remains challenging to establish the consistency in tissue stiffness 

obtained from different OCE measurements. In this study, we demonstrated the capability 

of qOCE in characterizing the both the linear and nonlinear elasticity of biological tissue. 

We validated the effectiveness of our qOCE system by correlating its measurements with 

published values. 
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CHAPTER 3  

qOCE FOR ROBUST STIFFNESS ASSESSMENT 

 

3.1 Introduction 

In this chapter, we describe the capability of quantitative optical coherence elastography 

(qOCE) for robust assessment of material stiffness under different boundary conditions 

using the reaction force and displacement field established in the sample. 

Breast conserving surgery is one of the most frequently practiced surgical 

procedures for the treatment of breast cancer. In breast conserving surgery, a negative 

surgical margin reduces the risk of local recurrence and reduces the need for repeated 

surgery. The capability to assess surgical margin intraoperatively can benefit both patients 

and clinicians [85]. Cancerous breast tissue usually has higher stiffness compared to normal 

breast tissue [9]. Therefore, manual palpation is frequently used in clinical examination of 

breast cancer. Elastography techniques based on cross-sectional imaging modalities, such 

as ultrasound imaging and magnetic resonance imaging (MRI), are also used for breast 

imaging [86, 87]. Optical coherence tomography (OCT), a microscopic tomographic 

imaging modality based on low coherence light interferometry, has found applications in 

breast cancer management [16, 88 - 90]. A functional extension of OCT, optical coherence 

elastography (OCE) provides mechanical contrast and can be used to differentiate 

cancerous breast tissue and normal breast tissue [38, 44, 91]. Compared to other 

elastography technologies, OCE has much higher spatial resolution and allows mechanical 

characterization on a small volume of breast tissue.  
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An OCE instrument can be fabricated using fiber-optic components. The OCE 

instrument can be also integrated into a handheld probe that is compact and lightweight 

[92]. Therefore, an OCE instrument will allow convenient assessment of tissue malignancy 

for margin assessment during breast conserving surgery. Moreover, OCE instrument is 

capable of improving patient outcome by confirming the negative margin. However, 

conventional OCE performs the qualitative measurement and only tracks the deformation 

of the sample. Hence, the reaction force is unknown. Therefore, results from different OCE 

measurement sessions fluctuate significantly for the same sample and it also becomes 

challenging to establish consistent standards for the tissue classification.  

In our laboratory, we have developed and validated a unique fiber-optic quantitative 

OCE (qOCE) technology [74, 93]. For mechanical characterization, the qOCE probe is 

translated to compress the sample. During the indentation period, OCT signal is captured 

from the qOCE probe and is analyzed for simultaneous quantification of reaction force (F) 

and depth resolved sample displacement (d(z)). Nevertheless, quantitative extraction of 

material properties remains challenging because the results of qOCE characterization 

(reaction force and displacement field established within the sample) depend on material 

properties and the geometric boundary condition [94, 95]. In this section, we describe a 

method for robust stiffness assessment by qOCE data (F and d(z)). We have also validated 

the method with the experimental data.  
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3.2 Experimental Set-up and Sample Preparation 

Details about the qOCE technology have been described in Chapter 2. A spectral domain 

OCT (SD-OCT) engine at 1310nm based on a fiber-optic Michelson interferometer is used 

in this experiment. The experimental setup is shown in Figure 2.1 of Chapter 2. The 

imaging system has a 2.5mm imaging depth. The sample arm of the interferometer is 

interfaced with the novel qOCE probe that has a built-in Fabry–Perot (FP) force sensor and 

also acquires a signal from the sample underneath the probe. A common path OCT signal 

is generated due to the interference between optical fields reflected from two end surfaces 

of the FP cavity. Consider, length of FP cavity is denoted as LFP. The signal peak (IFP) from 

the FP cavity is localized at LFP. When a force (F) is exerted through the probe, the FP 

cavity length changes in proportional to the F which is given as: F = L ΔLFP where ΔLFP is 

amount of length change in FP cavity, k is a parameter that is related to the stiffness of the 

probe shaft. So, Doppler phase shift of IFP is: 

Δ𝜙𝐹𝑃 = ∫ 𝑎 tan[𝐼𝐹𝑃(𝑡 +  𝛿𝑡)𝐼𝐹𝑃
∗ (𝑡)]𝑑𝑡

𝑡𝑒𝑛𝑑
𝑡𝑠𝑡𝑎𝑟𝑡

                                      (3.1) 

where tstart and tend indicate the start and end time of the indentation process and δt indicates 

the time interval between signals involved in Doppler analysis.  

 With Δ𝜙𝐹𝑃 , Δ𝐿𝐹𝑃 can be computed as: 

Δ𝐿𝐹𝑃 = 
𝜆0Δ𝜙𝐹𝑃

4𝜋
                                                                                   (3.2) 

Where λ0 is the central wavelength of the light source. 

The applied force is given as: 

𝐹 = 
𝑘 𝜆0

4𝜋
 Δ𝜙𝐹𝑃 =  𝛼 Δ𝜙𝐹𝑃                                                                   (3.3) 

Light exiting from the probe also illuminates the sample. Backscattered light from 

the sample (Es) couples back into the qOCE probe and then interferes with reference light 
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(Er) to form a depth resolved OCT signal (Is(z)). Next, Doppler analysis is applied to Is(z) 

and the Doppler phase is estimated according to Equation (3.4): 

Δ𝜙𝑠(𝑧, 𝑡) = atan [𝐼𝑠(𝑧, 𝑡 +  𝛿𝑡)𝐼𝑠
∗(𝑧, 𝑡)]                                               (3.4) 

Therefore, Depth resolved displacement from the sample is calculated as: 

𝑑(𝑧) =  
𝜆0

4𝜋
 ∫ Δ𝜙𝑠(𝑧, 𝑡) 𝑑𝑡
𝑡𝑒𝑛𝑑
𝑡𝑠𝑡𝑎𝑟𝑡

                                                               (3.5) 

Meanwhile, the OCT signals obtained for the tracking of probe deformation (IFP) 

and the tracking of tissue deformation Is(z) can be multiplexed simultaneously in the same 

A-scan without any spatial overlap by choosing the appropriate reference arm optical path 

length. 

The qOCE probe is translated to compress the sample and OCT signals are acquired 

during the compression process. These OCT data are then used for the quantification of 

reaction force and for tracking the sample displacement. Notably, we performed M-mode 

scanning in this study. The probe acquires signals from the same spatial location over a 

period of time.  

3.2.1 Sample Preparation 

We fabricated polydimethylsiloxane (PDMS) phantoms [74] to validate our method for 

robust stiffness measurement. These phantoms are prepared using a Sylgard 184 silicone 

elastomer base and curing agent. Titanium dioxide was added to provide light scattering 

for the sample. The stiffness of the phantom is adjusted by mixing various ratio of the base 

and curing agent. The mixture (PDMS base, curing agent and Titanium dioxide) was cured 

in a temperature-controlled oven at 65°C for 1hr. In this study,two different base-to-agent 

ratios (10:1 and 20:1) samples are fabricated for the experiments. The samples have 
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stiffness of approximately 2.6MPa and 1MPa, respectively [96]. Phantoms with different 

thicknesses were also prepared for this experiment. 

 

3.3 Robust Stiffness Characterization Based on qOCE Measurement 

Conventionally, elastic modulus of a material (E) measures the ratio of the stress (σ) and 

the strain (ε): E = σ/ε. However, when the stress and the strain are considered for 3D space 

and have spatial variation, direct measurement of E is challenging. In a conventional 

method, an indenter compresses the sample to obtain the strain. The reaction force (F) and 

indenter displacement (h) are measured. The elastic modulus is represented a simplified F-

h model. Assume that, a flat cylindrical indenter compresses an infinitely thick sample, F-

h relationship can be represented by Equation (3.6) [97].  

𝐹 = 
2𝑅ℎ𝐸

1− 𝜐2
                                                                                           (3.6) 

Here, R is the radius of the indenter and ν indicates the Poisson’s ratio. 

However, the assumption of an infinitely thick sample is often not accurate. 

Therefore, Equation (3.6) has limitation to provide the accurate estimation of tissue 

stiffness, because the measurement largely depends on the boundary conditions.  

A modified model is developed, as shown in Equation (3.7), by introducing a 

constant coefficient (κ) that considers both the indenter geometry (R) and sample thickness 

(T) [98].  

𝐹 =  𝜅 (
𝑅

𝑇
) 
2𝑅ℎ𝐸

1− 𝜈2
                                                                                (3.7) 

Here, κ = κ (R/T) 

However, during in situ characterization of tissue, spatial variation of mechanical 

properties is often unidentified. Therefore, an analytical solution is obtained according to 
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Equation (3.8) for the axial displacement d(z) within an isotropic, linearly elastic sample 

indented by qOCE probe [77]. This equation is capable of utilizing the qOCE measurement 

data for robust stiffness assessment.  

𝑑(𝑧)|𝑥=0,𝑦=0 = 
ℎ

𝜋 (1− 𝜈)
 𝐼𝑚[2(1 −  𝜈) log(2𝑧 + 2𝑖𝑅) − 

𝑧

𝑧+𝑖𝑅
]                        (3.8) 

Here, h is displacement of the indenter, z represents the axial (depth) coordinate in the 3D 

space, Im takes the imaginary part of a complex number.  

Assume that the sample is incompressible (ν = 0.5). Consider, a parameter mqOCE(z) 

which is inversely proportional to the elastic modulus of the material. mqOCE(z) can be 

defined as the ratio of d(z) (Equation (3.8)) and F (Equation (3.6)) as shown in Equation 

(3.9).  

𝑚𝑞𝑂𝐶𝐸(𝑧) =  
𝑑(𝑧)

𝐹
= 

1

𝐸
 𝑀𝑅(𝑧)                                                                            (3.9) 

MR on the right-hand side of Equation (3.9) has an analytical solution shown in Equation 

(3.10). 

𝑀𝑅(𝑧) =  
3

4𝜋𝑅
 𝐼𝑚 [2(1 −  𝜈) log(2𝑧 + 2𝑖𝑅) − 

𝑧

𝑧+𝑖𝑅
]                                      (3.10) 

Therefore, E can be estimated by the linear curve fitting model shown in Equation (3.11). 

𝒎𝑞𝑂𝐶𝐸 = 
1

𝐸
 𝑀𝑅                                                                                                (3.11) 

Here, mqOCE is a vector and vector MR = MR(z) derives from the analytical solution 

of Equation (3.10).  Figure 3.1 shows the extraction of sample elastic modulus by qOCE: 
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Figure 3.1 Extraction of elastic modulus using qOCE data. 
                              Source: [152] 

 

Figure 3.1 allows more robust assessment of sample stiffness for the following 

reasons. Firstly, the method quantifies both geometric deformation and reaction force 

which is an important factor to measure E. In comparison, conventional OCE only 

measures sample deformation and has limited capability to compute the material 

properties. Secondly, in conventional method, measured F and h are significantly affected 

by the boundary condition of the measurement. However, our method has considered the 

local displacement (d(z)) of the sample instead of the global deformation for the 

measurement.  

 

3.4 Experimental Results 

3.4.1 Measurement Capabilities of qOCE  

First, the force sensing function of the qOCE system is validated. Force is applied through 

the qOCE probe to the sensing tip of a commercial force gauge. Doppler phase shift (ΔΦFP) 

is extracted from the OCT signal IFP. Force reading from the force gauge is also measured. 

Afterwards, the coefficient α is calculated. α converts a Doppler phase shift to a force value: 
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F=αΔΦFP. With the coefficient α, force through the qOCE probe in a loading (increasing 

force) and an unloading (decreasing force) process can be extracted. The resultant force 

readings from OCT data are plotted in Figure 3.2. Figure 3.2 suggests that the instrument 

has the ability to quantify the force accurately both loading and unloading conditions. 

 

Figure 3.2 Comparison of force measurement of the qOCE instrument with the 

readings from a commercial force gauge. 
Source: [152] 

 

Next, we fabricated a thin (T = 1mm) elastic phantom to track depth resolved 

displacement (d(z) by qOCE. The phantom is placed on a flat, rigid surface. A qOCE probe 

is attached to a high precision linear motor to perform the axial translation. The qOCE 

probe compressed the phantom and the OCT magnitude signal from the phantom is shown 

in Figure 3.3 (black curve with vertical axis on the right). The probe-sample interface is 

identified easily by the signal peak marked as green arrow in Figure 3.3. Figure 3.3 also 

shows the depth resolved displacement (blue and red curves with vertical axis on the left) 

of the sample obtained through Doppler analysis. We translated the qOCE probe by 0.1mm 

(h = 0.1mm) for the blue curve and by 0.2mm (h = 0.2mm) for the red curve. The 

displacement is approximately 0 at the probe-sample interface. Although the qOCE probe 
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was translated in axial direction by the linear motor, the probe-sample interface matched 

to a fixed optical path length. So, the displacement of OCT signal started from 0 at the 

surface of the sample.  

 

Figure 3.3 Magnitude of OCT signal (black curve to the right axis), and depth 

resolved displacements extracted through Doppler analysis (red and blue curves) 

to the left axis. 
Source: [152]  

 

Figure 3.3 also shows that the displacement (d(z)) increases gradually as z 

increases. Notably, OCT magnitude and sample displacement were non-zero beyond the 

sample thickness of 1mm. This is because, photons experienced multiple scattering events 

and these noisy signals due to multiple scattering was not used in stiffness assessment. 

3.4.2 Quantification of Elastic Modulus using qOCE Data 

We performed qOCE measurement on a cylindrical PDMS phantom with a 10:1 base-to-

agent ratio (E = 2.6MPa, 6mm in thickness and 25mm in diameter). The probe is translated 

at a speed of 0.1mm/s and OCT signal is grabbed at a 50kHz A-scan rate. Different reaction 

forces were obtained as shown in Figure 3.4(a) from the fiber-optic force sensor by 

translating the probe with different displacements. Figure 3.4 (b) shows the displacement 
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fields (d(z)) established within the sample. Afterwards, mqOCE(z) was obtained for different 

indenter displacements by normalizing d(z) with the corresponding reaction force F. The 

result is shown in Figure 3.4(c). mqOCE(z) remains same for the same sample as shown in 

Figure 3.4(c) when the indenter is translated with different displacements as described by 

Equations (3.9) - (3.11). Furthermore, the black solid curve of Figure 3.4(c) represents the 

analytical solution curve of mqOCE(z). The analytical solution (black curve) provides 

satisfactory approximation of the experimental data in a limited depth range (z<0.6mm). 

As the depth increases, mqOCE(z) calculated from qOCE data diverges more from the 

analytical solution more. This is because, OCT signal attenuates with depth and Doppler 

based displacement tracking becomes less accurate. Moreover, at larger depth, the actual 

displacement depends more on the measurement geometry. As a result, the analytical 

solution is applicable within a limited depth range and it is important to select a suitable 

depth range of qOCE data for the evaluation of sample stiffness.  

