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ABSTRACT

HIGH-PERFORMANCE LEARNING SYSTEMS USING
LOW-PRECISION NANOSCALE DEVICES

by
Nandakumar Sasidharan Rajalekshmi

Brain-inspired computation promises a paradigm shift in information processing, both

in terms of its parallel processing architecture and the ability to learn to tackle

problems deemed unsolvable by traditional algorithmic approaches. The compu-

tational capability of the human brain is believed to stem from an interconnected

network of 100 billion compute nodes (neurons) that interact with each other through

approximately 1015 adjustable memory junctions (synapses). The conductance of

synapses is modifiable allowing the network to learn and perform various cognitive

functions. Artificial neural networks inspired by this architecture have demonstrated

even super-human performance in many complex tasks.

Computational systems based on the von Neumann architecture, however, are

ill-suited to optimize and operate these large networks, as they have to constantly

move data between the physically separated processor and memory units. Crossbar

arrays of nanoscale analog memory devices could store large network weight matrices

in their respective conductances and could perform matrix operations without moving

the weights to a processor. While this ‘in-memory computation’ provides an efficient

and scalable architecture, the trainability of the memory devices is constrained by

their limited precision, stochasticity, and non-linearity, and therefore poses a major

challenge.

In this dissertation, a mixed-precision architecture is proposed which uses a

high-precision digital memory to compensate for the limited precision of the synaptic

devices during the training of deep neural networks. In the architecture, the desired

weight updates are accumulated in high-precision and transferred to the synaptic



devices when the accumulated update exceeds a threshold representing the average

device update granularity. Deep neural networks based on experimental nanoscale

devices are shown to achieve performance comparable to high-precision software

simulations by this approach.

Phase-change memory devices (PCM) on a prototype chip from IBM is used

to experimentally demonstrate the proposed architecture. Artificial neural networks

whose synapses are realized using PCM devices are trained to classify handwritten

images from the MNIST dataset and the mixed-precision approach is successful

in achieving training accuracies comparable to floating-point simulations. On-chip

inference experiment using the PCM devices shows that the network states are

retained reliably for more than 106 s. The architecture is estimated to achieve

approximately 20× acceleration in training these networks compared to high-precision

implementations and has a potential for at least 100× efficiency gain in inference.

Supervised training and inference of third generation spiking neural networks

using PCM are also demonstrated using the hardware platform. New array level

conductance scaling methods are demonstrated for adaptive mapping of the device

conductance to network weights and to compensate for the effect of conductance

drift. During the course of the study, Ge2Sb2Te5 based PCM and Cu/SiO2/W based

resistive random access memories are characterized for their gradual conductance

modulation behavior and statistically accurate models are created. The models are

used to pre-validate the experiments and to test the efficacy of different synapse

configurations in the training of neural networks.

Collectively, this work demonstrates the feasibility of realizing high-performance

learning systems that use low-precision nanoscale memory devices, with accuracies

comparable to those obtained from high-precision software training. Such learning

systems could have widespread applications including for energy and memory

constrained edge computing and internet of things.
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CHAPTER 1

INTRODUCTION

Throughout the story of human evolution, we relied upon artificial media ranging

from the surface of rocks to supercomputers to augment our capability to imagine,

hypothesize, test, and execute ideas. These media have served to store data and

information and has also enabled high-precision computation and data processing.

This has enabled us to progressively solve more complex problems and create tools

which in turn are capable of generating data at an ever-increasing rate. Data that

come in many forms such as visual and audio streams, economic transactions, or

medical history of a patient, and which was traditionally processed by the human

brain, is today being automated by machine learning techniques running on cloud

servers. However, there is a growing need to process such data at the source with

high efficiency, as computational resources cannot keep up with the data generation

rate and many real-life applications require systems that are constantly on. Therefore,

we need more efficient implementations for these data processors and new computer

architectures which are alternative to or augment the current von Neumann systems.

The potential of information that could be harnessed from this Big-data cannot

be over-stressed. Human population, currently about 7.4 billion, has approximately

doubled over the last 50 years, thanks to several technological advancements which

have improved life expectancy and living standards. At the same time, today’s

consumption-driven economy is also creating several stresses in the ecosystem, ranging

from over utilizing its natural resources, as well as drastic changes in climate and

environmental health. Hence, new tools to process the vast troves of data to generate

meaningful information can play a significant role to substantially improve the overall

quality of life in a sustainable manner.
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What computational model is suitable for large data processing applications

in the field? The most promising clue to this question may come from the human

brain anatomy itself. Its parallel and distributed computing architecture can process

a large amount of information with incredibly high efficiency. Its distributed

processing/memory elements learn and adapts and make corrections based on local

events. On the other hand, most of today’s computers rely on the von Neumann

computer architecture has a central processing unit which is physically separated

from the memory unit and operates based on pre-written sequential algorithms. In

most data processing applications, the amount of data is often much larger than

the available on-chip memory and hence they need to constantly access a larger and

slower off-chip memory. The limited memory bandwidth chokes the processor causing

severe performance degradation. Further, the off-chip memory access is orders of

magnitude costlier in energy than on-chip memory access, making the overall system

highly energy inefficient for modern-day problems [1]. Also, the sequential algorithms

for the new data processing applications have proven to be less efficient than the

brain-inspired neural network based solutions. While there are many successful

demonstrations of artificial neural networks (ANNs) solving problems often surpassing

human capability, they are made possible by the computational power of the graphical

processing units (GPUs), the most common parallel architecture today. While they

meet the research requirements, their cost and power consumption are still very high

to be deployed widely and economically.

In short, ubiquitous deployment of brain-inspired computational units requires

energy efficient and scalable architectures. This dissertation discusses some results

that could enable the development of computing units for the efficient on-chip

implementation of the architecture and learning algorithms for bio-inspired neural

networks.
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Figure 1.1 a Drawing of Golgi-stained cortex of a 1.5 month old infant. A network
of layers of neurons (dark spots) are visible. The brain inspired structure of artificial
neural network is also shown. b A crossbar array of analog memory devices performing
the weighted summation in a neural network layer.

Source: [2].

1.1 Computational Engine in the Human Brain

The motivation for the brain-inspired computation is the relative ease with which

the human brain perform various cognitive tasks consuming a mere 20 W of power

which supercomputers cannot achieve while consuming millions of Watts. Our

understanding of the brain’s underlying architecture which enables this computational

efficiency is being constantly improved with the advancement of brain imaging

technologies such as functional magnetic resonance imaging (fMRI). The basic

elements of the architecture which inspire artificial neural network models could be

described as follows.

The brain is a complex network of unit cells called neurons. The neurons are

arranged in layers and are interconnected via junction called synapses. Neurons act

as parallel processing units which constantly receives inputs, integrates them, and

make simple decisions. Each neuron communicates this information to neighboring

neurons in the form of signal spikes via the synaptic junctions of specific conductance.

Synapses also act as a local memory by storing an account of the spiking activities by
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modulating its conductance. It is the plasticity observed in these biological synapses

that are thought to be the source of learning and adaptation in the brain.

ANNs have mimicked the connectivity patterns and connection weight adaptation

at different levels of abstraction (Figure 1.1a). By appropriately training large neural

networks, complex input-output mappings can be learned, enabling highly useful

functions to be realized, which are otherwise almost impossible with traditional

sequential algorithms. At the same time, we are still very far from achieving energy

efficiency, generalizability, or the cognition level of the human brain.

What are we missing? One important aspect seem to be the size of the network

itself. Our brain is estimated to have approximately 1011 neurons. Each neuron in

the human brain is estimated to be connected to approximately 104 other neurons.

We have observed that the computational power of artificial neural networks (ANNs)

are indeed proportional to their sizes [3]. However, ANNs are orders of magnitude

below in size compared to their biological counterparts and yet the computational

engines we currently use to run them consume at least an order of magnitude higher

power. This is one of the compelling reasons to look for nanoscale devices that could

create scalable and energy efficient implementations of neural network architectures.

1.2 Computational Architectures

In this section, we look at different computational architectures available today and

their suitability to implement neural networks. A deep neural network consists of

many layers of neurons, each of which receives a weighted sum of inputs from its

previous layer. This operation corresponds to a matrix-vector multiplication which is

of computational complexity O(N2) for an N×N matrix and an N×1 vector. Often,

the input vector grows into a matrix when each weight update is based on a batch of

training examples or when sub-regions of images are processed separately by a set of

shared weights as in a convolution neural network. This increases the computational
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complexity of matrix processing by another degree. The matrix multiplications have

been observed to constitute around 95% of the training time. Hence, the efficacy of

any neural network training architecture will be decided by how efficient they are

implementing matrix multiplications.

1.2.1 von Neumann architecture

von-Neumann architecture is characterized by a physically separate processing and

memory unit (Figure 1.2). For every clock cycle, the operating system brings in

instructions into a central processing unit (CPU), decode them, access necessary data,

execute the operation, and results are written back to the memory if necessary. In such

a sequential machine, the multiplication of two N × N matrices is O(N3) complex

and require 3N2 (read and write back) access to memory. Even with the fastest

algorithm, computational complexity is as high as O(N2.373) [4]. The performance

of the processors in this architecture has been improving by a constant increase in

transistor density (which however is slowing down as we approach the end of Moore’s

law scaling), pipe-lining, and superscalar architecture. Modern CPUs have multiple

cores each permitting independent operations (MIMD - multiple instructions multiple

data). For example, Intel i9-9980XE has 18 cores and AMD Ryzen has up to 32

cores [5, 6]. However, these cores are designed to perform instructions sequentially.

Further, these performance improvements have only moved the bottleneck to memory

access. Due to the limited on-chip memory and lack of any non-volatile memory, the

instructions and data are stored in off-chip memories which are communicated to the

processor over a shared bus. As a result, it takes several weeks to train state-of-the-art

neural networks on today’s von-Neumann machines.

In short, the general purpose design of the CPUs that is primarily tuned to

perform accurate computations is not ideal to satisfy the parallel compute requirement

of the neural networks involving large matrix multiplication operations.
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1.2.2 Graphics processing units

Graphics processing units (GPU) have become an excellent source of computational

parallelism in scientific computing today. In contrast to the general computing notion

of CPUs, GPUs are application specific. They were originally designed for rendering

lighting and projection operations for image pixels by a large number of parallel

processing units called streaming processors executing programs called shaders. Later,

NVIDIA generalized these computing units to be more programmable for non-graphic

operations, gaining the name general purpose graphical processing units (GPGPUs).

GPGPUs differ from the CPUs in terms of its core organization and architecture. By

eliminating operating systems tasks and using approximate compute units for special

functions such as exp, log, and sin, the complexity of GPGPU compute cores are

simplified, allowing a large number of them to be integrated on a chip, compared

to a few numbers of sophisticated cores available in CPUs. For example, the Tesla

V100 GPU is organized as 80 streaming processors each of which contains 64, 32-bit

floating point (FP32) and 32 FP64 units [7]. These processing units are designed for

single instruction multiple data (SIMD) architecture and do not allow independent

operation. While the individual cores run slower than standard CPU cores, the

extreme parallelism allows them to achieve performance improvement by around

an order of magnitude in certain problems typical in graphical processing. Today’s

deep learning frameworks leverage this compute parallelism to perform large matrix

multiplications which accelerates neural network training. GPUs have enabled the

training of large neural networks with large datasets in reasonable amounts of time.

Recent GPU architectures such as in Tesla V100 include tensor cores which allow

some mixed-precision computing using sub-32 bit numbers to accelerate deep learning.

They offer 14 teraFLOPS (floating point operations per second) on single-precision

(32-bit) and 112 teraFLOPS using tensor cores.
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However, the computational power of GPUs is achieved at the cost of chip areas

as large as 815 mm2 (larger than recent CPUs) harboring over 20 billion transistors

consuming 250 Watts of power. GPUs are also slave devices which are dependent

on CPUs for communication. This limits its scalability for larger networks and

employment in energy critical applications.

1.2.3 Non-volatile memory arrays: computational memory

Computational memory is an application specific design performing analog compu-

tations using the physical aspects of memory devices. This is often considered

a non-von Neumann architecture as the operations it is devised for is performed

in the memory array, without bringing them into the processor, which saves data

movement (Figure 1.2). For example, if a number is represented as the analog

conductance of a non-volatile memory device, its multiplication with another number

could be computed by applying the second number as a voltage across it and

reading the resulting current. There are several recent demonstrations of using this

concept such as for performing bulk bit-wise operations [9], computing matrix-vector

multiplications [10, 11, 12, 13], and finding temporal correlations [8] more efficiently.

For a neural network, if the connection weights are stored as the conductance of
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memory devices at the crosspoints of a crossbar array (Figure 1.1b), it could perform

the weighted summation operation as a matrix-vector multiplication. When the input

vector is applied as voltages to the array’s word lines with the bit lines held at ground,

Ohm’s law performs the multiplications, Kirchoff’s law performs the summations and

the result can be read as currents from the bit lines. An n×n crossbar array performs

n2 multiplications and n × (n − 1) additions in parallel in analog domain in a fixed

amount of time irrespective of the value of n. In effect, it implements O(N2) complex

matrix operations inO(1) complexity. Further, the area of a two-terminal non-volatile

analog memory device could be as small as 4F 2 where F is the smallest feature size

that can be fabricated in a technology node. Hence, the crossbar analog memory

array is the closest architecture we have today that mimic the inherent parallelism

and dedicated connectivity of the human brain, which also provides fast computation,

high integration density, and scalability.

However, computational memory faces a major challenge in utilizing it to train

neural networks. The high-speed computation and areal density of the analog array

come at the cost of numerical precision. The floating point numbers typically used to

represent the network weights in the digital systems can have an arbitrary precision

and dynamic range. On the other hand, the precision with which the numbers can

be represented and updated in the analog memory devices are constrained by their

physical limitations of conductance programming. What is the right architecture to

use such devices for reliably training neural networks? We will analyze this aspect in

the succeeding chapters.

1.2.4 Potential of analog memory based neural networks

The computational complexity reduction offered by the analog memory arrays could

accelerate matrix multiplications. The simple structure of the array permits the

fabrication of larger neural networks. If these devices could be trained effectively
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without losing accuracy compared to their digital implementations, then it could

represent a very efficient parallel architecture for neural networks and economic for

ubiquitous deployment compared to GPGPUs.

The scalability of computational arrays may allow us to integrate large neural

networks with the CPUs while consuming only a small portion of the resources on-

chip. ANNs, when integrated with the standard digital computers, can solve certain

classes of problems in a very efficient manner. ANNs could search through large data

sets to detect patterns and anomalies without being restrained by the limitations of

biological systems such as fatigue, with the digital computer acting as a bookkeeper

and a calculator. Neural networks and digital computers are optimized to perform

different classes of problems and hence when combined to complement each other, new

classes of problems could be solved more efficiently. Architectures combining them

could create new applications and perform complex computations without human

intervention every time.

1.3 Further in this Dissertation

This dissertation aims to identify some of the challenges posed by nanoscale

synaptic devices for efficiently training large neural networks and provide architectural

solutions for them. Our approach involves on-chip experiments and simulation studies

using reliable statistical models of nanoscale device programming.

In Chapter 2 we review the analog memory device behavior and the challenges

they pose for training neural network algorithms. Chapter 3 presents characterization

and modeling of the gradual conductance modulation of phase-change memory

devices. Chapter 4 presents a mixed-precision architecture and discuss its efficacy

in solving various analog memory non-idealities. Chapter 5 presents several

experimental validations of the mixed-precision architecture to effectively train large

neural networks. The phase-change memory model developed is used to validate the

9



architecture in more complex networks. Chapter 6 presents the training and inference

experiment of a spiking neural network using the phase-change memory devices as

synapses. Chapter 7 presents the synaptic characteristics of resistive memory devices.

Chapter 8 presents future outlook and topics for further research.
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CHAPTER 2

NANOSCALE MEMORY DEVICES AND LEARNING

2.1 Introduction

Artificial neural networks (ANNs) have been successful in demonstrating human

equivalent performance in several complex cognitive tasks [3]. Weight adaption is

the source of learning in such networks. The floating point numbers used to represent

the weights are highly precise and reliable. For example, a 32-bit floating point

(FP32) number can represent numbers from 10−38 to 1038 with up to 10 decimal

places. However, this precise representation is costly in area and energy. A single

bit in these numbers is realized using either an SRAM cell with a minimum of 6

transistors or a DRAM cell which uses one transistor and a capacitor. An FP32

number uses 32 such cells and it needs an additional logic (based on some predefined

standards such as IEEE754) to interpret and process the data stored in it. As a

result, they inherently separate the processor and memory. Since the analog states of

the device in these cells are not directly correlated with the floating point (or fixed

point) network-weights stored in them, these digital memory arrays are not suitable

for in-memory matrix multiplications. While DRAM is relatively cheaper and allows

larger size, it is slower compared to SRAM and the technology mandates integrating

them on a separate chip. Such cost-speed trade-offs have led to a memory hierarchy

in the current computer architectures, with a limited amount of fast on-chip memory

and the majority of the data stored off-chip. Off-chip DRAM access is approximately

200× costlier compared to accessing registers sitting next to the processor [1]. This

constitutes a significant energy cost and bottleneck in the training of large neural

networks with millions of parameters and large datasets.
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However, recent works demonstrate that the actual precision required by the

neural network weights could be much lower, even though a higher precision is

observed to be necessary to train them [14]. At the same time, biological neural

networks are able to achieve much higher energy efficiency and generalizability while

using synapses which are observed to be of limited precision and stochastic [15].

Nanoscale analog memory devices which trade off precision for the area and efficiency

present a similar alternative for hardware implementation of neural networks. These

devices are often back-end-of-the-line compatible in the standard CMOS processing

flow and have a favorable structure/process for 3D stacking. At the same time, the

physical nature of these devices presents several challenges to reliably store and alter

data in them. This motivates our study of nanoscale devices to implement and train

the synapses of large neural networks.

In this chapter, we discuss the general behavior of nanoscale devices and the

challenges they present to the implementation of conventional learning algorithms.

2.2 Synaptic Devices

In this section, we compare and contrast the physical mechanisms of conductance

change in biological synapses and the analog memory based synaptic devices.

2.2.1 Synapse

Synapses, which are the junctions between neurons in the brain, modulate the signals

passed from the axon of one neuron to the dendrites of other neurons (Figure 2.1a).

Modulating the synaptic conductance alters the properties of the signals passed

through them, and hence they are thought to be the basis of learning, adaption, and

memory. There are two types of synapses. Electrical synapses are assumed to be of

fixed conductance, lower latency and are assumed to function as fast communication

channels in certain networks. On the other hand, chemical synapses are known to
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Figure 2.1 a Neurons connect and exchange information via junctions between
axons and dendrites, called synapses. b Synaptic conductance modification observed
in a rat hippocampal neuron: an example of STDP observed in biology.

Source: [15].

change their conductance based on the activity on the terminal neurons. Information

flow through chemical synapse involves the following processes. Axon terminals

of the neurons have sacs called synaptic vesicles filled with chemicals known as

neurotransmitters. When an action potential reaches the axon of the neurons, the

voltage-gated Ca2+ gates are activated causing an inflow of those ions into the cell.

Ca2+ causes the synaptic vesicles to fuse with the cell membrane and the release of

the neurotransmitters. Neurotransmitters diffuse across the synaptic cleft and bind

with the receptor proteins on the dendrites of the post-synaptic neurons. Depending

on the nature of the Neurotransmitters, the ion channels in the receptor neurons open

or closes, leading to a positive or negative ionic current to flow into the cell, causing it

to depolarize or hyperpolarize compared to its previous state. Thus, synapse could be

either excitatory or inhibitory. Excitatory synapse causes the membrane potential to

raise and eventually causing the postsynaptic neuron to fire a spike of approximately

100 mV above the resting potential when sufficient excitation is received.

The conductance of the synapses is determined by the number of neurotrans-

mitters released in response to an action potential into the synaptic cleft or by the

number of receptors on the post-synaptic neuron. Coincident spiking activity of the
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pre- and post-synaptic neurons have been observed to alter the conductivity of the

synapses [16, 17] via insertion or internalization of the receptor molecules on the

synaptic terminals. An example STDP observed in a rat hippocampal neuron is

shown in Figure 7.4b [15], and it plots the conductance change as a function of causal

and anti-causal spike time differences. Such spike timing dependent plasticity (STDP)

rules based on local neural activities are believed to be integral to the energy and

computational efficiency of the brain [18, 19, 20, 21].

2.2.2 Non-volatile analog memories

In order to build systems that mimic the massive parallelism and local learning

aspects of the human brain, compact electronic devices that implement the dynamics

of neurons and synapses are required. Memristive devices that exhibit conductivity

modulation based on past programming history are excellent candidates to realize

synaptic memory [22, 23]. There have been numerous synaptic device demonstrations

in oxides [24, 25, 26], and chalcogenides [27, 28] which show analog conductivity

modulation based on non-volatile rearrangements of atomic configurations within the

active volume of the device. Meanwhile, these devices present many challenges in

terms of programming stochasticity and asymmetry, granularity, reliability, and the

energy required for implementing conductivity modulation, and no single device has

so far achieved all the target specifications. For example, Ta/TaOx/TiO2/Ti device

has demonstrated femto-Joule level programming energies, but requires programming

voltages above 18 V [29]. Similarly, chalcogenide-based phase change memory devices

have pico-Joule level programming energies, however, the high programming current

limits parallel programmability and require access transistors at every cross-point in

an array [28]. Hence, physics-driven device engineering to improve various synaptic

device requirements and finding the right trade-offs for the targeted applications are

necessary.
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We now review some of the commonly studied nanoscale non-volatile memory

devices that are being explored for neuromorphic computing applications. The

following description is taken from the review paper [30].

Phase-change memory Phase change memory is one of the most mature

non-volatile memory technologies today and is based on chalcogenide alloys such

as GeTe, Ge2Sb2Te5, etc. [31, 32]. The reversible electrical resistance switching based

on phase transition in such materials was discovered by Ovshinsky in 1968 [33]. If

large currents (with density exceeding 106 A/cm2) are passed through poly-crystalline

thin films of the material (typically < 100 nm thick) sandwiched between inert metal

electrodes (Figure 2.2a), sufficient to raise the temperature above the melting point

(> 600◦C), and if the input excitation is subsequently removed quickly (within few

nanoseconds), the molten region can be quenched into an amorphous volume. Since

the resistivity of the amorphous phase of the material is much higher compared to the

crystalline phase, the device is effectively switched to a high resistance state by this

electrical pulse. In the high resistance state, if the applied voltage is such that the

electric field across the amorphous volume exceeds a critical field, the device exhibit

a negative differential resistance transition accompanied by a rapid increase in the

current through the device. With appropriately chosen programming pulses that raise

the film temperature above the crystallization temperature (but below the melting
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point), the amorphous region can be annealed back to its poly-crystalline phase, and

the low state resistance of the device can be restored.

PCM devices exhibit excellent endurance (> 1012 programming cycles) and

retention (> 10 years at 85◦C) characteristics [34, 35]. The switching speed of the

device lies in the range of few tens to hundreds of nanoseconds. Furthermore, the

crystallization of the amorphous volume could be implemented in an incremental

manner by using sub-critical or partial crystallization pulses, enabling the device

conductance to be gradually increased to higher levels. However, the melt-quench

process is less gradual, making it difficult to reduce the conductance levels gradually.

As a result, a single PCM cell could be used to mimic gradual potentiation observed in

biological synapses. If two PCM devices are used in a differential configuration (i.e.,

Geff = G+−G−), then both gradual potentiation and depression can be achieved, by

incrementally increasing one of the G+ or G− devices, with a periodic re-initialization

of the conductance of saturated devices [27]. There are many studies showing gradual

conductance evolution and STDP behavior in PCM devices [36, 28] and using them

for supervised and unsupervised training of conventional [37] and spiking neural

networks [38].

Resistive random access memory Resistive random access memory (RRAM)

devices exhibit conductance modulation based on electric field driven rearrangement

of mobile charged species in a dielectric material sandwiched between two metal

electrodes (Figure 2.2b) [39]. The electrochemical process mediating the conduction

modulation can be anion-induced or cation-induced. Anion-type RRAMs are

characterized by oxygen vacancy low resistance conductance pathways formed by the

migration of oxygen ions. This low resistance state can be reversed by applying a field

in the opposite direction, causing the recombination of oxygen ions with the vacancies,

switching the device back to a high resistance state. Anion-type RRAMs often require

16



an inert electrode which is oxygen ion active or can act as an oxygen ion reservoir

during resistance switching. Dielectrics thin films such as TiOx, HfOx, SiOx, TaOx,

AlOx and WOx, have demonstrated this kind of oxygen-vacancy mediated resistive

switching [40, 41, 42].