Figure 3.4 (a) Reaction force at different probe displacement; (b) depth resolved sample 

displacement at different probe displacement; (c) mqOCE(z) from experimental data and 

analytical expression. 
Source: [152] 

 

Additionally, we performed linear fitting of Equation (3.11) using the experimental 

acquired mqOCE(z) as shown in Figure 3.4(c) and analytical MR(z) obtained by Equation 

(3.10). Figure 3.5 (a) shows the resultant elastic moduli, where the error bars indicate 95% 
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confidential interval of the fitting. The known stiffness of PDMS (10:1) is also plotted in 

Figure 3.5(a) as the red line. The result is consistent with the curve fitted result of qOCE 

data. For comparison, the elastic modulus is calculated by the stress (σa=F/A where F is the 

force reading from force sensor and A is the cross-sectional area of the qOCE probe) and 

the strain (εa=h/T where h is the known probe displacement): σa=Eεa. An over-estimated 

elastic modulus of 10.4MPa is observed in Figure 3.5(b) after the linear curve fitting of σa 

and εa. In addition, with the F-h data (Figure 3.5(c)), an underestimated elastic modulus of 

2MPa is also extracted using Equation (3.6). In other words, when uniform strain is 

assumed within the entire thickness of the sample, overestimation of stiffness is calculated 

for the analysis based on apparent stress and apparent strain. In fact, the deformation of the 

sample under compression is limited to the volume in close proximity to the probe. The 

analysis based on F-h relationship estimates the stiffness, because the values of F and h are 

affected by the inflexible surface at a finite depth onto which we placed the phantom. 

 

Figure 3.5 (a) Elastic moduli obtained using mqOCE(z) in consistent with the known 

material stiffness; (b) the relationship between apparent stress and apparent strain 

results in an overestimation of stiffness; (c) the relationship between reaction force and 

indenter displacement results in an underestimation of stiffness. 
 Source: [152] 
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3.4.3. qOCE Assessment of Stiffness on PDMS Samples with Different Thicknesses 

qOCE assessment of stiffness is also performed on stiff and soft PDMS samples with 

different tissue thicknesses. The stiff sample was prepared with a 10:1 base-to-agent ratio, 

corresponds to a stiffness of approximately 2.6MPa. The soft sample was fabricated with 

a 20:1 base-to-agent ratio, corresponds to a stiffness of approximately 1.0MPa. The 

thicknesses of stiff and soft phantoms were 6mm (thick), 4mm (medium) and 2mm (thin). 

We translated the probe in the axial direction to compress the sample and to acquire qOCE 

data. Reaction force and depth resolved sample displacement were obtained at the end of 

the compression process. We then normalized the displacement (d(z)) with the reaction 

force (F), as shown in Equation (3.9). The resultant mqOCE(z) curves for stiff and soft 

samples are shown in Figure 3.6(a) and (b) (dashed lines), respectively. Linear curve fitting 

is applied according to Equation (3.11) to extract the elastic modulus. Remarkably, 

experimental data within a depth range of 0-330μm was used in the fitting. With the elastic 

modulus (E) extracted, the fitting results of (MR(z)/E) are shown as solid lines in Figure 

3.6(a) and (b). The consistency between the experimental results and the fitted analytical 

function validated the effectiveness of the simplified material model for qOCE 

measurement within a limited depth range. The elastic moduli from the stiff sample with 

large, medium and small thickness are plotted in Figure 3.6(c) (green bars).  We compared 

these values with the value from literature (red bar). The elastic moduli of soft sample with 

large, medium and small thickness are shown in Figure 3.6(d) (green bars). We also 

compared those bars with the value obtained from the literature shown as red bar in Figure 

3.6(c) and Figure 3.6(d). The plots suggest that our method can assess the tissue stiffness 

accurately regardless of variations of sample thickness. 
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 As shown in Figure 3.6(a) and Figure 3.6(b), the displacement field extracted from 

qOCE measurement are not linearly dependent on depth. In other words, the extracted 

strain field is not spatially uniform. This is partially due to OCT signal attenuation with 

depth. As the depth increases, noisy signals dominate and OCT signal gets overwhelmed 

by noise. Therefore, the Doppler phase shift extracted from OCT signal cannot track the 

motion effectively. 

Figure 3.6 (a) Experimental results (mqOCE(z)) from qOCE characterizations for stiff 

samples (E=2.6MPa) with different thicknesses, and curve fitting results; (b) experimental 

results (mqOCE(z)) from qOCE characterizations for soft samples (E=1.0MPa) with 

different thicknesses, and curve fitting results; (c) elastic moduli from the stiff sample with 

large, medium and small thickness (green bars) compared to literature value (red bar); (d) 

elastic moduli from the soft sample with large, medium and small thickness (green bars) 

compared to literature value (red bar). 
 Source: [152] 
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A non-uniform strain field is developed within the sample. This is because, the 

sample is compressed by an indenter with a finite dimension. The strain field affected by 

the geometry of the sample is shown in Figure 3.6(b). Moreover, the spatial variation of 

displacement/strain also depends on the mechanical properties (Figure 3.6(a) versus Figure 

3.7(6)). The displacement field of the deformed sample has complicacy for a wide range 

of factors. Yet, qOCE signal acquired from the volume by qOCE probe remains constant. 

This suggests that qOCE can perform robust in situ mechanical characterization of tissues 

with unknown boundary conditions.  

 

3.5 Conclusion 

In this chapter, we presented a method that analyzed the data obtained from the qOCE 

system, to achieve robust stiffness assessment. We normalized the displacement field (d(z)) 

with the reaction force (F) and fit the result with an analytical model to extract the elastic 

modulus. Our result has shown a significant improvement in measuring the tissue stiffness 

for different measurement geometry. Therefore, we anticipate that our qOCE method can 

be applied for margin assessment in breast cancer surgery. 
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CHAPTER 4  

TEMPORALLY AND SPATIALLY ADAPTIVE DOPPLER ANALYSIS FOR 

ROBUST HANDHELD OPTICAL COHERENCE ELASTOGRAPHY 

 

4.1 Introduction 

Chapter 4 presents the development of a handheld OCE instrument that will allow the 

clinician to conveniently interrogate the localized mechanical properties of in vivo tissue, 

leading to better informed clinical decision making. During handheld OCE 

characterization, the handheld probe compresses the sample and the displacement of the 

sample is quantified by analyzing the OCT signals acquired. However, the motion within 

the sample inevitably varies in time due to varying hand motion. Moreover, the motion 

speed depends on spatial location due to the sample deformation. Hence, there is a need 

for a robust motion tracking method for manual OCE measurement. In this chapter, we 

would describe a temporally and spatially adaptive Doppler analysis method. The method 

described here strategically chooses the time interval (δt) between signals involved in 

Doppler analysis to track the motion speed v(z,t) that varies temporally and spatially in a 

deformed sample volume under manual compression. The results are obtained from 

phantom experiments and in vivo tissue characterization, to demonstrate the effectiveness 

of the adaptive Doppler analysis for motion tracking in a dynamic manual loading process. 

4.2 Motivation for Adaptive Doppler Analysis for Handheld OCE Probe 

OCT allows structural and functional imaging of biological tissue with high resolution and 

high speed [16]. The imaging capability of OCT can be integrated into handheld 

instruments using fiber optic components [99 - 101]. A compact, lightweight handheld 
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OCT probe allows a clinician to interrogate tissue characteristics at different anatomical 

locations [102, 103]. Therefore, handheld OCT imaging instrument is attractive for many 

clinical applications, including guiding vitreous-retinal surgery, delineating tumor margin 

for surgical excision, and guiding tissue biopsy for the diagnosis of breast or prostate 

cancer. A handheld OCT instrument can use the magnitude of OCT signal to reveal 

morphological features of the tissue. With further signal processing, other characteristics 

of the tissue related to its physiological and pathological status can be extracted. One 

feature of clinical interest is the mechanical properties of tissue. For diseases such as breast 

cancer and prostate cancer, cancerous tissue has a larger stiffness compared to normal 

tissue [8]. Therefore, manual palpation as well as elastography technologies, have been 

used in assessing the stiffness of these diseases in clinic [44, 86, 87].  

Despite great challenge in quantifying mechanical properties through OCE 

measurement, depth resolved displacement obtained by analyzing OCT signal can be used 

as an effective surrogate for sample stiffness. With the assumption of uniform distribution 

of stress (σ that remains constant for different spatial locations), the strain is directly related 

to the stiffness of the sample (ε=σ/E where E indicates the Young’s modulus and quantifies 

the stiffness of the sample). Therefore, under the same stress σ, the strain (ε=
𝑑𝛿𝐿(𝑧)

𝑑𝑧
 

evaluated by the spatial derivative of displacement δL(z) [95]) is larger for a soft material 

with a smaller E and is smaller for a hard material with a larger E, as indicated in Figure 

4.1. Tissue under different pathophysiological conditions have different stiffness, hence 

OCE measurement of displacement and strain allows in situ tissue characterization. For 

example, cancerous tissue has a larger stiffness compared to normal tissue. A positive 

margin at the site of tumor excision with residual cancerous tissue can thus be identified 
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by evaluating the displacement generated through manual OCE measurement. The 

displacement increases with depth, and the position where the slope of displacement 

changes abruptly implies the boundary between the cancerous tissue and the normal tissue. 

Therefore, OCE characterization can reveal highly localized mechanical contrast and hence 

lead to better interpretation about clinical decision making, without fully quantifying the 

mechanical properties of the tissue.  

 

Figure 4.1 Illustration of depth resolved displacement for a sample with 

different stiffness at different depth. Here, ε1 < ε2 . 
        Source: [92] 

 

Particularly, a compact OCE instrument can be used as a conventional handheld 

instrument. The tissue is manually compressed by the OCE device and the motion of the 

tissue is tracked by analyzing OCT signal. A handheld OCE instrument hence performs 

high sensitivity virtual palpation of the tissue with great convenience and flexibility. 

Moreover, fiber optic OCE instruments can be integrated into a needle device, delivering 

the capability of mechanical characterization to tissue that is deeply embedded. However, 

the major challenge for manual OCE characterization of tissue is the unpredictable and 

unstable hand maneuver that is used to generate mechanical excitation (compression) in 

tissue. The deformation of the sample under the known pattern of mechanical excitation is 

tracked by analyzing OCT signal. In conventional compression OCE measurement, the 
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sample has a well-defined geometry and undergoes quasi-static compression. 

Alternatively, the mechanical excitation can be impulse or sinusoidal function [74, 93]. 

However, with a handheld OCE instrument, it is challenging to impose mechanical 

excitations that are quasi-static, impulsive or sinusoidal. The manual loading process often 

generates a motion speed that varies with time. In addition, the sample deforms under 

compression, implying spatial variation of motion characteristics. Hence, there is a 

requirement for a motion tracking method that enables robust motion tracking for manual 

OCE measurement. 

Motion tracking in OCE can be achieved through Doppler analysis or speckle 

decorrelation analysis. Speckle analysis has a smaller dynamic range and is more 

appropriate to track motion with larger magnitude [62, 106]. In this study, Doppler analysis 

is used to quantify the axial motion speed and displacement. A simple and effective method 

for temporally and spatially adaptive Doppler analysis is investigated here. The adaptive 

Doppler analysis method strategically chooses the time interval (δt) between signals 

involved in Doppler analysis, to track the motion speed v(z,t) that varies temporally in a 

manual compression process and spatially in a deformed sample volume. The method is 

validated in OCE system with a handheld single fiber probe and real-time signal processing 

software based on GPU. To achieve robust motion tracking, we calculate high density (HD) 

Doppler phase shift that is most unlikely to have phase wrapping artifact and average the 

HD Doppler signal to estimate the speed of axial motion from which we derive a time 

interval to achieve a large yet an artifact free Doppler phase shift. The premise of this 

method is that (1) directional motion affects larger scale characteristics of the Doppler 

signal and can be estimated through averaging; (2) noise characteristics in estimated 
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Doppler phase shift are independent of the time interval δt while the signal due to 

directional motion does. Enabled by high signal acquisition and processing speed, we 

perform an online estimation of the motion speed, select an optimal δt adaptively, and 

perform robust motion tracking for OCE measurement.  

 

4.3 Principle for Adaptive Doppler Analysis 

In OCE characterization, the loaded sample deforms during compression process. The 

sample displacement depends on spatial location (δL(z)). With local displacement δL(z) 

extracted by OCT signal, localized axial strain, the spatial derivative of the displacement 

(Equation (4.1)), is calculated as the sample stiffness. For sampled OCT image, local strain 

can be calculated either through finite difference approach or least square estimation. 

( ) ( )
d

z L z
dz

 =                                                          (4.1) 

Notably, the motion within a deformed sample under axial compression is generally 

3D with axial and lateral components. However, Doppler phase analysis is only sensitive 

to axial motion. Besides, our measurement geometry has cylindrical symmetry and the light 

beam propagates along the axis of cylindrical symmetry. Hence, the lateral displacement 

of an isotropic sample by the incident light beam is minimum. 

Doppler phase shifts between OCT A-scans are calculated to acquire 1D depth 

resolved OCE signal. Consider, OCT signal with complex value at the kth pixel of an A-

scan (mth A-scan) and that at the kth pixel of another A-scan ((m + Δk,m)th A-scan). A non-

zero Doppler phase shift (δϕk,m=δϕ(kδz,mT0)) is anticipated due to the axial displacement 

at depth z=kδz within the time interval Δk,mT0. Here δz designates the depth sampling 

interval by pixels in an A-scan and T0 indicates the acquisition time interval between the 
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adjacent A-scans. δϕk,m is linearly correlated to the axial motion speed vk,m (assuming a 

constant axial motion within the observation time: vk,m=v(kδz,mT0) at depth kδz within time 

interval from mT0 to (m+Δk,m)T0, as shown in Equation (4.2) where λ0 is the central 

wavelength of the light source [107].  

, , , 0

,

0 0

4 4
k m k m k m

k m

v t v T
  

 


= =                                                (4.2) 

The Doppler phase shift δϕk,m is calculated according to Equation (5.3) [55], where 

Ik,m=I(kδz,mT0) indicates the complex OCT signal at the kth pixel of an A-scan obtained at 

time mT0; Ik,m+Δ(k,m)=I (kδz,(m+Δk,m)T0) indicates the complex OCT signal at the kth pixel of 

an A-scan obtained at time (m+Δk,m)T0; atan(∙) indicates to take the arctangent; Im(∙), Re(∙) 

and (∙)* indicate to take the imaginary part, the real part and the complex conjugate of a 

complex value, respectively. 
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                                                 (4.3) 

The relationship between the estimated Doppler phase shift δ𝜙̂𝑘,𝑚 and the actual 

phase shift δϕk,m due to motion vk,m is shown in Eq (4.4), where nk,m is the random phase 

noise deriving from various noises in OCT measurement (shot noise, thermal noise, excess 

noise, speckle noise, etc). On the other hand, Nk,m is an integer and is non-zero when 

|δϕk,m|>π/2: Nk,m =⌊
𝛿𝜙𝑘,𝑚+𝑠𝑖𝑔𝑛(𝛿𝜙𝑘,𝑚)

𝜋

2

𝜋
⌋. In other words, for |δϕk,m|>π/2, phase wrapping 

arises, because the arctangent (atan) function calculated for the phase shift in Equation 

(4.3) cannot differentiate an arbitrary phase shift δϕk,m and δϕk,m+Nk,mπ [47, 114]. Clearly, 

Nk,m depends on time (t = mT0) and space (z = kδz).  
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, , , ,
ˆ
k m k m k m k mN n  = − +                                                            (4.4) 

Afterwards, axial motion speed is: 𝑣𝑘,𝑚 = 
𝜆0

4𝜋𝑇0𝛥𝑘,𝑚
𝛿𝜙̂𝑘,𝑚 for the kth pixel in the mth 

A-scan and the estimated depth resolved displacement (δ𝐿̂𝑘=δ𝐿̂(kδz)) over the entire 

compression process is: δ𝐿̂𝑘 = ∑ (δ𝑣𝑘,𝑚𝑇0) =
𝜆0

4𝜋𝛥𝑘,𝑚
∑ 𝛿𝜙̂𝑘,𝑚
𝑀
𝑚=1

𝑀
𝑚=1  where M indicates 

the total number of A-scans obtained during the sample compression process. δ𝐿̂𝑘 can thus 

be expressed as Equation (4.5).  
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 

                                (4.5) 

On the right hand side of Equation (4.5), the first term represents the actual 

displacement; the second term represents the phase wrapping artifact and the third term 

denotes the contribution from random phase noise. To improve the sensitivity, SNR and 

dynamic range for OCE characterization, a smaller variance (Var(δ𝐿̂𝑘-δLk)) is desired for 

the estimated displacement. Assume, nk,m (m=1, 2, 3, …, M) is Gaussian and independent 

in different A-scans with variance shown in Equation (4.6). Therefore, considering Nk,m≡0, 

the variance in displacement tracking is given by Equation (4.7).  
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=                                                                        (4.6) 
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                                                       (4.7) 

In Equation (4.7), λ0 depends on the OCT system of the imaging study; M depends 

on the time period of the sample loading process; Var(nk,m) is determined by the OCT 

system as well as the optical characteristics of the sample. Hence Δk,m is the only parameter 

that can be varied to improve the displacement tracking. Noise in displacement tracking 
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for a given compression process can be suppressed by selecting a larger value of Δk,m.  

Moreover, Nk,m≡ 0 is required for unbiased displacement tracking. Therefore, the 

time interval between A-scans for Doppler phase calculation (δt=Δk,mT0) has to be 

sufficiently small,  so that |δϕk,m|=|4πvk,mΔk,mT0/λ0|≤ π/2., The condition for avoiding the 

phase wrapping artifact in Doppler analysis is: 

0
,

, 08
k m

k mv T


                                                                                (4.8) 

Equation (4.8) infers that the optimal choice of Δk,m depends on the motion speed 

(vk,m). For a handheld OCE instrument, the motion speed within the sample depends on the 

depth because the sample deforms in the axial direction. The motion speed also varies with 

time due to the non-constant compression speed. Therefore, vk,m = v(kδz,mT0) and an 

adaptive optimal time interval (δt = δt(z,t)) is necessary for Doppler analysis to the spatial 

location and time. For sampled OCT A-scans, δt = Δk,mT0 = Δ(kδz,mT0)T0 where Δk,m is an 

integer. In other words, different values are chosen for Δk,m at different depth (z = kδz) and 

at different time (t = mT0) (Figure 4.2(a) and (b)).  

In contrast, conventional Doppler analysis tracks displacement by comparing OCT 

signals collected at constant time interval (Figure 4.2 (c)) irrespective of time and spatial 

location. Therefore, Doppler analysis results suffer from phase wrapping artifact and 

suboptimal SNR, mostly for a manual OCE characterization process. 

In order to adaptively determine the value of Δk,m to spatial location (z = kδz) and 

time (t = mT0), the motion speed vk,m  is estimated by calculating the high density (HD) 

Doppler phase shift. Discrete OCT signals are acquired frame by frame and each frame 

consists of multiple (M0) A-scans with a time interval of T0. For the ith frame of OCT data, 

the kth
 pixel in the jth A-scan is Ik,m, where m=j+(i-1)M0. The HD Doppler phase shift δ𝜑̂k,m 
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Figure 4.2 (a) and (b) Adaptive selection of time intervals for Doppler analysis. Here, time 

intervals between 1st and kth pixels (length of black arrows) for (a) and (b) are different; (c) 

Time interval for conventional Doppler analysis. Both the black arrows have same time 

interval for different depth. 
Source: [92] 
 

is measured between Ik,m and Ik,m+1 according to Equation (4.3) with Δk,m≡1. Afterwards, 

calculate mean HD Doppler phase shift for the ith frame of OCT data  is estimated by 

(𝛿𝜑̅𝑘,𝑖=
1

𝑀0
∑ [𝛿𝜑̂𝑘,𝑗+(𝑖−1)𝑀0]
𝑀0
𝑗=1 ) and axial motion speed at the kth pixel at depth kδz is: 

𝛿𝜑̅𝑘,𝑖

4𝜋𝑇0
𝜆0. Estimation of motion speed has a temporal resolution determined by the time 

needed to capture a frame of OCT data (M0T0), and the motion speed for the mth A-scan is 

thus approximately 𝑣𝑘,𝑚 =
𝛿𝜑̅𝑘,𝑖

4𝜋𝑇0
𝜆0 where i=⌊

𝑚

𝑀0
⌋+1 and └ ┘indicates to take the integer 

part of a rational number. With the estimated motion speed, the Doppler phase shift 

gathered within a time interval δt is thus 4𝜋
𝑣̂𝑘,𝑚

𝜆0
δt.  It requires |4𝜋

𝑣̂𝑘,𝑖

𝜆0
𝛿𝑡 |≤

𝜋

2
 to prevent 
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phase wrapping from happening. For discrete OCT signal, δt = δtk,m = Δk,mT0 where Δk,m is 

an integer determined by Equation (4.9) with W >1. Δk,m is assigned with a value of 1, for 

the result obtained by Equation (4.9) to be smaller than 1. Moreover, it requires Δk,m to be 

smaller than M0/2 to calculate Doppler phase shift between A-scans within one frame of 

OCT data. If the value calculated using Equation (4.9) is larger than M0/2, we consider 

Δk,m=M0/2. 

( )( )0

0

0
,

, 11
ˆ2

k m M

k j i Mj

M

W




+ −=

 
  =
 
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                                                (4.9) 

Notably, W>1 and the method is robust against phase wrapping when phase noise 

exists. As validated in previous studies including our recent work [111–113], the level of 

phase noise in the OCT imaging system is inversely proportional to the signal to noise ratio 

(SNR) of amplitude OCT signal. In this study, other than specifically mentioned, W = 2 for 

the calculation of adaptive time interval for Doppler analysis. 

After the selection of adaptive time interval for Doppler analysis (δtk,m=Δk,mT0), 

Doppler phase shift (δ𝜙̂k,m) between A-scan pairs Ik,m and Ik,m+Δ(k,m) is calculated according 

to Eq (4.3). δ𝜙̂k,m is then transformed to the incremental displacement 

(δlk,m=(λ0δ𝜙̂k,m)/(4πΔk,m)). Hence, the total displacement over the entire compression 

process with M A-scans is calculated for the specific depth (kth pixel) during the entire 

compression process: δLk=∑ (𝛿𝑙𝑘,𝑚)
𝑀
𝑚=1 . Depth resolved strain of the loaded sample is 

calculated to evaluate the stiffness.  

In summary, the adaptive Doppler analysis is illustrated in Figure 4.3 in real-time  

GPU. The software grabs spectral interferograms frame by frame, performs fast Fourier 

transform on the spectral interferograms, calculates the HD Doppler phase shift to estimate 



84 
 

the speed of axial motion, adaptively determines the optimal time interval for each frame 

of OCT data to perform Doppler analysis, and tracks the depth resolved displacement for 

sample mechanical characterization. 

 

Figure 4.3 Block diagram for adaptive Doppler analysis. 
                                Source: [92] 

 

4.4 Experimental Setup 

 

The spectral domain OCT system described in Chapter 2 is used. To validate the method 

of adaptive Doppler analysis under well controlled loading conditions, we conducted OCE 

experiment on the setup shown in Figure 4.4(a) where the sample is sandwiched between 

two rigid places. One of the plates has a glass window that allowed broadband light to 

incident into the sample for OCT imaging, and the other plate is attached to a high precision 

vertical translational stage actuated by a linear motor. Here, common path OCT imaging 

configuration is used where the reference light is derived from a constant reflector at the 

probe arm. The reference arm shared the same optical path as the sample light and random 

phase variation due to environmental perturbation is minimal. The phase noise largely 

derived from discrepancy of optical signal is determined by Equation (4.6). In Figure 

4.4(a), the bottom surface of the glass window provides a reference light that interferes 

with sample light to generate interferometric OCT signal. The reference light and sample 
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light are combined and directed by a circulator for detection. The rigid bottom surface of 

the window ensured a constant optical path length (z = 0) and did not move during 

compression. Hence, the displacement (δL(z) extracted by OCT signal gradually increased 

with depth starting from the value of 0, as shown in the inset of Figure 4.4 (a). 

A Thorlabs scanning lens (LSM02, Thorlabs, with 11μm beam diameter on the 

focal plane and 70μm depth of field) is used as the imaging object. The scanning lens uses 

a broadband light source for illumination and has minimal chromatic aberration.  

The elastic phantom used in this study is prepared by curing silicone rubber, RTV-

22 purchased from Raw Material Suppliers. Titanium dioxide particles is added into the 

silicone gel before curing to provide light scattering. The sample is considered to have 

homogeneous mechanical (stiffness) and optical (light scattering and absorption) 

properties. The elastic phantom used in this study is shown in Figure 4.4(a) (photo and 

OCT image).  

Robust mechanical characterization through a handheld probe are shown in Figure 

4.4(b). The probe has simply a single mode fiber with a flat fiber tip and a 3D printed 

handle. The fiber probe is connected to the port-2 of the circulator for sample illumination 

and OCT signal acquisition. The Fresnel reflection at the fiber tip served as the reference 

light for the common path OCT imaging. So, the fiber tip worked as the origin of the spatial 

coordinate for OCT imaging (z = 0) and did not deform under compression in Figure 4.4(a). 

The displacement gathered by OCT signal increased gradually with the depth starting from 

the value of 0, as shown in the inset of Figure 4.4(b).  
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Figure 4.4 (a) Benchtop setup for experimental validation of the method for adaptive 

Doppler analysis; (b) fiber optic probe for handheld OCE characterization. 
Source: [92] 
 

4.5 Experimental Results 

The speed of the algorithm is implemented in CUDA. The software processed 

approximately 288k A-scans per second. The signal processing speed is much faster than 

the maximum data acquisition rate of the camera (92k A-scans per second). Moreover,  the 

procesing time to perform adaptive Doppler analysis on a frame of OCT data is 

approximately 0.1ms. 

 

4.5.1 Need for Adaptive Time Interval for Optical Doppler Tracking 

To demonstrate the need for an adaptive time interval (δt) in OCE measurement through a 

manual compression process, we acquired experimental data from the benchtop setup as 

shown in Figure 4.4 (a). We translated the z-stage at two different speeds (vmotor = 0.2mm/s 

and vmotor = 0.1mm/s) to compress the elastic sample sandwiched between the two rigid 

plates (shown in Figure 4.4 (a)). At each motor translation speed, a frame of OCT data 

(with 1024 A-scans, i.e., M0 =1024) is grabbed with a time interval of 16μs between 

adjacent A-scans (T0 =16μs). First, we demonstrated how the Doppler signal and noise 
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determined by the time interval between OCT signals involved in phase shift calculation. 

For each frame of OCT data, we selected the pixel at the depth z =1mm (z = kδz =1mm) 

from an A-scan (jth A-scan) and calculated the mean phase shift between OCT signal at this 

pixel (Ik,j) and OCT signal in subsequent A-scans acquired with different time delays (Ik, 

j+Δ, Δ=1, 2, 3, …): 

 𝛿𝜙̅(𝛿𝑡) =
1

𝑀0−𝛥
∑ 𝛿𝜙̂𝑗(𝛿𝑡)
𝑀0−𝛥
𝑗=1                                              (4.10) 

where 𝛿𝜙̂𝑗(𝛿𝑡) = arg(𝐼𝑘,𝑗
∗ 𝐼𝑘,𝑗+𝛥

∗ ).  

Doppler phase shifts (𝛿𝜙̅(𝛿𝑡)) at the specific depth between A-scans with different 

time intervals (δt = Δ×T0) are shown in Figure 4.5(a) as blue (vmotor = 0.2mm/s) and red 

(vmotor = 0.1mm/s) curves. In Figure 4.5(a), 𝛿𝜙̅(𝛿𝑡) initially increases linearly with δt, 

which is consistent with Equation (4.2). However, with a larger motor translation speed 

(blue curve in Figure 4.5(a) with vmotor = 0.2mm/s), phase wrapping artifact arises when 

𝛿𝜙̅(𝛿𝑡) approaches and exceeds π/2. In contrast, data for smaller motor translation speed 

(red curve in Figure 4.5(a) with vmotor = 0.1mm/s) are free of phase wrapping artifact for 

the same δt. Figure 4.5(a) suggests that the selection of adaptive time interval for Doppler 

analysis is required for the compressor during OCE characterization. In addition, the 

calculated phase using Equation (4.3) also varies due to random noise. Using 𝛿𝜙̂𝑗(δt), the 

random noise of the estimated Doppler phase can be estimated as: 

 

σϕ(δt)=√
1

𝑀0−𝛥−1
∑ (𝛿𝜙̂𝑗,𝛥 − 𝛿𝜙̅𝛥)

2𝑀0−𝛥
𝑗=1                                             (4.11) 

Figure 4.5(b) shows the phase attained with different time intervals (δt= Δ×T0). 

σϕ(δt) as blue (vmotor = 0.2mm/s) and red (vmotor = 0.1mm/s) curves. A peak is found in the 
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blue signal in Figure 4.5(b). This is because, Doppler signal varies considerably when 

phase wrapping occurs (blue signal in Figure 4.5(a)). The noise in Doppler phase 

estimation remains approximately constant for different values of δt. This is because 

random phase variation in OCT signal originates from noise in OCT measurement and 

random environmental perturbations which is temporally independent and identically 

distributed random variables, according to Equation (4.6). Therefore, the results of Doppler 

analysis have a similar level of noise, despite different time intervals δt. According to 

Equation (4.7), a larger value of Δk,m is required to achieve a minimal error in the 

displacement tracking, because the phase noise does not increase with time (Figure 4.5(b)) 

while the phase shift due to directional motion increases with time (Figure 4.5(a)).  