Cation-type RRAMs are often characterized by a metallic filament connecting

the top and the bottom metal electrodes following a redox reaction; they are also

referred to as conductance bridge RAM (CBRAM) devices [43]. These devices require

an active top electrode (e.g., Ag, Cu) whose ions are mobile in the dielectric under

an applied field. During electrical programming, the metal ions will oxidize, migrate

into the dielectric and will get reduced at the other electrode forming a filamentary

path. A reversal of applied field will result in the ionic motion in the opposite

direction breaking the filament and switching the device back to a high resistance

state. CBRAMs have a high on-off ratio and have lower operating voltages, compared

to the oxygen vacancy RRAMs.

The low resistance conductance paths formed in the dielectrics are nanoscale

filaments, which will result in the observation of quantized conductance states [39,

44, 45]. RRAMs are extensively researched for gradual conductance change and

as a synaptic device [46]. The material combination, device geometry, interface

effects, doping, annealing, and other fabrication techniques, etc., could be engineered

to attain gradual resistance transitions in these devices [47, 48]. For example,

W/Al/Pr0.7Ca0.3MnO3 (PCMO)/Pt based RRAM show gradual conductance change

due to the oxidation and reduction of AlOx at the Al/PCMO interface [49] and

this dielectric based device has been used for STDP demonstration using bio-mimetic

programming waveforms [50]. In a recent work, the filamentary pathway was confined

to engineered dislocations in a SiGe epitaxial layer, resulting in gradual conductance

changes in the device and improvements in retention, reliability, and endurance [51].
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Magnetic random access memory Magnetic RAMs store information in

the relative orientation of the magnetization of two ferromagnetic plates separated

by a thin insulating material resulting in a magnetic tunnel junction (MTJ)

(Figure 2.2c) [52]. One of the plates is of fixed magnetic orientation, while the other

is a free layer, whose magnetic orientation can be altered by an external field. The

plates could be in parallel or anti-parallel orientation at equilibrium, resulting in a

high or low conductance state respectively for the junction. The magnetization of

the layer is retained in the absence of an applied voltage, allowing stable binary data

storage in the device.

A variant of the MRAM is the spin-transfer torque (STT) RAM, with lower

power consumption and more scalability. A spin-polarized current, created by passing

it through the fixed magnetic layer, when directed to the free layer results in spin

angular momentum exchange due to the interaction between the spins of local

magnetization of the layer and that of the free electrons. The free layer magnetic

orientation can be switched to a parallel or anti-parallel state depending on the

direction of the current [53, 54]. While STT-RAMs predominantly show binary states,

there has also been an increased effort in making domain wall based devices to store

multiple states [55].

Further, it has also been observed that by either adjusting the programming

current amplitude or the pulse-width below the critical conditions for switching,

the probability of switching can be tuned [56, 57, 58]. This probabilistic switching

behavior could be used to realize gradual conductance change or STDP in a synapse

composed of multiple devices configured in a parallel configuration [59, 60].

Ferroelectric random access memory Ferroelectric RAMs use a thin layer

of ferroelectric material sandwiched between two metal electrodes. The ferro-

electric polarization state of the material is switched between two stable states
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for conventional solid-state memory applications [61]. Multiple regions of different

polarization vectors called ferroelectric domains may be present in a ferroelectric

sample [62]. It has been shown recently that the resistance of BaTiO3(2nm)/

La0.67Sr0.33MnO3(30nm) based ferroelectric tunnel junctions can be tuned based on

the relative fraction of the ferroelectric domains which points towards one or the

other electrode [63]. It is possible to alter the domain population by the application

of electrical pulses to the electrodes and hence tune the electrical resistivity. This

concept has been used to mimic synaptic plasticity in super-tetragonal BiFeO3 (BFO)

tunnel barriers using electrical programming waveforms [64].

Organic Memories Memristors based on the organic compounds are attractive

because of the possibility of inexpensive solution-processing based fabrication and

chemical tunability of their properties. These devices have an organic thin film that

is sandwiched between electrodes (Figure 2.2d). Because of the complex nature of the

compounds involved, the physics behind the switching mechanism is often unclear.

Structural changes, redox reaction, and field driven polarization have been proposed

to explain the switching transitions in these materials [65, 66, 67]. However, except

for a recent demonstration [65], these devices generally suffer from low endurance and

stability.

In a study based on organic terpyridyl-iron polymer based memristor [66]

gradual conductance change, STP and LTP have been demonstrated, taking advantage

of the drift of the programmed states. Although these devices require high

switching voltages (∼3 V) and long (millisecond) switching times, such explorations

demonstrate the feasibility of realizing the complex dynamics of synapses and neurons

in potentially inexpensive hardware platforms.

19



0 5 10 15

G
( S)

-1

0

1

2

G
(

S
)

Device
Fit line

a b

Figure 2.3 a Synaptic conductance change observed in the hippocampal neurons
in a rat. The change in excitatory postsynaptic current (EPSC) amplitude versus
its initial value for causal and anti-causal spike pairs shows its state-dependent and
asymmetric conductance change. b The average conductance change µ∆G versus
average initial conductance µG.

Source: [15].

2.3 Ideal Synaptic Characteristics

A common consensus regarding the ideal specifications for the synapses has not yet

been reached for high-performance neural networks which find the right trade-off

between training accuracy, energy, and generalizability. While most of the artificial

neural network implementations use 32-bit floating point numbers, which can be very

precise and have high dynamic range, the high-precision requirement originates from

the standard implementation of gradient descent based weight update which requires

a large number of synapses to be updated by small amounts [68]. Several quantization

studies have shown that the actual precision required by the network weights for a

task can be much lower [14, 69].

Figure 2.3a shows the state-dependent nature of the synaptic conductance

modulation measured in the biological hippocampal neurons in a rat. A continuous

decrease in conductance potentiation (positive change) can be observed as the initial

conductance of the synapse increases. This indicates a conductance saturation

at a level approximately where the amount of potentiation crosses zero. On

20



the other hand, the conductance depressions (negative changes) are smaller and

is state-independent. In a different study, the physical aspects of the synaptic

conduction have been used to estimate a lower bound for their representation accuracy

to approximately 4.6 bits [70, 71]. In Figure 2.3b we show the state-depend nature

of conductance update observed in PCM. Its conductance potentiation is stochastic

and shows a negative correlation with the present state similar to those observed

in the biological example and the average change crosses zero at some point again

indicating conductance saturation. In summary, the non-ideal characteristics such

as non-linearity, asymmetry, stochasticity, limited dynamic range etc observed in

nanoscale devices are also shared by biological synapses to a certain extent. The

fact that the brain is able to function with such synapses indicates the existence of

solutions to training the nanoscale device networks effectively and efficiently. This

motivates our explorations.

2.3.1 Device level challenges

The memory modulations in the analog memory devices are attained by rearranging a

few atoms in a nanometric volume, and hence the reliability with which we can achieve

a precise conductance change is very low. We term this as the limited granularity

of the device. If G is the conductance and ∆G the conductance update, G/∆G is

1−20 typically. Further, tiny disturbances in atomic arrangements in a small volume

can lead to relatively higher conductance fluctuations, and hence the updates are

stochastic. Due to the limited dynamic range, the device state changes are state-

dependent and shows a non-linear update behavior. Also, due to the difference in the

physical mechanism involved in the conductance increase (potentiation) and decrease

(depression), the updates are unequal for similar programming pulses and it leads to

highly asymmetric conductance update behavior.
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Figure 2.4 a Representation of ANN and b SNN. We use this framework to discuss
the supervised learning algorithms for these networks.

Experiments using the non-ideal characteristics of PCM devices to train neural

network classifying handwritten digits based on MNIST dataset have shown limited

performance (approximately 82% test accuracy compared to 98% in high-precision

software baseline) [72]. Analysis using a linear device model has proposed at least

10-bit precision and less than 2% mismatch between the potentiation and depression

to achieve high-precision comparable results [73].

2.4 Training Neural Networks

In this section, we describe the algorithms used to evaluate the training performance

of non-volatile memory array based implementations. The supervised training

algorithms are reviewed specifically because of their higher performance, which hence

serves as a suitable benchmark.

2.4.1 Artificial neural network

ANNs are brain-inspired, and they represent a higher level of abstraction. ANNs have

layers of neurons interconnected via synaptic weights. However, in contrast to the

spike-domain encoding of data and integrating neurons in biology, the data in ANN

are encoded using real numbers and the neurons represent non-linear functions such

as sigmoid, tanh, or Rectified Linear Units (ReLU). The basic computing element

in an ANN can be shown as in Figure 2.4a. Let [x1, x2, . . . xn] denote the inputs to

a weight layer with [w1, w2, . . . wn] as the connection strengths to one of the output

22



neurons, then that neuron’s response is given by the relation

y = f(Σixiwi), (2.1)

where f is a non-linear activation function of the neuron. These networks are trained

using gradient descent. The weight updates are computed to minimize an error

function E = g(y, yd), a function of observed (y) and desired responses (yd). The

gradient of the E w. r. t. a weight wi is

dE

dwi
= xi.

dg

dy
.
df

dz
(2.2)

where z = Σixiwi. Then the desired weight update according to gradient descent is,

∆wi = −η dE
dwi

= η.xi.δ (2.3)

where η is the learning rate and δ = −dg
dy
. df
dz

is the error in the net input to the

neurons. In a multi-layered neural network, the weight updates for any layer could

be similarly computed using the chain rule of differentiation. The training algorithm

is typically called backpropagation as the gradient with respect to preceding weight

layers could be computed by propagating the error δ in one layer through the weight

layers in the backward direction [74].

2.4.2 Spiking neural network

Spiking neural networks (SNNs) is a closer abstraction to biological neural networks

than ANNs. They attempt to incorporate the complex dynamics of the biological

neurons and spike domain data encoding. The first complete biologically plausible

model of the spiking neuron was originally developed by Hodgkin and Huxley, which

incorporates the detailed dynamics of the membrane potential and the Na, K and

leak ion channels in a set of four coupled differential equations [75]. However, this

model is not suitable or necessary for engineering applications, and several simplified
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models have been proposed. The second order model proposed by Izhikevich [76]

and the adaptive exponential integrate and fire model (AEIF) proposed by Brette

and Gerstner [77] are sufficiently rich to capture most of the spiking dynamics

observed in biological neurons. We use a computationally simpler leaky integrate

and fire (LIF) model [78] for our training purposes. The LIF model represents the

potential of a neuron as the voltage across a capacitor connected in parallel with a

leaky conductance path and is charged by incoming input currents. The membrane

potential V (t) evolves according to the differential equation:

C
dV (t)

dt
= −gL(V (t)− EL) + Isyn(t). (2.4)

When V (t) exceeds a threshold VT , a spike is issued and transmitted to the

downstream synapses; the membrane potential is reset to its resting value EL after

the spike. C and gL model the membrane’s capacitance and leak conductance,

respectively. Biological neurons enter a refractory period immediately after a spike

is issued during which another spike cannot be issued. This can be implemented by

holding the membrane potential at V (t) = EL for a short refractory period tref after

the issue of a spike.

Neurons are interconnected via synapses as before, but only spikes from a

neuron induce an input (typically modeled as a current) to a post-synaptic neuron.

The post-synaptic neuron integrates currents from all its pre-synaptic inputs causing

its membrane potential to rise above a threshold and issue a spike. The synaptic

conductance can be modulated to adjust the spike rate or time. Information could be

encoded in the precise spike time, or in the spike rate, or in the phase of a spike with

respect to a reference, or the ensemble average spike response of a group of neurons.

The spike discontinuity in the neuronal non-linearity makes direct application

of gradient descent based weight updates rules impossible in SNNs. Several approx-

imations have been proposed for the derivative of the spikes leading to approximate

24



versions of back-propagation to train SNNs [79, 80]. We discuss Normalized

Approximate Descent (NormAD) which will also be used for the supervised training

experiment in Chapter 6 [79].

The Figure 2.4b demonstrate the main parameters in NormAD training

algorithm. ci(t) is obtained by convolving the input spike trains with post-synaptic

current kernel, α(t)(= [exp(−t/τ1)−exp(−t/τ2)]u(t)) where u(t) is the Heaviside step

function and τ1 = 5 ms and τ2 = 1.25 ms. This double exponential approximate the

opening and closing of ion channels in the post-synaptic receptor neuron. ci(t) is

convolved with h(t) to obtain di(t), where h(t) = 1
Cm
exp(−t/τL)u(t) is the impulse

response of integration in the LIF neuron. The weighted sum of resulting di(t) vector

undergo a thresholding to determine the spike response of the neuron. This spike

pattern is compared with the desired one and the following weight update rule is

applied whenever there is a mismatch between these two spike streams.

W ← W + η.e(t).
d̂(t)

‖ d̂(t) ‖
(2.5)

where, η is the learning rate, e(t) is the difference between the desired and observed

spike trains, and d̂(t) is obtained by convolving ci(t) with ĥ(t) = 1
Cm
exp(−t/τL′)u(t)

where τL′ < τL. The algorithm is capable of successfully training single layer SNNs

to produce spikes at desired time instances. Note that the ∆W in equation (2.5) is

again a product of the input to the weight layer (Figure 2.4b) and the error at its

output, similar to ANNs.

2.4.3 Precision requirement

From both the ANN and the SNN weight update rules, we see that the desired weight

change is proportional to the product of input to the synapse and error at the post-

synaptic neuronal input. However, this only gives the direction of updates and the
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relative proportion of weight changes. The absolute value of the update is determined

by the learning rate which is a hyper-parameter set arbitrarily and tuned based on

training performance. Typically, the learning rates chosen in successfully trained

neural networks are such that the ratio ∆W/W is < 10−3. The choice of learning rate

is critical in attaining the highest accuracy possible by the chosen network architecture

in the smallest amount of time. The learning rate should be large enough for fast

convergence and should be small enough not to overshoot the minima in the error

surface which the gradient descent is traversing. Adaptive gradient descent rules

such as AdaGrad [81], Adadelta [82], and Adam [83] have been proposed essentially

to have a learning rate specific to individual weights based on its history of updates.

These rules have enabled networks to achieve higher accuracies at a faster rate for

supervised learning tasks. Hence, it is clear that neural network weights have to be

updated with high precision in order to achieve high performance.

The computational step that determines the precision for the floating point is

the weight update accumulation. In floating point arithmetic, two numbers are added

by making their exponents equal by shifting their fractional parts and then they are

added together using standard binary addition. When the ratio between two numbers

being added is > 103 the smaller number is shifted right relative to the larger by ≥ 10

bits (210 = 1024). In such cases, even 16-bit floating point representation becomes

inadequate as it has only 10-bits for its fractional part. In the case of our analog

memories whose weight update resolution is less than < 5 bits, the method we adopt

to transfer the weight updates to the devices determine our ability to achieve high

performing learning machines using such nanoscale devices.

2.5 Summary

In this chapter, we reviewed the physical mechanism of major nonvolatile memory

devices and their conductance update behavior necessary for implementing on-chip
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training. We also reviewed supervised learning algorithms for ANNs and SNNs that

will be used to train nonvolatile memory based learning systems. We observed that

high-precision requirement of the gradient descent based training is mainly originating

from the need to make fine weight updates, which is also the major challenge posed

by the nanoscale devices due to their limited conductance update precision.
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CHAPTER 3

PHASE CHANGE MEMORY MODEL

3.1 Introduction

We now describe the basic physics of nanoscale phase change memory (PCM) devices

that were used in our studies, and a stochastic conduction model that we developed,

as reported in [84].

Phase-change memory (PCM) is arguably the most advanced emerging non-

volatile memory technology [32]. PCM is based on the property of certain materials

such as Ge2Sb2Te5 that exhibit a significant difference in resistivity depending on

whether they are in the ordered crystalline phase or the disordered amorphous phase.

In a PCM device, a tiny volume of such a material is sandwiched between two metal

electrodes. A typical device structure is shown in the cross-sectional TEM image

in Figure 3.1a. By the application of suitable electrical pulses and subsequent Joule

heating, it is possible to reversibly alter the phase-configuration of the material within

the device. Pulses that result in an increase in the size of the amorphous region are

typically referred to as RESET pulses. In this case, the application of the pulse results

in the melting of a critical volume of the material and which is then rapidly quenched

to induce glass transition. The pulses that reduce the size of the amorphous region

are referred to as SET pulses. Here, the temperature reached within the device is

favorable for crystallization (see Figure 3.1b) [85]. Typically, the SET pulses that

induce partial crystallization of the material is referred to as partial-SET pulses and

all these pulses are collectively referred to as programming pulses.

The electrical resistance/conductance of the device will depend on the resulting

phase-configuration. In fact, it is possible to achieve a continuum of resistance values

in a single device and this can be exploited for neuromorphic applications. For
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Source: [84].

example, as shown in Figure 3.1c, PCM devices organized in a cross-bar configuration

can be used to emulate the synaptic elements in an artificial neural network [28, 86].

The synaptic weights are captured by the conductance values of the PCM devices.

The inputs from one layer of neurons are weighted by these conductance values (via

Ohm’s law) and the resulting current along the columns serve as inputs to the next

layer of neurons. During the training of a neural network, the initial conductance

values are typically chosen randomly, which is then modified (synaptic plasticity)

via some appropriate learning rule. The programming pulses can be used to alter

the conductance values during the training process. Unlike RESET pulses, which

cause in an abrupt transition to lower conductance values, successive application
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of a partial SET pulse results in a more progressive increase in the conductance

value. This cumulative evolution of conductance is highly beneficial for neuromorphic

applications. Hence, often in PCM, only the partial SET pulses are used to implement

synaptic plasticity rules [86]. To avoid the use of RESET pulses, PCM devices

are organized in a differential configuration [27]. A comprehensive understanding

of this accumulative behavior across a large number of devices is central to the

realization of large-scale neural networks. Besides crystallization, there are other

structural dynamics at play in PCM devices. These devices exhibit a temporal

evolution of conductance values after the application of each programming pulse.

This is attributed to a spontaneous structural relaxation of the material [87] and

could also play a key role in neuromorphic computing.

In this chapter, we present a comprehensive model of PCM devices that capture

the accumulative behavior, conductance drift and read noise. Extensive experimental

characterization of 10,000 PCM devices has been performed to develop this statistical

model. Finally, we demonstrate the efficacy of this model by using it to match

experimentally observed array level characteristics and to train spiking and non-

spiking artificial neural networks.

3.2 Device Characterization and Modeling

For device characterization, we used mushroom-type PCM devices fabricated in the

90 nm technology node [88]. The phase-change material is doped Ge2Sb2Te5 (GST).

A prototype chip comprising 3 million devices was used in the study [89]. Individual

devices are addressed via word lines and bit lines and the devices have access

transistors in series. The devices are programmed using current pulses of designated

amplitude and width generated in the peripheral circuits. The conductances are read

by applying a 0.3 V read pulse and the resulting current is read using an 8-bit ADC.

The ADC is calibrated to span a conductance range between 0.1µS and 27µS.
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Source: [84].

First, the device conductances were initialized to a distribution close to 0.1µS

using iterative programming [90]. Subsequently, we applied 20 partial SET pulses

of 90µA amplitude and 50 ns duration. After the application of each pulse,

devices are read 50 times. In addition, an immediate conductance measurement is

performed approximately 100 ns after the programming pulse. However, subsequent

measurements are obtained at time intervals in the order of seconds. As a result,

consecutive programming pulses were applied with an average interval of 38.6 s for the

10,000 devices. The resulting conductance evolution, except for the immediate read

after 100 ns, for one such representative device is shown in Figure 3.2. In subsequent

sections, we will use all the measurements from the 10,000 devices (barring a few

whose conductances where outside the ADC limits) to develop the statistical model.
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Figure 3.3 a The statistics of cumulative conductance evolution as a function of the
number of partial SET pulses. The error bars indicate one standard deviation. b The
mean µ∆G and c standard deviation σ∆G of conductance change as a function of the
average initial conductance µG for each programming pulse. The initial conductance
distribution for each programming pulse is divided into smaller intervals and µG, µ∆G

and σ∆G is determined separately for each interval. Each data point in b and c
corresponds to an average of measurements from at least 100 devices. Also depicted
are the fit lines used to obtain the model parameters. d, e The same data points of
µ∆G and σ∆G are plotted as a function of the pulse number with a constant added
for data points corresponding to a single µG interval. The dependency of µ∆G and
σ∆G on pulse number is approximated using an exponential function with a decay
constant of 2.6.

Source: [84].

3.2.1 Accumulative behavior

First, we characterized the accumulative behavior arising from the successive

application of partial SET pulses. To decouple the accumulative behavior from

conductance drift, the 50th read measurement was used. The distribution of the

conductance values as a function of the pulse number is shown in Figure 3.3a. It

can be seen that the average conductance change is high at low conductance values

and it gradually reduces as the conductance values increase. It can also be seen
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that there is significant randomness associated with the conductance values. This

is mostly attributed to the inherent randomness associated with the crystallization

process [91, 92]. In fact, the inter- and intra- device variability in the array has been

observed to be of comparable magnitude [93, 94, 95].

To obtain a quantitative description of this behavior, we studied how the

conductance change arising from the application of a single SET pulse depends on

the conductance state of the device prior to the application of the pulse as well as the

device’s programming history. The devices were split into different groups based on

their conductance values. Each group corresponds to a conductance interval of 1µS.

For each group, the mean (µ∆G) and standard deviation (σ∆G) of the conductance

change due to the application of a single programming pulse is plotted against the

mean conductance (µG) of each group (see Figure 3.3b and 3.3c). The data points

are generated only for those groups with 100 or more devices. This is repeated for

the conductance values measured after the application of each programming pulse.

In Figure 3.3b and 3.3c, each color corresponds to a single programming pulse with

the red color indicating the first pulse and the blue color the 20th pulse. We observe

that there is a negative correlation between the µ∆G and µG that suggests a linear

decrease in the conductance change as the device conductance increases. In addition,

in a particular conductance range, the conductance change observed seem to decrease

with increasing number of applied pulses. This behavior can be captured using a linear

fit of a negative slope to map the relation between µ∆G and µG for any particular pulse

number. Further, the dependency on the pulse number is encoded in the y intercept

of this linear fit. It can be seen that for any given conductance value, the extent of

conductance change induced by a single partial SET pulse reduces significantly with

increasing number of applied pulses. This could be captured using an exponential

empirical relation (Figure 3.3d and e).
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It can be seen that the behavior of σ∆G is also very similar to that of µ∆G except

that there is a positive correlation with the µG in this case. Therefore, the mean and

standard deviation of the ∆G is modeled respectively using lines of negative and

positive slopes and with an intercept which is an exponential function of the pulse

number (p) as in the following equations (also in Figure 3.3b and c):

µ∆G = m1G+ (c1 + A1e
−p/α) (3.1)

σ∆G = m2G+ (c2 + A2e
−p/α) (3.2)

where the fit parameters m1, m2, c1, c2, A1, A2, and α are -0.084, 0.091, 0.880, 0.260,

1.40, 2.15, and 2.6, respectively.

3.2.2 Conductance drift and read noise

In this section, we model the conductance drift in the devices arising from structural

relaxation. For this, we use the 50 read measurements obtained after the application
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of each SET pulse. The mean conductance evolution after each programming event

as a function of time is plotted in Figure 3.4 a. The response is fitted using the

model [35, 96],

G(t) = G(T0)

(
t

T0

)−ν
(3.3)

According to Equation 3.3, if the device conductance, G(T0) is known at time T0 after

programming, the conductance at any time t can be estimated with the knowledge

of the drift coefficient, ν. The estimated ν from the fit lines have a mean value

of 0.04 (Figure 3.4a inset). Note that the logarithmic dependence on time suggests

that after programming, the conductance drift slows down with time. We observe

that the partial SET pulses result in a state that drifts, with a drift coefficient that

decreases with increasing conductance µG(T0). The application of a partial SET

pulse re-initiates structural relaxation and conductance drift. Hence, we speculate

that each partial SET pulse creates a new unstable glass state because of the atomic

rearrangement that occurs upon its application, which then structurally relaxes to an

energetically more favorable amorphous state [97, 87].