In addition, the displacement within the sample under OCE characterization also 

varies as spatial location due to the sample deformation under compression. The 

deformation measured as axial strain (Equation (4.1)) can characterize the mechanical 

properties of the sample. Therefore, Doppler analysis also needs to be adaptive to the 

spatial location. To demonstrate this, one frame of OCT data with vmotor = 0.2mm/s is used 

and Doppler phase shift are calculated between pixels at depth z =1mm with different time 

intervals, as well as, Doppler phase shift at a smaller depth (z = 0.5mm). Figure 4.5(c) 

shows the mean value of Doppler phase shifts for different δt. Doppler phase shift in Figure 

4.5(c) initially increases linearly with δt. For Doppler phase shift calculated for a larger 

depth (blue curve 

in Figure 4.5(c) corresponds to z = 1mm), phase wrapping artifact rises as δϕ approaches 

and exceeds π/2. In contrast, for a smaller depth (red curve in Figure 4.5(c) with z = 0.5mm) 

the signals are free from the phase wrapping artifact for the same time range. Therefore, 
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the selection of adaptive time interval for Doppler analysis is essential to the spatial 

Figure 4.5 Doppler phase shift (a) and phase noise (b) obtained from the sample at the 

same depth with different motor translation speeds; Doppler phase shift (c) and phase noise 

(d) obtained from the sample at the different depths with the same motor translation speed. 
Source: [92] 

 

location inside the deformed sample. We also investigated the random noise for Doppler 

phase shift at different depths for the same set of OCT data with vmotor = 0.2mm/s. The 

results are shown in Figure 4.5(d) as blue (z =1mm) and red (z = 0.5mm) curves. Regardless 

of a peak detected in the blue curve due to the phase wrapping, Doppler signals display a 

constant noise level for various δt values.  
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4.5.2 Impact of Selection of Time Interval on Depth-Resolved Displacement 

Next, we demonstrated the impact of time interval selection for Doppler analysis on the 

tracking of depth resolved displacement. Using the benchtop configuration shown in 

Figure. 4.4(a), we translated the motor at various speed ranges (vmotor = 0.1mm/s, 0.3mm/s, 

0.5mm/s, 0.7mm/s and 0.9mm/s) to deform the sample inserted between two rigid plates. 

We used the OCT engine to capture the spectral interferograms simultaneously from the 

phantom experienced compression. We calculated Doppler phase shift (δ𝜙̂k,m where k is 

the index of pixel in an A-scan and m is the A-scan index) between complex OCT signals 

at pixels in the mth A-scan (Ik,m) and in the (m+Δ)th A-scan (Ik,m+Δ). We transformed the 

phase shift to the displacement δlk,m = (λ0δ𝜙̂k,m)/(4π), and estimated the displacement for 

the compression: δLk = δL(kδz)=∑ (𝛿𝑙𝑘,𝑚)
𝑀
𝑚=1 .  

 

Figure 4.6 Depth resolved displacement (a) obtained with different motor speeds and the 

same time interval (δt = Δ×T0, where T0=16μs and time delay, Δ=50) for Doppler analysis; 

(b) obtained with the same motor speed (vmotor = 0.25mm/s) and different time intervals for 

Doppler analysis. Here, T = T0 = 16μs. 
Source: [92] 

 

Figure 4.6(a) shows the time interval for Doppler analysis at constant value: δt = 

Δ×T0, where T0 =16μs and time delay, Δ = 50. When the motor was moved at larger speeds 

(vmotor = 0.5mm/s, 0.7mm/s and 0.9mm/s) to compress the sample, the displacements 
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experienced the phase wrapping artifact. Doppler phase shift has magnitude larger than π/2 

at time interval δt and could not be precisely estimated using Equation (4.3). Figure 4.6(a) 

suggests that proper time interval is required for Doppler analysis for motion speed. In a 

different set of experiments, with benchtop experimental setup shown in Figure 4.4(a), the 

motor is translated at the same speed (vmotor = 0.25mm/s) to compress the sample and 

displacements are shown in Figure 4.6(b).  

Notably, the Doppler phase shift for the displacement tracking was calculated 

between A-scans with various time intervals: δt= Δ×T0, where T0=16μs and Δ=1, 2, 5, 50, 

100, 150. In Figure 4.6 (b), for Doppler analysis with a small-time interval (δt= Δ×T0 with 

Δ=1, 5, 50), the extracted displacement increases with depth as expected. The random 

variation of the displacement is larger for a smaller δt and is smaller for a larger δt, which 

is constant with Equations (4.6) and (4.7), as well as results shown in Figure 4.5. However, 

additional increment of the time interval (δt= Δ×T0 with Δ=100, 150) between A-scans for 

Doppler analysis causes the phase wrapping artifact. Hence, the displacement tends to 

decrease at a larger depth (blue and black curves in Figure 4.6(b)). From Figure 4.6(b), we 

can conclude that the axial speed is different at different spatial locations within a deformed 

sample and different optimal time intervals are necessary for Doppler tracking. 

 

4.5.3 Selection of Adaptive Time Interval 

We then explained the real-time estimation of motion speed and the calculation of adaptive 

time interval for Doppler analysis through HD Doppler phase calculation. With the setup 

shown in Figure 4.4(a), the sample is compressed by translating the motor at a speed of 

vmotor = 0.1 mm/s. Using one frame of OCT data acquired, HD Doppler phase shift between 
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adjacent A-scans, mean speed of axial motion at different depths and estimated the optimal 

time interval (δt(z) = Δ(z)T0) are computed for adaptive Doppler analysis according to 

Equation (4.9) with W = 4. Integer values of Δ obtained for different depths are shown in 

Figure 4.7 as the blue curve. On the other hand, for uniform axial deformation and the 

displacement increases linearly with the depth: δL(z) = εz with ε = δLmotor/Lsample. Here 

δLmotor = vmotorδt, and the thickness of the sample Lsample = 4mm. Therefore, the time 

required for OCT signal at depth z to achieve a phase shift of π/(2W) is:  

 Δ𝑡 =  
𝜆0 𝐿𝑠𝑎𝑚𝑝𝑙𝑒

8𝑊𝜈𝑚𝑜𝑡𝑜𝑟𝑧
                                                                          (4.12) 

The depth dependent integer Δ(z) can be obtained as:  

Δ=⌊
𝜆0𝐿𝑠𝑎𝑚𝑝𝑙𝑒

8𝑇0𝑊𝑣motor𝑧
⌋                                                                           (4.13) 

  Analytically obtained Δ(z) is plotted as the red curve in Figure 4.7 and is consistent 

with the time interval extracted in the real-time software.  

 

Figure 4.7 Adaptive time interval (δt(z)=Δ(z)T0) selected for a sample under compression. 
Source: [92] 

 

The time interval for Doppler analysis is determined using Equation (4.9) requires 

a pre-defined parameter W in the software. For Doppler signal free of phase wrapping 
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artifact, the noise in the estimated Doppler phase is independent of the time interval 

between signals, as shown in Figure 4.5(b) and (d), as well as Equations (4.6) and (4.7). 

On the other hand, a smaller value of W in Equation (4.9) implies a larger value of time 

interval (δt = Δ×T0) between A-scans for Doppler phase calculation and a larger phase shift 

due to accumulated displacement. Therefore, a smaller value of W ensures higher SNR in 

displacement tracking. However, the displacement tracking signal distorts for W ≤ 1 as the 

actual phase shift |
𝜋

2𝑊
| ≥

𝜋

2
 cannot be estimated properly using Eq (4.3). To demonstrate 

the effect of W on motion tracking, we used the experimental setup shown in Figure 4.4(a). 

We compressed the sample by translating the motor in axial direction with the speed of 

0.25mm/s and the displacement of 0.5mm., Time intervals are calculated using Equation 

(4.9) with different values of W and depth resolved displacements from the compression 

processes are shown in Figure 4.8. The noise in displacement tracking reduces with the 

smaller value of W and phase wrapping artifact occurs for W = 1 and 0.5. Therefore, a 

smaller value of W is ideal to improve the SNR of displacement tracking, but W > 1 is 

preferred to avoid phase wrapping artifact in adaptive Doppler analysis.  

 

Figure 4.8 Depth resolved displacements obtained through adaptive Doppler analysis 

when different values of W were used to determine the time interval according to Equation 

(4.9). 
Source: [92]   
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4.5.4 Depth-Resolved Displacement Tracking for Different Displacements and Speeds 

We then demostrated an accurate and robust estimation of displacement tracking through 

the adaptive Doppler analysis. We compressed the sample by translating the motor at 

different displacements (δLmotor = 0.1mm, 0.2mm, 0.3mm and 0.4mm) with same motor 

speed (vmotor = 0.1mm/s). Figure 4.9(a) shows depth resolved displacements (solid curves)  

from the real-time software. Time interval was calculated using Equation (4.9) with W = 

2. Assuming the uniform axial deformation, the displacement established within the sample  

increases linearly with the depth: δL(z) = εz, and ε can be obtained: ε = δLmotor/Lsample (Lsample 

indicates the sample thickness = 4mm) as shown as dashed lines in Figure 4.9(a). Both the 

experimental and the analytical results are consistent. The result suggests that the adaptive 

Doppler analysis accurately tracks the magnitude of axial displacement at different depths 

of the deformed sample. 

 

Figure 4.9 Depth resolved displacement extracted through adaptive Doppler analysis, (a) 

motor translated at the same speed for different displacements; (b) motor translated at 

different speeds for the same displacement. 
Source: [92]  
 

The motor translation speeds (vmotor = 0.1mm/s, 0.3mm/s, 0.5mm/s, 0.7mm/s and 

0.9mm/s) are also varied with the motor movement of 0.5mm (δLmotor= 0.5mm) to 
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compress the sample. Depth resolved sample displacements through the adaptive Doppler 

analysis are shown in Figure 4.9(b).  Assuming the uniform deformation throughout the 

sample, displacement is generated (δL(z) = εz and ε = δLmotor/Lsample) and the result shows 

linear graph in Figure 4.9(b) as the dashed black line. Despite different motor translation 

speeds, the signal quality of depth resolved displacements are impressive and are free of 

phase wrapping artifacts. In contrast, Figure 4.6(a) shows that Doppler analysis based on a 

fixed time interval are affected by noisy signals in displacement tracking and the phase 

wrapping artifacts. 

 

4.5.5  OCE Measurement Based on OCE Handheld Probe 

Afterwards, we performed OCE measurement with a handheld probe (Figure 4.4(b)). The 

sample was manually compressed by the probe and OCT signals were acquired. Depth 

resolved displacements were measured by calculating Doppler phase shift between OCT 

signal acquired with small (δt = T0), large (δt = 100T0) and adaptive (Equation (4.9)) time 

intervals, where T0 indicates the acquisition time interval in between two consecutive A-

scans and T0 = 16μs. Figure 4.10 shows the displacements at the end of the manual 

compression. Clearly, for a large time interval (δt = 100T0), the displacement does not 

increase monotonically with depth (blue signal in Figure 4.10), due to the phase wrapping 

artifact. On the other hand, for small time interval with δt=T0 (black signal in Figure 4.10), 

the displacement is overwhelmed by noises, which is consistent with Equations (4.6) and 

(4.7). The displacement through adaptive Doppler analysis (red signal in Figure 4.10) is 

less noisy and is free from phase wrapping artifact. Therefore, adaptive Doppler analysis 
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is important for a manual probe equipment to perform OCE characterization as hand 

movement unavoidably varies the compression speed. 

 

Figure 4.10 Depth resolved displacement extracted from manual 

compression process with adaptive (red), large (blue) and small (black) time 

intervals between Ascans invovled in Doppler analysis. 
Source: [92]  

 

Additionally, we verified that manual OCE characterization through adaptive 

Doppler analysis could reveal the spatial variation of mechanical properties. We used two 

samples. Sample 1 is a homogeneous PDMS phantom and Sample 2 is a homogeneous 

PDMS with multiple tap-layers attached on top. We compressed both samples manually 

with the handheld probe and performed the real-time adaptive Doppler on OCT signals to 

attain the displacements from Sample 1 (blue signal in Figure 4.11(a)) and Sample 2 (blue 

signal Figure 4.11(b)). We also observed the magnitude OCT signals (red signals) from 

Sample 1 and Sample 2 as shown in Figure 4.11(a) and (b), respectively. Sample 1 was 

optically and mechanically homogeneous. Therefore, for Sample 1, A-scan (red signal in 

Figure 4.11(a)) declines with depth due to the absorption and scattering of light and the 

depth resolved displacement (blue signal in Figure 4.11(a)) increases mononically with 

depth. In comparison, the OCT magnitude of Sample 2 shows the tape layers (red signal 
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upto around 0.36mm depth in Figure 4.11(b)). The tape-layers of Sample 2 did not deform 

under compression  and the displacement of Sample 2 (blue signal in Figure 4.11(b)) 

remains approximately the same until it reaches the boundary between the tape layers and 

PDMS phantom. Figure 4.11 suggests that even though the motion of the sample created 

by manual compression varies with time and spatial location, the adaptive Doppler analysis 

is capable of differentiating the mechanical properties of different materials.. 

 

Figure 4.11 (a) Displacements (blue) obtained from adaptive Doppler tracking and 

magnitude OCT signal (red) of Sample 1; (b) displacements (blue) obtained from adaptive 

Doppler tracking and magnitude OCT signal (red) of Sample 2. 
Source: [92]  
 

4.5.6 in vivo Tissue Characterization by Adaptive Doppler 

We used the handheld probe to compress the skin tissue of a volunteer to demonstrate in 

vivo OCE tissue characterization by adaptive Doppler. Figure 4.12(a) shows the skin region 

with a wart at the dorsal of the hand whe it is compressed by the probe. The displacement 

extracted through adaptive Doppler analysis is shown in Figure 4.12(c) as the blue curve. 

B-scan image of neighboring region of healthy skin during compression and the 

displacement are shown as Figure 4.12(b)) and  as the red curve in Figure 4.12(c), 

respectively. Figure 4.12(c) shows different strain characteristics in for healthy and 

diseased skin. The diseased skin has heterogeneous properties. Therefore, the displacement 
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shows different slopes (red arrow indicates the starting of displacement for another slope)  

indicating different axial strain within different depth range. However, the displacement of 

the healthy skin increases approximataly with the same slope. Assumming the uniform 

distributed stress, results of Figure 4.12(c) indicate that the elasticity of the diseased skin 

varies as depth and the healthy skin shows homogeneous elasticity within the depth range.  

 

Figure 4.12 (a) in vivo OCT image of diseased skin at the dorsal of the hand; (b) in vivo 

OCT image of normal skin at the dorsal of the hand; (c) displacement measured through 

adaptive Doppler analysis of OCT signal for diseased skin and normal skin; (d) in vivo 

OCT image of fingertip skin; (e) in vivo OCT image of forearm skin; (f) displacement 

measured through adaptive Doppler analysis of OCT signal for fingertip skin and forearm 

skin. Scale bars represent 500μm. 
Source: [92] 

 

The same experiment is also performed on the fingertip (Figure 4.12(d)) and the forearm 

(Figure 4.12(e)) skin of the same subject. Displacements through manual compression and 

adaptive Doppler analysis is shown in Figure 4.12(f). The displacement  from compressed 

fingertip skin shows different slopes within different depth regions due to the thickness 
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variation of epidermis and dermis layers. The dermal-epidermal junction in fingertip skin 

is visible as marked by red arrow in Figure 4.12(d). A larger slope is detected within the 

layer of epidermis, and a smaller slope is noticed within the layer of dermis. The result 

suggests that in epidermis has larger strain compared to the dermis region. Assuming the 

uniform spatial stress distribution of stress, results in Figure 4.12(f) suggest a smaller 

stiffness of epidermis compared to dermis, which is consistent with  experimental results 

stated by Kennedy et. al in [109].  

 

4.6 Conclusion and Discussion 

 

In summary, we developed and validated a Doppler analysis method that is adaptive to 

time and spatial location, for robust manual OCE characterization based on a handheld 

instrument. Real-time tissue mechanical characterization was demonstrated for the first 

time to the best of our knowledge, enabled by this adaptive Doppler tracking strategy.  

Moreover, our adaptive Doppler tracking method can measure the smallest and 

largest axial motion with high accuracy. The smallest measurable displacement is 

determined by the noise floor of phase estimation. According to Equations (4.6) and (4.7), 

the mean velocity extracted by the adaptive analysis algorithm is: 𝑣̅ =
𝜆0

4𝜋𝛥𝑘,𝑚𝑇0
√

𝛽

𝑆𝑁𝑅
. The 

minimal measurable velocity is found when Δk,m has the largest value (Δk,m=M0/2). Hence, 

𝑣̅𝑚𝑖𝑛 =
𝜆0

2𝜋𝑀0𝑇0
√

𝛽

𝑆𝑁𝑅
. On the other hand, Δk,m takes a smaller value for a larger motion 

speed, and the largest measurable displacement is determined by the phase wrapping 

phenomenon. When the displacement is calculated with Δk,m=1 without phase wrapping 
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(|δ𝜙̂𝑘,𝑚|<π/2), 𝑣̅𝑚𝑎𝑥 =
𝜆0

8𝑇0
. The dynamic range (DR=

𝑣̅𝑚𝑎𝑥

𝑣̅𝑚𝑖𝑛
) in tracking motion (axial 

speed) is thus 𝐷𝑅 = √
𝑆𝑁𝑅

𝛽

𝜋(𝑀0 2⁄ )

2
. Compared to non-adaptive Doppler tracking 

(DR=√
𝑆𝑁𝑅

𝛽

𝜋

2
), the adaptive Doppler analysis achieves a M0/2 fold improvement in the 

dynamic range for motion tracking, where M0 is the number of A-scans in a frame of OCT 

data acquired.  
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CHAPTER 5 

NOISE ADAPTIVE WAVELET THRESHOLDING FOR SPECKLE NOISE 

REMOVAL IN OPTICAL COHERENCE TOMOGRAPHY 

 

 

5.1 Introduction 

OCT is based on coherence detection of interferometric signals and hence inevitably 

suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain 

thresholding has demonstrated significant advantages in suppressing noise magnitude 

while preserving image sharpness. However, speckle noise in OCT images has different 

characteristics in different spatial scales, which has not been considered in previous 

applications of wavelet domain thresholding. This chapter describes the implementation 

and the performance analysis of the noise adaptive wavelet thresholding (NAWT) 

algorithm.  

 

5.2 Research Motivation for NAWT Algorithm 

OCT is a high-speed, high resolution, 3D imaging technique based on low coherence light 

interferometry [16]. OCT inevitably affects by random noises particularly the 

multiplicative speckle noise [117 – 119]. Speckle noise in OCT image arbitrarily modifies 

the OCT amplitude and obscures the subtle image features, resulting in compromised 

effectiveness in its clinical applications [21, 25]. Various hardware and software-based 

approaches are developed to remove the speckle noise. Hardware techniques for speckle 

noise reduction, such as spatial compounding and spectral compounding, may achieve high 
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SNR for OCT images. However, these techniques have high system cost, provides low 

spatial resolution and reduces the imaging speed [11, 120, 121]. Post-processing algorithms 

have also been developed to reduce the speckle noise in OCT images [122, 123]. As speckle 

noise is inherently multiplicative rather than additive, conventional linear filtering in 

spatial or frequency domain is suboptimal. This is because, conventional linear filtering 

produces significant blurring and reduces image contrast after postprocessing [124]. 

Nonlinear wavelet thresholding methods can be also used, as an alternative, to suppress the 

speckle noise in various imaging modalities such as ultrasound imaging, synthetic aperture 

imaging and OCT [17, 125, 126]. Wavelet thresholding algorithms have shown excellent 

capability in reducing speckle noise and preserving image sharpness in previous studies 

[127, 128]. The principle of wavelet thresholding is simple. After the wavelet transform, 

the magnitude of wavelet coefficients is used as an oracle to determine if a coefficient is 

noise or signal. A wavelet coefficient with larger amplitude carries important information 

while a wavelet coefficient with smaller amplitude is noisy component. 

 In conventional wavelet domain OCT thresholding technique, an adaptive threshold 

is estimated for each wavelet sub-band through an estimated signal variance for the 

particular sub-band. Assuming the same noise in different sub-bands, the same magnitude 

of noise variance is calculated for all sub-bands. However, the de-correlation of OCT 

signals with fully developed speckle could be modeled as a Gaussian function and Gaussian 

power spectral density can be considered for speckle noise [129]. Therefore, the speckle 

OCT image has different magnitudes in different wavelet sub-bands. Moreover, the speckle 

noise characteristics largely depends on the imaging system rather than the sample. Hence, 
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the characteristics of speckle noise can be extracted from structureless homogeneous 

scattering sample through OCT imaging.  

 We developed a novel algorithm for OCT speckle noise removal and then captured 

and evaluated an OCT image of a homogeneous scattering sample. Afterwards, we 

computed the noise variance (σw2) in each wavelet sub-band and used σw2 to estimate the 

optimal threshold for each sub-band. The main steps of NAWT are: wavelet 

decomposition, soft thresholding and wavelet reconstruction. All these steps can be 

parallelized using GPU. Therefore, the NAWT algorithm can be implemented in GPU for 

real-time speckle noise removal.  

 

5.3 Principle of NAWT Algorithm 

In conventional wavelet thresholding method, a wavelet transform is performed on a spatial 

domain image as shown in Figure 5.1. Subsequently, a threshold (T) is calculated according 

to Equation (5.1) for each sub-band of detail coefficients (H1, V1, D1, H2, V2, D2, H3, V3, 

D3, …), where Hk denotes detail coefficients in horizontal direction at kth wavelet 

decomposition level; Vk indicates detail coefficients in vertical direction at kth wavelet 

decomposition level, and Dk indicates detail coefficients in diagonal direction at kth 

wavelet decomposition level.  

T(σX) =  
σ2

σX
                                                                                          (5.1) 

Here, σ2 is the noise variance and σx is the standard derivation of noise-free signal.  
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Figure 5.1 2D wavelet decomposition of an image 

 Afterwards, according to Equation (5.2), a soft thresholding is applied to each 

wavelet coefficient S. Spatial domain image with suppressed speckle noise is then 

generated through inverse wavelet transform. 

𝑆𝑇 = {
0; |𝑆| ≤ 𝑇

𝑠𝑔𝑛(𝑆) [|𝑆| − 𝑇]; |𝑆| > 𝑇
                                                (5.2) 

  Noise variance (σ2) of Equation (5.1) is computed through the detail sub-band H1 

with the median estimator as shown in Equation (5.3).  

𝜎 =
Median(|𝑆𝑖𝑗|)

0.6745
,   S𝑖𝑗 ∈ subband 𝐻1                                         (5.3)            

 The standard derivation of the noise free signal in (σx) each wavelet sub-band is 

measured according to Equation (5.4), 

𝜎𝑋 = √𝑚𝑎𝑥(𝜎𝑆
2 − 𝜎2, 0)                                                         (5.4) 

Here, σs
2 is the variance of the measured wavelet coefficients.  

 The close form threshold formulated in Equation (5.1) provides the optimal noise 

reduction in OCT images. All the wavelet coefficients of OCT image follow a generalized 

Gaussian distribution (GGD). Equations (5.1) – (5.4) summarize the conventional adaptive 

wavelet thresholding technique of image denoising, mentioned by S. G. Change et al. in 

[127]. However, the assumption of same noise variance (σ2) across all the sub-bands in 
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wavelet domain is not effective for OCT signal. This is because the speckle in OCT signal 

has different characteristics in different sub-bands. Therefore, a noise adaptive wavelet 

thresholding (NAWT) algorithm has been developed to consider different speckle noise 

pattern at different spatial scale to accomplish better noise reduction. 

 The major modification between NAWT algorithm and the conventional wavelet 

domain thresholding algorithm is that NAWT uses different noise variance to estimate the 

threshold for individual sub-band. Equation (5.5) is used to compute the threshold, where 

σw
2 indicates the noise variance for the sub-band W (W will be all different sub-bands: H1, 

V1, D1, H2, V2, D2, H3, V3, D3, …). For each sub-band, σw
2 is computed for OCT image of 

a structureless homogeneous sample. The image is modulated by fully developed speckle. 

Afterwards, wavelet domain speckle statistics obtained from the structureless sample are 

applied to other images. It is worth mentioning that speckle in OCT image mainly depends 

on the characteristics of the imaging system rather than the sample. In other words, the 

NAWT algorithm applies the noise variance at different sub-band of wavelet coefficients 

as a prior for subsequent noise reduction. 

𝑇𝑁(𝜎𝑋) =
𝜎𝑊
2

𝜎𝑋
                                                                               (5.5) 

 

 As the magnitude variation of a reference image has random noise, this reference 

image from a uniform scattering sample allows the characterization of speckle noises. 

Moreover, it is not possible to evaluate speckle noise characteristics from  OCT image of 

a spatially heterogeneous sample because the OCT magnitude image for heterogeneous 

structured sample varies due to random noise and deterministic structural features of the 

sample. 

 The flow-chart for the NAWT algorithm is shown in Figure 5.2. 
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Figure 5.2 Signal processing flow-chart for the optimized adaptive wavelet 

thresholding algorithm. 
Source: [18] 

 

  Briefly, σw2 for each sub-band (H1, V1, D1, H2, V2, D2, H3, V3, D3, …) are calculated 

from the structureless reference image (Rxy) that is obtained from the homogeneous 

scattering sample. Afterwards, the image to be denoised (Sxy) is used to estimate the signal 

variance (Equation (5.4)). The threshold for each sub-band is thus estimated using Equation 

(5.5). Notably, Rxy and Sxy are normalized by their mean signal intensities respectively. 

Every wavelet coefficient (S) in a detail sub-band is then performed thresholding using 

Equation (5.2). Spatial domain image is then reconstructed by the inverse wavelet 
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transform. The algorithm is implemented in MATLAB 2016 on a personal computer (intel 

i72.8 GHz CPU, 8GB memory). The processing time of a 512x2014 image is 

approximately 0.2s. 

 

5.4 Description of an OCT Imaging System 

A spectral domain OCT (SD OCT) system has been utilized for the imaging experiments 

as shown in Figure 5.3. The detail imaging setup is described in chapter 2. Briefly, SD-

OCT system has a superluminescent diode (SLD1325 Thorlabs, 1.3μm central wavelength 

and 100nm bandwidth, power less than 10mW at the sample) as the broadband light source. 

The output of the SLD illuminates the reference and sample arm of a fiber-optic Michelson 

interferometer through a fiber-optic coupler. A lens is used in the sample arm to focus the 

probing beam and to collect the photons backscattered from the sample. Light returned 

from the sample and the reference mirror experienced the interference and is then detected 

by a CMOS camera and A frame grabber streams the signal from the camera to the host 

computer for further processing in real-time GPU.  

 

Figure 5.3 Schematic of SD-OCT imaging system. Here, FC = fiber-coupler. 
Source: [18] 
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5.5 Experimental Results 

5.5.1 Assessment of Speckle Noise Characteristics of OCT in Wavelet Domain 

Firstly, the characteristics of speckle noise of OCT image is evaluated in the wavelet 

domain. A homogeneous scattering PDMS sample is used. Four structureless images (one 

of the images is shown in Figure 5.4) are obtained from the same PDMS sample with 

different elevation planes (B-scan 1, B-scan 2, B-scan 3 and B-scan 4) of 31.4μm interval.  

Figure 5.4 OCT B-scan of scattering PDMS phantom. Scale bars indicate 200μm. 
        Source: [18] 

 

 All the B-scan images (linear scale) are normalized by their respective mean values 

and the probability density signal magnitudes (for depth from 0.8mm to 1.15mm) are 

computed as shown in Figure 5.5 (solid curves). The probability density function (PDF) of 

Rayleigh distribution with a mean of 1 according to Equation (5.6) is also plotted as the 

dashed curve in Figure 5.5: 

P(s)=
𝑠

𝜎2
𝑒𝑥𝑝 (−

𝑠2

2𝜎2
) where 𝜎=√

2

𝜋
                                               (5.6) 

  Notably, all the probability density signal magnitudes images acquired from four 

B-scan sample images followed the same Rayleigh distribution pattern, even if they had 

different sub-resolution characteristics. This result suggests that the speckle statistics of 

OCT image is determined by the imaging system rather than the sample properties. 
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Therefore, speckle statistics characterized by a reference image can be applied as a prior 

for subsequent noise reduction. 

 

Figure 5.5 Probability distribution of OCT signal magnitude (solid curves), in comparison 

with the PDF of Rayleigh distribution (dashed). 
Source: [18] 

 

 

  Next, one of the B-scan images (linear scale, normalized to its maximum value) 

from PDMS sample is used to demonstrate that the magnitude of speckle noise varies 

significantly in different wavelet sub-band. The image is transformed into a four-level 

wavelet using a sym4 wavelet base. The variation of signal is simply due to noise. Next, 

the variance of wavelet coefficients in horizontal (H), vertical (V) and diagonal (D) 

directions are computed in four different decomposition levels and the results are shown in 

Figure 5.6. The noise magnitudes measured by wavelet coefficient variance are different 

in each different sub-bands. However, the conventional methodology, assuming same 

noise variance (σ2) across different wavelet sub-bands, computed the threshold for wavelet 

domain de-noising according to Equation (5.1). As Figure 5.6 shows large difference for 

noise magnitude in different sub-bands and soft-thresholding based on Equation (5.1) is 

not the optimal solution to reduce the speckle noise in OCT image. 
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Figure 5.6 Variance of wavelet coefficients for B-scan image obtained from the 

homogeneous scattering sample, in H, V, and D directions at four decomposition levels. 

Clearly, the magnitudes of noise quantified by wavelet coefficient variance are different in 

different sub-bands. 

Source: [18] 

 

 

 

Figure 5.7 Variance of wavelet coefficients for B-scan image obtained from the 

homogeneous scattering sample in four different elevation planes (B-scan 1, B-scan 2, B-

scan 3, and B-scan 4), in H, V, and D directions at four decomposition levels. 
Source: [18] 

Speckle statistics is further characterized by a reference image The inter-image 

difference for noise variance are compared for the reference image. Images (linear, 
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normalized) captured from the homogeneous PDMS sample is used to generate results as 

shown in Figure 5.7. For the same wavelet sub-band (H, V or D , level 1 - 4), noise variance 

difference among different B-scan images (B-scan1- B-scan 4) are lower, compared to the 

difference among different wavelet sub-bands for the same image.  