In addition to the conductance drift, there are also significant fluctuations in

the conductance values (read noise) mostly arising from the 1/f noise exhibited by

amorphous phase-change materials [98]. To model this, we estimated the noise from

the last ten reads from the fifty read measurements. The objective was to decouple

the read noise from the conductance drift. The standard deviation of the zero-mean

read noise is plotted as a function of the mean conductance (see Figure 3.4b). It can

be seen that the read noise increases with the device conductance. The read noise

standard deviation, σnG, for the device conductance range is fitted using the linear

relation,

σnG = m3G+ c3 (3.4)
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where m3 = 0.03 and c3 = 0.13.

3.2.3 Overall model description and validation

In this section, we combine the various elements of the model describing the

accumulative behavior, conductance drift, and read noise to generate a complete

statistical model and validate it based on the experimental data. The objective is to

capture the evolution of conductance values for a large collection of devices after a

certain time T0 after programming with an arbitrary number of partial SET pulses.

More specifically, we would like to determine the device conductance G(t) at any

time t, which has been initialized to approx. 0.1µS, and is subjected to a sequence

of 90µA, 50 ns programming pulses with arbitrary time intervals between them.

Table 3.1 PCM Model Parameters

Symbol Value Symbol Value Symbol Value

m1 -0.084 c1 0.880 A1 1.40

m2 0.091 c2 0.260 A2 2.15

α 2.6 T0 38.6 s ν 0.04

m3 0.03 c3 0.13

To simulate this, three quantities are recorded per device: (a) Gi(T0), the

conductance after T0 time after the ith programming pulse for i = 0, 1, 2 . . ., (b) Pmem,

a quantity that captures the programming history, and (c) tp, the time of the last

programming event. tp is initialized to zero. Based on the chosen initial conductance

value G0(T0), Pmem is initialized to Pmem,0 = e−p0/α, where p0 is the effective number

of pulses applied to reach the initial conductance G0(T0). p0 is zero for initialization

around 0.1µS and p0 for higher values of conductance is determined from the average

conductance evolution curve shown in Figure 3.3a. The effective number of pulses

36



versus conductance can be approximated empirically as,

p0 = 0.027µ3
G − 0.15µ2

G + 0.81µG (3.5)

for conductance ranging from 0.1µS to around 8µS. After initialization, for the N th

programming event, Pmem is first updated as Pmem,N = Pmem,N−1e
−1/α for N =

1, 2, . . .. Then G(t), which has seen N programming pulses can be determined as

follows:

µ∆GN
= m1GN−1(T0) + (c1 + A1Pmem) (3.6)

σ∆GN
= m2GN−1(T0) + (c2 + A2Pmem) (3.7)

∆GN = µ∆GN
+ σ∆GN

χ (3.8)

GN(T0) = GN−1(T0) + ∆GN (3.9)

G(t) = GN(T0)

(
t− tp
T0

)−ν
+ nG (3.10)

Here, χ represents a Gaussian random number of mean zero and variance 1. Another

Gaussian random variable with mean zero, nG, captures the conductance fluctuations

arising from PCM noise, whose standard deviation is calculated based on the

instantaneous conductance state as dictated by the linear fit in Equation 3.4 (also in

Figure 3.4b). All the model parameters are listed in Table 3.1. Please note that the

conductance values predicted by the model are in micro-Siemens.

First, the model is used to validate the same experimental data that was used

to generate the model parameters. In particular, the model is used to generate the

distribution of conductance values as a function of the number of programming

pulses. As shown in Figure 3.5, the mean and variance match remarkably well

with experimental data. It can also be seen that the distributions themselves are

remarkably similar. Figure 3.6a-c show the conductance distribution from the 50th

read, after initialization, after the application of five programming pulses, and after

37



0 10 20

Pulse number

0

2

4

6

8

10

12

G
 (

S
)

a

Device
Model

0 10 20

Pulse number

0

5

10

G
(

S
)

b

Device
Model

0 10 20

Pulse number

0

1

2

3

G
(

S
)

c
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of the conductance as a function of the pulse number.

Source: [84].

the application of 20 programming pulses, respectively. The model also matches the

correlation coefficient observed between G and ∆G for the pulses applied. From

Figure 3.6e, f it can be seen that the statistical model also captures the individual

device behavior remarkably well.

Additional measurements were performed where the devices are programmed

with 20 programming pulses, however, with varying time intervals between the

application of each pulse. The time interval was determined based on the number of

reads performed and in the current experiment, each read process took approximately

1 s for the 10,000 devices. Figure 3.7 shows the programming events in time (top)

and the resulting evolution of the mean conductance of the 10,000 devices (bottom).

The spikes in the programming event plot correspond to the application of partial

SET pulse and the device conductances are read at all other time instances. As
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discussed earlier, it can be seen that with the application of each programming

pulse, the drift process is re-initiated. Another interesting observation is that the

net change in conductance seems to be independent of structural relaxation. There

is some evidence that structural relaxation slows down crystal growth rate [85].

But at least in these devices and these time scales, this does not seem to be

significant. The final conductance values at the end of programming seem to converge

to similar conductance levels independent of the rate of programming. Hence, our

proposed model is able to capture this behavior remarkably well with the additional

incorporation of Equation 3.3.
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3.2.4 Generalizability of the PCM model

The model we presented here is based on doped Ge2Sb2Te5 in a mushroom structure

fabricated in 90 nm technology. This model is largely data-driven and is not based on

specific material properties. The key aspects of the model are the negative correlation

of the µ∆G and positive correlation of the σ∆G with the average current state µG

(Figure 3.3 b, c). An intuitive explanation for these observations is as follows. Phase

change memory devices have a chalcogenide sandwiched between a top electrode

and a bottom electrode, with one of the contacts making a narrow contact (in

both mushroom and pore PCM structures) with the dielectric acting as a point of

heating. The temperature distribution within a PCM cell is decided by many factors

such as thermal and electrical resistance and the specific heat capacity of the cell

materials. Typically, the temperature distribution along the vertical symmetry axis is
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a skewed parabola with the maximum temperature located slightly above the heating

contact in properly designed devices [99, 100]. Further, the crystal growth velocity in

PCM increases monotonically until it reaches a peak crystallization temperature [85].

Though this peak temperature may depend on the material, in partial SET pulse

driven gradual conductance change operation, the programming pulses are chosen to

operate below this temperature. Therefore, when a device initialized with a RESET

operation is subjected to partial SET pulses, the point of maximum crystal growth

will be around the point of maximum temperature. This results in large conductance

change for the first few pulses. For further programming pulses of the same amplitude,

assuming that the temperature distribution remains more or less unchanged and

that the crystalline-amorphous boundary has moved to lower temperature regions

due to earlier crystal growth, every subsequent programming will result in smaller

conductance increase. This conductance saturation is captured in the model by the

point where µ∆G versus µG crosses zero. This zero-crossing behavior also makes the

model bounded in its conductance range, even when simulated with a large sequence

of pulses. The increase in the programming noise at higher conductance states may be

attributed to the higher variability in the number of trap-states within the reduced

volume of the amorphous region as sub-threshold conduction in these devices are

trap-mediated [101].

The point of conductance saturation could be further extended if it is

programmed with larger current pulse amplitudes. The resulting temperature profile

will have a higher peak, and it will cause a positive conductance update at the current

saturation point driving crystal growth creating a new saturation point at a higher

conductance. To test this argument, we applied 20 pulses of 50 ns width and 60µA

amplitude to 10,000 PCM devices. This is followed by fifteen pulses each of 80µA,

100µA, and 120µA. We observed that each of the higher pulse amplitude extended

the conductance range. The conductance evolution and the state-dependent nature
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Figure 3.8 a Average conductance evolution of 10,000 devices subjected to a
sequence of twenty 50 ns, 60µA pulses followed by fifteen pulses each of 80µA,
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corresponding to different programming amplitudes are color coded. c The standard
deviation of the conductance change versus the average initial conductance state.

of the conductance change ∆G is shown in Figure 3.8. The µ∆G versus µG plot

shows a similar trend for different pulse amplitudes and the zero crossing point is

increasing with an increasing programming current. To capture this behavior in the

model we modified the Equation 3.1 so that its y-intercept is a linear function of

the pulse amplitude in addition to its exponential dependence on pulse number. On

the other hand, the σ∆G did not show a dependence on the pulse amplitude. The

modified model response is shown in Figure 3.8 a, which shows good agreement with

the measured device behavior.

While Ge2Sb2Te5 is the most commonly used material in PCM devices, other

chalcogenide alloys have been explored for improved properties such as faster
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crystallization, reduced drift and lower programming currents [102, 103]. However,

the qualitative description of the temperature distribution and the modeling approach

we presented here is expected to remain valid in different phase change material

systems provided the conductance modulation is driven by Joule heating and have

similar crystal growth dynamics. For example, comparable partial SET conductance

accumulation behavior has been reported in GeTe based PCMs [104]. Hence, the

model we presented could be tuned to capture the gradual crystallization behavior

if sufficient statistics on device characteristic are available. Phase change memory

devices have also been demonstrated to be scalable via ab-initio simulations [105, 106]

and experiments [107]. The temperature profile within the scaled devices remain

more or less the same under constant voltage scaling [108], and hence similar

state-dependent conductance modulation behavior under partial SET programming

pulses could be expected in them as well. However, the scaling of the electrode contact

area reduces the amorphous volume involved in the conductance modulation, which

could result in reduced granularity and higher stochasticity. For a given trap density,

the changes in this smaller amorphous region could lead to higher programming noise.

The ability of a PCM cell to provide gradual conductance state will also depend on

the cell design. For example, in a mushroom cell, if the peak temperature point

is too far away from the heater electrode, the amorphous region will not cover the

heater unless very high powers are applied, effectively making multi-level operation

almost impossible [99]. Therefore, the model could possibly be tuned to adapt to

different phase change materials and technology nodes with sufficient data, provided

the devices are not binary and have state-dependent gradual conductance change.

3.3 Spiking Neural Network with Modeled PCM-synapses

The developed model could be used to simulate the training behavior of neural

networks and other possible learning systems which require adaptive weights. To
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Source: [84].

illustrate this, we train a spiking neural network (SNN) and a non-spiking artificial

neural network (ANN) with PCM based synapses whose conductance modulations

are emulated by the model and discuss the effect of device behavior such as limited

granularity, stochasticity in the training. The PCM devices are assumed to be

arranged in a crossbar array representing the connection strength between adjacent

layers of neurons as in Figure 3.1c. The crossbar arrangement enables them to perform

the weighted summation necessary for the dataflow through the network in constant

time irrespective of the layer size.
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SNNs are third generation neural networks that attempt to mimic biological

neural network behavior. Biological neurons integrate its input over time in the

analog domain, while communicating with other neurons via spikes, enabling highly

energy efficient signal encoding and processing. In SNNs, this neuronal behavior is

typically emulated using a leaky-integrate and fire (LIF) model. The LIF neuron

could be represented as a leaky capacitor that integrates incoming currents, with the

integration reset when the voltage across the capacitor exceeds a threshold, and a spike

is sent to the downstream neurons. This continuous time behavior makes the training

and inference of SNNs in conventional digital hardware extremely inefficient. Non-

volatile memory array based synapse networks with dedicated neuronal circuits at the

periphery could potentially provide a more efficient non-von Neumann architecture

for SNN implementation and training.

An example of SNN is shown in Figure 3.9a. It has one LIF output neuron

receiving 500 spikes streams via input synapses. The network is expected to generate

a desired spike pattern from the inputs which is generated here from a Poisson random

process for illustrative purposes. The network spike input and the desired output

spike response is illustrated in Figure 3.9b. In response to each spike input, synapses

generates currents modeled by the expression Isyn = W×(e−t/τ1−e−t/τ2) as a function

of time, t, where W is the synaptic strength. The task of the supervised learning

algorithm is to adjust the weights such that the observed spikes match a desired

pattern. One weight adjustment rule for SNNs that has been demonstrated recently

is the NormAD algorithm [79] which provides the network weight updates ∆W as

∆W = r

∫ T

0

e(t)
d̂(t)

||d̂(t)||
dt (3.11)

where r is the learning rate, T is the duration of the training pattern, e(t) is the

difference between the desired and observed output spike trains. d̂(t) is obtained by
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convolving the synaptic current (Isyn) with an approximate impulse response of the

LIF circuit.

The network synapses are realized using the PCM model. Because of the

abrupt RESET behavior of the device, each synapse is realized using two PCM

devices Gp and Gn in differential configuration such that W = β(Gp − Gn), where

β is a scaling factor [27]. Hence, synaptic potentiation is achieved by applying a

partial SET pulse to Gp and depression is achieved by applying a partial SET pulse

to Gn. This unidirectional programming often causes the device pairs to saturate

preventing any further weight update. Therefore, an occasional weight refresh is

performed based on the following criteria. If Gp or Gn > Gx, and |Gp − Gn| <

0.25Gx, where Gx is a threshold, both the devices are RESET and the conductance

difference is programmed to the device which had the higher conductance. For the

hardware implementation, the RESET pulse shape could be determined from the

PCM programming curve [90, 85, 12]. Here, the stochastic RESET behavior is

simulated using an abrupt conductance transition to a distribution of mean 1µS

and standard deviation 0.5µS.

For the training, the device conductances are initialized to a distribution of mean

2µS and a standard deviation 0.5µS. During each training epoch, the 400 ms long

spike sequences are presented to the network and the weight updates are computed.

The scaling factor β is chosen to match the PCM based weight distribution to that

obtained from an equivalent network trained with floating-point synaptic weights

(Figure 3.9 d). While this scaling enables PCM based synapses to represent the desired

weight range, the achievable weight updates are limited by the device granularity.

Further, we assume the states of the individual devices are unknown to determine the

optimum programming pulse. Hence, the estimated weight updates are converted to

programming pulses by assuming an average conductance change of 0.75µS for each

partial SET pulse (as the 7.5µS conductance range used in our study is typically
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reached within 10 pulses). The resulting conductance evolutions during training

for a few synapses are shown in Figure 3.9 c. As we see here, the PCM synapses

drift and have read noise while computing the weight updates. The conductance

programming is without any read-verify operation and is stochastic, which will

simplify the system implementation and accelerate the training process. The training

performance is evaluated based on a correlation between the desired and observed

spike trains [79] and is plotted in Figure 3.9 e. The corresponding numbers from

training which used floating point synapses are shown for reference. In spite of the

stochastic nature of PCM weight updates and conductance drift after programming,

the SNN incorporating these devices exhibit training performance that is at par with

the baseline software network.

3.4 Deep Learning with Modeled PCM-synapses

Now we discuss the training of an artificial neural network (ANN) whose synapses are

realized using the PCM differential configuration. The network is designed for the

benchmark handwritten digit recognition task, based on 28 × 28 gray-scale images

from the MNIST dataset. The dataset has 60,000 training images and 10,000 test

images. In this exercise, we attempt to modify the standard backpropagation training

algorithm to account for the limited device granularity and its effect is analyzed.

The network used for the task is shown in Figure 3.10 a, which has two fully

connected weight layers. The input layer neurons are linear, the hidden layer and

the output layer neurons perform a logistic function (sigmoid) on their inputs.

The training is performed using the back-propagation algorithm, an adaptation of

gradient descent for multi-layer ANNs. The first stage of training, known as forward

propagation involves presenting the image pixels at the input layer and determining

the output layer response. Out of the ten output neurons, the one corresponding

to the input image is expected to have the highest neuron activation. The actual
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Figure 3.10 a The artificial neural network used for handwritten digit classification
based on the MNIST dataset. b The network weights are implemented using 2 PCMs
in differential configuration (W = β(Gp − Gn)). The conductance evolutions of the
device pairs from few synapses are shown for the training duration. c The neuron
activations and errors have been scaled to determine the weight update probability.
The average number of weight updates per image in the two weight layers during the
training for two chosen scaling factors are shown. d The test accuracies for the two
update probabilities. The P(update)=p updated a smaller number of synapses using
limited precision and stochastic PCM models and achieved higher test accuracies
faster.

Source: [84].

response is compared with the original class label and an aggregate network error is

determined. The algorithm tries to minimize the error by adjusting the weights in the

network. For this, the gradient of the error function with respect to each weight in the

network is determined using the back-propagation algorithm. This involves sending

the error computed in the last layer to the previous layers successively through the

corresponding synaptic weights. If xi is the neuron activation of the pre-neuron from

forwarding propagation and δj the error computed at the input of post-layer neuron
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of any weight during back-propagation, then desired weight-update for the synapse

between these neurons can be computed as

∆Wij = η.xi.δj (3.12)

where η is a suitably chosen learning rate. The weighted summation or the matrix-

vector multiplication necessary for the forward and backward propagation can be

realized using the same crossbar array of devices, by feeding the vector as voltages

respectively along the word line or bit line and reading the matrix-multiplication

results as currents along the corresponding bit line or word line respectively.

During each epoch of the training, the network is presented with 60,000 training

images and weight updates are computed using Equation 3.12 after each image.

Software training of the ANN with high precision floating point weights gives around

98 % classification accuracy on the test set. Typically, ∆W/W < 10−3 for most

of the ∆W s during this training. On the other hand, the PCM devices used

for the synaptic implementation has a state-dependent and stochastic conductance

update with very limited precision. As a result, when such non-volatile memory

arrays are used for neural network training, transferring the desired weight updates

becomes a major challenge. There are different proposals in the literature to

solve this issue of low precision synapses by either using an additional memory for

gradient accumulation [14, 69], or using more complex synapse structures [95, 109].

However, the additional overheads in these approaches constrain the maximum

computational efficiency achievable in crossbar array based training architectures

for neural networks. Here, we analyze the effect of the PCM response in training,

where the weights are realized using two PCMs in differential configuration and the

weight updates are implemented using single-shot programming pulses applied to

the device model. Hence, the main ambiguity is in converting the desired weight

updates into programming pulses. Due to the large disparity in the desired granularity
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of ∆W and the observed ∆G from the device, linear mapping between the two

will lead the network to rarely experience any weight update. To solve this issue

we used a scaled version of the x and δ to represent the probability to apply a

programming pulse to the connected device. By adjusting the scaling factor, we

could control the number of devices getting programmed in the network during

each update. For illustration, we conducted two training simulations, where the

update probabilities are p and 5p, where p is a suitably chosen scaling factor. During

training, we assumed, 1µs computation delay per crossbar array resulting in a total

training time of 2.26 s for 20 epochs. The conductance drift and read noise were

re-evaluated after every training image during the simulations and a weight refresh

was performed after every 1,000 images (Figure 3.10 b). Due to the probabilistic

nature of the weight updates, out of the 278,260 weights in the ANN, only a small

fraction of the total weights received updates after every image. The average number

of devices updated after each image is shown in Figure 3.10 c for the two update

probabilities. The corresponding classification accuracy of the network on the test

set, which is not used for training is in Figure 3.10 d. The training experiment that

received lesser programming updates achieved higher accuracy and converged faster.

In contrast to the high-precision software-based training which has the flexibility to

choose arbitrary learning rates, the weight updates in a low-precision device (such

as the PCM synapse) is limited to the programming granularity of the device within

its conductance range. The probabilistic sparse update scheme we use here could

be viewed as an alternative approach to implement back-propagation, where instead

of controlling the update of individual devices, the distance traveled on the error

surface is chosen by controlling the number of devices being updated at any time.

However, the limited device precision, non-linearity, and stochasticity seem to limit

the maximum test accuracy achievable in this network to approximately 83 %, which
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is comparable to experimentally observed training result in a similar network using

PCM devices [72].

While the training performance obtained in the simulation may seem subpar

to the high-precision training, it is worth noting that biological synapses are

stochastic and have state-dependent conductance update similar to the nano-scale

non-volatile memory devices [15]. Some studies also suggest that they have a

limited precision (∼ 4.6 bit) [70]. Training algorithms, designed assuming floating

point precision for the network weights, are not optimized for the limited precision

weights. Considering the possible computational advantages of non-volatile memory

based neural network implementations, adaptations or innovations of algorithms are

necessary for accounting the underlying architecture and hardware limitations. In

such studies, the model we presented which takes into account the device dynamics

and variabilities will be highly useful.

3.5 Discussion

Now, we analyze the possible computational advantages of PCM based implemen-

tation of neural networks compared to the existing von Neumann architectures. We

will also discuss how our modeling approach is applicable to other phase change

material systems and how it might be affected by device scaling.

In a crossbar based matrix-vector multiplying unit, the PCM device acts as

both local memory and an analog multiplier. The array structure enables them to

perform standard O(N2) complex matrix-vector multiplications in O(1) complexity

with reduced data movement irrespective of the matrix size. The PCM devices are

estimated to have 2 to 3-bit digital precision [110] and higher if some stochasticity

could be tolerated. The area of a PCM cell with an access transistor is ∼ 25F 2

(where F corresponds to the minimum lithographic pitch in a technology node),

which could be reduced to ∼ 6F 2 with a suitable diode based access device [111].
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On the other hand, one bit SRAM area is ≥ 120F 2 and the area of a 16-bit

multiply-accumulate (MAC) required for neural network architectures is at least three

orders of magnitude higher [111, 112]. This results in trade-offs between the number

of parallel computing units and on-chip memory for hardware implementations of

neural networks using conventional CMOS technology. Since the available silicon

real estate per die is limited, energy-hungry off-chip memory access becomes essential

for storing the network parameters [1]. On the other hand, due to its in-memory

computation capability, crossbar arrays are estimated to outperform modern GPUs

by four orders of magnitude [73]. This is particularly advantageous for SNNs, as

it needs continuous time simulation which calls for more analog and inherently

parallel architectures [30]. The computational efficiency of the crossbar array could

be maintained to a large extent in the ANN training if its weight-update stage could

also be performed directly on the array devices, based on the coincidence of stochastic

pulses that represent the neuronal activations and back-propagated errors. However,

this necessitates ∼ 10-bit update precision for the device to achieve state-of-the-art

training accuracies [73]. Most of the non-volatile memory devices today are binary,

while a few devices including PCM offers a few extra bits of precision.

However, recent results suggest that lack of precision in the non-volatile memory

could be compensated by an accompanying higher-precision unit [14, 69, 109]. The

granularity of the synapse could also be improved by using multiple devices per

synapse [95]. In order to study such approaches for larger and more complex neural

network problems, compact models that reliably capture the device statistics are

required. The model presented in this paper serves this purpose. Furthermore, the

insights developed from such training explorations could also be used to determine

the specifications for future devices.
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3.6 Summary

In this chapter, we characterized and analyzed the stochastic gradual conductance

evolution behavior of phase change memory. The model we developed here captures

the statistical device behavior accurately. The incorporation of temporal behaviors

such as drift and read noise enables accurate system level simulations. We used the

model to simulate the training behavior and observed the limitations imposed by the

non-ideal behaviors typically observed in such nano-scale devices. Particularly, the

inability to deliver finer updates due to the limited granularity resulted in achieving

much lower accuracies compared to those in high-precision when trained with the

back-propagation algorithm.
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CHAPTER 4

MIXED-PRECISION TRAINING ARCHITECTURE

4.1 Introduction

We now propose a mixed-precision architecture to train computational memory

based neural network implementations and analyze the effect of limited precision,

stochasticity, asymmetry, non-linearity etc of the cross-point devices as presented in

[69, 113].

Deep neural networks (DNN) share attributes of biological neural networks in

its multi-layered structure and weighted interconnections called synapses. Neurons

are parallel processing units performing non-linear transformations on the weighted

inputs they receive from the preceding layers. Today, these network weights are

trained using real-world examples to perform a wide variety of tasks such as

image recognition and synthesis, speech recognition, and big-data analysis. The

performance of these networks is typically observed to be proportional to the size

of the network and the training data [3]. During the training phase, appropriate

synaptic weights of the network are determined such that the network is able to

perform the assigned learning task with sufficient accuracy. Typically, this is achieved

by a supervised training algorithm known as backpropagation. First, the training

examples are presented to the input layer which is then forward propagated through

the connection weight matrices and neuronal activation functions. The final layer

neuronal responses are compared with the desired outputs to compute the resulting

error. The objective of the training process is to reduce this error by minimizing

a cost function and is typically achieved via the gradient descent algorithm. In a

multi-layered neural network, the gradients of the cost function with respect to all

the weights are determined by back-propagating the errors from the final layer. The
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weights are updated based on the gradient information. This forward-backward data

propagations and weight updates are repeated several times over the entire training

data set. This brute force approach to training neural networks is computationally

intensive and time-consuming, even when executed in general purpose graphical

processing units (GPGPUs). Also, the high power consumption of this training

approach makes its application prohibitive in several emerging domains such as the

internet of things and edge computing. Much of the inefficiency arises from the

constant shuttling of data between the physically separated memory and processing

units in conventional von Neumann computing systems, in order to execute the large

matrix operations involved in DNN training.

4.2 Computational Memory: Key Challenges

Non-volatile resistive memory devices have several attributes making them suitable

candidates for building computational memory elements. These devices operate

based on a variety of physical mechanisms such as field driven atomic rearrangement

(metal-oxide based resistive memory [114] (ReRAM) and conductive bridge memory

(CBRAM) [47]), spintronic effects (spin transfer torque based magnetic memory

(STT-MRAM) [115] and phase transition (phase-change memory (PCM) [31]).

Irrespective of the underlying physical mechanism, all these devices store information

in their resistance or conductance states which are programmed by the application

of suitable electrical pulses. However, there are many challenges associated with

programming the desired conductance change in these devices. First, there are

limitations on the minimum conductance change that can be reliably induced. For

example in STT-MRAM, it is very difficult to achieve more than two conductance

levels due to the underlying physical mechanism. Similarly in filamentary resistive

memory devices such as CBRAM, the positive feedback mechanism involved in the

filament growth process makes it difficult to control the process and to achieve
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intermediate states [45]. This inability to achieve a sufficiently small conductance

change also limits the storage resolution. Another major challenge arises from

stochasticity associated with device programming. In these nanoscale devices, slight

changes in atomic configurations can lead to significantly different conductance values.

Asymmetry in the conductance change, i.e., the average increment (potentiation) and

decrement (depression) in conductance that can be reliably realized in a device is also

an important challenge. Some devices also show significant state dependence where

the conductance update depends on the current state of the device. For instance,

this makes potentiation progressively harder with increasing conductance values.

We refer to this as non-linear conductance response. In addition to weight update

challenges, random volatile conductance fluctuations in the constituent elements of

the computational memory and the finite resolution of the data converters used to

interface them with the processing units could significantly impact the accuracy of the

computations performed. In this chapter, we describe mixed-precision architecture

based on computational memory and describe how it can address the aforementioned

challenges. We use a neural network meant for classifying handwritten digits to

benchmark the system performance.

4.3 Mixed-Precision Computational Memory Architecture

A schematic illustration of the mixed-precision computational memory architecture

for training DNNs is shown in Figure 4.1. It has a computational memory unit

comprising several memristive crossbar arrays coupled to a high-precision digital

computing unit. If the weights Wji in any layer in a DNN (Figure 4.1a) are mapped

to the device conductances Gji in the computational memory with an optional scaling

factor, then the desired weighted summation operation during the data propagation

stages of DNN training can be implemented as follows. For the forward propagation,

the neuron activations, xi, are converted to voltages, Vxi and applied to the word
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lines. Currents will flow through individual devices based on its conductance and the

total current through any bit-line, Ij = ΣiGjiVxi will correspond to ΣiWjixi, which

becomes the input for the next layer neurons. Similarly, for the backward propagation

through the same layer, the voltages, Vδj corresponding to the gradient δj is applied

to the bit lines of the same crossbar array and the weighted sum obtained along the

word-lines, ΣjWjiδj, can be used to determine the gradients for the neuron in the

preceding layer.

The desired weight updates are determined according to the back-propagation

algorithm as ∆Wji = ηδjxi, where η is the learning rate. Since the devices

representing the network weights often have very limited programming granularity,

these weight updates cannot be directly transferred to the devices reliably. Hence

we accumulate these updates in a high-precision variable χ in the high precision

digital unit. In the proposed architecture, the weight updates in the devices are

implemented by applying single-shot programming pulses without using iterative

read-verify schemes. Let ε denote the average conductance change that can be reliably

programmed into the devices in the computation memory unit using the given pulse.

Then the number of programming pulses, p to be applied can be determined by

rounding towards zero, i.e., bχ/εc. The stored value of the variable χ is decremented

by the factor pε, even though the actual change in the device conductance may not

precisely match this value, as we do not read the device state after programming.

Depending on the sign of p we increase or decrease the device conductance. Thus, we

are effectively transferring the accumulated weight updates to the device only when

it becomes comparable to its programming granularity. The computational memory

device programming is greatly simplified in our scheme since the actual conductance

state of the devices are not used to update the device or to confirm whether the

requested weight updates are accurately attained as equivalent conductance changes
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in the devices. In spite of this, we show that this scheme works remarkably well and

that the performance is comparable to those of floating-point implementations.
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Figure 4.1 a Neural network consisting of multiple layers of neurons with weighted
interconnects. During forward propagation, the neuron response xi is weighted
according to the connection strength Wji and summed. Subsequently, a non-linear
function f is applied to determine the response of neurons in the next layer, xj.
Similarly, the gradients from the layer, δj, is back-propagated through the weight
layer to determine the gradients, δi, for the preceding layer. b Mixed-precision
architecture consisting of a computational memory unit and a high-precision digital
unit. Computational memory has memristive devices whose conductance values, Gji

represent the weights, Wji. The crossbar array can perform the weighted summation
during the forward and backward propagation. The resulting xs and δs could be
used to determine the weights updates, ∆W in the high-precision unit. The ∆W
is accumulated in the variable χ. The number of device programming pulses is
determined as p = bχ/εc, where ε is the average device update granularity.

4.4 Evaluation of the Mixed-Precision Architecture

4.4.1 The simulation framework

The performance of the mixed-precision architecture is analyzed based on its

classification accuracy on the MNIST handwritten digit dataset using a neural

network as shown schematically in Figure 4.2. The number of neurons in the input, the

hidden and the output layer is 784, 250, and 10, respectively. The hidden and output
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Figure 4.2 The neural network used to evaluate the mixed-precision architecture.
The objective is the classification of handwritten digits based on the MNIST data
set. There are 784 input neurons, 250 hidden sigmoid neurons, and 10 output
sigmoid neurons. The network weights are trained by optimizing a quadratic objective
function using gradient descent. All the 60,000 images in the dataset are used in one
epoch of training and 10,000 images for testing.

neurons are sigmoid. The network is trained using the entire training set of 60,000

images for ten epochs, and test accuracy is reported based on 10,000 test images. The

pixel values of the 28 × 28 gray-scale images are normalized between 0 and 1 before

they are supplied as input to the network. No other preprocessing is performed on

the images. We used the quadratic objective function for the back-propagation-based

training and used a fixed learning rate. The network gave 98 % floating point (64-bit)

test accuracy when trained using stochastic gradient descent. This classification result

is used as reference to evaluate the performance of our mixed-precision approach. The

final weight distribution from this high-precision training was approximately in the

range [-1 1].

4.4.2 Inaccuracies arising from weight-updates

In this section, we will evaluate how the proposed architecture copes with the issues

associated with weight updates. We assume a hypothetical linear device with a

conductance range of [-1 1] similar to the floating-point trained weight distribution.

The device is assumed to have n-bit update granularity such that it covers its

conductance range in 2n − 2 steps and hence, it will have 2n − 1 possible levels
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Figure 4.3 Effect of granularity and stochasticity associated with weight updates.
Linear devices with symmetric potentiation and depression granularity are assumed
as computational memory elements. The standard deviation of the weight-update
randomness, σ(∆Ŵ ), is taken as a multiple of the weight update granularity, ε. The
error-bars indicate the standard deviation corresponding to five repetitions of the
simulation. It can be seen that even in the extreme cases of highly coarse and random
weight-updates, drop in the test accuracy is still within approximately 4% for 2-bit
granularity.

Source: [69].

in the absence of conductance change stochasticity. An odd number of levels was

chosen to include zero. Therefore, in our mixed-precision training approach, we will

update the device when the weight-update accumulation exceeds the conductance

change step size, ε = 2/(2n − 2). In subsequent discussions, we will use both ε and n

interchangeably to indicate the granularity associated with the weight-updates.

The conductance updates in the non-volatile devices are often stochastic. Even

though it is desirable to induce a change in conductance corresponding to an integer

multiple of ε, the observed change is often quite different from the desired one.

Therefore, the actual weight update from the device, denoted by ∆Ŵ , is modeled

as a Gaussian random variable whose mean is ε and whose standard deviation

(σ) is a fractional multiple of ε. This device model is used as the computational

memory elements representing the neural network synapses during its training using

the mixed-precision scheme. The devices are initialized to {-1, 0, 1} states with a
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Figure 4.4 a In the linear device simulations, the weights are initialized to a set
of states -1, 0, and 1. b In non-stochastic two-bit granular updates the devices go
through only these discrete states and hence the update granularity also becomes the
device resolution. This discrete weight solution gave a test accuracy of approximately
97%. However, in the case of stochastic programming, the devices can achieve
intermediate states. c The final weight distribution from the 3-bit update granularity
simulation is also shown. The higher weight resolution improved the test accuracy
by approximately 1%.

Source: [113].

discrete distribution whose variance is normalized by the number of neurons in the

pre- and post-synaptic layers. Device read noise and analog-digital converters are

ignored at this stage. The simulated classification accuracies with limited granularity

and with different amounts of stochasticity in the updates are shown in Figure 4.3.

In the case where the weight updates are non-stochastic the test accuracy drop is

only 1% for 2-bit, and with 3-bit granularity, the accuracy is very close to that

obtained in the floating-point simulation (reference). As the stochasticity increases,

the performance degrades with diminishing number of bits. However, it is remarkable

that even though the standard deviation of the weight update is equal to or greater

than the mean weight update granularity itself, drop in the test accuracy is still

within approximately 4% for 2-bit granularity. The test accuracy becomes closer to

the reference floating-point accuracy as the device granularity is further reduced.

61



0 5 10
Epoch number

104

106

108

1010

N
um

be
r 

of
 d

ev
ic

e 
up

da
te

s Reference

W
JI

8-bit
6-bit
4-bit
3-bit
2-bit

0 5 10
Epoch number

104

106

108

1010

Reference

W
KJ

Figure 4.5 Sparsity of device updates in the computational memory array. The
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Source: [69].

The distributions of the initial and trained weights in the two layers of the

neural network for the 2-bit and 3-bit update granularity are shown in Figure 4.4.

The distributions are shown for non-stochastic device programming and hence

the final weights are also discrete and the number of levels corresponds to the

update granularity. We observe that increasing the number of levels improved the

classification performance until an update granularity of 4-bit beyond which the

test accuracies remained approximately constant. The stochasticity associated with

conductance updates helps to create a non-discrete weight distribution. On the other

hand, we found this to have no significant advantage and we typically observe a

decrease in the classification performance with increasing stochasticity (Figure 4.3).

From the previous discussion, it can be seen that increasing the resolution of

conductance change beyond a certain value does not necessarily improve the network

performance. Moreover, in the mixed-precision scheme, there is a significant reduction

in the device programming cost with the use of larger εs. In Figure 4.5, we show the
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Figure 4.6 Effect of asymmetric conductance update in mixed-precision training.
The test accuracy, when trained with devices of fixed 8-bit potentiation granularity
and variable depression granularity, is plotted as a function of the depression
granularity (expressed in bits). Weight updates are assumed to be deterministic.
The resulting test accuracy shows less than 1% accuracy drop even in the highest
asymmetric case in the simulation.

Source: [69].

number of device updates during each epoch of training. The maximum number

of device updates, calculated as the product of the synapse count and the training

image count, assuming all the weights are updated after each image presentation, is

indicated as the reference. However, in the mixed-precision approach, we accumulate

the updates in high precision. As a result, the smaller updates are combined and

delivered together to the device. Hence, as the device update granularity (ε) increases,

the devices need to be programmed less often, resulting in eventual energy savings.

Programming resistive memory devices incur significant time and power penalty and

hence it is desirable to reduce the number of such programming instances, without

compromising the network performance. For the chosen network architecture and

classification problem, 4-bit update granularity seems to offer the best case scenario

of highest test accuracy with reduced programming expense.

Next, we study the influence of asymmetric conductance update response. We

assume a device with fixed but unequal potentiation and depression granularity. The

mixed-precision method can cope with this behavior by using different thresholds,

εP for conductance increment and εD for conductance decrement. For example, in
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Figure 4.6 we assume an 8-bit potentiation granularity and the depression granularity

is varied. The one-bit depression in the figure corresponds to a situation where the

update granularity, εD, equals the entire weight range in contrast to the previous

definition. The weight updates are assumed to be deterministic. The resulting

test accuracies show less than 1% drop even for the maximum asymmetric case

tested, demonstrating the efficacy of the proposed scheme to tolerate device update

asymmetry effectively.
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Figure 4.7 a Non-linear device model: the weight update (∆W ) is modeled as
exponentially dependent on the current state, W . The exponential function for
different amounts of non-linearity is plotted. b Corresponding device model pulse
response, where 14 potentiation pulses followed by the same number of depression
pulses are applied to the device. c Non-linear device model as synapse for DNN
training. β = 0 correspond to a linear and symmetric device and higher β values
indicate an increasing amount of non-linearity. Approximately 4-bit weight update
granularity is assumed for the device model and mixed-precision training. Weight
updates were non-stochastic. The result shows that there is no significant degradation
in the test accuracy even for β = 5 that corresponds to a highly non-linear
conductance response.

Source: [113].

Subsequently, we investigate the influence of the non-linear conductance

response. To analyze this we simulated the training problem using a device model

whose non-linearity could be tuned. We chose an exponential function to model

the state dependency of ∆W as suggested by Querlioz et al. [116]. The model
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essentially captures the behavior where a resistive memory device closer to the

boundary conductance will exhibit a smaller update compared to those away from it

when updated towards the boundary.

∆ŴP = αe
−β W−Wmin

Wmax−Wmin (4.1)

∆ŴD = αe
−β Wmax−W

Wmax−Wmin (4.2)

Here, ∆ŴP and ∆ŴD model the potentiation and depression, respectively for a

device at a conductance of W . Wmin and Wmax represent the limits of the device

conductance. We used the parameter β to tune the amount of non-linearity and

α to adjust the update granularity. To make a reasonable comparison in training

performance using models of different amount of non-linearity, we assume that two

criteria have to be satisfied: the device models must have the same on-off ratio and

they must take the same number of programming steps to span the whole conductance

range, irrespective of the non-linearity. The ∆Ŵ versus W , and W versus pulse

number responses satisfying these conditions for different values of β are shown in

Figure 4.7(a) and (b). Here, β = 0 correspond to a linear device. The number

of pulses for full range potentiation or depression is assumed to be corresponding

to that of a 4-bit update granularity. The same update granularity is assumed to

determine the ε for the mixed-precision scheme for varying amount of non-linearity.

The resulting test accuracies are plotted as a function of β in Figure 4.7(c). It can

be seen that there is no significant degradation in the test accuracy even for β = 5,

which is very close to the behavior of a binary device.

4.4.3 Inaccuracies arising from matrix-vector multiplication

In this section, we analyze the influence of conductance fluctuations and finite

resolution of data converters. Resistive memory devices typically exhibit fluctuations
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Figure 4.8 a Effect of read noise. Gaussian distributed additive read noise is added
with the computational memory devices whenever they are used for multiplication.
The standard deviation (STD) of the read noise is varied as a fraction of the total
device conductance range. For the mixed-precision training, a 4-bit weight update
granularity and non-stochastic programming are assumed. There is no significant loss
in test accuracy even up to a read noise corresponding to 5% of the total weight range.
b Effect of finite resolution data converter. The weight update granularity is assumed
to be 4-bit, without stochasticity and read noise. The curve with triangle indicates
simulation results where DACs are used at the crossbar input whereas the output
current is read back in floating-point precision. The curve with the inverted triangle
indicates results where the crossbar input has floating point precision whereas ADCs
are used for reading back the output current.

Source: [69].

in conductance arising from trapping/detrapping processes [117]. The effect of this

read noise in the DNN training using the proposed scheme is tested by adding a

zero mean white Gaussian noise to a linear device model. The noise is added to

the weights whenever it is used in the matrix multiplication in the forward and the

backward propagation. It is also incorporated during the testing phase (only forward

propagation). The standard deviation of the noise is varied as a fraction of the total

weight range. The resulting test accuracies are shown in Figure 4.8a. It can be seen

that the methodology is quite robust to up to 5% read noise.

An additional source of error in the matrix-vector multiplication is due to

quantization from the DACs and ADCs. During forward propagation, the neuron

activations evaluated in the digital domain are converted to analog voltages using
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DACs before they are applied to the word lines of the crossbar array. The weighted

sums obtained as currents in the bit lines are read back using ADCs. Similarly,

the back-propagated errors are converted to analog voltages when applied to the

crossbar array matrices. The ranges for the digital to analog converters are fixed for

sigmoid and tanh neuron activations, whereas for the ReLu neurons this could be a

challenge as their range dependents on the data and weight distribution. Here, we

chose sigmoid neurons for our network, which fixed the DAC range in the forward

propagation. Furthermore, we normalized the back-propagated errors to fix the range

for its interface converters to analog voltages. The normalization factor is multiplied

with the learning rate during the weight update calculation. However, the input

for the analog to digital converters are matrix-vector multiplication results and their

distribution is dependent on the number of neurons and the weight distribution in the

layer. In this work, the range for ADC was determined by observing the distribution

of corresponding variables representing the weighted sums. To study the effect of

DACs and ADCs separately, the bit precision of one of them is varied, whereas the

other variables are represented in floating-point precision. Figure 4.8b shows that

8-bit resolution is sufficient to avoid a noticeable degradation in test accuracy.

Output

Input

Converter range

Number of levels

Figure 4.9 The quantization function at the computational memory periphery
should be chosen such that there is no edge at x = 0, as seen in the blue curve,
as opposed to the red curve.
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Quantization function The weight updates during the training are determined

as the product of the neuron activations and back-propagated errors (∆W = η.x.δ).

While the magnitude of the ∆W is determined by the learning rate η, whether the

weights are potentiated or depressed or not updated is determined by the sign of the

x and δ. It is essential to maintain the direction of weight update for the faithful

implementation of the gradient descent based backpropagation algorithm. Therefore,

the minimum amount of information to be maintained after quantization of neuron

activations and error function is if they are positive, negative, or zero, requiring

a minimum of 3 levels. Hence, quantization functions should be designed not to

lose this information as the signal is propagated through the multiple weight layers

implemented using the computational memory arrays. For example, the quantization

function must not exhibit an edge at the point x = 0 (i.e. as seen with the blue

curve in Figure 4.9 as opposed to the red curve), as this leads to severe performance

degradation, due to near-zero activations and gradients being mapped to a value which

is much larger in magnitude. Considering that in most cases one wants the range to

be symmetric qmin = −qmax this motivates our choice of quantization function:

q(x) = clip

(
qmax − qmin

2n
· round

(
2n

qmax − qmin
(x− qmin)

)
+ qmin

)
(4.3)

where clip(x) clips the value of x to [qmin, qmax] and round(x) rounds x to the nearest

integer value.

Since the magnitudes of the backpropagated gradients change over training

examples, they are normalized before feeding into the crossbar array. The resulting

output vector from the array is scaled back using the same normalization factor. The

full matrix-vector multiplication W · x with a matrix W and an input vector x is

therefore simulated in the following manner:

qADC

(
W · qDAC

(
x

||x||

))
||x|| (4.4)
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where qDAC() and qADC() are the quantization functions corresponding to the

DAC, and the ADC, respectively. Since the data input to the DAC is in the

range [−1, 1] or sometimes [0, 1] if the preceding neuron activations are Tanh or

Sigmoid, its quantization ranges for the different layers can be easily determined.

Meanwhile, the ADC inputs are summations of currents from the crossbar array

and its range is influenced by the array size, array input distribution, and the array

device conductance distribution. While it may be possible to determine the ADC

quantization ranges from the knowledge of these factors, for the current study we

used distributions obtained from the corresponding reference training performed

in high-precision. Scaling of the conductance to the actual synaptic weight is

also obtained from the high-precision trained weight distribution. However, the

requirement of reference can be avoided by adaptive scaling factors at the crossbar

periphery in future implementations (Chapter 5).

4.5 Discussion

The non-volatile memory crossbar array based computational memory unit is ideally

suited to perform matrix-vector multiplications. By utilizing the computational

memory to perform those operations when training DNNs, the forward and the

backward propagation of data can be significantly accelerated. Also, the processor-

memory bottleneck is reduced as the synaptic weights are not transferred during the

propagations. However, the necessity to frequently update the memory devices poses

an additional challenge compared to applications of computational memory where

the matrix does not change [12, 13]. In back-propagation based training algorithm

it is desirable to update the weight matrix after the presentation of each training

instances. Using devices like PCM, which can attain a continuum of conductance

states, it is possible to iteratively program the devices to the desired conductance

states accurately [90]. On the other hand, this involves repeated read/write cycles
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and incur significant time/power penalty. The necessity to program a large number

of devices very often could overshadow the performance gain that we obtain from the

in-place matrix-vector multiplication in the crossbar array.

On the other end of the spectrum lies the non-von Neumann coprocessor

approach proposed recently [72, 73]. As before, the synaptic weights are stored

in resistive memory devices organized in crossbar arrays and the matrix-vector

multiplications during forward and backward propagations are realized in place

using these arrays. However, they suggest a fully parallel conductance update by

overlapping pulses from the pre- and post-synaptic neuron layers. By realizing the

neurons and associated circuits in place, this offers the possibility of a fully parallel

non-von Neumann system. By accelerating all the three components of training

DNNs, namely forward propagation, backward propagation, and weight update,

this approach could be the fastest and most energy-efficient compared to alternate

approaches. However, the non-idealities associated with programming the memory

devices will pose significant challenges in realizing state-of-the-art classification

accuracies. An ideal device is expected to have a 10-bit symmetric weight update

granularity [73]. Experimental demonstrations using more realistic phase change

memory devices have shown a limited test accuracy of less than 83% [72].

Our mixed-precision approach is designed to take into account the limited device

update granularity seen in experimental devices today. The proposed architecture

is significantly tolerant of conductance programming asymmetry and update non-

linearity. In contrast to the above-discussed methods, we deliver the conductance

updates only when weight updates accumulated in high precision become comparable

to the device update size. As a result, the number of device programming instances

are reduced by several orders of magnitude as the update size increases. As a result,

the advantage of matrix-vector multiplication acceleration in the data propagation

stages is preserved without significant device programming overhead. We follow a
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blind single pulse programming approach without read-back to deliver an ε amount

of update. The value of ε is chosen based on the device dynamics. The simulations

show that the resulting sparse weight updates training are able to achieve classification

accuracies comparable to those from the floating-point simulations in a similar number

of training epochs. Further, the high precision accumulation and less frequent weight-

updates combined with the inherent error tolerance of neural network training enable

the architecture to cope with the high device programming stochasticity.

We believe that the weight update and accumulation overhead associated

with this mixed-precision architecture is significantly less compared to the training

acceleration we obtain. The training acceleration is achieved by computing the

multiply-accumulate operation of approximately O(N2) complexity in fixed time for

each N × N neural network layer. The device updates are sparse and the weight

update accumulation in high precision is equivalent to the weight update scheme in

standard stochastic gradient decent except that the memory is initialized to zero here.

The additional thresholding/flooring and subtraction operations are computationally

simple and do not incur additional memory read/write operations as they can be

performed concurrently with the weight-update accumulation. Still, it is desirable

to further accelerate the weight update stage of DNN training as the weight-update

determination is an O(N2) operation.

4.6 Summary

The limited granularity of the conductance change is the major limiting factor in

achieving high training performance from non-volatile memory arrays. We proposed

a mixed-precision scheme to compensate this by accumulating the weight updates in

high-precision and programming it to the device only when the accumulated amount

is comparable to the device update granularity. This scheme allows the use of the

crossbar memory array to accelerate the forward and backward data propagation
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stages of the back-propagation algorithm. The architecture is shown to be tolerant

to the device non-idealities such as limited granularity, stochasticity, asymmetry, and

non-linearity.
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CHAPTER 5

EXPERIMENTAL VALIDATION OF MIXED-PRECISION TRAINING
ARCHITECTURE

5.1 Introduction

In this chapter, we present experimental validations of the mixed-precision archi-

tecture (MPA) introduced in Chapter 4. The neural network synapses are realized

using the PCM array fabricated in 90 nm technology. The PCM model developed

in Chapter 3 is used to pre-validate the experiment. We demonstrate floating

point precision comparable training and test accuracies and inference over a month’s

time from the experiment. The synaptic device we used is stochastic, non-linear,

asymmetric, and limited precision conductance update behavior in response to the

programming pulses. Successful experimental demonstration using such non-ideal

devices validate the efficacy of the training architecture.