To demonstrate the efficiency of our algorithm, the NAWT algorithm is applied on 

a sample (Sample 1). Sample 1 is fabricated by attaching three tape-layers top of the 

homogeneous scattering PDMS phantom. The sample has well developed speckle pattern 

and all the three tape-layers are easily visible. Therefore, this sample is suitable for the 

validation of the NAWT algorithm. OCT image without any post-processing is shown in 

Figure 5.8 (a). The area within the rectangle is enlarged in Figure 5.8 (b) to provide better 

visualization of image details. The grainy appears in the image due to speckle noise. 

NAWT algorithm is applied to the PDMS sample and denoised image is obtained as shown 

in Figure 5.8 (c). Clearly, speckle noise in Figure 5.8(c) and (d) in reduced in compared to 

Figure 5.8(a) and (b). Moreover, the sample boundaries are clearly visible in Figure 5.8(c) 

and (d). Furthermore, Figure 5.8(a) is also processed through the conventional wavelet 

domain thresholding algorithm. The processing results are shown in Figure 5.8(e) and (f). 

The image texture remains grainy after denoising by conventional wavelet technique in 

contrast Figure 5.8 (c) and (d) for NAWT processing.  
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Figure 5.8 (a) Raw OCT image of Sample 1 (without any post processing); (b) enlarger 

region of interest (ROI) enclosed by the rectangle in Figure 5.8 (a); (c) OCT image of 

Sample 1 processed by our NAWT algorithm; (d) enlarger ROI enclosed by the rectangle 

in Figure 5.8(c); (e) OCT image of Sample 1 processed by conventional wavelet domain 

thresholding; (f) enlarger ROI enclosed by the rectangle in Figure 5.8 (e); (g) OCT image 

of Sample 1 processed by Gaussian filtering; (h) enlarger ROI enclosed by the rectangle in 

Figure 5.8 (g). Scale bars in Figure 5.8 (a) indicate 500 µm. 
Source: [18] 

  

 Next, spatial domain linear filtering is achieved through a Gaussian kernel (25 

pixels by 25 pixels with a σ of 1.5 pixels:  

h(i,j)=exp [-(i2+j2)/2σ2])                                                              (5.7) 

Figure 5.8(g) and (h) represent the processed OCT images by Gaussian filter. Gaussian 

filter effectively removed the speckle noise. However, the filter also reduced the contrast 

of the image and blurred small features in the image.  
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5.5.2 A-scan Signals of OCT Images for Different Algorithms 

Additionally, we selected the OCT A-scans at the same lateral location for different 

algorithms to illustrate the effectiveness of NAWT algorithm in speckle noise reduction. 

The processed A-scans data of different algorithms are plotted in Figure 5.9. OCT data 

without any processing (red curve) has shown random fluctuation due to the presence of 

speckle noise. The green curve of conventional wavelet thresholding has reduced the 

variation of noise. The noise reduces more for NAWT as shown by blue curve in Figure 

5.9. The result suggests the higher performance for speckle noise suppression by NAWT 

in contrast to conventional wavelet domain thresholding.  

 

Figure 5.9 A-scans at the same lateral location from OCT images processed with different 

algorithms. 
Source: [18] 

   

However, the A-scan signal processed by the Gaussian filter (black curve) 

broadened the signal peaks. This result is consistent with the visual appearance in Figure 

5.8(e) and (g) where Gaussian filtering blurs small structural features and reduces the 

image contrast. Notably, Gaussian filter decreases the random signal fluctuation up to a 

certain level but the Gaussian filter also introduces the noise level artificially after depth > 
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0.3mm. Therefore, it is worth mentioning that linear Gaussian filter is not optimized for 

the reduction of multiplicative speckle noise. 

5.5.3 Image Enhancement of B-scan OCT Images using NAWT Algorithm 

Next, NAWT algorithm is applied to two samples: an IR viewing card (Sample 2) and 

human fingertip (Sample 3).  B-scan OCT images are obtained from for both samples 

without and with NAWT processing. The images are shown in Figure 5.10 (a) – (d). NAWT 

algorithm significantly reduced the grainy appearance of the image due to speckle noise 

for Figure 5.10 (b). Additionally, the upper and lower boundaries of the plastic film are not 

blurred.  In Figure 5.10 (d), the image processed by NAWT clearly shows the epidermis-

dermis junction. 

 
 

Figure 5.10 (a) Original IR card image (Sample 2), (b) IR card image processed using 

NAWT; (c) fingertip image (Sample 3), (d) fingertip image processed using NAWT. Scale 

bars indicates 500 µm. E: epidermis; D dermis; arrows in Figure 5.10 (c) indicate sweat 

duct. 
Source: [18] 

 

 

5.5.4 Performance Analysis of NAWT Algorithm 

SNR of the OCT images are estimated according to Equation (5.8) to quantitatively assess 

the effectiveness of different speckle removal algorithms. Remarkably, in SNR calculation, 

background OCT data within the depths from 1mm-1.5mm are considered for the 

estimation of noise variance. Additionally, β (Equation (5.9)) is calculated to evaluate the 
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noise removal capability of NAWT to restore the morphological features [130] of the 

original image.  

𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
[𝑚𝑒𝑎𝑛(𝐼)]2

𝜎𝐼
2 )                                                      (5.8) 

𝛽 =
𝛤(𝐼𝐷−𝜇𝐼𝐷 ,𝐼0−𝜇𝐼0)

√𝛤(𝐼𝐷−𝜇𝐼𝐷 ,𝐼𝐷−𝜇𝐼𝐷)⋅𝛤(𝐼0−𝜇𝐼0 ,𝐼0−𝜇𝐼0)
                                          (5.9) 

where σI
2 indicates noise variance of the OCT image, ID represents the denoised image; I0 

indicates the original image; μD is the mean signal value of the denoised image; μ0 indicates 

the mean signal value of the original image; Γ(I1, I2) = ∑ [I1(i, j)I2(i, j)]i,j  where i and j 

indicate indices of pixel in 2D images. 

 In Table 5.1, we summarized performance evaluation of different speckle 

reduction algorithms (WT: conventional wavelet domain thresholding; NAWT: noise 

adaptive wavelet thresholding; GF: Gaussian filtering). OCT images are obtained from 

Sample1 (Figure 5.8), Sample2 (Figure 5.10 (a) and (b)) and Sample3 (Figure 5.10 (c) and 

(d)). As shown in Table 5.1, NAWT algorithm offers around 3 -8 dB SNR improvement 

compared to other methods. Moreover, NAWT has comparable effectiveness in preserving 

image sharpness (β value) compared to conventional wavelet domain thresholding.  

Table 5.1 Performance of Different Noise Reduction algorithms.  

Parameters Methods Sample 1 Sample 2 Sample 3 

SNR (dB) 

Raw 17.13 11.42 13.56 

WT 23.17 13.24 17.99 

NAWT 29.04 14.56 20.59 

GF 25.04 14.07 18.99 

β 

WT 0.96 0.96 0.94 

NAWT 0.97 0.94 0.93 

GF 0.92 0.92 0.90 

 Source: [18] 
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 Moreover, we compared the speckle noise reduction capability of nonlinear NAWT 

algorithm to linear Gaussian filtering. We varied the standard deviation (σ) of the Gaussian 

kernel and calculated the SNR of image at different values of σ. The SNR versus σ curves 

for Sample 1, 2, and 3 are plotted in Figure 5.11. The three solid curves (black, red and 

blue) are from Gaussian filtering of the samples and the dashed curves are from SNR 

obtained from images processed by NAWT. As shown in Figure 5.11, the SNR of OCT 

image increases with Gaussian filter width for small σ. However, no significant SNR 

improvement is noticed after certain increment of σ of Gaussian filter. Also, the maximum 

SNR achieved through Gaussian filtering is lower compared to that of NAWT. The graph 

suggests that the nonlinear NAWT algorithm is more suitable for the suppression of 

multiplicative speckle noise.  

 

Figure 5.11 SNR performance of Gaussian filtering and NAWT. 
          Source: [18] 

 

 

 

5.6 Conclusion and Discussion 

This chapter developed a novel algorithm to remove the speckle noise in OCT images. The 

noise adaptive wavelet thresholding (NAWT) algorithm utilized the characteristics of 



117 
 

speckle noise in wavelet domain to adaptively remove speckle noise and also conserves the 

structure features in OCT image. NAWT improves visual appearance of OCT image. 

Moreover, NAWT shows better performance in noise removal by SNR and in preserving 

structural features compared to the conventional wavelet domain thresholding and 

Gaussian filtering. 

 NAWT can be a generic algorithm for speckle noise removal in various 

imaging/sensing technologies, such as ultrasound imaging, synthetic aperture imaging, 

Lidar, etc. NAWT can significantly improve the image quality through reducing the 

speckle noise as long as fully developed speckle assumption is valid. NAWT algorithm 

does not require huge computational power and the algorithm takes approximately 0.2s to 

process a 512x1024 image using CPU in MATLAB environment.  
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CHAPTER 6 

ASSESSMENT AND REMOVAL OF ADDITIVE NOISE IN A COMPLEX OCT 

SIGNAL BASED ON DOPPLER ANALYSIS 

 

 

6.1 Introduction 

This chapter represents and validates a novel approach to assess and remove the additive 

noise for optical coherence tomography (OCT) imaging. The method first generates a map 

of additive noise for the OCT image through Doppler variation analysis. Then, the additive 

noise is removed from the real and imaginary parts of the complex OCT signal through 

pixelwise Wiener filtering. Results show that the denoising method improves the 

sensitivity of OCT imaging and preserves the spatial resolution without any further 

medication of the imaging apparatus and data acquisition protocol. 

 

6.2 Research Motivation for Doppler Analysis 

based Additive Noise Reduction in OCT Images 

 

The tissue characterization capability of OCT depends on the sensitivity of OCT. In OCT, 

sensitivity is defined as the minimal reflectivity attained from the sample arm to generate 

a noticeable signal from a noisy measurement condition [131, 132]. During the suboptimal 

measurement condition, high imaging sensitivity is necessary for in vivo OCT imaging and 

the imaging from deep tissues. Noise suppression improves the sensitivity in OCT imaging. 

There is hardware optimization technique and also various post-processing algorithms such 

as wavelet domain adaptive filtering, diffusion filtering, and sparsity-based iterative 

optimization [36, 133 - 135] for removing the noise from OCT signal. In this chapter, a 
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novel scheme has been developed that performed Doppler variation analysis to assess the 

additive noise in an OCT signal. Afterwards, it removed the additive noise from the 

complex OCT signal through an adaptive Wiener filtering algorithm. 

The method developed in this chapter differs from the conventional OCT denoising 

algorithms in the following manners. Firstly, conventional structural OCT imaging system 

operates on the magnitude of the OCT signal, whereas our method gathers information for 

both the magnitude and phase from the complex OCT signal. The phase of the OCT signal 

is normally used for tracking the motion through Doppler analysis and has numerous 

applications, such as, vasculature visualization, measurement of blood flow, optical 

coherence elastography and cellular motion detection [56, 74, 136 - 139]. Additionally, 

OCT phase signal is also applicable for morphological tissue characterization because OCT 

phase signal is measured by the sample thickness and refractive index [140, 141]. Doppler 

phase variation can also evaluate the additive noise in the OCT signal for subsequent noise 

removal. Secondly, most of the conventional denoising algorithms, applied to the OCT 

magnitude signal, considered noise in OCT image as additive Gaussian [36, 133 –135]. 

However, OCT imaging suffers from both additive noise and multiplicative noise (speckle 

noise) [18, 21, 142]. Therefore, for low SNR, modeling with the additive Gaussian noise 

is not valid for the OCT magnitude. In our denoising method, first, Doppler variation 

analysis is employed to map an additive noise in the OCT system and then local Wiener 

filtering [143, 144] is performed for denoising. Similar to the complex denoising algorithm 

developed for magnetic resonance imaging, the real and imaginary parts of the complex 

OCT signal are processed as independent signal channels [145, 146]. Sensitivity of OCT 

imaging can be enhanced by reducing the additive noise from the OCT signal. 



120 
 

  

6.3 Principle of Doppler Analysis based Additive Noise Reduction Method 

Consider a complex OCT signal F = F(x, z) (here, x indicates the lateral dimension, z 

indicates the axial dimension, and the elevation dimension y is not considered) that can be 

expressed as Equation (6.1). All the bold symbols in Equation (6.1) and subsequent 

discussions represent a function of space as follows: 

0

0 0 Re Im

Re Im

j

m e j

j

= + +

= +

F N R S N N

F F



                                                        (6.1) 

where j is the imaginary unit; R0 is the reference arm field reflectivity; S0 and ϕ0 are the 

magnitude and phase of sample arm optical field (x, y, z); Nm=Nm,0e
jϕm describes the 

random modulation of signal due to speckle formation; NRe and NIm are the real and 

imaginary parts of the additive noise (var(NRe)=var(NIm)=σ0
2/2), respectively. 

Consider, two laterally A-scan signals displaced by δx can be represented as 

F1=F1(x, z) and F2=F2(x +δx, z). The Doppler phase shift (ϕD) between these two A-scans 

is estimated using Equation (6.2) [74, 137]. Symbols with a hat (^), such as ϕD̂, indicate 

an estimation of a signal as follows: 

ϕD̂ = atan [
Im(𝐅𝟐𝐅𝟏

∗)

Re(𝐅𝟐𝐅𝟏
∗)
] =  𝛟𝐃 + 𝐧𝐃                                                   (6.2) 

Where, * indicates to take the conjugate of a complex value and nD represents the random 

noise that arises in Doppler phase estimation. 

 Assume, δx << the lateral resolution of the imaging system. Therefore, the two A-

scans are highly correlated and Nm(x, z) ≈ Nm(x + δx, z). Hence, estimated phase 

determined by the additive noise is independent for different A-scans, as demonstrated in 

a study by Yazdanfar et al [111]. Results in [111] suggested that variance of the estimated 
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Doppler phase (var(ϕD̂)=σϕ
2) depends on the characteristics of the additive Gaussian noise 

in OCT signal regardless the value of ϕD (Equation (6.3) where μ=S0Nm,0) as follows: 

( )
( )

( ) ( )
0 0

0 ,0

3 , 3
,

, ,

x z

x z

x z m x z

i i
i i

S i i N i i


 



= =                                                (6.3) 

The results in [111] indicates that the magnitude of the additive noise (𝜎0
2) can be 

calculated through Doppler variation analysis [Equation (6.4)]: 

( )
( ) ( ) ( )0 ,0

0

, , ,
,

3 3

x z x z m x z

x z

i i S i i N i i
i i

   
 = =                                     (6.4) 

Here, iz and ix represent the axial and the lateral pixel indices in a discretized image, 

respectively. 

 Equations (6.3) and (6.4) indicate that Doppler variation analysis can be performed 

for the assessment of the additive noise. Moreover, the most prominent multiplicative noise 

in OCT is speckle noise and these speckle noise imposes random modulation on OCT 

signal (Nm in Equation (6.1)). Despite the random nature of speckle, OCT signals in 

adjacent A-scans (F1(ix, iz) and F2(ix+1, iz)) are correlated [119]. Doppler phase estimation 

by Equation (6.2) effectively cancels out the randomness due to speckle, although there 

still remains uncertainty due to the additive noise. Such uncertainty is then quantified for 

the additive noise assessment according to Equation (6.4). Moreover, estimated values of 

σϕ and μ for the additive noise assessment are calculated for each pixel using Equations 

(6.5) and (6.6) (assuming Nx and Nz are odd integers), respectively. 