5.2 Experiment for Training Handwritten Digit Classification Network

5.2.1 Training using differential PCM synapses

We first experimentally demonstrate the efficacy of the mixed-precision architecture

by training a two-layer neural network to classify handwritten digits from the MNIST

dataset (Figure 5.1a). The network was trained using the 60,000 training images

for 30 epochs with a batch size of 1, i.e., the weight updates were computed after

every training example. The order of the images was randomized for each training

epoch. The gray-scale images were normalized to lie between 0 and 1 and no other

pre-processing was performed on the training set. We used a fixed learning rate of

0.4.

Each weight of the network, W , is realized using two PCM devices in a

differential configuration (W ∝ (Gp − Gn)). The 198,760 weights in the network
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Figure 5.1 a Network structure used for the on-chip mixed-precision training
experiment for MNIST data classification. Each weight W in the network is realized
as the difference in conductance values of two PCM cells, Gp and Gn. b Stochastic
conductance evolution of Gp and Gn corresponding to 5 synaptic weights associated
with the second layer during training. c The number of device updates per epoch
from the two weight layers in mixed-precision training experiment and high-precision
software training. It shows the highly sparse nature of weight update in MPA.

are mapped to 397,520 PCM devices in the hardware platform. A few empirical rules

have been proposed for weight initialization to achieve high training performance. A

normalized initialization [118] suggests a uniform distribution, given as

W ∼ U
[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]
(5.1)

where nj and nj+1 are the number of neurons in the pre- and post weight layers.

This initialization ensures that the weighted sum falls in a range where the neuron

activation function (sigmoid in this case) has a non-zero gradient. However, the
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Figure 5.2 a Classification accuracies on the training and test set from the mixed-
precision training experiment. The maximum experimental test set classification
accuracy, 97.73%, is within 0.57% of that obtained in the floating-point (FP64)
software training. The experimental behavior is closely matched by the training
simulation using the PCM model. b Inference performed using the trained PCM
weights on-chip on the training and test dataset as a function of time elapsed after
training showing negligible accuracy drop over a period of one month.

stochastic nature of the conductance programming makes it challenging to achieve

narrow distributions in different weight layers using nanoscale devices. In PCM,

we use an iterative programming scheme to achieve a specific target conductance.

A sequence of programming pulses are applied and the error with respect to the

target conductance after each pulse is used to determine the pulse amplitude of the

next programming pulse. We used 500 ns pulses and current pulses of amplitudes

in the right half of the PCM programming curve. The maximum number of such

programming attempts per device was limited to 20. The standard deviation and

distance from the target value were observed to be dependent on the target value

and conductance drift. In our experiment, the iteratively initialized conductance

distribution had a mean of 1.6µS and a standard deviation of 0.83µS. The device

conductances were mapped to the neural network weights using a linear mapping

between [-8µS 8µS] in the conductance domain and [-1 1] in the weight domain.
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Since the platform allowed only serial access to the devices, all the conductance

values were read and the matrix-vector multiplications for the forward and backward

data-propagation were performed in software. The resulting weights updates were

accumulated in the variable χ as in the MPA. When the magnitude of χ exceeds

ε (= 0.096 corresponding to an average conductance change of 0.77µS per chosen

programming pulse), a 50 ns, 90µA pulse is applied to Gp to increase the weight if

χ > 0 or to Gn to decrease the weight if χ < 0; |χ| is then reduced by ε. These

device updates were performed using blind single-shot pulses without a read-verify

operation and the device states were not used to determine the number or shape

of programming pulses. Since the continuous partial SET programming could cause

some of the devices to saturate during training, a weight refresh operation is performed

every 100 training images to detect and reprogram the saturated synapses. For the

weight refresh operation, the conductance pairs were read and if one of the device

conductance is above 8µS and if their difference is less than 6µS, both the devices

were RESET using 500 ns, 360µA pulses and their difference was converted to a

number of SET pulses based on an average observed conductance change per pulse.

During this weight refresh, the maximum number of pulses was limited to 3 and the

pulses were applied to Gp or Gn depending on the sign of their initial conductance

difference. The updated conductances of the devices were read and used for the

subsequent data-propagation.

The PCM devices show temporal dynamics such as conductance drift and read

noise. As a result, each matrix multiplication in every layer will see a slightly different

weight matrix even without any weight update. However, the cost of re-reading the

entire conductance array for every matrix-vector multiplication in our experiment

was prohibitively large due to the serial interface. Therefore, we read all devices once

after the initialization and along with every succeeding read of programmed devices,

we read all the devices in the second layer and a set of 785 pairs of devices from the
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Figure 5.3 The PCM model conductance distribution in the two weight layers ((a)
and (b)) at the end of 30 epochs of training matches that from the experiment. It
indicates that the model is able to capture the overall device programming dynamics
in the training scenario which involves many device programming events with varying
amounts of intermittent delays and occasional RESET.

first layer in a round robin fashion. As a result, the device states in the second layer is

updated on an average every 2 s, while those in the first layer is updated every 500 s.

The resulting evolution of conductance pairs, Gp and Gn for five random

synapses from the second layer experienced by the neural network during the training

is shown in Figure 5.1b. It illustrates the stochastic conductance update, drift between

multiple training images, and the read noise experienced by the neural network during

training. Due to the accumulate-and-program nature of the mixed-precision training,

only a few devices were updated after each image. In Figure 5.1c, the number of

weight updates per epoch in each layer during training is shown. Compared to a

high-precision training where all the weights are updated after each image, there are

many orders of magnitude reduction in the number of updates in the mixed-precision

scheme, thereby reducing the device programming overhead.

The classification performance of the network was evaluated after every epoch

on the entire training set and on a 10,000 test set which was not used for the training

(Figure 5.2a). The network achieved a maximum test set accuracy of 97.73% which

is only 0.57% lower than the equivalent classification accuracy of 98.30% achieved in

the high-precision training.

77



0 10 20 30
Epoch number

95

96

97

98

99

100

A
cc

ur
ac

y 
(%

)
Test set

Training set

a

FP64 training
PCM model training
FP64 test
PCM model test

0 50 100 150
Epoch number

94

95

96

97

98

99

100

A
cc

ur
ac

y 
(%

)

Test set

Training set

b

FP64
PCM model, LR = 0.2
PCM model, LR = 0.4

Figure 5.4 a Training simulation of the experiment using multiple random seeds.
b Training for longer epochs: even though the programming stochasticity could slow
down initial training convergence, the MPA accuracy could be equivalent to floating-
point given sufficient training epochs.

The high precision comparable training performance from the mixed-precision

deep learning architecture, where the computational memory comprises noisy non-

linear devices with highly stochastic behavior demonstrates the existence of a solution

to these complex deep learning problems in device-generated weight space. And

even more remarkably, it highlights the ability of the mixed-precision architecture to

successfully find the solution. We used the device model we developed, to pre-validate

the training experiment in simulation and the resulting training and test accuracies

are also plotted in Figure 5.2a. The model was able to predict the experimental

classification accuracies on both training and test set within 0.3 %, making it a

potential tool to evaluate the trainability of PCM-based computational memory for

more complex deep learning applications. The model was also able to predict the

distribution of synaptic weights across the two layers remarkably well (Figure 5.3).

The trajectories of training and test accuracies in Figure 5.2a still lags behind

those observed in the floating-point training. This difference in performance could be

attributed to the device programming noise. During training, the weight updates are

computed using the stochastic gradient descent and accumulated in high-precision.
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Figure 5.5 a The PCM model response whose programming noise is scaled by 0.5
is compared with the actual device response. Error bar shows one standard deviation.
b Classification performance evolution during the training of the two layer MNIST
classifier with the PCM model with reduced noise.

However, the device programming used to transfer these accumulated updates is

highly stochastic. This may cause the network to take longer to reach the ideal

solution (Figure 5.4). In Figure 5.4, we also show, via simulations using the PCM

model, that the training performance could be improved by slightly lowering the

learning rate. A lower learning rate implies a longer accumulation of computed weight

updates before it reaches the threshold and is transferred to the device. This reduction

in programming frequency leads to a reduced number of deviations from the desired

conductance and thus, faster convergence. While lowering the learning rate might

seem to improve the convergence and reduce the programming energy, eventually, it

could cause the training to be slower.

Another direction that we pursued was to engineer the device for reduced

programming stochasticity. To test this we scaled the standard deviation of

the programming noise (σ(∆G)) of our PCM model and observed that a 50 %

reduction in stochasticity was necessary to achieve floating point equivalent training

convergence. The model response we used to test the training and the resulting

training performance is shown in Figure 5.5.
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5.2.2 On-chip inference

After the training, the network weights in the PCM array are read repeatedly over

time and the classification performance (inference) was evaluated on training and

test datasets (Figure 5.2b). The network showed less than 0.3 % drop in classification

accuracies for over a month’s time indicating the feasibility of using trained PCM

based computational memory as an inference engine.

5.2.3 Training using on-chip ohmic multiplication

Since the PCM experimental platform allows only serial access to the individual

devices, the experimental demonstrations were primarily performed such that

multiplications and additions as part of the matrix computations were performed

in the software outside the chip with conductance values read from the array using

a constant read-voltage. However, this approach neglects the device non-linearity in

response to the different read voltage amplitude. The actual conductance mechanism

in the chalcogenide phase change material is an active area of research [101, 119]. In

this section, we describe an experiment which is used to validate the mixed precision

training architecture even in the presence of PCM non-linear I-V response.

For a real cross-bar array based on matrix-vector multiplication, the neuron

activations and the backpropagated errors are converted to voltages and applied at

the word/bit lines. Our experimental platform allows a read voltage from 0.12 V

to 0.3 V. Hence, we normalized the activation and error vectors and used a linear

mapping to convert their magnitude in the range of [0 1] to [0.0 V 0.3 V]. The voltage

values below the minimum read voltage of 0.12 V are neglected. The effective mapping

is shown in Figure 5.6a.

In this experiment, all neuron activations and error vectors are converted to

read voltages and are used to read the conductance values for each training instance.

Due to the sequential nature of the memory access in the current experimental
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Figure 5.6 Experimental training and test set classification accuracy, when the
network in Figure 3a is trained with 5,000 training images and 10,000 test images
from the data set where the on-chip device conductance response is used implement
the multiplication in the weighted summation operation in the forward and backward
propagation.

platform, this conductance read operation is very time-consuming. Hence, the

training experiment which implements Ohmic multiplication was performed using

a subset of the original MNIST database. We used the first 5,000 images for the

training and the entire 10,000 test images for determining the test accuracies. The

network was trained for 5 epochs. The resulting classification performance on the

training and test set is compared with a similar experiment using the same training

set, however, was performed without the on-chip ohmic multiplication (Figure 5.6b).

This is equivalent to using a constant read voltage for the reference experiment. We

observed that the PCM non-linear response did not affect the training efficacy of the

mixed-precision approach.

5.2.4 Weight refresh methods

When the neural network weights are implemented as the difference of two PCM

devices (W = β(Gp −Gn)), the weight increment is achieved by a partial-SET pulse

to the Gp device and weight decrement is achieved by a partial-SET pulse to the

Gn device. This leads to monotonic conductance increase for all the devices in the
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Figure 5.7 a A comparative study on the impact of different refresh schemes
on training and test accuracies using on-chip training experiment. The training
experiment was performed with 5000 training images and 10,000 test images from
MNIST. b An estimate of the number of programming pulses used in the iterative,
multi-pulse, and RESET weight refresh schemes. For iterative programming, an
average of four pulses per device programming is assumed. The programming
pulses for weight refresh involve both the pulses used for the RESET and successive
programming pulses applied (none in RESET case) to re-program the device.

network, and the devices receiving a sufficiently large number of programming pulses

will eventually saturate. This necessitates periodic detection of saturated devices and

their reprogramming. In our training experiment, the weight refresh is implemented

as follows. After every 100 training examples, all the device conductance pairs are

read. The conductance pair is checked if one of them is above 8µS and if the difference

between them is less than 6µS. When this condition is met, a weight refresh operation

is performed. An ideal weight refresh operation will RESET both Gn and Gp and their

original conductance difference Gp−Gn is reprogrammed to one of these devices based

on the sign of the difference. However, PCM programming is a stochastic process.

While the RESET could be done in using a single pulse of sufficient amplitude, the

conductance reprogramming to a reasonable accuracy could take many write-read-

verify cycles and hence could be expensive. Here, we experimentally verify the impact

of simpler conductance reprogramming methods.
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We repeated the MNIST based training experiment with actual PCM devices in

the array, with three different reprogramming methods. Here, a subset of the original

dataset was used to train the network. We trained the network using 5,000 images

for 5 epochs and tested using 10,000 test images. In the first case, the conductance

reprogramming used the iterative method to accurately reprogram the difference [90].

In the second case, the conductance difference was divided by the average conductance

change to determine the number of programming pulses to approximately reprogram

the difference. Here, we blindly applied a few programming pulses without a

read-verify operation. In the third case, we completely avoided the reprogramming,

and the weight refresh operation involved only the conductance RESET. The resulting

experimental training and test accuracies are plotted in Figure 5.7. The corresponding

high-precision training results are also shown for reference. The classification

performance from the three schemes almost overlap. Further, in this experiment,

where training was performed using a subset of actual training data, the experimental

classification performance was overlapping the high-precision results.

This result indicates that the weight refresh operation could be as simple as

resetting a few devices in the array. This RESET based weight refresh scheme

brings the devices out of saturation and allows further updates. We further observed

that the number of programming pulses necessary for the weight update increased

incrementally as we go from iterative refresh to multi-pulse refresh to RESET based

refresh. However, if we consider the complexity and delay associated with the

reprogramming in the weight refresh scheme, a RESET based weight refresh could

be a more suitable solution, as the reprogramming of the weights, in this case, will

automatically happen during the succeeding training epochs.
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5.2.5 Training experiment using non-differential PCM synapse
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Figure 5.8 Training and test accuracies from the MPA training experiment for
MNIST digit classification using the network in Figure 5.1a, where weight increments
and decrements are implemented by programming a single PCM device per synapse.
Irrespective of the conductance change asymmetry, the training achieves a maximum
training accuracy of 98.77% and a maximum test accuracy 97.47% in 30 epochs, within
1% of that obtained in corresponding high-precision (FP64) training. FP64 training
has a training and test accuracy of 99.73% and 98.33%. This experiment demonstrates
the ability of the MPA to compensate the conductance update asymmetry often
observed in the nano-scale memristive devices.

Next, we experimentally evaluated the MPA’s efficacy to compensate large

device asymmetries while training neural networks. Abrupt RESET behavior

of the PCM makes its conductance potentiation and depression behavior highly

asymmetric and hence, we use the differential configuration with an occasional

weight refresh. A non-differential single PCM configuration for the synapse in

the mixed-precision training architecture will enable us to implement both weight

increment and decrement by programming the same device in either direction and

hence avoid the conductance saturation and associated weight refresh overhead.

We demonstrated the feasibility of this approach in Chapter 4 using linear device

models. The main challenges in realizing it experimentally using PCM devices is

the conductance drift (specific to PCM) and the difficulty in achieving narrow initial

conductance distributions.
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We conducted the same training experiment as before for the MNIST digit

classification, except that now each synapse was realized using a single PCM with a

reference level to realize bipolar weights. The experiment requires 198,760 PCM

devices. Potentiation is implemented by 90µA, 50 ns partial SET pulses and

depression is implemented using 400µA, 50 ns RESET pulses. In the mixed-precision

architecture, this asymmetric conductance update behavior is compensated by using

different εs for the two polarities of updates. We used εP corresponding to 0.77µS

for weight increment and εD corresponding to 8µS for weight decrement.

To represent the positive and negative weight ranges using the positive

conductance a reference level (Gref ) is necessary. Then the network weights W ∝

(G − Gref ). Ideally, the reference levels could be fabricated using any resistive

device which is one time programmed to the necessary conductance level. In the

case of PCM devices, due to its conductance drift, the reference levels must also

be implemented using the PCM technology which follows the same average drift

behavior of the devices that represent the synapses. In this experiment, we used

the average conductance of all the PCM devices read from the array to represent

the Gref . While this average based in Gref is impractical in real implementation

due to the excessive overhead if this experiment succeeds it demonstrate the MPA

tolerance to device asymmetry. There are research results indicating the significant

reduction in PCM drift via structural and material engineering, and this could lead to

a simpler implementation of the reference level in the future. Also, we could explore

the possibility to design neural networks with positive weights alone.

Now, for the current experiment, the PCM devices including those used for the

reference levels (which is same as the synaptic PCMs in this experiment) need to

be initialized to the middle of its conductance range. The PCMs were iteratively

initialized to a distribution with mean conductance of 4.5µS and standard deviation

of 1.25µS. While a narrower distribution was desirable [118], it was difficult to achieve
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in the chosen initialization range. However, this was compensated by mapping the

conductance values to a narrower weight range at the beginning of the training

which is progressively relaxed over the next few epochs. The conductance range

[0.1, 8]µS is mapped to [-0.7, 0.7] during the epoch 1, which is incremented in uniform

steps/epoch to [-1, 1] by epoch 3 and is held constant thereafter. Also, the mean of

the initial conductance distribution was chosen slightly higher than the middle of the

conductance range to compensate for the eventual conductance drift.

The classification performance of the experiment on training and test set for

the 30 epochs of training is shown in Figure 5.8. Maximum test accuracy of 97.27%

which is approximately within 1 % of that obtained in high-precision training was

achieved within 30 training epochs. These results conclusively show the efficacy of the

mixed-precision training approach and provide a pathway to overcome the stringent

requirements on the device update precision (10 bit) and symmetry (within 2%)

thought to be necessary to achieve high performance from memristor based learning

systems [72, 73, 120, 109].

5.3 Training Deeper Neural Networks

We further evaluated the efficacy of the mixed-precision architecture to successfully

train deeper neural networks to perform more complex tasks in collaboration with

Christophe Piveteau and Vinay Joshi at IBM who developed a mixed-precision

training simulator based on the tensorflow deep learning framework. Christophe

tested the architecture on a convolutional neural network (CNN) for classifying

CIFAR-10 dataset images and a long-short-term-memory (LSTM) network for

character level language modeling (using Penn Treebank dataset). Vinay demon-

strated the training of a generative-adversarial network (GAN) for image synthesis

based on the MNIST dataset using the MPA architecture. A brief description of the

methods, main results, and observations are provided here.
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The simulator was implemented as an extension to the Tensorflow deep learning

framework. The network synapses were realized using the PCM model we developed

in Chapter 3. Custom tensorflow operations were implemented that take into account

the various attributes of the PCM devices such as conductance range, read noise, and

conductance drift as well as the characteristics of the data converters.

The CNN network we trained has approximately 1.5 million trainable parameters.

The convolution layer weights are mapped to the computational memory crossbar

array by unrolling the filter weights and stacking them to form a 2D matrix [121].

The network is trained using 50,000 CIFAR-10 images with a batch size of 100 for

400 epochs. We observed that the test accuracy of the CNN on CIFAR-10 (86.70%)

trained via MPA eventually exceeds that obtained from equivalent high-precision

training using 32-bit floating point precision (FP32) (86.10%). This was achieved

while having a significantly lower training accuracy and is suggestive of some highly

beneficial regularization effects arising from the use of stochastic memristive devices

to represent synaptic weights.

LSTMs are a class of recurrent neural networks used mainly for language

modeling and temporal sequence learning. LSTM cells are a natural fit for crossbar

arrays, as they basically consist of fully-connected layers. The network is trained

using a popular benchmark dataset called Penn Treebank. The network is trained

to predict the next character in a sequence from the 50 character alphabet from the

dataset. The characters are represented using one-hot coding. The network with

3.3 million trainable parameters has two LSTM modules stacked with a final fully

connected layer. The mixed-precision training performance of the LSTM network

was evaluated using a perplexity metric defined as 2 raised to the power of average

cross-entropy. The average cross-entropy represents the effective number of bits per

character. While the test perplexity from MPA and FP32 training are comparable,
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the difference between training and test perplexities is significantly smaller in MPA

suggesting regularization effects similar to those observed in the CNNs.

GANs are generative neural networks trained using a recently proposed

adversarial training method [122]. The performance of the generator to replicate

the training data set (MNIST) distribution is evaluated using a Frechet distance

(FD) metric. MPA-based training achieved FD close to FP32-based training. The

training of GANs is particularly sensitive to the mini-batch size and the choice of

optimizers, even when training in FP32. We observed that the solution converges

to an optimal value only in the case of stochastic gradient descent (SGD) with a

momentum optimizer and a mini-batch size of 100; compared to the cases where

a momentum optimizer was avoided or batch size of one was used. Compared to

alternate in-memory computing approaches where both the propagations and weight

updates are performed in the analog domain [109], a significant advantage of the

proposed mixed-precision approach is its ability to seamlessly incorporate these more

sophisticated optimizers as well as the use of batch sizes larger than one during

training.

5.4 Mixed-Precision Weight Update

In the mixed-precision architecture, the matrix products corresponding to the forward

and backward propagation are computed using the parallel computing architecture

provided by the computational memory arrays, which could provide more than

two orders of computational efficiency improvement compared to the conventional

digital implementation. However, the weight update stage in the mixed-precision

architecture is implemented in the digital domain and is also crucial in determining

the overall acceleration and computational efficiency. In this section, we discuss a

mixed-precision implementation of the weight update stage, which could be optimized

to attain further improvements in efficiency.
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Figure 5.9 The training and test accuracies are compared for MPA based training
when the outer product for the weight update is implemented using 4-bit versions of
the neuron activations and errors in contrast to 64-bit floating-point (FP64) in the
two layer MNIST classification problem.

Weight update computation involves determining the gradient direction and

their relative magnitude with respect to other weights and then scaling it to an

appropriate magnitude (using the learning rate) and accumulating over the existing

weights. We observed that the precision required for these stages are different.

The first stage could be implemented using a few bits of precision (e.g. ∼ 4 bit),

while the subsequent scaling could be approximated by bit shift operations. The

direction of gradient and its relative magnitude is estimated by the outer-product of

the neuron activations and the back-propagated errors. If the errors and activations

are approximated using low bit precision, the resulting gradient matrix obtained as the

outer product of these vectors will be sparse. The subsequent gradient accumulation

requiring the highest precision (>= 16 bit) hence becomes sparse. Often, due to

the large size of the weight matrices, they need to be stored in the off-chip memory.

The sparse gradient accumulation in our mixed-precision approach will lead to a

significant reduction in this energy-hungry off-chip memory access, reducing the

overall complexity of the weight-update stage. Also, the low-precision representation

of the neuron activation and errors will reduce the complexity of the multiplier
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(area and computation time) and the on-chip memory storage. Figure 5.9 show the

negligible performance drop observed when the weight update is implemented using

low-precision representation of the neuron activations and error vectors in MPA for

the training problems such as MNIST digit classification.

5.5 Independent Training of Neural Networks

In the training simulations and experiments so far, we have used a fixed scaling

factor for mapping the device conductance to the network weights. The scaling factor

was determined based on the corresponding high-precision training implementation.

However, for the computational memory based architecture to function as an

independent deep learning accelerator, it is essential to determine the mapping

between device conductance and the desired network weights automatically. Here,

we discuss how this can be achieved by an adaptive scaling at the array periphery.

In this scheme, the scaling factor becomes also a trainable parameter learned via

backpropagation. Further, computational memory arrays should be able to represent

different network architectures to be an independent training engine. Therefore,

we also illustrate in this section how crossbar replicas can be used to improve the

efficiency of pipeline processing in neural networks such as in CNNs.

5.5.1 Adaptive conductance to weight mapping

The in-memory computations in the crossbar array are in the analog domain. The

backpropagation based training algorithm necessitates storing intermediate results in

the digital domain. As a result, an analog-digital conversion is necessary between

the computational memory and digital processing units and the resulting scaling

need to be taken into account while mapping conductance to weights. Figure 5.10a

shows the basic operation that happens when a crossbar array is used to perform

a multiply-accumulate operation where the connection strengths are realized using
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Figure 5.10 The multiply-accumulate operation can be viewed as the product and
sum of random variables. The analog to digital conversion correspond to a scaling
(with a quantization). An additional adaptive scaling factor is necessary to map the
device conductance to actual network weights. In a backpropagation based training
it is necessary to ensure that the scaling in the forward and backward propagation
should be the same. Therefore, Kcf ×Kvf = Kcb ×Kvb.

nanoscale memory devices. In contrast to floating-point numbers, they have a limited

dynamic range. Based on the physical nature of the device and chosen programming

conditions, it is feasible to evaluate the statistical nature of the conductance

distributions beforehand. Hence, assume that each conductance represents a random

number G of known statistics. Note that the actual conductance distribution will

also depend on the training problem. The approximate statistics of the input to the

crossbar array depends on the training dataset and the activation function of the

input neurons. Therefore, let the input which is applied as a voltage to the array be

represented as a second random variable vx.

Then the variance of the product of these two random variables is

var(GV ) = var(G)var(vx) + var(G)(E(vx))
2 + var(vx)(E(G))2 (5.2)

and the variance of the sum of the products is

var
(∑

Gvx
)

=
∑

var(Gvx). (5.3)
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Figure 5.11 a The evolution of Kcf in the two layers of the neural network during
its training to classify the MNIST dataset. b The training performance from two
identical networks initialized to the same state, when trained with an adaptive and
fixed scaling factor. The classification accuracy on the 10,000 test images is plotted.

Equation 5.3 gives the variance of the current which represents the multiply-

accumulate result from one of the bit-lines. The standard deviation of the output

current is proportional to the square root of the number of word lines. This

information could be used to tune the input range of the ADC at the periphery.

The design of ADC will be simpler if the output current has a zero mean. This

means that the goal of the synaptic array design should be to achieve symmetric

conductance distribution around zero. This could be achieved if both the positive

and negative half of a differential synapse configuration is implemented in the same

array and the required subtraction is performed in the analog domain. Now, for an

n-bit signed representation, the ADC output will be in the range [−2n−1, 2n−1 − 1].

This translation of the input current to output digital numbers in ADC represents a

fixed scaling factor, say Kcf in the forward propagation path. An adaptive scaling

factor Kvf is used next to scale the ADC output as appropriate input for the neurons.

Kvf should be initialized such that the neuron input from array lies in the range of

non-zero gradient for the neuron activation function. Kvf is adjusted using gradient

descent during backpropagation based training.
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The conductance-to-weight scaling factor should remain the same during the

forward and backward propagation for any weight layer. However, the optimum

scaling factor of the ADCs in the forward and backward path will differ as they

respectively are functions of the number of word lines (number of input neurons) and

bit lines (number of output neurons) which are not necessarily equal all the time.

Hence the corresponding scaling factors, Kcb and Kvb, for the backward propagation

need to be adjusted. For example, if m and n represent the number of input and

output neurons for the weight layer then we have,

Kcf ∝
1√
m

(5.4)

Kcb ∝
1√
n

(5.5)

Kvb = Kvf

√
n√
m

(5.6)

The proposed scheme for the initialization and adaptation for the scaling factor

for the crossbar peripheral circuits is tested using a training simulation for classifying

the MNIST handwritten images using the two-layer neural network and the PCM

model-based computational memory. An 8-bit quantization is assumed. The PCM

conductances were initialized to a distribution of mean 1.6µS and standard deviation

0.83µS. The conductance updates were supposed to be programmed via 90µA,

50 ns pulses. From the cumulative conductance evolution characteristics for this

pulse stream, the standard deviation of the conductance after a few pulses remain

approximately at 2.5µS. The training images normalized between zero and one is

assumed to represent the input voltages to the crossbar for the first layer and hence

its distribution is determined from the training dataset. For the second layer input, a

mean of 0.5 and a standard deviation of 0.4 is assumed for the sigmoid neuron output.

For the backpropagated normalized error a mean of 0 and a standard deviation of 0.4

is assumed. These numbers were used to determine the input ranges for the ADCs
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in the two layers in the forward and backward direction. The ADC output range,

fixed by its bit precision, was scaled to represent the input for synaptic neurons.

From Equation 2.3 shows the weight update is a function of the error, δ computed

at the input of neurons. δ is proportional to the gradient of the neuron activation

function. Hence, weight should be initialized to map the net input to the neurons

where the neuron activation function have a non-zero gradient so that the weights

receive non-zero updates and take part in the learning. For the sigmoid neurons, this

non-zero gradient lies approximately in the range [-7 7]. We initialized Kvf to map

the ADC outputs to a neuron input range of [-4 4] for a slightly higher gradient,

at the beginning of training. Subsequently, Kvf for the two layers are trained using

backpropagated gradients with a learning rate of 0.01. The device conductance was

trained using a learning rate of 3.2 which was determined by scanning a range of

learning rates during training. The evolution of the Kvf in the two weight layers

of the neural network is shown in Figure 5.11a. Figure 5.11b shows maximum test

accuracy of 97.8% which is comparable to what we obtained by carefully choosing the

conductance to weight mapping in Section 5.2.

5.5.2 Crossbar replication for pipeline processing

Dedicated computational memory arrays for all the layers in the network allows

multiple layers to be processed in parallel. However, for the pipeline to be efficient,

the delay in each of the layers should be comparable. For example, in CNN, the

number of sub-regions of the images that are being convolved is significantly different

in each convolution layer. The known implementation of convolution layers in the

computational memory require each sub-regions of the input images to be applied as

a vector to the crossbar array representing the filter coefficients [121]. This leads to

a significant mismatch in delay between layers, especially when large matrix-matrix

multiplications are being implemented as repeated vector-matrix multiplications in
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Figure 5.12 a The replicas of the crossbar arrays could be used to process B batches
of input vectors in parallel in any weight layer. The batches of vectors might be from
different training data or the different subregions of an image in a CNN. b The final
fully connected layer of a CNN could be replicated and trained to perform different
tasks based on the output of shared feature extraction layers.

a crossbar array. However, this could be solved to a certain extent by replicating

the relatively inexpensive computational arrays. In a mixed-precision architecture,

the weight update accumulator could be shared between the replicas (Figure 5.12a).

Ideally, these replicas are expected to represent identical conductance matrices, hence

initialized and trained using the same sequence of programming pulses. Meanwhile,

due to device programming stochasticity, each array will be slightly different. The

effect of this stochasticity needs further analysis. The error resilient nature of the

neural network could be expected to tolerate the statistical difference between the

replicas.

Another possible way to make use of computational memory replication is to

share the resources of a neural network to perform multiple tasks. In the notion

of transfer learning, the convolution layers trained for one task could be used for

another task by retraining just the final fully connected layers. Here, the replicated

fully connected layers could be trained separately such that the features extracted

using the convolution layers could be used to make different decisions simultaneously

(Figure 5.12b).
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5.6 Performance Assessment

In this section, we present a first-order assessment of the computational advantages

of the MPA compared to the traditional high-precision training engines. Further, we

discuss methods for improvements.

In a high precision implementation of DNN training, if z denotes the fraction of

computational resources that could be implemented using computational memory and

1−z denotes the fraction of conventional computational resources required for weight

update (calculation of desired weight change and it’s accumulation), then the overall

computational advantage is given by 1/
(
z
A

+ 1−z
B

)
, where A represents the efficiency

improvement that can be achieved due to the computational memory implementation

of the data propagation stages and B represents the efficiency improvement that can

be achieved for the remaining stages in the digital domain. The assumption being

made is that the additional overhead arising from MPA is negligible. The main

overhead is the need to program the devices. However, it can be seen that the number

of devices programmed per training example is highly sparse depending on the device

granularity [69]. For example, in the MNIST based training experiment, on average,

less than two devices per image were updated. First, we investigate the efficiency

gain, A, due to the use of computational memory for the forward and backward

propagation stages. The main advantage is that in a conventional computing unit,

the weights need to be moved into a processing unit and processed whereas, in the

computational memory approach, the PCM devices can store the weights as well as

perform the matrix-vector multiplications using them without the associated data

movement. Moreover, the multipliers associated with the conventional approach will

have a significantly large area footprint. For example, the area of a 16-bit floating

point MAC is on the order of 106 F 2. The area consumed by a single PCM device is

around 25F 2. On a first order estimation, more than a hundred of such 1024× 1024

crossbar arrays of 25F 2 PCM cells could be fit in 2 % of an 815 mm2 chip area in
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14nm technology node, where we assumed 20 % array efficiency with the remaining

80 % composed of the control circuitry. Hence, we could assume that A >> 100 if we

consider both the area and energy efficiency. As a result, the bottleneck arises from

the weight update stage and its implementation decides the overall computational

efficiency of the mixed-precision architecture. In a high-precision implementation,

the weight update stage will constitute approximately 40% or smaller of the overall

computational requirements. Hence, the minimum computational advantage arising

from the mixed-precision approach is approximately 2.5. However, we demonstrated

the feasibility of a mixed-precision weight update stage to successfully train neural

networks. If the backpropagated errors are normalized the neuron activations and the

errors could be represented in low-bit precision and hence during the outer product of

them will lead to highly sparse weight update matrices. This leads to reduced memory

requirements to store intermediate results and much lower off-chip memory access to

update the large weight matrices or weight update accumulators. Furthermore, the

re-normalization and learning rate multiplications could be implemented as relatively

inexpensive bit-shift operations. For example, in the MNIST training simulation, a

3-bit representation during the weight update computation was sufficient to reduce

the weight update count to less than 10% with negligible loss in test performance.

This leads to a 10× acceleration of the weight update stage (B = 10) and hence

a potential overall 20 to 25× computational advantage for MPA compared to the

high-precision approach.

The computational memory based MPA architecture could be more efficient

compared to an entirely digital mixed-precision implementation using application

specific integrated circuits (ASICs). The relative advantage could come from the

area efficiency of the PCM array and the in-memory computation. An ASIC

implementation where the required matrix products are computed using an array

of low-precision MAC units will occupy a significantly larger chip area compared to a
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computational memory array, and still will have to access the high-precision memory

for the weights and convert them to the low-precision version before performing the

actual computation. A high-precision memory accumulating the gradients will be an

essential part of both the implementations here as they are based on backpropagation

algorithm. Additional resource utilization and pipeline improvements are possible in

computational memory implementation if we can afford one batch delay in weight

update. Here, we suggest using the dense computational arrays with local weight

storage to perform the forward and backward data-propagations for one batch while

the remaining chip area could be utilized for weight update computations for the

previous batch of training data. This one-batch delay in the weight update is observed

to have a negligible impact on the training performance on the MNIST benchmark

problem. This pipelining is much less efficient in a fully ASIC implementation as the

same resources need to be shared between the data-propagation and weight update

stages.

We have discussed the computational efficiency of the MPA architecture as

a training accelerator. The trainability of the computational memory also makes

them an attractive candidate for systems that learn throughout its life while acting

in an inference mode predominantly. It is projected that such inference modes can

have at least two orders of magnitude better efficiency compared to its high-precision

counterparts [73]. Hence, the effective system efficiency gain in such cases will be

determined by the fractional lifetime it spends in the training and inference phase.

5.7 Summary

The efficacy of the mixed-precision deep learning architecture to achieve floating-point

comparable performance using low-precision nanoscale devices is experimentally

demonstrated using PCM devices in a million device array on the benchmark problem

of handwritten digit classification based on MNIST dataset. We demonstrated
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on-chip inference using PCM weights for a period of a month with a negligible drop

in the trained performance over time. We also experimentally demonstrated the

feasibility of using a highly asymmetric device for synapse using a non-differential

single device configuration for training which achieved performance within 1 % of

that from floating-point training. Further, the generalizability of the architecture to

more complex problems such as image recognition, language modeling, and image

synthesis based on CNN, LSTM, and GAN networks is analyzed using a statistically

accurate stochastic switching model of PCM, demonstrating network performance

which is comparable with floating-point baseline. This also points to the flexibility of

the architecture to adapt to different training optimizers. We show that the hardware

efficiency of nanoscale computational memories can be maintained while preserving

the accuracy of floating-point software simulations if the gradient information is

accumulated with sufficient precision in the digital domain and transferred to the

device when it becomes comparable to the update precision. The architecture

significantly relaxes the device requirements, particularly those related to linearity,

variability, and update precision to realize high-performance learning machines. The

sparse device programming in the accumulate and transfer scheme also improves

the overall reliability and endurance of the nanoscale devices. We further show

evidence for an inherent regularization originating from the non-linear and stochastic

behavior of such nanoscale devices in this mixed-precision architecture. We also

provide pathways to optimize the weight update stage in the digital domain through

a low precision representation of the neuron activations and back-propagated errors

with dynamic scaling and high-precision accumulation, which together reduces the

computation cost, area, and memory access. The architecture is flexible enough

for a wide class of deep learning training methods and algorithms beyond the simple

stochastic gradient descent and could potentially have a 20× computational advantage

compared to the corresponding high-precision implementation.
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CHAPTER 6

TRAINING OF SPIKING NEURAL NETWORK USING
PHASE-CHANGE MEMORY ARRAYS

6.1 Introduction

ANNs and SNNs represent different levels of abstractions of the biological neural

network which are being explored to implement intelligent computing engines. Even

though SNNs mimic the biological networks more closely, ANNs remain the choice of

machine learning community due to the difficulty in implementing SNNs efficiently

in von-Neumann machines and the direct non-applicability of the gradient descent

training algorithms to SNNs. In contrast to ANNs where information is represented

in real numbers of high-precision, information in SNNs is coded as a stream of

spikes [123, 124]. Each neuron in an SNN integrates these asynchronous spike

streams from a large number of input neurons temporally to determine its spike

response. The requirement to emulate the behavior of a large number of neurons

with complex temporal integration behavior and with an asynchronous inter-neuron

communication calls for a fully parallel nano-scale device hardware implementation.

A computational memory based implementation where non-volatile memory devices

provide dedicated connectivity between layers of neurons (Figure 6.1) analogous to

the biological network could lead to an efficient implementation of SNNs as well.

This work experimentally demonstrates on-chip learning of a single layer SNN,

which is trained to convert the spikes generated from an audio signal to corresponding

images of the characters pronounced. The network synapses are implemented using

eight PCM devices in a differential configuration. We evaluate the suitability of

the stochastic PCM to represent synapses in an SNN trained to generate spikes

at precise times rather than an average spike rate. Effect of multi-PCM synapse

configuration and mixed-precision training in improving the training accuracy is
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Figure 6.1 Neurons in the SNN integrates (both spatially and temporally)
asynchronous spike streams from a large number of input neurons to produce its
response. Dedicated connections provided by the non-volatile memory array is an
efficient parallel and scalable implementation.

analyzed using faithful stochastic model capturing the device programming behavior.

Further, the effect of drift is analyzed in the SNN inference and a compensation

method is proposed.

6.2 PCM Conductance Drift

In this section, the behavior of conductance drift is analyzed in different synapse

configurations, devised to compensate other non-ideal characteristics of PCM. For

example, a multi-PCM configuration has been proposed to improve the granularity

of the conductance update in synapse [95]. Here, the synapse conductance is the

sum of multiple PCM devices and during each update, only one of the devices is

updated chosen by a global arbitration clock. The asymmetric conductance update

due to the abrupt RESET transition in the PCM devices are compensated by a

differential configuration, where each synapse is realized as the difference of two PCM

conductance values, i.e., W = β(Gp − Gn), where β is a scalar multiplier [27]. This

allows the weight increments and decrements to be implemented by partial-SET pulses

applied respectively to Gp or Gn devices.

Conductance drift is another aspect of the PCM that could potentially affect

the training performance and the networks’ ability to retain the trained state. The
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Figure 6.2 Effect of conductance drift in PCM synapses. a A single PCM in
the positive half in the differential configuration receives the programming pulse.
The effective synapse conductance evolution is shown in linear (left) and logarithmic
(right) time scale. b A single PCM in the negative half in the differential configuration
receives the programming pulse.

rate of change of conductance from drift can be approximated from Equation (3.3)

for ν << 1 as,

dG(t)

dt
=
−ν
t

G(t0)

t−ν0

. (6.1)

Equation (6.1) shows that the rate of change of conductance is proportional to

the drift coefficient and conductance, and inversely proportional to the time elapsed

since programming. It indicates that while at smaller time scales, the conductance of

individual devices will determine the rate of conductance decay, but as time grows,

the rate of conductance decrease drops exponentially.

The impact of this drift behavior in three exemplary synapse configurations

- with a single PCM, 2-PCM in a differential configuration, and an 8-PCM in a

differential configuration - is analyzed in Figure 6.2. A drift-free conductance level

representing 4µS is shown for reference. The PCM in the single PCM synapse is also

assumed to have been programmed to a state with a conductance of 4µS at time

t0. The same conductance level is represented in 2 PCM differential synapse using

Gp = 6µS and Gn = 2µS. In the 8 PCM synapse configuration, Gp = 2µS for the
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four positive devices and Gn = 1µS for the negative ones. Such uniform distribution

of the conductances in a multi-PCM synapse is feasible in reality by using a clock

scheme to distribute the programming pulses among the devices [95]. In Figure 6.2a

we assume that these conductance levels were achieved via a programming pulse

applied to one of the PCMs (in the positive half in the differential configurations)

at time zero. Other PCMs are assumed to have received programming pulses a few

seconds earlier with random offsets. The effective conductance evolution plot shows

that the 2-PCM differential configuration which had the highest conductance in an

individual PCM shows the highest rate of decay, while the multi-PCM wherein which

each individual PCM had smaller conductance levels had smaller slopes. Figure 6.2b

shows a similar situation when a PCM in the negative half in the differentially

configured synapse received the last programming pulse. Again, the ability of a

multi-PCM to represent the same network weight using smaller conductance values

of individual devices enable it to have smaller overall conductance drift. However,

in this discussion, the assumption that the 4µS PCM to represent a 4µS synapse

conductance is valid only if the synapses need only positive weights. To represent

a bipolar weight distribution, single PCM will require an additional reference level

at approximately at the middle of the device conductance range, consequently the

4µS synapse conductance will be represented by a much higher conductance. Hence,

a non-differential single PCM will have the worst performance in conductance drift.

Based on our analysis here, the multi-PCM synapse with pulse amplitude modulated

programming gives better granularity and lower drift and hence used for implementing

the synapses in the supervised training experiment in the next section.

6.3 SNN Training Experiment

The training problem we use here is inspired by our ability to conjure objects in

our imagination upon hearing its name. The underlying neural network must be
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Figure 6.3 The audio signal is passed through a silicon cochlea chip to generate
spike streams. These spike streams are sub-sampled and applied as an input to train
the single layer SNN. The desired spike response from the networks representing the
images (14× 12 pixels) corresponding to the characters in the audio is shown at the
output of the network.

associating the audio signal with an image representing the information contained in

the audio. Therefore, we formulated it as a supervised training of an SNN whose

input is the audio signal and the desired response are the images it is expected to

imagine. In order to perform the training experiment in the spiking domain, we

used the assistance of Dr. Shih Chii Liu, to convert the audio signal to a set of

spike streams using a Silicon cochlea developed at Institute of Neuroinformatics,

Zurich. The audio signal used says ‘IBM’. Cochlear circuit has 64 band-pass filters

with frequency bands logarithmically distributed from 8 Hz to 20 kHz. The cochlea

circuit generated spikes representing the left and right channels. Further, due to the

synchronous delta modulation scheme used to create the spikes, there were on-spikes

and off-spikes. Combining all the filter responses corresponding to non-zero spiking,

for left and right channels and the on and off spikes, there were 132 input spike

streams. The silicon cochlea generated spikes with a time resolution of 1µs. The

spikes were further sub-sampled to a spike time resolution of 0.1 ms and to have an

average spike rate of 10 Hz. A raster plot of the spikes thus generated is plotted in
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Figure 6.3. The audio spikes are fed as input to the single layer neural network. The

desired response of the network is generated as Poisson spike streams whose spike

rates are scaled versions of the pixel intensities of a 14×12 image representing the

characters ‘I’, ‘B’, and ‘M’. The spike trains representing the images have an average

duration of 230 ms and is mapped to the corresponding time window in the audio

signal.

The 22,176 synapses in the network is realized using 177,408 PCM devices in

differential configuration (W = β(Gp − Gn)). The differential configuration allows

both weight potentiation and depression to be implemented using identical SET

pulses resulting in similar conductance changes and it compensates the conductance

update asymmetry due to the abrupt RESET observed in PCM. Each half of the

differential configuration, Gp and Gn, is the sum of 4 PCM device conductances.

The multi-PCM configuration increases the update resolution for a given dynamic

range required for the synapse. It also reduces the effective drift observed by the

network. For each synaptic update desired by the training algorithm, the device

to be programmed is chosen cyclically, so that on average all devices receive an

approximately equal number of pulses [95]. To further extend the conductance range

offered by the individual devices and to improve the programming resolution, we used

pulse amplitude modulated programming.

Each input spike stream is convolved with a current kernel Iker = (e−t/τ1−e−t/τ2)

and weighted with the synaptic strength W to generate a continuous time current

input from each synapse. The net currents from all the input synapses are integrated

by the LIF (leaky-integrate and fire) neurons to generate the output spikes. The

observed output spikes are compared with the desired ones and the weight updates

∆W are generated using a supervised SNN training algorithm called NormAD [79].
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Figure 6.4 a The observed versus desired conductance change in the PCM from the
SNN training experiment. b Accuracy is defined as the number of desired spikes with
an observed spike generated from the network within a certain time interval. The
lower bound of the shaded lines correspond to 5 ms interval, the middle line 10 ms
and the upper bound 25 ms. The corresponding training simulation using the PCM
model captures the experimental result very well. c The raster plot of the desired
and observed spike trains from the trained network. A visualization of the character
images whose pixel intensities are generated from the observed spike rates is also
shown above the raster plot.

∆W = r

∫ T

0

e(t)
d̂(t)

‖d̂(t)‖
dt (6.2)

where r is the learning rate, T is the pattern duration, e(t) is the difference between

desired and observed spike trains. d̂(t) is a convolution between input spike stream,

Iker, and an approximate impulse response of the LIF neuron. Here, the weight

updates computed at each generated or desired spike instance is accumulated over

the training pattern duration (one epoch) and is applied to the network. The weight

updates are linearly scaled to a current pulse amplitude to program the PCM device.

The maximum amplitude of the programming pulse was limited to 130µA.

The stochastic conductance updates observed in the experiment for the desired

updates are shown in Figure 6.4a. A raster plot of the spikes observed from the

trained network as a function of time along with the desired spikes are shown in
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Figure 6.4c. The character images shown are created using the average spike rate

for the duration of each character and it indicates that the network was successfully

trained to capture the images. The ability of the network to generate the spikes

at the desired time instants are further evaluated using an accuracy (Figure 6.4b)

defined as the percentage of the total 987 desired spikes which have an observed

spike within a certain time interval. In the line plot of accuracy with shaded bounds,

the lower bound, middle line, and the upper bound respectively correspond to spike

time tolerance intervals of 5 ms, 10 ms and 25 ms. The average spike rate for each

of the character duration was 20 Hz corresponding to an inter-arrival time of 50 ms.

Hence, in this problem 25 ms can be viewed as an upper bound on the timing error

to make a decision based on spike-time. The training experiment using stochastic

phase-change memory devices generates more than 80% of the spikes within this

error bound. The training experiment was pre-validated using the PCM programming

model (Chapter 3) and it captures the experimental response accurately. The training

accuracy obtained from the corresponding 64-bit floating point (FP64) training

simulation is shown for reference.

6.4 Training Accuracy

Methods to improve the training performance of the SNN is evaluated using the PCM

programming model. Limited update granularity of a PCM device could be improved

by using multiple devices in parallel and updating one of them for each synapse

weight update. Figure 6.5a shows increase in training accuracy with an increase in

the total number of devices per synapse (used in differential configuration). However,

increasing the number of devices beyond sixteen in this problem did not yield higher

accuracy. Figure 6.5b shows that a similar accuracy can be achieved using a two

PCM differential synapse if we follow a recently proposed mixed-precision training

architecture [69]. Here, the weight updates are computed every time there is an
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observed or a desired spike and accumulated. When the accumulation exceeds an

average device update granularity, a programming pulse (90µA, 50 ns is assumed for

the PCM model-based training simulation) is applied and the amount corresponding

to the device granularity is subtracted from the accumulation. Figure 6.5b inset shows

that further training improvement can be realized by device engineering to reduce the

conductance drift and programming noise.