𝜎𝜙(𝑖𝑥, 𝑖𝑧)̂ =
1

𝑁𝑥𝑁𝑧
√∑ ∑ [𝜙𝐷(𝛼𝑥, 𝛼𝑧) − 𝜙̄𝐷]

𝑖𝑧+
𝑁𝑧−1

2

𝛼𝑧=𝑖𝑧−
𝑁𝑧−1

2

𝑖𝑥+
𝑁𝑥−1

2

𝛼𝑥=𝑖𝑥−
𝑁𝑥−1

2

       
                      (6.5) 

𝜇(𝑖𝑥, 𝑖𝑧)̂ =
1

𝑁𝑥𝑁𝑧
∑ ∑ |𝐹(𝛼𝑥, 𝛼𝑧)|

𝑖𝑧+
𝑁𝑧−1

2

𝛼𝑧=𝑖𝑧−
𝑁𝑧−1

2

𝑖𝑥+
𝑁𝑥−1

2

𝛼𝑥=𝑖𝑥−
𝑁𝑥−1

2

           
                                       (6.6) 
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Since 𝜎𝜙̂  and 𝜇̂ are calculated in Equations (6.5) and (6.6), a map of the additive 

noise 𝜎0̂ can be estimated using Equation (6.4) as follows: 

𝜎0̂ (𝑖𝑥, 𝑖𝑧) =  
1

√3
 𝜎𝜙̂ (𝑖𝑥, 𝑖𝑧)𝜇̂(𝑖𝑥, 𝑖𝑧)                                            (6.7) 

 

Hence, the real and imaginary parts of the complex OCT signal (FRe=Re(F) and 

FIm=Im(F)) can be optimally denoised by Wiener filtering as shown in Equations (6.8) and 

(6.9) [143, 144].  
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              (6.9) 

In Equations (6.8) and (6.9), μRe and μIm indicate the local means of the real and 

imaginary parts of the  OCT signal; 𝜎𝑅𝑒
2  and 𝜎𝐼𝑚

2  indicate the local variance of the real and 

imaginary parts of the OCT signal; 𝜎𝑅𝑒,𝑛
2 and 𝜎𝐼𝑚,𝑛

2 indicate the local noise variance of the 

real and imaginary parts of OCT signal, respectively. 

 Assume that the additive noise in the real and imaginary parts of OCT signal are 

uncorrelated and have the same variance, we have 𝜎𝑅𝑒,𝑛
2 =𝜎𝐼𝑚,𝑛

2 =0.5𝜎0
2. Also, 𝜎𝑅𝑒,𝐼𝑚

2 = 

(0.5𝜎|𝐹|
2 - 0.5𝜎0|

2 ) where 𝜎|𝐹|
2  is the variance of OCT magnitude (|F|). Furthermore, 𝜎𝑅𝑒,𝐼𝑚

2  is 

of 0 if the above calculation has a negative value [127] due to the non-negative nature of 

variance.   

 Therefore, the denoised magnitude signal of OCT can be reconstructed using 

Equation (6.10). 

( ) ( ) ( )2 2

Re Im
ˆ ˆ ˆ, , ,x z x z x zF i i F i i F i i= +

                                            (6.10) 
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6.4 OCT System and Signal Processing 

A spectrometer-based Fourier domain OCT (FD-OCT) system has been used for the 

imaging experiments. The detail experimental setup is discussed in chapter 2. The complex 

denoising method is directly applied to OCT data obtained through a faster routine 

scanning protocol.  

  First, a complex B-scan OCT image (F) is attained by Fourier transform on a frame 

of interferometric spectra according to Equation (6.1). A Doppler image 𝝓̃𝐷 is created by 

calculating the Doppler phase shift between the same pixels in adjacent A-scans according 

to Equation (6.2). Afterwards, for each pixel in the Doppler image 𝝓̃𝐷, local variation of 

Doppler phase (σϕ) and mean magnitude of OCT signal are computed using pixels within 

Nx by Nz window (Equations (6.5) and (6.6), respectively). Once we have estimated μ and 

σϕ , the additive noise (σ0(ix, iz)) is then estimated according to Equation (6.4). Afterwards, 

spatially adaptive filtering on the real and imaginary parts of OCT signal at individual 

pixels are performed according to (Equation (6.8) and (6.9)) and eventually noise 

suppressed magnitude OCT image is obtained by applying (Equation (6.10)). With Nx = Nz 

= 3, it takes approximately 0.3s to generate a denoised OCT image (1024 by 1024) with 

MATLAB in a personal computer (Intel 2.9GHz processor, 16GB RAM). Figure 6.1 shows 

the flowchart for the assessment and removal of the additive OCT noise. 
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Figure 6.1 Flow-chart for the assessment and removal of additive OCT noise. 
 Source: [113] 
 

 

6.5 Imaging Experiments and Results 

To validate the method for the assessment and removal of additive noise, the following 

imaging experiments have been conducted: 

Experiment-1: OCT images captured from a homogeneous scattering sample at 

different motor speeds. 

 

Experiment-2: OCT images acquired from a homogeneous scattering sample at 

different signal levels. 

 

Experiment-3:  OCT images from a resolution target. 

Experiment-4: OCT images from IR viewing card and ex vivo human skin.  

 

6.5.1 Analysis of Results from the Experiment-1 and 2 

For the first two experiments, a homogeneous scattering substance is used as a sample. The 

sample is translated in the axial direction with different speeds and the OCT signals are 

captured. Afterwards, OCT images are also acquired from a homogeneous scattering 

sample at different signal levels. First experiment is used to validate that Doppler phase 

has been correctly extracted. To generate different magnitudes of Doppler phase shift, a 

silicon scattering phantom (Figure 6.2 (a) with axial dimension of 1250μm and lateral 
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dimension of 50μm, displayed in log scale) is placed on a motorized linear translation stage, 

and the stage is moved in the axial direction at different speeds (v). The light beam is 

scanned laterally by the galvanometer with a 0.1V(p-p) driving voltage. A 20-fold 

oversampling is applied during the scanning process to minimize speckle decorrelation 

between adjacent A-scans. Once complex OCT signal are obtained from the moving 

phantom, the phase shift between corresponding pixels in adjacent A-scans are used to 

generate the Doppler image (Figure 6.2 (b)). Next, we averaged the Doppler signal, 

converted the Doppler phase shift to the displacement (d=ϕDλ0/(4π)) and the speed (𝑣̃= 

d/δt). In this experiment, δt indicates the time interval between the acquisition of adjacent 

A-scans and the value is 0.11ms.  

 

Figure 6.2 (a) Magnitude OCT image obtained from a scattering phantom; (b) Doppler OCT 

images; (c) the speed extracted from Doppler OCT signal (𝑣̃) versus the speed of the motor (v) . 

Source: [113] 
 

 Motion tracking results (𝑣̃) obtained from Doppler analysis are plotted against the 

actual motor speeds (v) in Figure 6.2(c). The consistency between 𝑣̃ and v suggests that the 

Doppler phase is accurately extracted. Results obtained from experiments-1 and 2 are 

furthermore analyzed to validate the analytical relationship between the variation of 

estimated Doppler phase (σϕ
2) and additive noise (σ0

2) as shown in Equation (6.3). First, 

Equation (6.3) suggests that the variance of estimated Doppler phase (σϕ
2) is independent 
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of the expected value of Doppler phase (ϕD). The σϕ for Doppler OCT images from 

experiment-1 are computed according to Equation (6.5). All the pixels in this experiment 

selected within the depth range from 0.45mm to 0.65mm (between two horizontal lines in 

Figure 6.2(a)) to calculate σϕ. The results are plotted in Figure 6.3(a).  

 

Figure 6.3 (a) σϕ obtained from sample translated at different axial speeds; (b) σϕ(iz) 

obtained from static (black) and moving (red)sample. 
Source: [113] 
 

σϕ remains approximately the same for both different magnitudes of the axial 

motion and different expected value Doppler phase. Additionally, Doppler images are 

analyzed keeping the sample at static or moving the sample at a 0.5mm/s axial speed. The 

standard deviation of estimated Doppler phase σϕ(iz) at different depths (iz) are measured 

using Equation (6.5) with Nz = 1 and the calculated σϕ (iz) is almost same for the static 

sample (black curve) and the moving sample (red curve) at different imaging depths of the 

sample. Figure 6.3(a) and (b) suggest that the spatial variation of the estimated Doppler 

phase quantified by σϕ does not depend on the magnitude of the axial motion. So, Doppler 

variation analysis can be applied to OCT signals from a sample that does not have any 

motion in the axial direction. 
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Furthermore, the variance of estimated Doppler phase (σϕ
2) is proportional to the 

additive noise σ0
2 and is inversely proportional to the magnitude of OCT signal according 

to Equation (6.3). Hence σϕ
2 can be employed to evaluate the magnitude of the additive 

noise as per Equation (6.4). Image data obtained in Experiment 2 are analyzed to validate 

Equation (6.3). In experiment 2, we altered the intensity of sample light. An adjustable 

aperture into the sample arm of the OCT system is inserted, the diameter of the aperture is 

adjusted and a series of OCT images are acquired from the same static scattering phantom 

keeping other imaging conditions unchanged. For each OCT image acquired at a specific 

level of sample power, σϕ are calculated according to Equation (6.5) with pixels in a region 

of interest (ROI with Nx by Nz pixels) immediately under the surface of the phantom in a 

100μm depth range. The mean signal intensity for pixels within the same region is also 

evaluated using Equation (6.6). σϕ is plotted against 𝜇 in Figure 6.4(a) shown as black 

circles. Next, the curve fitting is applied by Equation (6.3) with the experimental data (σϕ 

and 𝜇). The standard variation of the additive noise: σ0  = 0.1242 and R2 statistics of the 

fitting is 0.99.  

Moreover, the additive noise can be accurately assessed through the Doppler 

variation analysis despite the existence of multiplicative noise in OCT measurement, by 

analyzing the data obtained from Experiment 2. Pixels within the same ROI as the above 

analysis are chosen for the following calculation. The quantification is achieved by the 

fluctuation of the magnitude OCT signal using Equation (6.11) and is result is plotted 𝜎|𝐹| 

against mean signal magnitude (𝜇) in Figure 6.4(b) as blue triangles: 

                                        𝜎|𝐹| =
1

𝑁𝑥𝑁𝑧
√∑ ∑ [|𝐹(𝑖𝑥, 𝑖𝑧)| − 𝜇]2𝑖𝑥𝑖𝑧                                               (6.11) 
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Figure 6.4 (a) Variation of Doppler phase (σϕ) versus the amplitude of OCT signal (black 

circles: experimental data; red curve: fitting result); (b) variation of magnitude OCT signal 

(blue triangles), additive noise estimated through Doppler variation analysis (black circles, 

dashed and solid lines). 
Source: [113] 
 

Due to the existence of multiplicative noise in OCT image, such as speckle noise, 

the fluctuation of magnitude OCT signal increases with the signal as illustrated in Figure 

6.4(b). The additive noise (σ0) is measured with Equation (6.4) (black circles in Figure 

6.4(b)), using σϕ obtained from Doppler variation analysis and the estimated mean signal 

amplitude 𝜇. The noise estimated through Doppler variation analysis does not change 

significantly with sample light intensity. The result suggests the additive nature of noise 

parameters in OCT images. The additive noise in Experiment 2 remained approximately 

the same despite the variation of sample light intensity, because the reference power is 

substantially larger than the sample power and the overall additive noise largely depends 
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on the shot noise derived from the reference light. The level of additive noise (σ0 = 0.1242) 

is obtained by fitting Equation (6.3) with σϕ and 𝜇 (the dashed line shown in Figure 6.4(b)). 

Moreover, we blocked the sample arm and acquired a frame of spectral interferogram and 

then the noise level is derived from the reference light. The result is shown as solid line in 

Figure 6.4(b). Uniformity is found in the additive noise assessed through Doppler variation 

analysis (black circles, dashed line, and solid line), further validate Equations (6.3) and 

(6.4). 

In Figures. 6.5(a)–6.5(c), images are obtained from the same raw spectral data with 

different processing methods (with axial dimension of 1250μm and lateral dimension of 

50μm, displayed in log scale). Figure 6.5(a) shows the OCT magnitude without any 

enhancement. Figure 6.5(b) shows the OCT image processed with the complex denoising 

algorithm and Figure 6.5(c) is the OCT magnitude of Gaussian filtered image. Gaussian 

filter is given as: 

𝐺(𝑖𝑥, 𝑖𝑧) =  𝑒𝑥𝑝 [−(
𝑖𝑥
2+𝑖𝑧

2

2𝑤2
)]                                                      (6.13) 

Here, w denotes the standard deviation of the Gaussian function. 

For complex denoising, the local variation of Doppler phase (σϕ) and local mean of 

signal magnitude (𝜇) are estimated for individual pixels within a 3×3 spatial window (Nx= 

Nz = 3 in Equations (6.5) and (6.6)). With σϕ and 𝜇, it is possible to estimate σ0, the additive 

noise for each pixel of the OCT image using Equation (6.4) and applying Equations (6.7) 

and (6.8) to the real and imaginary parts at each pixel of the OCT image to remove the 

additive noise. For the kernel used in Gaussian filtering, we selected w = 2 to achieve the 

same SNR enhancement as the complex denoising algorithm. 
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In contrast to the original OCT image [Figure 6.5(a)], the processed image with the 

complex denoising algorithm [Figure 6.5(b)] has a significantly reduced level of brightness 

in the background at larger imaging depth and this indicates the removal of additive noise 

from the background. Meanwhile, for the complex denoising algorithm, the speckle 

contrast remains high because the complex denoising algorithm specifically suppresses the 

additive noise rather than the multiplicative noise. On the other hand, Gaussian filtering 

has reduced the signal fluctuation level, the image contrast and also the speckle contrast. 

 

Figure 6.5 Images of a scattering phantom: (a) magnitude OCT image; (b) OCT image 

processed by the complex denoising algorithm; (c) OCT image filtered by a Gaussian 

kernel; (d) SNR for OCT images processed with different methods; (e) contrast for OCT 

images processed with different methods. 
Source: [113] 
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Additionally, SNR is calculated for the images obtained with different sample light 

intensities according to Equation (6.14): 

                                        𝑆𝑁𝑅 = 10 log10(
max (𝑰)2

𝜎2
)                                                                   (6.14) 

The noise variance (σ2) was estimated within a region at a large imaging depth 

(1mm - 1.25mm) overwhelmed by noise. SNR values of images processed with different 

algorithms are shown in Figure 6.5(d) (blue circles: SNRoriginal for original magnitude OCT 

image; red circles: SNRcomplex for complex denoised OCT image; black stars: SNRGaussian 

for Gaussian filtered OCT image). Clearly, SNRcomplex is larger than SNRoriginal for images 

obtained with different sample light intensities.  

Using data shown in Figure 6.5(d), the two curves are fitted with the following 

linear relationship:  

                                         SNRcomplex =  aSNRoriginal + b                                                                   (6.15) 

Here, a = 1.0247, b = 7.07dB, R2 = 0.9993.  

The fitting results suggest that the complex denoising algorithm has more than 7dB 

SNR image enhancement. Figure 6.5(d) also suggests Gaussian filtering can achieve 

similar effectiveness in improving SNR. The SNR improvement proposes the complex 

denoising algorithm can improve sensitivity of the OCT imaging system. The sensitivity 

of the OCT system is the smallest signal detectable from noisy measurement [132].  

Furthermore, the image contrast can also be evaluated as:  

𝐼𝑚𝑎𝑔𝑒 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  
𝑚𝑒𝑎𝑛(𝐼𝑠𝑖𝑔𝑛𝑎𝑙)

𝑚𝑒𝑎𝑛(𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
                                     (6.16) 

The mean signal magnitude is estimated within the range of 0.1mm to 0.35mm, and 
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the mean background magnitude is considered within the range of 1mm to 1.25mm. The 

results of contrast analysis are shown in Figure 6.5(e) (blue circles: Contrastoriginal for 

original magnitude OCT image; red circles: Contrastcomplex for complex denoised OCT 

image; black stars: ContrastGaussian for Gaussian filtered OCT image). Complex denoising 

has significant image contrast improvement as the background noise is effectively 

suppressed. In contrast, Gaussian filtering has shown a slight improvement in image 

contrast. 

6.5.2 Analysis of Results from the Experiment-3 

Experiment-3 is performed to demonstrate that the complex denoising algorithm preserves 

the spatial resolution of OCT imaging. A resolution target (R1L3S6P, Thorlabs) in the 

region with 100lines/mm barcode is used as a sample and OCT images are grabbed for 

further image processing. The original OCT image, the image processed by the complex 

denoising algorithm and the image filtered by a Gaussian kernel are compared in Figure 

6.6(a) (log scale images are displayed with the same dynamic range). The complex 

denoising algorithm improves SNR and image contrast. The results are consistent with the 

results shown in Figure 6.5. The lateral resolution of the OCT imaging system is 

determined by the spot size of the scanning lens (LSM02, Thorlabs) and is approximately 

10μm. The complex denoised image shows well-preserved lateral resolution because the 

barcode pattern with a 10μm period is clearly noticeable. OCT signals at the depth 

corresponding to the surface of the resolution target are also plotted in Figure 6.6(b) (shown 

in a linear scale). The signal processed by the complex denoising algorithm (red, dashed) 

overlaps quite well with the original OCT magnitude signal (black, solid). 

 However, the signal generated after the Gaussian filter (blue curve) in Figure 6.6(b), 
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shows a smaller difference between the peaks and valleys. This suggests the reduction of 

imaging contrast after processing the OCT image by Gaussian filter. In addition, the A-

scan is selected from the same lateral position [central A-scan in Figure 6.6(a)] in OCT 

images and is then processed with different methods. Afterwards, these OCT A-scans are 

 

Figure 6.6 OCT images of the resolution target: (a) (left) the original magnitude of the 

OCT image, (middle) the image processed by the complex denoising algorithm, and (right) 

the image filtered by a Gaussian kernel; (b) normalized OCT signals (linear scale) at the 

depth corresponding to the surface of the resolution target; (c) normalized A-scans (log 

scale in dB) at the central lateral position (black solid curve: the original magnitude of the 

OCT signal; red dashed curve: the OCT signal processed by the complex denoising 

algorithm; blue solid curve: the OCT signal filtered by a Gaussian kernel). 
Source: [113] 

 

normalized and plotted in log scale as shown in Figure 6.6(c). Comparing the original OCT 

magnitude (black, solid), the signal processed by the complex denoising algorithm (red, 

dashed) has a reduced noise level with a sharp signal peak, while the signal processed by 

the Gaussian filter shows a broadening signal peak because of low spatial resolution. Figure 

6.6 shows that the complex denoising method effectively removes additive noise while 



134 
 

preserving the spatial resolution. Because, the signal at pixels corresponding to an edge is 

likely to possess a larger local signal variation compared to the noise variation (𝜎𝑅𝑒
2 ≫

 𝜎𝑅𝑒,𝑛
2  and 𝜎𝐼𝑚

2 ≫ 𝜎𝐼𝑚,𝑛
2 ). Therefore, according to Equations (6.7) and (6.8) for Wiener 

filtering, the high frequency signal component [(𝐹𝑅𝑒 − 𝜇𝑅𝑒) and (𝐹𝐼𝑚 − 𝜇𝐼𝑚) ] for edge 

pixels is well-maintained, as 
𝜎𝑅𝑒
2

𝜎𝑅𝑒
2 +  𝜎𝑅𝑒,𝑛

2  ≈ 1 and 
𝜎𝐼𝑚
2

𝜎𝐼𝑚
2 +  𝜎𝐼𝑚,𝑛

2  ≈ 1 . 

6.5.3 Analysis of Results from the Experiment-4 

In experiment-4, OCT images from the fingertip of a healthy volunteer and from an infrared 

viewing card are captured. The experiment is performed to demonstrate that better 

visualization of structural features of the sample could be achieved through assessment and 

adaptive removal of additive noise. The original OCT image and the image processed by 

the complex denoising algorithm are shown in Figures 6.7(a) and 6.7(b) (displayed in 

logarithmic scale with the same dynamic range). In contrast to Figure 6.7(a), Figure 6.7(b) 

shows more visible blood vessels, as pointed by the red arrows, due to presence of low 

additive noise in low signal regions. The original OCT image and the complex denoised 

OCT image of the infrared viewing card are shown in Figures 6.7(c) and 6.7(d), where the 

protective plastic film and the fluorophore layers are visible.  
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Figure 6.7 Image of a human fingertip: (a) the original magnitude of the OCT image and 

(b) the complex denoised OCT image, where the arrows indicate the shadow generated by 

blood absorption; images of the IR viewing card: (c) the original magnitude of the OCT 

image, and (d) the complex denoised OCT image. Scale bars represent 500μm. 
Source: [113] 
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6.6 Summary and Conclusion 

In summary, a novel technique has been developed to generate a map of additive noise for 

OCT images through Doppler variation analysis and is presented an innovative algorithm 

to adaptively eliminate additive noise from the real and imaginary parts of the complex 

OCT signal. The results suggest that the additive noise could be effectively evaluated 

through Doppler variation analysis (Figure 6.4). The complex denoising algorithm 

improves the SNR (Figures. 6.5 – 6.7) without compromising the spatial resolution of the 

OCT images. An advantage of this complex denoising method is its capability to improve 

the sensitivity of the OCT imaging. With reduced additive noise [NRe and NIm in Equation 

(6.1)], a weak signal [small sample reflectivity S0 in Equation (6.1)] is easily detectable 

from the noisy measurement. In other words, the sensitivity of OCT image can be further 

improved by suppressing the additive noise.  
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Chapter 7 

SUMMARY AND FUTURE WORK 

 

7.1 Summary 

In this dissertation, the dual modality of OCT system has been developed that can be 

applied for the characterization of biological tissues (such as breast tissue and brain tissue) 

on both morphology and stiffness to provide more accurate differentiation between 

cancerous and normal breast tissues. The dissertation has two parts. In Chapter 2 – 4, 

development and validation of qOCE technology and a handheld OCE instrument are 

covered. In Chapter 5 - 6, denoising algorithms have been designed and implemented to 

suppress the additive Gaussian and multiplicative speckle noises from the sample images 

acquired by SD-OCT imaging system to achieve better image quality and visualization of 

the tissue samples. Additionally, a couple of samples (tissue-mimicking scattering samples, 

IR viewing card, ex vivo and in vivo biological samples) have been used for the experiment 

purposes to show the effectiveness of these techniques. 

Chapter 2 describes the fabrication, implementation and validation of qOCE 

technology based on FD-OCT system. The miniature qOCE probe integrated with a Fabry-

Perot force sensor tracks both interaction force and local tissue displacement under 

compression and measures the tissue elasticity. The qOCE system establishes the 

relationship between mechanical stimulus and tissue response to characterize the stiffness 

of biological tissue. The qOCE technique permits direct measurement of elastic properties 

and therefore has great potential in many applications, such as cancer diagnosis, brain 

injury study, tissue engineering and biomechanical modeling. Signal processing techniques 
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are implemented in real-time GPU. In this study, we strategically chose the time interval 

between A-scans in Doppler phase calculation, to track phase shift during the process of 

quasi-static compression. The sensitivity of our device in force measurement could be 

higher than 0.25mN and the maximum applicable force through the qOCE probe was 

approximately 1N. The chapter also presented the application of qOCE probe on 

mechanical substance (phantom) as well as various biomedical applications such as in vivo 

(brain tissue), ex vivo (skin tissue) sample. 

More importantly, the qOCE technique evaluates the stiffness of the tissue 

quantitatively, by simultaneously measuring the force/stress and depth resolved tissue 

displacement. In comparison, ultrasound elastography and conventional compression OCE 

are qualitative rather than quantitative because the mechanical stimulus applied to tissue is 

unknown during elastography imaging. The quantitative feature of our qOCE device allows 

results obtained from different measurement sessions to be compared and correlated for 

accurate tissue classification.  

Chapter 3 demonstrates the capability of quantitative optical coherence 

elastography (qOCE) for robust assessment of material stiffness under different boundary 

conditions using the reaction force and displacement field established in the sample. We 

presented a method to achieve robust stiffness assessment using qOCE data (displacement 

field and reaction force) and validated the method using experimental data and fitted the 

result with an analytical model to extract the elastic modulus. The capability to measure 

stiffness under different boundary conditions is crucial for intraoperative assessment of 

tumor margin in situ where the boundary condition is usually not known. 

Chapter 4 presents the development of a handheld OCE instrument to conveniently 
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interrogate the localized mechanical properties of in vivo tissue. Handheld OCT imaging 

device is an attractive detecting and surgical tool for many clinical applications, including 

guiding vitreous-retinal surgery, delineating tumor margin for surgical excision, and 

guiding tissue biopsy for the diagnosis of breast or prostate cancer. During handheld OCE 

characterization, the handheld probe compresses the sample and quantifies the 

displacement of the sample by OCT signal analyzer. However, the major challenge for 

manual OCE characterization of tissue is the unpredictable and unstable time varying hand 

maneuver generated during compression. In addition, the sample deforms under 

compression, implying spatial variation of motion characteristics. We have described a 

temporally and spatially adaptive Doppler analysis method for a robust motion tracking 

method for manual OCE measurement. The method selects the time interval (δt) between 

signals through Doppler analysis to track the motion speed v(z,t) that varies temporally in 

a manual compression process and spatially in a deformed sample volume. The method is 

validated in OCE system with a handheld single fiber probe and real-time signal processing 

software based on GPU. The method performed an online estimation of the motion speed, 

selected an optimal δt adaptively and then accomplished robust motion tracking for OCE 

measurement. The results are obtained from phantom experiments and in vivo tissue 

characterization (local mechanical contrast of the tissue as shown in Figure 4.11(b), Figure 

4.12(c) and (f)), to demonstrate the effectiveness of the adaptive Doppler analysis for 

motion tracking in a dynamic manual loading process. Our adaptive Doppler analysis 

achieves a M0/2 fold improvement in the dynamic range for motion tracking compared to 

the conventional Doppler tracking method, where M0 represents the number of A-scans in 

a frame of OCT data acquisition system.  
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Chapter 5 has discussed the implementation and the performance analysis of the 

noise adaptive wavelet thresholding (NAWT) algorithm to mitigate the speckle noise in 

OCT images. Speckle noise randomly alters the magnitude of OCT signal and therefore, 

hinders to identify the subtle features from the sample images which in turn, reduces the 

effectiveness of OCT system for the clinical applications. Conventional wavelet 

thresholding algorithms are capable of reducing the speckle noise while conserving the 

image sharpness [127, 128]. In wavelet thresholding, the magnitude of wavelet coefficients 

determines if a coefficient is noise or signal. A wavelet coefficient with larger amplitude 

carries signal information whereas a wavelet coefficient with smaller amplitude is noise. 

However, speckle noise in OCT images has different characteristics in different spatial 

scales, which is not considered in conventional wavelet domain thresholding. In our 

NAWT algorithm, the noise variance (σw2) in individual wavelet sub-band is determined 

and then the optimal threshold for individual sub-band.is calculated using σw2. The 

algorithm is simple, fast, effective and is closely related to the physical origin of speckle 

noise in OCT image. We have also presented a number of examples (homogeneous 

scattering sample, IR viewing card, ex vivo human fingertip) to mitigate speckle noise by 

NAWT algorithm in OCT imaging. NAWT algorithm results clearly have demonstrated 

better performance to adaptively remove speckle noise while preserving the structure 

features in OCT image compared to conventional wavelet domain thresholding and linear 

filtering. Moreover, NAWT improves the visual appearance of OCT image and shows 

better SNR. NAWT algorithm takes approximately 0.2s to process a 512x1024 image using 

CPU in MATLAB environment. The main steps of NAWT are- wavelet decomposition, 

soft thresholding and wavelet reconstruction. All these steps can be parallelized using 
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GPU. Therefore, NAWT algorithm can be implemented in GPU for real-time speckle noise 

removal.  

In Chapter 6, we have developed a denoising technique to mitigate the additive 

noise from the complex OCT signal. Conventional denoising algorithms reflect only the 

magnitude of OCT and also takes into account the additive Gaussian noise. However, Phase 

of OCT plays a vital role in several motion tracking applications through Doppler analysis, 

such as, vascular visualization, blood flow measurement, OCE, cellular motion detection, 

etc. Moreover, OCT signal affects from both additive Gaussian and multiplicative speckle 

noises. In our denoising algorithm, we have first mapped and analyzed the characteristics 

of additive noise through Doppler variation. Next, with the help of local adaptive Weiner 

filter [144], we have processed and suppressed the additive noise from the real and 

imaginary parts of the complex OCT as independent signal channels. The denoising 

algorithm takes approximately 0.3s to generate a 1024x1024 denoised image using CPU in 

MATLAB environment. Our denoising algorithm shows the SNR and sensitivity 

improvement for the structural images (i.e., human finger-tip, IR viewing card), maintains 

the spatial resolution of OCT without any additional upgradation of SD-OCT imaging 

setup and data acquisition protocol. 

 

7.2 Future Work 

In conclusion, it is expected that the dual-modality OCT system will allow more effective 

tissue characterization and will become a powerful nominally invasive tool to assist the 

diagnosis and treatment of breast cancer. In the future, the generic dual-modality OCT 

technology can be adapted for various clinical aspects. For instance, a dual-modality OCT 
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sensor can be integrated with a biopsy instrument for the guidance of tissue acquisition. 

Intraoperative OCT characterization of tissue at the point of biopsy will lead the 

advancement in the diagnosis of breast cancer with improved accuracy. For surgical 

excision of breast tumor, dual-modality OCT can help generate a negative margin through 

intraoperative malignancy assessment.  
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