Further, the ability of a neural network to classify its inputs depends on the

correlation between the inputs. In Figure 6.6 we show, using the PCM model

simulation, that the accuracy gap between those from the experiment and floating

point training simulation can be reduced by decreasing the correlation between the

input spike streams. We added a random temporal jitter uniformly distributed in

[-25 ms 25 ms] to each input spike which causes the cross-correlation between the spike

streams to decrease. The correlation coefficient was determined after smoothing the

spike streams using a Gaussian kernel (e−t
2/2σ2

) of σ = 5 ms. This slight decrease

in the input correlation which led to improvement in training accuracy suggests that

encoding schemes and network structures that inherently separates input features
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Figure 6.6 a Input spike streams with spike times jittered by random amounts
uniformly distributed in [-25 ms 25 ms]. b The cross correlation between the jittered
spike streams are shifted towards zero compared to the experimental input c The
training accuracy is improved when trained with input spike streams of reduced
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could potentially improve training performance using low precision devices such as

PCM.

6.5 SNN Inference on PCM Array

The ability of PCM array based SNN to retain the trained state is evaluated by

reading the conductances at logarithmic intervals of time and observing the network

response (Figure 6.7a). Both the spike-time accuracy (Figure 6.7a) and the spike

rate (Figure 6.7c) drops due to conductance drift over time. In Figure 6.7b, the black

line shows the drifted conductance distribution compared to the distribution observed

at the end of training. The effect of this conductance drop in terms of the network

response is visible in Figure 6.7c. Here, the first row of images shows the letters ‘IBM’

that was created by the network using the conductance state immediately after the

training and the second row shows the corresponding response after 105 s, which is

barely recognizable compared to the initial response. The conductance decay causes

the net current flowing into the neurons to decrease gradually causing the neuron

spike rate to drop and eventually to stop spiking.
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The conductance drift in PCM follows an empirical relation (Equation (3.3))

which captures the average device behavior. If all the conductance in the network

drop by the same factor the effect of drift could be easily compensated by scaling

all the crossbar output by this factor. However, different devices are programmed at

different time instances during training and the conductance drift is state dependent.

It has been shown that each programming event re-initializes the conductance drift

(Figure 3.7) [84]. To accommodate the programming time difference between devices,

Equation (3.3) may be modified as follows:

G(t) = G(t0)
(t− tp

t0

)−ν
(6.3)

where t is a common time frame for all the devices with its origin at the beginning

of training. tp is the time any particular device receives a programming pulse and

t0 represent a constant time interval from tp. In typical neural network training

algorithms, the tp for each device will differ and hence will start to drift from different

time origins. Also, depending on whether the synapse received a potentiation or
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depression pulse, the effective synapse conductance could increase or decrease for a

time duration which is comparable to the differences of tps for the devices in that

differential PCM synapse. Therefore, if the solution determined by the training for

the task is sensitive to the conductance drift in a time scale comparable to the total

training time itself, then the solution could not be recovered by an array level scaling.

On the other hand, if the solution is less sensitive to small-scale drift, then the

long-term conductance drift ( tp
t
→ 0) could possibly be compensated by a scaling

factor proportional to tνe , where the te is the time elapsed since training. Figure 6.7a

shows that by scaling the conductance values at any time te after the training by a

factor t0.035
e the training accuracy drop from conductance drift could be compensated.

However, note that a full recovery of the trained state was not possible by an

array level scaling. The resulting scaled conductance distribution (red line) at 105 is

shown in Figure 6.7b. The state-dependent nature of the drift coefficient causes the

compensation factor to over-compensate at higher conductance ranges. The inference

performance of SNN using PCM synapses could be improved by reducing conductance

drift and recently demonstrated projected-PCM cell architecture with an order of

magnitude lower drift coefficient is a promising step in this direction [125].

6.6 Summary

We presented an experimental demonstration of the supervised training and inference

of spiking neural network using close to 180,000 phase-change memory devices.

The experiment demonstrates the feasibility of using stochastic and non-linear

conductance response of the device to achieve reasonable training performance.

Using a statistically accurate model which captures the device non-idealities and

the experiment training performance, we tested different synapse configurations for

performance improvement. The limited device granularity could be compensated by

multi-PCM synapse configurations. The training performance for limited granularity
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configurations could also be improved by the mixed-precision training approach.

Further, the drift induced performance drop could be compensated by a global scaling

factor, which is a function of the time elapsed since training, at the periphery of the

array.
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CHAPTER 7

RESISTIVE RANDOM ACCESS MEMORY FOR SYNAPSE

7.1 Introduction

We now analyze the feasibility of using resistive random access memories (RRAM)

as synapses via demonstrating spike time dependent plasticity in Cu/SiO2/W

based devices and phenomenological model based SNN training simulations. Basic

characterization and conductance quantization of the device are also presented

from [45].

While PCM is one of the most mature non-volatile resistive memory technology

and shows gradual conductance change desirable for a synaptic device, there are

constraints that arise from the physical mechanism of the phase change that other

class of non-volatile memories might be able to solve. The resistance changes in PCM

is via heat-assisted melting and crystal growth, which require special device structure

to produce local hot spots and high programming currents. Further, PCM requires

a series transistor in the array to supply the large current requirements of individual

devices and limits the maximum array density. RRAMs are memory devices with a

metal-insulator-metal (MIM) structure whose resistance states are programmed via

field driven atomic rearrangement. Their relatively simpler structure, operation, and

low power programming could possibly enable a higher density and computational

memory arrays with lower power. The suitability of RRAMs as a trainable synaptic

element in computational memories is explored here.

In this chapter, we discuss the behavior of a Cu/SiO2/W based RRAM

fabricated at the nanofabrication facility at IIT Bombay, India. The constraint to

be compatible with the current complementary metal-oxide-semiconductor (CMOS)

technology is a major deciding factor in the material choices for logic and memory
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devices for the future. A SiO2-based device with Cu top electrode is a suitable

candidate for the low-temperature back-end-of-line (BEOL) process integration.

Also, Cu is known to be highly mobile in SiO2. The high mobility of ionic

species in the dielectric is favorable for low power operation, though may have

deleterious effects on the data retention capabilities. Our experiments and analysis

are designed to understand the fundamental mechanisms of conductance switching in

these devices, scaling limits, and directions for the material trade-offs. We demon-

strate and discuss the conductance quantization in the device, demonstrates and

analyzes the sub-quantization spike-timing-dependent plasticity (STDP), and develop

a phenomenological model capturing the state-dependent conductance transition

nature to analyze the potential of the device as a synaptic element.

7.2 Resistance Switching Mechanism

RRAMs have a dielectric of a few nanometers to a few tens of nanometer in thickness

layered between a top electrode and a bottom electrode. When a programming

pulse is applied across the device, the resulting high electric field forces an atomic

rearrangement within the dielectric causing a resistance change. This atomic

rearrangement is considered to be an electrochemical process which can be anion

induced or cation induced depending on the nature of the metal electrodes and the

dielectric. Anion-type RRAMs are characterized by a metal oxide dielectric and inert

electrodes which are oxygen-ion active or can act as an oxygen ion reservoir during

resistance switching. In these devices, the resistance transition is by migration of

oxygen ions (or vacancies) which forms low-resistance conductance pathways between

the electrodes and are hence referred to as Oxide RAMs (OxRAM). On the other hand

in cation-type RRAMs, metallic ions from one of the active electrodes such as Ag,

Cu migrates across the dielectric and get reduced at the opposite electrode forming

conducting pathways. Due to the metallic nature of these bridges, they are also called
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conductance bridge RAM (CBRAM) [43]. Due to the relatively higher mobility of

the metallic ions in dielectrics such as SiOx and GeSx, CBRAMs tend to have smaller

operating voltages compared to OxRAMs.

The RRAMs as fabricated is in a high-resistance state (HRS) and its resistance

is determined by the dielectric, its thickness, and the device area. RRAMs typically

undergo a forming process which is a reversible, soft dielectric break-down induced

by an applied voltage making the first resistance transition to a low resistance state

(LRS). The resistance transition from the HRS to LRS is called SET programming.

During a SET, atoms of sufficiently low activation energy get oxidized, migrates

along the applied field and get reduced at one of the electrodes forming conduction

pathways. Applying a voltage of opposite polarity causes ionic migration in the

reverse direction causing the conductance paths to break returning the device back

to an HRS. This reverse transition is called RESET.

7.3 Fabrication and Characterization of Cu/SiO2/W RRAM

Our devices consist of a 10 nm SiO2 dielectric layer sandwiched between an active

Cu (100 nm) top electrode and an inert W/TiN/Ti (50 nm/10 nm/10 nm) bottom

electrode, over a p-type Si(100) wafer with a SiO2 electrical isolation layer. The

W/TiN/Ti stack used as a bottom electrode was sputter-deposited and patterned

with a photo-lithography and lift-off process. The 10 nm thick SiO2 film and the Cu

top electrode were then sputter-deposited over a patterned double layer photoresist

(LOR3B and S1813) in a single vacuum and room temperature process. The

100×100µm2 cross-point devices (Figure 7.1a) were finally obtained by a common

lift-off process. The stoichiometry of the SiO2 layer was confirmed by X-ray

photoelectron spectroscopy on the Si 2p core level (contribution of Si 2p3/2 at 103.6

eV, Figure 7.1c) [126, 127, 128]. The devices were subjected to 400◦C, 5 min annealing

in Ar environment after top electrode patterning.
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The switching response of the device was characterized by applying a voltage

sweep to the Cu electrode with the W kept at ground potential using B1500

semiconductor parameter analyzer. The maximum current that flows through the

device is limited to 100µA by a current compliance circuit in the characterization

tool. The device exhibits bipolar resistance switching with a pinched hysteresis loop

characteristic of memristive switching, as in Figure 7.1d. The initial SET transition

happened at approximately 350 mV and RESET at 125 mV. The SET voltage dropped

below 250 mV after a few cycles of SET and RESET (Figure 7.1e). The bipolar

switching behavior indicates that the conductance transitions in these devices are due

to the field-driven motion of charged ions through the dielectric. The ionic species

involved in the resistance transition was confirmed to be Cu via control experiment

which was unable to exhibit this low voltage resistance switching in the absence of

Cu as one of the electrodes. The actual conductance evolution trajectory will depend

on factors such as magnitude and duration of programming pulses, the thickness of

the dielectric layer, distribution of migrating ionic species and imperfections in the

dielectric.

7.3.1 Conductance quantization

The possibility of field localization in the RRAM dielectrics, either due to its non-

uniform thickness or a local defect, suggest the formation of conduction pathways

constrained to a narrow region. If the lateral dimension of the pathways is comparable

to Fermi wavelength (λF ) and its length is less than the mean free path for collision,

electrons will undergo ballistic transport. According to Landauer theory for ballistic

electron transport, this leads to a limited number of conduction modes available for

the electrons and cause quantization of measured device conductance [129, 130].

We observed occasional conductance steps during the resistance switching and

suspected conductance quantization pertaining to the nano-filaments. We found
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Source: [45].

that a current sweep measurement was better suited to observe the conductance

quantization and controlled filament growth in RRAM devices. Voltage sweep

measurement shows a fast conductance transition assisted by a positive feedback

mechanism. A growing filament further amplifies the electric field in the filament gap

accelerating the filament growth rate until the current compliance is hit. This places

limited control over the filament growth process. On the other hand, in a current

sweep mode, there is enough voltage across the device while it is in the HRS mode

to drive the filament growth, however, the moment a filament is formed to establish
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the lowest conduction mode the voltage across the device drops immediately due to

a sudden increase in the conductance. This slows down any further filament growth.

The subsequent increase in current causes the voltage to rise again, however, from a

lower voltage and until the filament growth adds a new conduction mode causing a

sudden drop in voltage. This negative feedback leads to controlled filament growth

and permits observation of quantized states in the device.

We used a 200 nA/10 ms current sweep from 0 to 100µA and monitored

the voltage across the devices. We observed conductance quantization levels at

integer and half-integer multiples of 2e2/h (typically called conductance quantum,

G0) (Figure 7.2) [45] repeatedly although every conductance level was not present.

The quantization of conductance observed here proves the filamentary nature

of the conductance path formed between the electrodes in the Cu/SiO2 based

CBRAM [131, 132, 133, 134, 135, 136]. Though there could be multiple filaments

we assume a single filament for the simplicity of the following discussion.

In the ballistic mode of electron transport in the metallic filament, the number

of energy sub-bands that electron can occupy becomes limited and discrete [130, 137,
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138]. In theory, each sub-band contributes a conductance of 2e2/h to the channel [139,

140]. Generally, the conductance quantization is reported using low amplitude AC

signals and the number of sub-bands available for conduction from the both the

contacts will appear to be same. However, in our case the voltage across the device

causes a Fermi level split. In Figure 7.3b, EFL and EFR respectively represent the

Fermi levels of the left and right contacts and energy level split ∆E = eV , where e is

the electron charge and V is the applied voltage. Mathematically, the density of state

n1D for one sub-band obey the relation, n1Dvg = (2/h)θ(E) where vg is the electron

velocity and θ(E) is the heaviside step function. When there are multiple sub-bands

each at energy level Ei, the current through the channel at zero temperature limit

can be written as,

I = IL − IR

= e

∫ ∞
−∞

dEn1Dvg[f(E − EFL)− f(E − EFR)]

=
2e

h

∫ EFL

EFR

∑
i

θ(E − Ei)dE

=
2e

h

( ∑
Ei<EFR

∫ EFL

EFR

θ(E − Ei)dE +
∑

EFR<Ei<EFL

∫ EFL

Ei

θ(E − Ei)dE

)
(7.1)

where IL and IR are the current injected into the channel by the left and right

contacts. If we assume that the contacts are reflection free and the channel is scatter-

less and one of the energy levels is halfway between the top and bottom electrodes,

Equation 7.1 can be reduced to

I =
2e

h
N eV +

2e

h

eV

2

= G0

(
N +

1

2

)
V

where N is the number of sub-bands below both the contact Fermi levels. Hence,

the observation of half-integer conductance can be attributed to the Fermi level split
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causing an unequal number of conduction modes available for transport from the two

contacts. Such characteristics have been observed previously where a finite voltage

across the filament leads to an observation of quantization at half integer multiples

of G0 [141, 142, 143, 144, 145, 146].

The number of available conduction modes in the nano-filament is a function

of the lateral filament radius. Hence increasing conductance in the current sweep

measurement is an indication of a growing filament. We observe that the voltage

across the filament appears to be bounded in Figure 7.2. If we neglect the voltage-drop

across any contact resistance, this voltage corresponds to the Fermi-level split. The

maximum of this separation could correspond to the sub-band spacing of the discrete

energy levels in the 1D channel (sub-band diagram for 1G0 in Figure 7.3b). The

distribution of the voltage measured across the device for the range of conductances

G = (n/2)G0±0.05G0 is shown in Figure 7.3c, which have an approximately constant

mean value. While theoretically, we expect an increasing sub-band spacing for a 1D
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channel and hence an upward trend in the voltage across it, the relatively constant

distribution of voltage suggests that the increase in sub-band spacing is compensated

by an increasing filament radius. This approximate sub-band spacing can be used

to estimate the filament radius from the solution of the Schrodinger’s equation for

cylindrical filament structure using the equation,

RCu =
[ ~2

2m∗∆E

]1/2√
(x`n+1)2 − (x`n)2 (7.2)

where x`n is the nth zero of Bessel function to the `th order and m∗(= 1.01me)

is the electron effective mass [147] in Cu. The estimated filament radius is shown in

Figure 7.3d which lie approximately in 2.5 − 4 nm range for the first few quantized

levels in Cu.

7.4 Cu/SiO2/W RRAM as a Synapse

Mimicking human brain’s architecture and computational primitives to build intel-

ligent information processing systems is the key goal of neuromorphic engineering

research activities worldwide. While there have been several demonstrations of

neuromorphic computational platforms using standard CMOS technology [148, 149,

150, 151, 152, 153, 154, 155, 156, 157], and demonstrations of nanoscale devices to

mimic neuronal and synaptic dynamics [91, 158, 50, 159, 160, 28, 161, 162, 163, 45],

none of these have achieved the target energy efficiency specifications necessary to

build systems that can learn in real-time and in-the-field [164].

While the low operating voltages of the CBRAM is advantageous, a more

gradual conductance change is desirable for synaptic implementation. Doping

the dielectric with the active electrode material (e.g. Cu) could reduce the resis-

tivity contrast between the dielectric and filament material and could improve

the probability of a non-filamentary conductance transition. Doping the dielectric

by annealing has been demonstrated to achieve gradual conductance change in
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Figure 7.4 Bio-inspired programming waveforms used in the experiment to
demonstrate STDP in a memristive device.

Cu/SiOx/W based device [26]. Further, the ionic migration velocity in the dielectric

is exponentially dependent on the electric field and hence the actual conductance

evolution characteristic is also dependent on the time-scale and shape of the

programming waveform [165, 166, 167]. Also, the feasibility of using CBRAM devices

for STDP has been shown by model simulations [168].

In this work, we experimentally demonstrate STDP like memory switching

behavior in a CMOS compatible memristive device using low-voltage bio-mimetic

programming waveforms. We specifically engineered the ionic doping in our device

by thermal annealing to achieve analog or incremental conductance changes ideal for

synaptic memory, as opposed to a high on-off ratio between the on and off states

required for binary data storage. For gradual conductance change, the programming

waveform is designed such that it minimizes the time spent by the device under high

voltages which reduces the probability of abrupt switching while providing sufficient

electric field to initiate ionic movement [165, 167]. The programming waveforms

shown in Figure 7.4 are designed to meet these requirements. Also, we develop a

compact model capturing its key synaptic behavior and analyze its learning capability

as a synaptic device in exemplary spiking neural networks.
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7.4.1 Spike-timing dependent plasticity demonstration

In this section, we describe how the STDP characterization of the device was

performed. We used Agilent B1500 semiconductor parameter analyzer with a B1530

unit. B1530 is an arbitrary waveform generator and fast measurement unit (WGFMU)

capable of applying 100 ns pulses and accurate current measurement with up to 5 ns

sampling rate. The set-up is connected to a probe station where the device is probed

and characterized. The spike programming waveforms were designed using Matlab

and were converted to voltage signals using the WGFMU. A slow dual voltage sweep

with a ramp rate of approximately 2 V/s was used to characterize the device for

its discrete switching behavior. For the STDP characterization of the device, 1 s

long patterns where used at a time, and in that duration each 250 ms was used

for a waveform corresponding to one spike pair. The waveforms were created from

data-points at a resolution of 0.5 ms. Read pulses of 5 ms duration and 50 mV

amplitude were inserted at the ends and in between the programming waveforms

to determine the state of the device. Programming waveforms corresponding to

randomly chosen 2000 ∆ts (∈ [−80 ms,+80 ms]) were applied to the Cu terminal of

the device. The resulting current as a function of time is read using the measurement

unit. The average current during the read pulse is divided with the read voltage

to get the device conductance changes due to each STDP event. However, after

approximately 1000 programming events the device became relatively unresponsive

and was stuck to a narrow range of conductance. Also, the conductance response

outside the window of [−40ms, +40ms] was not well correlated and are discarded

from the study.

The action potentials corresponding to the spikes from the pre- and post-

synaptic neurons, Vpre and Vpost are approximated (Figure 7.4) using two decaying
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exponentials as below:

Vpre(t) = A1e
−t/τmu(t)− A2e

−(t−3τm)/τsu(t− 3τm)

Vpost(t) = A2e
−t/τmu(t)− A1e

−(t−3τm)/τsu(t− 3τm)

(7.3)

where A1 = 0.1 V, A2 = 0.25 V, τm = 3 ms, τs = 30 ms and u(t) is the Heaviside step

function. The waveforms in Equation (7.3) are designed to capture the depolarization-

repolarization-hyperpolarization cycles in the biological action potential waveforms.

The amplitudes of Vpre and Vpost are chosen such that they are below the

minimum set and reset voltages of the device when there is little overlap between the

waveforms. However, when the spikes are closer, the magnitude of the instantaneous

voltage across the device increases, resulting in non-volatile conductivity modulation.

Even though biological action potentials last only a few milliseconds, experimental

evidence suggests synapses are able to capture the correlations between spike events

that are even 50 − 100 milliseconds apart. In our experiment, the time constants

of the programming waveforms are chosen to have non-zero overlap between the pre-

and post-synaptic neuron spike waves for the desired duration for this STDP window.

While the signal propagation direction of action potentials is along the axons away

from the cell body or soma, some experiments also suggest a back-propagation of

action potentials along the dendrites which could play a key role in the synaptic

plasticity [169, 170]. Inspired by this, our programming scheme assumes that the

Vpost signal is sent in the backward direction from the post-synaptic neuron when

it spikes. If spikes from both the pre- and post-synaptic neurons occur close in

time, there will be significant overlap in the voltage waveforms generated across the

device. Depending on the direction and magnitude of the field across the device, the

conductance of the device could increase (potentiation) or decrease (depression).

For the experimental demonstration, we assume that the Cu electrode is

connected to the post-synaptic neuron and W to the pre-synaptic neuron. However,
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Figure 7.5 a Memory switching behavior of the Cu/SiO2/W cross-point device for
two voltage sweeps with maximum amplitude of 350 mV and 450 mV. The current
corresponding to a conductance of G0(= 2e2/h) is marked using a dashed line.
The conductance response above the G0 level (blue curve) indicates at least one
filamentary path connecting the top and bottom electrode, while the orange curve
shows partial conductance switching in the sub-quantization regime. The 3D device
structure is shown in the inset. b STPD programming and measurement set-up
c Example STDP programming waveforms applied (top) and the measured device
conductance evolution (bottom) where ∆t = 5 ms results in a synaptic potentiation
and ∆t = −5 ms results in a synaptic depression. d STDP response of the
device determined as the average conductance change (normalized) versus the spike
time difference based on 400 measurements. ∆Gnorm = (Gf − Gi)/min(Gi, Gf )
e Energy spent per programming event in the device as a function of ∆t f
Evolution of the device conductance during the STDP measurement tracks the overall
causal/anti-causal signal correlation. The orange curve is a cumulative sum of the
sign of the ∆t across the sequence of measurements.

instead of applying the Vpre and Vpost to the respective terminals we compute the

difference waveform Vpost−Vpre as a function of time and is applied to the Cu terminal

with the W electrode at ground (Figure 7.5b). Such waveforms were created using

the WGFMU for different spike time differences. Example waveforms applied to the

device for a positive and negative time difference of 5 ms and the corresponding device

conductance evolutions are plotted in Figure 7.5c. Each programming waveform is
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appended with an initial and final non-disruptive read pulse of 50 mV amplitude

to measure the device conductance. As indicated in the figure, the ∆t = 5 ms signal

leads to potentiation and ∆t = −5 ms leads to depression in device conductance. The

average conductance change for the spike time differences in an interval of [−40 ms,

+40 ms] is plotted in Figure 7.5d based on 400 randomly chosen ∆ts. The average

∆Gnorm (= (Gf −Gi)/min(Gi, Gf )) versus ∆t, where Gi is the initial and Gf is the

final conductance for a spike time difference of ∆t, is similar to the STDP response

from a biological synapse shown in Figure 2.1b. The distribution of energy consumed

during these programming events (Figure 7.5e) indicates that potentiation cycles

consume higher energy compared to depression. On average, the device consumes

10 nJ per programming event. In Figure 7.5f we show the conductance evolution of

the device during the STDP measurement. We observed that the device always stayed

below the quantized conductance level of G0(= 2e2/h) with its minimum conductance

at 0.016G0. The filamentary paths often formed in the conductance-bridge resistive

memory devices act as nanoscale electron channels and result in conductance levels

which are integer multiples ofG0. The sub-quantized levels in our device are indicative

of non-filamentary atomic rearrangement based conductance modulation. Further,

the superimposed orange curve, which is a cumulative representation of the sign of

the applied ∆ts during each spike-time-difference based programming event follows

the same trend as the device conductance evolution. Thus, the device plasticity has

successfully captured the overall causal-anti-causal spike pair relations.

7.4.2 State dependent phenomenological model

To study how such device characteristics will be effective in emulating synapses in

neural network implementations, we developed a phenomenological model capturing

the observed plasticity behavior. Previously, we developed a simple analytical

model for explaining the device operation based on growth/decay dynamics of the
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filament, using differential equations incorporating Mott-Gurney ionic transport [171].

However, to study the feasibility of the device for implementing learning algorithms

via numerical simulations, a computationally simpler model that predicts the next

state of the device, Gf , given the current state, Gi, and spike pair time difference,

∆t, is more suitable.

A careful analysis of the device response reveals the state dependency of the

conductance change as a function of the timing difference of the applied waveforms.

We study the device response for three regimes, demarcated in units of quantum

conductance G0: (a) when Gi < 0.05G0, (b) when 0.05G0 < Gi < 0.16G0, (c) when

Gi > 0.16G0. From the average ∆Gnorm vs ∆t plotted for different ranges of initial

conductance, we observe that when the initial conductance is in the intermediate

range, conductance change in the direction of potentiation and depression is in the

same range for the same spike time difference, while potentiation is pronounced and

depression is weak in the low initial conductance regime (Figure 7.6a,b)). Albeit noisy,

a similar trend was also visible in high initial conductance regime, where device shows

more tendency for conductance depression than potentiation. This behavior indicates

a reduction in the incremental conductance change and a conductance saturation as

the device reaches closer to its upper and lower conductance limits.

Our model essentially captures these state dependent conductivity modulation

characteristics by modelling the normalized change in conductivity ∆Gnorm as:

When ∆t > 0,

∆Gnorm = A exp

(
−∆t

αap + gβap

)
− A exp

(
−∆t

αbp + gβbp

)
(7.4)

and when ∆t ≤ 0,

∆Gnorm = −A exp

(
∆t

αan + gβan

)
+ A exp

(
∆t

αbn + gβbn

)
(7.5)
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Figure 7.6 a Average ∆Gnorm defined as (Gf −Gi)/min(Gi, Gf ) response from the
device measurement when the initial conductance is below 0.05G0 with an average
of 0.03G0 and when b it is in the range between 0.05G0 and 0.16G0 with an average
of 0.1G0. c The response of the phenomenological model, when programmed with
a sequence of randomly chosen ∆ts. d The device conductance after the application
of the pulse (Gf ), calculated from the phenomenological model is well correlated
with the experimental values (R2 ∼ 0.56), for the same initial conductance values
and programming ∆ts as in the experiment over a dynamic range of two orders of
magnitude.

A = 9, g = log10(Gi/G0), and other parameters are listed in Table 7.1. Further,

the model is limited to operate within a conductance range of Gmin = 0.016G0 and

Gmax = 0.5G0. The Equations 7.4, 7.5 are formed as the difference of two decaying

exponentials with different time constants. The time constants are functions of the

device conductance and converges to the same value at the boundary points such

that the conductance change gradually becomes zero. Such state-dependent behavior

is akin to the saturating conductance responses observed in many of the gradual

conductance and STDP demonstrations in the memristive devices [28, 172, 173, 26, 25,
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174, 175]. Biological STDP is also known to exhibit such a state-dependent behavior.

For example, experimental measurements in rat hippocampal neurons indicated that

significant long-term potentiation occurred only in synapses of low initial strength,

although such an obvious dependence was not observed in long-term depression [15].

This state-dependent conductance modulation could lead to an asymmetry between

potentiation and depression, especially when the current state is closer to either of

the conductance boundaries.

Table 7.1 Cu/SiO2/W Phenomenological Model Parameters

Symbol Value Symbol Value

αap 5.2 ms βap −3.8 ms

αbp 6.9 ms βbp 1.9 ms

αan 9.1 ms βan −1.9 ms

αbn 2.3 ms βbn −5.7 ms

The STDP response from the phenomenological model is shown in Figure 7.6c,

where the device conductance is initialized to 1µS and is programmed with a sequence

of random ∆ts. To compare the model and device response, the model is initialized

with the exact device conductance measured before each ∆t from the experiment

and the correlation between the model and the device conductance responses after

each ∆t based STDP programming is plotted in Figure 7.6d. The R2 estimation

between these experimental and model conductance values measured over two orders

of magnitude is 0.56.

Data fitting Here, we describe how the parameters in the phenomenological model

(equation (7.4, 7.5) and Table 7.1) are obtained from the device STDP response.

We first obtained peak-fits of the experimentally measured average ∆Gnorm data
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points for medium and low initial conductance range separately for the positive

and negative ∆t range (Figure 7.7). The phenomenological model for the STDP

behavior of the device was obtained by fitting a function, f = A(exp(−∆t/τA) −

exp(−∆t/τB)), to the peak-fit points of the ∆Gnorm vs ∆t in a state-dependent

manner. Figure 7.7a shows the peak-points in a moving ∆t window of 5 ms within

the range of [0, 40ms] for ∆Gnorm data points which are in a low initial conductance

range (Gi ∈ [0.016G0, 0.05G0] with a mean of 0.03G0 where G0 = 2e2/h). The

corresponding function f fit line obtained using gradient descent is also shown over

the peak-fit points. Figure 7.7b shows the peak-fit points and the corresponding

model fit line for the negative ∆t range. Figure 7.7c,d show the similar model fitting

results for the medium initial conductance range (Gi ∈ [0.05G0, 0.16G0]) which has

a mean of 0.1G0. The exponential fit lines give the time constants τA and τB as a

function of the initial conductances for positive and negative ∆ts.

The phenomenological model determine the next state for each spike-pair based

programming using the relation ∆Gnorm = A(exp(−∆t/τA) − exp(−∆t/τB)). We

observed that the τA and τB are functions of the conductance of the device before

programming and the sign of the time difference between the programming spike pairs

(∆t). We approximated the time constant versus initial conductance relation using

linear functions of log(Gi) as τ = α + β × log(Gi/G0). Fig 7.8a shows the linear

fits for ∆t > 0 and Fig 7.8b shows the linear fits for ∆t < 0. At the points where

the two lines meet, we have τA = τB and ∆Gnorm = 0. We limit the range of the

phenomenological model within the boundary points at which Gnorm becomes zero.

Slopes and intercepts of the linear fits are used to determine the parameters αs and

βs.
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Figure 7.7 Peak points and the corresponding double-exponential function fit for
∆Gnorm versus ∆t data with low (a, b) and medium (c, d) initial conductance are
shown separately for positive and negative ∆ts.

7.5 Supervised Learning Emulation

Next, we discuss how this device could be used in an exemplary spiking neural network

for implementing event-triggered learning. An STDP derived supervised learning

algorithm, similar to the ReSuMe [176], is used to train a network with 1000 inputs

neurons and one output neuron (Figure 7.9a). The task is to determine the weights

of the 1000 synapses of the output neuron such that it creates spikes at the desired

instants as dictated by a teacher neuron when they are excited by spike streams

generated by a Poisson process (Figure 7.9c,d). The phenomenological model for the

device plasticity was employed to emulate the synaptic behavior during the training of

the spiking neural network. At the beginning of training, synapses are initialized as a

distribution around the geometric mean of the maximum and minimum conductance

of the model (Gref =
√
GmaxGmin). This Gref is considered as a reference level
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Figure 7.8 The τA and τB as a function of Gi is fitted with linear functions for
positive ∆t in a and negative ∆t in b. The solid markers denote the τ values
obtained by the data fitting and open markers are obtained by extending the linear
fit. The meeting points of the lines determine the boundary conductance for the
STDP operation of the phenomenological model.

around which the synaptic weights are allowed to vary during the training such that

individual synapses could be either excitatory or inhibitory. Implementation of such

a reference level in hardware may require an additional memory device along with

each synaptic device (Supplementary Note 3). The training rule for the synapses is

shown in Figure 7.9a,b. When the teacher neuron spikes, the synapses are potentiated

based on the time elapsed since the most recent input spike. Similarly, the synapse

will be depressed when there is an observed spike from the output neuron, based on

the time difference with the last input spike. When the output neuron spike coincides

with a teacher neuron spike (i.e., the desired response is obtained from the network),

there will not be any synaptic modulation. The amount of potentiation or depression

for each time difference is determined in a state-dependent manner using the device

STDP model. This process is continued for repeated presentations of the input and

desired spike patterns to the network until the observed spike stream is similar to the

desired pattern. In our simulations shown in Figure 7.9c,d, the network generates
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all the spikes at the desired times within ±10 ms in 9 epochs. The weight evolution

generated by our model for a few synapses during the training is shown in Figure 7.9e.

Synaptic condctance distribution

Input and output spike rate

Sd(t)

Si(t)

So(t)

0 200 400 600 800 1000

Time (ms)

0

500

1000

In
pu

t N
eu

ro
n

0 200 400 600 800 1000
0

5

10

T
ra

in
in

g
E

po
ch

Spikes Desired Spikes Observed

0 200 400 600 800 1000

Time (ms)

-100

-50

0

50

M
em

br
an

e
P

ot
en

tia
l (

m
V

)Δ
G

n
or

m

G

Si(t)

Time

a

0 50 100 150

Synaptic update number

0

20

40

G
(

S
)

Teacher
 spikes (Sd(t))

Observed
spikes (So(t))

Input spikes
 (Si(t)) 

synaptic 
connections

b

d

e

f

g

c

Figure 7.9 a An exemplary spiking neural network with N input neurons connected
to a single output neuron. The training task is to discover the synaptic weights such
that the output spike response, So(t), matches the desired response, Sd(t), for a
specified input spike excitation, Si(t). b Training rule: the synapse is potentiated
or depressed based on the time difference of desired or observed spikes respectively
from the efferent spike using the STDP model. c A raster plot of the spike streams
from each input neuron in a 1000 × 1 SNN is shown. d The desired and observed
spike trains over the training epochs (top) and the final membrane potential (bottom)
from the output neuron as a function of time. e Device conductance evolution for
four exemplary synapses during the training of the 1000× 1 neural network. f Input
(top) and observed output (bottom) neuron spike rate in an SNN trained for sequence
prediction. g Relative conductance distribution of synaptic device models connected
to three output neurons showing the features learned after training. The first set of
synapses is connected to a neuron responding to letters N and J. The second set of
synapses is connected to an output neuron responding only to letter N. The third
output neuron had the desired spike having anti-causal relation with most of the
input spikes leading to an effective synaptic depression.

Such algorithms are at the heart of supervised learning platforms in spike

domain. Once input and output data are translated to spike domain, it can be used

to efficiently train networks for different tasks, provided the synaptic realization has

sufficient analog programmability. The N × 1 network could be extended for more

complex problems. For example, we realize a 900×900 spiking neural network whose

synapses are represented by our phenomenological model (Supplementary Note 4).
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The network acts as a sequence predictor for English letters N→J→I→T such that

when the input layer is presented with one of the letters, the network creates the

image of the next letter in the sequence at the output layer. The pixel intensities of

30× 30 grayscale images are used as rate constants for a Poisson process to generate

the corresponding input and desired output spike streams. The network synapses are

trained using the same supervised STDP rule as before. The input and the resulting

output spike rates from the network after training can be mapped to the input and

predicted output image as shown in Figure 7.9f. The conductance distributions of

the synapses connected to three output neurons (akin to a receptive field) are shown

in Figure 7.9g. The relative distribution of the conductance illustrates the features

the network have learned, enabling it to efficiently map the input spike streams to

the corresponding output spike streams, in an event-triggered manner. Note that the

first set of synapses are connected to an output neuron responding to both letters

N and J, illustrating the complex information representation capacity of synapses

obeying the plasticity rules. The phenomenological model that we used in these

SNN simulations could be easily tuned for larger conductance range or asymmetric

potentiation-depression behavior to capture similar STDP trends observed in other

devices. This will enable potential evaluation of synaptic device specifications in new

neural network architectures and their learning capacities.

7.6 Discussion

There have been numerous demonstrations of CBRAM devices, including some based

on the Cu/SiO2/W material system, as non-volatile memory devices programmed to

two distinct resistance states [177, 132, 178, 47, 179, 180, 181]. These binary devices

are characterized by high on-off ratios (∼ 103) due to the large resistivity difference

between the dielectric and the bridging metallic filament. Though the stochastic

switching nature of the CBRAM devices has been utilized to perform neuromorphic
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computations [182, 183, 184], it is desirable to have incremental conductance change

in the synaptic device to implement event-triggered learning in neuromorphic circuits.

While there have been attempts to obtain multi-level or gradual conductance change

operation by modulating the filament thickness in CBRAM, [185, 186] the high

power consumption due to the metallic filaments bridging the electrodes makes

them unsuitable for neuromorphic applications [180]. In our device, the dielectric is

effectively doped with Cu atoms using annealing and the device demonstrates more

gradual conductance transitions in a regime below quantized ballistic transport.

We have implemented spike-timing dependent plasticity behavior in our device

in its sub-quantized high resistance states using bio-mimetic programming waveforms

with peak programming voltages below 500 mV. Additionally, the bipolar nature of

the device is suitable for simple pulse overlap programming and is hence ideal for

implementing local learning rules in a compact manner. In contrast, a PCM which

require two different temperature distributions for the crystal growth and amorphize

necessitates more complicated programming waveforms and circuits to implement

STDP behavior [28]. STDP behavior has also been demonstrated before in silicon

based [187] and oxide based resistive memory devices [24, 50, 172, 188]. However,

these devices are characterized by either high operating voltages (typically > 1 V) or

high operating current (0.1 mA to 10 mA) or low on-off ratio (< 10). The plasticity

demonstration in the low voltage Cu/SiO2/W device hence opens up the potential

for realizing denser and more energy-efficient synaptic networks, with further device

optimization.

A critical advantage of the Cu/SiO2/W device is that it is CMOS compatible,

and can be integrated during the back-end metallization steps, making it possible

to even achieve high-density 3D arrays. Furthermore, unlike conventional memory

arrays, memristor-based synapse arrays are read in parallel (to perform the weighted

summation operation in neural networks) and also programmed in parallel using

135



overlapping programming pulses from the periphery (to implement local spike-

triggered learning). Hence, the sneak-path issue that plagues conventional cross-point

memory operation is not so severe for neuromorphic applications, although it

is essential to perform the device programming without altering the neighboring

devices. As a result, it may become necessary to integrate selector devices at the

cross-point along with the memristor devices for the proper operation of large synaptic

arrays. While a three-terminal CMOS transistor could be used as a selector, there

are also efforts to develop two terminal bipolar selector devices with high on-off

ratio and tunable threshold voltages so as to maintain high integration density for

synaptic applications [189, 190]. The programming waveforms can be modified in

a straightforward manner based on the combined characteristic of the CBRAM and

selector device [191].

For STDP realization in memristive devices, several programming methods

have been proposed. One of the initial approaches has been to convert the

sign and magnitude of the spike-time difference into the polarity and width of a

rectangular programming pulse [187]. However, this necessitates a global circuit to

generate the programming pulse with tunable width. Different forms of pulse-overlap

based programming schemes have also been proposed such as amplitude modulated

rectangular pulse sequences [168] and continuous analog waveforms [192, 50] drawing

different levels of biological inspiration. Also, programming waveforms could be

reshaped to realize different forms of STDP behavior. In this work, we use an analog

programming waveform which has been tuned such that sufficient electric field is set

up across the device to initiate ionic drift while keeping the duration and amplitude

of the voltage sufficiently low to avoid rapid switching transitions to the extreme

conductance levels.

For the plasticity demonstration in our device, we have reduced the dielectric

resistance by ionic doping, and operated the device in the sub-quantized regime,
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effectively reducing the dynamic range available in the device. The dynamic range of

devices which have demonstrated gradual conductance range is also often similarly

limited and calls for joint co-optimization of the algorithmic learning parameters

and the conductance modulation characteristics of the device. The measurement

of excitatory post-synaptic currents in rat hippocampal neurons suggests that the

effective dynamic range of biological synapses could be as large as two orders of

magnitude [15]. A recent study on the synaptic spine heads found that there could be

two or more synaptic connections between neurons and estimated that each synaptic

junction could store 4.6 bits of information [70]. Neural network training problems

requiring higher resolution than that is available from a single device may also benefit

from materials innovations or architectural and algorithmic improvements [51, 95, 69].

Local learning rules such as STDP is key to the decentralized and parallel

processing capabilities of the biological neural networks. Realization of biological

plasticity mechanisms in nanoscale memristive devices when combined with their high

integration density and scaling potential enables power efficient implementations of

large-scale learning networks. While this proof-of-concept demonstration establishes

the basic feasibility of our device for learning, there are challenges in terms of

device reliability, and variability that warrants further research and optimization.

For example, the Cu/SiO2/W based devices we fabricated was responsive to

approximately 1000 STDP measurements. The higher mobility of Cu in SiO2, though

useful for low voltage operation, might be the reason behind the rapid deterioration

in endurance and retention performance [45]. Further, the stochastic nature of

atomic rearrangement upon programming results in stochasticity in the conductance

modulations as well. Also, the device-to-device and cycle-to-cycle variation of

the resistive memory devices could affect the array-level performance, though it

is expected that some of these reliability issues could be mitigated by improved

industrial fabrication processes. Furthermore, the targeted neuromorphic applications
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are more error tolerant as decisions are based on overall synaptic distributions

rather than the absolute conductance levels of any particular device, making resistive

memory based synapses more attractive for cognitive hardware.

7.7 Summary

We studied the conductance modulation behavior of Cu/SiO2/W RRAM. These

devices can be programmed using a few hundreds of millivolts and typically demon-

strate a fast binary switching based on the presence or absence of a nano-filament.

The observation of conductance quantization at room temperature confirms the

presence of filamentary paths. We demonstrated that by suitable programming

waveforms and annealing to dope the dielectric with metallic ions, STDP-like gradual

conductance based learning rules can be implemented using such devices. Based on

the state-dependent nature of conductance change in such devices, we developed a

phenomenological model and used it to analyze the feasibility of using such devices for

the training of spiking neural networks. Despite the limited on-off ratio, granularity,

and non-linearity, the device was able to reach performance levels comparable with

high-precision training in certain spike pattern generation task in an SNN. However,

the array level and individual device variability, endurance, and retention of these

devices need to be further evaluated.
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CHAPTER 8

FUTURE OUTLOOK

In the era of Big-data, the ability to process the data at the source in an energy

efficient manner opens up enormous possibilities and applications. Nanoscale memory

devices can realize compact high-density neural networks which combine storage and

processing and is a suitable tool for such applications. However, programming the

analog memory to achieve high accuracy in neural network benchmark tasks have been

a challenge. Through the mixed-precision architecture and several experiments and

simulations, we have shown that high-precision comparable classification accuracies

can be achieved using nanoscale devices. Our methods have demonstrated the

existence of solutions to the complex neural network problems in weight space that

can be realized using nanoscale devices, and training methods to achieve it. This

work hence opens up the possibility to create energy efficient and scalable learning

networks on chip.

Mixed-precision architecture based neural network training demonstration using

nanoscale PCM devices is at the intersection of different abstraction levels of designing

futuristic computing engines. Based on its current limitations and applications, we

can propose several directions for further research.

• Algorithmic development: It may very well be that low-precision realizations
of neural networks can approach the accuracy of software baseline. However,
training such networks in hardware using nanoscale devices require a high-
precision gradient accumulator to efficiently search the low-precision solution
space. The mixed-precision training we presented demonstrates that updating
a large number of weights by a very small amount could be in some sense
equivalent to updating a small number of devices by a larger amount. Further
inspirations for algorithmic improvement could also possibly be drawn from the
biological neural networks, which use spike triggered and asynchronous updates
for training its limited precision synapses.
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• Device engineering: The developments in the mixed-precision domain indicates
the promise of emerging nanoscale memory devices in neuro-inspired computing
architectures. However, the scalability of the devices without losing the
granularity, improvement in stochasticity, and reduction of conductance drift
need to be demonstrated. Also, it is essential to improve the reliability of
analog memory devices.

• Architectural improvement: While our work demonstrates proof-of-concept
feasibility of the system, there are many challenges in developing independent
learning accelerators using the mixed-precision architecture. The backprop-
agation based training mandates interfacing the analog computation in the
memory array with digital circuits. The area efficiency and speed of compu-
tation of the crossbar array are determined by the encoding efficiency of the
resulting peripheral circuits. For instance, the area of a 1T1R PCM cell is
approximately 25F 2. However, it is a hard problem to compress the peripheral
encoding/decoding or neuronal circuit per word line or bit line to fit in a
comparable area. This requires some intelligent resource sharing, encoding
schemes, and hardware designs. Alternatively, there have been a few nanoscale
device based implementations for the neuronal functions in SNNs [91, 193]. The
may be possible to integrate such devices into computational memory arrays to
realize more scalable architecture.

• Generalization: The applicability of the mixed-precision architecture to a
wider class of problems need to be further accessed. There are challenges in
efficiently porting different network architectures and algorithms to computa-
tional memory. While the limited dynamic range, precision, and stochasticity,
might seem disadvantage at first, they may be able to provide some inherent
regularization, avoiding some expensive computations in the traditional archi-
tectures. Also, we need to evaluate the feasibility of remapping the same
computational memory core to different network structures.

• Application domain: Beyond as a training accelerator, the nanoscale training
demonstrations promises economic solutions for the ubiquitous deployment of
life long learning machines. Neural networks realized with nanoscale memory
devices may be deployed in IoT sensors, which require evaluating the device
performance in harsh environmental conditions. Computational memory may
be used to realize compact neuro-processing cores in CPUs. In addition to the
hardware design challenges, it also brings questions on how a modern operating
system could make use of new computing resources. We could also significantly
improve the neural network processing power on mobile platforms, allowing
more privacy-aware cloud computing services.

140



APPENDIX

PCM-BASED HARDWARE PLATFORM

The experimental hardware platform is built around a prototype phase-change

memory (PCM) chip that contains 3 million PCM devices [89]. The PCM cells are

based on doped-Ge2Sb2Te5 (d-GST) and are integrated into the chip in 90 nm CMOS

baseline technology. In addition to the PCM cells, the chip integrates the circuitry

for cell addressing, on-chip ADC for cell readout, and voltage- or current-mode cell

programming. The experimental platform comprises the following main units:

• a high-performance analog-front-end (AFE) board that contains a number of
digital-to-analog converters (DACs) along with discrete electronics, such as
power supplies, voltage and current reference sources,

• a FPGA board that implements the data acquisition and the digital logic to
interface with the PCM device under test and with all the electronics of the
AFE board, and

• a second FPGA board with an embedded processor and Ethernet connection
that implements the overall system control and data management as well as the
interface with the data processing unit.

The embedded microcode allows the execution of the multi-cell programming

and readout experiments which implement the matrix-vector multiplications and

weight updates on the PCM chip. The hardware modules implement the interface

with the external DACs used to provide various voltages to the chip for programming

and readout, as well as the interface with the memory device under test, i.e., the

addressing interface, the programming-mode or read-mode interfaces, etc.

There are two sub-arrays within the chip - The first sub-array contains 2

million cells, where each cell occupies an area equal to 25 F2 (F is the technology

feature size, F = 90 nm) and is accessed by a 240 nm-wide transistor. In the second

sub-array containing 1 million cells, two 240 nm-wide access transistors are used in
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parallel per PCM element, and hence the cell size is twice as large (50 F2). All

the experiments performed in this work were done on the second sub-array. This

sub-array is organized as a matrix of 512 word lines (WL) and 2048 bit lines (BL).

The PCM cells were integrated into the chip in 90 nm CMOS technology using the

key-hole process described in [88]. The bottom electrode has a radius of ∼ 20 nm

and a length of ∼ 65 nm. The phase change material is ∼ 100 nm thick and extends

to the top electrode, whose radius is ∼ 100 nm. The selection of one PCM cell is

done by serially addressing a WL and a BL. The addresses are decoded and they

then drive the WL driver and the BL multiplexer. The single selected cell can be
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programmed by forcing a current through the BL with a voltage-controlled current

source. For reading a PCM cell, the selected BL is biased to a constant voltage

(typically 100-300 mV) by a voltage regulator via a voltage Vread generated off-chip.

The sensed current, Iread, is integrated by a capacitor, and the resulting voltage is

then digitized by the on-chip 8-bit cyclic ADC. The total time of one read is 1µs.

The readout characteristic is calibrated via the use of on-chip reference polysilicon

resistors. For programming a PCM cell, a voltage Vprog generated off-chip is converted

on-chip into a programming current, Iprog. This current is then mirrored into the

selected BL for the desired duration of the programming pulse. Each programming

pulse is a box-type rectangular pulse with duration of 10 to 400 ns and amplitude

varying between 0 and 500µA. The access-device gate voltage (WL voltage) is kept

high at 2.75 V during programming. Iterative programming, which is used for device

initialization in our experiments, is achieved by applying a sequence of programming

pulses [194]. After each programming pulse, a verify step is performed and the value

of the cell conductance programmed in the preceding iteration is read at a voltage of

0.2 V. The programming current applied to the PCM cell in the subsequent iteration

is adapted according to the sign of the value of the error between the target level

and read value of the cell conductance. The programming sequence ends when the

error between the target conductance and the programmed conductance of the cell

is smaller than a desired margin or when the maximum number of iterations (20)

has been reached. The total time of one program-and-verify step is approximately

2.5µs.
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